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Abstract

A framework for the asymptotic analysis of local power properties of tests of stationarity

in time series analysis is developed. Appropriate sequences of locally stationary processes are

defined that converge at a controlled rate to a limiting stationary process as the length of the

time series increases. Different interesting classes of local alternatives to the null hypothesis

of stationarity are then considered and the local power properties of some recently proposed,

frequency domain-based tests for stationarity are investigated. Some simulations illustrate our

theoretical findings.

1 Introduction

The assumption of second order stationarity has been the dominating paradigm in time series

analysis for several decades. This assumption allowed for the development of an asymptotic the-

ory capable of investigating properties of statistical inference procedures like estimation or testing.

However, the assumption that the dependence characteristics of a stochastic process remains con-

stant over time is often not justified in practice. Among many sources of non-stationarity, the

covariance structure of a process may change as time evolves. In the last decades interest has been

directed towards the statistical analysis of stochastic processes the second order characteristics of

which vary over time. In an early work, Priestley (1965) introduced processes with evolutionary

spectra and a time-varying spectral representation; see also Granger (1964) and Priestley (1988).

For processes with time varying spectral characteristics, asymptotic statistical inference has been

made possible by introducing the class of locally stationary processes; see Dahlhaus (1997). This

class consists of triangular arrays of stochastic processes which together with a time rescaling ap-

proach allow for increasing information on the local structure of the process as the sample size

increases to infinity. The associated fill-in type asymptotics, enables then the development of a

powerful theory for investigating properties of statistical inference procedures for processes with
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time varying spectral characteristics; see Dahlhaus and Polonik (2009) and Dahlhaus (2012) for an

overview and for recent developments. Approaches similar to that of locally stationary processes

have been also proposed in the literature. We refer to Nason et al. (2000) and Ombao et al. (2005)

for locally stationary wavelet processes and to Davis et al. (2006) for piecewise stationary processes.

The above interest in the statistical analysis of processes with time varying spectral characteristics

motivated also the development of procedures for testing stationarity and the appropriateness of the

preassigned stationary process class. Priestly and Rao (1969) considered testing the homogeneity

of a set of evolutionary spectra evaluated at different instants of time using an analysis of variance

framework. For the change-point problem, Picard (1985) developed a test based on spectral distri-

bution functions and Giraitis and Leipus (1992) generalized this approach to linear processes. More

recently, von Sachs and Neumann (2000) proposed a test of stationarity based on empirical wavelet

coefficients while Dwivedi and Subba Rao (2010) introduced a Portmanteau type test statistic for

detecting non-stationarity. Interest has been also directed towards frequency domain-based tests

of stationarity. Paparoditis (2009) and Paparoditis (2010) proposed testing stationarity by evalu-

ating the L2 distance between a non-parametrically estimated local spectral density obtained via

smoothing the rescaled local periodogram and a spectral density estimator based on the entire

time series. Dette et al. (2011) proposed a test that also exploits the L2-distance between local

and global spectral density estimates, where smoothing of the local periodogram is replaced by

integrating over frequencies. Finally, a test of stationarity based on the Kolmogorov-Smirnov type

distance between estimates of the time localized spectral distribution function and its stationary

counterpart has been proposed by Dahlhaus (2009) and by Preuß et al. (2012).

Although for some of the aforementioned tests, consistency against a broad class of alternatives

has been established, identifying differences in the power behavior of the tests is more involved

and requires a sophisticated asymptotic analysis. In this paper, a framework for such an analysis

is developed by considering sequences of local alternatives to stationarity, that is by considering

appropriately defined sequences of locally stationary processes, that converge at a controlled rate

to a stationary process as the length of the time series increases to infinity. Within this framework,

different classes of locally stationary alternatives to the null hypothesis of stationarity can be

generated two of which are discussed in more detail in this paper. The first class of local alternatives

possesses so-called global in time deviations from stationarity, while the second class, generates

locally stationary alternatives to stationarity that are more localized in time. For both classes of

local alternatives, the power behavior of some recently proposed, frequency domain-based tests of

stationarity is investigated and the maximum rate is identified, at which convergence to the null

of stationarity is allowed, such that the tests have power bounded away from the level and from

unity. Our theoretical findings highlight several interesting features and differences in the power

behavior of the tests considered. Notice that although we restrict our comparison to some recently

proposed, frequency domain-based tests of stationarity, the theoretical framework developed in this

paper can be also used to investigate the local power properties of other tests of stationarity as

well.

The paper is organized as follows. Section 2 briefly reviews the frequency domain-based tests

of stationarity compared in this paper. The different classes of locally stationary alternatives

considered are introduced in Section 3. For these classes of local alternatives, the power properties
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of the tests considered are investigated and our main results are presented. Section 4 presents

some simulations that illustrate and support our theoretical findings, while Section 5 gives some

concluding remarks. All technical proofs are deferred to the Appendix.

2 A brief review of the different tests

2.1 Testing second order stationarity

Consider a triangular array {Xn, n ∈ IN} of stochastic processes, where Xn = {Xt,n, t = 1, 2, . . . , n},
and assume that Xt,n is generated by

Xt,n =
∞∑

l=−∞
at,n(l)εt−l (1)

where, for simplicity, we assume that {εt} is a zero mean, Gaussian white noise process with vari-

ance 1. For the coefficients at,n(l) it is assumed that functions l(·) exist with

sup
t,n
|at,n(j)| ≤ K/l(j) and

∞∑
j=−∞

|j|l−1(j) <∞

being satisfied, where the constant K does not depend on n. Furthermore, functions a(·, j) :

[0, 1] → IR exist such that for some K > 0 independent of n,

sup
u∈(0,1]

∣∣∣∂2a(u, j)

∂u2

∣∣∣ ≤ K/l(j) and sup
1≤t≤n

∣∣∣at,n(j)− a(t/n, j)
∣∣∣ ≤ K/(nl(j)).

Let f(u, λ) = (2π)−1|A(u, λ)|2, A(u, λ) =
∑∞

j=−∞ a(u, j) exp{−ijλ}, be the local spectral density

of the locally stationary process (1). Denote by g(λ) =
∫ 1
0 f(u, λ)du the time averaged local spectral

density at frequency λ and notice that g(·) ≥ 0 and g(·) is a positive-definite function. Thus, g(·)
is the spectral density of a stationary process which can be understood as the spectral density of

the stationary process that approximates best (in the L2-sense) the local spectral density f(u, λ)

of the underlying locally stationary process {Xn, n ∈ IN}, see Paparoditis (2009) and Dette et al.

(2011). The null and alternative hypothesis of interest can then be stated as follows.

H0 : f(u, ·) = g(·), a.e.,

H1 : f(u, ·) 6= g(·) on a set A ⊆ [0, 1] with positive Lebesgue measure.

For testing the above null hypothesis, several frequency domain based approaches have been pro-

posed which are briefly reviewed in the sequel.

2.2 L2 tests based on smoothed normalized local periodograms

Paparoditis (2009) proposed testing the null hypothesis H0 by comparing local spectral density

estimators based on different segments of the observed time series with a (global) spectral density

estimator based on the whole stretch of data. To be more specific, let mn < n be an even time
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window length and denote by Imn(u, λ) the local periodogram at frequency λ ∈ [0, π] calculated

using mn observations around the time point [un], that is

Imn(u, λ) =
1

2πmn

∣∣∣ mn∑
t=1

Xt+[un]−mn/2,ne
−iλt

∣∣∣2.
Observe that if the null hypothesis is true, then

E
(Imn(u, λj)

g(λj)
− 1
)

= O(m−1n ),

uniformly in λj = 2πj/mn, j ∈ {−[mn − 1]/2, . . . , [mn/2]}. Thus, a test of the null hypothesis of

stationarity can be constructed by estimating non parametrically the above mean function for a set

of equidistant time points u in the interval (0, 1) and evaluating the L2 distance of the estimator

obtained to the null function. To elaborate on, let ĝ(λ) be a nonparametric, kernel estimator of

the stationary spectral density g(λ), that is

ĝ(λ) =
1

n

∑
j

Kh(λ− λj)In(λj),

where In(λ) = (2πn)−1|
∑n

t=1Xt,n exp{−itλ}|2 is the periodogram calculated using the entire set

of observations, Kh(·) = h−1K(·/h), K is a smoothing kernel and h a smoothing bandwidth. Let

further us, s = 1, 2, . . . , N, be a number of N = [n/mn] equidistant time points in the time interval

[δn, 1− δn] with u1 = 1− uN = δn, where δn = mn/(2n). Then, the test statistic proposed is given

by

Tn =
1

N

N∑
s=1

∫ π

−π
Q2
n(us, λ)dλ, (2)

where

Qn(u, λ) =
1

mn

∑
j

Kb(λ− λj)
(
Imn(u, λj)

ĝ(λj)
− 1

)
.

Notice that Qn(u, λ) is a nonparametric estimator of the local mean function E(Imn(u, λ)/g(λ)−1)

which is expected to be close to the zero function if H0 is true and b is the local bandwidth used

to estimate this function. Furthermore, Tn is a time average of the L2 distances of the estimator

Qn(us, ·), s = 1, 2, . . . , n, to the zero function. A modification of this test based on the supremum

of
∫ π
−π Q

2
n(u, λ)dλ evaluated over all values of u using rolling time windows has been considered by

Paparoditis (2010).

It has been shown in Paparoditis (2009) that if h ∼ n−λ, λ ∈ (3/20, 1/3), b ∼ m−λn , N = n/mn and

mn = nδ, for δ ∈ (δ1, δ2) with δ1 = max{1/(3− λ), λ/(1− λ)} and δ2 = min{(8λ− 1)/(1− λ), (1−
2λ)/(1− λ)}, then

mn

√
NbTn − µn

D−−→ N(0, v2), (3)

where

µn =
√
Nb−1

∫ π

−π
K2(x)dx+

√
Nb

1

4π

∫ 2π

−2π
(K ?K)(y)dy,
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v2 = 2π−2
∫ 2π

−2π
(K ?K)2(y)dy

and K ? K denotes the convolution of the kernel K. Notice that, due to the normalization of the

local periodogram In(u, λ) by the global spectral density estimator ĝ(λ), the centering sequence µn
and the limiting variance v2 do not dependent on any unknown parameters or characteristics of

the underlying process. Based on (3), a level α test for stationarity can be obtained by rejecting

the null hypothesis whenever

mn

√
NbTn − µn
v

≥ u1−α, (4)

where u1−α denotes the 1− α quantile of the standard normal distribution.

2.3 L2 tests based on integrated local periodograms

A different approach to test stationarity has been proposed by Dette et al. (2011). The authors

consider the L2 distance

D2 =

∫ 1

0

∫ π

−π
(f(u, λ)− g(λ))2 dλdu (5)

=

∫ 1

0

∫ π

−π
f(u, λ)2dλdu−

∫ π

−π
g2(λ)dλ,

which differs essentially from the quantity (2) in that the non-normalized difference f(u, λ)− g(λ)

is estimated by integrating instead of smoothing. Normalizing in this context is done later on by

dividing through the standard deviation of the corresponding estimator. Observing that D2 = 0

under the null hypothesis, the testing approach proposed is based on the estimator

D̂2
n = πF̂1,n − 2πF̂2,n,

of D2, where

F̂1,n =
1

n

N∑
s=1

bmn
2
c∑

j=1

Imn(us, λj)
2

and

F̂2,n =
1

mn

bmn
2
c∑

j=1

( 1

N

N∑
s=1

Imn(us, λj)
)2
.

Concerning the grow rate of mn it is assumed that mn = nδ for some δ ∈ (1/2, 3/4). Dette et al.

(2011) showed that, as n→∞,

√
n
(
D̂2
n −D2 +

2πmn

n
F̂1,n

)
D−−→ N(0, τ2) (6)
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holds true, where under the null hypothesis, the expression for the variance τ2 reduces to τ2H0
=

4π
∫ π
−π g

4(λ)dλ. Note that 2πmn/nF̂1,n appearing in (6) is just an estimator of a bias term which

occurs in the asymptotics of F̂2,n. Dette et al. (2011) proposed to use

τ̂2H0
=

4π2

6n

N∑
s=1

bmn
2
c∑

j=1

I4mn
(us, λj)

as an estimator of τ2H0
and obtained under the null hypothesis, that,

√
n
(
D̂2
n +

2πmn

n
F̂1,n

)
/τ̂H0

D−−→ N(0, 1). (7)

A level α test for stationarity is then given by rejecting the null hypothesis whenever

√
n
D̂2
n + 2πmn/nF̂1,n

τ̂H0

≥ u1−α, (8)

where, as before, u1−α denotes the 1−α quantile of the standard normal distribution. Notice that

compared to the testing approach proposed in Paparoditis (2009) and since this test is based on

integrating local periodograms, it does not involve any kernel smoothing and avoids, therefore, the

need of selecting smoothing parameters.

2.4 Kolmogorov-Smirnov type tests

A different approach to test second order stationarity was proposed by Dahlhaus (2009) and Preuß

et al. (2012). The starting point for this test of stationarity is the Kolmogorov-Smirnov type

distance

DKS = sup
(v,ω)∈[0,1]2

∣∣∣∫ v

0

∫ πω

0
f(u, λ)dλdu− v

∫ πω

0
g(λ)dλ

∣∣∣ (9)

and the observation that DKS = 0 under the null hypothesis. An estimator of DKS is given by

D̂KS,n = sup
v,ω∈[0,1]

|D̂n(v, ω)|,

where

D̂n(v, ω) =
2π

n

bvNc∑
s=1

bωmn
2
c∑

j=1

Imn(us, λj)−
bvNc
N

2π

n

N∑
s=1

bωmn
2
c∑

j=1

Imn(us, λj).

A similar Test based on a slightly different estimator of DKS has been considered by Dahlhaus

(2009). Preuß et al. (2012) showed that, on the space l∞([0, 1]2), the process Ĝn(v, ω) =
√
n(D̂(v, ω)−

E(D̂(v, ω))) converges weakly to a Gaussian process G(v, ω) with mean zero and an appropriate

covariance structure, which reduces under the null hypothesis to

Cov(G(v1, ω1), G(v2, ω2)) = 2π(min(v1, v2)− v1v2)
∫ πmin(ω1,ω2)

0
g2(λ)dλ. (10)
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We denote with GH0(v, ω) the process which corresponds to G(v, ω) under H0, i.e., the Gaussian

process with mean function zero and covariance structure as specified in (10). If we write q1−α(G0)

for the (1− α) quantile of

G0 = sup
v,ω∈[0,1]

|GH0(v, ω)|, (11)

then a decision rule is given by rejecting the null hypothesis of stationarity whenever

D̂KS,n ≥ q1−α(G0). (12)

Notice that the quantiles of G0 are not known and depend on characteristics of the underlying

process. Preuß et al. (2012) showed that critical values of this test can be approximated sufficiently

good using appropriate bootstrap methods.

3 Behavior for local alternatives

3.1 Preliminaries and Assumptions

As mentioned in the Introduction, our aim is to develop a framework that enables the investigation

of local power properties of the different tests, that is their power behavior for sequences {Xn, n ∈
IN} of locally stationary processes, that “converge” to a (limiting) stationary process at some

appropriate rate as n increases to infinity. For this we consider processes within the class described

by (1) and which satisfy the following assumptions.

Assumption 1. Let Xn = {Xt,n, t = 1, 2, . . . , n}n∈IN be a triangular array of random variables,

where

Xt,n =
∞∑

l=−∞
an(t/n, l)εt−l, (13)

the εt’s are independent, standard Gaussian random variables and the sequence of functions an(·, l) :

[0, 1]→ IR, are for every n ∈ IN twice continuously differentiable and satisfy

sup
u∈[0,1]

∑
l

|l||an(u, l)| ≤ C, sup
u∈[0,1]

∑
l

| ∂
∂u
|l|an(u, l)| ≤ C, sup

u∈[0,1]

∑
l

| ∂
2

∂u2
an(u, l)| ≤ C, (14)

for some constant C <∞ independent of n.

Depending on the particular specification of the sequence of coefficient functions an(u, j), n ∈ IN ,

in (13), different types of local stationary alternatives can be generated. We focus in the following

on two particular cases.

3.2 Global in time local alternatives to stationarity

Consider the case where the sequences of functions an(·, l) in (13) are given by

an(u, l) = a0(l)(1 + cnb(u, l)), n ∈ IN, (15)
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where cn = n−κ for some κ > 0 and b(·, l) : [0, 1] → IR are twice continuously differentiable

functions. We suppose that cn and b(u, l) are chosen in way which ensures validity of (14) and that

there exists a l0 ∈ IN such that u 7→ b(u, l0) is not constant. Notice that the process {Xn} with

coefficient functions as in (15) possess a local spectral density fn(u, λ) satisfying

fn(u, λ) =
1

2π

∞∑
l,m=−∞

an(u, l)an(u,m) exp(−iλ(l −m))

=
1

2π

∞∑
l,m=−∞

a0(l)a0(m) exp(−iλ(l −m))

+
cn
2π

∞∑
l,m=−∞

a0(l)a0(m)(b(u, l) + b(u,m)) exp(−iλ(l −m))

+
c2n
2π

∞∑
l,m=−∞

a0(l)a0(m)b(u, l)b(u,m) exp(−iλ(l −m))

∼ f(λ) + cnfa(u, λ), as n→∞, (16)

where

f(λ) =
1

2π

∞∑
l,m=−∞

a0(l)a0(m) exp(−iλ(l −m)) (17)

and

fa(u, λ) =
1

2π

∞∑
l,m=−∞

a0(l)a0(m)(b(u, l) + b(u,m)) exp(−iλ(l −m)). (18)

Roughly speaking, f(λ) corresponds to the “stationary part” of the time varying spectral density

fn(u, λ) while fa(u, λ) stands for the dominating “non stationary part” that describes the devia-

tion from stationarity. Notice that the speed of convergence of the sequence of locally stationary

processes with corresponding local spectral densities fn(u, λ), n ∈ IN , to a stationary process with

spectral density f(λ) is controlled by the sequence cn, n ∈ IN . Our aim is to identify the maximal

rate at which cn can converge to zero, that is at which fn(u, λ) converges to f(λ), but such that

the tests considered have power bounded away from the level and from unity. Write

A =

∫ 1

0

∫ π

−π

(
fa(u, λ)−

∫ 1

0
fa(w, λ)dw

)2

dλdu > 0

for the L2 distance between fa(u, λ) and its best approximation through a stationary spectral

density
∫ 1
0 fa(w, λ)dw and

A∗ =

∫ 1

0

∫ π

−π

([
fa(u, λ)−

∫ 1

0
fa(w, λ)dw

]
/f(λ)

)2

dλdu > 0,

for the distance between the corresponding normalized functions. The following results are then

obtained for the different tests considered.
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Theorem 3.1 Suppose that Assumption 1 is true and that the sequence an(u, l) satisfies (15).

Assume further that h ∼ n−λ, λ ∈ (3/20, 1/3), b ∼ m−λn , N = n/mn and mn = nδ for δ ∈ (1/4, δ̃),

where δ̃ = min{(8λ− 1)/(1− λ), (1− 2λ)/(1− λ)}, Then, as n→∞,

P (decision rule (4) rejects H0) =


1 if κ < 1/4(1 + δ(1− λ))

Φ(A∗/v − u1−α) if κ = 1/4(1 + δ(1− λ))

α if κ > 1/4(1 + δ(1− λ))

Theorem 3.2 Suppose that Assumption 1 is true and that the sequence an(u, l) satisfies (15). In

addition we assume that δ ∈ (1/2, 3/4) holds. Then, as n→∞,

P (decision rule (8) rejects H0) =


1 if κ < 1/4

Φ(A/τ1 − u1−α) if κ = 1/4

α if κ > 1/4

with τ1 = 4π
∫ π
−π f(λ)4dλ.

Theorem 3.3 Suppose the assumptions of Theorem 3.2 are satisfied. Then, as n→∞,

P (decision rule (12) rejects H0) =


1 if κ < 1/2

P (supv,ω |G(v, ω)| > q1−α(G0)) if κ = 1/2

α if κ > 1/2

where q1−α(G0) denotes the (1 − α) quantile of the process G0 [cf. (11)] and (v, ω) is a Gaussian

process on [0, 1]2 with covariance structure given in (10) [with g(λ) replaced by f(λ)] and mean

µ(v, ω) =
(∫ v

0

∫ πω

0
fa(u, λ)dλdu− v

∫ πω

0

∫ 1

0
fa(u, λ)dudλ

)
. (19)

According to Theorem 3.1, the rate cn at which the sequence of local spectral densities fn(u, λ)

is allowed to converge to the stationary spectral density f(λ) in order for the test (4) to have a

power bounded away from the level and from unity is affected differently by the averaging in the

time domain and the smoothing in the frequency domain. In particular, increasing δ increases

the rate cn at which local deviations from the null of stationarity can be detected. On the other

hand, smoothing in the frequency domain, which is controlled by the parameter λ, decreases cn by

the factor δλ/4. Interestingly enough, this last property is common for other L2-based tests using

kernel smoothed estimators of the functions involved; cf. Bickel and Rosenblatt (1973) for the case

of density testing and Härdle and Mammen (1993) for testing the regression function. Notice that

under the assumptions made, it is always true that 1/4 < 1/4 + δ(1 − λ)/4 < 1/2. Now, if we

compare this with the results of Theorem 3.2, it can be observed that the non-smoothed L2 test (8)

performs worse than the smoothed test for this class of local alternatives. More specifically, the rate

at which this test detects deviations from stationarity is smaller than the corresponding rate of the

9



smoothed L2 test. However, by Theorem 3.3, both testing approaches based on the L2 distance,

are outperformed by the Kolmogorov-Smirnov type test (12), which for the same class of global in

time locally stationary alternatives, can detect deviations from the null with asymptotic power of

one whenever the convergence rate of the deviations from the null is less than the parametric rate

n−1/2, that is if κ < 1/2.

Notice that for the class of local alternatives considered in this section and in contrast to test (4),

the probability of rejecting the null hypothesis of the two other testing procedures given in (8) and

(12) can not be improved by the choice of the time-window parameter δ. Furthermore, compared

to Theorem 3.1 and Theorem 3.2, the case where κ = 1/2 in Theorem 3.3 is less clear in the sense

that it is not obvious if the probability of rejecting the null hypothesis is smaller, equal or bigger

than the level α. We conjecture, however, that this probability will be larger than the level α since

both limiting Gaussian processes G(v, ω) and GH0(v, ω) have the same covariance structure and

differ only with respect to their mean function (recall that G0 = supv,ω |GH0(v, ω)|). While it is

true that under the null hypothesis E(GH0(v, ω)) = 0 for all v, ω ∈ [0, 1], under the alternative, the

mean function µ(v, ω) is strictly positive or negative on a Lebesgue set having positive measure.

This will imply that the probability that test (12) rejects the null hypothesis will be larger than α.

3.3 Time localized local alternatives to stationarity

The local deviations from the null of stationarity investigated in the previous section can be thought

as being of rather global nature, in the sense that they do not necessarily become more concentrated

around any particular time regions or time points as the sample size increases. We, therefore,

refer to these local alternatives as Pitman-type local alternatives. However, since departures from

stationarity which are rather localized in time, also form a relevant class of alternatives, we consider

in the following a class of locally stationary alternatives that possesses this kind of departures from

stationarity. Toward this goal, we consider the case where the sequence of functions an(·, l) is given

by

an(u, l) = a0(l)(1 + cnb((u− u0)/γn, l)), (20)

where u0 ∈ (0, 1) is some fixed time point, cn = n−κ and γn = n−ζ for some κ, ζ > 0. Here b(·, l)
is a function on the whole real line the absolute value of which is integrable, and we assume that

(14) remains valid. In addition, we suppose the existence of an l0 ∈ IN such that z 7→ b(z, l0)

is not constant. Notice that, since γn → 0 as n → ∞, the deviations from the null hypothesis

produced by this type of local alternatives, become more concentrated around the time point u0 as

n increases to infinity. In this sense, such deviations can be considered as being more localized in

time compared to those generated by the Pitman-type alternatives discussed in Section 3.2. Now,

similarly to the previously considered alternatives, we obtain

fn(u, λ) ∼ f(λ) + cnfb,u0,γn(u, λ) as n→∞, (21)

where f(λ) is given by (17) and

fb,u0,γn(u, λ) =
1

2π

∞∑
l,m=−∞

a0(l)a0(m)
(
b((u0 − u)/γn, l) + b((u0 − u)/γn,m)

)
exp(−iλ(l −m)).

10



We define

fb(z, λ) =
1

2π

∞∑
l,m=−∞

a0(l)a0(m) (b(z, l) + b(z,m)) exp(−iλ(l −m))

and using the substitution z = (u0 − u)/γn, we obtain that,∫ 1

0
fn(u, λ)du ∼ f(λ) + cnγn

∫ u0/γn

(u0−1)/γn
fb(z, λ)dz.

If we now assume that z 7→ fb(z, λ) is integrable for every λ, this directly implies

∣∣ ∫ 1

0
fn(u, λ)du− f(λ)

∣∣ ≤ Kcnγn (22)

for some constant K <∞. Thus, the best (in the L2 sense) stationary approximation of fn(u, λ),

that is gn(λ) =
∫ 1
0 fn(u, λ)du, converges to the stationary part f(λ) at a rate which is completely

described by the sum of κ and ζ. We set

B =

∫ ∞
−∞

∫ π

−π
fb(z, λ)2dλdz

and

B∗ =

∫ ∞
−∞

∫ π

−π
(fb(z, λ)/f(λ))2dλdz

for the squared L2 norm of the corresponding non-normalized and normalized functions. Then, for

the tests based on the L2 distance, the following results are obtained.

Theorem 3.4 Under the assumptions of Theorem 3.1 and if the sequence an(u, l), n ∈ IN , satisfies

(20), then, as n→∞,

P (decision rule (4) rejects H0) =


1 if 2κ+ ζ < 1/2(1 + δ(1− λ))

Φ(B∗/v − u1−α) if 2κ+ ζ = 1/2(1 + δ(1− λ))

α if 2κ+ ζ > 1/2(1 + δ(1− λ))

Theorem 3.5 Suppose that the assumptions of Theorem 3.2 hold and the sequence an(u, l), n ∈ IN ,

satisfies (20). Then, as n→∞,

P (decision rule (8) rejects H0) =


1 if 2κ+ ζ < 1/2

Φ(B/τ2 − u1−α) if 2κ+ ζ = 1/2

α if 2κ+ ζ > 1/2

with τ2 = 4π
∫ π
−π f(λ)4dλ.

11



According to Theorem 3.4, and for the class of local alternatives considered in this section, the

test based on the L2 distance of the smoothed and normalized local periodograms turns out to

be quite powerful in detecting deviations from stationarity. In particular, and since 2κ + ζ =

1/2(1 + δ(1 − λ)) > 1/2, for δ and λ in the allowed range of values, we get the interesting result

that, this test has nontrivial power even if the sequence of local spectral densities fn(·, ·) is allowed

to converge to the stationary spectral density f(·) at a rate which is faster than the parametric

rate n−1/2.

Note that, in contrast to the Pitman-type alternatives, the power for the case 2κ + ζ = 1/2 does

not depend on the variation of fb(u, λ) in u but only on its magnitude for both tests (4) and (8). To

get an intuition for the reason behind this behavior, consider the testing procedure (8) and notice

that ∫ 1

0

∫ π

−π

(
fn(u, λ)−

∫ 1

0
fn(w, λ)dw

)2

dλdu

∼ c2nγn
∫ ∞
−∞

∫ π

−π
fb(z, λ)2dλdz −

∫ π

−π

(
cnγn

∫ ∞
−∞

fb(z, λ)dz

)2

dλ,

which directly yields that it is the first summand of the right hand side of the last expression

above which is the dominating one; see also the proof of Theorem 3.5 for more details. In this

step it is essential that the absolute value of z 7→ fb(z, λ) is integrable on the whole real line for

every frequency λ, and, therefore, the case where z 7→ fb(z, λ) equals some nonzero constant is not

included in the above theorem.

The next theorem states the behavior of the Kolmogorov-Smirnov type test for the class of time

localized local alternatives.

Theorem 3.6 Suppose that the assumptions of Theorem 3.5 are satisfied. Then, as n→∞,

P (decision rule (12) rejects H0) =

{
1 if κ+ ζ < 1/2

α if κ+ ζ > 1/2.

If κ+ ζ = 1/2, we have

√
n
(
D̂n(v, ω)−E(D̂(v, ω))

)
v,ω∈[0,1]2

⇒ (GH0(v, ω))v,ω∈[0,1]2

where GH0 is the Gaussian process which was used in the definition of G0 (see (11) with g(λ)

replaced by f(λ)) and

√
nE(D̂n(v, ω)) ∼

(∫ πω

0
wu0(v, λ)dλ

)
= µu0(v, ω) for every v, ω as n→∞,

with

wu0(v, λ) =


−v
∫∞
−∞ fb(z, λ)dz if v < u0∫∞

0 fb(z, λ)dz − v
∫∞
−∞ fb(z, λ)dz if v = u0

(1− v)
∫∞
−∞ fb(z, λ)dz if v > u0.

12



By the same argumentation as in the discussion following Theorem 3.3, we conjecture that in the

case κ + ζ = 1/2 the test (12) has a power between α and one. However, if we compare Theorem

3.5 and Theorem 3.6, it is observed that, since κ > 0, the Kolmogorov-Smirnov type test performs

always better than the test (8) in detecting deviations from the null for the class of time localized,

local alternatives. If in addition κ + ζ > 1/2, it follows from Theorem 3.4 and Theorem 3.6 that

the smoothed L2 test has an asymptotic power larger than α for choices of the parameters δ and

λ in the allowed range of values (cf. also the discussion after Theorem 3.4) while in this case, the

test (12) has no power at all.

4 Simulated Examples

4.1 Preliminaries

We provide in this section some simulation results which demonstrate that our theoretical findings

can, in fact, be observed also in finite sample situations. In order to obtain a fair comparison

between the three different testing approaches considered and to avoid problems associated with

the quality of the asymptotic Gaussian approximations involved, we estimate the quantiles of the

distribution of the test statistics under the null hypothesis by means of an AR-sieve bootstrap

procedure; cf. Kreiss (1988). In our context, this bootstrap procedure works by generating

pseudo-time series using an autoregressive process of order p fitted to the entire stretch of data and

i.i.d. innovations obtained from the empirical distribution function of the centered residuals of the

autoregressive fit. It is well known, that this bootstrap procedure works theoretically for a large

class of stochastic processes by letting the autoregressive order p = p(n) tending to infinity with

the sample size n. For the problem of testing for stationarity considered in this paper, theoretical

justification of such an AR-sieve bootstrap is given by the fact that for all three testing procedures

considered, the limiting distribution of the corresponding test statistics under the null, depends

only on the second order characteristics of the hypothesized stationary process, i.e., on g(λ). These

second order characteristics, however, are successfully mimicked by the AR-sieve bootstrap; see

Kreiss et al. (2011) for more details. Preuß et al. (2012) gave a formal proof of this statement for

the case of the test (8).

Now, in order to implement the testing approaches considered in this paper, we have to choose

additionally to the window length mn also the order p of the autoregressive process used in the

bootstrap procedure. Furthermore, for the L2 test based on kernel smoothed quantities, the band-

withs b and h should be chosen as well. Concerning the smoothing bandwidth h, we follow the

recommendations of Paparoditis (2009) and choose this parameter as the minimizer of the objective

function

CV (h) =
1

Ln

Ln∑
j=1

{
log(ĝ−j(ωj)) +

In(ωj)

ĝ−j(ωj)

}
,

where ĝ−j(ωj) is the leave-out-j version of the estimator ĝh(ωj) given by ĝ−j(ωj) = n−1×
∑

s∈Ln,j
Kh(ωj−

ωs)In(ωs) and Ln,j = {s : −Ln ≤ s ≤ Ln and j − s 6= ±j mod Ln}. For h chosen, the bandwidth

13



b is selected as b = h(n/mn)0.2. The autoregressive order p used in the simulations, is chosen by

minimizing the AIC criterion (see Akaike (1973)), that is

p̂ = argminp
1

n

[n/2]∑
k=1

(
log(fθ̂(p)(λk,n) +

IXT (λk,n)

fθ̂(p)(λk,T )

)
+ p/n

in the context of stationary processes using Whittle’s likelihood function; cf. Whittle (1951). Rules

for choosing the time window parameter mn are less objective and for this we decided to set this

parameter equal to [n/8] throughout this section; see also Preuß et al. (2012) for similar choices

in a comprehensive simulation study.

4.2 Numerical Results

We simulated time series data stemming from the following two models

Xt,n = σn(t/n)Zt, (23)

and

Xt,n = an(t/n)Xt−1,n + Zt, , (24)

where

σn(u) = (0.5 + n−0.45 × 1.5u),

an(u) = 0.5n−0.05 exp(−n0.5(u− 0.5)2) sin(4πu)

and Zt is a sequence of independent, standard normal distributed random variables. While the first

process lies in the class of global in time locally stationary alternatives considered in Section 3.2,

the second process corresponds to the more localized alternatives investigated in Section 3.3. Notice

that the choice of the sequences of locally stationary processes considered in the simulation study

and the rate of their convergence to the corresponding stationary processes is selected in order to

illustrate our theoretical findings and to demonstrate clearly the differences in the behavior of the

tests considered. For all three tests considered, we calculated the empirical rejection frequencies at

a 5% level based on 500 simulation runs where for each run, 200 bootstrap replications have been

generated. The results obtained for six different sample sizes n are summarized in Figure 1 .

For the case of model (23), the non smoothed L2-based test has very small power, while the power of

the smoothed version of the L2 test, first increases up to a rejection frequency of 0.142 for n = 512

and then decreases. For the Kolmogorov-Smirnov type test, however, the rejection frequencies are

strictly increasing as the sample size n increases. Notice that this is in line with the results of

Theorem 3.3 according to which we will expect the power of this test to converge to unity for the

case of model (23). Furthermore, the convergence of the time varying variance function σn(u) to

the constant value 0.5 seems to be too fast so that the power of the other two testing approaches

approaches the level α as n increases.

The picture is, however, different if we consider the results obtained for the more time localized

alternative described by model (24). In this case, the performance of both, the non-smoothed L2

14



Figure 1: Rejection frequencies of all three test at a 5% level for model (23) (left panel) and model

(24) (right panel).

based test and the Kolmogorov-Smirnov type test, is quite poor and the power of these tests seem

to be close to the level α for large values of the sample size n. This pose behavior is due to the fast

convergence rate of the particular locally stationary alternative. On the other hand, the smoothed

L2 test performs rather well in this case. In fact, as it can be seen form Figure 1, the rejection

frequencies of this test increase steadily as the time series length n increases.

5 Conclusions

In this paper we have developed a framework for investigating local power properties of some re-

cently proposed, frequency domain-based tests of second order stationarity in time series analysis.

Two different classes of locally stationary, local alternatives to stationarity have been considered.

The first one causes more global in time deviations from stationarity while the second one allows

for more time localized deviations from the null. The tests considered, evaluate in a different

manner differences between global and local spectral characteristics under the null and under the

alternative. Some recently proposed, frequency-domain based tests for stationarity are considered

which evaluate either the L2 distance between local and global estimates of the spectral density or

the Kolmogorov-Smirnov type distance between local and global estimates of the spectral distribu-

tion function. Our findings highlight several interesting features and differences between the tests

considered.

Concerning the class of global in time deviations from stationarity, the Kolmogorov-Smirnov based

test is more powerful and detects deviations from the null even if this type of local alternatives

converge to the null at the parametric rate n−1/2. For this class of local alternatives, tests based

on the L2 distance estimated by smoothing or by integrating local periodograms are less powerful

although the test based on smoothing local periodograms turns out to be to be more powerful than

the one based on integrating local periodograms. Things are different if one considers more time

localized alternatives to stationarity. For this class of local alternatives, the tests based on the

Kolmogorov-Smirnov or on the L2 distance of non smoothed local periodograms, are less powerful
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compared to the test based on the L2 distance of smoothed estimators. In fact, this test turns out

to be very powerful for this class of local alternatives and it is able to detect deviations from the

null even if these local alternatives converge to the null at a rate which is faster than the parametric

one.
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Appendix: Proofs

Proof of Theorem 3.1: As in the proof of Lemma 6.3 in Paparoditis (2009), it suffices to consider

mn

√
N b T̃n − µn(K), where

T̃n = N−1
N∑
s=1

∫ π

−π

(
m−1n

∑
j

Kb(λ− λj)(Imn(us, λj)/gn(λj)− 1)
)2
dλ,

and gn(λ) = f(λ)+cn
∫ 1
0 fa(u, λ)du+O(c2n). We first fix some notation. LetX

(0)
t =

∑∞
j=−∞ a0(j)εt−j ,

Yt,n =
∑∞

j=−∞ a0(j)b(t/n, j)εt−j , d
(0)
mn(u, λ) = (2πmn)−1/2

∑mn
t=1X

(0)
t+[un]−mn/2

exp{−iλt}, d(Y )
mn (u, λ) =

(2πmn)−1/2
∑mn

t=1 Yt+[un]−mn/2,n exp{−iλt}, I(0)mn(u, λ) = |d(0)mn(u, λ)|2 and I
(Y )
mn (u, λ) = |d(Y )

mn (u, λ)|2.
We then have

mn

√
N b T̃n − µn(K) = mnb

1/2N−1/2
n∑
s=1

∫ π

−π

(
L0,n(us, λ) + L1,n(us, λ) + L2,n(us, λ)

+ L3,n(us, λ) +O(c2n)
)2
dλ− µn(K)

where

L0,n(us, λ) = m−1n
∑
j

Kb(λ− λj)ln,j
[
I(0)mn

(us, λj)/f(λj)− 1],

L1,n(us, λ) = cnm
−1
n

∑
j

Kb(λ− λj)ln,j
[
Dmn(us, λj)− fa(us, λj)

]
/f(λj),

L2,n(us, λ) = c2nm
−1
n

∑
j

Kb(λ− λj)ln,jI(Y )
mn

(us, λj)/f(λj),

and

L3,n(us, λ) = cnm
−1
n

∑
j

Kb(λ− λj)ln,j
[
fa(us, λj)−

∫ 1

0
fa(w, λj)dw

]
/f(λj),

with ln,j = (1 + cnṽ(λj) +O(c2n))−1, ṽ(λj) =
∫ 1
0 (fa(u, λj)/f(λj))du and

Dmn(u, λj) = d(0)mn
(u, λj)d

(Y )
mn

(u,−λj) + d(0)mn
(u,−λj)d(Y )

mn
(u, λj).
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Now, for cn = m
−1/2
n b−1/4N−1/4 it follows by straightforward calculations under the assumptions

made, that,

mnb
1/2N−1/2

N∑
s=1

∫ π

−π

(
L1,n(us, λ) + L2,n(us, λ)

)2
dλ = OP (cn) +OP (c4nmn(N b)1/2)→ 0,

mnb
1/2N−1/2

N∑
s=1

∫ π

−π
L0,n(us, λ)

(
L1,n(us, λ)+L2,n(us, λ)

)
dλ = OP (cnN

1/2b−1/2)+OP (c2nmnb
1/2)→ 0,

mnb
1/2N−1/2

N∑
s=1

∫ π

−π
L0,n(us, λ)L3,n(us, λ)dλ = OP (m1/2

n cn)→ 0

and

mnb
1/2N−1/2

N∑
s=1

∫ π

−π
L3,n(us, λ)

(
L1,n(us, λ) + L2,n(us, λ)

)
dλ = OP (c2nmnbN

−1/2)→ 0.

Thus

mn

√
N b T̃n − µn(K) = mnb

1/2N−1/2
N∑
s=1

∫ π

−π
L2
0,n(us, λ)dλ− µn(K)

+mnb
1/2N−1/2

N∑
s=1

∫ π

−π
L2
3,n(us, λ)dλ+ oP (1),

from which the assertion of the theorem follows since

mnb
1/2N−1/2

N∑
s=1

∫ π

−π
L2
0,n(us, λ)dλ− µn(K)

D−−→ N(0, v2),

as in Theorem 3.1 of Paparoditis (2009) and

mnb
1/2N−1/2

N∑
s=1

∫ π

−π
L2
3,n(us, λ)dλ→

∫ 1

0

∫ π

−π

(
fa(u, λ)−

∫ 1
0 fa(w, λ)dw

f(λ)

)2

dλdu

2

Proof of Theorem 3.2: By using (14) we can proceed as in the proof of Theorem 2 in Dette et

al. (2011) to obtain that the expression

√
n

(
D̂2
n +

2πmn

n
F̂1,n −

∫ 1

0

∫ π

−π

(
fn(u, λ)−

∫ 1

0
fn(w, λ)dw

)2

dλdu

)
(25)

converges to a normal distribution with mean zero and variance τ1. If we use the decomposition

(16) we obtain

√
n

∫ 1

0

∫ π

−π

(
fn(u, λ)−

∫ 1

0
fn(w, λ)dw

)2

dλdu ∼
√
nc2nA
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which directly yields the claim of Theorem 3.2. 2

Proof of Theorem 3.3: We proceed similarly to the above proof of Theorem 3.2. By combining

(14) with the reasoning in the proof of Theorem 2.1 in Preuß et al. (2012) it follows that

√
n
(
D̂n(v, ω)−E(D̂n(v, ω))

)
(26)

converges [weakly in l∞([0, 1]2)] to a zero mean Gaussian process with covariance structure given

by (10) [note that here it is g(λ) = f(λ)]. Therefore the claim follows, as in the proof of Theorem

3.2, by calculating the expectation. By proceeding as in the proof of equation (5.3) in Preuß et al.

(2012) we obtain

√
nE(D̂n(v, ω)) =

√
n

(∫ v

0

∫ πω

0
fn(u, λ)dλdu− v

∫ πω

0

∫ 1

0
fn(u, λ)dudλ

)
+ o(1) (27)

which then yields the claim by employing (16) as in the proof of proof of Theorem 3.2. 2

Proof of Theorem 3.4: As in the proof of Theorem 3.1 it suffices to consider mn

√
N b T̃n−µn(K),

where

T̃n = N−1
N∑
s=1

∫ π

−π

(
m−1n

∑
j

Kb(λ− λj)(Imn(us, λj)/gn(λj)− 1)
)2
dλ,

and gn(λ) = f(λ) + cnγn
∫ u0/γn
(u0−1)/γn fb(u, λ)du + o(cnγn). We adopt the notation of the proof of

Theorem 3.1 with Yt,n replaced by Yt,n = cn
∑∞

j=−∞ b((u− u0)/γn, j)a0(j)εt−j . We then have

mn

√
N b T̃n − µn(K) = mnb

1/2N−1/2
n∑
s=1

∫ π

−π

(
L0,n(us, λ) + L1,n(us, λ) + L2,n(us, λ)

+ L3,n(us, λ) +O(c2n)
)2
dλ− µn(K)

where L0,n(us.λ) and L2,n(us, λ) are defined as in the proof of Theorem 3.1 with ln,j replaced by

l̃n,j = (1 + cnγnv(λj))
−1, v(λ) =

∫ u0/γn
(u0−1)/γn fb(z, λ)dz/f(λ),

L1,n(us, λ) = cnm
−1
n

∑
j

Kb(λ− λj)l̃n,j
[
Dmn(us, λj)− fb,u0,γn(us, λj)

]
/f(λj),

and

L3,n(us, λ) = cnm
−1
n

∑
j

Kb(λ− λj)l̃n,j
[
fb,u0,γn(us, λj)− cnγn

∫ u0/γn

(u0−1)/γn
fb(w, λj)dw

]
/f(λj).

Now, for mnb
1/2N1/2c2nγn → 1, it follows along the same lines as the proof of Theorem 3.1 that

mn

√
N b T̃n − µn(K) = mnb

1/2N−1/2
n∑
s=1

∫ π

−π
L2
0,n(us, λ)dλ− µn(K)

+mnb
1/2N−1/2

n∑
s=1

∫ π

−π
L2
3,n(us, λ))dλ+ oP (1),
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from which the desired results follows because, as in Theorem 3.1 of Paparoditis (2009),

mnb
1/2N−1/2

n∑
s=1

∫ π

−π
L2
0,n(us, λ)dλ− µn(K)

D−−→ N(0, v2),

and, by straightforward calculations,

mn

√
bN−1/2

n∑
s=1

∫ π

−π
L2
3,n(us, λ))dλ = mn

√
Nb c22γn

∫ u0/γn

(u0−1)/γn

∫ π

−π
fb(z, λ)/f(λ))2dλdz + o(1)

→
∫ ∞
−∞

∫ π

−π
(fb(z, λ)/f(λ))2dλdz,

as n→∞. 2

Proof of Theorem 3.5: As in the proof of Theorem 3.2 one validates asymptotic normality of

(25) with the arguments from Dette et al. (2011), so we can again restrict ourselves to a calculation

of the mean. The decomposition (21) yields

√
n

∫ 1

0

∫ π

−π

(
fn(u, λ)−

∫ 1

0
fn(w, λ)dw

)2

dλdu

∼
∫ 1

0

∫ π

−π
c2nfb,u0,γn(u, λ)2dλdu−

∫ π

−π

(
cn

∫ 1

0
fb,u0,γn(w, λ)dw

)2

dλ.

By substituting z = (u0 − u)/γn we get that this term equals

∫ u0/γn

(u0−1)/γn

∫ π

−π
c2nγnfb(z, λ)2dλdz −

∫ π

−π

(
cnγn

∫ u0/γn

(u0−1)/γn
fb(z, λ)2dz

)2

dλ ∼ c2nγnB,

which then yields the claim of Theorem 3.5. 2

Proof of Theorem 3.6: Again we only consider the expectation and obtain with the same

substitution as in the above proof of Theorem 3.5 that

√
n

(∫ v

0

∫ πω

0
fn(u, λ)dλdu− v

∫ πω

0

∫ 1

0
fn(u, λ)dudλ

)
∼
∫ u0/γn

(u0−v)/γn

∫ πω

0
cnγnfb(z, λ)dλdz − v

∫ πω

0

∫ u0/γn

(u0−1)/γn
cnγnfb(z, λ)dzdλ.

This concludes the proof with (27). 2
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