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EXISTENCE OF SOLUTIONS FOR TWO TYPES OF GENERALIZED VERSIONS OF
THE CAHN-HILLIARD EQUATION

MARTIN HEIDA

Abstract. We show existence of solutions to two types of generalized Cahn-Hilliard problems: In the first
case, we assume the mobility to be dependent on the concentration and its gradient, where the system is
supplied with dynamic boundary conditions. In the second case, we treat with classical no-flux boundary
conditions where the mobility depends on concentration u, gradient of concentration ∇u and the curvature
∆u− s′(u). Existence will be shown using a newly developed generalization of gradient flows by the author
[16] and the theory of Young measures.

1. Introduction

This work deals with existence of solutions to a variety of Cahn-Hilliard models generalizing applications
in [16]. In what follows, we will introduce the three types of equations that will be discussed in this paper,
where we use some notation and Hilbert spaces as they are introduced below in section 2

1.1. Introductory example: Cahn-Hilliard equations on a closed manifold. The first problem in
most parts was treated in [16] and we will not spend to effort discussing it; we rather consider it as an
introductory exercise for the other two problems, as it will help to improve understanding of the method. In
the aforementioned paper, the author developed and applied a generalized concept of gradient flows to the
following problem:

Given Ω ⊂ Rn, n ≤ 3, a bounded and open domain with smooth boundary Γ and outer normal nΓ, show
existence of solutions to the following problem in some suitable Hilbert space:

∂tu+ div [A(u,∇u)∇ (∆u− s′(u))] = 0 on (0, T ]× Ω ,

[A(u,∇u)∇ (∆u− s′(u))] · nΓ = ∇u · nΓ = 0 on (0, T ]× Γ ,

u(0) = u0 for t = 0 .

where we assume for some bounded interval (a, b) ⊂ R, 0 ∈ (a, b), that u0(x) ∈ (a, b) for all x ∈ Ω,
s(u) = s0(u) + s1(u) with s0 ∈ C2((a, b)) convex and limx→a s

′
0(x) = −∞, limx→b s

′
0(x) = +∞ as well as

s1 ∈ C2(R).
Furthermore, we will assume that A : R × Rn → Rn×n is Lipschitz continuous, bounded and uniformly

elliptic, which means there is a constant C > 0 s.t. C−1 |ξ|2 ≤ (A(c, d)ξ) · ξ ≤ C |ξ|2 for all (c, d) ∈ R × Rn
and all ξ ∈ Rn. We will use this problem in order to introduce the basic concepts of the theory. The weak
formulation of the above problem reads

(1.1)

ˆ T

0

ˆ
Ω

∂tuψ −
ˆ T

0

ˆ
Ω

(A(u,∇u)∇ (∆u− s′(u))) · ∇ψ = 0 ∀ψ ∈ L2(0, T ;H1
(0)(Ω))

∇u · nΓ = 0 on (0, T ]× Γ , u(0) = u0 for t = 0 .

and the existence result can be formulated as follows

Theorem 1.1. For 0 < T < +∞ and any u0 ∈ H1
(0)(Ω) there exists u ∈ H1(0, T ;H−1

(0) (Ω))∩L2(0, T ;H2(Ω))

satisfying (1.1) with u(t, x) ∈ (a, b) for a.e. (t, x) ∈ (0, T ) × Ω, and there is a positive constant C ∈ R such
that the estimate

(1.2) ‖∂tu‖2L2(0,t;H−1
(0)

) + ‖∆u− s′0(u)‖2L2(0,t;H1
(0)

) + ‖u‖2L2(0,t;H2) ≤ C (S(u0)− S(u(t)))
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holds for all t ∈ (0, T ), where

(1.3) S(u) :=

ˆ
Ω

1

2
|∇u|2 +

ˆ
Ω

s(u) .

However, for Ω being a bounded domain with smooth boundary Γ, we can also ask for existence of a
solution to the following problem

∂tu+ divΓ (A(u,∇Γu)∇Γ (∆Γu− s′(u))) = 0 on (0, T ]× Γ ,

u(0) = u0 for t = 0 ,

where divΓ, ∇Γ and ∆Γ are the tangential divergence, tangential gradient and Laplace-Beltrami operator on
Γ. To this aim, let TxΓ be the tangential space to Γ in x ∈ Γ and TΓ :=

⋃
x∈Γ{x} × TxΓ the tangential

bundle. We suppose that s has the properties as above and A : TΓ→ Rn×n is Lipschitz continuous, bounded
and uniformly elliptic, which means there is a constant C > 0 s.t. C−1 |ξ|2 ≤ (A(c, d)ξ) · ξ ≤ C |ξ|2 for all
(c, d) ∈ TΓ and all ξ ∈ TcΓ. The weak formulation reads

(1.4)

ˆ T

0

ˆ
Γ

∂tuψ +

ˆ T

0

ˆ
Γ

(A(u,∇Γu)∇Γ (∆Γu− s′(u))) · ∇Γψ = 0 ∀ψ ∈ L2(0, T ;H1
(0)(Γ))

u(0) = u0 for t = 0 .

This problem is of particular interest for numerical simultions in vesicles formation in biological membranes,
see Lowengrub, Rätz, Voigt [?], as well as Mercker and coworkers [?, ?, ?].

Theorem 1.2. For 0 < T < +∞ and any u0 ∈ H1
(0)(Γ) there exists u ∈ H1(0, T ;H−1

(0) (Γ))∩L2(0, T ;H2(Γ))

satisfying (1.4) and there is a positive constant C ∈ R such that the estimate

‖∂tu‖2L2(0,t;H−1
(0)

(Γ)) + ‖∆u− s′0(u)‖2L2(0,t;H1
(0)

(Γ)) + ‖u‖2L2(0,t;H2(Γ)) ≤ C (S(u0)− S(u(t)))

holds for all t ∈ (0, T ), where

S(u) :=

ˆ
Γ

1

2
|∇Γu|2 +

ˆ
Γ

s(u) .

The earliest proof of existence for the Cahn-Hilliard equation the author is aware of, is for A(·, ·) ≡ 1,
smooth convex function s0 : R→ R and small concave pertubation s1 and was given in [9]. The first attempt
to the Cahn-Hilliard equation using an energy functional S with s0 like above and s1 a small concave
perturbation was in [1]. This form of s seems to be more physical (for a choice (a, b) = (−1, 1)) as it forces
the concentration of each constituent to remain between the fixed boundaries −1 and 1.

Though there is a hughe literature on Cahn-Hilliard equation (refer to [1, 3] and references therein), there
seems to be only few results on concentration dependent mobility, among the most cited being Cahn, Elliot
and Novick-Cohen [5]. Other works are by Liu [6], the one dimensional treatments by Dal Passo, Giacomelli
and Novick-Cohen [7] and Liu [17] and the work by Novick-Cohen [21, 22] which both treat very special cases,
but which are both not covered by our approach. Rossi [25] and Grasselli, Miranville, Rossi and Schimperna
[12] deal with a Cahn-Hilliard equation of the form

∂tu−∆α(w) = 0 , w = s′0(u)−∆u .

However, a dependence on w will also be included in the third part of the present framework, but with
different form of α.

1.2. Cahn-Hilliard equation with dynamic boundary conditions and nonlinear mobility. The
theory of Cahn-Hilliard equation with dynamic boundary condition is rather young. Mathematical studies
and references can be found in Miranville and Zelik [18], Gilardi, Miranville and Schimperna [11], Gal [10]
and the initial work by Racke and Zheng [24]. From the modeling point of view, note that the equations
derived below fall within the modeling framework developed in Heida [14, 13] or by Qian, Wang and Sheng
[23].

Here, we prove existence of a solution to the problem

∂tu = div (A(u,∇u)∇ (s′(u)−∆u)) on Ω ,

0 = A(u,∇u)∇ (s′(u)−∆u) · nΓ on Γ ,

∂tu = AΓ(u) (∆Γu− s′Γ(u)−∇u · nΓ) on Γ ,
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with u(0, ·) = u0(·) for t = 0 on Ω and Γ and we assume A and s to be given like in section 1.1. AΓ is
assumed to be bounded and Lipschitz continuous with some 0 < C ≤ AΓ(·) for some positive constant C
and sΓ = s0 + s2 with s2 ∈ C2(R). Existence to above problem in case A = Id, AΓ = 1 was treated in the
above references for different forms of s and sΓ. Note that the first and third equation of the problem are
not coupled directly through boundary integrals but only through ∇u · nΓ. Thus, the weak formulation of
the above problem splits up into two parts:
(1.5) ˆ T

0

ˆ
Ω

∂tuψ −
ˆ T

0

ˆ
Ω

(A(u,∇u)∇ (s′(u)−∆u)) · ∇ψ = 0

ˆ T

0

ˆ
Γ

∂tE(u)ϕ−
ˆ T

0

ˆ
Γ

AΓ(E(u)) (∆ΓE(u)− s′Γ(E(u))−∇u · nΓ)ϕ = 0

∀ψ,ϕ ∈ C1(0, T ;C∞(Ω))

together with the inital condition, where we use E(u) to denote the trace of u on Γ and P0 the projection
operator defined below in (2.2). Our existence result then reads as follows:

Theorem 1.3. For 0 < T < +∞ and any u0 ∈ H1
(0)(Ω) ∩ H2(Ω) there exists u ∈ H1(0, T ;H−1

(0) (Ω)) ∩
L2(0, T ;H1(Ω)) with E(u) ∈ H1(0, T ;L2(Γ))∩L2(0, T ;H1(Γ)), as well as P0(s′(u)−∆u) ∈ L2(0, T ;H1

(0)(Ω)

and (∆Γu−∇u · nΓ) ∈ L2(0, T ;L2(Γ)) satisfying (1.5) and there is a positive constant C ∈ R such that the
estimate

‖u‖2H1(0,T ;H−1
(0)

(Ω))∩L2(0,T ;H1(Ω)) + ‖P0 (∆u− s′0(u))‖2L2(0,t;H1
(0)

) + ‖∆ΓE(u)−∇u · nΓ‖L2(0,T ;L2(Γ))

+ ‖Eu‖2H1(0,T ;L2(Γ))∩L2(0,T ;H1(Γ)) ≤ C (S(u0)− S(u(t)))

holds for all t ∈ (0, T ), where

S(u) :=

ˆ
Ω

1

2
|∇u|2 +

ˆ
Ω

s(u) +

ˆ
Γ

1

2
|∇ΓE(u)|2 +

ˆ
Γ

sΓ(Eu) .

Note that the usual way for treating such equations is different and we will shortly skech it formally:
Starting from the classical Cahn-Hilliard problem with dynamic boundary conditions

∂tu = div (∇ (s′(u)−∆u)) on Ω ,

0 = ∇ (s′(u)−∆u) · nΓ on Γ ,

∂tu = (∆Γu− s′Γ(u)−∇u · nΓ) on Γ ,

it is convenient to reformulate this problem (for the moment informally) as

−∆−1
N ∂tu = − (s′(u)−∆u) + 〈µ〉 on Ω ,

〈µ〉 = 〈s′(u)〉 − 〈∆u〉 ,

where 〈u〉 :=
ffl

Ω
u. This formulation allows to perform partial integration in the term ∆u and thus to treat

the problem in one single weak formulation of the formˆ T

0

ˆ
Ω

−∆−1
N ∂tuψ +

ˆ T

0

ˆ
Ω

(s′(u)ψ +∇u · ∇ψ) +

ˆ T

0

ˆ
Γ

∂tuψ +

ˆ T

0

ˆ
Γ

(∇Γu · ∇Γψ + s′Γ(u)ψ) = 0

However, for the nonlinear dependence of the mobility on u,∇u, the operator ∆−1
N would have to be replaced

by a time-dependent operator, imposing lots of technical difficulties.

1.3. Cahn-Hilliard equation with curvature-dependent mobility. The third type of Cahn-Hilliard
equation is a generalization of the first type with an additional dependence on the “curvature” term w :=
−∆u+ s′(u) (see below). Thus, we write down the problem as

∂tu− div (A(u,∇u,w)∇w) = 0 on (0, T ]× Ω ,

w + ∆u− s′(u) = 0 on (0, T ]× Ω ,

(A(u,∇u,w)∇w) · nΓ = ∇u · nΓ = 0 on (0, T ]× Γ ,

u(0) = u0 for t = 0 .
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where s(u) = s0(u) + s1(u) with s0(u) = |u|p for some p ≥ 2 and s1 ∈ C3,1
b (R) is a three times continuously

differentiable mapping with bounded derivatives up to order 2.
Furthermore, we will assume that A : R×Rn×R→ Rn×n is Lipschitz continuous, bounded and uniformly

elliptic, which means there is a constant C > 0 s.t. C−1 |ξ|2 ≤ (A(a, b, c)ξ) · ξ ≤ C |ξ|2 for all (a, b, c) ∈
R× Rn × R and all ξ ∈ Rn. The weak formulation of the above problem reads

(1.6)

ˆ T

0

ˆ
Ω

∂tuψ +

ˆ T

0

ˆ
Ω

(A(u,∇u,w)∇w) · ∇ψ = 0 ∀ψ ∈ L2(0, T ;H1
(0)(Ω))

w = −∆u+ s′(u), ∇u · nΓ = 0 on (0, T ]× Γ , u(0) = u0 for t = 0 .

for which the following existence theorem holds:

Theorem 1.4. For 0 < T < +∞ and any u0 ∈ H1
(0)(Ω) there exists u ∈ H1(0, T ;H−1

(0) (Ω))∩L2(0, T ;H2(Ω)),
w ∈ L2(0, T ;H1

(0)(Ω)) satisfying (1.6) and there is a positive constant C ∈ R such that the estimate

‖∂tu‖2L2(0,t;H−1
(0)

) + ‖∆u− P0(s′0(u))‖2L2(0,t;H1
(0)

) + ‖u‖2L2(0,t;H2) ≤ C (S(u0)− S(u(t)))

holds for all t ∈ (0, T ), where

S(u) :=

ˆ
Ω

1

2
|∇u|2 +

ˆ
Ω

s(u) .

The last result is of particular interest for the sharp interface limit. This limit is obtained by replacing S
with

Sε(u) :=

ˆ
Ω

1

2
|∇u|2 +

1

ε2

ˆ
Ω

s(u)

and solving a sequence of problems

∂tu
ε − div (A(uε,∇uε, wε)∇wε) = 0 on (0, T ]× Ω ,

wε + ∆uε − 1

ε2
s′(uε) = 0 on (0, T ]× Ω ,

(A(uε,∇uε, wε)∇wε) · nΓ = ∇uε · nΓ = 0 on (0, T ]× Γ ,

uε(0) = uε0 for t = 0 .

For the corresponding sequence of solutions uε, we expect

uε → u

where u ∈ BV (Ω) with u(·) ∈ {−1, 1} almost surely, ∇u being equal to a varifold γ with curvature κ,
satisfying ∂tγ = κ in a weak sense. We refer to the work by Röger and Schätzle [?], Mugnai and Röger
[19, 20] or the survey by Serfaty [27]. Note that with regard to the limit equations, the dependence of A
on u or ∇u makes limited sense as u(x, t) ∈ {−1, 1} almost surely and ∇u is a lower dimensional Hausdorff
measure indicating the interface. However, the quantity wε should converge to the curvature κ of ∇u and
thus, the dependence of A on w may affect the limit equations. A rigorous study of these reflektions is,
unfortunatly, beyond the scope of this article.

1.4. Outline of the paper. In section 2 we will introduce some standard Hilbert spaces which will be
frequently used in this paper and collect some basic facts on them. We will furthermore introduce basic
notations for the work with boundary derivatives. In section 3 we will introduce some functional analytical
tools, in particular the theory of Young measures whereas in section 4, we will introduce the theory of gradient
flows in the way it is presented in [16].

Since we introduced the three types of problems by complexity of their analysis, we will then go on first
treating the problems from subsection 1.1, making the reader familiar with the method and notation in
section 5. The second step will be generalization to the dynamic boundary conditions in section 6, making it
necessary to look for a suitable Hilbert space in order to apply gradient flow theory. Finally, we will include
the dependence of mobility on curvature and proof Theorem 1.4 in section 7.
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2. Notations and Preliminaries

For any Hilbert space H, we denote Lp(0, T ;H) the Bochner space of Lp-functions over (0, T ] having values
in H and by H1(0, T ;H) the space of functions u ∈ L2(0, T ;H) having ∂tu ∈ L2(0, T ;H). Furthermore, by
C([0, T ],H) we denote the continuous functions from [0, T ] to H, by Ck([0, T ],H) the k-times continuously
differentiable functions and by AC([0, T ];H) the set of absolutely continuous functions over [0, T ].

2.1. Sobolev spaces on Ω. In order to study the examples below, we will frequently make use of the
following Banach and Hilbert spaces: We consider an open, bounded domain Ω ⊂ Rn with smooth boundary
Γ = ∂Ω and outer normal vector nΓ. W k

p (Ω) denotes the usual Lp-Sobolev space and W k
p,0(Ω) the closure of

C∞0 (Ω) in W k
p (Ω). We will also make use of the notation

(2.1) Hk(Ω) := W k
2 (Ω) and Hk

0 (Ω) := W k
2,0(Ω)

Following Adams [2], we introduce the fractional Sobolev spaces by interpolation: Let Wν be the space of
measurable functions [0,∞)→ L2(Ω) with u ∈Wν iff tνu(t) ∈ L2(0,∞;W 1

2 (Ω)) and tν∂tu(t) ∈ L2(0,∞;L2(Ω)).
Then, for ν = θ − 1

2 set∥∥u;T θ(Ω)
∥∥2

:= inf
f∈Wν , f(0)=u

max

{ˆ ∞
0

t2ν ‖f(t)‖2W 1
2
,

ˆ ∞
0

t2ν ‖f ′(t)‖2L2

}
and for s = m+ σ ≥ 0 with m ∈ N, σ ∈ (0, 1) define

‖u‖2W s
2 (Ω) := ‖u‖2Wm

2
+
∑
|α|=m

∥∥∂αu ; T 1−σ(Ω)
∥∥2

and W s
2 (Ω) = Wm+1

2 (Ω)
‖·‖Ws

2 (Ω) . For s < 0, set W s
2 (Ω) =

(
W−s2,0 (Ω)

)−1.
H−1(Ω) denotes the dual of H1

0 (Ω). Furthermore, we introduce

H1
(0)(Ω) :=

{
φ ∈ H1(Ω) :

ˆ
Ω

φ = 0

}
with the scalar product

〈φ, ψ〉H1
(0)

:=

ˆ
Ω

∇φ · ∇ψ ∀φ, ψ ∈ H1
(0)(Ω)

and its dual space H−1
(0) (Ω) with scalar product

〈φ, ψ〉H−1
(0)

:=
〈
∇∆−1

N φ,∇∆−1
N ψ

〉
L2 ∀φ, ψ ∈ H−1

(0) (Ω) ,

where ∆N is the Laplace operator with Neumann boundary conditions. More generally, define

L2
(m)(Ω) :=

{
f ∈ L2(Ω) :

ˆ
Ω

f = m

}
, Ck(0)(Ω) := L2

(0)(Ω) ∩ Ck(Ω) ∀k ∈ N ∪ {∞}

and

(2.2) P0 : L2(Ω)→ L2
(0)(Ω), f 7→ f −

ˆ
Ω

f

the orthogonal projection onto L2
(0)(Ω). For simplicity, we may sometimes omit the (Ω) if the context is clear

(e.g. H1 instead of H1(Ω)). Then, −∆N : H1
(0)(Ω)→ H−1

(0) (Ω) is the Riesz isomorphism.

Lemma 2.1. [16] Let A ∈ L∞(Ω;Rn×n) having the property that there is 0 < C ≤ 1 such that C |ξ|2 ≤
ξA(x)ξ ≤ C−1 |ξ|2for a.e. x ∈ Ω and for all ξ ∈ Rn. For φ ∈ H−1

(0),n(Ω) let pφ ∈ H1
(0)(Ω)solve

−div (A∇pφ) = φ on Ω, (A∇pφ) · nΓ = 0 on Γ ,

Then, there is 0 < G ≤ 1 only depending on C such that for all φ ∈ H−1
(0) (Ω)holds

G ‖φ‖2H−1
(0)
≤
ˆ

Ω

∇pφ · (A∇pφ) ≤ G−1 ‖φ‖2H−1
(0)

,
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2.2. Sobolev spaces on Γ. Since Γ is C∞, we may introduce the tangential gradient ∇Γ in the following
way: On Γ, let nΓ be the normal vector field and for each arbitrary C∞-vector field a : Ω → R3, we define
the normal part an and the tangential part aτ on Γ via

an := a · nΓ, aτ := a− annΓ .

We define the normal derivative
∂na := ∇a · nΓ

and the tangential gradient ∇Γ for any scalar a through

∇Γa := (∇a)τ = ∇a− nΓ∂na .

For a smooth mannifold, this is equivalent with the Levi-Civita connection on Γ. Thus, we may understand
any vector field fτ tangential to Γ as an element of the TΓ, and we define the divergence

divΓfτ := trace∇Γfτ ,

where we find for any sufficiently regular f :

divf = divΓfτ + ∂n(fn) .

The mean curvature of Γ is defined as
κΓ := trace (∇ΓnΓ)

and we find the following important result:

Lemma 2.2. [4]For any f ∈ C1(Γ) holdsˆ
Γ

∇Γf =

ˆ
Γ

fκΓnΓ +

ˆ
∂Γ

fν

where ν is the unit vector tangent to Γ and normal to ∂Γ. Furthermore, for any tangentially differentiable
field q holds ˆ

Γ

divΓq =

ˆ
Γ

κΓq · nΓ +

ˆ
∂Γ

q · ν

The Laplace-Beltrami operator ∆Γ on Γ is defined as ∆Γf := divΓ∇Γf . For a nice introduction to surface
gradients and the Laplace-Beltrami operator not based on the Levi-Civita connection, we refer to Buscaglia
and Ausas [4].

Remark. Lemma 2.2 implies for the closed surface Γ that

−
ˆ

Γ

g∆Γf =

ˆ
Γ

∇Γg · ∇Γf ∀f, g ∈ C2(Ω) .

Via localization, projection and interpolation, we can introduce W s
2 (Γ) for s ∈ R [2]. Note that

‖u‖2W 1
2 (Γ) =

ˆ
Γ

|∇Γu|2 +

ˆ
Γ

u2 .

For u ∈ C2(Ω), we set EΓ(u) := u|Γ the trace of u on Γ, and ∂nu := ∇u · nΓ, with EΓ(u), ∂nu both being
functions on Γ. Like in Ω, consider the space

H1
(0)(Γ) :=

{
u ∈W 1

2 (Γ) :

ˆ
Γ

u = 0

}
,(2.3)

‖u‖2H1
(0)

(Γ) :=

ˆ
Γ

|∇Γu|2 .

and introduce H−1
(0) (Γ) in an obvious way. We summarise the main imbedding results of interest from [2] in

a short lemma:

Lemma 2.3. The operators EΓ : W k
2 (Ω) → W

k− 1
2

2 (Γ), k ≥ 1, and ∂n : W k
2 (Ω) → W

k− 3
2

2 (Γ), k ≥ 2,
are continuous. Furthermore, W k1

2 (Ω) ↪→ W k2
2 (Ω), W k1

2 (Γ) ↪→ W k2
2 (Γ) are continuous and compact for all

k1 > k2 and k1, k2 ∈ R.
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Remark 2.4. Note that there is 0 < C < 1 such that

C ‖u‖W 1
2 (Ω) ≤ ‖∇u‖L2(Ω) + ‖EΓ(u)‖L2(Γ) ≤ C

−1 ‖u‖W 1
2 (Ω)

i.e. the last chain of inequalities shows an equivalence of norms on W 1
2 (Ω).

Furthermore, for simplicity of notation, we simply write

(2.4) u ≡ EΓ(u) ∈ L2(Γ) ∀u ∈W 1
2 (Ω)

and thus, we do not distinguish between W 1
2 (Ω)-functions and their traces, whenever this will not cause

confusion. Finally, we have the following result, which can be found for example in the book by Temam [29]:

Lemma 2.5. Let
E(Ω) :=

{
u ∈ L2(Ω)n : divu ∈ L2(Ω)

}
.

then, the operator
∂n : E(Ω)→ L2(Ω) , u 7→ u · nΓ

is continuous.

3. Functional Analytical Tools and Young measures

3.1. Tools from functional analysis. We state two fundamental results from functional analysis which
are known in various versions, among which we will use the following:

Theorem 3.1 (Egorov’s theorem for L2(0, T ;H)). Let H be a Hilbert space and (vn)n∈N ⊂ L2(0, T ;H) be
a sequence such that vn → v ∈ L2(0, T ;H) strongly and pointwise for a.e. t ∈ (0, T ). Then, for any ε > 0
there is Kε ⊂ (0, T ) compact with L((0, T )\Kε) < ε such that vn → v uniformly on Kε.

Theorem 3.2 (Lusin). For a Banach space B, let f ∈ Lp(0, T ;B) for some 1 ≤ p < ∞. Then, for each
ε > 0 there is a compact set Kε ⊂ (0, T ) such that L((0, T )\Kε) < ε and f ∈ C(Kε;B).

3.2. Young measures. For a separable metric space E, we denote by B(E) the Borel-σ-algebra, where
L(0, T ) is the Lebesgue-σ-algebra on (0, T ) and L(0, T )⊗B(E) is the product σ-algebra. M(0, T ;E) denotes
the set of measurable functions over (0, T ) with values in E. A L(0, T ) ⊗ B(E)-measurable function h :
(0, T )× E → (−∞,+∞] is a normal integrand if v 7→ h(t, v) is lower semicontinuous for all t ∈ (0, T ).

For a Hilbert space H, let B(H) denote the Borel-sigma-algebra with respect to ‖·‖H. We say that a
L ⊗ B(H)-measurable functional h : (0, T )×H → (−∞,+∞] is a weakly normal integrand if

v 7→ ht(v) := h(t, v) is sequentially weakly l.s.c. for a.e. t ∈ (0, T ) .

Definition 3.3. (Time dependent parametrized measures) A parametrized measure in E is a family ν :=
{νt}t∈(0,T ) of Borel probability measures on E such that

t ∈ (0, T ) 7→ νt(B) is L −measurable for all B ∈ B(E) .

We denote by Y(0, T ;E) the set of all parametrized measures.
For computations below, the most important result on parametrized measures is a generalization of Fubini’s

theorem [8]: For every parametrized measure ν = {νt}t∈(0,T ), there exists a unique measure ν on L(0, T )⊗
B(E) defined by

ν(I ×A) =

ˆ
I

νt(A)dt ∀I ∈ L(0, T ), A ∈ B(E) .

Moreover, for every L(0, T )⊗ B(E)-measurable function h : (0, T )× E → [0,+∞], the function

t 7→
ˆ
E

h(t, ξ)dνt(ξ)

is L(0, T )-measurable and the Fubini integral representation holds:

(3.1)
ˆ

(0,T )×E
h(t, ξ)dν(t, ξ) =

ˆ T

0

(ˆ
E

h(t, ξ)dνt(ξ)

)
dt .
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If ν is concentrated on the graph of a measurable function u : (0, T )→ E, then νt = δu(t) for a.e. t ∈ (0, T ),
where δu(t) denotes the dirac’s measure carried by {u(t)}. In this case, by (3.1):

ˆ
(0,T )×E

h(t, ξ)dν(t, ξ) =

ˆ T

0

h(t, u(t))dt .

For calculations below, we will study the following situation: given two Hilbert spaces H and H̃, we will
consider a mapping g•(·, ·) : H̃ × H ×H → R being continuous in H̃ and bilinear continuous in H with

C−1 ‖ξ‖2H ≤ gu(ξ, ξ) ≤ C ‖ξ‖2H ∀u ∈ H̃, ξ ∈ H

for some constant C and

(3.2) gum(vm, ϕ)→ gu(v, ϕ) ∀ϕ ∈ H,

whenever um → u strongly in H̃ and vm ⇀ v weakly in H. Starting from section 4 below, we will assume
H̃ ↪→ H continuously, which is actually not needed for the results in this section.

Corollary 3.4. [16] As a consequence of (3.2), we find for un → u strongly in H̃ and ϕn ⇀ ϕ weakly in H:

gu(ϕ,ϕ) ≤ lim inf
n→∞

gun(ϕn, ϕn) .

Theorem 3.5. [16] Let {vn}n∈N be a bounded sequence in Lp(0, T ;H), for some p > 1, and let {un}n∈N be a
sequence in Lp(0, T ; H̃) with un → u ∈ Lp(0, T ; H̃) pointwise a.e. in (0, T ). Then there exists a subsequence
k 7→ vnk and a parameterized measure ν = {νt}t∈(0,T ) ∈ Y(0, T ;H) such that for a.e. t ∈ (0, T )

lim sup
k→∞

‖vnk(t)‖H < +∞, νt is concentrated on L(t) :=

∞⋂
q=1

{vnk(t) : k ≥ q}
w

of weak limit points of {vn}n∈N, and

lim inf
k→∞

ˆ T

0

h(t, vnk(t))dt ≥
ˆ T

0

(ˆ
H
h(t, ξ)dνt(ξ)

)
dt

for every weakly normal integrand h such that h−(·, vnk(·)) is uniformly integrable and there holds

(3.3) lim inf
k→∞

ˆ T

0

gum(vm(t), vm(t))dt ≥
ˆ T

0

(ˆ
H
gu(ξ, ξ)dνt(ξ)

)
dt .

In particular, ˆ T

0

(ˆ
H
‖ξ‖pH dνt(ξ)

)
≤ lim inf

k→∞

ˆ T

0

‖vnk‖
p
H dt ,

and, setting

v(t) :=

ˆ
H
ξdνt(ξ), we have vnk ⇀ v in Lp(0, T ;H) .

Finally, if νt = δv(t) for a.e. t ∈ (0, T ), then

〈vnk , w〉H → 〈v, w〉H in L1(0, T ) ∀w ∈ Lq(0, T ;H),
1

p
+

1

q
= 1 ,

and up to extraction of a further subsequence independent of t (still denoted by vnk)

vnk(t) ⇀ v(t) for a.e. t ∈ (0, T ) .

Remark 3.6. In the original theorem in [16], there was the assumption that H̃ ↪→ H is continuously embedded
for conceptual reasons of the paper (see also section 4 below). However, looking at the original proof, it is
obvious that the assumption H̃ ↪→ H is not needed. We also refer to Stefanelli [28] Theorem 4.3 for a more
general result.
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4. Gradient Flow Theory

The theory developed in [16] deals with equations of the form

(4.1) ∂tu ∈ −∇l,uS(u) + f(t)

with S being a (possible nonconvex) lower semicontinuous entropy functional on a Hilbert space H, ∇l,uS
being the limiting subgradient with respect to a densly defined metric structure g• and f ∈ L2(0, T ;H).

More precisely, consider Hilbert spaces H0 ↪→ H̃ ↪→ H with the set B(H) of positive definite continuous
bilinear forms. We then use the following terms and notations:

Definition 4.1. We call any tuple (H0, H̃,H, g) of Hilbert spaces H0, H̃, H and a mapping g• : H̃ → B(H)
satisfying 1 and 2 an entropy space:

(1) H0 ↪→ H̃ ↪→ H, where the embeddings are dense, and the embedding H0 ↪→ H̃ is compact. We
denote ‖·‖H, ‖·‖H̃, ‖·‖H0

the respective norms and by 〈·, ·〉H the scalar produkt on H.
(2) g is a densly defined metric in the following sense: There are positive constants 1 ≤ G∗ < +∞ such

that

(4.2)
√
G∗
−1
|〈x, y〉H| ≤ |gu(x, y)| ≤

√
G∗ |〈x, y〉H| ∀u ∈ H̃, ∀x, y ∈ H ,

for all u ∈ H̃ and g• is strong-weak-continuous in the following sense: if un → u strongly in H̃ and
ϕn ⇀ ϕ weakly in H as n→∞, then

(4.3) gun(ϕn, ψ)→ gu(ϕ,ψ) as n→∞ ∀ψ ∈ H .

This means that to every point u ∈ H̃ we associate a local scalar produkt and local norm

〈x, y〉g(u) := gu(x, y) , ‖x‖g(u) :=
√
gu(x, x) ∀x, y ∈ H .

We denote by g̃u the unique automorphism on H such that

(4.4) gu(v, ϕ) = 〈g̃u(v), ϕ〉H ∀ϕ ∈ H .

We will assume that S is a proper functional S : H → (−∞,+∞]. Then, following Rossi and Savaré [26], we
define the set valued subdifferential dS(u) at u ∈ D(S) ∩ H̃ through

(4.5) δ ∈ dS(u) ⇔ 〈δ, v〉H ≤ lim inf
h↘0

S(u+ hv)− S(u)

h
∀v ∈ H

and the subgradient ∇uS(u) of S in u ∈ H̃ ∩D(dS) through

(4.6) δ ∈ ∇uS(u) ⇔ ∃δ̃ ∈ dS(u) : gu (δ, v) :=
〈
δ̃, v
〉
H

∀v ∈ H ,

where the index u refers to the local metric. If no confusion occurs, we write ∇S(u) = ∇uS(u). Note that
this concept of subdifferential coincides with the classical Fréchet subdifferential in case S is convex (see [15])
and will thus also coincide in our case of a continuous perturbation with signle valued L2-subdifferential.

In what follows, we denote the local slope by

(4.7) |∂S| (u) := lim sup
w→u,w∈D(S)

|S(u)− S(w)|
‖u− w‖g(u)

,

implying

(4.8) sup
δ∈∇uS(u)

‖δ‖g(u) ≤ |∂S| (u) ∀u ∈ D(dS)

and in case dS is single valued, |∂S| (u) = ‖∇S(u)‖g(u) .
Finally, for every subset A ⊂ H we define the affine hull aff A and its minimal section A◦ through

aff A :=

{∑
i

tiai : ai ∈ A, ti ∈ R,
∑
i

ti = 1

}
,

|A◦| := inf
ξ∈A
‖ξ‖H , A◦ := {ξ ∈ A : ‖ξ‖H = |A◦|} .
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Definition 4.2. [26, 16] We say that for any u ∈ H, ξ ∈ H is an element of the limiting subdifferential
dlS(u) of S in u if there are un ∈ H with un → u strongly and ξn ∈ dS(un) such that ξn ⇀ ξ weakly in H.
The limiting subgradient and the weakly lower semicontinuous envelope of |∂S| are defined through

∇l,uS(u) = g̃−1
u (dlS(u)) ,

|∇lS(u)◦| := inf
ξ∈∇lS(u)

‖ξ‖g(u) ∇lS(u)◦ :=
{
ξ ∈ ∇lS(u) : ‖ξ‖g(u) = |∇lS(u)◦|

}
.

Thus, equation (4.1) has to be understood in the sense of

(4.9) gu(∂tu, ϕ) ∈ 〈dlS(u), ϕ〉H + gu(f, ϕ) ∀ϕ ∈ L2(0, T ;H)

Note that in case the graph of (S, dS) is strongly-weakly closed in H×H× R, i.e.

(4.10) ξn ∈ dS(vn), rn = S(vn)
vn → v, ξn ⇀ ξ, rn → r

}
⇒ ξ ∈ dS(v), r = S(v),

we find dlS = dS. As explained by Rossi and Savaré [26], this condition yields closedness and convexity of
dS, the continuity condition

(4.11) vn → v, sup
n

(|∂S(vn)| ,S(vn)) < +∞ ⇒ S(vn)→ S(v) as n↗∞

and the the following chain rule: If v ∈ H1(0, T ;H), ξ ∈ L2(0, T ;H) with ξ(t) ∈ dlS(v(t)) for a.e. t ∈ (0, T ),
and S ◦ v is a.e. equal to a function s of bounded variation, then

(4.12)
d

dt
s(t) = 〈ξ, v′(t)〉H .

Lemma 4.3 ((See [26])). If S is convex, condition (4.10) is fulfilled.

For the rest of the paper, we assume that S is an entropy functional in the following sense:

Definition 4.4. Let (H0, H̃,H, g) be an entropy space with G∗ > 1. We say that S : H → (−∞,+∞] is an
entropy functional on (H0, H̃,H, g) if it satisfies :

(1) D(S) ⊂ H̃ and S : H → R being proper, lower semicontinuous, i.e. the domain D(S) of S is
non-empty.

(2) S + ‖·‖H has compact sublevels, i.e. there exists τ∗ > 0 such that sets{
v ∈ H : S(v) +

1

2τ
min

{
1,
√
G∗
−1
}
‖v‖2H < C

}
are compact for any τ < τ∗ and any C > 0 and there is a constant S0 > 0 such that

(4.13) S(v) +
1

2τ∗
min

{
1,
√
G∗
−1
}
‖v‖2H ≥ −S0

(3) S satisfies the estimate
‖u‖H0

≤ C
(
S(u) + |∂S|2 (u) + 1

)
We close this section stating the first of three existence theorems from [16] which we will use below:

Theorem 4.5. Let H0, H̃, H, g and S satisfy definitions 4.1 and 4.4 with dlS(u) being convex and closed
for all u ∈ H.
(4.14) S(u) = SH(u) + SH̃(u)

with functionals SH : H → R being proper, lower semicontinuous, and SH̃ : D(S) ⊂ H̃ → R being continuous
w.r.t. H̃. Furthermore, let f ∈ L2(0, T ;H). Then, for each u0 ∈ H0 and every 0 < T ∈ R, there exists a
solution u ∈ H1(0, T ;H) ∩ L2(0, T ;H0) to (4.9), satisfying the Lyapunov inequality

(4.15)
1

2

ˆ t

0

‖∂tu‖2g(u) +
1

2

ˆ t

0

|(f −∇lS(u))◦|2 + S(u(t)) ≤ S(u(0)) +

ˆ t

0

〈f, u〉H for a.e. t ∈ (0, T ) .

If S additionally fulfills the continuity assumption (4.11) then, there is a negligible set N ⊂ (0, T ) such that

1

2

ˆ t

s

|∂tu|2 +
1

2

ˆ t

s

|(f −∇lS(u))◦|2 + S(u(t)) ≤ S(u(s)) +

ˆ t

0

〈f, u〉H ∀t ∈ (s, T ), ∀s ∈ (0, T )\N .
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5. Proofs of Theorems 1.1 and 1.2

We introduce the following spaces

H := H−1
(0) , H̃ := H1

(0)(Ω) , H0 := H2(Ω) ,

such that we find H0 ↪→ H̃ ↪→ L2(Ω) ↪→ H with all embeddings being dens and compact.

Definition 5.1. Let S : H → (−∞,+∞] be given through (1.3) with S(u) := +∞ for all u 6∈ H̃. Then, we
consider the restriction of S̃ := S

∣∣
L2 of S to L2(Ω) and define the set valued L2-subdifferentials δSδu (u) ⊂ L2(Ω)

and δ0S
δu (u) ⊂ L2

(0)(Ω) at u ∈ D(S̃) through:

u ∈ D(S̃) : δ ∈ δS
δu

(u) ⇔ 〈δ, v〉L2 ≤ lim
h↘0

S̃(u+ hv)− S̃(u)

h
∀v ∈ L2(Ω)

u ∈ D(S̃) ∩ L2
(0)(Ω) : δ ∈ δ0S

δu
(u) ⇔ 〈δ, v〉L2 ≤ lim

h↘0

S̃(u+ hv)− S̃(u)

h
∀v ∈ L2

(0)(Ω)

We only proof theorem 1.1 and start with two lemmata by Abels and Wilke. Theorem 1.2 is proved
likewise.

Lemma 5.2. [1, Lemma 4.1, Corollary 4.4] Assume s1 ≡ 0, then S : L2
(0)(Ω) → R and S : H → R are

proper, lower semicontinuous and convex.

Abels and Wilke [1] identified the L2- and H- subdifferential of S in the Frechet-sense:

Lemma 5.3. [1] Assume s1 ≡ 0 and set s′0 = +∞ for x 6∈ (a, b). Then, for the L2-subdifferential of S
defined through (1.3) holds

(5.1) D(
δ0S
δu

) =
{
c ∈ H2(Ω) ∩ L2

(0)(Ω) : s′(c) ∈ L2(Ω), s′′(c) |∇c|2 ∈ L1(Ω), ∂nc
∣∣∣
∂Ω

= 0
}

and

(5.2)
δ0S
δu

(ũ) = −∆ũ+ P0s
′(ũ) .

Moreover,

(5.3) ‖ũ‖2H2 + ‖s′(ũ)‖2L2 +

ˆ
Ω

s′′(ũ) |∇ũ|2 ≤ C

(∥∥∥∥δ0S
δu

(ũ)

∥∥∥∥2

L2

+ ‖ũ‖2L2 + 1

)
for some constant C independent of ũ.

For the H-Subdifferential holds

D(dS) =

{
c ∈ D(

δ0S
δu

) :
δ0S
δu

(c) ∈ H1
(0)(Ω)

}
(5.4)

dS(ũ) = ∆N (−∆ũ+ P0s
′(ũ)) ,(5.5)

and in particular,

(5.6) ‖ũ‖2H2(Ω) ≤ C
(
‖dS(ũ)‖2H + ‖ũ‖2L2(Ω) + 1

)
.

Note that the term +1 in (5.3) and (5.6) was not present in the orginal statements. As S in the setting of
lemma 5.3 is convex, the graph of (dS,S) is strongly-weakly closed in the sense of (4.10). In particular, this
implies the chain-rule condition (4.12) and convexity of dS(u) for all u ∈ D(dS).

In case s1 6≡ 0, S : H → R remains lower semicontinuous and equations (5.1)-(5.5) still hold with modified
constants. We finally have the following lemma:

Lemma 5.4. dS is single valued and strong-weak closed.

Proof. It is easy to veryfy that dS(u) is single valued for all u ∈ D(dS). For un → u strongly in H and
ξn = dS(un) such that ξn ⇀ ξ weakly in H, note that due to boundedness of the sequences un and ξn we
find boundedness of ‖un‖H0

and thus un ⇀ u weakly in H2(Ω), un → u strongly in H1
(0) and un → u a.s. in

Ω up to a subsequence. Furthermore, for wn := −∆un + P0s
′(un) we find wn ⇀ ω weakly in H1

(0) for some
ω ∈ H1

(0).
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Now, let

S̃(u) := S(u)−
ˆ

Ω

s1(u) ,

then S̃(·) is convex and therefore, the graph of dS̃ is strongly weakly closed by lemma 4.3. For a further
subsequence and for ζn := dS̃(un) we get weak convergence of ζn ⇀ ζ = dS̃(u) = −∆u + P0s

′
0(u) in H and

P0(s′1(un))→ P0(s′1(u)) strongly in L2. Thus,

ξn = ζn + s′1(un) ⇀ ζ + P0(s′1(u)) = −∆u+ P0(s′(u))

weakly in H. �

For u ∈ H̃, we define for r1, r2 ∈ H:

(5.7) gu(r1, r2) =

ˆ
Ω

∇pu1A(u,∇u)∇pu2 =

ˆ
Ω

r1p
u
2 = 〈r1, p2〉H−1

(0)
,H1

(0)
=

ˆ
Ω

r2p
u
1 = 〈r2, p1〉H−1

(0)
,H1

(0)
,

where pui solves

(5.8) −div (A(u,∇u)∇pui ) = ri for i = 1, 2 .

It is immediate to check that g is a densly defined metric in the sense of definition 4.1.
Above considerations together with (4.8) yield that S fulfills all requierements of definition 4.4. As a

consequence of theorem 4.5 we get existence of a solution u ∈ H1(0, T ;H) ∩ L2(0, T ;H0) to (4.9) and it
remains to reconstruct an expression of the form (4.1):

For any u ∈ D(S), r ∈ L2(Ω) with p from (5.8), γ ∈ AC(0, T ;L2(Ω)) with γ(0) = u, γ′(0) = r we formally
write

gũ(∇ũS, r) =
d

dt
S(γ(t))

∣∣∣
0
=

ˆ
Ω

δ0S
δu

(ũ) r =

ˆ
−div

(
A(u,∇u)∇δ

0S
δu

(ũ)

)
p

to obtain the specific form of (4.9) and equation (4.1) in the present setting reads (note that gu(∂tu, r2) =
〈∂tu, p2〉H−1

(0)
,H1

(0)
,

∂tu ∈ div
(
A(u,∇u)∇δ

0S
δu

(ũ)

)
(5.9) or: gu(∂tu, ϕ) ∈ −〈dlS(u), ϕ〉H ∀ϕ ∈ L2(0, T ;H) .

Estimate (4.15) together with the above calculations yields (1.2). Theorem 1.2 can be prooved similarly
having in mind that the proof of lemma 5.3 presented by Abels and Wilke [1] is the same for a closed surface
Γ with H1

(0)(Γ) defined through (2.3).

6. Proof of Theorem 1.3

6.1. The Entropy space. We introduce the space Ṽ through

Ṽ := H1
(0)(Ω)× L2(Γ) , ‖u = (uω, uγ)‖2Ṽ := ‖uω‖2H1(Ω) + ‖uγ‖2L2(Γ) ,

where L2(Γ) is with respect to the Hausdorff measure on Γ. Note that

V :=
{
u = (uω, uγ) ∈ Ṽ : EΓ(uω) = uγ

}
is a closed subspace of Ṽ , being isomorph with H1

(0)(Ω) and with the equivalent norm (cf. remark 2.4)

‖u = (uω, uγ)‖2V := ‖∇uω‖2L2(Ω) + ‖uγ‖2L2(Γ) .

We furthermore introduce

‖(uω, uγ)‖2H1
Γ(Ω) :=

ˆ
Ω

|∇uω|2 +

ˆ
Γ

|∇Γuγ |2 ,

H1
Γ := {(uω, uγ) ∈ V : uω ∈ H2(Ω)}

‖·‖
H1

Γ
(Ω)

and the dual spaceH∗Γ :=
(
H1

Γ

)−1. For any function v ∈ H−1
(0) (Ω) having the property that there is ṽ ∈ L2

(0)(Ω)

with ˆ
Ω

vψ =

ˆ
Ω

ṽψ ∀ψ ∈ H1
(0)(Ω)
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we formally write ṽ = P0(v). We finally introduce the space H1
∆(Ω) through

‖(uω, uγ)‖2H1
∆

:=

ˆ
Ω

(P0(∆uω))2 +

ˆ
Γ

(∂nuω −∆Γuγ)2 + ‖u‖2H1
Γ(Ω) ,

H1
∆ := {(uω, uγ) ∈ H1

Γ : uω ∈ H3(Ω)}
‖·‖

H1
∆ .

Remark 6.1. Since for u ∈ V , u ∈ H1
Γ or u ∈ H1

∆ holds uγ = EΓ(uω) like in (2.4), we will sometimes abuse
notation and not destinguish between uγ and EΓ(uω), i.e. we will often write u ' uγ ' uω whenever the
meaning is clear from the context.

In what follows, we will say that u ∈ H2(Ω) weakly solves the system

−∆uω = f in Ω

−∆Γuγ + ∂nu = g on Γ

iff it is a solution to the problem

(6.1)
ˆ

Ω

∇u · ∇ϕ+

ˆ
Γ

∇Γu · ∇Γϕ =

ˆ
Ω

fϕ+

ˆ
Γ

gϕ ∀ϕ ∈ H2(Ω) .

In particular, we infer in case g = 0 for ϕ ≡ 1 that
´

Ω
f = 0.

Lemma 6.2.
H1

∆ =
{
u ∈ H1

Γ : ∆u ∈ L2(Ω) , (∂nuω −∆Γuγ) ∈ L2(Γ)
}

Proof. We show for (uω, uγ) ∈ H1
Γ with uω ∈ H3(Ω) that there is C > 0 independent on u such that

‖∆u‖L2 ≤ C
(
‖P0(∆u)‖L2 + ‖∂nuω −∆Γuγ‖L2(Γ) + ‖u‖2H1

Γ(Ω)

)
.

If not, there was a sequence of functions (um)m∈N ⊂ H1
Γ, um ∈ H3(Ω) for all m, such that ‖∆um‖L2 = 1, and

for f̃m := −P0(∆um), fm := −∆um, gm := ∂num −∆Γum holds f̃m → 0 strongly in L2, gm → 0 strongly in
L2(Γ), um → 0 strongly in H1

Γ and fm ⇀ f weakly in L2. However, as f̃m = P0(fm), we can assume w.l.o.g.
that hm := fm − f̃m ∈ R for all m and thus for a subsequence hm → h ∈ R such that we find fm → h 6= 0
strongly in L2. Note that due to regularity of u and definitions above, for any m there holdsˆ

Ω

∇um · ∇ϕ+

ˆ
Γ

∇Γum · ∇Γϕ =

ˆ
Ω

fmϕ+

ˆ
Γ

gmϕ ∀ϕ ∈ H2(Ω) ,

and thus, in the limit, u is a solution toˆ
Ω

fϕ =

ˆ
Ω

∆uϕ = 0 ∀ϕ ∈ H2(Ω),

implying ∆u = P0(∆u), a contradiction. Now, considering u ∈ H1
∆ and any sequence (um)m∈N ⊂ H3(Ω)

such that um → u in ‖·‖H1
∆
, we find ∆u ∈ L2. Since ∂num,ω −∆Γum,γ → f̃ for some f̃ ∈ L2(Γ), we find for

all sufficiently regular ψ ∈ C3
(0)(Ω):

ˆ
Γ

fψ −
ˆ

Ω

ψ∆u = lim
m→∞

(ˆ
Γ

(∂num,ω −∆Γum,γ)ψ −
ˆ

Ω

ψ∆um

)
= lim
m→∞

(ˆ
Γ

(∇Γum,γ) · ∇Γψ +

ˆ
Ω

∇ψ · ∇um
)

=

(ˆ
Γ

(∇Γuγ) · ∇Γψ +

ˆ
Ω

∇ψ · ∇u
)

=

(ˆ
Γ

(∂nuω −∆Γuγ)ψ −
ˆ

Ω

ψ∆u

)
.

�

In order to construct an entropy space in sense of definition 4.1, we make the following choice of the tripple
of function spaces:

H0 := H1
∆ , H̃ := H1

Γ , H := H−1
(0) (Ω)× L2(Γ) .
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With the additional space

‖u‖Γ :=

ˆ
Ω

u2
ω +

ˆ
Γ

u2
γ , L2

Γ := L2
(0)(Ω)× L2(Γ)

the chain of dense embeddings H0 ↪→ H̃ ↪→ L2
Γ ↪→ H holds with with the first and second being compact, as

lemma 2.3 and the proof of the following corollary show.

Corollary 6.3. The triple (H0, H̃,H) satisfies 4.1 point (1).

Proof. The embedding H̃ ↪→ L2
Γ evidently is compact as lemma 2.3 shows. Consider a bounded sequence

(um)m∈N ⊂ H0. In the following we will pass to subsequences keeping the original index parameter m.
Recalling remark 6.1 we show um ⇀ u weakly in H0 implies um → u strongly in H̃. Due to Lemma (2.3),
we find um,ω → uω strongly in L2

(0)(Ω) and um,γ → uγ strongly in W 1/2
2 (Ω) for a subsequence. Furthermore,

comparing to the proof of lemma 6.2, it is not difficult to check for m → ∞ that w.l.o.g. ∆um,ω ⇀ ∆uω
weakly in L2(Ω) and

∂num,ω −∆Γum,γ ⇀ ∂nuω −∆Γuγ weakly in L2(Γ),

and the statement follows from strong convergence of um in L2
Γ and

lim
m→∞

(ˆ
Ω

|∇um,ω|2 +

ˆ
Γ

|∇um,γ |2
)

= lim
m→∞

(
−
ˆ

Ω

um,ω∆um,ω +

ˆ
Γ

um,ω (∂num,ω −∆Γum,γ)

)
=

(
−
ˆ

Ω

∆uωuω +

ˆ
Γ

(∂nuω −∆Γuγ)uγ

)
=

ˆ
Ω

|∇uω|2 +

ˆ
Γ

|∇Γuγ |2

�

Note that H−1 = H1
(0)(Ω)× L2(Γ) and on H we introduce the local scalar products

gu(r1, r2) :=

ˆ
Ω

∇pu1,ωA(u,∇u)∇pu2,ω +

ˆ
Γ

pu1,γAΓ(u)pu2,γ = 〈r1, p2〉H,H−1

=

ˆ
Ω

r1,ωp
u
2,ω +

ˆ
Γ

r1,γp
u
2,γ =

ˆ
Ω

r2,ωp
u
1,ω +

ˆ
Γ

r2,γp
u
1,γ = 〈r2, p1〉H,H−1 ,(6.2)

where pui = (pui,ω, p
u
i,γ) ∈ H−1 satisfy the equations

(6.3)
ˆ

Ω

(
A(u,∇u)∇pui,ω

)
∇ϕω +

ˆ
Γ

AΓ(u)pui,γϕγ = 〈ri, ϕ〉H,H−1 for i = 1, 2 and ∀ϕ ∈ H−1 ,

with the constraint (
A(u,∇u)∇pui,ω

)
· nΓ = 0 .

In other words, pui ∈ H−1 solves

−div
(
A(u,∇u)∇pui,ω

)
= ri,ω , on Ω and A(u,∇u)∇pui,ω · nΓ = 0 on Γ,

AΓ(u)pui,γ = ri,γ , on Γ ,

Note that in general pui,γ 6= EΓ(pui,ω).

Corollary 6.4. g• : H̃ → B(H) satisfies 4.1-(2).

Proof. For fixed r2 consider r1,m and p1,m = (p1,m,ω, p1,m,γ) solutions of (6.3) for r1,m, s.t. r1,m → r1 in H
and (um)m∈N ⊂ H̃ with um → u. We check that p1,m ⇀ p̃1 and p̃1 solves (6.3) for u and r1. Thus, from the
representation in (6.2), we conclude

gum(r1,m, r2)→ gu(r1, r2) .

�
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6.2. The entropy functional and existence of solutions. In this part, we shall rigorously use notations
announced in remark 6.1 for functions u ∈ H̃ = V . Note that this notation is not applicable to L2

Γ, H or
H−1, which is, why we still use full notations in that spaces.

Definition 6.5. Let S be proper functional S : H → (−∞,+∞]. Then, we consider the restriction of
S̃ := S

∣∣
L2

Γ

of S to L2
Γ and define the set valued L2-subdifferential δΓSδu (u) ⊂ L2

Γ at u ∈ D(S̃) through:

δ ∈ δΓS
δu

(u) ⇔ 〈δ, v〉L2
Γ
≤ lim inf

h↘0

S̃(u+ hv)− S̃(u)

h
∀v ∈ L2

Γ

Remark 6.6. Comparing to section 5, due to the Riesz isomorphism −∆N : H1
(0)(Ω)→ H−1

(0) (Ω), we find

(6.4) dS(u) =

{
(sω, sγ) : (−∆−1

N sω, sγ) ∈ δΓS
δu

(u)

}
.

We introduce the following functional on L2
Γ, resp. H:

(6.5) S(u) :=

{´
Ω

(
s(uω) + 1

2 |∇uω|
2
)

+
´
∂Ω

(
sΓ(uγ) + 1

2 |∇Γuγ |2
)

for u ∈ H1
Γ(Ω)

+∞ otherwise
,

with s, sΓ as introduced in subsection 1.2.

Lemma 6.7. The functional S is lower semicontinuous on H and L2
Γ. If s1 ≡ s2 ≡ 0, S is convex on both

spaces.

Proof. If s1 ≡ s2 ≡ 0, convexity is trivial. Furthermore, for any sequence un ∈ H with a constant C > 0 s.t.
S(un) < C, we find un to be bounded in H̃, i.e. due to the particular structure of s(·), a short calculation
yields

S(u) ≤ lim inf
n→∞

S(un) .

In case s1, s2 6≡ 0, note that up to a minimizing subsequence un → u strongly in L2
Γ and the statement follows

from the Lipschitz-continuity of s1 and s2. �

Lemma 6.8. Let S be given through (6.5), then

(6.6) D(
δΓS
δu

) =
{
c ∈ H1

Γ(Ω) : s′(c) ∈ L2
Γ, s

′′(c) |∇c|2 ∈ L1(Ω), s′′(c) |∇Γc|2 ∈ L1(Γ)
}

and

(6.7) ‖ũ‖H1
∆(Ω) ≤ C

(∥∥∥∥δΓSδu (ũ)

∥∥∥∥2

L2
Γ

+ ‖ũ‖2L2(Ω) + 1

)
.

Furthermore, ũ ∈ D(dS) implies δS
δΓu

(ũ) ∈ H1
(0) × L

2(Γ),

(6.8) ‖ũ‖H1
∆(Ω) ≤ C

(
‖dSΓ(ũ)‖2H + ‖ũ‖2L2(Ω) + 1

)
,

and for any u ∈ D(S), the L2
Γ-subdifferential is given through

(6.9)
〈
δΓS
δu

, ψ

〉
L2

Γ

= 〈P0(s′(u)), ψω〉L2(Ω) − 〈P0(∆u), ψω〉L2(Ω) + 〈∇u · nΓ + s′Γ(u)−∆Γu, ψγ〉L2(Γ)

for all ψ = (ψω, ψγ) ∈ L2
Γ.

Remark 6.9. Thus, as the last lemma yields ‖u‖H0
≤ (S(u) + 1 + ‖dS‖H), we have shown that S satisfies all

claims of definition 4.4.

The proof of the following lemma follows the proof of lemma 5.4 and is left to the reader.

Lemma 6.10. dS is single valued and strong-weak closed.
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Now, for any u ∈ D(dSΓ), r ∈ L2
Γ with p from (6.3), γ ∈ AC(0, T ;L2

Γ) with γ(0) = ũ, γ′(0) = r we formally
write

d

dt
S(γ(t))

∣∣∣
0
≥
ˆ

Ω

(
δΓSΓ

δu
(u)

)
ω

rω +

ˆ
Γ

(
δΓSΓ

δu
(u)

)
γ

rγ .

In particular, the last inequality holds for r ∈ H and we thus find

lim
h→0

S(u+ hv)− S(u)

h
≥
ˆ

Ω

−div (A(u,∇u)∇ (s′0(u)−∆u)) pω +

ˆ
Γ

(
δΓSΓ

δu
(u)

)
γ

AΓ(u)pγ = 〈∇S, r〉g(u)

where p is the solution for r in (6.3). Similar to section 5 we deduce that the gradient flow (4.9) is equivalent
with

(6.10) 〈∂tu, p〉H,H−1 =

ˆ
Ω

div (A(u,∇u)∇ (s′(u)−∆u)) pω −
ˆ

Γ

(
δΓSΓ

δu
(u)

)
γ

AΓ(u)pγ ∀p ∈ L2
Γ,

or, as pω and pγ are independent, the last equation is also equivalent with (1.5). Theorem 1.3 is then a
consequence of theorem 4.5.

Remark. Even though (∂tu)ω and (∂tu)γ are not directly related with each other, note that still the condition
u ∈ L2(0, T ;H1(Ω)) relates the values on Γ with those in Ω.

6.3. Proof of Lemma 6.8. In the following, recall 0 ∈ (a, b) and assume w.l.o.g. s′0(0) = s0(0) = 0 (shift
s0, s1 and s2 by affine functions) and define s+

0 (x) := max {0, s0(x)}, s−0 (x) := min {0, s0(x)}. Furthermore,
assume for the moment s1 ≡ s2 ≡ 0. Due to the assumptions on s0, for any n ∈ N large enough there exist
an ∈ (a, a2 ) with s′0(an) = −n and bn ∈ ( b2 , b) with s′0(bn) = n and we introduce the following functions:

f+
n (u) :=


s′0(u) for c ∈ ( b2 , bn)

n+ s′′0(bn)(u− bn) for c ≥ bn
0 for c ≤ 0

,

f−n (u) :=


s′0(u) for c ∈ (an,

a
2 )

n+ s′′0(an)(u− an) for c ≤ an
0 for c ≤ 0

,

and extend f+
n (·), f−n (·) to (0, b2 ), resp. (a2 , 0), monotone and C2(R), such that they are approximating

(
s+

0

)′
and

(
s−0
)′. Note that also y 7→ y + f+

n (y) is strictly monotone and we introduce Mn := supc∈[a,b] |f+
n (u)′|.

Now, let u ∈ D(SΓ), i.e. u ∈ H1
Γ and 0 < t ≤ 2/Mn. By continuity and strict monotonicity we get unique

existence of
ũt(x) = u(x)− tf+

n (ũt(x))

and the theorem of the inverse function yields ũt(x) = Fnt (u(x)), where Fnt : [a, b] → [a, b] is a continuously
monotone differentiable mapping with

Fnt (x)→ x , (Fnt )
′
(x)→ 1 , as t→ 0 uniformly on [a, b] .

Thus, we see that for u ∈ H1
Γ(Ω), also ũt ∈ H1(Ω)× L2(Γ). Furthermore, the properties of Fnt yield ũt → u

in H1(Ω)× L2(Γ) as t→ 0. Finally, monotonicity of f+
n (·) yields 0 < ũt < u if u > bn.

For φ ∈ C2(R) being monotone decreasing with φ(x) = 1 for x < 0, φ(x) = 0 for φ > b
2 and φ′ ≥ −4/b

define ψu(x) := φ(u(x))/m(φ(u(x))) such thatˆ
Ω

∇ψu · ∇u =

ˆ
Ω

φ′(u)

m(φ(u))
|∇u|2 ≤ 0 ,

ˆ
Γ

∇Γψu · ∇Γu =

ˆ
Γ

φ′(u)

m(φ(u))
|∇Γu|2 ≤ 0

and ut := ũt + tm(f+
n (ũt))ψu ∈ H1

Γ ∩D(S) for t small enough, i.e.
´

Ω
ut = 0.

Thus, we can easily calculate using the notation dn := m(f+
n (ũt))ψu

S(u)− S(ut) ≥
ˆ

Ω

(s0(u)− s0(ut)) + t

ˆ
Ω

∇u · ∇f+
n (ut)− t2m(f+

n (ũt))
2 1

2

ˆ
Ω

|∇ψu|2

+

ˆ
Γ

(s0(u)− s0(ut)) + t

ˆ
Γ

∇Γu · ∇Γf
+
n (ut)− t2m(f+

n (ũt))
2 1

2

ˆ
Γ

|∇ψu|2 .
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For the first part of the above expression we getˆ
Ω

(s0(u)− s0(ut)) + t

ˆ
Ω

∇u · ∇f+
n (ut)− t2m(f+

n (ũt))
2 1

2

ˆ
Ω

|∇ψu|2

≥
ˆ

Ω∩{u>b/2}
t s′0(ut)f

+
n (ut) +

ˆ
Ω∩{a/2<u<b/2}

(s0(u)− s0(ũt + dn))

− t2m(f+
n (ũt))

2 1

2

ˆ
Ω

|∇ψu|2 +

ˆ
Ω∩{u<a/2}

(s0(u)− s0(ũt + dn)) + t

ˆ
Ω

∇u · ∇f+
n (ut)

≥
ˆ

Ω∩{u>b/2}
t s′0(ut)f

+
n (ut) +

ˆ
Ω∩{a/2<u<b/2}

(s0(u)− s0(ũt + dn)) + t

ˆ
Ω

∇u · ∇f+
n (ut)

− t2m(f+
n (ũt))

2 1

2

ˆ
Ω

|∇ψu|2

where we used s0(u(x)) − s0(ut(x)) ≥ s′0(ut(x)) (u(x)− ut(x)) and ut(x) < u(x) if u(x) > b/2, s′0(u(x)) ≥
f+
n (ut(x)) as well as s0(u(x))− s0(u(x) + tdn(x)) ≥ 0 if u(x) ≤ a/2 and t ≤ a/(2Mn). We similarly conclude
ˆ

Γ

(s0(u)− s0(ut)) + t

ˆ
Γ

∇Γu · ∇Γf
+
n (ut)− t2m(f+

n (ũt))
2 1

2

ˆ
Γ

|∇ψu|2

≥
ˆ

Γ∩{u>b/2}
t s′0(ut)f

+
n (ut) +

ˆ
Γ∩{a/2<u<b/2}

(s0(u)− s0(ũt + dn))

+ t

ˆ
Γ

∇Γu · ∇Γf
+
n (ut)− t2m(f+

n (ũt))
2 1

2

ˆ
Γ

|∇ψu|2 .

Now, let w ∈ δΓS
δu (u), we then get by definition (note that S is convex in case s1 ≡ s2 ≡ 0)〈

w, f+
n (ũt)− dn

〉
L2

Γ

≥ 1

t
(S(u)− S(ũt))

=

ˆ
Ω∩{u>b/2}

s′0(ut)f
+
n (ut) + t−1

ˆ
Ω∩{a/2<u<b/2}

(s0(u)− s0(ũt + dn)) +

ˆ
Ω

∇u · ∇f+
n (ut)

+

ˆ
Γ∩{u>b/2}

s′0(ut)f
+
n (ut) + t−1

ˆ
Γ∩{a/2<u<b/2}

(s0(u)− s0(ũt + dn)) +

ˆ
Γ

∇Γu · ∇Γf
+
n (ut)

− tm(f+
n (ũt))

2 1

2

ˆ
Ω

|∇ψu|2 − tm(f+
n (ũt))

2 1

2

ˆ
Γ

|∇ψu|2

which yields for t→ 0:

〈
w, f+

n (u)− dn
〉
L2

Γ

≥
ˆ

Ω∩{u>b/2}
s′0(u)f+

n (u) +

ˆ
Ω∩{a/2<u<b/2}

s′0(u)(f+
n (u)− dn) +

ˆ
Ω

∇u · ∇f+
n (u)

ˆ
Γ∩{u>b/2}

s′0(u)f+
n (u) +

ˆ
Γ∩{a/2<u<b/2}

s′0(u)(f+
n (u)− dn) +

ˆ
Γ

∇Γu · ∇Γf
+
n (u)

respectively〈
w, f+

n (u)− dn
〉
L2

Γ

≥
ˆ

Ω∩{u>b/2}
f+
n (u)2 +

ˆ
Ω∩{a/2<u<b/2}

s′0(u)(f+
n (u)− dn) + t

ˆ
Ω

(f+
n )′(u)∇u · ∇ut

ˆ
Γ∩{u>b/2}

f+
n (u)2 +

ˆ
Γ∩{a/2<u<b/2}

s′0(u)(f+
n (u)− dn) + t

ˆ
Γ

(f+
n )′(u)∇Γu · ∇Γut

We make use of the simple extimate ‖m(f+
n (u))‖L2

Γ
≤ C ‖f+

n (u)‖L2
Γ
, following directly from the definition of

m(f+
n (u)), yielding for n→∞

‖w‖2L2
Γ
&
ˆ

Ω

(
s+

0

)′
(u)2 +

ˆ
Ω

(
s+

0

)′′
(u) |∇u|2 +

ˆ
Γ

(
s+

0

)′
(u)2 +

ˆ
Γ

(
s+

0

)′′
(u) |∇Γu|2 ,

which is together with the similar calculation for f−n the estimate (6.6). In particular, s′0(u) ∈ L2(Ω)×L2(Γ)
implies u ∈ (a, b) almost surely with respect to L2

Γ.
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Thus, we find for some δ > 0 that |{x : u(x) ∈ (a+ δ, b− δ)}| > 0 and for some non negative φ ∈
C∞0 ((a+ δ, b− δ)), with sptφ = [a+ δ, b− δ], define ϕu := φ(u(x))/m(φ(u(x))), being in H1(Ω)× L2(Γ).

Now, let M ∈ N and ψM ∈ C∞(R) such that ψM (x) = 0 for |x| > M + 1, ψM (x) = 1 for |x| < M and
ψ′M (x) ≤ 2 for all x. Note that by the properties of s0, u ∈ H1

Γ implies χM := ψM (s′0(u)) ∈
(
H1

Γ ⊕ R
)
and

χM = 0 if |s′0(u)| > M + 1. Thus, we find for ϕu as above and any ψ ∈ C∞(0)(Ω), u ∈ D(S), some t0 > 0 such
that also ũ := u+ tχMψ − tϕum(χMψ) ∈ D(S) for all 0 < t < t0.

Thus, we find for w ∈ δΓS
δu (u):

〈w,χMψ − ϕum(χMψ)〉 ≥ lim
t→0

1

t
(S(u)− S(ũ))

= lim
t→0

(ˆ
Ω

1

t
(s0(u)− s0(ũ)) +

ˆ
Ω

∇u · ∇(χMψ − ϕum(χMψ))

)
+ lim
t→0

(ˆ
Γ

1

t
(s0(u)− s0(ũ)) +

ˆ
Γ

∇Γu · ∇Γ(χMψ − ϕum(χMψ))

)
≥
ˆ

Ω

(s′0(u)(χMψ − ϕum(χMψ))) +

ˆ
Ω

∇u · ∇(χMψ − ϕum(χMψ))

+

ˆ
Γ

(s′0(u)(χMψ − ϕum(χMψ))) +

ˆ
Γ

∇Γu · ∇Γ(χMψ − ϕum(χMψ))

In order to investigate the behavior asM →∞, note that trivially m(χMψ))→ 0 and χM → 1 pointwise and
due to boundedness by 1 also in L2(Ω) × L2(Γ). Furthermore, as ψ′M is bounded by 2 and ψ′M (s′0(u)) → 0
pointwise for M →∞, it is straight forward to seeˆ

Ω

∇u · ∇(ψM (s′0(u))ψ) =

ˆ
Ω

∇u · (χM∇ψ) +

ˆ
Ω

s′′0(u)ψ′M (s′0(u)) |∇u|2

→
ˆ

Ω

∇u · ∇ψ as M →∞

and similar for
´

Γ
∇Γu · ∇Γ(ψM (s′0(u))ψ). Thus, we find

〈w,ψ〉L2
Γ
≥
ˆ

Ω

(s′0(u)ψ) +

ˆ
Ω

∇u · ∇ψ +

ˆ
Γ

s′0(u)ψ +

ˆ
Γ

∇Γu · ∇Γψ .

Replacing ψ by −ψ, we find equality. Using partial integration, Definition (6.1) and Lemma 6.2, we get

〈w,ψ〉L2
Γ

=

ˆ
Ω

(s′0(u)ψ)−
ˆ

Ω

∆uψ +

ˆ
Γ

(∇u · nΓ + s′0(u)−∆Γu)ψ .

and hence wω = P0 (s′0(u)) − P0 (∆u), wγ = (∇u · nΓ + s′0(u)−∆Γu) in the weak sense yielding (6.9) and
u ∈ H0. (6.7) follows immediately from the calculation whereas (6.8) follows from (6.7) and (6.4).

It is elementary to verify that the statement still holds in case s1 6≡ s2 6≡ 0: To this aim, note that the
domain D(dS) remains the same and that u is essentially bounded by a < u < b. In particular, calculating
the δΓ

δu -derivative of

Ŝ(u) :=

ˆ
Ω

s1(u) +

ˆ
Γ

s2(Eu)

for u ∈ D(dS), it is easy to see that estimate (6.9) remains valid. Thus, having in mind above estimates in
case s1 ≡ s2 ≡ 0, it is easy to verify that (6.7) still holds.

7. Proof of Theorem 1.4

We will now proof Theorem 1.4 in four steps: First we will construct an approximate problem, that can
be directly solved using Theorem 4.5. Then, we will show convergence of a subsequence of the approximate
solutions as the approximation parameter tends to zero and demonstrate that the limit function solves the
original problem. We then finally proof a technical lemma on the subdifferentials.

Before starting, note that the experiences from sections 5 and 6 tell us, that the probably correct choice
for the three Hilbert spaces are

H := H−1
(0) (Ω) H̃ := H1

(0)(Ω) H0 := H2(Ω)
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Note that one is tempted to directly consider the problem as a generalized gradient flow

∂tu = −∇S(u)

where the gradient is with respect to the metric structure g•(·, ·) defined through

g• : H0 → B(H)

u 7→ gu(·, ·)
where with w = −∆u+ s′(u):

(7.1) gu(r1, r2) =

ˆ
Ω

∇pu1A(u,∇u,w)∇pu2 =

ˆ
Ω

r1p
u
2 =

ˆ
Ω

r2p
u
1 ,

where pui solves
−div (A(u,∇u,w)∇pui ) = ri for i = 1, 2 .

However, g• then is defined on H0 instead of H̃ and thus theorem 4.5 does not apply. Nevertheless, the
additional information w ∈ H1

(0)(Ω) will be sufficient to cope with that problem.
The basic formal idea behind the following proof is to identify a set A ⊂ L2(0, T ;H0) that is not compact

in L2(0, T ; H̃) but still has sufficiently nice properties in order to guaranty (4.3) resp. (3.3).

7.1. An approximate problem. We start by considering the following problem: Like in section 5, we
choose

H0 := H2(Ω) ∩H1
(0)(Ω), H̃ := H1

(0) , and H = H−1
(0) (Ω) .

We extend w to Rn by 0 and for any η > 0 we consider w ∗ ϕη, where ϕη is the standard mollifier.
For any u ∈ H1

(0)(Ω)∩H2(Ω), we then consider the following scalar product on H: we define for r1, r2 ∈ H:

(7.2) gηu(r1, r2) =

ˆ
Ω

∇pu1A(u,∇u,w ∗ ϕη)∇pu2 =

ˆ
Ω

r1p
u
2 =

ˆ
Ω

r2p
u
1 ,

where pui solves

(7.3) −div (A(u,∇u,w ∗ ϕη)∇pui ) = ri for i = 1, 2 .

It is immediate to check that g is a densly defined metric in the sense of definition 4.1. For convenience of
notation, we write the gradient with respect to gη as ∇η, i.e.

gηu(∇ηS(u), ψ) = 〈dS(u), ψ〉H ∀ψ ∈ H
and denote by ∇η,l the corresponding limiting subgradient w.r.t. ∇η according to definition 4.2.

Instead of lemma 5.3, we this time consider the following:

Lemma 7.1. Let S and s be as introduced in subsection 1.3. Then, for the L2-subdifferential holds

(7.4) D(
δ0S
δu

) =
{
c ∈ H2(Ω) ∩ L2

(0)(Ω) : s′(c) ∈ L2(Ω), s′′(c) |∇c|2 ∈ L1(Ω), ∂nc
∣∣∣
∂Ω

= 0
}

and

(7.5)
δ0S
δu

(ũ) = −∆ũ+ P0s
′(ũ) .

Moreover,

(7.6) ‖ũ‖2H2(Ω) + ‖s′(ũ)‖2L2(Ω) +

ˆ
Ω

s′′(ũ) |∇ũ|2 ≤ C

(∥∥∥∥δ0S
δu

(ũ)

∥∥∥∥2

L2(Ω)

+ ‖ũ‖2L2(Ω) + 1

)
for some constant C independent of ũ.

For the H-Subdifferential holds

D(dS) =

{
c ∈ D(

δ0S
δu

) :
δ0S
δu

(c) ∈ H1
(0)(Ω)

}
(7.7)

dS(ũ) = ∆ (−∆ũ+ P0s
′(ũ)) ,(7.8)

i.e. dS(ũ) is single valued and

(7.9) ‖ũ‖2H2(Ω) ≤ C
(
‖dS(ũ)‖2H + ‖ũ‖2L2(Ω) + 1

)
.
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Furthermore, we find

Lemma 7.2. dS is strongly-weakly closed.

Similar to section 5, we observe that gη• and S satisfy all conditions of Theorem 4.5, so we get existence
of a uη ∈ H1(0, T ;H) ∩ L2(0, T ;H0) solution to the equationˆ T

0

gηuη (∂tuη, ψ) = −
ˆ T

0

〈dS(uη), ψ〉H ∀ψ ∈ L2(0, T ;H) ,(7.10)

or ∂tuη = −∇ηS(uη) ,(7.11)

where u(0) = u0 for t = 0. This is a weak formulation to the problem

∂tuη − div (A(uη,∇uη, wη ∗ ϕη)∇wη) 3 0 on (0, T ]× U ,
wη + ∆uη − s′(uη) = 0 on (0, T ]× U ,

(A(uη,∇uη, wη ∗ ϕη)∇wη) · nΓ = ∇uη · nΓ = 0 on (0, T ]× ∂U ,
uη(0) = u0 for t = 0 .

Note that the solution satisfies the apriori estimate

(7.12)
1

2

ˆ t

0

∥∥u′η∥∥2

gη(uη)
+

1

2

ˆ t

0

‖∇η,lS(uη)‖2gη(uη) + S(uη(t)) ≤ S(u(0)) for a.e. t ∈ (0, T ) .

However, we whish to study the behavior of solutions as η → 0. In this context, note that we cannot decide
whether wη ∗ ϕη → w in L2(0, T ;L2(Ω)) as we do not know whether wη → w in L2(0, T ;L2(Ω)). (As wη
depends nonlinearly on uη and s′ is not Lipschitz in R.)

7.2. Convergence of the approximate problem. It is thus necessary to repeat some of the steps in [16].
First, as n ≤ 3, we find H0 ↪→↪→ C(Ω) compactly and thus uη ∈ L2(0, T ;C(Ω)).

We find a subsequence (uηk)k∈N with ηk → 0 as k →∞ such that there is u ∈ H1(0, T ;H) ∩ L2(0, T ;H0)
with

uηk ⇀ u weakly in H1(0, T ;H) ∩ L2(0, T ;H0) ,

uηk → u strongly in L2(0, T ; H̃) ∩ L2(0, T ;C(Ω)) ,

uηk(t)→ u(t) in C(Ω) ∩H1(Ω) for a.e. t ∈ (0, T ) .

Now, let ε > 0. By Egorov’s theorem, there is a compact set K0 ⊂ (0, T ) with L((0, T )\K0) < ε
2 s.t.

uniformly for all t ∈ K0 we find uηk(t) → u(t) strongly in C(Ω) ∩ H1(Ω). For each k ∈ N\ {0}, Lusin’s
theorem yields existence of a kompakt set Kk ⊂ (0, T ) with L ((0, T )\Kk) ≤ 2−k−1ε and uηk ∈ C(Kk;C(Ω)).
Defining Kε :=

⋂∞
k=0Kk, we find L ((0, T )\Kε) ≤ ε, uηk ∈ C(Kε;C(Ω)) for all k and by the pointwise

convergence also uηk → u uniformly in C(Kε;C(Ω)) and strongly in L2(0, T ;H1(Ω)). In particular, we find
|u(t, x)| ≤ Cε, |uηk(t, x)| ≤ Cε for all k for some constant Cε > 0 for all (t, x) ∈ K × Ω. Now, it is evident
that s′0(uηk) → s′0(u) strongly in L2(Kε;L

2(Ω))as well as ∆uηk ⇀ ∆u weakly in L2(0, T ;L2(Ω)), implying
wηk ⇀ w = −∆u+ s0(u) weakly in L2(Kε;H

1
(0)(Ω)).

Thus, we may perform the following calculation:

lim
k→∞

ˆ
Kε

ˆ
Ω

w2
ηk

= − lim
k→∞

ˆ
Kε

ˆ
Ω

∆uηkwηk + lim
k→∞

ˆ
Kε

ˆ
Ω

s′(uηk)wηk

= lim
k→∞

ˆ
Kε

ˆ
Ω

∇uηk∇wηk + lim
k→∞

ˆ
Kε

ˆ
Ω

s′(uηk)wηk

=

ˆ
Kε

ˆ
Ω

∇u∇w +

ˆ
Kε

ˆ
Ω

s′(u)w

=

ˆ
Kε

ˆ
Ω

w2

where we used boundedness of uηk to get local Lipschitz continuity of s′(·). In particular, we find for fixed ε a
further subsequence wεηk s.t. wεηk(t)→ wε(t) in L2(Ω) for a.e. t ∈ Kε. A standard diagonalization argument
yields the existence of a subsequence such that wηk(t)→ w(t) in L2(Ω) for a.e. t ∈ (0, T ).
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We consider the space Ĥ := H1
(0)(Ω)× L2(Ω) and

ĝ• : Ĥ → B(H)

(u,w) 7→ ĝ(u,w)(·, ·)
where

ĝu,w(r1, r2) =

ˆ
Ω

∇pu1A(u,∇u,w)∇pu2 =

ˆ
Ω

r1p
u
2 =

ˆ
Ω

r2p
u
1 ,

where pui solves
−div (A(u,∇u,w)∇pui ) = ri for i = 1, 2 ,

and we immediately check with (7.1) and (7.2) that

gηu(·, ·) = ĝ(u,w∗ϕη)(·, ·) , gu(·, ·) = ĝ(u,w)(·, ·) .
We find with the above estimates and theorem 3.5 two Young measures µ,ν ∈ Y(0, T ;H) associated with

u′ηk and ∇ηkS(uηk) such that u′ηk ⇀
´
H ξdµt(ξ) and ∇ηkS(uηk) ⇀

´
H ξdνt(ξ) weakly in L2(0, T ;H). Our

final aim is now to identify the sets of concentration of µ,ν:
We find with help of theorem 3.5 and corollary 3.4 that

lim inf
k→∞

ˆ T

0

ĝ(uηk ,wηk )(∂tuηk , ∂tuηk) ≥
ˆ T

0

ˆ
H
ĝ(u,w)(ξ, ξ) dµt(ξ) and

lim inf
k→∞

ˆ T

0

(∇ηkS(uηk))2 ≥
ˆ T

0

ˆ
H
ĝ(u,w)(ξ, ξ) dνt(ξ) .

Also, with help of (7.11) as well as the following corollary 7.3 below, arguing as in the proof of theorem 4.5

in [16], we find that µt, νt are concentrated on
(

˜̂gu,w

)−1

(dlS(u)) = g̃−1
u (dlS(u)) for t ∈ Kε for all ε > 0. As

dlS(u) is convex for all u and ε was arbitrary, the theorem is prooved.

Corollary 7.3. [16] For a bounded sequence ϕn ∈ H and un → u strongly in H̃, we find ϕn ⇀ ϕ weakly in
H iff g̃un(ϕn) ⇀ g̃u(ϕ) weakly in H, where g̃u is defined through (4.4).

7.3. Proof of Lemma 7.1. The proof is similar to subsection 6.3: This time, s′0(0) = s0(0) = 0 and define
s+

0 (x) := max {0, s0(x)}, s−0 (x) := min {0, s0(x)}. For a0 ∈ (s′0)
−1

(−1/2), b0 ∈ (s′0)
−1

(1/2), there are for
any n ∈ N an ∈ (−∞, a0) with s′0(an) = −n and bn ∈ (b0,+∞) with s′0(bn) = n and we introduce f+

n and
f−n similar to subsection 6.3, such that f+

n (·), f−n (·) are both monotone and C2(R) with y 7→ y+ f+
n (y) being

strictly monotone and C2(Rn), too.
Now, let u ∈ D(S), i.e. u ∈ H1

Γ and define ũt := u− f+
n (ũt)

ut := ũt + tm(f+
n (ũt))/Ln(Ω) ∈ H1

Γ ∩D(S)

for t small enough.
Thus, we can easily calculate using the notation dn := m(f+

n (ũt))/Ln(Ω) following the outline of section
6.3 or the proof of theorem 4.3 in [1] that for w ∈ δΓS

δu (u), we get by definition〈
w, f+

n (ũt)− dn
〉
L2

Γ

≥ 1

t
(S(u)− S(ut))

≥
ˆ

Ω∩{u>b/2}
f+
n (ũt)

2 + t−1

ˆ
Ω∩{a/2<u<b/2}

(s0(u)− s0(ũt + dn)) +

ˆ
Ω

∇u · ∇f+
n (ut)

which yields for t→ 0:

〈
w, f+

n (u)− dn
〉
L2

Γ

≥
ˆ

Ω∩{u>b/2}
f+
n (u)2 +

ˆ
Ω∩{a/2<u<b/2}

s′0(u)f+
n (u) + t

ˆ
Ω

(f+
n )′(ut)∇u · ∇ut

and for n→∞ by monotone convergence together with the similar calculation for f−n :

1 + ‖w‖2L2
Γ
&
ˆ

Ω

s′0(u)2 +

ˆ
Ω

s′′0(u) |∇u|2 ,

which is (6.6).
We find for any ψ ∈ C∞(0)(Ω) and u ∈ D(dS) some t0 > 0 such that ũ := u+ tψ ∈ D(S) for all 0 < t < t0.
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Thus, we find for w ∈ δΓS
δu (u):

〈w,ψ〉 ≥ lim
t→0

1

t
(S(u)− S(ũ))

= lim
t→0

(ˆ
Ω

1

t
(s0(u)− s0(ũ)) +

ˆ
Ω

∇u · ∇ψ
)
≥
ˆ

Ω

s′0(u)ψ +

ˆ
Ω

∇u · ∇ψ

Replacing ψ by −ψ, we find equality. Using partial integration, we get

〈w,ψ〉L2
Γ

=

ˆ
Ω

P0 (s′0(u))ψ −
ˆ

Ω

∆uψ ∀ψ ∈ C∞(Ω) ,

and hence, the standard theory of elliptic equations tells us that u solves wω − P0 (s′0(u)) = −∆u with
∂νu = 0, implying u ∈ H2(Ω) and ‖u‖H2(Ω) ≤ C ‖w‖L2 (See also Abels and Wilke [1], Section 2).

Again, S in the setting of the last lemma is convex and the graph of (dS,S) is strongly-weakly closed
in the sense of (4.10), implying convexity of dS(u) for all u ∈ D(dS). This convexity remains even in case
s1 6≡ 0, whereas the subdifferentials remain in the form (7.5) and (7.8).
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