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Abstract

Independent Component Analysis (ICA) recently has attracted much attention in
the statistical literature as an attractive and useful alternative to elliptical models.
Whereas k-dimensional elliptical densities depend on one single unspecified radial den-
sity, however, k-dimensional independent component distributions involve k unspecified
component densities. In practice, for a given sample size n and given dimension k, this
makes the statistical analysis much harder. We focus here on the estimation, from an
independent sample, of the mixing/demixing matrix of the model. Traditional meth-
ods (FOBI, Kernel-ICA, FastICA) mainly originate from the engineering literature.
The statistical properties of those methods are not well known, and they typically
require very large samples. So does the “classical semiparametric” approach by Chen
and Bickel (2006), which is based on an estimation of the k component densities (those
densities being those of the unobserved independent components). The “double scatter
matrix” method of Oja et al. (2006) and (2008) requires the arbitrary choice of two
scatter matrices generally based on estimated higher-order moments which are likely
to be poorly robust. As a reaction, an efficient (signed-)rank-based approach has been
proposed by Ilmonen and Paindaveine (2011) for the case of symmetric component
densities; their estimators unfortunately fail to be root-n consistent as soon as one of
the component densities violates the symmetry assumption. In this paper, using ranks
rather than signed ranks, we extend their approach to the asymmetric case and pro-
pose a one-step R-estimator for ICA mixing matrices. The finite-sample performances
of those estimators are investigated and compared to those of existing methods under
moderately large sample sizes. Particularly good performances are obtained from a
version involving data-driven scores taking into account the skewness and kurtosis of
residuals. Finally, we show, by an empirical exercise, that our methods also may pro-
vide excellent results in contexts such as image analysis, where the basic assumptions
of ICA are quite unlikely to hold.
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1 Introduction

1.1 Independent Component Analysis (ICA)

The traditional Gaussian model for noise, where a k-dimensional error term e is N (0,ΣΣΣ) can

be extended, mainly, into two directions. Either the elliptical density contours of the multi-

normal are preserved, and e is assumed to be elliptically symmetric with respect to the origin,

with unspecified radial density f . Or, the independence of the marginals of ΣΣΣ−1/2e is pre-

served, but their densities f1, . . . , fk remain unspecified, yielding the independent component

model. In both cases, the distribution of e involves an unknown linear transformation—

the k × k symmetric positive definite sphericizing matrix ΣΣΣ−1/2, that is, k(k + 1)/2 parame-

ters, in the elliptical case, the k×k mixing matrix ΛΛΛ (equivalently, the demixing matrix ΛΛΛ−1,

that is, k2 parameters in the independent component case. The main difference, however,

is that, while elliptical noise only depends on one nonparametric nuisance, the radial den-

sity f , independent component noise involves k nonparametric nuisances, the component

densities f1, . . . , fk. This makes the statistical analysis of models based on independent

component noise significantly harder than its elliptical counterpart: for given k and n, for

instance, estimating ΛΛΛ is much more difficult than estimating ΣΣΣ.

In this paper, we focus on the problem of estimating ΛΛΛ. Many solutions—FastICA,

Kernel-ICA, FOBI, ... have been proposed, mostly in the engineering literature; see Sec-

tion 4.1 for details. They typically require very large samples, and their statistical properties

are not always well known. A method based on the availability of two scatter matrices has

been developed by Oja et al. (2006) and (2008), and involves the somewhat arbitrary choice

of two scatter matrices, generally based on estimated higher-order moments which are likely

to be poorly robust and quite sensitive to possibly heavy tails in some of the component

densities; also, a symmetrization step is required by the method, which is computationally

quite demanding. A rigorous asymptotic analysis of the problem is provided by Chen and
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Bickel (2006) in line with Bickel at al. (1993) ’s classical semiparametric methodology, based

on tangent space projections. In that approach, the k component densities f1, . . . , fk need

to be estimated, which again is very costly, and requires very large sample sizes.

As a reaction, an efficient rank-based method has been developed recently by Ilmonen

and Paindaveine (2011), taking into account the invariance and distribution-freeness features

of ranks in order to bypass the costly step of estimating k densities. The performance of their

estimators—call them R+-estimators—is quite good, even under moderately large samples.

However, they are based on marginal signed ranks, which requires the somewhat restrictive

assumption that all component densities are symmetric.

We show how that unpleasant assumption can be avoided, and propose a one-step R-

estimation procedure based on residual ranks rather than the residual signed ranks used in

R+-estimation. We establish the asymptotic root-n consistency and asymptotic normality

of our R-estimators, and carefully study their finite-sample performances via simulations. In

particular, we show how they improve on the traditional methods (FOBI, FastICA, Kernel-

ICA, and some others), and outperform Ilmonen and Paindaveine’s R+-estimators as soon

as the symmetry assumption is violated (in which case their estimators are no longer root-n

consistent). R-estimation, as well as R+-estimation, in this context, requires choosing k score

functions, a choice that in practice may be somewhat difficulty. We therefore describe and

recommend a version of our method based on data-driven scores, where the skewness and

kurtosis of component residuals are taken into account. That method is easily implementable,

and achieves particularly good results.

Finally, with an application to image analysis, we also show that our method also provides

good results in situations where the basic assumptions of ICA clearly do not hold. There,

our R-estimators are shown to improve, quite substantially, the demixing performances of

such classical methods as FOBI, FastICA or Kernel-ICA.
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1.2 Notation, identifiability and main assumptions

Denote by X(n) := (X
(n)′
1 , . . . ,X

(n)′
n )′, n ∈ N, with X

(n)′
i := (X

(n)
i1 , . . . , X

(n)
ik ), i = 1, . . . , n, a

triangular array of observed k-dimensional random vectors satisfying

X
(n)
i = µµµ+ ΛΛΛZ

(n)
i (1.1)

where Z(n) := (Z
(n)′
1 , . . . ,Z

(n)′
n )′ is an unobserved n-tuple of i.i.d. k-dimensional latent vec-

tors Z
(n)′
i := (Z

(n)
i1 , . . . , Z

(n)
ik ), i = 1, . . . , n, with joint and marginal densities fZ and f1, . . . , fk

such that

fZ(z) =
k∏
j=1

fj(zj), z = (z1, . . . , zk) ∈ Rk. (1.2)

The k × 1 vector µµµ and the k × k full-rank matrix ΛΛΛ are parameters; ΛΛΛ and its inverse ΛΛΛ−1

are called the mixing and demixing (or unmixing) matrices, respectively. Under (1.2), the k

components Z
(n)
i1 , . . . , Z

(n)
ik of the latent vectors Z

(n)
i are mutually independent: they are called

the independent components, and their marginal probability densities f := (f1, . . . , fk) the

component densities, of the independent component model (1.1)-(1.2).

Identification constraints clearly are needed in order for µµµ and ΛΛΛ to be identified. Without

any loss of generality, we throughout impose that f ∈ F0, where

F0 :=
{
f := (f1, . . . , fk) |fj(z) > 0 for all z ∈ R, and

∫ 0

−∞
fj(z)dz = 1/2 =

∫ ∞
0

fj(z)dz
}

;

the vector ΛΛΛ−1µµµ then is identified as the componentwise median of the ΛΛΛ−1X
(n)
i ’s. Iden-

tification issues for ΛΛΛ are more severe, due to the invariance of the IC assumption (1.1)

and (1.2) under permutation, rescaling, and sign changes of the centered independent com-

ponents Z
(n)
i − ΛΛΛ−1µµµ. Denoting by D1 and D2 two arbitrary full-rank k × k diagonal ma-

trices, and by P an arbitrary k × k permutation matrix, we clearly have that ΛZ = Λ∗Z∗

for Λ∗ = ΛD1PD2 and Z∗ = D−1
2 P−1D−1

1 Z, where Z∗ still satisfies (1.1) and (1.2). The
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mixing matrices ΛΛΛ and Λ∗ therefore are observationally equivalent.

Several identification constraints have been proposed in the literature in order to tackle

this identifiability issue. Those we are imposing here are borrowed from Ilmonen and Pain-

daveine (2011). Considering the equivalence classes of k× k nonsingular matrices associated

with the equivalence relation Λ∗ ∼ Λ iff Λ∗ = ΛD1PD2 for some permutation and full-rank

diagonal matrices P, D1 and D2, respectively, denote by Π the mapping

Λ 7→ Π(Λ) := ΛDΛ
1 PΛDΛ

2 , (1.3)

where (a) DΛ
1 is the k× k positive diagonal matrix whose jth diagonal element is the inverse

of the Euclidean norm of ΛΛΛ’s jth column (j = 1, . . . , k), (b) PΛ is a permutation matrix that

reorders the columns of ΛΛΛDΛ
1 in such a way that

∣∣(ΛDΛ
1 PΛ)ij

∣∣ < ∣∣(ΛDΛ
1 PΛ)ii

∣∣ for all j > i,

and (c) the (not necessarily positive) diagonal matrix DΛ
2 normalizes ΛDΛ

1 PΛ in such a

way that (ΛDΛ
1 PΛDΛ

2 )jj = 1, i.e. (DΛ
2 )jj = (ΛDΛ

1 PΛ)−1
jj for j = 1, . . . , k. Consider the

setMk of nonsingular k× k matrices for which no tie occurs in the definition of PΛ. Then,

for Λ1,Λ2 ∈ Mk, Λ1 ∼ Λ2 if and only if Π(Λ1) = Π(Λ2). Each class of equivalence thus

contains a unique element Λ such that Π(Λ) = Λ, and inference for mixing matrices can be

restricted to the set M1
k := Π(Mk).

The matrices Λ for which ties occur in the construction of PΛ have Lebesgue measure zero

in Rk×k; neglecting them has little practical implications. While one could devise a systematic

way to define a unique PΛ in the presence of such ties, the resulting mapping Λ 7→ PΛ would

not be continuous, which disallows the use of the Delta method when constructing root-n

consistent estimators for Λ.

For L ∈ M1
k, denote by θθθ = (µµµ, vecd◦(L)) the model parameter, where vecd◦(L) stands

for the vector of size k(k− 1) that stacks the columns of L on top of each with the diagonal

elements omitted (since, by definition, they are set to one). Write Θ :=
(
Rk × vecd◦(M1

k)
)

for the parameter space. Note that, by imposing scaling and some nonnegative asymmetry
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constraints on the component densities, one could add the (unique) diagonal matrix DΛ such

that DΛ
1 PΛDΛ

2 = PΛDΛ to the list of (nuisance) parameters. In the present context, it is

more convenient to have it absorbed into the unspecified form of f . The role of DΛ is quite

similar, in that respect, to that of the scale functional in elliptical families, as discussed in

Hallin and Paindaveine (2006).

Another solution to those identification problems is adopted by Chen and Bickel (2006),

who impose scaling restrictions of f , and then let their PCFICA algorithm (Chen and

Bickel 2005) make a choice between the various observationally equivalent values of the

demixing matrix ΛΛΛ−1. Specifically, they restrict to a parameter space for demixing matrices

consisting of full-rank k × k matrices that satisfy the following: every row has unit norm,

the element with largest absolute value in each row is positive, and rows are ordered by their

maximum element. This parameter space, like M1
k, contains unique representatives from

equivalence classes amongst observationally equivalent k × k full-rank matrices.

2 Local asymptotic normality and group invariance

2.1 Group Invariance and semiparametric efficiency

Denoting by P
(n)
θθθ;f , P

(n)
µµµ,L;f or P

(n)
µµµ,vecd◦(L);f the joint distribution of X(n) under location µµµ, mixing

matrix ΛΛΛ such that Π(ΛΛΛ) = L, and component densities f = (f1, . . . , fk), let

P(n) :=
{

P
(n)
θθθ;f | θθθ ∈ Θ, f ∈ F0

}
; P(n)

f :=
{

P
(n)
θθθ;f | θθθ ∈ Θ

}
for fixed f ∈ F0;

P(n)
µµµ;f :=

{
P

(n)
µµµ,L;f | L ∈M

1
k

}
for fixed µµµ ∈ Rk and f ∈ F0;

P(n)
L or P(n)

ΛΛΛ :=
{

P
(n)
µµµ,L;f | µµµ ∈ R, f ∈ F0

}
for fixed Π(ΛΛΛ) = L ∈M1

k; and

P(n)
µµµ,L or P(n)

µµµ,ΛΛΛ :=
{

P
(n)
µµµ,L;f | f ∈ F0

}
for fixed µµµ ∈ Rk and Π(ΛΛΛ) = L ∈M1

k.
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All those subfamilies will play a role in the sequel.

A semiparametric (in the spirit of Bickel et al. (1993)) approach to Independent Compo-

nent Analysis (ICA) and, more particularly, the estimation of ΛΛΛ, requires the uniform local

asymptotic normality (ULAN) of P(n)
f at any f satisfying adequate regularity assumptions:

see Section 2.2. It is easy to see that ULAN of P(n)
f (with parameters µµµ and L) implies that

of P(n)
µµµ;f (with parameter L) for any given µµµ ∈ Rk.

The model we are interested in involves the family P(n). Depending on the context,

several distinct semiparametric approaches to ICA are possible: either both the location µµµ

and the mixing matrix ΛΛΛ are parameters of interest with the density f being a nuisance;

or the location µµµ is a parameter of interest with nuisance (ΛΛΛ, f); or the mixing matrix ΛΛΛ

(equivalently, L) only is of interest and (µµµ, f) is a nuisance. Hallin and Werker (2003) have

shown that, under very general conditions, if the parametric submodels associated with

fixed values of the nuisance are uniformly locally asymptotically normal (ULAN), while the

submodels associated with fixed values of the parameter of interest are generated by groups

of transformations, then semiparametrically efficient inference can be based on the maximal

invariants of those groups.

In the present context, ΛΛΛ is the parameter of interest, and (µµµ, f) is the nuisance. Con-

sider f = (f∗1, . . . , f∗k), and assume that

(A1) f belongs to the subset FULAN of F0 such that the sequence of (parametric) subfami-

lies P(n)
µµµ;f , with parameter L, is ULAN, with central sequence ∆∆∆

(n)
µµµ;f (L) (actually, ULAN

holds at any (µµµ, f) iff it holds at (0, f)), and

(A2) for all L ∈ M1
k and n ∈ N, the (nonparametric) subfamily P(n)

L is generated by some

group of transformations G(n)(L), ◦ acting on the observation space Rkn, with maximal

invariant R(n)(L).

By Hallin and Werker (2003), the semiparametric efficiency bounds (at (µµµ, f), for the problem

where L is the parameter of interest) can be achieved by basing inference on the maximal in-
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variant R(n)(L)—more specifically, on the conditional expectation E
P

(n)
µµµ,L;f

[∆∆∆
(n)
µµµ;f (L)| R(n)(L)];

since R(n)(L) is invariant, that conditional expectation moreover is distribution-free un-

der P(n)
L (hence, also under densities f that do not necessarily belong to FULAN).

Section 2.2 establishes the ULAN property (A1) of P(n)
µµµ;f for any µµµ and f satisfying

some mild regularity assumptions. Let us show here that (A2) holds for any L ∈ M1
k

and n, and that the maximal invariant is the vector R(n)(L) = (R
(n)′
1 (L), . . . ,R

(n)′
n (L))′,

where R
(n)
i (L) = (R

(n)
i1 (L), . . . , R

(n)
ik (L))′ and R

(n)
ij (L) is the rank of (L−1X

(n)
i )j among

(L−1X
(n)
1 )j, . . . , (L

−1X
(n)
n )j—hence also, under P(n)

L , letting

Z
(n)
i (µµµ,L) := L−1(X

(n)
i − µµµ), i = 1, . . . , n, (2.4)

the rank of
(
Z

(n)
i (µµµ,L)

)
j

among
(
Z

(n)
1 (µµµ,L)

)
j
, . . . ,

(
Z

(n)
n (µµµ,L)

)
j
.

The elements gh of the generating group G(n)(L), ◦ are indexed by the family H of k-

tuples h = (h1, . . . , hk) of monotone continuous and strictly increasing functions hj from R

to R such that limz→±∞ hj(z) = ±∞, with gh ∈ G(n)(L) defined as

gh : x = (x′1, . . . ,x
′
n)′ =

(
(x11, . . . , x1k), . . . , (xn1, . . . , xnk)

)′ ∈ Rkn 7→ gh(x)

where

gh(x) =
(
L
(
h1((L−1x1)1), . . . , hk((L

−1x1)k)
)′
, . . . ,L

(
h1((L−1xn)1), . . . , hk((L

−1xn)k
)′)′

.

That is, G(n)(L), ◦ is a transformation-retransformation form of the group of continuous

marginal order-preserving transformations acting componentwise on the L−1X
(n)
i ’s. Standard

results on ranks entail that this group is generating P(n)
L and has maximal invariant R(n)(L).

A similar situation holds when the parameter of interest is (µµµ,L); similar ideas then lead

to considering a smaller group G(n)
0 (L), with maximal invariant the componentwise signs and

ranks extending the methods proposed in Hallin et al. (2006 and 2008). This latter approach
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is not needed here, where we focus on R-estimation of L, but it is considered in Hallin and

Mehta (2013), who study testing problems for location and regression.

The approach by Ilmonen and Paindaveine (2011) is quite parallel. However, although

addressing the problem of estimating the mixing matrix ΛΛΛ, so that µµµ is a nuisance, these

authors do not consider the group G(n)(L), nor the group G(n)
0 (L). They rather make the

additional assumption that the k component densities fj all are symmetric with respect to

the origin. Under that assumption, they are using yet another group, which is the sub-

group G(n)
+ (L) of G(n)(L) corresponding to those h ∈ H such that hj(−z) = −hj(z) for

all j = 1, . . . , k and z ∈ R. The resulting maximal invariant is a vector of component-

wise signed ranks, that is, the vector of componentwise residual signs, along with the vector

R
(n)
+ (µµµ,L) = (R

(n)′
+1 (µµµ,L), . . . ,R

(n)′
+n (µµµ,L))′, where R

(n)
+i (µµµ,L) = (R

(n)
+i1(µµµ,L), . . . , R

(n)
+ik(µµµ,L))′,

with R
(n)
+ij(µµµ,L) the rank of

∣∣(Z(n)
i (µµµ,L)

)
j

∣∣ among
∣∣(Z(n)

1 (µµµ,L)
)
j

∣∣, . . . , ∣∣(Z(n)
n (µµµ,L)

)
j

∣∣. As

a result, their estimators lose root-n consistency as soon as one of the underlying fj’s fails

to be symmetric with respect to zero—an assumption that hardly can be checked for.

2.2 Uniform local asymptotic normality (ULAN)

Establishing ULAN requires regularity conditions on f . The following conditions are suffi-

cient for f = (f1, . . . , fk) to belong to FULAN.

(A3) The component densities fj, j = 1, . . . , k, are absolutely continuous, that is, there

exist k real-valued functions ḟj such that, for any a < b, fj(b)− fj(a) =
∫ b
a
ḟj(z)dz.

Letting ϕϕϕf (z) := (ϕf1(z1), . . . , ϕfk(zk))
′, z = (z1, . . . , zk)

′ ∈ Rk, with ϕfj := −f ′j/fj, assume

moreover that

(A4) all component densities fj admit finite second-order moments, finite information for

location, and finite information for scale; i.e. for j = 1, . . . , k, s2
fj

:=

∫ ∞
−∞

z2fj(z)dz,

Ifj :=

∫ ∞
−∞

ϕ2
fj

(z)fj(z)dz, and Jfj :=

∫ ∞
−∞

z2ϕ2
fj

(z)fj(z)dz are finite.
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For such f , it follows from the Cauchy-Schwarz inequality that αfj :=

∫ ∞
−∞

zfj(z)dz

and κfj :=

∫ ∞
−∞

ϕ2
fj

(z)zfj(z)dz, j = 1, . . . , k, also are finite. Consequently, the quanti-

ties γpq(f) := Ifps2
fq

, ςpq(f) := αfpκfq , and %jpq(f) := Ifjαfpαfq , are bounded for ev-

ery j, p, q ∈ {1, . . . , k}. The information matrix for the ULAN result, in Proposition 2.1

below, depends on these quantities through

Gf :=
k∑
j=1

(
Jfj − 1

) (
eje
′
j ⊗ eje

′
j

)
+

k∑
p,q=1
p 6=q

{
γqp(f)

(
epe

′
p ⊗ eqe

′
q

)
+
(
epe

′
q ⊗ eqe

′
p

)}

+
k∑

r,s=1
r 6=s

epe
′
q ⊗

(
ςpq(f)eqe

′
q + ςqp(f)epe

′
p

)
+

k∑
j,p,q=1

j 6=p,j 6=q,p6=q

%jpq(f)
(
epe

′
q ⊗ eje

′
j

)
, (2.5)

where ej is the jth canonical basis vector of Rk and ⊗ denotes the Kronecker product.

Writing Ik for the k×k identity matrix, define C :=
∑k

p=1

∑k−1
q=1 epe

′
p⊗uqe

′
q+δq≥p

, where uq

is the qth canonical basis vector of Rk−1 and eq+δq≥p := δq≥peq+1 + (1 − δq≥p)eq, with δq≥p

the indicator for q ≥ p. Then, let odiag(M) replace the diagonal entries of a matrix M with

zeros. Finally, for any m ∈ Rk(k−1), define matd◦(m) as the unique k × k matrix with a

diagonal of zeroes such that vecd◦(matd◦(m)) = m.

Proposition 2.1. Let f ∈ F0 satisfy (A3) and (A4). Then, f ∈ FULAN, and, for any

fixed µµµ ∈ Rk, the sequence of subfamilies P(n)
µµµ;f , with parameter L ∈ M1

k, is ULAN with

central sequence

∆∆∆
(n)
L; µµµ,f = C

(
Ik ⊗ L−1

)′
vec
[
T

(n)
L; µµµ,f

]
, where T

(n)
L; µµµ,f := n−

1
2

n∑
i=1

(
ϕϕϕf
(
Z

(n)
i

)
Z

(n)′
i − Ik

)
(2.6)

where Z
(n)
i := Z

(n)
i

(
µµµ,L

)
is defined in (2.4), and full-rank information matrix

ΓL;f := C
(
Ik ⊗ L−1

)′
Gf

(
Ik ⊗ L−1

)
C′, (2.7)
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with Gf defined in (2.5). Specifically, for any sequence L(n) = L + O(n−
1
2 ) ∈ M1

k and any

bounded sequence τττ (n) ∈ Rk(k−1),

log
dP

(n)

µµµ,L(n)+n−
1
2 matd◦(τττ (n));f

dP
(n)

µµµ,L(n);f

= τττ (n)′∆∆∆
(n)

L(n); µµµ,f
− 1

2
τττ (n)′ΓL;fτττ

(n) + oP(1) (2.8)

and ∆∆∆
(n)

L(n); µµµ,f

L−→ Nk(k−1)

(
0,ΓL;f

)
, as n→∞ under P

(n)

µµµ,L(n);f
.

This ULAN property extends that established by Oja et al. (2009) under the additional

assumption that each component density fj is symmetric. Symmetry for every fj implies

that the quantities αfj and κfj , hence also the quantities ςjp and %jpq, all take value zero

for j, p, q ∈ {1, . . . , k}; therefore, dropping this assumption of symmetry affects the informa-

tion matrix (2.7) through Gf in (2.5), which explains why our ΓL;f differs from theirs.

2.3 Rank-based versions of central sequences

The ULAN result from Proposition 2.1 allows the construction of parametrically efficient

inference procedures on the mixing matrix L ∈ M1
k at any given f and µµµ. In practice,

these two nuisance parameters are not known. In general, misspecifying either or both of

them leads to invalid inference—tests that fail to reach the nominal asymptotic level and

estimators that do not achieve root-n consistency. Therefore, the semiparametric approach

under which both f and µµµ are unspecified is the most sensible one.

The standard semiparametric approach to the problem is the tangent space project

method described in the monograph by by Bickel et al. (1993). That approach has been

taken by Chen and Bickel (2006) and involves estimating the k component density scores—

consequently, its effectiveness is mitigated in the absence of large sample sizes or in the

presence of outliers.

As in Ilmonen and Paindaveine (2011), we consider, instead, the result of Hallin and

Werker (2003) showing that, under very general conditions, the parametric central sequence
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conditioned on the maximal invariant mentioned in (A2) is a version (central sequences are

always defined up to oP(1) quantities) of the semiparametrically efficient central sequence

based on the tangent space projection. Our maximal invariants, however, are not the same.

Let F : Rk −→ [0, 1]k and Jf : [0, 1]k −→ Rk be defined so that, for z = (z1, . . . , zk)
′ ∈ Rk,

F(z) := (F1(z1), . . . , Fk(zk))
′, with Fj(zj) :=

∫ zj
−∞ fj(z)dz for j = 1, . . . , k, and,

for u = (u1, . . . , uk)
′ ∈ [0, 1]k, Jf (u) := ϕϕϕf (F−1 (u)) =

(
ϕf1
(
F−1

1 (u1)
)
, . . . , ϕfk

(
F−1
k (uk)

))′
,

with Jfj(uj) := ϕfj
(
F−1
j (uj)

)
for j = 1, . . . , k. Writing U

(n)
i := (U

(n)
i,1 , . . . , U

(n)
i,k )′

for U
(n)
i (µµµ,L) := F

(
Z

(n)
i (µµµ,L)

)
, i = 1, . . . , n, the parametric statistic T

(n)
L; µµµ,f defined

in (2.6) takes the form

T
(n)
L; µµµ,f = n−

1
2

n∑
i=1

(
Jf (U

(n)
i )F−1′(U

(n)
i )− Ik

)
.

Assume moreover that

(A5) for all j = 1, . . . , k, z 7→ ϕfj(z) is the difference of two monotone increasing functions.

Assumption (A5) will be required whenever rank-based statistics with scores ϕfj ◦ F−1
j are

considered. Conditioning ∆∆∆
(n)
L; µµµ,f on the sigma-field B(L) generated by the marginal ranks

of the Z
(n)
i (µµµ,L)’s yields

∆∆∆˜(n)
L;f :ex := E

[
∆∆∆

(n)
L; µµµ,f |B(L)

]
= C

(
Ik ⊗ L−1

)′
vec
[
T˜(n)

L;f :ex

]
where T˜(n)

L;f :ex := E
[
T

(n)
L; µµµ,f

∣∣B(L)
]
; (2.9)

clearly, ∆∆∆˜(n)
L;f :ex does not depend on µµµ. Computing this conditional expectation requires

evaluating, for each j ∈ {1, . . . k} and r ∈ {1, . . . , n},

E
[
Jfj(U

(n)
i,j )F−1

j (U
(n)
i,j )|R(n)

i,j (L) = r
]

= E
[
Jfj(U

(n)
(r) )F−1

j (U
(n)
(r) )
]

(2.10)

and, for each j′ 6= j′′ ∈ {1, . . . k} and r, s ∈ {1, . . . , n},
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E
[
Jfj′ (U

(n)
i,j′ )F

−1
j′′ (U

(n)
i,j′′)|R

(n)
i,j′(L) = r, R

(n)
i,j′′(L) = s

]
= E

[
Jfj′ (U

(n)
(r) )
]

E
[
F−1
j′′ (U

(n)
(s) )
]
, (2.11)

where U
(n)
(r) and U

(n)
(s) respectively denote, in a sample U1, . . . , Un of i.i.d. random variables

uniform over (0, 1), the rth and sth order statistics. As a function of r and s, such quantities

are called exact scores; they depend on n, and computing them via numerical integration is

somewhat tedious.

The so-called approximate scores, in general, are preferable: denoting by

R˜ (n)
i (L) :=

(
R˜(n)
i,1 (L) , . . . ,R˜(n)

i,k (L)
)′

:=

(
R

(n)
i,1 (L)

n+ 1
, . . . ,

R
(n)
i,k (L)

n+ 1

)′
the (marginal) normalized ranks, the approximate scores corresponding to (2.10) and (2.11) are

Jfj
(
R˜(n)
i,j (L)

)
F−1
j

(
R˜(n)
i,j (L)

)
− 1

n

n∑
i=1

Jfj

( i

n+ 1

)
F−1
j

( i

n+ 1

)
and

Jfj′
(
R˜(n)
i,j′ (L)

)
F−1
j′′

(
R˜(n)
i,j′′ (L)

)
− 1

n

n∑
i=1

Jfj′

( i

n+ 1

) 1

n

n∑
i=1

F−1
j′′

( i

n+ 1

)
, (2.12)

respectively. Letting 1k ∈ Rk be the k-dimensional vector of ones, the approximate-score

version of the central sequence is thus

∆∆∆˜(n)
L;f := C

(
Ik ⊗ L−1

)′
vec
[
T˜(n)

L;f

]
, where (2.13)

T˜(n)
L;f := odiag

[
n−

1
2

n∑
i=1

(
Jf
(
R˜ (n)
i (L)

)
F−1′(R˜ (n)

i (L)
)
− J

(n)

f F−1
(n)′
)]

(2.14)

with J
(n)

f := 1
n

∑n
i=1 Jf

(
i

n+1
1k

)
and F−1

(n)
:= 1

n

∑n
i=1 F−1

(
i

n+1
1k

)
.

The following proposition, by establishing the asymptotic equivalence between the exact-

and approximate-score forms (2.9) and (2.13), shows that (2.13) indeed is a version of the

semiparametrically efficient central sequence for the problem.

Proposition 2.2. Fix µµµ ∈ Rk, L ∈M1
k, and f ∈ FULAN satisfying (A5). Then, under P

(n)
µµµ,L;f ,

(i) ∆∆∆˜(n)
L;f = ∆∆∆˜(n)

L;f :ex + oL2(1) and (ii) ∆∆∆˜(n)
L;f = ∆

(n)∗
L,µµµ;f + oL2(1),

as n→∞, where ∆
(n)∗
L,µµµ;f is a semiparametrically efficient (at L, µµµ, and f) central sequence.
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Consequently, ∆∆∆˜(n)
L;f can be used to construct semiparametrically efficient (at f , irre-

spective of µµµ) estimation procedures for L. Contrary to those based on ∆
(n)∗
L,µµµ;f , the R-

estimators derived from ∆∆∆˜(n)
L;f remain root-n consistent, though, under most component

densities g ∈ FULAN, g 6= f . And, unlike those proposed by Ilmonen and Paindaveine (2011),

they do not require f nor g to be symmetric.

The asymptotic representation for the rank-based central sequence ∆∆∆˜(n)
L;f under P

(n)
µµµ,L;g

where g ∈ F0 is not necessarily equal to f ∈ FULAN is described in the next proposition.

If, additionally, g ∈ FULAN, the asymptotic distribution for ∆∆∆˜(n)
L;f can be made explicit. For

every p 6= q ∈ {1, . . . , k}, let

γ∗pq(f, g) :=

∫ 1

0

ϕfp
(
F−1
p (u)

)
ϕgp
(
G−1
p (u)

)
du
( 1

∫
0
F−1
q (u)G−1

q (u)du− αfqαgq
)

and ρ∗pq(f, g) :=

∫ 1

0

F−1
p (u)ϕfp

(
G−1
p (u)

)
du

1

∫
0
ϕfq
(
F−1
q (u)

)
G−1
q (u)du.

The quantities γ∗pq(f, g) and ρ∗pq(f, g) are referred to as cross-information quantities; note

that γ∗pq(f, f) = γpq(f)− %pqq(f) and ρ∗pq(f, f) = 1. Then, define

Γ∗L;f,g := C
(
Ik ⊗ L−1

)′
G̃f,g

(
Ik ⊗ L−1

)
C′ (2.15)

where G̃f,g :=
∑k

p 6=q=1 γ
∗
sr(f, g)

(
epe

′
p⊗eqe

′
q

)
+ρ∗pq(f, g)

(
epe

′
q⊗eqe

′
p

)
, and write Γ∗L,f for Γ∗L,f,f .

Remark that Γ∗L,f,g depends on g only through γ∗pq(f, g) and ρ∗pq(f, g).

Proposition 2.3. Fix f ∈ FULAN, µµµ ∈ Rk, and L ∈ M1
k; with Z

(n)
i := Z

(n)
i

(
µµµ,L

)
defined

in (2.4), let J̃
(n)
f := 1

n

∑n
i=1 Jf

(
G
(
Z

(n)
i

))
and F̃−1(n) := 1

n

∑n
i=1 F−1

(
G
(
Z

(n)
i

))
. Then,

(i) If g ∈ F0, ∆∆∆˜(n)
L;f = ∆∆∆

�(n)
L,µµµ;f,g + oL2(1) as n→∞, under P

(n)
µµµ,L,g, where

∆∆∆
�(n)
L,µµµ;f,g := C

(
Ik ⊗ L−1

)′
vec
[
T
�(n)
L,µµµ;f,g

]
,

and
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T
�(n)
L,µµµ;f,g := odiag

[
n−

1
2

n∑
i=1

(
Jf (G(Z

(n)
i ))F−1′(G(Z

(n)
i ))− J̃

(n)
f F̃−1(n)′)]. (2.16)

(ii) Suppose furthermore that g ∈ FULAN, and fix τττ ∈ Rk(k−1) so that L+n−
1
2 matd◦(τττ) ∈ M1

k.

Then, ∆∆∆˜(n)
L;f

L−→ Nk(k−1)

(
Γ∗L;f,gτττ ,Γ

∗
L;f

)
as n→∞, under P

(n)

µµµ,L+n−
1
2 matd◦(τττ);g

with Γ∗L;f,g

defined in (2.15). If τττ = 0k(k−1), g ∈ F0 is sufficient for this convergence to hold.

(iii) If, again, g ∈ FULAN and τττ ∈ Rk(k−1) is as defined in (ii), then, as n→∞, under P
(n)
µµµ,L;g,

∆∆∆˜(n)

L+n−
1
2 matd◦(τττ);f

− ∆∆∆˜(n)
L;f = −Γ∗L;f,gτττ + oP(1). (2.17)

In Section 3, our R-estimation procedures require evaluating the f -score rank-based

central sequence, for f ∈ FULAN, at a preliminary root-n consistent estimator L̃(n) of L. The

asymptotic impact of substituting L̃(n) for L does not directly follow from Proposition 2.3(iii)

because the perturbation τττ in (2.17) is a deterministic quantity. Lemma 4.4 in Kreiss (1987)

provides sufficient conditions for Proposition 2.3(iii) to hold when replacing τττ with a sequence

of random vectors, τ̃ττ (n), n ∈ N. More precisely, if

(C1a) τ̃ττ (n) = OP(1), as n→∞, and

(C1b) there exists an integer N < ∞ so that, for all n ≥ N , τ̃ττ (n) can take, at most, a finite

number of values within any bounded ball centered at the origin in Rk(k−1),

hold, then (2.17) is still valid with τττ replaced by τ̃ττ (n).

Let L̃(n) ∈M1
k be an estimator for L. We say that it is root-n consistent under P

(n)
µµµ,L;g and

locally asymptotically discrete if n
1
2 vecd◦

(
L̃(n) − L

)
satisfies (C1a) under P

(n)
µµµ,L;g and (C1b).

Proposition 2.3(iii) and Lemma 4.4 from Kreiss (1987) then yield the following corollary.

Corollary 2.1. Fix µµµ ∈ Rk, L ∈M1
k and f, g ∈ FULAN. Suppose that L̃(n) is root-n consistent
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under P
(n)
µµµ,L;g and locally asymptotically discrete. Then, under P

(n)
µµµ,L;g, as n→∞,

∆∆∆˜(n)

L̃(n),f
− ∆∆∆˜(n)

L,f = −Γ∗L,f,gvecd◦
(
L̃(n) − L

)
+ oP(1). (2.18)

The asymptotic discreteness requirement for the preliminary estimator is not overly re-

strictive. Any root-n consistent sequence L̃(n) := (L̃
(n)
rs ) ∈ M1

k indeed can be discretized

as L̃
(n)
# := (L̃

(n)
rs;#), with L̃

(n)
rs;# :=

(
cn

1
2

)−1
sign

(
L̃

(n)
rs

)⌈
cn

1
2

∣∣L̃(n)
rs

∣∣⌉, for r 6= s ∈ {1, . . . , k},

where c > 0 is an arbitrary constant and dxe denotes the smallest integer greater than or

equal to x. The root-n consistency properties of L̃(n) carry over to L̃
(n)
# which by construction

is locally asymptotically discrete and, becauseM1
k is a compact subset of Rk(k−1), still takes

values in M1
k.

3 R-estimation of the mixing matrix

Assume that a rank test rejects H0 : θθθ = θθθ0 against the alternative H1 : θθθ 6= θθθ0 for large

values of some test statistic Qθθθ0

(
R(n)

(
θθθ0

))
measurable with respect to the ranks R(n)

(
θθθ0)

of residuals Z(n)(θθθ0) :=
(
Z

(n)
1 (θθθ0), . . . ,Z

(n)
n (θθθ0)

)′
, which are i.i.d. if and only if θθθ = θθθ0. The

original R-estimator for θθθ ∈ Θ, as proposed by Hodges and Lehmann (1963), is defined

as θ̂θθ
(n)

HL := arg minθθθ∈ΘQ
(n)
θθθ

(
R(n) (θθθ)

)
.

Even for simple problems such as location, regression, etc. involving a low-dimensional

parameter θθθ, minimizing Q
(n)
θθθ

(
R(n)

(
θθθ
))

is wrought with difficulty—as a function of θθθ, it is

piecewise constant, discontinuous, and generally non-convex. In the present case of a k(k−1)-

dimensional parameter spaceM1
k, solving this problem typically would require an infeasible

grid-search in relatively high dimension.

As an alternative, we consider the one-step R-estimators described in Hallin, Oja and

Paindaveine (2006) and Hallin and Paindaveine (2013) that possess advantageous features

such as expedient computation, straightforward asymptotic properties, and provide a con-
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sistent estimator for the asymptotic covariance matrix as a by-product. Those one-step

estimators are computed from a preliminary root-n consistent estimator L̃(n) and the re-

sulting value ∆∆∆˜(n)

L̃(n);f
of the rank-based central sequence associated with some reference

density f ∈ FULAN satisfying (A5).

3.1 One-step R-estimation

For fixed f ∈ FULAN, assume that

(C1) there exists a sequence of estimators L̃(n) ∈ M1
k of the parameter L ∈ M1

k that are

both root-n consistent and locally asymptotically discrete, under P
(n)
µµµ,L;g for any µµµ ∈ Rk,

L ∈M1
k, and g ∈ FULAN, and, furthermore,

(C2) for all p 6= q ∈ {1, . . . , k}, there exist consistent (under P(n)
g for every g ∈ FULAN)

and locally asymptotically discrete sequences γ̂∗pq(f) and ρ̂∗pq(f) of estimators for the

cross-information quantities γ∗pq(f, g) and ρ∗pq(f, g).

For any f ∈ FULAN, the one-step R-estimator for L ∈M1
k based on f -scores is the k × k

matrix L˜(n)
f ∈M1

k defined by

vecd◦
(
L˜(n)
f

)
= vecd◦

(
L̃(n)

)
+ n−

1
2

(
Γ̂∗

L̃(n);f

)−1
∆∆∆˜L̃(n);f , (3.19)

where Γ̂∗
L̃(n);f

is a consistent estimate of Γ∗L;f,g. This estimator is constructed by plug-

ging γ̂∗pq(f) and ρ̂∗pq(f) into (2.15). Under Assumptions (C1) and (C2), Γ̂∗
L̃(n);f

is a consistent

estimate of Γ∗L;f,g. The procedure for obtaining each estimate γ̂∗pq(f) and ρ̂∗pq(f) satisfying

(C2) is discussed in Section 3.2. The next proposition establishes the asymptotic distribution

of L˜(n)
f ; its proof parallels that of Theorem 5.1 in Ilmonen and Paindaveine (2011).

Proposition 3.1. Fix a reference density f ∈ FULAN. Then,
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(i) for any µµµ ∈ Rk, L ∈M1
k, and g ∈ FULAN, the one-step R-estimator (3.19) is such that

n
1
2 vecd◦

(
L˜(n)
f − L

)
L−→ Nk(k−1)

(
0,
(
Γ∗L;f,g

)−1
Γ∗L;f

(
Γ∗L;f,g

)−1
)

(3.20)

as n→∞, under P
(n)
µµµ,L,g, and

(ii) if, moreover, f = g, then
(
Γ∗L;f,g

)−1
Γ∗L;f

(
Γ∗L;f,g

)−1
=
(
Γ∗L;f

)−1
, and L˜(n)

f is a semi-

parametrically efficient (at f) estimate of L.

The R-estimator L˜(n)
f can be written in a form that avoids inverting Γ̂∗

L̃(n);f
, which can

be numerically singular when estimated in practice. Define therefore the k × k matri-

ces Â(n)

L̃(n),f
:= (α̂pq(f))kp,q=1 and B̂(n)

L̃(n),f
:= (β̂pq(f))kp,q=1 with zeroes on the diagonal and,

for every p 6= q ∈ {1, . . . , k},

α̂(n)
pq (f) :=

γ̂∗pq(f)

γ̂∗pq(f)γ̂∗qp(f)− ρ̂∗pq(f)ρ̂∗qp(f)
and β̂(n)

pq (f) :=
−ρ̂∗pq(f)

γ̂∗pq(f)γ̂∗qp(f)− ρ̂∗pq(f)ρ̂∗qp(f)
.

Letting A � B = (apqbpq) denote the Hadamard product between two matrices A = (apq)

and B = (bpq) of the same size, define

N̂
(n)

L̃(n),f
:=
(
Â(n)′

L̃(n),f
�T˜(n)

L̃(n);f

)
+
(
B̂(n)′

L̃(n),f
�T˜(n)′

L̃(n);f

)
, (3.21)

with T˜(n)
L;f defined in (2.14). Theorem 5.2 in Ilmonen and Paindaveine (2011) then implies

that L˜(n)
f can be expressed as

L˜(n)
f = L̃(n) + n−

1
2 L̃(n)

[
N̂

(n)

L̃(n),f
− diag

(
L̃(n)N̂

(n)

L̃(n),f

)]
. (3.22)
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3.2 Consistent estimation of cross-information quantities

A critical point in computing L˜(n)
f (3.22) is the consistent estimation of the cross-information

quantities in Γ∗L,f ;g. To tackle this issue, we exploit the asymptotic linearity (2.17) of ∆∆∆˜L̃(n);f

using a method first proposed by Hallin et al. (2006) in the context of the R-estimation of

a scatter matrix in an elliptical model, and further developed by Cassart et al. (2010) and

Hallin and Paindaveine (2013). In the present case, we have to consistently estimate a total

of 2k(k − 1) cross-information quantities appearing in Γ∗L;f,g.

Fixing f ∈ FULAN, define, for λ ≥ 0 and r 6= s ∈ {1, . . . , k}, the mappings

λ 7→ hγ
∗
rs(λ) :=

(
T˜(n)

L̃(n);f

)
rs

(
T˜(n)

L̃
γ∗rs
λ ;f

)
rs

and λ 7→ hρ
∗
rs(λ) :=

(
T˜(n)

L̃(n);f

)
sr

(
T˜(n)

L̃ρrsλ ;f

)
sr

(3.23)

(from R+ to R), where

L̃
γ∗rs
λ := L̃(n) + n−

1
2λ
(
T˜(n)

L̃(n),f

)
rs

L̃(n)
(
ere
′
s − diag

(
L̃(n)ere

′
s

))
and

L̃
ρ∗rs
λ := L̃(n) + n−

1
2λ
(
T˜(n)

L̃(n),f

)
sr

L̃(n)
(
ere
′
s − diag

(
L̃(n)ere

′
s

))
,

with T˜(n)
L,f defined in (2.14). Assume, additionally, that

(C3) for fixed f, g ∈ FULAN, µµµ ∈ Rk, and L ∈M1
k, the sequence L̃(n) of preliminary estimators

(satisfying (C1)) is such that each element in T˜(n)

L̃(n);f
is bounded from below by a positive

constant with probability tending to one under P
(n)
µµµ,L;g. More precisely, for all ε > 0,

there exist δε > 0 and an integer Nε such that P
(n)
µµµ,L,g

[(
TL̃(n);f

)
rs
> δε

]
≥ 1 − ε for

all n ≥ Nε and r 6= s ∈ {1, . . . , k}.

This assumption is satisfied by most root-n consistent estimators for the mixing matrix; see

Section 4 for a discussion.

The following lemma is adapted from Hallin and Paindaveine (2013).

Lemma 3.1. Fix f, g ∈ FULAN, µµµ ∈ Rk, and L ∈M1
k. Let L̃(n) be a sequence of preliminary
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estimators for L satisfying (c1) and (c3). For every r 6= s ∈ {1, . . . , k}, the mappings hγ
∗
rs

and hρ
∗
rs defined in (3.23) satisfy, for λ > 0,

hγ
∗
rs(λ) = (1− λγ∗rs(f, g))

(
TL̃(n);f

)2

rs
+ oP(1) and hρ

∗
rs(λ) = (1− λρ∗rs(f, g))

(
TL̃(n);f

)2

sr
+ oP(1)

as n→∞, under P
(n)
µµµ,L;g. Furthermore, each mapping is almost surely positive for λ = 0.

By Lemma 3.1, the mappings hγ
∗
rs and hρrs are both positive at λ = 0 and, up to oP(1)’s

under P
(n)
µµµ,L;g, are linear with a negative slope. Therefore, intuitively appealing estimators

for γ∗rs(f, g) and ρ∗rs(f, g) would be, respectively,
(
γ̂∗rs(f, g)

)−1
:= infλ

{
λ ∈ R : hγ

∗
rs(λ) < 0

}
and

(
ρ̂∗rs(f, g)

)−1
:= infλ

{
λ ∈ R : hρ

∗
rs(λ) < 0

}
; estimators for ρrs(f, g) would be defined in

an analogous manner. However, these estimators are not asymptotically discrete. Instead,

taking λj = j/c for some large c > 0 and j ∈ Z, let

(γ̂∗rs(f))−1 := λ−γ∗rs + c−1hγ
∗
rs(λ−γ∗rs)/

(
hγ
∗
rs(λ−γ∗rs)− h

γ∗rs(λ+
γ∗rs

)
)
, (3.24)

with λ−γ∗rs := maxj∈Z
{
λj : hγ

∗
rs(λj) > 0

}
and λ+

γ∗rs(f) := minj∈Z
{
λj : hγ

∗
rs(λj) < 0

}
. Similarly put

(ρ̂∗rs(f))−1 := λ−ρ∗rs + c−1hρ
∗
rs(λ−ρ∗rs)/

(
hρ
∗
rs(λ−ρ∗rs)− h

ρ∗rs(λ+
ρ∗rs

)
)
, (3.25)

with λ−ρ∗rs := maxj∈Z
{
λj : hρ

∗
rs(λj) > 0

}
and λ+

ρ∗rs
:= minj∈Z

{
λj : hρ

∗
rs(λj) < 0

}
. The estima-

tors (3.24) and (3.25) can be shown, under assumptions (C1) and (C3), to satisfy (C2) along

the same lines as in Theorem 5.3 of Ilmonen and Paindaveine (2011).

3.3 Data-driven specification of reference density

While the choice of the reference density f has no impact on the consistency properties of

the corresponding R-estimator L˜(n)
f , it has a direct influence on its performances for both

finite n and as n→∞; the “closer” f is to the actual density g, the better the performance

for L˜(n)
f . The efficiency loss due to a misspecified reference density f is revealed though an
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inspection of the cross-information quantities.

Many mixing matrix estimators of L, including those proposed by Chen and Bickel (2006)

and Bach and Jordan (2002), rely on nonparametric estimates of the underlying component

densities or scores. However, such nonparametric estimates require large sample sizes to be

effective due to their sensitivity to tuning parameters such as bandwidth or choice of basis

functions. For instance, Chen and Bickel (2006) propose estimating score functions using a

basis of t B-spline functions; the exact choice of t has a significant impact on the resulting

estimator. Furthermore, nonparametric methods tend to be sensitive to outliers, especially

in the case of small to moderate-sized samples.

The purpose of using the R-estimators based on f -scores is precisely to increase robust-

ness against outliers while avoiding nonparametric density estimation. A distinctive feature

of ranks is that they are independent, under the null hypothesis and hence also under con-

tiguous alternatives, of the corresponding order statistics. That property can be exploited,

in the spirit of Dodge and Jurečková (2000), to select a reference density f that accounts for

features (skewness, kurtosis, etc.) of the actual underlying g: as long as such a selection is

based on order statistics, it has no impact on the validity of R-estimation procedures.

We propose selecting f := (f1, . . . , fk) by fitting, componentwise, a parametric density

to the (order statistic of the) residuals associated with the preliminary estimator L̃(n). If

skewness and kurtosis are to be accounted for, a convenient family of densities is the family

of skew t-distribution (Azzalini and Capitanio 2003) with densities of the form

hωωω(x) =
2

σ
tν(z)Tν+1

(
αz
( ν + 1

ν + z2

)1/2)
for x ∈ R and z := σ−1 (x− µ), (3.26)

indexed by ωωω := (µ, σ, α, ν), where µ ∈ R is a location, σ ∈ R+
0 a scale, α ∈ R a skewness

parameter, and ν > 0 the number of degrees of freedom governing the tails; tν(z) and Tν(z)

are the density and cumulative distribution functions, respectively, of Student’s t-distribution

with ν degrees of freedom. For each j = 1, . . . , k, an estimator (µ̂j, σ̂j, α̂j, ν̂j) is obtained
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from the residuals Z
(n)
1,j (L̃(n)), . . . , Z

(n)
n,j (L̃(n)) using a method such as maximum likelihood.

Then, the f -score functions used in the R-estimation procedure are those associated with the

skew t-density hω̂ωωj , with ω̂ωωj = (µ̂j, σ̂j, α̂j, ν̂j), thus taking into account the skewness, kurtosis

and tails of the residuals. Data-driven scores, however, clearly need not be restricted to the

family of skew t-densities, and can be selected from other univariate parametric families as

well; in Section 4, we also consider, for instance, the family of stable distributions, indexed

by ωωω := (µ, σ, β, γ), where µ and σ are location and scale, β is a skewness parameter (β = 0

means symmetry), and γ ∈ (0, 2], the tail index, characterizes the tail behavior (γ = 2 means

Gaussian tails, γ = 1 Cauchy tails).

4 Simulations

Simulation experiments are conducted to examine finite-sample performances of the proposed

R-estimation procedure. In the simulations, we evaluate R-estimators L˜(n)
f based on various

preliminary estimators from the literature and a data-driven reference density f , as described

in Section 3.3. In this section, we describe the precise construction of the four preliminary

estimators to be used, the R-estimatorL˜(n)
f , and, for the sake of comparison, the R+-estimator

of Ilmonen and Paindaveine (2011). Then we describe the simulation experiment setups and

conclude with a discussion of the simulation results.

4.1 Preliminary, R-, and R+-estimators

4.1.1 The preliminary estimators

Oja et al. (2006) propose estimating a mixing matrix using two distinct scatter matrices with

the independent components property. A scatter matrix is a k×k symmetric positive definite

and affine-equivariant function of a sample of n random k-vectors. A scatter matrix is said

to possesses the independent components property if, when the sample of random k-vectors
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at which it is evaluated is i.i.d. with mutually independent components, all of its off-diagonal

elements are oP(1) as the sample size grows to infinity. The sample covariance matrix is a

classical example of a scatter matrix exhibiting that property. Generally, however, a scatter

matrix possesses the independent components property only if the mutually independent

components all possess symmetric distributions, a condition which is not satisfied here.

As a remedy, Nordhausen et al. (2008) propose generalizing Oja et al. (2006) by con-

structing the estimator using two distinct symmetrized scatter matrices. Symmetrizing a

scatter matrix S(·) entails evaluating the same scatter matrix function at the distinct pair-

wise differences of observations from a given sample. Specifically, if X
(n)
1 , . . . ,X

(n)
n is an

observed sample of k-vectors, then the symmetrized version of S(·) is defined to be

S∗(X
(n)
1 , . . . ,X(n)

n ) := S
(
X̃

(n)
(1,2), . . . , X̃

(n)
(1,n), X̃

(n)
(2,3), . . . , X̃

(n)
(2,n), X̃

(n)
(3,4), . . . , X̃

(n)
(n−1,n)

)
, (4.27)

where X̃
(n)
(i,j) := X

(n)
i −X

(n)
j for each {(i, j) : 1 ≤ i < j ≤ n} denotes the n(n− 1)/2 distinct

pairwise differences. If X
(n)
i (i = 1, . . . , n) is i.i.d. with mutually independent components,

then X̃
(n)
(i,j) (1 ≤ i < j ≤ n) is also i.i.d. with mutually independent components each having,

by construction, symmetric distributions. Consequently, the symmetrized version of any

scatter matrix S(·) has the independent components property.

Letting S∗A and S∗B denote the symmetrized versions of two distinct scatter matrices SA

and SB as in (4.27) and letting X
(n)
1 , . . . ,X

(n)
n denote an observed sample of k-variate mixed

data, Nordhausen et al. (2008) propose an estimator Λ̂
(
S∗A,S

∗
B

)
that is the k×k nonsingular

matrix Λ simultaneously satisfying

S∗A
(
Λ−1X

(n)
1 , . . . ,Λ−1X(n)

n

)
= Ik and S∗B

(
Λ−1X

(n)
1 , . . . ,Λ−1X(n)

n

)
= D, (4.28)

where D is any full-rank k × k diagonal matrix. In the simulations below, we construct

preliminary estimators based on the following scatter matrices: the sample covariance
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SCOV :=
1

n

n∑
i=1

(
X

(n)
i − X̄(n)

)(
X

(n)
i − X̄(n)

)′
where X̄(n) :=

1

n

n∑
i=1

X
(n)
i ;

the fourth-order scatter matrix

SCOV4 :=
1

n

n∑
i=1

(
X

(n)
i − X̄(n)

)′(
SCOV

)−1(
X

(n)
i − X̄(n)

)(
X

(n)
i − X̄(n)

)(
X

(n)
i − X̄(n)

)′
;

and the van der Waerden rank-based estimator SHOP (Hallin et al. 2006). Letting S∗COV, S∗COV4,

and S∗HOP denote symmetrized versions of these scatter matrices (4.27), we obtain the prelim-

inary estimators Λ̃Fobi := Λ̃
(
S∗COV,S

∗
COV4

)
and Λ̃HOPCov := Λ̃

(
S∗HOP,S

∗
COV

)
, defined in (4.28),

from each sample of k-variate data generated in the simulations. Often referred to as FOBI

in the literature, Λ̃Fobi was first studied in Cardoso (1989), and is the most usual estimator

of that type. As for Λ̃HOPCov, it can be expected to inherit some of the favorable robustness

properties of the rank-based S∗HOP. When computing Λ̃Fobi and Λ̃HOPCov, obtaining sym-

metrized scatter matrices introduces a heavy computational burden; for a sample of size n,

the symmetrization step requires evaluating a scatter matrix from n(n − 1)/2 pairwise dif-

ferences. Because sample sizes in typical ICA applications are large, Λ̃Fobi and Λ̃HOPCov may

be impractical.

The FastICA algorithm (Hyvärinen and Oja (1997); in the simulations, we used the

fastICA R package by Marchini et al. (2012), with default settings and the initial demixing

matrix set to identity) exploits the canonical assumption in ICA that at most one source

component possesses a Gaussian distribution. A mixing matrix is selected by maximizing a

contrast function that approximates the sample negentropy sequentially for each component.

Because negentropy is a measure of non-Gaussianity, the estimated components obtained via

the FastICA estimator Λ̃FIca have both low cross-correlation, and all but one possess empirical

distributions not well-approximated by a Gaussian. Reyhani et al. (2012) establish sufficient

conditions for the root-n consistency of Λ̃FIca.

Finally, the Kernel-ICA-KGV or Kernel-ICA algorithm (Bach and Jordan 2003) seeks
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a demixing matrix that minimizes the mutual information between the implied independent

components via generalized variance, a construction implicitly measuring non-Gaussianity.

Of all preliminary estimators we considered, Λ̃KIca (computed from the kernel-ica Matlab

package (Bach 2003) with default settings) has the strongest performances in the simulations;

its asymptotic properties have not been well studied, though, and conditions for its root-n

consistency have not been established.

After evaluating each preliminary estimator (Λ̃Fobi, Λ̃HOPCov, Λ̃FIca, and Λ̃KIca) from each

replication, one-step R-estimators are computed from the observationally equivalent

L̃Fobi := Π(Λ̃Fobi), L̃HOPCov := Π
(
Λ̃HOPCov

)
, L̃FIca := Π

(
Λ̃FIca

)
, and L̃KIca := Π

(
Λ̃KIca

)
, (4.29)

which belong to M1
k (see (1.3) for the definition of the mapping Π).

4.1.2 The R-estimators

As described in Section 3.3, we used data-driven scores from the skew t-family in the con-

struction of our R-estimators. For each replication of X
(n)
1 , . . . ,X

(n)
n and preliminary es-

timator L̃ ∈ M1
k, we compute the residuals Ẑ

(n)
i

(
L̃
)

:= L̃−1X
(n)
i for i = 1, . . . , n. For

each j = 1, . . . , k, a skew t-density hω̂ωωj (see (3.26)) is fit to the n-tuple Ẑ
(n)
1,j

(
L̃
)
, . . . , Ẑ

(n)
n,j

(
L̃
)

of jth components via maximum likelihood (MLE). In this implementation, a constrained

MLE ω̂ωωj, with α̂j ∈ [−30, 30] and ν̂j ∈ [3,∞), was adopted for the sake of numerical stability.

The resulting one-step R-estimate then is, with f := (hω̂ωω1 , . . . , hω̂ωωk),

L˜∗(L̃) := L̃ + n−
1
2 L̃
[
N̂

(n)

L̃,f
− diag

(
L̃ N̂

(n)

L̃,f

)]
, (4.30)

where N̂
(n)

L̃,f
is defined in (3.21) (because L˜∗(L̃) is based on data-driven scores, no reference

density is used in the notation).

In the simulations, we also explore the performance of a multistep version of the R-

estimator just described. Taking L˜∗(L̃) as a preliminary, (4.30) indeed is easily iterated:
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letting L˜∗(0)

(
L̃
)

:= L̃, define, for t = 1, . . . , T ,

L˜∗(t)(L̃) := L˜∗
(
L˜∗(t-1)(L̃)

)
. (4.31)

4.1.3 The R+-estimators

We also computed the signed-rankR+-estimators proposed by Ilmonen and Paindaveine (2011),

the validity of which requires symmetric component densities. The computation of those R+-

estimators not only requires a root-n consistent preliminary estimator L̃(n) ∈ M1
k, but also

an estimate for the location µµµ ∈ Rk. The preliminary estimators we used are those described

in Section 4.1; for location, we adopted the same componentwise median estimator as in

Ilmonen and Paindaveine (2011). To make the comparison a fair one, however, we also

implemented the signed-rank procedure on the basis of data-driven scores, as explained in

Section 4.1.2—restricting the fit, of course, to symmetric Student or stable densities. The

resulting R+-estimators are denoted as L˜∗+(L̃). Finally, parallel to (4.31), multistep versions

of L˜∗+(L̃) are easily constructed; the notation L˜∗+(t)

(
L̃
)

is used in an obvious way.

4.2 Simulation experiments

In each simulation experiment, bivariate observations (k=2) were generated from various

generating processes. Each generating process is characterized by a sample size n and two

component densities, g(S)

1 and g(S)

2 , S = A, . . . , L, the list of which is provided in Table 1, yield-

ing various skewness levels and tail behaviors. We also consider (E) an asymmetric bimodal

mixture distribution. Each marginal distribution has median equal to zero (with location

parameter set accordingly) and unit scale. The same mixing matrix L =

(
1 0.5

0.5 1

)
∈M1

2

was used throughout; location, which plays no role, was set to µµµ = 0. Small (n = 100) and

moderate (n = 1, 000) sample sizes were considered.
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Table 1: Component densities used in the simulation experiment, all with median zero and unit scale: (a) skew t (α, ν) denotes
the skew t-density with shape (asymmetry) parameter α and ν degrees of freedom; (b) stable(β, γ) denotes the stable density
with skewness parameter β and tail index γ; (c) asymMix-t3 is a mixture of two Student t-distributions with 3 degrees of
freedom; and (d) tν is the classical Student t-distribution with ν degrees of freedom.

Component densities

S g(S)

1 g(S)

2

(A) skew t (α = 5, ν = 1) skew t (α = 5, ν = 1)

(B) skew t (α = 5, ν = 6) skew t (α = 5, ν = 6)

(C) skew t (α = 5, ν = 10) skew t (α = 5, ν = 10)

(D) stable(β = 1, γ = 1.75) skew t (α = 5, ν = 10)

(E) asymMix-t3 skew t (α = 5, ν = 10)

(F) Student’s t10 skew t (α = 5, ν = 10)

(G) stable(β = 1, γ = 1.5) stable(β = 1, γ = 1.5)

(H) stable(β = 1, γ = 1.75) stable(β = 1, γ = 1.75)

(I) stable(β = 0, γ = 1.75) stable(β = 0, γ = 1.75)

(J) Cauchy t1 Cauchy t1
(K) Student’s t6 Student’s t6
(L) Student’s t10 Student’s t10

For each generating process (each combination of n = 100 or 1, 000 and S ∈ {A, . . . , L}),

the number of replications was set to M = 1, 000, and, for each replication, the following

estimators of L were computed:

(a) the preliminary estimators L̃ = L̃Fobi, L̃HOPCov, L̃FIca, and L̃KIca given in (4.29);

(b) the one-step R-estimators L˜∗(L̃) based on the preliminary ones as listed under (a) and

data-driven skew t-scores;

(c) the one-step R+-estimators L˜∗+(L̃) based on the preliminary ones as listed under (a)

and data-driven Student’s t-scores.

For component densities (A), (C) and (H), moreover, we also computed, for n = 100

and n = 1, 000,

(d) the T -multistep versions of theR-estimators based on the preliminary L̃HOPCov and L̃KIca,

still with data-driven skew t-scores, T = 1, . . . , 10.
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Figure 1: Boxplots of Amari errors obtained in M = 1000 replications of the setup (n, S), n = 100, 1, 000, S = A, B, C, for the

preliminary L̃ = L̃Fobi, L̃HOPCov, L̃FIca, L̃KIca, the one-step R-estimator Le∗(L̃), and the one-step R+-estimator Le∗+(L̃) based

on the same preliminaries with data-driven skew t- and Student’s t-scores, respectively.
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(b) Sample size n = 1000
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28



Figure 2: Boxplots of Amari errors obtained in M = 1000 replications of the setup (n, S), n = 100, 1, 000, S = D, E, F, for the

preliminary L̃ = L̃Fobi, L̃HOPCov, L̃FIca, L̃KIca, the one-step R-estimator Le∗(L̃), and the one-step R+-estimator Le∗+(L̃) based

on the same preliminaries with data-driven skew t- and Student’s t-scores, respectively.

(a) Sample size n = 100

S
et

up
 (

n 
=

 1
00

, D
)

g 1
 =

 s
ta

bl
e(

β 
=

 1
, γ

 =
 1

.7
5)

g 2
 =

 s
ke

w
 t

(α
 =

 5
, ν

 =
 1

0)

0.522 0.525 0.525
0.0

0.1

0.2

0.3

FOBI R−Est R+ −Est

(n=100, D);  Prelim: FOBI

p95: 0.531 0.508 0.547
0.0

0.1

0.2

0.3

HOPCov R−Est R+ −Est

(n=100, D);  Prelim: HOPCov

p95: 0.453 0.412 0.460
0.0

0.1

0.2

0.3

FastICA R−Est R+ −Est

(n=100, D);  Prelim: FastICA

p95:

●●●

●

●●

●●

●

●●

●

●

●

●

●

0.358 0.313 0.439
0.0

0.1

0.2

0.3

Kernel−ICA R−Est R+ −Est

(n=100, D);  Prelim: Kernel−ICA

p95:

S
et

up
 (

n 
=

 1
00

, E
)

g 1
 =

 a
sy

m
M

ix
−

t 3
g 2

 =
 s

ke
w

 t
(α

 =
 5

, ν
 =

 1
0)

●
●●

●

●●●

●

●●●●●

●
●●●

●

●

●

●
●●

●●

●●
●●
●
●

●

●

●●
●●
●

●

●
●
●

●

●

●

●
●
●

●

● ●

●

●●
●

●

●

●

●

●
●●
●

●

●●
●●●

●

●

●

●●

●

●

●
●●
●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●
●
●●
●
●●●
●
●

●

●●

●
●

●

●

●●

●●●●
●
●

●

●●●

●
●

●●

●

●
●

●

●

●

0.651 0.622 0.655
0.0

0.1

0.2

0.3

FOBI R−Est R+ −Est

(n=100, E);  Prelim: FOBI

p95:

●
●

●

●
●
●●
●
●

●
●

●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●
●

●

●●

●

●
●

●

●
●
●
●●

●

●
●

●

●

●

●
●

●

●

●●
●●

●
●●

●

●●●

●
●
●●●

●

●
●

●

●

●●●

●

●

●

●

●●

●
●●

●

●●

●

●●

●●
●
●

●

●
●●
●
●
●●
●

●

●●

●

●

●

●●

●

●●

●

●

●
●
●
●

●
●

●
●

●

●

●

●

●●●

●●

●

●●●
●

●

●

●

●
●●

0.647 0.637 0.657
0.0

0.1

0.2

0.3

HOPCov R−Est R+ −Est

(n=100, E);  Prelim: HOPCov

p95:

●

●

●

●

●●●●●
●
●●●
●
●

●

●●●
●

●●
●

●

●●
●
●

●

●●●●

●●

●

●●

●

●
●●●
●

●
●●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●
●
●

●●

●
●

●

●

●●●●●

●

●

●

●●

●

●
●
●
●
●●●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●●
●
●●
●
●
●

●

●
●

●

●●

0.653 0.631 0.652
0.0

0.1

0.2

0.3

FastICA R−Est R+ −Est

(n=100, E);  Prelim: FastICA

p95:

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●
●

●
●

●

●

●●
●

●
●

●

●

●

●

●

0.315 0.320 0.571
0.0

0.1

0.2

0.3

Kernel−ICA R−Est R+ −Est

(n=100, E);  Prelim: Kernel−ICA

p95:

S
et

up
 (

n 
=

 1
00

, F
)

g 1
S

tu
de

nt
 t 1

0

g 2
 =

 s
ke

w
 t

(α
 =

 5
, ν

 =
 1

0)

●

●

●●●
●

●

●

●
●●
●

●

●
●●

●

●●
●

●

●

●

●
●
●●

●

●

●
●

●

●

●●
●

●●

●
●
●

●
●

●

●

●

●

●
●●

●

●

●●
●
●

●

●
●

●
●
●

●

●

●

●●●

●●
●●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●●
●●

●

●

●

●●●

●●●●
●●●
●

●●

●
●
●

●

●

●

●

●
●

●

●●
●
●

●

●●●●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●
●●●

●●
●

●

●
●

●

0.646 0.622 0.647
0.0

0.1

0.2

0.3

FOBI R−Est R+ −Est

(n=100, F);  Prelim: FOBI

p95:

●

●

●

●

●

●

●●

●
●

●

●
●●

●
●

●
●
●

●
●●●

●
●

●

●

●

●

●
●
●

●●

●
●●
●

●
●

●

●

●●
●

●●
●●
● ●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●●
●●
●●

●

●●
●

●

●
●

●

●

●●●

●

●●
●
●

●
●

●

●
●

●
●

●

●

●●●

●

●

●●●

0.645 0.619 0.651
0.0

0.1

0.2

0.3

HOPCov R−Est R+ −Est

(n=100, F);  Prelim: HOPCov

p95:

●
●

●

●

●

●

●
●

●
●

●

●●
●●

●

●

●●
●●●
●
●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●●

●●

●

●

●●
●●

●
●●

●

●

●

●●●
●

●

●

●
●

●●
●

●

●

●
●

●

●

●●

●

●

●

●
●●
●

●

●

●

●
●●

●

●●

●
●

●●

●

●
●●
●

●

●

●

●
●

●
●●
●
●●
●
●

●

●●●●●●

●
●

●
●
●
●●

●

●●●●
●●

●

●

●
●
●●
●●●●

●

●

●

●
●●

0.653 0.643 0.651
0.0

0.1

0.2

0.3

FastICA R−Est R+ −Est

(n=100, F);  Prelim: FastICA

p95:

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

0.286 0.248 0.569
0.0

0.1

0.2

0.3

Kernel−ICA R−Est R+ −Est

(n=100, F);  Prelim: Kernel−ICA

p95:

(b) Sample size n = 1000

S
et

up
 (

n 
=

 1
00

0,
 D

)

g 1
 =

 s
ta

bl
e(

β 
=

 1
, γ

 =
 1

.7
5)

g 2
 =

 s
ke

w
 t

(α
 =

 5
, ν

 =
 1

0)

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●
●●
●
●
●

●

●●

●●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●●
●
●
●
●

●

●

●

●●

●

●●

●

●

●
●●●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

0.172 0.070 0.085
0.00

0.04

0.08

0.12

FOBI R−Est R+ −Est

(n=1000, D);  Prelim: FOBI

p95:

●●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●
●

●

●

●●

●●

●
●●

●

●●●

●

●
●

●

●
●
●

●●●

●
●●●
●

●●

●●
●

●

●
●●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●●

●

●

●

●

●

0.101 0.069 0.085
0.00

0.04

0.08

0.12

HOPCov R−Est R+ −Est

(n=1000, D);  Prelim: HOPCov

p95:

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●
●
●●

●

●

●

●●●
●●

●

●

●●
●
●●

●●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●●
●

●

●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

0.121 0.069 0.086
0.00

0.04

0.08

0.12

FastICA R−Est R+ −Est

(n=1000, D);  Prelim: FastICA

p95:

●

●

●

●

●

●

●

●

●

●●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●
●●
●
●

●●

●

●●
●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●
●●●

●●●

●
●
●
●
●●

●●
●
●

●

●
●

●

●

●

●●

●●

●

●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

0.081 0.068 0.088
0.00

0.04

0.08

0.12

Kernel−ICA R−Est R+ −Est

(n=1000, D);  Prelim: Kernel−ICA

p95:

S
et

up
 (

n 
=

 1
00

0,
 E

)

g 1
 =

 a
sy

m
M

ix
−

t 3
g 2

 =
 s

ke
w

 t
(α

 =
 5

, ν
 =

 1
0)

0.622 0.472 0.632
0.00

0.04

0.08

0.12

FOBI R−Est R+ −Est

(n=1000, E);  Prelim: FOBI

p95: 0.629 0.490 0.642
0.00

0.04

0.08

0.12

HOPCov R−Est R+ −Est

(n=1000, E);  Prelim: HOPCov

p95: 0.654 0.654 0.657
0.00

0.04

0.08

0.12

FastICA R−Est R+ −Est

(n=1000, E);  Prelim: FastICA

p95:

●

●

●

●

●●

●●●

●●●●

●●

●●

●

●
●

●
●
●

●

●

●

●

●
●
●

●

●

●
●

●

●●●

●

●

●
●

●
●●

●
●

●●●

●

●
●
●●
●
●

●

●
●●●

●

●

●

●

●●
●

●

●●

●●
●
●
●

●

●
●

●

●
●●●

●

●
●
●
●
●●

●

●
●
●
●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0.048 0.041 0.118
0.00

0.04

0.08

0.12

Kernel−ICA R−Est R+ −Est

(n=1000, E);  Prelim: Kernel−ICA

p95:

S
et

up
 (

n 
=

 1
00

0,
 F

)

g 1
S

tu
de

nt
 t 1

0

g 2
 =

 s
ke

w
 t

(α
 =

 5
, ν

 =
 1

0)

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.632 0.497 0.640
0.00

0.04

0.08

0.12

FOBI R−Est R+ −Est

(n=1000, F);  Prelim: FOBI

p95:

●
●

●
●
●
●

●

●

0.638 0.521 0.638
0.00

0.04

0.08

0.12

HOPCov R−Est R+ −Est

(n=1000, F);  Prelim: HOPCov

p95: 0.654 0.649 0.656
0.00

0.04

0.08

0.12

FastICA R−Est R+ −Est

(n=1000, F);  Prelim: FastICA

p95:

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●
●●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

0.049 0.044 0.120
0.00

0.04

0.08

0.12

Kernel−ICA R−Est R+ −Est

(n=1000, F);  Prelim: Kernel−ICA

p95:

The performance of each estimator (L̃, L˜∗ or L˜∗+) is measured by its Amari error with

respect to L. The Amari error (Amari et al. 1996) AE(A,B) of a k × k matrix A with
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Figure 3: Boxplots of Amari errors obtained in M = 1000 replications of the setup (n, S), n = 100, 1, 000, S = G, H, I, for the

preliminary L̃ = L̃Fobi, L̃HOPCov, L̃FIca, L̃KIca, the one-step R-estimator Le∗(L̃), and the one-step R+-estimator Le∗+(L̃) based

on the same preliminaries with data-driven skew t- and Student’s t-scores, respectively.
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(b) Sample size n = 1000
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with W := B−1A = [wij]. The Amari error (which is not a matrix norm) takes values be-

tween 0 and 1; AE(A,B) close to 0 indicates higher similarity between A and B. The value

of AE(A,B) is invariant under permutations and (positive) rescaling of rows or columns

of A and B. More precisely, AE(A,B) = AE(A∗,B∗) for any k× k matrices A∗ := C1AC2

and B∗ := C3BC4 so long as each Cj is an arbitrary product of permutation matrices
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and diagonal matrices with all diagonal entries being positive. Hence, AE(A,B) = 0 im-

plies Π(A) = Π(B), i.e. A and B are observationally equivalent, see (1.3). Therefore, the

Amari error is a natural measure of performance for estimators of mixing matrices in ICA.

Figure 4: Boxplots of Amari errors obtained in M = 1000 replications of the setup (n, S), n = 100, 1, 000, S = J, K, L, for the

preliminary L̃ = L̃Fobi, L̃HOPCov, L̃FIca, L̃KIca, the one-step R-estimator Le∗(L̃), and the one-step R+-estimator Le∗+(L̃) based

on the same preliminaries with data-driven skew t- and Student’s t-scores, respectively.
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Figures 1-6 below are providing boxplots for the M = 1, 000 Amari distances associated

with the various simulation setups. Since Amari distances are intrinsically nonnegative, these
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are “one-sided boxplots”, showing the first quartile, the median, the third quartile, and

a 0.95 quantile whisker. Figures 1-4 are dealing with components densities (A)-(B)-(C),

(D)-(E)-(F), (G)-(H)-(I), and (J)-(K)-(L), respectively. Figures 5-6 show the results for the

T -step versions of the R-estimators based on L̃HOPCov and L̃KIca, under components densi-

ties (A)-(C)-(H), as described in (d) above.
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p95:

Figure 5: Boxplots of Amari errors obtained in M = 1000 replications of the setup (n, S), n = 100, S = A, C, H, for the T -step

R-estimator Le∗(L̃) based on preliminary L̃ = L̃HOPCov and L̃KIca, respectively, and data-driven skew t-scores, T = 1, . . . , 10.

Inspection of Figures 1-4 reveals that Kernel-ICA is, almost uniformly, and sometimes

quite substantially (see Figure 1, n = 1, 000 with 6- and 10-degress of freedom skew t-

component densities, or Figure 3, n = 1, 000 under settings (H) and (I)), the best preliminary.
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Figure 6: Boxplots of Amari errors obtained in M = 1000 replications of the setup (n, S), n = 1, 000, S = A, C, H, for the T -step

R-estimator Le∗(L̃) based on preliminary L̃ = L̃HOPCov and L̃KIca, respectively, and data-driven skew t-scores, T = 1, . . . , 10.

Combined with R-estimation (data driven skew t-scores), they are the typical winners, even

under symmetric component densities where, in principle, R+-estimators should do better.

The best performances of R-estimators seem to take place under heavy tails (Cauchy and sta-

ble component densities)—thanks, probably, to the data-driven selection of scores. Based on

FastICA or Kernel-ICA preliminaries, R-estimators moreover are the only ones providing rea-

sonably good results under the “mixed cases” of Figure 2 (bimodal/unimodal, stable/skew

t10-, symmetric/skew t- component densities); note that partial symmetry (setup (F)) does

not really help R+-estimation much.
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Figures 5 and 6 shows how iterating the rank-based correction can improve a poor pre-

liminary. The HOPCov estimator is typically outperformed by the Kernel-ICA one; however,

after a few iteration, both the HOPCov- and Kernel-ICA-based R-estimator are performing

quite similarly; the latter, however, needs less iterations than the former to reach its best

performance. For n = 1, 000, starting from Kernel-ICA, one step is essentially sufficient.

5 An application in image analysis

The objective of ICA in applications is typically to recover source signals from a sequence

of observed mixed signals. As such, they are widely used in a variety of contexts where

the fundamental assumptions (1.1)-(1.2) of ICA are unlikely to hold. One of the merits of

existing ICA such as FastICA and Kernel-ICA is that they resist reasonably well to such

theoretically unwarranted applications. Such statements, of course, remain unavoidably

vague: in the absence of a formal model, indeed, pertinent benchmarks for performance

evaluation are hard to define. Demixing acoustic signals or images, where “readability” of

the final result appears as an obvious criterion, are an exception. Therefore, in this section,

we apply various ICA estimation methods, including the rank-based ones, to the demixing

of images that clearly do not satisfy the assumptions we have been making throughout this

paper. The results are shown in Figure 7. Their quality is best evaluated by eye-inspection,

but a quantitative assessment can be made via the Amari distances provided in Table 8a

and b. Although traditional ICA techniques provide reasonable results, our rank-based

techniques appear to bring quite significant improvements.

A black-and-white digital image with resolution h×w (h,w ∈ N) can be represented by

a pixel matrix Z = (Zrs) ∈ [0, 1]h×w, where Zrs represents the “greyness” of the pixel located

in the rth row and sth column; if Zrs = 0, the pixel is pure black, and if Zrs = 1, the pixel is

pure white. In this example, we mix three source images of US currency notes, represented

by the pixel matrices Zj = (Zj;rs), j = 1, 2, 3 (h := 65 and w := 150). These three
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source images are turned into three mixed ones, with pixel matrices Xj = (Xj;rs), j = 1, 2, 3,

where (X1;rs, X2;s, X3;rs)
′ = L?(Z1;rs, Z2;s, Z3;rs)

′, with L? = I3+0.95(1113−I3) ∈M1
3 (denoting

by 1113 a 3×3 matrix of ones); L? thus has a diagonal of ones, all off-diagonal enties being 0.95.

The source and mixed images are displayed in Figure 7a.

We then performed ICA estimation on the n = 65 × 150 = 9, 750 three-dimensional

observations (X1;rs, X2;s, X3;rs) by computing the multistep R-estimators L˜∗(T )(L̃) with data-

driven skew t-scores (4.31) and preliminary estimators L̃ = L̃Fobi, L̃FIca, and L̃KIca as described

in (4.29), and T = 1, . . . , 20; the L̃HOPCov preliminary was omitted because symmetrizing

the HOP scatter matrix (about 108 pairwise differences) was computationally too heavy.

Figures 7b, 7c, and 7d contain the resulting L̃- and L˜∗(20)(L̃)-demixed images. Of all pre-

liminary estimators considered, L̃KIca seems to provide the best results. In Figure 7d, we

therefore also provide the demixed images resulting from the Ilmonen and Paindaveine es-

timator L˜∗+(T )

(
L̃KIca

)
with kernel-ICA preliminary. Irrespective of the preliminary, there is

a clear and quite significant visual enhancement, attributable to the use of ranks, in the

R-estimation method. Our R-estimators, moreover, substantially outperform the signed-

rank ones.

Those eye-inspection conclusions are confirmed and reinforced by the graphs in Figure 8,

which reports the Amari errors AE
(
L˜∗(T )(L̃),L?

)
(4.32) for the R- and R+-estimators of L?

and T = 0, . . . , 20. As T increases, for all multistep R-estimators those errors appear to con-

verge to some common limit independent of the preliminary L̃. For L̃ = L̃FIca or L̃KIca,

the decrease is quite significant over T = 1, . . . , 5. The same decrease is much slower

for L̃ = L̃Fobi, but the final result, as T gets close to 20, is the same, suggesting that

rank-based corrections eventually compensate for a poorer performance of the preliminary

estimator.

The same Amari errors AE
(
L˜∗+(T )

(
L̃
)
),L?

)
were evaluated for the multistep (and data-

driven-score) versions L˜∗+(T )

(
L̃
)

of the Ilmonen and Paindaveine R+-estimators. The results,
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Figure 7: Figure 7a contains the three source images and the three mixed ones. Figures 7b, 7c, and 7d show the demixed
images obtained from multistep data-driven skew t-score R-estimators, based on FOBI, FastICA, and Kernel-ICA preliminaries,
respectively. In Figure 7d, the result of a Kernel-ICA-based, data-driven Student’s t-score multistep R+-estimator method are
also provided.

(a) Top row: the three source images. Bottom row: the three mixed images.

(b) FOBI preliminary. Top row: the L̃Fobi-demixed images. Bottom row: the L˜∗(20)(L̃Fobi)-demixed images.

(c) FastICA preliminary. Top row: the L̃FIca-demixed images. Bottom row: the L˜∗(20)(L̃FIca)-demixed images.

(d) Kernel-ICA preliminary. Top row: the L̃KIca-demixed images. Middle row: the L˜∗(20)(L̃KIca)-demixed im-

ages. Bottom row: the L˜∗+(20)(L̃KIca)-demixed images.
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in Figure 8b, clearly show that the signed-rank method fails, which is hardly surprising,

since there is little reason for “greyness” in the source images considered here to exhibit any

symmetric behavior.

Figure 8: The Amari errors AE
(
L̂,L?

)
for the multistep R-estimators L˜∗(T )(L̃) and the multistep R+-

estimators L˜∗+(T )

(
L̃
)

shown in Figure 7 and based on the preliminary estimators L̃ = L̃Fobi, L̃FIca, and L̃KIca,
for T = 1, . . . , 20.
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A Appendix: Proofs

A.1 Proof of Proposition 2.1

Oja et al. (2010) establish ULAN for ICA models under the assumption that each fj is

symmetric. Their proof consists in showing that the sufficient conditions of Lemma 1 in

Swensen (1985) are satisfied. Mutatis mutandis, that proof still goes through in the present

case, with the same central sequence; only the information matrix is affected. That matrix

depends on the covariance of vec
(
T

(n)
L;µµµ,f

)
under P

(n)
µµµ,L;f , which takes the form

E
[
vec
(
T

(n)
L;µµµ,f

)
vec
(
T

(n)
L;µµµ,f

)′]
=

k∑
r,s,p,q=1

E
[(

T
(n)
L;µµµ,f

)
r,p

(
T

(n)
L;µµµ,f

)
s,q

]
epe

′
q ⊗ ere

′
s.

Because
(
T

(n)
µµµ,L,f

)
r,p

is a sum of i.i.d. random variables with expectation zero,

E
[(

T
(n)
L;µµµ,f

)
r,p

(
T

(n)
L;µµµ,f

)
s,q

]
= E

[
(ϕfr(Z1,r)Z1,p−δrp)(ϕfs(Z1,s)Z1,q−δsq)

]
r, s, p, q ∈ {1, . . . , k}

where the Z1,j’s are i.i.d. with density fj under P
(n)
µµµ,L;f and δrp is the classical Kronecker index.

Evaluating those expectations yields Gf defined in (2.5). �

A.2 Proofs for Propositions 2.2 and 2.3

Propositions 2.2(i) and 2.3(i) follow from Lemma A.1 below, itself adapted from Theo-

rem V.1.8 in Hájek and S̆idák (1967). Consider a triangular array
(
U

(n)
1 , V

(n)
1

)
, . . . ,

(
U

(n)
n , V

(n)
n

)
,

n ∈ N and two scores ϕU , ϕV such that

(D1) U
(n)
i and V

(n)
i , i = 1, . . . , n, are uniform over [0, 1] and mutually independent, and

(D2) ϕU , ϕV : (0, 1)→ R are square-integrable and satisfy (A5).

40



Denote by R
(n)
i the rank of U

(n)
i amongst U

(n)
i , . . . , U

(n)
i , by Q

(n)
i the rank of V

(n)
i amongst

V
(n)

1 , . . . , V
(n)
n , and define

a(n)
ex (i) := E

[
ϕU (U (n)

1 )|R(n)
1 = i

]
, a(n)

appr(i) := ϕU
( i

n+ 1
)
,

b(n)
ex (i) := E

[
ϕV (V (n)

1 )|Q(n)
1 = i

]
, and b(n)

appr(i) := ϕV
( i

n+ 1
)
.

Assumption (D2) implies

lim
n→∞

∑n
i=1

(
a

(n)
appr(i)− a(n)

)2

max1≤i≤n
(
a

(n)
appr(i)− a(n)

)2 =∞ and lim
n→∞

∑n
i=1

(
b

(n)
ex (i)− ϕV

)2

max1≤i≤n
(
b

(n)
ex (i)− ϕV

)2 =∞. (A.33)

Let

S(n)
ex :=

1√
n

n∑
i=1

(
a(n)

ex

(
R

(n)
i

)
b(n)

ex

(
Q

(n)
i

)
− ϕ̄U ϕ̄V

)
, (A.34)

where ϕ̄U :=
∫ 1

0
ϕU(u)du and ϕ̄V :=

∫ 1

0
ϕV (v)dv; note that

ϕU = E
[
ϕU(U

(n)
1 )
]

=
1

n

n∑
i=1

E
[
ϕU(U

(n)
1 )|R(n)

1 = i
]

=
1

n

n∑
i=1

a(n)
ex

(
i
)

and, similarly, ϕV = 1
n

∑n
i=1 b

(n)
ex (i). Also define

S(n)
appr :=

1√
n

n∑
i=1

(
a(n)

appr

(
R

(n)
i

)
b(n)

appr

(
Q

(n)
i

)
− a(n)

apprb
(n)

appr

)
, (A.35)

where a(n)
appr := 1

n

∑n
i=1 a

(n)
appr

(
i
)

and b
(n)

appr := 1
n

∑n
i=1 b

(n)
appr

(
i
)
. The following Lemma shows

that both S
(n)
ex and S

(n)
appr admit the asymptotic representation

T (n) :=
1√
n

n∑
i=1

(
ϕU
(
U

(n)
i

)
ϕV
(
V

(n)
i

)
− ϕ(n)

U ϕ
(n)
V

)
, (A.36)

where ϕ
(n)
U = 1

n

∑n
i=1 ϕU

(
U

(n)
i

)
and ϕ

(n)
V = 1

n

∑n
i=1 ϕV

(
V

(n)
i

)
.

Lemma A.1. Let
(
U

(n)
1 , V

(n)
1

)
, . . . ,

(
U

(n)
n , V

(n)
n

)
and the scores ϕU , ϕV satisfy (D1)-(D2).
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Then, as n→∞,

(i) S(n)
appr = S(n)

ex + oL2(1) and (ii) S(n)
appr = T (n) + oL2(1), (A.37)

with S
(n)
ex , S

(n)
appr, and T (n) defined in (A.34), (A.35), and (A.36), respectively.

Proof. Let us show that

(i′) lim
n→∞

E
[(
S(n)

appr − S(n)
ex

)2]
= 0 and (ii′) lim

n→∞
E
[(
S(n)

ex − T (n)
)2]

= 0; (A.38)

while A.37(i) is the same as (i′), A.37(ii) is a consequence of (i′), (ii′) and the triangle

inequality.

Defining the antirank of V
(n)
i with respect to U

(n)
i by Q

(n)
i;∗ := {r : R

(n)
r = i} (so

that R
(n)

Q
(n)
i;∗

= i), the sequence
(
Q

(n)
1;∗ , . . . , Q

(n)
n;∗
)

is uniformly distributed over
{

1, . . . , n
}

in

view of the independence between the U
(n)
i ’s and the V

(n)
i ’s. Reordering terms, we have

S(n)
appr :=

1√
n

n∑
i=1

(
a(n)

appr

(
i
)
−a(n)

appr

)
b(n)

appr

(
Q

(n)
i;∗
)

and S(n)
ex :=

1√
n

n∑
i=1

(
a(n)

ex

(
i
)
−ϕ̄U

)
b(n)

ex

(
Q

(n)
i;∗
)
.

Write S
(n)
ex = S

(n)
∗;1 + S

(n)
∗;2 , where

S
(n)
∗;1 := n−1/2

n∑
i=1

(
a(n)

appr

(
i
)
−a(n)

appr

)
b(n)
ex

(
Q

(n)
i;∗
)

and S
(n)
∗;2 :=

1√
n

n∑
i=1

(
b(n)
ex

(
i
)
−ϕ̄U

)(
a(n)

ex

(
R

(n)
i;∗
)
−a(n)

appr

(
R

(n)
i;∗
))
,

where R
(n)
i;∗ := {r : Q

(n)
r = i} denotes the antirank of U

(n)
i with respect to V

(n)
i . Assump-

tion (A5), (A.33), Lemma V.1.6a, and Theorem V.1.6a from Hájek and S̆idák (1967) together

imply limn→∞ E
[(
S

(n)
appr − S(n)

∗;1
)2]

= 0 and limn→∞ E
[(
S

(n)
∗;2
)2]

= 0, which, along with the tri-

angle inequality, establishes (i′) in (A.38).

Let U
(n)
(·) :=

(
U

(n)
(1) , . . . , U

(n)
(n)

)′
and V

(n)
(·) :=

(
V

(n)
(1) , . . . , V

(n)
(n)

)′
denote the order statistics for

the n-tuples {U (n)
i }ni=1 and {V (n)

i }ni=1, respectively. Because the antiranks R
(n)
1;∗ are uniformly
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distributed and independent of R
(n)
1 , . . . , R

(n)
n , the R

(n)
1;∗ th order statistic U

(R
(n)
1;∗ )

is uniformly

distributed over the unit interval (the same is true for the Q
(n)
1;∗ th order statistic V

(Q
(n)
1;∗ )

).

Write T (n) = T
(n)
∗;1 + T

(n)
∗;2 , where

T
(n)
∗;1 :=

1√
n

n∑
i=1

(
a(n)

ex

(
i
)
−ϕU

)
ϕV
(
V

(Q
(n)
i;∗ )

)
and T

(n)
∗;2 :=

1√
n

n∑
i=1

(
ϕV
(
Vi
)
−ϕ(n)

V

)(
ϕU (U

(R
(n)
i;∗ )

)−a(n)
ex

(
R

(n)
i;∗
))
.

Then (A.33) and Theorem V.1.5a from Hájek and S̆idák (1967) imply that

lim
n→∞

E
[(
S(n)

ex − T
(n)
∗;1
)2] = 0 and lim

n→∞
E
[(
T

(n)
∗;2
)2] = 0,

which establishes (ii′) in (A.38).

Proof of Proposition 2.2. All expectations in this section are under P
(n)
µµµ,L,f , unless otherwise

specified; R
(n)
i stands for R

(n)
i (L), i = 1, . . . , n. For part (i) of the proposition to hold, it is

sufficient that, for T˜(n)
L,f ;ex and T˜(n)

L,f in (2.9) and (2.14),

(
T˜(n)

L,f

)
rs

=
(
T˜(n)

L,f ;ex

)
rs

+ oL2(1) for all r, s ∈ {1, . . . , k}, as n→∞. (A.39)

First, fix r 6= s ∈ {1, . . . , k}. Then,

(
T˜(n)

L,f ;ex

)
rs

=
1√
n

n∑
i=1

E
[
Jfr

(
U

(n)
1r

) ∣∣R(n)
ir

]
E
[
F−1
s

(
U

(n)
1s

) ∣∣R(n)
is

]

by independence between distinct components, and

(
T˜(n)

L,f

)
rs

:=
1√
n

n∑
i=1

(
Jfr
( R(n)

ir

n+ 1

)
F−1
s

(Ris
(n)

n+ 1

)
− Jfr

(n)
F−1
s

(n)
)
.

Letting φU = Jfr and φV = F−1
s , (A.39) (for r 6= s) thus directly follows from Lemma A1.

For r = s, the Hájek projection theorem for linear rank statistics and the convergence rate

of Riemann sums imply
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(
T˜(n)

L,f ;ex

)
rr

:= n−
1
2

n∑
i=1

(
E
[
Jfr

(
U

(n)
ir

)
F−1
r

(
U

(n)
ir

) ∣∣R(n)
ir

]
− 1
)

= n−
1
2

n∑
i=1

(
Jfr

(
R

(n)
ir

n+ 1

)
F−1
r

(
R

(n)
ir

n+ 1

)
− 1

)
+ oL2(1)

= n−
1
2

(
1

n

n∑
i=1

Jfr

(
i

n+ 1

)
F−1
r

(
i

n+ 1

)
−
∫ 1

0

Jfr(u)F−1
r (u)du

)
+ oL2(1) = oL2(1)

as n → ∞, under P
(n)
µµµ,L,f . This establishes part (i) of Proposition 2.2. As for part (ii),

it follows from the results in Hallin and Werker (2003) that ∆∆∆˜(n)
L,µµµ,f ;ex = ∆

(n)∗
L,µµµ,f + oL2(1)

as n → ∞, under P
(n)
µµµ,L,f . This, along with part (i) of the proposition and the triangle

inequality, implies part (ii).

Proof of Proposition 2.3 . In order to establish part (i) of the proposition, it is sufficient

to show that, for every r 6= s ∈ {1, . . . , k},
(
T˜(n)

L;f

)
rs

=
(
T
�(n)
L,µµµ;f,g

)
rs

+ oL2(1) as n → ∞,

under P
(n)
µµµ,L,g. Let V

(n)
i := G

(
Z

(n)
i

)
=: (V

(n)
i1 , . . . , V

(n)
ik )′, i = 1, . . . , n. The rank of V

(n)
ij

amongst V
(n)

1j , . . . , V
(n)
nj is R

(n)
ij (L) for each j = 1, . . . , k. The claim follows from Lemma A.1

by taking score functions Jfr and F−1
s .

The proof for parts (ii) and (iii) follow from that of Theorem 3.2(ii) and (iii) in Ilmonen

and Paindaveine (2011). However, the presence of asymmetry in the independent components

implies different cross-information matrices. The result is obtained, via Le Cam’s Third

Lemma, from an evaluation of the covariance matrix in the asymptotically normal joint

distribution of ∆∆∆
�(n)
L,µµµ;f,g and (2.8) under P

(n)
µµµ,L,g. That covariance matrix follows from the

covariance of ∆∆∆
�(n)
L,µµµ;f,g and ∆∆∆

(n)
L,µµµ,g, under P

(n)
µµµ,L,g which depends on

E
[
vec
(
T

(n)
µµµ,L,g

)
vec
(
T

(n)
µµµ,L,f,g,�

)′]
=

k∑
r,s,p,q=1
r 6=s

E
[(

T
(n)
µµµ,L,g

)
r,p

(
T

(n)
µµµ,L,f,g,�

)
s,q

]
epe

′
q ⊗ ere

′
s.

Evaluating this expression eventually yields the value of Gf,g appearing in (2.15) for the

cross-information matrix.
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