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1 Introduction

Following the events of the recent financial crisis, economists and practitioners alike have

stressed the need for a more prudent management of financial risks. There now exists a wide-

spread consensus in the empirical literature that the dependence between the returns of financial

assets is asymmetric, nonlinear and time-varying (Longin and Solnik, 2001; Ang and Chen, 2002).

Consequently, copula models, which allow for a flexible modeling of nonlinear dependence struc-

tures, have been advocated in the seminal papers by Embrechts et al. (2002) and Li (2000) as

alternatives to correlation-based models. Since then, several studies have found empirical evi-

dence for elliptical copulas yielding only suboptimal Value-at-Risk (VaR) estimates due to their

symmetric tail (in-)dependence (Cherubini et al., 2004; Fischer et al., 2009; Weiß, 2011). It is this

inadequacy to model the lower tail dependence often found in financial returns that has spurred the

search for alternative parametric copula models apart from the Gaussian and Student’s t copula.

In this paper, we propose to forecast the VaR of bivariate portfolios using copulas which are

calibrated solely on the basis of nonparametric sample estimates of the coefficient of lower tail

dependence (LTD). A first step in this direction has been made in Weiß (2011) and Jäschke et al.

(2012) where it is shown that choosing a model based on usual goodness-of-fit tests (see, e.g., Trede

and Savu, 2008, for a discussion of copula goodness-of-fit tests) may not provide a good model for

tail dependence. In the present work, we go a step further and show that calibrating a copula model

by fitting the lower tail dependence (LTD) to the data does indeed yield better VaR forecasts. To

fully capture the LTD in the returns on financial assets, we first use the nonparametric estimator

of tail dependence proposed by Schmidt and Stadtmüller (2006) and estimate the LTD in a given

in-sample of portfolio returns. The estimates for the LTD are then transformed into corresponding

parameters of the lower tail dependent Clayton copula. In contrast to estimation procedures based

on maximizing the copula’s likelihood function, which estimate the copula parameters by using

information on the complete dependence structure, we calibrate the model by only incorporating

information on the tail dependence in the data. Our approach is motivated by the notion that the

knowledge of the tails as well as the center of a distribution will be merged by the ML-estimation
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into one single parameter of an Archimedean copula. As a consequence, forecasting risk measures

in the lower left tail in the distribution will lose in accuracy as the tails are not adequately modeled.

After calibrating the Clayton copula with the nonparametric estimate of LTD, we forecast the VaR

of a portfolio using GARCH models for the marginals.1

We compare our proposed method to a conventional copula-GARCH model where the param-

eter of the Clayton copula is estimated via Canonical Maximum-Likelihood (CML) (Kim et al.,

2007). We examine the usefulness of our method by analyzing a data sample of nine different

portfolios consisting of different financial assets. To be precise, we model the distributions of the

returns on one electricity index, one natural gas index, two commodities as well as the stocks of

five electric utility service providers.2 Our choice of financial assets is guided by the wish to test

the forecasting accuracy of our proposed model based on a data sample that includes sufficient

tail events. Consequently, we model the distribution of securities that presumably were heavily

influenced by the financial crisis as well as the Fukushima Daiichi nuclear disaster in Japan.

The results presented in this paper show that our proposed method of calibrating a copula

model with a nonparametric estimate of the lower tail dependence performs significantly better

than the standard method of estimating the copula parameter via Canonical Maximum Likelihood

with respect to risk forecasting. We show in formal backtesting that our calibration strategy yields

significantly fewer VaR-exceedances than the parametric benchmark.

The remainder of this article is structured as follows. Section 2 introduces the nonparametric

estimator of the coefficient of lower tail dependence as well as the copula-GARCH model we use.

In Section 3 the results of the empirical study are presented and discussed. Concluding remarks

are given in Section 4.

1Thus yielding the standard copula-GARCH approach to estimating and forecasting multivariate portfolio VaR
(Hsu et al., 2012; Nikoloulopoulos et al., 2011; Weiß, 2011).

2For a related study of the dependence structures inherent in energy commodities, see Börger et al. (2009).
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2 Methodology

2.1 Copulas and Tail Dependence Functions

The theory of copulas dates back to Sklar (1959). A copula is a function that embodies all the

information about the dependence structure between the components of a random vector. From

a probabilistic point of view, it is a multivariate distribution function with uniformly distributed

margins on the interval [0, 1]. Let us consider two random variables X, Y with continuous marginal

distribution functions F (x) := P (X ≤ x) and G(y) := P (Y ≤ y), respectively, where x and y

are real numbers. By Sklar’s theorem, there exists a unique copula C such that

P (X ≤ x, Y ≤ y) = C(F (x), G(y)). (1)

Conversely, if C is a copula and F,G are distribution functions, then the function defined via (1)

is a bivariate distribution function with margins F,G. It follows that copulas can be interpreted as

dependence functions since they separate the marginal distributions from the dependence structure.

We have

C(u, v) = P (U ≤ u, V ≤ v) = P (X ≤ F−1(u), Y ≤ G−1(v)), (2)

for all u, v ∈ [0, 1], where F−1 and G−1 denote the (generalized) inverses of F and G, respectively.

Let F̄ (x) := 1 − F (x) = P (X > x) and Ḡ(y) := 1 − G(y) = P (Y > y) denote the

corresponding survival functions of X and Y . Define a function Ĉ by

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v), (3)

for all u, v ∈ [0, 1]. Then we obtain

P (X > x, Y > y) = Ĉ(F̄ (x), Ḡ(y)). (4)

The function Ĉ is a copula itself and is called the survival copula of X and Y . In view of (4), the
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survival copula links the joint survival function to its univariate margins in a manner completely

analogous to the one in which the copula connects the joint distribution function to its margins.

Hence, for all u, v ∈ [0, 1], we have

Ĉ(u, v) = P (U > 1− u, V > 1− v)

= P (X > F−1(1− u), Y > G−1(1− v)).

(5)

For further details regarding the theory of copulas we refer the reader to Nelsen (2006).

As the focus of this paper is to characterize and measure extreme dependence, the rest of this

section is devoted to the concept of tail dependence, which concentrates on the upper and lower

quadrant tails of the joint distribution. The standard way to determine whether X and Y are tail

dependent is to look at the so-called lower and upper tail dependence coefficients, denoted by LTD

and UTD, respectively. LTD is the limit (if it exists) of the conditional probability that X is less

than or equal to the u-th quantile of F , given that Y is less than or equal to the u-th quantile of G

as u approaches 0, i.e.

LTD := lim
u→0+

P (X ≤ F−1(u) | Y ≤ G−1(u)). (6)

Similarly, UTD is the limit (if it exists) of the conditional probability that X is greater than the

u-th quantile of F , given that Y is greater than the u-th quantile of G as u approaches 1, i.e.

UTD := lim
u→1−

P (X > F−1(u) | Y > G−1(u)). (7)

From a practitioner’s point of view, lower tail dependence can be interpreted as the limiting

likelihood of two financial assets to crash together. Consequently, several studies in economics

have underlined the necessity for econometric models to account for the possibility of lower tail

dependent assets in financial portfolios (see, e.g., Poon et al., 2004). While many empirical studies

like, e.g., Christoffersen et al. (2012) use parametric models for describing tail dependent financial
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data, it is interesting to note that the tail dependence coefficients are nonparametric and depend

only on the copula C of X and Y . In particular, we have

LTD = lim
u→0+

C(u, u)

u
(8)

and

UTD = lim
u→1−

1− 2u+ C(u, u)

1− u
= lim

u→0+

Ĉ(u, u)

u
, (9)

where Ĉ is the survival copula of X and Y defined in (3). In view of these identities, passing from

LTD to UTD is the same as passing from C to Ĉ so we may, and will, concentrate on LTD and

disregard UTD for the rest of our paper.3

2.2 Nonparametric Estimation of Tail Dependence

To estimate the lower tail dependence coefficient, we will use the estimator for LTD introduced

in Schmidt and Stadtmüller (2006). Let (X, Y ) be a bivariate random vector with distribution

function F and copula C, having marginal distributions functions G and H , respectively, and

(X(1), Y (1)), . . . , (X(T ), Y (T )) be an independent and identically distributed sample of (X, Y ) of

size T . If we denote the empirical distribution functions corresponding to F,G,H by FT , GT , HT ,

respectively, the empirical copula CT is given by

CT (u, v) = FT (G
−1
T (u), H−1

T (v)).

In this setting, the estimator introduced in Schmidt and Stadtmüller (2006) is defined as

L̂TDT :=
T

k
CT

( k

T
,
k

T

)

3In the context of modeling the profit and loss distributions of financial assets, LTD is usually of much larger
interest to investors and risk managers than UTD.
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where k = k(T ) is some parameter satisfying k → ∞ and k/T → 0 as T → ∞. To compute the

nonparametric LTD estimate, consider the ranks R(t)
T1 and R

(t)
T2 (t = 1, . . . , T ) of the observations

X(t) and Y (t) in the sample. The LTD estimate is then given by

L̂TDT =
1

k

T∑
t=1

1{
R

(t)
T1≤k and R

(t)
T2≤k

} (10)

where the parameter k ∈ {1, . . . , T} is chosen by the use of a plateau-finding algorithm.

2.3 Value-at-Risk Forecasting

In this subsection, we quickly review the modeling of the marginals as well as the procedure to

forecast portfolio Value-at-Risk.

Financial data are commonly found to exhibit conditional heteroscedasticity, skewness and lep-

tokurtosis in logarithmic returns. As most theoretical results for copulas including Sklar’s theorem

only hold for i.i.d. samples, financial data are usually filtered using univariate GARCH(1,1) mod-

els to yield approximately i.i.d. samples of standardized residuals.4 We follow the vast majority of

studies in the financial econometrics literature on copula models (Jondeau and Rockinger, 2006;

Fantazzini, 2009; Hafner and Reznikova, 2010) and employ standard GARCH(1,1) models with

Student’s t-distributed innovations to filter our initial data sample.5

We consider time series of daily mid prices Pt (t = 0, 1, . . . , T ) of a financial asset. The

logarithmic return Rt on the asset on day t is defined as Rt := log(Pt/Pt−1). Our main focus lies on

the modeling of the joint distribution of the return on a portfolio of 2 assets with returns (R t1, Rt2).

The marginal distributions of this random vector are modeled using GARCH(1,1) specifications

Rtj = μj + σtjZtj , (11)

σ2
tj = α0j + α1jR

2
t−1,j + βjσ

2
t−1,j , j = 1, . . . , d; t = 1, . . . , T, (12)

4Garmann and Grundke (2013) show for copula goodness-of-fit tests that using GARCH filters to account for the
time-varying volatility in financial returns is indeed necessary when later estimating a copula model.

5Hansen and Lunde (2005) show that the GARCH(1,1) specification, in general, cannot be outperformed by more
complex variants of the ARCH or GARCH models.
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where Ztj are Student’s t-distributed innovations. The vectors Zt = (Zt1, Zt2) with t = 1, . . . , T

are assumed to be distributed according to

FZ(z; ν1, ν2, ω) = C [F1(z1; ν1), F2(z2; ν2);ω] (13)

with parameters ν1, ν2 for the innovations’ distribution and a copula with parameter ω. As the

dependence in financial market data is commonly characterized by strong lower tail dependence,

we only consider the Clayton copula as a parametric family for C.6 The parameters of the marginal

models are estimated via Maximum-Likelihood. For the parameter of the copula C, two different

estimation procedures will be used. First, the parameter of the copula will be estimated by us-

ing the standard Canonical Maximum-Likelihood (CML) method with rank-transformed pseudo-

observations (McNeil et al., 2005).7 Second, we alternatively obtain the copula parameter by es-

timating the coefficient of lower tail dependence nonparametrically with the estimator of Schmidt

and Stadtmüller (2006) and converting this nonparametric estimate into the (uniquely identified)

parameter of the Clayton copula.

In the following as well as in our empirical study, we consider equally-weighted portfolios

consisting of two financial assets with log returns (Rt1) and (Rt2). Using an in-sample of T

observations (i.e., trading days), we then wish to forecast the Value-at-Risk and Expected Shortfall

of the portfolio for the following day T + 1 via Monte Carlo simulation. The algorithm we use

for forecasting the VaR and ES is an adapted version of the procedure laid out by Nikoloulopoulos

et al. (2011). Their algorithm, however, only considers an in-sample estimation whereas we employ

an out-of-sample version of their original simulation procedure extended by Weiß (forthcoming).

Then, the VaR and ES are forecasted as follows:

6Other parametric copula families are obviously possible and more flexible approaches like mixture copulas could
yield an even better fit of the model to the data. The focus of our paper, however, lies on an accurate modeling of the
lower tail dependence in financial market data. We therefore opted for a simple Clayton copula as our dependence
model as the coefficient of lower tail dependence is easily transformed into the parameter of the Clayton copula.

7Note that the CML estimator has been shown to yield less biased parameter estimates than, e.g., the Inference
For Margins or Full Maximum-Likelihood methods (Kim et al., 2007). It has since been accepted as the method of
choice for estimating copula parameters (Genest et al., 2009).
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• For K = 5, 000, simulate K observations u
(k)
T+1,1, u

(k)
T+1,2 (k = 1, . . . , K) from the fitted

copula.

• Convert u(k)
T+1,j to z

(k)
T+1,j (j = 1, 2) using the quantile function of the Student’s t-distribution.

• Transform z
(k)
T+1,j into the simulated return R

(k)
T+1,j = μ̂j + σ̂T+1,jz

(k)
T+1,j where σ̂T+1,j and μ̂j

(j = 1, 2) are the forecasted one-step ahead conditional volatility and mean values from the

previously fitted marginal models.

• Compute the simulated portfolio return as R(k)
T+1,p = 2−1

∑2
j=1R

(k)
T+1,j .

• Smooth the simulated log returns by kernel density estimation (Epanechnikov kernel)

(Pritsker, 2006; Alexander and Sheedy, 2008).

• Compute the VaR at the 100(1−α)% confidence level for day T +1 as the α-quantile of the

kernel density estimate.

• Update the information set with the actual portfolio return RT+1,p, reestimate all models and

forecast the portfolio return for day T + 2 and so forth.

The procedure described above is repeated for both the copula model based on the CML pa-

rameter estimate as well as the parameter estimate obtained by nonparametrically estimating the

coefficient of lower tail dependence.

The resulting time series of VaR-exceedances, i.e., the days on which the portfolio suffered

losses exceeding the VaR forecast on that day, are backtested by the use of the test of conditional

coverage (Christoffersen, 1998; Christoffersen and Pelletier, 2004). The p-values of the test are

approximated via parametric bootstrapping.8

After forecasting the VaR for each day in the out-of-sample, we additionally compute the esti-

mate for the portfolios’ sample Expected Shortfall as the mean of the simulated returns beyond the

8Additionally, the forecasting performance of the models could also be analyzed by the ranking model proposed by
Şener et al. (2012). As we only consider two models, however, such a ranking would yield only a marginal incremental
insight into the forecasting accuracy of the models.
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estimated VaRs in the out-of-sample. The models’ Expected Shortfall estimates are then backtested

using the sample asymptotics derived by Wong (2008) under a standard normal null hypothesis.

3 Empirical Study

3.1 Data

Our sample includes the log returns on one electricity index (ICE UK Electricity Baseload

Index), one natural gas index (EEX EGIX NCG Index), two commodities (Crude Oil - Brent

Dated FOB and MLCX - South African Coal) and the stocks of five global electric utility service

providers (BP, E.ON, Royal Dutch Shell, RWE and Tohoku Electric Power). The data were ob-

tained from Thomson Reuters Datastream.9 The complete sample covers the period from May 12,

2008 to June 3, 2011 and includes 800 trading days. Our sample thus includes both the peak of

the recent financial crisis as well as the Fukushima Daiichi nuclear disaster in Japan (March 2011).

Time series plots of the data used in our empirical study are presented in Figure 1.

— insert Figure 1 here —

The plots in Figure 1 highlight several distinct challenges for the econometric forecasting of

risk measures for portfolios built from these assets. First, we can see from the plots that the dif-

ferent assets are characterized by extremely different levels of overall volatility as well as price

movements (see, e.g., the extreme spikes in the ICE index at the beginning of our sample as com-

pared to the relatively calm period following this volatility cluster). For all nine time series, we can

observe increased levels of volatility in the returns during the first 250 trading days in the in-sample

coinciding with the climax of the financial crisis. The Fukushima Daiichi nuclear disaster at the

end of our sample seems to have caused extreme tail events in the stock returns of Tohoku Electric

Power. At the same time, both E.ON and Shell experienced only moderate losses on their stocks.

9Ince and Porter (2006) propose several screening procedures for stock prices obtained from Thomson Reuters
Datastream. We control our sample both for stock prices below $ 1 (which could lead to erroneous log returns due to
Datastream’s practice of rounding prices) and log returns above 300% that are reversed within one month. None of
our time series suffer from these known data errors in Datastream.
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While BP also did not experience any downside movements of its stock during the Fukushima Dai-

ichi disaster, the stock nevertheless suffered severe losses between April and July 2010 following

the Deepwater Horizon oil spill (sample days 508 to 559). Finally, the plots reveal that both the

initial in- as well as the out-of-samples for the nine assets we consider differ considerably with

respect to the returns’ volatility and tail events. While for some assets return volatility is low in

the initial in-sample and increases thereafter (see, e.g., the plot for Tohoku Electric Power), the op-

posite (i.e., lower asset return volatilities in the out-of-sample) is true for several other time series

(see, e.g., E.ON, BP and Shell).

Descriptive statistics as well as results of the Jarque-Bera test of normally distributed log re-

turns are given in Table 1.

— insert Table 1 here —

The results given in Table 1 underline our first impression of the time series plots that several

of the assets used in our study experienced extreme tail events both in our in-sample as well as

the out-of-sample. For example, the ICE UK Electricity index exhibited a minimum log return of

−69.31% in the in-sample while its minimum in the out-of-sample was just −5.35%. Conversely,

both RWE and Tohoku Electric Power had modest minimum log returns of −8.47% and −9.45%

in the in-sample but suffered extreme minimum returns of −14.04% and −23.84% in the out-

of-sample, respectively. Unreported results on the skewness and kurtosis of the data confirm the

stylized facts of skewed and fat-tailed returns in our full sample. As a consequence, the Jarque-

Bera test of normally distributed log returns can be rejected for all time series in the in-sample.

Although the data for two time series (MLCX and Royal Dutch Shell) seem to be approximately

normally distributed in the out-of-sample, we nevertheless employ a GARCH(1,1) model with

Student’s t-distributed innovations as the Jarque-Bera test is rejected for both series in the initial

in-sample. Also note that the volatility of the time series differs significantly both across the nine

assets we use as well as across time.

From the nine assets, we build nine bivariate portfolios for which we forecast the portfolio

Value-at-Risk on each day of the out-of-sample containing 300 trading days. The portfolios we
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consider are built as follows: ICE UK Electricity Baseload and EEX EGIX NCG Index (portfolio

1), Crude Oil Brent and MLCX (portfolio 2), Crude Oil Brent and E.ON (portfolio 3), Crude Oil

Brent and Shell (portfolio 4), Crude Oil Brent and BP (portfolio 5), RWE and E.ON (portfolio

6), RWE and Shell (portfolio 7), RWE and BP (portfolio 8) and Shell and Tohoku Electric Power

(portfolio 9). Both assets enter each portfolio with equal weights to control for a possibly biasing

influence the specific choice of weights might have on the forecasting accuracy of our models.

3.2 Results

We start the discussion of the results of our empirical study by first comparing the parametric

and nonparametric estimates of the coefficient of lower tail dependence. The parametric and non-

parametric estimates of the LTD for all nine bivariate portfolios in the out-of-sample are presented

in Figure 2.

— insert Figure 2 here —

Across all nine portfolios, we can observe a general trend of the parametric model to yield

lower LTD estimates than the nonparametric estimator and thus possibly underestimate the true

level of lower tail dependence between the two portfolio constituents. With the exception of port-

folios five and six (Crude Oil Brent/BP and RWE/E.ON) and few forecasting days for portfolios

four and eight (Crude Oil Brent/Shell and RWE/BP), the parametric estimates of the lower tail

dependence are always lower than the corresponding nonparametric estimates. For portfolios one

and three (ICE/EEX EGIX NCG and Crude Oil Brent/E.ON), both the time series of the paramet-

ric and nonparametric LTD estimates seem to comove with the difference between the two staying

constant for any given day in the out-of-sample. In contrast, estimates for portfolios seven and

eight (RWE/Shell and RWE/BP) differed only slightly at the beginning of the out-of-sample but

dispersed considerably afterwards. For portfolio nine (Shell/Tohoku), the parametric model yields

LTD estimates that are constantly zero due to an overall bad fit of the parametric Clayton copula

model. Only for portfolio six (RWE/E.ON) does the nonparametric LTD estimator yield lower
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LTD estimates than the parametric model via Canonical Maximum Likelihood estimation. The

plots given in Figure 2 thus confirm our hypothesis that the LTD estimates extracted from the para-

metric models fitted via CML and the nonparametric estimates differ considerably. It thus remains

to be seen whether these differences in the way the LTD in a portfolio is estimated has a significant

influence on the accuracy of Value-at-Risk forecasts for the portfolio.

To test our hypothesis that copula models calibrated by the use of nonparametric estimates of

lower tail dependence can significantly improve the accuracy of VaR forecasts in comparison to a

parametric model calibrated via Maximum Likelihood, we use both model approaches to forecast

the VaR and ES for the nine portfolios described above for each day in our out-of-sample consisting

of 300 trading days. Following the general procedure laid out in Section 2.3, we compare the VaR

and ES estimates from two different model setups.

The first model we consider is a Clayton copula model with GARCH(1,1) marginals (t-

distributed innovations) and the parameter of the Clayton copula being estimated via Canonical

Maximum Likelihood (parametric model). The second model we consider equals the first one with

the exception that the parameter of the Clayton copula is estimated via the transformed nonpara-

metric estimate of the coefficient of lower tail dependence (nonparametric model). Both models

are estimated based on samples of size 500. We use both fitted models to forecast the portfolio

returns, Value-at-Risk as well as Expected Shortfall for the following trading day. The estimation

sample is then updated with the next day in the out-of-sample and all models are reestimated using

the updated sample. The procedure is repeated for all 300 trading days in the out-of-sample and the

resulting VaR and ES estimates are backtested using the formal tests of Christoffersen and Pelletier

(2004) and Wong (2008). The confidence level for the VaR forecasting is 95%. For each day in the

out-of-sample, the VaR and ES forecasts are computed based on 5, 000 simulated daily portfolio

returns. The resulting VaR forecasts from the two models as well as the realized portfolio returns

for all nine portfolios are shown in Figure 3.

— insert Figure 3 here —
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The plots given in Figure 3 provide us with a first hint at the superiority of our proposed

model based on nonparametric LTD estimates. With the exception of portfolio one (ICE/EEX

EGIX), the model based on the CML parameter estimates seems to underestimate risk for all

remaining eight portfolios compared to the approach based on nonparametric LTD estimates. The

reason for the considerably bad fit of both models for portfolio one is easily seen from the time

series plot of the ICE index in Figure 1 which shows that the initial in-samples of the portfolio

are characterized by extreme volatility in the log returns that vanishes completely after about 70

trading days. Consequently, the VaR forecasts computed from in-samples containing these highly

volatile times are too conservative.10 For the remaining eight portfolios, both models seem to yield

adequate VaR forecasts with the VaR forecasts based on the nonparametric LTD estimates being

slightly smaller than the corresponding forecasts from the model estimated via CML.

To formally test the accuracy of the VaR and ES forecasts of both models, we performe both

the test of conditional coverage (CC test) by Christoffersen and Pelletier (2004) and the Expected

Shortfall (ES) backtest proposed by Wong (2008) on the two models’ results. The results for the

tests are presented in Table 2. The table presents the number of VaR-exceedances, the p-value of

the test of conditional coverage as well as the test decision for the ES backtest for all nine portfolios

and both models (parametric and nonparametric) used for forecasting the portfolio VaR and ES.

The expected number of VaR-exceedances for each portfolio is 15.

— insert Table 2 here —

The results in Table 2 confirm our finding that the VaR forecasts based on CML parameter es-

timates significantly underestimate portfolio risk. The number of VaR-exceedances is significantly

higher for the parametric model than for the forecasts computed by using the nonparametric LTD

estimates. Only for portfolio one (ICE/EEX EGIX) does the nonparametric modeling of the lower

tail dependence not improve the accuracy of the VaR forecasts. However, this result is most likely

10Note that both models are capable of adapting quickly to extreme portfolio returns as can be seen from the plot
for portfolio nine (Shell/Tohoku). Although both models are not able to anticipate the extreme negative return around
trading day 240 (i.e., the Fukushima Daiichi nuclear disaster), VaR forecasts immediately drop down to about −13%
just five trading days after the extreme shock.
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due to the highly irregular time series behaviour of the ICE index (extremely high volatility in the

beginning compared to virtually no price movements in the later parts of the sample). In contrast,

the parametric model yielded 19 VaR-exceedances more than expected for portfolios three and

four. While this result alone is indicative of an inaccurate forecasting of portfolio risk, we cannot

decide per se whether the number of VaR-exceedances is still acceptable or not. To this end, the

p-values for the test of conditional coverage reveal that for four portfolios (three, four, six and

seven), the VaR forecasts of the model using the CML parameter estimates are rejected while the

model based on the nonparametric LTD estimates yields acceptable VaR forecasts. For portfolios

two, five, eight and nine, the parametric model yields considerably more VaR-exceedances which,

however, cannot be rejected by the formal backtest. In summary, our proposed method of calibrat-

ing a copula model with a nonparametric estimate of the lower tail dependence with the purpose

of forecasting a quantile-based risk measure in the lower tail of a portfolio’s distribution performs

significantly better than the standard method of estimating the copula parameter via Canonical

Maximum Likelihood. The backtesting results underline the finding that the differences between

the two models’ VaR forecasts are highly significant.

Conversely, the formal ES backtest does not reject any of the models’ ES forecasts with the

exception of the nonparametric model’s forecasts for portfolio five (Crude Oil Brent/BP). It thus

seems that the ES forecasts from both models do not differ considerably. The results on the ES

backtests have to be interpreted with care, however, as the sample size for the test was regularly

smaller than ten.11

4 Conclusion

This paper proposes to forecast the VaR of bivariate portfolios by the use of copula models

which are calibrated with nonparametric estimates of the coefficient of lower tail dependence. Our

approach is motivated by the notion that copula models that are estimated based on information on

11Backtesting forecasts of Expected Shortfall is known to suffer from small sample biases as noted, e.g., by Wong
(2008).
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the complete underlying distribution could significantly underestimate tail risk. Using the Canoni-

cal Maximum-Likelihood estimator as a benchmark, we show that the ML-estimated model yields

significantly smaller estimates of the coefficient of lower tail dependence than our proposed model.

These results hint at the possibility that a Clayton copula estimated via Maximum-Likelihood could

systematically underestimate the lower tail dependence inherent in a given data sample.

The results of our empirical study strongly corroborate this finding as we find our proposed

model to perform significantly better in VaR backtesting than the ML-estimated benchmark. Our

proposed model produces fewer VaR-exceedances in out-of-sample backtesting than the bench-

mark for all nine portfolios we consider. For four out of these nine bivariate portfolios, we find

that the differences in the number of VaR-exceedances is statistically significant as evidenced by

the formal test of conditional coverage.

It could be argued that this paper’s focus on bivariate copulas is a serious limitation of our

work’s pratical relevance. Although our proposed model significantly improves bivariate portfolio

VaR forecasts, portfolios of financial assets are often of much higher dimension. We nevertheless

believe our findings from the analysis of bivariate copulas to be highly relevant. Recent work by

Aas et al. (2009) and Dissmann et al. (2013) emphasizes that so-called pair-copula constructions

are extremely well suited for modeling financial returns in high dimensions. As these hierarchical

models are built from bivariate copulas as buildings blocks, our findings should be directly applica-

ble to high-dimensional pair-copula models. The extension of our work to the field of pair-copula

modeling thus appears to be a promising avenue for further research.
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2011-08 Matthias Röger and Reiner Schätzle
Control of the isoperimetric deficit by the Willmore deficit

2011-07 Frank Klinker
Generalized duality for k-forms

2011-06 Sebastian Aland, Andreas Rätz, Matthias Röger, and Axel Voigt
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