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CHANGE-POINT DETECTION UNDER DEPENDENCE BASED ON

TWO-SAMPLE U-STATISTICS

HEROLD DEHLING, ROLAND FRIED, ISABEL GARCIA, AND MARTIN WENDLER

Abstract. We study the detection of change-points in time series. The classical CUSUM
statistic for detection of jumps in the mean is known to be sensitive to outliers. We thus
propose a robust test based on the Wilcoxon two-sample test statistic. The asymptotic
distribution of this test can be derived from a functional central limit theorem for two-
sample U-statistics. We extend a theorem of Csörgő and Horváth to the case of dependent
data.
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1. Introduction

Change-point tests address the question whether a stochastic process is stationary during
the entire observation period or not. In the case of independent data, there is a well-developed
theory; see the book by Csörgő and Horváth (1997) for an excellent survey. When the data
are dependent, much less is known. The CUSUM statistic has been intensely studied, even
for dependent data; see again Csörgő and Horváth (1997). The CUSUM test, however, is
not robust against outliers in the data. In the present paper, we study a robust test which is
based on the two-sample Wilcoxon test statistic. Simulations show that this test outperforms
the CUSUM test in the case of heavy-tailed data.
In order to derive the asymptotic distribution of the test, we study the stochastic process

(1)

[nλ]
∑

i=1

n
∑

j=[nλ]+1

h(Xi, Xj), 0 ≤ λ ≤ 1,

where h : R2 → R is a kernel function. In the case of independent data, the asymptotic
distribution of this process has been studied by Csörgő and Horváth (1988). In the present
paper, we extend their result to short range dependent data (Xi)i≥1. Similar results have
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been obtained for long range dependent data by Dehling, Rooch and Taqqu (2012), albeit
with completely different methods.
U-statistics have been introduced by Hoeffding (1948), where the asymptotic normality

was established both for the one-sample as well as the two-sample U-statistic in the case of
independent data. The asymptotic distribution of one-sample U-statistics of dependent data
was studied by Sen (1963, 1972), Yoshihara (1976), Denker and Keller (1983, 1985) and by
Borovkova, Burton and Dehling (2001) in the so-called non-degenerate case, and by Babbel
(1989) and Leucht (2012) in the degenerate case. For two-sample U-statistics, Dehling and
Fried (2012) established the asymptotic normality of

∑n1

i=1

∑n1+n2

j=n1+1 h(Xi, Xj) for dependent
data, when n1, n2 → ∞. The main theoretical result of the present paper is a functional
version of this limit theorem.
In our paper, we focus on data that can be represented as functionals of a mixing process.

In this way, we cover most examples from time series analysis, such as ARMA and ARCH
processes, but also data from chaotic dynamical systems. For a survey of processes that have
a representation as functional of a mixing process, see e.g. Borovkova, Burton and Dehling
(2001). Earlier references can be found in Ibragimov and Linnik (1970) and Billingsley
(1968).

2. Definitions and Main Results

Given the samples X1, . . . , Xm and Y1, . . . , Yn, and a kernel h(x, y), we define the two-
sample U-statistic

Un1,n2
:=

1

n1 n2

n1
∑

i=1

n2
∑

j=1

h(Xi, Yj).

More generally, one can define U-statistics with multivariate kernels h(x1, . . . , xk, y1, . . . , yl).
In the present paper, for the ease of exposition, we will restrict attention to bivariate kernels
h(x, y). The main results, however, can easily be extended to the multivariate case.
Assuming that (Xi)i≥1 and (Yi)i≥1 are stationary processes with one-dimensional marginal

distribution functions F and G, respectively, we can test the hypothesis H : F = G using
the two-sample U-statistic. E.g., the kernel h(x, y) = y − x leads to the U-statistic

Un1,n2
=

1

n1 n2

n1
∑

i=1

n2
∑

j=1

(Yj −Xi) =
1

n2

n2
∑

j=1

Yj −
1

n1

n1
∑

i=1

Xi,

and thus to the familiar two-sample Gauß-test. Similarly, the kernel h(x, y) = 1{x≤y} leads
to the U-statistic

Un1,n2
=

1

n1 n2

n1
∑

i=1

n2
∑

j=1

1{Xi≤Xj},

and thus to the 2-sample Mann-Whitney-Wilcoxon test.
In the present paper, we investigate tests for a change-point in the mean of a stochastic

process (Xi)i≥1. We consider the model

Xi = µi + ξi, i ≥ 1,

where (µi)i≥1 are unknown constants and where (ξi)i≥1 is a stochastic process. We want to
test the hypothesis

H : µ1 = . . . = µn
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against the alternative

A : There exists 1 ≤ k ≤ n− 1 such that µ1 = . . . = µk 6= µk+1 = . . . = µn.

Tests for the change-point problem are often derived from 2-sample tests applied to the sam-
ples X1, . . . , Xk and Xk+1, . . . , Xn, for all possible 1 ≤ k ≤ n−1. For two-sample tests based

on U-statistics with kernel h(x, y), this leads to the test statistic
∑k

i=1

∑n
j=k+1 h(Xi, Xj),

1 ≤ k ≤ n, and thus to the processes

(2) Un(λ) =

[nλ]
∑

i=1

n
∑

j=[nλ]+1

h(Xi, Xj), 0 ≤ λ ≤ 1.

In this paper, we will derive a functional limit theorem for the processes (Un(λ))0≤λ≤1.
Specifically, we will show that under certain technical assumptions on the kernel h and on
the process (Xi)i≥1, a properly centered and renormalized version of (Un(λ))0≤λ≤1 converges
to a Gaussian process.
In our paper, we will assume that the process (ξi)i≥0 is weakly dependent. More specifically,

we will assume that (ξi)i≥0 can be represented as a functional of an absolutely regular process.

Definition 2.1. (i) Given a stochastic process (Xn)n∈Z we denote by Ak
l the σ−algebra

generated by (Xk, . . . , Xl). The process is called absolutely regular if

(3) β(k) = sup
n

{

sup
J
∑

j=1

I
∑

i=1

|P (Ai ∩ Bj)− P (Ai)P (Bj)|
}

→ 0,

where the last supremum is over all finite An
1−measurable partitions (A1, . . . , AI) and all

finite A∞
n+k−measurable partitions (B1, . . . , BJ).

(ii) The process is called strongly mixing if

(4) α(k) = sup
{

|P (A ∩ B)− P (A)P (B)|
∣

∣A ∈ An
1 , B ∈ A∞

n+k, n ∈ N
}

→ 0.

(iii) The process (Xn)n≥1 is called a two-sided functional of an absolutely regular sequence
if there exists an absolutely regular process (Zn)n∈Z and a measurable function f : RZ → R

such that

Xi = f((Zi+n)n∈Z).

Analogously, (Xn)n≥1 is called a one-sided functional if Xi = f((Zi+n)n≥0).

(iv) The process (Xn)n≥1 is called 1-approximating functional with coefficients (ak)k≥1 if

(5) E |Xi − E(Xi|Zi−k, . . . , Zi+k)| ≤ ak

In addition to weak dependence conditions on the process (Xi)i≥1, the asymptotic analysis
of the process (2) requires some continuity assumptions on the kernel functions h(x, y). We
use the notion of 1-continuity, which was introduced by Borovkova, Burton and Dehling
(2001). Alternative continuity conditions have been used by Denker and Keller (1986).

Definition 2.2. The kernel h(x, y) is called 1-continuous, if there exists a function φ :
(0,∞) → (0,∞) with φ(ε) = o(1) as ε → 0 such that for all ε > 0

E(|h(X ′, Y )− h(X, Y )|{|X−X′|≤ε}) ≤ φ(ε)(6)

E(|h(X, Y ′)− h(X, Y )|{|Y−Y ′|≤ε}) ≤ φ(ε)(7)

for all random variables X,X ′, Y and Y ′ having the same marginal distribution as X.
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The most important technical tool in the study of U-statistics is Hoeffding’s decomposition,
originally introduced by Hoeffding (1948). We write

(8) h(x, y) = θ + h1(x) + h2(y) + g(x, y),

where the terms on the right-hand side are defined as follows:

θ = Eh(X, Y )

h1(x) = Eh(x, Y )− θ

h2(y) = Eh(X, y)− θ

g(x, y) = h(x, y)− h1(x)− h2(y)− θ.

Here, X and Y are two independent random variables with the same distribution as X1.
Observe that, by Fubini’s theorem,

E(h1(X)) = E(h2(X)) = 0.

In addition, the kernel g(x, y) is degenerate in the sense of the following definition.

Definition 2.3. Let (Xi)i≥1 be a stationary process, and let g(x, y) be a measurable function.
We say that g(x, y) is degenerate if

(9) E(g(x,X1)) = E(g(X1, y)) = 0,

for all x, y ∈ R.

The following theorem, a functional central limit theorem for two-sample U -statistics of
dependent data, is the main theoretical result of the present paper.

Theorem 2.4. Let (Xn)n≥1 be a 1-approximating functional with constants (ak)k≥1 of an
absolutely regular process with mixing coefficients (β(k))k≥1, satisfying

(10)
∞
∑

k=1

k2(β(k) +
√
ak + φ(ak)) < ∞,

and let h(x, y) be a 1-continuous bounded kernel. Then, as n → ∞, the D[0, 1]-valued process

(11) Tn(λ) :=
1

n3/2

[λn]
∑

i=1

n
∑

j=[λn]+1

(h(Xi, Xj)− θ), 0 ≤ λ ≤ 1,

converges in distribution towards a mean-zero Gaussian processes with representation

(12) Z(λ) = (1− λ)W1(λ) + λ(W2(1)−W2(λ)), 0 ≤ λ ≤ 1,

where (W1(λ),W2(λ))0≤λ≤1 is a two-dimensional Brownian motion with mean zero and co-
variance function Cov(Wk(s),Wl(t)) = min(s, t)σkl, where

(13) σkl = E(hk(X0)hl(X0)) + 2
∞
∑

j=1

Cov(hk(X0), hl(Xj)), k, l = 1, 2.

Remark 2.5. (i) In the case of i.i.d. data, Theorem 2.4 was established by Csörgő and
Horváth (1988). In the case of long-range dependent data, weak convergence of the process
(Tn(λ))0≤λ≤1 has been studied by Dehling, Rooch and Taqqu (2013) and by Rooch (2012),
albeit with a normalization different from n3/2.
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(ii) Using the representation (12), one can calculate the autocovariance function of the pro-
cess (Z(λ))0≤λ≤1. We obtain

(14) Cov(Z(λ), Z(µ)) = σ11[(1− λ)(1− µ)min{λ, µ}] + σ22[λµ(1− µ− λ+min{λ, µ})]
+ σ12[µ(1− λ)(λ−min{λ, µ}) + λ(1− µ)(µ−min{λ, µ})].

(iii) For the kernel h(x, y) = y − x, we can analyze the asymptotic behavior of the process
Tn(λ) using the functional central limit theorem (FCLT). Note that, since Xj −Xi = (Xj −
E(Xj)) − (Xi − E(Xi)), we may assume without loss of generality that Xi has mean zero.
Then we get the representation

Tn(λ) =
1

n3/2

[nλ]
∑

i=1

n
∑

j=[nλ]+1

(Xj −Xi)

=
[nλ]

n

1√
n

n
∑

i=1

Xi −
1√
n

[nλ]
∑

i=1

Xi.(15)

Thus, weak convergence of (Tn(λ))0≤λ≤1 can be derived from the FCLT for the partial sum

process 1√
n

∑[nλ]
i=1 Xi. Such FCLTs have been proved under a wide range of conditions, e.g.

for functionals of absolutely regular data.

We finally want to state an important special case of Theorem 2.4, namely when the
kernel is anti-symmetric, i.e. when h(x, y) = −h(y, x). Kernels that occur in connection
with change-point tests usually have this property. For anti-symmetric kernels, the limit
process has a much simpler structure; moreover one can give a simpler direct proof in this
case.

Theorem 2.6. Let (Xn)n≥1 be a 1-approximating functional with constants (ak)k≥1 of an
absolutely regular process with mixing coefficients (β(k))k≥1, satisfying (10), and let h(x, y) be
a 1-continuous bounded anti-symmetric kernel. Then, as n → ∞, the D[0, 1]-valued process

(16) Tn(λ) :=
1

n3/2

[λn]
∑

i=1

n
∑

j=[λn]+1

(h(Xi, Xj)− θ), 0 ≤ λ ≤ 1,

converges in distribution towards the mean-zero Gaussian process σW (0)(λ), 0 ≤ λ ≤ 1,
where (W 0(λ))0≤λ≤1 is a standard Brownian bridge and

(17) σ2 = Var(h1(X1)) + 2
∞
∑

i=2

Cov(h1(X1), h1(Xk))

3. Application to Change Point Problems

In this section, we will apply Theorem 2.4 in order to derive the asymptotic distribution
of two change-point test statistics. Specifically, we wish to test the null hypothesis

(18) H0 : µ1 = . . . = µn

against the alternative of a level shift at an unknown point in time, i.e.

(19) HA : µ1 = . . . = µk 6= µk+1 = . . . = µn, for some k ∈ {1, . . . , n− 1}.
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We consider the following two test statistics,

T1,n = max
1≤k<n

∣

∣

∣

∣

∣

1

n3/2

k
∑

i=1

n
∑

j=k+1

(

1{Xi<Xj} − 1/2
)

∣

∣

∣

∣

∣

(20)

T2,n = max
1≤k<n

∣

∣

∣

∣

∣

1

n3/2

k
∑

i=1

n
∑

j=k+1

(Xi −Xj)

∣

∣

∣

∣

∣

.(21)

Theorem 3.1. Let (Xn)n≥1 be a 1-approximating functional with constants (ak)k≥1 of an
absolutely regular process with mixing coefficients (β(k))k≥1, satisfying (10), and assume that
X1 has a distribution function F (x) with bounded density. Then, under the null hypothesis
H0,

T1,n → σ1 sup
0≤λ≤1

|W (0)(λ)|(22)

T2,n → σ2 sup
0≤λ≤1

|W (0)(λ)|,(23)

where (W (0)(λ))0≤≤λ≤1 denotes the standard Brownian bridge process, and where

σ2
1 = Var(F (X1)) + 2

∞
∑

k=2

Cov(F (X1), F (Xk))(24)

σ2
2 = Var(X1) + 2

∞
∑

k=2

Cov(X1, Xk).(25)

Proof. We will establish weak convergence of T1,n. In order to do so, we will apply
Theorem 2.4 to the kernel h(x, y) = 1{x<y}. Borovkova, Burton and Dehling (2001) showed
that this kernel is 1-continous. By continuity of the distribution function of X1, we get that
θ = P (X < Y ) = 1/2. Moreover, we get

h1(x) = P (x < X1)−
1

2
=

1

2
− F (x)

h2(x) = P (X1 < x)− 1

2
= F (x)− 1

2
.

Note that h2(x) = −h1(x). Hence W2(λ) = −W1(λ), and thus the limit process in Theo-
rem 2.4 has the representation

Z(λ) = (1− λ)W1(λ) + λ(W2(1)−W2(λ)) = W1(λ)− λW1(1).

Here W1(λ) is a Brownian motion with variance σ2
1. Weak convergence of T2,n can be

shown directly from the functional central limit theorem for the partial sum process; see
e.g. Billingsley (1968). �

Remark 3.2. (i) The distribution of sup0≤λ≤1 |W (λ)| is the well-known Kolmogorov-Smirnov
distribution. Quantiles of the Kolmogorov-Smirnov distribution can be found in most sta-
tistical tables.
(ii) In order to apply Theorem 3.1, we need to estimate the variances σ2

1 and σ2
2. Regarding



CHANGE-POINT DETECTION BASED ON TWO-SAMPLE U-STATISTICS 7

σ2
2 given in expression (25), we apply the non-overlapping subsampling estimator

(26) σ̂2
2 =

1

[n/ln]

[n/ln]
∑

i=1

1

ln





iln
∑

j=(i−1)ln+1

Xj −
ln
n

n
∑

j=1

Xj





2

investigated by Carlstein (1986) for α-mixing data. In case of AR(1)-processes, Carlstein
derives

(27) ln = max(dn1/3(2ρ/(1− ρ2))2/3e, 1)
as the choice of the block length which minimizes the MSE asymptotically, with ρ being the
autocorrelation coefficient at lag 1.
Regarding σ2

1 given in (24), one faces the additional challenge that the distribution function
F is unknown. This problem has been addressed, e.g. in Dehling, Fried, Sharipov, Vogel and
Wornowizki (2013), for the case of functionals of absolutely regular processes and F being
estimated by the empirical distribution function Fn. The authors find the subsampling
estimator for σ2

1

(28) σ̂1 =
1

[n/ln]

√

π

2

[n/ln]
∑

i=1

1√
ln

∣

∣

∣

∣

∣

∣

iln
∑

j=(i−1)ln+1

Fn(Xj)−
ln
n

n
∑

j=1

Fn(Xj)

∣

∣

∣

∣

∣

∣

employing non-overlapping subsampling to give smaller biases, but somewhat larger MSEs
than the corresponding overlapping subsampling estimator. The adaptive choice of the block
length ln proposed by Carlstein worked well in their simulations if the data were generated
from a stationary ARMA(1,1) model and an estimate of ρ was plugged in. In the next
section, we will explore this and other proposals in situations with level shifts and normally
or heavy-tailed innovations.

4. Simulation Results

The assumptions regarding the underlying process (Xi) in Theorem 2.4 are satisfied by a
wide range of time series, such as AR and ARMA models. To illustrate the results and to
investigate the finite sample behavior and the power of the tests based on T1,n and T2,n, we
will give some simulation results. We study the underlying change-point model

(29) Xi =

{

ξi if i = 1, . . . , [nλ]
µ+ ξi if i = [nλ] + 1, . . . , n.

Within this model, the hypothesis of no change is equivalent to µ = 0. We assume that the
noise follows an AR(1) process, i.e. that

(30) ξi = ρ ξi−1 + εi,

where −1 < ρ < 1, and where the innovations ξi are i.i.d. random variables with mean
zero. The innovations ξi are generated from a standard normal or a tν-distribution with
ν = 3 degrees of freedom, scaled to have the same 84.13% percentile as the standard normal,
which is 1. The autoregression coefficient is varied in ρ = {0.0, 0.4, 0.8}, corresponding to
zero, moderate or strong positive autocorrelation, and the sample size is n = 200. For
the choice of the block length we used Carlstein’s adaptive rule outlined above, or a fixed
block length of ln = 9, which is in good agreement with the empirical findings of Dehling
et al. (2013) for larger sample sizes and their theoretical result that ln should be chosen as
o(
√
n) to achieve consistency. For the reason of comparison we also included tests employing
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overlapping subsampling for estimation of the asymptotical variance, applying the same
block lengths as the non-overlapping versions.
Table 1 contains the empirical levels (i.e. the fraction of rejections) of the tests with

an asymptotical level of 5%, obtained from 4000 simulation runs for each situation. Note
that the tests developed under the assumption of independence, which do not adjust for
autocorrelation, become strongly oversized with an increasingly positive autocorrelation, i.e.
they reject a true null hypothesis by far too often and are practically useless already for
ρ = 0.4. The performance of the adjusted tests is much better in this respect and in a good
agreement with the asymptotical results. Only if the autocorrelation is strong (ρ = 0.8),
the tests with a fixed block length become somewhat anti-conservative (oversized), and
even more so for the CUSUM-test. Longer block lengths are needed for stronger positive
autocorrelations, and Carlstein’s adaptive block length (27) adjusts for this. There is little
difference between the tests employing overlapping and non-overlapping subsampling here.

T1,n T2,n

unadj. ln fixed adaptive unadj. ln fixed adaptive
ν ρ ol nol ol nol ol nol ol nol
∞ 0.0 2.8 2.0 2.9 2.0 2.2 4.5 2.9 3.9 3.7 3.8
∞ 0.4 24.5 2.5 3.1 3.5 3.9 34.2 3.9 4.9 5.5 6.0
∞ 0.8 81.6 6.2 6.5 1.9 2.5 91.5 10.5 10.6 3.4 4.0
3 0.0 3.1 2.2 2.9 2.2 2.9 3.8 2.5 3.5 3.1 3.1
3 0.4 26.9 2.4 3.0 3.2 3.0 32.0 3.3 3.8 4.3 4.9
3 0.8 82.7 6.9 7.0 2.0 2.8 90.6 10.2 10.5 3.2 3.9

Table 1. Empirical level of the tests based on T1,n and T2,n, for n = 200,
with fixed or adaptive subsampling block length ln and overlapping (ol) or non-
overlapping (nol) subsampling. The results are for AR(1) observations with
different lag-one autocorrelations ρ and different tν-distributed innovations,
and based on 4000 simulation runs each.

In order to investigate the powers of the tests under the alternative, a change in the mean,
we consider shifts of increasing height µ, generating 400 data sets for each situation. The
sample size is again n = 200 and the change point is after observation number τ = [λn] = 100.
Figure 1 illustrates the powers of the different versions of the tests in case of Gaussian

or t3-distributed innovations and several autocorrelation coefficients ρ. Under normality,
the CUSUM test T2,n is somewhat more powerful than the test T1,n based on the Wilcoxon
statistic, while under the t3-distribution it is the other way round. The CUSUM test with the
fixed block length considered here becomes strongly oversized if ρ is large, while this effect
is less severe for the test based on the Wilcoxon statistic. Carlstein’s adaptive choice of the
block length increases the power if ρ is small and improves the size of the test substantially
if ρ is large. The tests employing overlapping subsampling (not shown here) perform even
slightly more powerful in case of zero or moderate autocorrelations, but much less powerful
in case of strong autocorrelations.
The tests with Carlstein’s adaptive choice of the block length could be improved further

by using a more sophisticated estimate of ρ than the ordinary sample autocorrelation used
here. The latter is positively biased in the presence of a shift, which leads to too large choices
of the block length. This negative effect becomes more severe for larger values of ρ, since
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Figure 1. Power of the tests in case of a shift in the middle of an AR(1)
process with Gaussian (left) and t3-innovations (right) and different lag one
correlations ρ = 0.0 (top), ρ = 0.4 (middle) or ρ = 0.8 (bottom), n = 200.
Wilcoxon test Tn,1 (bold lines) and CUSUM test Tn,2 (thin lines). Adjustment
by non-overlapping subsampling with fixed (black) or adaptive block length
(grey).
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the plug-in-estimate of the asymptotically MSE-optimal choice of ln increases more rapidly
if ρ̂ is close to 1, while it is rather stable for moderate and small values of ρ̂. In our study,
for ρ = 0 the average value chosen for ln increases from about 2 to about 3, only, as the
height of the shift increases, while it is from about 6 to about 9 if ρ = 0.4, and even from
about 16 to about 24 if ρ = 0.8. An estimate of the autocorrelation coefficient which resists
shifts could be used, e.g. by applying a stepwise procedure which estimates the possible time
of occurrence of a shift before calculating ρ̂ from the corrected data, but this will not be
pursued here.

5. Auxiliary Results

In this section, we will prove some auxiliary results which will play a crucial role in the
proof of Theorem 2.4. The main result of this section is the following proposition, which
essentially shows that the degenerate part in the Hoeffding decomposition of the U-statistic
Tn(λ) is uniformly negligible.

Proposition 5.1. Let (Xn)n≥1 be a 1-approximating functional with constants (ak)k≥1 of an
absolutely regular process with mixing coefficients (β(k))k≥1, satisfying

(31)
∞
∑

k=1

k(β(k) +
√
ak + φ(ak)) < ∞.

Moreover, let g(x, y) be a 1-continuous bounded degenerate kernel. Then, as n → ∞,

(32)
1

n3/2
sup

0≤λ≤1

∣

∣

∣

∣

∣

∣

[nλ]
∑

i=1

n
∑

j=[nλ]+1

g(Xi, Xj)

∣

∣

∣

∣

∣

∣

→ 0

in probability.

The proof of Proposition 5.1 requires some moment bounds for increments of U-statistics
of degenerate kernels, which we will now state as separate lemmas.

Lemma 5.2. Let (Xn)n≥1 be a 1-approximating functional with constants (ak)k≥1 of an
absolutely regular process with mixing coefficients (β(k))k≥1, satisfying

(33)
∞
∑

k=1

k(β(k) +
√
ak + φ(ak)) < ∞.

Moreover, let g(x, y) be a 1-continuous bounded degenerate kernel. Then, there exists a
constant C1 such that

(34) E





[nλ]
∑

i=1

n
∑

j=[nλ]+1

g(Xi, Xj)





2

≤ C1[nλ](n− [nλ]).

Proof. We can write

(35) E





[nλ]
∑

i=1

n
∑

j=[nλ]+1

g(Xi, Xj)





2

=

[nλ]
∑

i=1

n
∑

j=[nλ]+1

E(g(Xi, Xj))
2

+ 2
∑

1≤i1 6=i2≤[nλ]

∑

[nλ]+1≤j1 6=j2≤n

E (g(Xi1 , Xj1)g(Xi2 , Xj2))
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The elements of the first sum all are bounded, hence

(36)

[nλ]
∑

i=1

n
∑

j=[nλ]+1

E(g(Xi, Xj))
2 ≤ C[nλ](n− [nλ]).

Concerning the second sum, by Lemma 7.6, we get

∑

1≤i1<i2≤[nλ]

∑

[nλ]+1≤j1<j2≤n

E (g(Xi1 , Xj1)g(Xi2 , Xj2))

≤ 4S
∑

1≤i1<i2≤[nλ]

∑

[nλ]+1≤j1≤j2≤n

φ(a[k/3])

+8S2
∑

1≤i1<i2≤[nλ]

∑

[nλ]+1≤j1≤j2≤n

(
√
a[k/3] + β([k/3]))(37)

with k = max{|i2− i1|, |j2− j1|}. We will first treat the summands with k = i2− i1. Suppose
for one moment that k is fixed and we will bound the number of indices that appear in the
sum. Observe that in this case we have [nλ] ways to choose i1, once i1 is chosen we have one
way to pick i2 because i2 = i1 + k. For j1 we have as before n− [nλ] ways to pick this index
and then for each j1, j2 need to be in the interval [j1, j1+ k] and there are exactly k integers
in such interval.

(38)
∑

1≤i1<i2≤[nλ]

∑

[nλ]+1≤j1<j2≤n

(

4Sφ(a[k/3] + 8S2√a[k/3] + 8S2β([k/3]))
)

≤ C[nλ](n− [nλ])

(

n
∑

k=1

kφ(ak) +
n
∑

k=1

k
√
ak +

n
∑

k=1

kβ(k)

)

≤ C[nλ](n− [nλ])

Analogously we can find the bounds for the terms with k = i1−i2, k = j2−j1 and k = j1−j2
using the conditions of summability. �

We now define the process G(λ), 0 ≤ λ ≤ 1, by

(39) Gn(λ) := n−3/2

[nλ]
∑

i=1

n
∑

j=[nλ]+1

g(Xi, Xj), 0 ≤ λ ≤ 1.

Lemma 5.3. Under the conditions of Lemma 5.2, there exists a constant C such that

(40) E(|Gn(η)−Gn(µ)|2) ≤
C

n
(η − µ),

for all 0 ≤ µ ≤ η ≤ 1.
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Proof. We can write

E(|Gn(η)−Gn(µ)|2)(41)

≤ 2

n3
E





[nµ]
∑

i=1

[nη]
∑

j=[nµ]+1

g(Xi, Xj)





2

+
2

n3
E





[nη]
∑

i=[nµ]+1

n
∑

j=[nη]+1

g(Xi, Xj)





2

=
2

n3
E





[nµ]
∑

i=1

[nη]
∑

j=[nµ]+1

g(Xi, Xj)





2

+
2

n3
E





[nη]−[nµ]
∑

i=1

n−[nµ]
∑

j=[nη]−[nµ]+1

g(Xi, Xj)





2

≤ C
1

n3
([nµ]([nη]− [nµ]) + ([nη]− [nµ])(n− [nη])) ≤ C

n
(η − µ)

using the stationarity of the process (Xn)n∈N and Lemma 5.2. �

Proof of Proposition 5.1. From Lemma 5.3 we obtain, using Chebyshev’s inequality,

(42) P (|Gn(η)−Gn(µ)| ≥ ε) ≤ 1

ε2
C

n
(η − µ),

for all ε > 0. Thus we get for 0 ≤ k ≤ m ≤ n with k,m, n ∈ N

P

(∣

∣

∣

∣

Gn

(m

n

)

−Gn

(

k

n

)∣

∣

∣

∣

≥ ε

)

≤ 1

ε2
E

(

Gn

(m

n

)

−Gn

(

k

n

))2

≤ 1

ε2
C

n2
(m− k) ≤ 1

ε2
C

n5/3
(m− k)4/3(43)

as m− k ≤ n. Now consider the variables

(44) ζi =

{

Gn

(

i
n

)

−Gn

(

i−1
n

)

if i = 1, . . . , n− 1
0 else

and suppose that Si = ζ1 + ζ2 + . . . + ζi with S0 = 0, then Si = Gn(
i
n
). In consequence the

inequality (43) is equivalent to

(45) P (|Sm − Sk| ≥ ε) ≤ 1

ε2

[

C3/4

n5/4
(m− k)

]4/3

for 0 ≤ k ≤ m ≤ n.

So the assumption of Theorem 7.7 are satisfaced with the variables (44) in the role of the ξi,
β = 1/2, α = 2/3 and ul = C3/4/n5/4, uo = 0 and hence

(46) P

(

max
1≤i≤n−1

|Si| ≥ ε

)

≤ K

ε2

[

C3/4

n5/4
(n− 1)

]4/3

≤ KC

ε2n1/3

where K depends only of α and β. Thus, (32) holds as n → ∞. �

6. Proof of Main Results

In this section, we will prove Theorem 2.4 and Theorem 2.6. Note that Theorem 2.6 is a
direct consequence of Theorem 2.4, applied to anti-symmetric kernels. We will nevertheless
present a direct proof of Theorem 2.6, since this proof is much simpler than the proof in the
general case. Moreover, Theorem 2.6 covers those cases that are most relevant in applications.
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The first part of the proof is identical for both Theorem 2.4 and Theorem 2.6. Note that,
for each λ ∈ [0, 1], the statistic Tn(λ) is a two-sample U-statistic. Thus, using the Hoeffding
decomposition (8), we can write Tn(λ) as

Tn(λ) =
1

n3/2





[λn]
∑

i=1

n
∑

j=[λn]+1

(h1(Xi) + h2(Xj) + g(Xi, Xj))





=
1

n3/2



(n− [nλ])

[nλ]
∑

i=1

h1(Xi) + [nλ]
n
∑

j=[nλ]+1

h2(Xj) +

[λn]
∑

i=1

n
∑

j=[λn]+1

g(Xi, Xj)



(47)

By Proposition 5.1, we know that

1

n3/2
sup

0≤λ≤1

∣

∣

∣

∣

∣

∣

[λn]
∑

i=1

n
∑

j=[λn]+1

g(Xi, Xj)

∣

∣

∣

∣

∣

∣

→ 0

in probability. Thus, by Slutsky’s lemma, it suffices to show that the sum of the first two
terms, i.e.

(48)





n− [nλ]

n3/2

[nλ]
∑

i=1

h1(Xi) +
[nλ]

n3/2

n
∑

j=[nλ]+1

h2(Xj)





0≤λ≤1

converges in distribution to the desired limit process.

Proof of Theorem 2.6. It remains to show that (48) converges in distribution to σW (0)(λ), 0 ≤
λ ≤ 1, where (W (0)(λ))0≤λ≤1 is standard Brownian bridge on [0, 1], and where σ2 is defined
in (17). By antisymmetry of the kernel h(x, y), we obtain that h2(x) = −h1(x). Hence, in
this case, (48) can be rewritten as

n− [nλ]

n3/2

[nλ]
∑

i=1

h1(Xi)−
[nλ]

n3/2

n
∑

i=[nλ]+1

h1(Xi) =
1

n1/2

[nλ]
∑

i=1

h1(Xi)−
[nλ]

n3/2

n
∑

i=1

h1(Xi).

By Proposition 2.11 and Lemma 2.15 of Borovkova, Burton and Dehling (2001), the se-
quence (h1(Xi))i≥1 is a 1-approximating functional with approximating constant C

√
ak.

Since h1(Xi) is bounded, the L2-near epoch dependence in the sense of Wooldridge and
White (1988) also holds, with the same constants. Moreover, the underlying process (Zn)n≥1

is absolutely regular, and hence also strongly mixing. Thus we may apply the invariance
principle in Corollary 3.2 of Wooldridge and White (1988), and obtain that the partial sum
process

(49)





1

n1/2

[nλ]
∑

i=1

h1(Xi)





0≤λ≤1

converges weakly to Brownian motion (W (λ))0≤λ≤1 with Var(W (1)) = σ2. The statement
of the Theorem follows with the continuous mapping theorem for the mapping x(t) 7→
x(t)− tx(1), 0 ≤ t ≤ 1. �

The proof of Theorem 2.4 requires an invariance principle for the partial sum process
of R2-valued dependent random variables; see Proposition 6.1 below. For mixing processes,
such invariance principles have been established even for partial sums of Hilbert space valued



14 H. DEHLING, R. FRIED, I. GARCIA, AND M. WENDLER

random vector, e.g. by Dehling (1983). In this paper, we provide an extension of these results
to functionals of mixing processes.

Proposition 6.1. Let (Xn)n∈N be a 1−approximating functional of an absolutely regular
process with mixing coefficients (β(k)) and let h1(·), h2(·) be bounded 1−Lipschitz functions
with mean zero. Suppose that the sequences (β(k))k≥0, (ak)k≥0 and (φ(ak))k≥0 satisfy

(50)
∑

k

k2(β(k) + ak + φ(ak)) < ∞.

Then, as n → ∞,

(51)





1√
n

[nt]
∑

i=1

(

h1(Xi)
h2(Xi)

)





0≤t≤1

−→
(

W1(t)
W2(t)

)

0≤t≤1

where (W1(t),W2(t))0≤t≤1 is a two-dimensional Brownian motion with mean zero and co-
variance E(Wk(s)Wl(t)) = min(s, t)σkl, for 0 ≤ s, t ≤ 1 with σk,l as defined in (13).

Proof. To prove (51), we need to establish finite dimensional convergence and tightness.
Concerning finite-dimensional convergence, by the Cramér-Wold device it suffices to show
the convergence in distribution of a linear combination of the coordinates of the vector

(52)





1√
n

[nt1]
∑

i=1

h1(Xi),
1√
n

[nt1]
∑

i=1

h2(Xi), . . . ,
1√
n

[ntj ]
∑

i=1

h1(Xi),
1√
n

[ntj ]
∑

i=1

h2(Xi)),

. . . ,
1√
n

n
∑

i=1

h1(Xi),
1√
n

n
∑

i=1

h2(Xi)

)

,

for 0 = t0 < t1 < . . . < tj < . . . < tk = 1. Any such linear combination can be expressed as

(53)
k
∑

j=1

1√
n

[ntj ]
∑

i=[ntj−1]+1

(ajh1(Xi) + bjh2(Xi)),

for (aj, bj)
k
j=1 ∈ R

2 k. By using the Cramér-Wold device again, the weak convergence of this
sum is equivalent to the weak convergence of the vector

(54)





1√
n

[nt1]
∑

i=1

(a1h1(Xi) + b1h2(Xi)), . . . ,
1√
n

[ntj ]
∑

i=[ntj−1]+1

(ajh1(Xi) + bjh2(Xi)),

. . . ,
1√
n

n
∑

i=[ntk−1]+1

(akh1(Xi) + bkh2(Xi))





to

(55)
(

a1(W1(t1)−W1(t0)) + b1(W2(t1)−W2(t0)), . . . ,

ak(W1(tk)−W1(tk−1)) + bk(W2(tk)−W2(tk−1))
)

.
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Since (Xn)n≥1 is a 1−approximating functional, it can be coupled with a process consisting
of independent blocks. Given integers L := Ln = [n3/4] and ln = [n1/2], we introduce the
(l, L) blocking (Bm)m≥0 of the variables (ajh1(Xi)+ bjh2(Xi)) with i = [ntj−1] + 1, . . . , [ntj ],
j = 0, . . . , k and

(56) Bm :=

m(Ln+(m−1)ln)
∑

i=(m−1)(Ln+ln)+1

(ajh1(Xi) + bjh2(Xi))

and separating blocks

(57) B̃m :=

m(Ln+ln)
∑

i=mLn+(m−1)ln+1

(ajh1(Xi) + bjh2(Xi)).

By Theorem 7.4 there exists a sequence of independent blocks (B′
m) with the same blockwise

marginal distribution as (Bm) and such that

P (|Bm −B′
m| ≤ 2αl) ≥ 1− β(l)− 2αl,

where αl :=
(

2
∑∞

k=[ln/3]
ak

)1/2

. We can express the components of our vector (54) as a sum

of blocks

(58)

[ntj+1]
∑

i=[ntj ]+1

(ajh1(Xi) + bjh2(Xi))

=

[

ntj+1

L+l

]

∑

m=
[

ntj
L+l

]

+1

Bm +

[

ntj+1

L+l

]

∑

m=
[

ntj
L+l

]

+1

B̃m +
∑

Rj

(ajh1(Xi) + bjh2(Xi)),

where Rj denotes the set of indices not contained in the blocks. Observe that by the Lemma
7.1 for any set A ⊂ {1, . . . , n}

(59) E

(

∑

i∈A
(ajh1(Xi) + bjh2(Xi))

)2

≤ C#A

and hence

(60) E







[

ntj+1

L+l

]

∑

m=
[

ntj
L+l

]

+1

B̃m







2

≤ C
n

Ln + ln
ln ≤ Cn3/4,

so it follows with the Chebyshev inequality that this term is negligible. For the last summand,
we have that

(61) E





∑

Rj

(ajh1(Xi) + bjh2(Xi))





2

≤ C2(Ln + ln) ≤ Cn3/4.
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Furthermore, we need to show that we can replace the blocks Bm by the independent coupled
blocks B′

m:

P







∣

∣

∣

∣

∣

∣

∣

1√
n

[

ntj+1

L+l

]

∑

m=
[

ntj
L+l

]

+1

(Bm −B′
m)

∣

∣

∣

∣

∣

∣

∣

> ε






≤

[

ntj+1

L+l

]

∑

m=
[

ntj
L+l

]

+1

P

(

|Bm − B′
m| >

ε
√
n

n1/4

)

≤ n
1

4

(

β([
ln
3
]) + α[ ln

3
]

)

→ 0

as n → ∞ by our conditions on the mixing coefficients and approximation constants. Here
we used that fact that αn → 0 and thus, for almost all n ∈ N,

(62) P
(

|Bm − B′
m| > εn1/4

)

≤ P (|Bm − B′
m| > 2αln) .

With the above arguments the result holds if we show the convergence of

(63)
1√
n







[ nt1
L+l ]
∑

m=[ nt0
L+l ]+1

B′
m, . . . ,

[

ntk+1

L+l

]

∑

m=[ ntk
L+l ]+1

B′
m






.

Since this vector has independent components, we only need to show the one-dimensional
convergence, which is a consequence of Theorem 7.3, using the summability condition (50).
We now turn to the question of tightness and show that, for each ε and η, there exist a δ,

0 < δ < 1, and an integer n0 such that, for 0 ≤ t ≤ 1,

(64)
1

δ
P

(

sup
t≤s≤t+δ

|Yn(s)− Yt| ≥ ε

)

≤ η, n ≥ n0

with

(65) Yn(t) =
1

σ
√
n

[nt]
∑

i=1

h1(Xi) + (nt− [nt])
1

σ
√
n
X[nt]+1

(h2 can be treated in the same way) and by Theorem 7.8, this condition reduces to: For each
positive ε there exist a α > 1 and an integer n0, s. t.

(66) P

(

max
i≤n

∣

∣

∣

∣

∣

i
∑

j=1

h1(Xj)

∣

∣

∣

∣

∣

≥ λ
√
n

)

≤ ε

λ2
, n ≥ n0.

Let t ≥ s, s, t ∈ [0, 1]. By Lemma 7.2 we get

E





∣

∣

∣

∣

∣

∣

1√
n

[nt]
∑

i=1

h1(Xi)−
1√
n

[ns]
∑

i=1

h1(Xi)

∣

∣

∣

∣

∣

∣

4

 =
1

n2
E





[nt]
∑

[ns]+1

h1(Xi)





4

≤ 1

n2
(([nt]− [ns])2C)(67)

and this implies

(68) P

(∣

∣

∣

∣

∣

1√
n

m
∑

i=1

h1(Xi)−
1√
n

k
∑

i=1

h1(Xi)

∣

∣

∣

∣

∣

≥ ε

)

≤ 1

ε4

(

C1/2

n
(m− k)

)2

.
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By Theorem 7.7

(69) P

(

max
i≤n

∣

∣

∣

∣

∣

i
∑

j=1

h1(Xj)

∣

∣

∣

∣

∣

≥ ε
√
n

)

≤ K

ε4

(

C1/2

n
(n− 1)

)2

and we get the assertion. In this way, we have established tightness of each of the two
coordinates of the partial sum process. This also implies tightness of the vector-valued
process. �

Proof of Theorem 2.4. From Proposition 6.1 we obtain that

(70)





1√
n

[nλ]
∑

i=1

(

h1(Xi)
h2(Xi)

)





0≤λ≤1

−→
(

W1(λ)
W2(λ)

)

0≤λ≤1

,

in distribution on the space (D([0, 1]))2. We consider the functional given by

(71)

(

x1(t)
x2(t)

)

7→ (1− t)x1(t) + t(x2(1)− x2(t)), 0 ≤ t ≤ 1.

This is a continuous mapping from (D[0, 1])2 to D[0, 1], so we may apply the continuous
mapping theorem to (70), and obtain




n− [nλ]

n3/2

[nλ]
∑

i=1

h1(Xi) +
[nλ]

n3/2

n
∑

j=[nλ]+1

h2(Xj)





0≤λ≤1

−→ ((1− λ)W1(λ) + λ(W2(1)−W2(λ)))0≤λ≤1 .

Together with the remarks at the beginning of this section, this proves Theorem 2.4. �

7. Appendix: Some Auxiliary Results from the Literature

In this section, we collect some known lemmas and theorems for weakly dependent data.
We start with some results on the behaviour of partials sums:

Lemma 7.1 (Lemma 2.23 [3]). Let (Xk)k∈Z be a 1−approximating functional with constants
(ak)k≥0 of an absolutely regular process with mixing coefficients (β(k))k≥0. Suppose moreover
that EXi = 0 and that one of the following two conditions holds:

(1) X0 is bounded a.s. and
∑∞

k=0(ak + β(k)) < ∞.

(2) E|X0|2+δ < ∞ and
∑∞

k=0(a
δ

1+δ

k + β
δ

1+δ (k)) < ∞.

Then, as N → ∞,

(72)
1

N
ES2

N → EX2
0 + 2

∞
∑

j=1

E(X0Xj)

and the sum on the r.h.s. converges absolutely.

Lemma 7.2 (Lemma 2.24 [3]). Let (Xk)k∈Z be a 1−approximating functional with constants
(ak) of an absolutely regular process with mixing coefficients (β(k))k≥0. Suppose moreover
that EXi = 0 and that one of the following two conditions holds:

(1) X0 is bounded a.s. and
∑∞

k=0 k
2(ak + β(k)) < ∞.

(2) E|X0|4+δ < ∞ and
∑∞

k=0 k
2(a

δ
3+δ

k + β
δ

4+δ (k)) < ∞.
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Then there exits a constant C such that

(73) ES4
N ≤ CN2.

Theorem 7.3 (Theorem 4 [3]). Let (Xk)k∈Z be a 1−approximating functional with constants
(ak)k≥0 of an absolutely regular process with mixing coefficients (β(k))k≥0. Suppose moreover
that EXi = 0, E|X0|4+δ < ∞ and that

(74)
∞
∑

k=0

k2(a
δ

3+δ

k + β
δ

4+δ (k)) < ∞,

for some δ > 0. Then, as n → ∞,

(75)
1√
n

n
∑

i=1

Xi → N (0, σ2),

where σ2 = EX2
0 + 2

∑∞
j=1 E(X0Xj). In case σ2 = 0, N (0, 0) denotes the point mass at the

origin. If X0 is bounded, the CLT continues to hold if (74) is replaced by the condition that
∑∞

k=0 k
2(ak + β(k)) < ∞.

An important tool to derive asymptotic results for weakly dependent data are coupling
methods, we will need this method to prove the invariance principle (Proposition 6.1).

Theorem 7.4 (Theorem 3 [3]). Let (Xn)n∈N be a 1−approximating functional with summable
constants (ak)k≥0 of an absolutely regular process with mixing rate (β(k))k≥0. Then given
integers K,L and N , we can approximate the sequence of (K + 2L,N)−blocks (Bs)s≥1 by
a sequence of independent blocks (B′

s)s≥1 with the same marginal distribution in such a way
that

(76) P (||Bs −B′
s|| ≤ 2αL) ≥ 1− β(K)− 2αL,

where αL := (2
∑∞

l=L al)
1/2

.

In statistical application, the question of how to estimate σ2 is important. In the situation
when the observations are a functional of α−mixing process, Dehling et al. [9] propose
the estimation of the variance of partial sums of dependent processes by the subsampling
estimator

(77) D̂n =
1

[n/ln]

√

π

2

[n/ln]
∑

i=1

|T̂i(ln)− lnŨn|√
ln

with T̂i(l) =
∑il

j=(i−1)l+1 Fn(Xj) and Ũn = 1
n

∑n
j=1 Fn(Xj), where Fn(·) is the empirical

distribution function (e.d.f.).

Theorem 7.5 (Theorem 1.2 [9]). Let (Xk)k≥1 be a stationary, 1-approximating functional
of an α−mixing processes. Suppose that for some δ > 0, E|X1|2+δ < ∞, and that the mixing
coefficients (αk)k≥1 and the approximation constants (ak)k≥1 satisfy

(78)
∞
∑

k=1

(αk)
2

2+δ < ∞,

∞
∑

k=1

(ak)
1+δ
2+δ < ∞.

In addition, we assume that F is Lipschitz-continuous, that αk = O(n−8) and that am =

O(m−12). Then, as n → ∞, ln → ∞ and ln = o(
√
n), we have D̂n −→ σ in L2.
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To deal with the degenerate kernel g, we need to find upper bounds for E (g(Xi1 , Xj1)g(Xi2 , Xj2)),
in terms of the maximal distance among the indices. Due to 1 ≤ i1 < i2 ≤ [nλ] and
[nλ] + 1 ≤ j1 < j2 ≤ n, w.l.o.g. i1 < i2 < j1 < j2.

Lemma 7.6 (Proposition 6.1 in [8]). Let (Xn)n≥1 be a 1−approximating functional with
constants (ak)k≥1 of an absolutely regular process with mixing coefficients (β(k))k≥1 and let
g(x, y) be a 1−continuous bounded degenerate kernel. Then we have

(79) |E(g(Xi1 , Xj1)g(Xi2 , Xj2))| ≤ 4Sφ(a[k/3]) + 8S2(
√
a[k/3] + β([k/3]))

where S = | supx,y g(x, y)| and k = max {i2 − i1, j1 − i2, j2 − j1}
The following two results are useful for proving tightness of a stochastic process. The

first one is used to control the fluctuation of maximum. Let ξ1, . . . , ξn be random variables
(stationary or not, independent or not). We denote by Sk = ξ1 + . . .+ ξk (S0 = 0), and put
Mn = max0≤k≤n |Sk|.
Theorem 7.7 (Theorem 10.2 [2]). Suppose that β ≥ 0 and α > 1/2 and that there exist
nonnegative numbers u1, . . . , un such that for all positive λ

(80) P (|Sj − Si| ≥ λ) ≤ 1

λ4β

(

∑

i<l≤j

ul

)2α

, 0 ≤ i ≤ j ≤ n ,

then for all positive λ

(81) P (Mn ≥ λ) ≤ Kβ,α

λ4β

(

∑

0<l≤n

ul

)2α

,

where Kβ,α is a constant depending only on β and α.

Theorem 7.8 (Theorem 8.4 [2]). The sequence {Yn}, defined by

(82) Yn(t) =
1

σ
√
n
S[nt] + (nt− [nt])

1

σ
√
n
ξ[nt]+1

is tight if for each ε > 0 there exist a λ > 1 and a n0 ∈ N such that for n ≥ n0

(83) P

(

max
i≤n

|Sk+i − Sk| ≥ λσ
√
n

)

≤ ε

λ2
.
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