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Abstract

We propose rank-based estimators of principal components, both in the one-

sample and, under the assumption of common principal components, in the m-

sample cases. Those estimators are obtained via a rank-based version of Le Cam’s

one-step method, combined with an estimation of cross-information quantities. Un-

der arbitrary elliptical distributions with, in the m-sample case, possibly heteroge-

neous radial densities, those R-estimators remain root-n consistent and asymptot-

ically normal, while achieving asymptotic efficiency under correctly specified den-

sities. Contrary to their traditional counterparts computed from empirical covari-

ances, they do not require any moment conditions. When based on Gaussian score

functions, in the one-sample case, they moreover uniformly dominate their classical
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competitors in the Pitman sense. Their finite-sample performances are investigated

via a Monte-Carlo study.

Keywords and phrases: Common Principal Components, elliptical densities, Uniform

local asymptotic normality, principal components, ranks, R-estimation, robustness.

1 Introduction

Principal component analysis (PCA) arguably constitutes one of the most useful and

most popular techniques of multivariate analysis. Introduced by Pearson (1901) and re-

discovered by Hotelling (1933), PCA is a powerful dimension reduction tool, by which

the k (k typically large) marginals of a random vector X = (X1, . . . , Xk)
′ get replaced

with (typically, a few) appropriately chosen mutually orthogonal random variables, called

the principal components (PCs) in such a way that most of the variability in X still is

accounted for. Assuming that the original random vector X has finite second-order mo-

ments, traditional PCs are obtained by projecting X onto the eigenvectors of its covariance

matrix; the variances of those projections then are the corresponding eigenvalues.

The multisample version of principal components only came much later, when Flury (1984)

introduced the Common Principal Components (CPC) model as a parcimonious way of

parametrizing an m-tuple of covariance matrices. CPC models since then have been used

in a variety of applications (see Flury and Riedl 1988). Under CPC, m ≥ 2 populations

of dimension k, with covariance matrices ΣΣΣCov

i , i = 1, . . . ,m, share, with possibly differ-

ent eigenvalues, the same eigenvectors: namely, the m covariance matrices ΣΣΣCov

i factorize

into ΣΣΣCov

i = βββΛΛΛCov

i βββ′ for some m-tuple of positive diagonal matrices ΛΛΛCov

i , i = 1, . . . ,m, and
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some orthogonal matrix βββ—the matrix of common eigenvectors, which does not depend

on i and characterizes the common principal components.

In his 1984 paper, Flury also deals, under the hypothesis of CPC, with the Gaussian

maximum likelihood estimators (MLEs) (β̂ββ
MLE

1 , . . . , β̂ββ
MLE

k ) =: β̂ββ
MLE

and λ̂MLE
ij , i = 1, . . . ,m,

j = 1, . . . , k of the common eigenvectors (βββ1, . . . ,βββk) =: βββ and the corresponding eigen-

values λij, i = 1, . . . ,m, j = 1, . . . , k of ΣΣΣCov

1 , . . . ,ΣΣΣCov

m . Denoting by X̄i and Si the

empirical mean and covariance matrix (unbiased versions) in sample i, i = 1, . . . ,m, he

shows that those MLEs are solutions of the likelihood equations

βββ′j

( m∑
i=1

ni
λij − λil
λijλil

Si

)
βββl = 0, j 6= l = 1, . . . , k,

(1.1)

βββ′jSiβββj = λij, i = 1, . . . ,m, j = 1, . . . , k, βββ′jβββl = δjl, j, l = 1, . . . , k,

where δjl stands for the usual Kronecker symbol. An explicit solution of equations (1.1)

does not exist, but an algorithm providing a numerical solution has been proposed by

Flury and Gautschi (1986).

Traditional PCA and CPC methods are based on Gaussian assumptions (and therefore

on empirical covariance matrices, as in (1.1) above). This limitation is quite regrettable,

as principal components, irrespective of any moment conditions, clearly depend on the

elliptical geometry of the underlying distributions only. Classical PCA is searching for

normalized linear combinations of the data with maximal dispersion, where dispersions are

measured by variances. Instead of variances, one could use more robust scale functionals

to obtain different solutions. This is the idea behind the projection-poursuit techniques

developed by Croux and Ruiz-Gazen (2005). Under elliptical symmetry with scatter ma-
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trix ΣΣΣ (reducing to a covariance matrix only under finite moments of order two), all

“reasonable” (we refer to Croux and Ruiz-Gazen 2005 for a precise statement) equivari-

ant scale functionals lead to the same concept of principal components, namely the one

associated with the eigenvectors of ΣΣΣ. The estimators obtained by Croux and Ruiz-Gazen

have high finite-sample breakdown points. Croux and Haesbroeck (2000) also proposed

PCA techniques based on robust estimators of the covariance matrix. In the CPC context,

Boente et al. (2001, 2002) proposed to replace the empirical covariances Si in (1.1) with

more robust estimators of covariance matrices. Projection pursuit techniques for CPC

also have been considered by Boente et al. (2006, 2010).

Robust methods, as a rule, suffer from a loss of efficiency, and those robust PCA and

CPC methods are no exceptions to that rule. To improve on this, Hallin et al. (2010b

and 2013) recently provided locally asymptotically optimal (in the Le Cam sense) rank

tests for PCA and CPC, respectively. A major advantage of these tests is that they are

not only validity-robust, in the sense of surviving arbitrary (possibly very heavy-tailed)

elliptical densities: unlike their pseudo-Gaussian and robust competitors, they also are

efficiency-robust, in the sense that their local powers do not deteriorate away from the

reference density at which they are optimal. Their normal-score versions, moreover, uni-

formly dominate, in the Pitman sense, the (pseudo-)Gaussian methods, based on sample

covariance matrices. Daily practice in PCA and CPC, however, is about estimation rather

than hypothesis testing, which raises the natural question: do the rank tests in Hallin

et al. (2010b and 2013) have any estimation counterparts? That is, can we construct

rank-based estimators for the (common) eigenvectors that match the performances of
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those rank-based tests?

In this paper, we provide a positive answer to that question by constructing rank-

based estimators (R-estimators) that (i) are root-n consistent and asymptotically normal

under any elliptical density (for CPC, any m-tuple of elliptical densities), irrespective

of any moment assumptions; (ii) are efficient at some prespecified elliptical density (for

CPC, some prespecified m-tuple of them); (iii) exhibit the same asymptotic relative effi-

ciencies, with respect to classical Gaussian procedures, as the rank tests from Hallin et al.

(2010b and 2013) do; as a corollary, the Gaussian-score rank-based estimators will uni-

formly dominate, in the one-sample case and in terms of Pitman efficiencies, the classical

estimators based on sample covariance matrices.

Traditional R-estimators in principle are obtained via the minimization of some rank-

based objective function. From a practical point of view, this is known to be numerically

costly, or even infeasible, especially in the multiparameter case, hence in the present

context of (common) principal components: rank-based objective functions indeed are

piecewise constant, hence discontinuous and non-convex. Instead, we use a rank-based

version of Le Cam’s one-step methodology. Letting β̂ββ stand for a preliminary root-n

consistent estimator, our estimators are of the form vec(βββ˜) = vec(β̂ββ) + ΓΓΓ˜−∆∆∆˜ , where ∆∆∆˜
is a rank-based central sequence and ΓΓΓ˜− the Moore-Penrose inverse of some estimated

cross-information matrix.

The outline of the paper is as follows. In Section 2, we introduce the notation needed

in the sequel. In Section 3.1, we describe the proposed estimators for the common eigen-

vectors under CPC. We then study the asymptotic properties of these estimators in Sec-

5



tion 3.2. In Section 4, we consider estimation of eigenvectors in the one-sample case, that

is, for PCA. A Monte-Carlo simulation is performed in Section 5 to investigate the finite-

sample behavior of our estimators. Finally, an appendix collects the technical proofs.

2 Main assumptions and ULAN

For the sake of convenience, we are collecting here the main assumptions and notations

to be used in the sequel. We also derive the ULAN property for elliptical CPC models,

that is the key technical result of the paper. That ULAN result is of the curved type

introduced in Hallin et al. (2010b) and considered also in Hallin et al. (2013); due to

the constraints on eigenvectors, the parameter space, in experiments involving principal

components, is indeed a nonlinear manifold.

2.1 Elliptical densities

Throughout the paper, (Xi1, . . . ,Xini), i = 1, . . . ,m form a collection of m mutually

independent samples of i.i.d. k-dimensional random vectors with elliptically symmetric

densities. More precisely, we assume that Xij, j = 1, . . . , ni, i = 1, . . . ,m are mutually

independent, with elliptical probability densities of the form

fi(x) = ck,fi (det(ΣΣΣi))
−1/2 fi

(
((x− θθθi)′ΣΣΣ−1

i (x− θθθi))1/2
)

(2.1)

for some k-dimensional location parameter θθθi, some symmetric positive definite scatter

matrix ΣΣΣi and some radial density function fi : R+
0 7→ R+; ck,fi is a normalization constant.

Note that the radial density fi is not a probability density since it does not integrate to one;
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but f̃i := r 7→ µ−1
k−1;fi

rk−1fi(r) (for simplicity, we write f̃i instead of f̃ik), where µ`;f :=∫∞
0
r`f(r) dr, is. Define

F :=
{
f : f(r) > 0 a.e. and µk−1;f <∞

}
and F1 :=

{
f ∈ F : µ−1

k−1;f

∫ 1

0

rk−1f(r) dr = 1/2
}

;

the family F1 is a class of nowhere vanishing standardized radial densities, in the sense

that, for any radial density f ∈ F1, the probability density f̃ := r 7→ µ−1
k−1;fr

k−1f(r) is

a properly standardized probability density. By “standardized”, here, we mean that the

corresponding median is one; the median, for a nonvanishing density over R+
0 , indeed,

is a scale parameter—moreover, it does not require any moment conditions. Classical

examples of elliptical distributions are the k-variate multinormal distributions, with stan-

dardized radial densities fi(r) = φ(r) := exp(−akr2/2), the k-variate Student distribu-

tions, with standardized radial densities (for ν ∈ R+
0 degrees of freedom) fi(r) = f tν(r) :=

(1 + ak,νr
2/ν)−(k+ν)/2, and the k-variate power-exponential distributions, with standard-

ized radial densities of the form fi(r) = f eη (r) := exp(−bk,ηr2η), η ∈ R+
0 ; the positive

constants ak, ak,ν , and bk,η are such that fi ∈ F1. Summarizing this, we throughout

assume that the following assumption holds true.

Assumption (A1). The observations Xij, j = 1, . . . , ni, i = 1, . . . ,m are mutually

independent, with probability densities fi given in (2.1), for some m-tuple of (possibly

distinct) radial densities f := (f1, . . . , fm) such that fi ∈ F1, i = 1, . . . ,m.

Under Assumption (A1), the distances dij(θθθi,ΣΣΣi) := ‖ΣΣΣ−1/2
i (Xij − θθθi)‖, j = 1, . . . , ni,

i = 1, . . . ,m have probability density f̃i, with median one, which identifies the scatter

matrices ΣΣΣi, i = 1, . . . ,m also in the absence of any moments (throughout, A1/2 stands

for the symmetric root of the symmetric and positive definite matrix A). Under finite
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second-order moments, however, ΣΣΣi is proportional to the covariance matrix ΣΣΣCov

i of Xij.

Note that the observations Xij then decompose into Xij = θθθi + dijΣΣΣ
1/2
i Uij, where the

multivariate signs Uij(θθθi,ΣΣΣi) := ΣΣΣ
−1/2
i (Xij − θθθi)/dij(θθθi,ΣΣΣi) j = 1, . . . , ni, i = 1, . . . ,m

are i.i.d. uniform over the unit sphere of Rk under Assumption (A1) and the standardized

radial distances dij(θθθi,ΣΣΣi) just defined are independent of the Uij’s, with standardized

probability density f̃i over R+ and distribution function F̃i.

The derivation of asymptotically efficient estimators at a given m-tuple

f = (f1, . . . , fm) of radial densities will be based on the uniform local and asymptotic

normality (ULAN) of the CPC model; see subsection 2.3. This ULAN property holds

under some mild regularity conditions on the fi’s. More precisely, ULAN (see Proposi-

tion 2.1 below) requires the fi’s to belong to the collection Fa of those radial densities

f ∈ F1 that are absolutely continuous, with almost everywhere derivative ḟ such that,

letting ϕf := −ḟ/f and denoting by F̃ the distribution function associated with f̃ , the

integrals

Ik(f) :=

∫ 1

0

ϕ2
f (F̃

−1(u)) du and Jk(f) :=

∫ 1

0

ϕ2
f (F̃

−1(u))(F̃−1(u))2 du

are finite. The quantities Ik(fi) and Jk(fi) play the roles of radial Fisher information

for location and shape/scale, respectively, in population i, i = 1, . . . ,m (see Hallin and

Paindaveine 2006).

Since the common eigenvectors βββ := (βββ1, . . . ,βββk) of ΣΣΣ1, . . . ,ΣΣΣm are scale-free func-

tions of the ΣΣΣi’s, it is appropriate to decompose each ΣΣΣi into a product ΣΣΣi = σ2
iVi,

where σi > 0 is a scale parameter and Vi is a shape matrix for population i (see Hallin

and Paindaveine (2006) for details). Paindaveine (2008) has shown the advantage of doing
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so by defining σ2
i as (detΣΣΣi)

1/k. This definition, which is the one we are adopting here,

implies that the eigenvalues λVij of the shape matrices Vi are such that
∏k

j=1 λ
V
ij = 1 for

all i = 1, . . . ,m; clearly, Vi and ΣΣΣi share the same eigenvectors. Obviously, the shape

matrices in turn factorize into Vi = βββΛΛΛV
i βββ
′. The ULAN property for CPC also requires

the following assumption ensuring the identifiability of the common eigenvectors βββ:

Assumption (A2). For any i = 1, . . . ,m and j = 1, . . . , k, λij > 0, and, for any

1 ≤ j 6= j′ ≤ k, there exists i ∈ {1, . . . ,m} such that λVij 6= λVij′ .

Under the hypothesis of CPC and Assumption (A2), the matrix βββ of common eigen-

vectors is identified up to an arbitrary permutation of its columns (we forget about the

irrelevant sign changes of the βββj’s). However, it is easy to fix an ordering, hence to make

the βββj’s—hence also the corresponding λVij ’s—(individually) identifiable.

2.2 Asymptotic behavior of sample sizes and score functions

Asymptotics in this paper are considered for triangular arrays of observations of the form

(X
(n)
11 , . . . ,X

(n)

1n
(n)
1

,X
(n)
21 , . . . ,X

(n)

2n
(n)
2

, . . . ,X
(n)
m1, . . . ,X

(n)

mn
(n)
m

),

indexed by the total sample size n :=
∑m

i=1 n
(n)
i , where the sequences n

(n)
i satisfy the

following assumption (for notational simplicity, we omit superfluous superscripts (n) in

the sequel).

Assumption (A3). For all i = 1, . . . ,m, r
(n)
i := n

(n)
i /n→ ri ∈ (0, 1) as n→∞.

The R-estimators considered in Section 3.1 are based on m-tuples K = (K1, . . . , Km)

of score functions, that are assumed to satisfy the following regularity conditions.
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Assumption (A4). For any i = 1, . . . ,m, the mapping (from (0, 1) to R) u 7→ Ki(u) (i) is

continuous and square-integrable, (ii) can be expressed as the difference of two monotone

increasing functions, and (iii) satisfies
∫ 1

0
Ki(u) du = k.

Assumption (A4)(iii) is a normalization constraint that is automatically satisfied by the

score functions Ki(u) = Kfi(u) := ϕfi(F̃
−1
i (u))F̃−1

i (u) leading to asymptotic efficiency at

m-tuples of radial densities f = (f1, . . . , fm) for which ULAN holds; see Section 3.2.

For score functions K,K1, K2 satisfying Assumption (A4), let (throughout, U stands

for a random variable uniformly distributed over (0, 1)), Jk(K1, K2) := E[K1(U)K2(U)].

For simplicity, we write Jk(K) for Jk(K,K), Jk(K, f) for E[K(U)Kf (U)], etc.

Among the possible score functions (Laplace, Wilcoxon, etc) satisfying Assumption (A4),

an important particular case of score functions of the form Kfi is that of van der Waer-

den or normal scores, obtained for fi = φ. Denoting by Ψk the chi-square distribution

function with k degrees of freedom, we have Kφ(u) = Ψ−1
k (u), and Jk(φ) = k(k + 2).

Similarly, writing Gk,ν for the Fisher-Snedecor distribution function with k and ν degrees

of freedom, Student densities fi = f tν yield

Kf tν (u)= k(k + ν)G−1
k,ν(u)/(ν + kG−1

k,ν(u)) and Jk(f tν)= k(k + 2)(k + ν)/(k + ν + 2).

2.3 Uniform Local Asymptotic Normality

The theoretical backbone of the approach proposed in this paper is Le Cam’s method of

one-step estimation, which is based on the uniform local asymptotic normality (ULAN)

of the model under study. In this section, we establish this ULAN result for the CPC
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model, that is, under the constraints induced by the CPC hypothesis, for fixed radial

densities f = (f1, . . . , fm).

The parametrization we are adopting is similar to that considered in Hallin et al. (2013).

Denote by dvec (A) the vector obtained by stacking the diagonal elements of a square

matrix A, and by dv
◦
ec (A) the same vector deprived of its first element A11, so that

dvec (A) = (A11, (dv
◦
ec (A))′)′: our parameter is the vector

ϑϑϑ := (ϑϑϑ′I,ϑϑϑ
′
II,ϑϑϑ

′
III,ϑϑϑ

′
IV )′

:= (θθθ′1, . . . , θθθ
′
m, σ

2
1, . . . , σ

2
m, (dv

◦
ecΛΛΛV

1 )′, . . . , (dv
◦
ecΛΛΛV

m)′, (vecβββ)′)′,

where θθθi and σ2
i are the location and scale parameters, ΛΛΛV

i := diag(λVi1, . . . , λ
V
ik),

i = 1, . . . ,m the diagonal matrix of eigenvalues in population i, and βββ the matrix of

common eigenvectors. The reason why the λVi1’s are omitted in the parametrization is

that, Vi being a shape matrix, we have λVi1 = 1/
∏k

j=2 λ
V
ij. The parameter space is thus

ΘΘΘ := Rmk × (R+
0 )m × (Ck−1)m × (vec (SOk)), where Ck−1 is the open positive orthant of

Rk−1 and SOk stands for the class of k×k real orthogonal matrices with determinant one.

Note that Assumption (A2) is explicitly incorporated in the definition of ΘΘΘ. Write P
(n)
ϑϑϑ;f

for the joint distribution of the n observations under parameter value ϑϑϑ and standardized

radial densities f = (f1, . . . , fm).

Letting r(n) := diag((r
(n)
1 )−1/2, . . . , (r

(n)
m )−1/2), let

ςςς(n) := diag
(
ςςς

(n)
I , ςςς

(n)
II , ςςς

(n)
III , ςςς

(n)
IV

)
:= diag

(
r(n) ⊗ Ik, r

(n), r(n) ⊗ Ik−1, n
−1/2Ik2

)
(2.2)
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be the diagonal matrix collecting the contiguity rates. Consider an arbitrary local sequence

ϑϑϑ(n) := (ϑϑϑ(n)′
I ,ϑϑϑ(n)′

II ,ϑϑϑ
(n)′
III ,ϑϑϑ

(n)′
IV )′ := (θθθ

(n)′
1 , . . . , θθθ(n)′

m ,

σ
2(n)
1 , . . . , σ2(n)

m , (dv
◦
ecΛΛΛ

V(n)
1 )′, . . . , (dv

◦
ecΛΛΛV(n)

m )′, (vecβββ(n))′)′ ∈ ΘΘΘ,

where ϑϑϑ(n)− ϑϑϑ= O(n−1/2), and further sequences of the form ϑϑϑ(n) + n−1/2ςςς(n)τττ (n), where

τττ (n) = (τττ
(n)′
I , τττ

(n)′
II , τττ

(n)′
III , τττ

(n)′
IV )′ = (t

(n)′
1 , . . . , t(n)′

m , s
(n)
1 , . . . , s(n)

m , l
(n)′
1 , . . . , l(n)′

m , (vecb(n))′)′

is such that supn τττ
(n)′τττ (n) < ∞ and ϑϑϑ(n) + n−1/2ςςς(n)τττ (n) ∈ ΘΘΘ. Strong restrictions are

required on τττ (n) = (τττ
(n)′
I , τττ

(n)′
II , τττ

(n)′
III , τττ

(n)′
IV )′ in order for the perturbed parameter values ϑϑϑ(n)+

n−1/2ςςς(n)τττ (n) to belong to ΘΘΘ. In particular, the perturbed orthogonal matrix should remain

orthogonal; we refer to Hallin et al. (2010b) for details.

Write V⊗2 for the Kronecker product V ⊗ V. Denoting by e` the `th vector of the

canonical basis of Rk, let Kk :=
∑k

i,j=1(eie
′
j) ⊗ (eje

′
i) denote the classical (k2 × k2)

commutation matrix. Define Hk as the k× k2 matrix such that Hkvec (A) = dvec (A) for

any k×k matrix A. For any k×k diagonal matrix ΛΛΛ = diag(λ1, λ2, . . . , λk), write MΛΛΛ
k for

the (k−1)×k matrix
(
−λ1(λ−1

2 , . . . , λ−1
k )′

... Ik−1

)
and L

βββ,ΛΛΛV
i

k for (L
βββ,ΛΛΛV

i
k;12 L

βββ,ΛΛΛV
i

k;13 . . .L
βββ,ΛΛΛV

i

k;(k−1)k)
′,

with L
βββ,ΛΛΛV

i
k;jh := (λVih − λVij)(βββh ⊗ βββj). Finally, let Gβββ

k := (Gβββ
k;12 Gβββ

k;13 . . .G
βββ
k;(k−1)k), with

Gβββ
k;jh := ej⊗βββh−eh⊗βββj, and ννν(i) := diag(ν

(i)
12 , ν

(i)
13 , . . . , ν

(i)
(k−1)k) with ν

(i)
jh := λVijλ

V
ih/(λ

V
ij−

λVih)
2. We then have the following ULAN result.

Proposition 2.1 Let Assumptions (A1) (with f = (f1, . . . , fm) ∈ (Fa)m), (A2) and (A3)

hold. Then, the family P(n)
f :=

{
P

(n)
ϑϑϑ;f |ϑϑϑ ∈ ΘΘΘ

}
is ULAN, with central sequence

∆∆∆ϑϑϑ;f = ∆∆∆
(n)
ϑϑϑ;f :=

(
∆∆∆

I(n)′
ϑϑϑ;f , ∆∆∆

II(n)′
ϑϑϑ;f , ∆∆∆

III(n)′
ϑϑϑ;f , ∆∆∆

IV (n)′
ϑϑϑ;f

)′
,
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∆∆∆I

ϑϑϑ;f =


∆∆∆I,1
ϑϑϑ;f1

...

∆∆∆I,m
ϑϑϑ;fm

 , ∆∆∆II

ϑϑϑ;f =


∆II,1
ϑϑϑ;f1

...

∆II,m
ϑϑϑ;fm

 , ∆∆∆III

ϑϑϑ;f =


∆∆∆III,1
ϑϑϑ;f1

...

∆∆∆III,m
ϑϑϑ;fm

,

where (with dij = dij(θθθi,Vi) and Uij = Uij(θθθi,Vi))

∆∆∆I,i
ϑϑϑ;fi

:=
1

√
niσi

ni∑
j=1

ϕfi

(
dij
σi

)
V
−1/2
i Uij, ∆II,i

ϑϑϑ;fi
:=

1

2
√
niσ2

i

ni∑
j=1

(
ϕfi

(
dij
σi

)
dij
σi
− k
)
,

∆∆∆III,i
ϑϑϑ;fi

:=
1

2
√
ni
M

ΛΛΛV
i

k Hk

(
(ΛΛΛV

i )−1/2βββ′
)⊗2

ni∑
j=1

ϕfi

(
dij
σi

)
dij
σi

vec
(
UijU

′
ij

)
,

∆∆∆IV

ϑϑϑ;f :=
1

2n1/2

m∑
i=1

Gβββ
kL

βββ,ΛΛΛV
i

k

(
V⊗2
i

)−1/2
ni∑
j=1

ϕfi

(
dij
σi

)
dij
σi

vec
(
UijU

′
ij

)
,

i = 1, . . . ,m, and with block-diagonal information matrix

ΓΓΓϑϑϑ;f := diag(ΓΓΓI

ϑϑϑ;f ,ΓΓΓ
II

ϑϑϑ;f ,ΓΓΓ
III

ϑϑϑ;f ,ΓΓΓ
IV

ϑϑϑ;f), (2.3)

where ΓΓΓI

ϑϑϑ;f = diag(ΓΓΓI,1
ϑϑϑ;f1

, . . . ,ΓΓΓI,m
ϑϑϑ;fm

), ΓΓΓII

ϑϑϑ;f = diag(ΓII,1
ϑϑϑ;f1

, . . . ,ΓII,m
ϑϑϑ;fm

), ΓΓΓIII

ϑϑϑ;f = diag(ΓΓΓIII,1
ϑϑϑ;f1
, . . . ,ΓΓΓIII,m

ϑϑϑ;fm
),

with

ΓΓΓI,i
ϑϑϑ;fi

:=
Ik(fi)
kσ2

i

V−1
i , ΓII,i

ϑϑϑ;fi
:=
Jk(fi)− k2

4σ4
i

,

ΓΓΓIII,i
ϑϑϑ;fi

:=
Jk(fi)

4k(k + 2)
M

ΛΛΛV
i

k Hk((ΛΛΛ
V
i )−1)⊗2 [Ik2 + Kk]H

′
k(M

ΛΛΛV
i

k )′,

and

ΓΓΓIV

ϑϑϑ;f =
1

4k(k + 2)
Gβββ
k

(
m∑
i=1

riJk(fi)(ννν(i))−1

)(
Gβββ
k

)′
.

More precisely, for any ϑϑϑ(n) = ϑϑϑ + O(n−1/2) ∈ ΘΘΘ and any bounded sequence τττ (n) such

that ϑϑϑ(n) + n−1/2ςςς(n)τττ (n) ∈ ΘΘΘ, we have, under P
(n)

ϑϑϑ(n);f
,

Λ
(n)

ϑϑϑ(n)+n−1/2ςςς(n)τττ (n)/ϑϑϑ(n);f
:= log

(
dP

(n)

ϑϑϑ(n)+n−1/2ςςς(n)τττ (n);f
/dP

(n)

ϑϑϑ(n);f

)
= (τττ (n))′∆∆∆

(n)

ϑϑϑ(n);f
− 1

2
(τττ (n))′ΓΓΓϑϑϑ;fτττ

(n) + oP(1)
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and ∆∆∆ϑϑϑ(n);f

L−→ N (0,ΓΓΓϑϑϑ;f), as n→∞.

Although this ULAN result is distinct from the one in Hallin et al. (2013) (where pertur-

bations of the CPC hypothesis are considered), its proof follows along the same lines, and

is therefore omitted.

3 R-estimation of CPC

3.1 One-step R-estimation

In this section, we describe the proposed one-step R-estimators. The asymptotically

optimal testing procedures constructed in Hallin et al. (2013) are based on the multi-

variate signs (U11, . . . ,Umnm), where Uij := Uij(θθθi,βββΛΛΛV
i βββ), and the vector of ranks

(R11, . . . , Rmnm), where Rij := Rij(θθθi,βββΛΛΛV
i βββ
′) denotes the rank of dij := dij(θθθi,βββΛΛΛV

i βββ
′)

among di1, . . . , dini . Our R-estimators are based on similar quantities. More precisely,

they involve the rank-based version

∆∆∆˜ ϑϑϑ;K :=
1

2n1/2

m∑
i=1

Gβββ
kL

βββ,ΛΛΛV
i

k

(
V⊗2
i

)−1/2
ni∑
j=1

Ki

(
Rij

ni + 1

)
vec (UijU

′
ij) (3.1)

of the βββ-subvector ∆∆∆IV

ϑϑϑ;f of the parametric central sequence introduced in Proposition 2.1,

where K := (K1, . . . , Km) denotes an m-tuple of score functions satisfying Assump-

tion (A4). Before describing our estimator, we first need to investigate the asymptotic

behavior of those ∆∆∆˜ ϑϑϑ;K’s.

Clearly, ∆∆∆˜ ϑϑϑ;K is not a genuine statistic, since it depends on the value of the parame-

ter ϑϑϑ ∈ ΘΘΘ to be estimated. Therefore, assume the existence of a preliminary estimator ϑ̂ϑϑ

14



satisfying the following assumption.

Assumption (A5). The estimator

ϑ̂ϑϑ =
(
θ̂θθ
′
1, . . . , θ̂θθ

′
m, σ̂

2
1, . . . , σ̂

2
m, (dv

◦
ec (Λ̂ΛΛ

V

1 ))′, . . . , (dv
◦
ec (Λ̂ΛΛ

V

m))′, (vec β̂ββ)′
)′

is such that (i) ϑ̂ϑϑ − ϑϑϑ = OP(n−1/2ςςς(n)) under
⋃

g∈(Fa)m{P
(n)
ϑϑϑ;g} and (ii) ϑ̂ϑϑ is locally and

asymptotically discrete, that is, it only takes a bounded number of distinct values in balls

with O(n−1/2ςςς(n)) radius centered at ϑϑϑ.

Assumption (A5)(i) requires the preliminary estimator ϑ̂ϑϑ to be root-n consistent under

the whole set (Fa)m of m-tuples g of standardized radial densities ensuring ULAN. As

for Assumption (A5)(ii), it is the traditional assumption of local asymptotic discreteness,

which is easily enforced by discretizing ϑ̂ϑϑ in an adequate way. Such discretization, however,

is a purely technical requirement, with no practical consequences, and is only required in

asymptotic statements (see, for instance, Hallin et al. 2012).

Suitable preliminary estimators are easily obtained. The following one, based on the

Hettmansperger and Randles median and Tyler’s estimator of shape, has quite attrac-

tive properties. To start with, compute the Hettmansperger and Randles (2002) affine-

equivariant medians θ̂θθ
HR

1 , . . . , θ̂θθ
HR

m , and the (normalized; that is, with determinant one)

shape estimators V̂Tyler

1 , . . . , V̂Tyler
m of Tyler (1987) in each sample. Those estimators are

implicitly defined by

1

ni

ni∑
j=1

Uij(θ̂θθ
HR

i , V̂Tyler

i ) = 0 and
1

ni

ni∑
j=1

Uij(θ̂θθ
HR

i , V̂Tyler

i )U′ij(θ̂θθ
HR

i , V̂Tyler

i ) =
1

k
Ik,

i = 1, . . . ,m, a system of equations for which good numerical solutions exist. The prelim-

inary estimators dv
◦
ec (Λ̂ΛΛ

V

1 ), . . . , dv
◦
ec (Λ̂ΛΛ

V

m), vec β̂ββ then are obtained by plugging the values
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of θ̂θθ
HR

1 , . . . , θ̂θθ
HR

m , V̂Tyler

1 , . . . , V̂Tyler
m into Flury’s Gaussian likelihood equations (1.1). Denote

by ϑ̂ϑϑTyler the resulting estimator (note that the scales σ2
i , i = 1, . . . ,m are not involved

in ∆∆∆˜ ϑϑϑ;K, hence do not need be estimated). The preliminary estimator ϑ̂ϑϑTyler satisfies (in

principle, after due discretization) Assumption (A5); see Boente et al. (2002) for details.

Many other choices for ϑ̂ϑϑ are possible, though. In the Monte-Carlo study of Section 5

below, we also consider the preliminary estimator ϑ̂ϑϑMCD obtained from the robust Minimum

Covariance Determinant (MCD) estimators of location/shape described, e.g., in Rousseuw

and Leroy (1987). Note, however, that Flury’s covariance-based estimator ϑ̂ϑϑMLE, contrary

to ϑ̂ϑϑTyler and ϑ̂ϑϑMCD, does not satisfy the consistency requirements of Assumption (A5),

as it loses root-n consistency under non-Gaussian densities (for the asymptotic behavior

of the latter, see Cantor and Lopuhaä (2010)). Asymptotically, the choice of ϑ̂ϑϑ does

not affect the asymptotic properties of our R-estimators as long as Assumption (A5) is

satisfied. It seems, from the simulations presented in Section 5, that the impact of that

choice on their finite-sample behavior, under the same assumption, is quite limited as well

(ϑ̂ϑϑMLE, which is root-n consistent under finite fourth-order moments only, does not satisfy

Assumption (A5)).

The following result summarizes the asymptotic properties of the rank-based

vectors ∆∆∆˜ ϑϑϑ;K.

Proposition 3.1 Let Assumptions (A1)-(A4) hold and let ϑ̂ϑϑ satisfy Assumption (A5).

Fix g ∈ (F1)m. Then, under P
(n)
ϑϑϑ;g, as n→∞,

(i) ∆∆∆˜ ϑϑϑ;K = ∆∆∆ϑϑϑ;K;g + oL2(1), where (recall that G̃i stands for the cdf of dij under P
(n)
ϑϑϑ;g;

see Section 2.1)
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∆∆∆ϑϑϑ;K;g :=
1

2n1/2

m∑
i=1

Gβββ
kL

βββ,ΛΛΛV
i

k

(
V⊗2
i

)−1/2
ni∑
j=1

Ki

(
G̃i(dij)

)
vec (UijU

′
ij);

(ii) ∆∆∆ϑϑϑ;K;g is asymptotically normal with mean zero and covariance matrix

ΓΓΓϑϑϑ;K :=
1

4k(k + 2)
Gβββ
k

(
m∑
i=1

Jk(Ki)(ννν
(i))−1

)
(Gβββ

k)′;

(iii) ∆∆∆˜ ϑϑϑ;K is locally and asymptotically linear in the sense that

∆∆∆˜ ϑ̂ϑϑ;K − ∆∆∆˜ ϑϑϑ;K = −ΓΓΓϑϑϑ;K,g n
1/2vec(β̂ββ − βββ) + oP(1),

where (see Section 2.2 for the definition of Jk(Ki, gi))

ΓΓΓϑϑϑ;K,g :=
1

4k(k + 2)
Gβββ
k

(
m∑
i=1

riJk(Ki, gi)(ννν
(i))−1

)(
Gβββ
k

)′
; (3.2)

this last result requires g ∈ (Fa)m.

See the appendix for the proof.

Proposition 3.1 makes it possible to implement the Le Cam one-step method based

on ϑ̂ϑϑ, ∆∆∆˜ ϑϑϑ;K, and ΓΓΓϑϑϑ;K,g—although ∆∆∆˜ ϑϑϑ;K does not necessarily constitute a central sequence.

More precisely, mimicking Le Cam (1986), we naturally consider the matrix β̃ββK;Jk(K,g)

defined by (A− stands for the Moore-Penrose inverse of A)

vec(β̃ββK;Jk(K,g)) := vec(β̂ββ) + n−1/2(ΓΓΓϑ̂ϑϑ;K,g)−∆∆∆˜ ϑ̂ϑϑ;K, (3.3)

where vec(β̂ββ) is the subvector of ϑ̂ϑϑ corresponding to βββ. Unfortunately, β̃ββK;Jk(K,g) suffers

from two majors drawbacks that make it unsuitable as an estimator of βββ:

(i) β̃ββK;Jk(K,g) is not a genuine statistic since it still depends on the cross-information

quantities Jk(K1, f1), . . . ,Jk(Km, fm), and
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(ii) in general, β̃ββK;Jk(K,g) does not belong to SOk.

Point (i) is easily taken care of by plugging into ΓΓΓϑ̂ϑϑ;K,g the consistent estimators

Ĵk(K, g) := (Ĵk(K1, g1), . . . , Ĵk(Km, gm))

of Jk(K1, f1), . . . ,Jk(Km, fm) defined in Section 7 of Hallin et al. (2013), where we refer

to for details. The notation indicates that Ĵk(K, g) is an estimator of Jk(K, g), where g

is the actual, unspecified, m-tuple of radial densities—the definition of Ĵk(K, g), which is

a genuine statistic, of course, does not involve the unspecified g.

As for point (ii), we propose to bring β̃ββK;Ĵk(K,g) back to SOk by means of the follow-

ing simple Gram-Schmidt orthogonalization procedure. First, standardizing β̃ββK;Ĵk(K,g);1,

define

βββ˜K;Ĵk(K,g);1 := β̃ββK;Ĵk(K,g);1/‖β̃ββK;Ĵk(K,g);1‖;

then, recursively, put

βββ˜K;Ĵk(K,g);l :=

(
Ik −

∑l−1
j=1 βββ˜K;Ĵk(K,g);j βββ˜ ′K;Ĵk(K,g);j

)
β̃ββK;Ĵk(K,g);l∥∥(Ik −∑l−1

j=1 βββ˜K;Ĵk(K,g);j βββ˜ ′K;Ĵk(K,g);j

)
β̃ββK;Ĵk(K,g);l

∥∥ , l = 2, . . . , k.

This eventually yields an R-estimator βββ˜K;Ĵk(K,g) :=
(
βββ˜K;Ĵk(K,g);1, . . . , βββ˜K;Ĵk(K,g);k

)
that

belongs to SOk. The resulting rank-based estimators of the common principal components

then are obtained as the projections of the original observations on the estimated common

eigenvectors, namely

βββ˜ ′K;Ĵk(K,g);1
X

(n)
11 , . . . , βββ˜ ′K;Ĵk(K,g);1

X(n)
mnn , . . . , βββ˜ ′K;Ĵk(K,g);k

X
(n)
11 , . . . , βββ˜ ′K;Ĵk(K,g);k

X(n)
mnn .

3.2 Asymptotic results

Of course, we still have to justify the terminology “R-estimator” for βββ˜K;Ĵk(K,g) described in
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the previous section by showing that it does enjoy the (asymptotic) properties announced

in the introduction. In this section, we establish those properties. In particular, we prove

that βββ˜K;Ĵk(K,g) is root-n consistent and asymptotically normal, and that, when based on

the score functions Kf = (Kf1 , . . . , Kfm) associated with the m-tuple of radial densities

f = (f1, . . . , fm), it is asymptotically efficient under P
(n)
ϑϑϑ;f .

Using the consistency of Ĵk(K, g), Proposition 3.1(iii), and the fact that

(ΓΓΓϑϑϑ;K,g)− = k(k + 2)Gβββ
k

( m∑
i=1

riJk(Ki, gi)(ννν
(i))−1

)−1

(Gβββ
k)′, (3.4)

we obtain that

T˜ (n) :=n1/2vec(β̃ββK;Ĵk(K,g) − βββ)

= n1/2vec(β̂ββ − βββ) + (ΓΓΓϑ̂ϑϑ;K,g)−∆∆∆˜ ϑ̂ϑϑ;K

= n1/2vec(β̂ββ − βββ) + (ΓΓΓϑϑϑ;K,g)−
(

∆∆∆˜ ϑϑϑ;K −ΓΓΓϑϑϑ;K,gn
1/2vec(β̂ββ − βββ)

)
+ oP(1)

= n1/2vec(β̂ββ − βββ) + (ΓΓΓϑϑϑ;K,g)−∆∆∆˜ ϑϑϑ;K −
1

2
Gβββ
k(Gβββ

k)′n1/2vec(β̂ββ − βββ) + oP(1), (3.5)

under P
(n)
ϑϑϑ;g as n → ∞. The column vectors of the k2 × k(k − 1)/2 matrix Gβββ

k form a

basis of the tangent space to vec(SOk) at vec(βββ). The following general result, which is of

independent interest, shows that projecting n1/2vec(β̂ββ − βββ) onto this tangent space does

not modify its asymptotic behavior (see the Appendix for the proof).

Lemma 3.1 Let β̂ββ (with values in SOk) be any estimator of βββ ∈ SOk such that n1/2(β̂ββ−

βββ) = OP(1) under P(n), say, as n → ∞. Then, denoting by proj(A) := A(A′A)−A′ the

projection onto the column space of A,

[
Ik2 − proj(Gβββ

k)
]
n1/2vec (β̂ββ − βββ) =

[
Ik2 −

1

2
Gβββ
kG

βββ′
k

]
n1/2vec (β̂ββ − βββ) = oP(1),
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under P(n) as n→∞.

Applying Lemma 3.1 in (3.5) directly yields

n1/2vec(β̃ββK;Ĵk(K,g) − βββ) = (ΓΓΓϑϑϑ;K,g)−∆∆∆˜ ϑϑϑ;K + oP(1), (3.6)

under P
(n)
ϑϑϑ;g as n → ∞. The asymptotic behavior of the proposed R-estimator βββ˜K;Ĵk(K,g)

then easily follow from the following result (see the Appendix for the proof).

Lemma 3.2 Let Assumptions (A1)-(A4) hold and let ϑ̂ϑϑ satisfy Assumption (A5). Then,

under P
(n)
ϑϑϑ;g as n→∞,

n1/2vec(βββ˜K;Ĵk(K,g) − βββ) = Jβββkn
1/2vec(β̃ββK;Ĵk(K,g) − βββ) + oP(1), (3.7)

where Jβββk is a k2 × k2 matrix such that JβββkG
βββ
k = Gβββ

k .

Applying Lemma 3.2 in (3.6), we thus obtain, in view of (3.4), under P
(n)
ϑϑϑ;g as n→∞,

n1/2vec(βββ˜K;Ĵk(K,g) − βββ) = Jβββkn
1/2vec(β̃ββK;Ĵk(K,g) − βββ) + oP(1)

= Jβββk(ΓΓΓϑϑϑ;K,g)−∆∆∆˜ ϑϑϑ;K + oP(1)

= (ΓΓΓϑϑϑ;K,g)−∆∆∆˜ ϑϑϑ;K + oP(1). (3.8)

The asymptotic properties of βββ˜K;Ĵk(K,g) now follow from those of ∆∆∆˜ ϑϑϑ;K (Proposition 3.1).

Note that (3.8), by showing that n1/2vec(βββ˜K;Ĵk(K,g) − βββ) is asymptotically equivalent to

the rank-measurable random vector (ΓΓΓϑϑϑ;K,g)−∆∆∆˜ ϑϑϑ;K, fully justifies calling βββ˜K;Ĵk(K,g) an “R-

estimator”.

Proposition 3.2 Let Assumptions (A1)-(A4) hold and let ϑ̂ϑϑ satisfy Assumption (A5).

Then, under P
(n)
ϑϑϑ;g, g ∈ (Fa)m,
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n1/2vec(βββ˜K;Ĵk(K,g) − βββ) = (ΓΓΓϑϑϑ;K,g)−∆∆∆˜ ϑϑϑ;K + oP(1)

is asymptotically normal with mean zero and covariance matrix

(ΓΓΓϑϑϑ;K,g)−ΓΓΓϑϑϑ;K(ΓΓΓϑϑϑ;K,g)−= k(k + 2)Gβββ
k

( m∑
i=1

riJk(Ki, gi)(ννν
(i))−1

)−1

(3.9)

×
( m∑
i=1

riJk(Ki)(ννν
(i))−1

)( m∑
i=1

riJk(Ki, gi)(ννν
(i))−1

)−1

(Gβββ
k)′.

If g = (g1, . . . , g1) (homogeneous elliptical densities), and if the same score function,

K1 : (0, 1) → R, say, is used for the m rankings, then the covariance matrix in (3.9)

reduces to

(ΓΓΓϑϑϑ;K,g)−ΓΓΓϑϑϑ;K(ΓΓΓϑϑϑ;K,g)− = k(k + 2)
Jk(K1)

J 2
k (K1, g1)

Gβββ
k

( m∑
i=1

ri(ννν
(i))−1

)−1

(Gβββ
k)′.

Under the additional assumption of finite fourth-order moments, letting

κk(fi) :=
k

k + 2

∫ 1

0
(F̃−1

ik (u))4 du( ∫ 1

0
(F̃−1

ik (u))2 du
)2 − 1

denote the kurtosis of the ith elliptic population (see, e.g., page 54 of Anderson 2003),

the asymptotic relative efficiency of βββ˜K;Ĵk(K,g) with respect to the Flury (1984) Gaus-

sian MLE β̂ββ in (1.1) takes the simple form (see Hallin et al. (2010a) for the asymptotic

distribution of β̂ββ in that case)

AREk,g(βββ˜K;Ĵk(K,g)/β̂ββ) =
(1 + κk(g1))

k(k + 2)

J 2
k (K1, g1)

Jk(K1)
; (3.10)

For Gaussian densities,
∫ 1

0
(F̃−1

ik (u))2 du = k and
∫ 1

0
(F̃−1

ik (u))4 du = k(k+2), hence κk(φ) =

0. Those AREs coincide with the AREs obtained in one-sample shape problems: see Hallin

and Paindaveine (2006), and Hallin et al. (2006, 2010b). The Chernoff-Savage property

of Paindaveine (2006) therefore extends to the present CPC context: denoting by βββ˜vdW
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the van der Waerden estimator (based on the Gaussian scores K1 = . . . = Km := Ψ−1
k ;

see Section 2.2), we have that

AREk,g(βββ˜vdW/β̂ββ) ≥ 1 (3.11)

for all homogeneous g ∈ (F4
a )m, with equality in the Gaussian case only. Our van der

Waerden estimator of CPC thus is not just more robust than Flury’s MLE, it also uni-

formly outperforms the MLE under homogeneous elliptical densities.

Finally, note that, when βββ˜Kf ;Ĵk(Kf ,g) is based on the score functions Kf = (Kf1 , . . . , Kfm)

with Kfi(u) := φfi(F̃
−1
i (u))F̃−1

i (u), n1/2vec(βββ˜Kf ;Ĵk(Kf ,g) − βββ) is, under P
(n)
ϑϑϑ;f with f =

(f1, . . . , fm), asymptotically normal with mean zero and covariance matrix

k(k + 2)Gβββ
k

( m∑
i=1

riJk(Kfi)(ννν
(i))−1

)−1

(Gβββ
k)′= k(k + 2)Gβββ

k

( m∑
i=1

riJk(fi)(ννν(i))−1
)−1

(Gβββ
k)′,

where the right-hand side is nothing else but the Moore-Penrose inverse of the Fisher

information for βββ at f = (f1, . . . , fm). It follows that the R-estimator βββ˜K;Ĵk(Kf ,g) is asymp-

totically efficient under P
(n)
ϑϑϑ;f (it achieves the parametric efficiency bound).

4 R-estimation in PCA

In the one-sample setup (m = 1), common principal components reduce to ordinary

principal components, and it can be expected that the methodology just described yields

estimators enjoying the same type of asymptotic properties as in Section 3.2. We show

in this section that this is indeed the case.

Let X1, . . . ,Xn be a random sample from an elliptical distribution with location θθθ,

scale σ, shape matrix V = βββΛΛΛVβββ′, and radial density f1. Put Ui := V−1/2(Xi − θθθ)/di,
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where di := di(θθθ,V) := ‖V−1/2(Xi − θθθ)‖, i = 1, . . . , n, and write Ri := Ri(θθθ,V) for

the rank of di among d1, . . . , dn. In this one-sample setup, we write P
(n)
ϑϑϑ;f , with ϑϑϑ :=

(θθθ′, σ2, (dv
◦
ec (ΛΛΛV))′, (vecβββ)′)′, for the joint cdf of the Xi’s under parameter value ϑϑϑ and

radial density f1.

The one-sample versions of the rank-based central sequence in (3.1) and the cross-

information matrix in (3.2) are (for a score function K satisfying Assumption (A4))

∆∆∆˜ ϑϑϑ;K =
1

2n1/2
Gβββ
kL

βββ,ΛΛΛV

k

(
V⊗2

)−1/2
n∑
i=1

K

(
Ri

n+ 1

)
vec (UiU

′
i)

and

ΓΓΓϑϑϑ;K,g1 =
Jk(K, g1)

4k(k + 2)
Gβββ
kννν
−1(Gβββ

k)′,

respectively, where ννν := diag(ν12, ν13, . . . , ν(k−1)k), with νjh := λVj λ
V
h/(λ

V
j −λVh )2. Working

along the same lines as in Section 3.1, define

vec(β̃ββK;Jk(K,g1)) = vec(β̂ββ) + n−1/2(ΓΓΓϑ̂ϑϑ;K,g1
)−∆∆∆˜ ϑ̂ϑϑ;K ,

where ϑ̂ϑϑ := (θ̂θθ
′
, σ̂2, (dv

◦
ec (Λ̂ΛΛ

V
))′, (vec β̂ββ)′)′ is a (adequtely discretized) root-n consistent pre-

liminary estimator. Letting Ĵk(K, g1) be a consistent estimator of the cross-information

quantity Jk(K, g1), the final estimator is

βββ˜K;Ĵk(K,g1) :=
(
βββ˜K;Ĵk(K,g1);1, . . . , βββ˜K;Ĵk(K,g1);k

)
,

where

βββ˜K;Ĵk(K,g1);1 := β̃ββK;Ĵk(K,g1);1/‖β̃ββK;Ĵk(K,g1);1‖

and, recursively,

βββ˜K;Ĵk(K,g1);l :=

(
Ik −

∑l−1
j=1 βββ˜K;Ĵk(K,g1);jβββ˜ ′K;Ĵk(K,g1);j

)
β̃ββK;Ĵk(K,g1);l

‖
(
Ik −

∑l−1
j=1 βββ˜K;Ĵk(K,g1);jβββ˜ ′K;Ĵk(K,g1);j

)
β̃ββK;Ĵk(K,g1);l‖

, l = 2, . . . , k.
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As the following result shows, this PCA R-estimator βββ˜K;Ĵk(K,g1) has the same asymp-

totic properties as its CPC counterpart: root-n consistency, asymptotic normality, and

asymptotic efficiency under correctly specified radial densities.

Proposition 4.1 Let ϑ̂ϑϑ stand for a locally and asymptotically discrete estimator (see

Asumption (A5)) such that ϑ̂ϑϑ − ϑϑϑ = OP(n−1/2) under
⋃
g1∈Fa P

(n)
ϑϑϑ;g1

and K be a score

function satisfying Assumption (A4). Furthermore let (the one sample versions of) As-

sumptions (A1)-(A2) hold. Then,

(i) n1/2vec(βββ˜K;Ĵk(K,g1) − βββ) under P
(n)
ϑϑϑ;g1

is asymptotically normal with mean zero and

covariance matrix

k(k + 2)Jk(K)

J 2
k (K, g1)

Gβββ
kννν(Gβββ

k)′;

(ii) when based on the score function Kf1(u) := φf1(F̃
−1
1 (u))F̃−1

1 (u), the R-estimator

βββ˜Kf1 ;Ĵk(Kf1 ,g1) is asymptotically efficient under P
(n)
ϑϑϑ;f1

.

The asymptotic relative efficiencies (3.10) thus remain valid under finite fourth-order

moments, and the Chernoff-Savage result (3.11) still holds, since m = 1 trivially implies

homogeneity of radial densities.

5 Monte-Carlo study

This section presents a numerical study of the finite-sample performances of our R-

estimators under various light- and heavy-tailed population densities, for various scores

and preliminary estimators, both for CPC and PCA.

24



5.1 CPC

We generated N = 1, 500 independent replications of four pairs (m = 2) of mutually

independent samples with respective (and relatively small) sizes n1 = 150 and n2 = 100

of bivariate (k = 2) random vectors

εεε`;1j, j = 1, . . . , n1 = 100, and εεε`;2j, j = 1, . . . , n2 = 150, ` = 1, . . . , 4,

with

(a) (` = 1: power-exponential/Gaussian case) εεε1;1j, j = 1, . . . , 100 spherical, with

power-exponential E10 radial density, and εεε1;2j, j = 1, . . . , 150 spherical bivariate

standard normal;

(b) (` = 2: Gaussian/Gaussian case) εεε2;1j, j = 1, . . . , 100 and εεε2;2j, j = 1, . . . , 150

spherical bivariate standard normal;

(c) (` = 3: Gaussian/Student t5 case) εεε3;1j, j = 1, . . . , 100 spherical bivariate standard

normal, and εεε3;2j, j = 1, . . . , 150 spherical, with t5 radial density;

(d) (` = 4: Student t5/Cauchy t1 case) εεε4;1j, j = 1, . . . , 100 and εεε4;2j, j = 1, . . . , 150

spherical, with standard t5 and t1 radial densities, respectively.

Recall that ζ is (centered) power-exponential with exponent η > 0 (ζ ∼ Eη) if it has den-

sity f exp
η (z) := a exp(−(z/b)2η) (a > 0 a normalizing constant, b > 0 a scale parameter).

While Student and Cauchy tails are heavier than the Gaussian, the power exponential,

for η > 1, are on the lighter-than-Gaussian side.
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Each replication of the εεε`;1j’s was linearly transformed into

X`;1j = βββΛΛΛ
1/2
1 εεε`;1j, ` = 1, . . . , 4, j = 1, . . . , n1 = 100,

with βββ = I2 and ΛΛΛ1 = diag(2, 1), each replication of the εεε`;2j’s into

X`;2j = βββΛΛΛ
1/2
2 εεε`;2j, ` = 1, . . . , 4, j = 1, . . . , n2 = 150, with ΛΛΛ2 := diag(4, 2).

For each replication, we computed the preliminary estimators β̂ββMLE, β̂ββTyler and β̂ββMCD,

along with the resulting one-step van der Waerden R-estimators βββ˜vdW (Gaussian scores

in each sample), one-step Wilcoxon R-estimators βββ˜W (Wilcoxon scores in each sample),

one-step R-estimators βββ˜ (N ,t5) (Gaussian scores in the first sample, t5 scores in the second

one) and βββ˜ (t5,t1) (t5 scores in the first sample, t1 scores in the second one). For each of

those R-estimators βββ˜ = (βββ˜ 1, βββ˜ 2), taking values βββ˜ (ν) = (βββ˜ (ν)
1 , βββ˜ (ν)

2 ) in replication ν, we

computed the mean squared errors

γν := n−1

2∑
i=1

ni∑
j=1

∥∥∥(X′`;ijβββ˜ (ν)
1 )βββ˜ (ν)

1 − (X′`;ijβββ1)βββ1

∥∥∥2

, ν = 1, . . . , N = 1, 500. (5.1)

Those γν ’s provide measures of the performances of the various βββ˜ (ν)
1 ’s in the estimation of

the first common eigenvector βββ1 in replication ν. Table 1 reports boxplots for those γν ’s;

since γν is intrinsically nonnegative, those boxplots, reporting side quantiles only, are

one-sided (from the bottom upwards: first quartile, median, third quartile, and a whisker

at the .95 quantile).

Inspection of Table 1 reveals that the results are uniformly good, and that one-step

R-estimators, as a rule, do improve over the preliminary estimators they are based upon.

Flury’s Gaussian MLE, as expected, produces excellent results in the light-tailed

cases (a) and (b). In the Gaussian case (b), the impact of the one-step improvement

is essentially nil, irrespective of the scores considered: in case (b), no improvement is

26



possible asymptotically while, in the power-exponential case (a), improvement is almost

imperceptible. However, the performance of β̂ββMLE rapidly deteriorates as tails get heavier.

Under the t5/t1 case (d), the mean squared error for β̂ββMLE explodes (in agreement with the

fact that root-n consistency does not hold anymore), a situation the one-step R-estimators

only partially manage to straighten out—although dividing the median squared error by

two. One should thus avoid considering Flury’s β̂ββMLE as a preliminary as soon as one of

the samples involved in the CPC analysis is likely to exhibit heavy tails.

Although to a lesser extent, the second column of Table 1 leads to somewhat similar

conclusions for the choice of β̂ββMCD as a preliminary. In the presence (t5/t1 case (d)) of

heavy tails in one of the samples, and although root-n consistency still does hold, its

median performance is not that bad, but its mean squared errors is quite poor in the

upper tail, a behavior for which the one-step R-estimators only partly compensate.

A Tyler preliminary β̂ββTyler, along with van der Waerden or Wilcoxon scores, thus seems

to be the safest choice, yielding, in the Gaussian case (b), a moderate increase of about

30% over the optimal Gaussian MLE of the median of mean squared errors, but dividing

it by a factor eight in the t5/t1 case (d).

5.2 PCA

In the one-sample setup, we similarly generated N = 1, 500 independent replications of

four independent samples (with small sample size n = 150) of (k = 4)-dimensional random

vectors

εεε`;j, j = 1, . . . , n = 150, ` = 1, . . . , 4,
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with

(a) (` = 1: power-exponential case) εεε1;j spherical, with power-exponential E10 radial

density;

(b) (` = 2: standard Gaussian case) εεε2;j spherical standard normal;

(c) (` = 3: Student t5 case) εεε3;j spherical, with standard t5 radial density;

(d) (` = 3: Cauchy t1 case) εεε4;j spherical, with standard t1 radial density.

Each replication of the εεε`;j’s was transformed into

X`;j = βββΛΛΛ1/2εεε`;j, j = 1, . . . , 150, ` = 1, . . . , 4,

with ΛΛΛ := diag(4, 3, 2, 1), and βββ = I4. For each replication, we computed the eigenvectors

β̂ββMLE, β̂ββMCD, β̂ββTyler of the empirical covariance, the MCD and the Tyler matrices, respec-

tively. Based on the latter, we also computed the one-step van der Waerden, Wilcoxon,

and Student R-estimators βββ˜vdW (Gaussian scores), βββ˜W (Wilcoxon scores), βββ˜ (t5) and βββ˜ (t1)

(t5 and t1 scores, respectively). For each of those R-estimators βββ˜ = (βββ˜ 1, . . . , βββ˜ 4), taking

value βββ˜ (ν) = (βββ˜ (ν)
1 , . . . , βββ˜ (ν)

4 ) in replication ν, and for each replication, we evaluate the

estimation performance via the mean squared error

γν := n−1

n∑
i=1

∥∥∥(X′`;iβββ˜ (ν)
1 )βββ˜ (ν)

1 − (X′`;iβββ1)βββ1

∥∥∥2

, ν = 1, . . . , N = 1, 500. (5.2)

One-sided boxplots (from the bottom upwards: first quartile, median, third quartile,

and a whisker at the .95 quantile) of the γν ’s are provided in Table 2. Inspection of those

boxplots calls for very similar comments as in Table 1: the Gaussian MLE preliminary

is definitely dangerous, while the MCD one behaves rather poorly, under heavy tailed

28



distributions such as the Cauchy. The best overall performance seems to be that of a

Tyler preliminary, along with van der Waerden or Wilcoxon scores.
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A Appendix

Proof of Proposition 3.1. Part (i) of the result follows from more or less standard

application of Hájek’s classical projection theorem, Part (ii) from the multivariate central

limit theorem. We thus focus on Part (iii). Associated with an estimator ϑ̂ϑϑ satisfying

Assumption (A5), let V̂i := β̂ββΛ̂ΛΛi
Vβ̂ββ
′
, J⊥k := Ik2 − k−2(vec Ik)(vec Ik)

′, and

S˜ (n)
ϑϑϑ;Ki

:= n−1
i

ni∑
j=1

Ki

(
R

(n)
ij (θθθi,Vi)

ni + 1

)
Uij(θθθi,Vi)U

′
ij(θθθi,Vi).

Lemma A.1 in Hallin et al. (2006) and Lemma 4.4 in Kreiss (1987) entail that

J⊥k
√
ni vec (S˜ (n)

ϑ̂ϑϑ;Ki
− S˜ (n)

ϑϑϑ;Ki
)

+
Jk(Ki, gi)

4k(k + 2)

[
Ik2 + Kk −

2

k
Jk

]
(Vi

−1/2)⊗2n
1/2
i vec (V̂i −Vi) = oP(1) (A.1)
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as n→∞, under P
(n)
ϑϑϑ;g. This and the fact that L

βββ,ΛΛΛV
i

k (V
−1/2
i )⊗2Jk = 0 directly imply that,

still under P
(n)
ϑϑϑ;g,

∆∆∆˜ IV

ϑ̂ϑϑ;K
− ∆∆∆˜ IV

ϑϑϑ;K =
m∑
i=1

ri
Jk(Ki, gi)

4k(k + 2)
Gβββ
kL

βββ,ΛΛΛV
i

k

(
V⊗2
i

)−1
[
Ik2 + Kk

]
n

1/2
i vec (V̂i −Vi) + oP(1).

(A.2)

Then, following the same argument as in the proof of Lemma 4.2 in Hallin et al. (2010b),

we obtain that

n
1/2
i vec (V̂i−Vi) = (L

βββ,ΛΛΛV
i

k )′(Gβββ
k)′n1/2vec (β̂ββ−βββ)+βββ⊗2H′kn

1/2
i dvec(Λ̂ΛΛ

V

i −ΛΛΛV
i )+oP(1) (A.3)

as n → ∞ under P
(n)
ϑϑϑ;g. The result then follows by plugging (A.3) into (A.2), taking into

account the fact that (L
βββ,ΛΛΛV

i
k )′

(
V⊗2
i

)−1 [
Ik2 + Kk

]
βββ⊗2H′k = 0. �

Proof of Lemma 3.1. Since βββ and β̂ββ are elements of SOk, it is trivial that

n1/2βββ′(β̂ββ − βββ) + n1/2(β̂ββ − βββ)′βββ + n1/2βββ′(β̂ββ − βββ)(β̂ββ − βββ)′βββ = 0.

The root-n consistency of β̂ββ then yields n1/2βββ′(β̂ββ − βββ) + n1/2(β̂ββ − βββ)′βββ = oP(1). Since

n1/2βββ′(β̂ββ−βββ) +n1/2(β̂ββ−βββ)′βββ = 0 implies that n1/2vec (β̂ββ−βββ) ∈M(Gβββ
k(Gβββ

k)′), we deduce

that [
Ik2 − proj(Gβββ

k(Gβββ
k)′)
]
n1/2vec (β̂ββ − βββ) = oP(1).

Now, using the fact that (Gβββ
k)′Gβββ

k = 2Ik(k−1)/2, the result follows easily from the standard

properties of Moore-Penrose inverses. �

Proof of Lemma 3.2. The mapping from β̂ββK;Ĵk(K) to β̃ββK;Ĵk(K) is continuously differen-

tiable. Denoting by Jβββk its Jacobian matrix at vec(βββ), the result follows from an application
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of the Delta method. Now, it is easily shown that

Jβββk =



Ik − βββ1βββ
′
1 0 . . . . . . . . . 0

βββ1βββ
′
2 Ik − βββ1βββ

′
1 − βββ2βββ

′
2 0 . . . . . . 0

βββ1βββ
′
2 βββ1βββ

′
3 Ik − βββ1βββ

′
1 − βββ2βββ

′
2 − βββ3βββ

′
3 0 . . . 0

...
...

. . . . . . . . .
...

...
...

. . . . . .
. . .

...

βββ1βββ
′
2 βββ1βββ

′
3 . . . . . . βββ1βββ

′
k−1 0



.

The identity JβββkG
βββ
k = Gβββ

k then follows from elementary algebra. �
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Preliminary estimator

g = (g1, g2) β̂ββ = β̂ββMLE β̂ββ = β̂ββMCD β̂ββ = β̂ββ Tyler

E10,N

N ,N

N , t5

t5, t1

β̂ββMLE βββ˜vdW βββ˜W βββ˜(N ,t5) βββ˜(t5,t1) β̂ββMCD βββ˜vdW βββ˜W βββ˜(N ,t5) βββ˜(t5,t1) β̂ββTyler βββ˜vdW βββ˜W βββ˜(N ,t5) βββ˜(t5,t1)

Table 1: Finite-sample performance of R-estimators for CPC. One-sided box-

plots of mean squared errors, under various couples of elliptical densities (power-exponential

E10/Gaussian, Gaussian/Gaussian, Gaussian/t5, t5/t1, in rows) and different preliminary esti-

mators (β̂ββMLE, β̂ββMCD, β̂ββTyler, in columns), of R-estimators of the first principal component based

on the following scores: van der Waerden, Wilcoxon, van der Waerden in sample 1 and t5 in

sample 2, t5 in sample 1 and t1 in sample 2. Results are obtained from N = 1, 500 replications

of the bivariate two-sample CPC model described in Section 5.1.



Preliminary estimator

g β̂ββ = β̂ββMLE β̂ββ = β̂ββMCD β̂ββ = β̂ββTyler

E10

N

t5

t1

β̂ββMLE βββ˜vdW βββ˜W βββ˜(t5) βββ˜(t1) β̂ββMCD βββ˜vdW βββ˜W βββ˜(t5) βββ˜(t1) β̂ββTyler βββ˜vdW βββ˜W βββ˜(t5) βββ˜(t1)

Table 2: Finite-sample performance of R-estimators for PCA. One-sided boxplots of

mean squared errors, under various elliptical densities (power-exponential E10, Gaussian, t5, t1,

in rows) and different preliminary estimators (β̂ββMLE, β̂ββMCD, β̂ββ Tyler, in columns), of R-estimators

of the first principal component based on the following scores: van der Waerden, Wilcoxon, van

der Waerden, t5 and t1. Results are obtained from N = 1, 500 replications of the 4-dimensional

model described in Section 5.2.



 



 


