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Abstract: We study a system of small strain visco-plasticity. We use an
additive decomposition of the strain into elastic and plastic part, and allow
for non-linear relations in the Hooke’s law and in the flow rule. We show
the existence of solutions, using a time-discrete approximation scheme. The
limit procedure is based on a strong convergence result for the time-discrete
solution sequence.
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1 Introduction

Elasto-plasticity is a commonly used constitutive model in the macroscopic han-
dling of a wide variety of materials ranging from metals to granular materials.

In a small strain setting, that is when both stretches and rotations are as-
sumed to be small in comparison to the size of the sample under consideration,
elasto-plasticity is by now a mathematically established theory. In recent years
it has been revisited within the rapidly expanding framework of variational evo-
lutions; see in particular [2]. In that context, it is usually tackled through an
time-incremental variational process as in [2]. However, the original existence
proof for small strain elasto-plasticity [7] was based on a visco-plastic approxima-
tion which is not of a variational nature.

The setting of small strain elasto-plasticity is mathematically very rigid. In
a nutshell, the linearized strain ∇su(t) of the displacement field u(t), i.e., the
symmetric part of ∇u(t) is decomposed additively into an elastic and a plastic
part

∇su(t) = e(t) + p(t), (1.1)
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the elastic part e(t) is related linearly to the Cauchy stress σ(t) through Hooke’s
law,

σ(t) = Ae(t), with A a symmetric mapping on symmetric tensors, (1.2)

while the plastic part of the strain p is given through a differential inclusion

∂tp(t) ∈ NK(σ(t)), (1.3)

where K is a convex, compact set of admissible stresses and NK stands for the
normal cone to K at σ(t). Implicit in that relation is the constraint that σ(t) must
belong to K.

If looking at a quasi-static evolution, then σ(t) must be equilibrated by the
external body loads f(t), that is

div σ(t) + f(t) = 0. (1.4)

The visco-plastic approximation consists in replacing NK(σ(t)) in (1.3) by ε−1(σ−
PK(σ)), where PK is the orthogonal projection onto K and ε > 0 is a small
parameter. As is well-known to readers accustomed to convex duality, this is
equivalent to replacing

σ(t) ∈ ∂H(∂tp(t)),

where H(q) := sup{q · τ : τ ∈ K} is the support function of K by

σ(t)− ε∂tp(t) ∈ ∂H(∂tp(t)).

In essence the positively one-homogeneous support function H(q) – called the
dissipation potential – is quadratically regularized, becoming H(q) + ε|q|2/2.

In any case, at this time there is no existence theory for quasi-static elasto-
plastic evolutions when one chooses to modify the linear stress-strain relation
(1.2). One could easily argue against the propriety of investigating a non-linear
stress-strain relation because the latter is viewed as ill-suited to a small strain
setting.

However, we believe that such an investigation would be useful as a first step
towards finite plasticity. Indeed, abandonment of the small strain assumption
results in a slew of hotly debated models which will not be discussed here. Those
have as common feature the competition between two non-linear terms: the stress-
strain relation which controls the equilibrium and the dissipation term which con-
trols the evolution of the plastic strain. Of course the difficulties are compounded
by the apparent necessity of switching to a multiplicative decomposition of the
deformation gradient, in lieu of the additive decomposition introduced earlier (see
e.g. [6]).

In this light, the present contribution should be viewed as a necessary pre-
liminary step if one wishes to mimic the visco-plastic approximation of elasto-
plasticity in a non-linear setting. We thus propose to investigate a visco-plastic
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model where the stress-strain relation is no longer linear as in (1.2), but only
monotone. The existence of a quasi-static evolution in such an environment is
established in Theorem 2.4 and constitutes the main result of this contribution.

From the standpoint of visco-plasticity, there is no compelling mathematical
rationale for limiting one’s scope to a variational setting. This is why we prefer to
set up a non-variational framework; we then proceed through a time-incremental
procedure detailed in Section 3.

In Remark 3.1, we quickly illustrate the simplifications that a variational
framework would bring to the analysis (at least at the time-incremental level).
We recall that system (2.1)–(2.4) below is not of variational type since σ̃ and ψ
are monotone functions, but not necessarily gradients. Furthermore, we emphasize
that the system is not rate-independent.

The presented model is amenable to many mathematical generalizations: spa-
tial dependence of the non-linear laws, replacement of monotone operators by
suitable monotone graphs, etc .... We have decided to keep the model as simple
as possible, because our admittedly distant goal is to carry the analysis over to
the pure elasto-plastic setting.

In terms of notation, we denote the space of symmetric n × n-matrices by
Rn×n
s , the associated (Frobenius) scalar product A : B = tr (AT · B) =

∑
i,j aijbij

and the associated norm by ‖A‖ =
√
A : A. As already seen ∇su denotes the

symmetrized gradient, ∇su = (∇u+ (∇u)T )/2 of a field u : Ω→ Rn.

2 The visco-plastic model

As already announced in the introduction, we follow the modeling of additive
small strain elasto-plasticity and refer to e.g. [5] for a detailed exposition of that
model (see also [1, 3]).

In particular, the symmetric gradient of the deformation u : Ω→ Rn is decom-
posed additively into an elastic deformation tensor e and a plastic deformation
tensor p; see (2.2) below. The Cauchy stress tensor, a symmetric tensor denoted
by σ, is assumed to be non-linearly related to the elastic deformation e by a gen-
eral monotone law; see (2.3) below. Because we are only considering quasi-static
evolutions, it should also satisfy the equilibrium equations under the applied volu-
mic loads f ; see (2.1) below. The other non-linear relation is the flow-rule, which
describes the evolution of the plastic deformation in terms of the stress tensor;
see (2.4) below.

The quasi-static evolution system reads as

−∇ · σ = f (2.1)

∇su = e+ p (2.2)

σ = σ̃(e) (2.3)

∂tp = ψ(σ) (2.4)
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In this contribution, we derive an existence result for the above doubly non-linear
set of equations.

We adopt the following

Assumption 2.1 (Properties of the constitutive relations). Assume that σ̃(0) = 0
and, for some γ, δ > 0, the following strong monotonicity properties: For all
matrices E1, E2 ∈ Rn×n

s and Σ1,Σ2 ∈ Rn×n
s

(σ̃(E1)− σ̃(E2)) : (E1 − E2) ≥ γ ‖E1 − E2‖2

((σ̃−1(Σ1)− (σ̃−1(Σ2)) : (Σ1 − Σ2) ≥ δ ‖Σ1 − Σ2‖2
(2.5)

Also assume that

ψ : Rn×n
s → Rn×n

s is monotone and Lipschitz continuous with constant L.

Remark 2.2. Note that, if we were to attempt to pass to a purely elasto-plastic
model, then the Lipschitz constant L would be of order ε−1. In that case, the
bounds in Lemma 4.1 would depend on ε and the strong convergence statement
of Lemma 4.3 below would no longer hold in the ε↘ 0-limit. ¶

Initial and boundary values. Let T > 0 be a time horizon and let Ω ⊂ Rn

be a bounded domain with Lipschitz boundary. The boundary ∂Ω with exterior
normal ν is decomposed into a Dirichlet boundary ΓD and a Neumann boundary
ΓN , where ΓD is open in the relative topology of ∂Ω and ΓN = ∂Ω \ Γ̄D. We
introduce

H1
D(Ω;Rn) :=

{
v ∈ H1(Ω;Rn) : v = 0 on ΓD

}
.

For p0 ∈ L2(Ω;Rn×n
s ), w ∈ L2(0, T ;H1(Ω;Rn)), g ∈ L2(0, T ;H−

1
2 (∂Ω;Rn)) we

impose the initial and boundary conditions

p(0) = p0 in Ω, (2.6)

u(t) = w(t) on ΓD, (2.7)

σ(t) · ν = g(t) on ΓN . (2.8)

Definition 2.3 (Weak solution). We call (u, e, p) a weak solution of (2.1)–(2.8)
iff the following holds:

• Regularity:

u ∈ L2(0, T ;H1(Ω;Rn)), e ∈ L2(0, T ;L2(Ω;Rn×n
s ))

σ := σ̃(e) ∈ L2(0, T ;L2(Ω;Rn×n
s )), p ∈ W 1,2(0, T ;L2(Ω;Rn×n

s ));

• Equations (2.2) and (2.4) are satisfied, as well as the initial and boundary
conditions (2.6)–(2.7) while (2.1), (2.8) are satisfied in the following sense:
for a.e. t ∈ (0, T ) and any ϕ ∈ H1

D(Ω;Rn),∫
Ω

σ(t) : ∇sϕ dx =

∫
Ω

f(t) · ϕ dx+ 〈g(t), ϕ〉, (2.9)
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where 〈. , .〉 denotes from now onward the duality product between H
1
2 (∂Ω;Rn)

and H−
1
2 (∂Ω;Rn).

We will prove existence of weak solutions to the doubly non-linear visco-
plasticity system (2.1)–(2.8). We emphasize that our result is restricted to quasi-
static evolutions and to a strongly monotone non-linearity σ̃.

Theorem 2.4 (Existence result). Under assumption 2.1, let the initial and bound-
ary conditions be given by

p0 ∈ L2(Ω;Rn×n
s ), w ∈ L2(0, T ;H1(Ω;Rn)), g ∈ L2(0, T ;H−

1
2 (∂Ω;Rn))

while f ∈ L2(0, T ;L2(Ω;Rn)). Then, there exists a weak solution to system (2.1)–
(2.8) in the sense of Definition 2.3.

Remark 2.5. The monotonicity of ψ is only used for the existence of solutions
to the time-discrete approximation in Subsection 3.1. ¶

3 The time-stepping scheme

We consider the following time-discrete approximation of system (2.1)–(2.4). With
a number N ∈ N of time steps we discretize the interval [0, T ] with

0 = t0 < t1 < . . . < tN = T.

For example, we may use the time increment ∆t = T/N and choose equidistant
points tk := k∆t, k = 0, . . . , N . The functions uk ∈ H1(Ω;Rn) and ek, pk ∈
L2(Ω;Rn×n

s ) shall be approximations of the solution-values u(tk), e(tk), and p(tk)
for k ≥ 1. For k = 0, we use the initial data p0 as the value in t0 = 0. Initial data
for u or e are not used. The loads and boundary values are discretized with time
averages as

fk :=
1

tk − tk−1

∫ tk

tk−1

f(τ) dτ, gk :=
1

tk − tk−1

∫ tk

tk−1

g(τ) dτ (3.1)

wk :=
1

tk − tk−1

∫ tk

tk−1

w(τ) dτ.

We use the backward Euler discretization of (2.2)–(2.4), (2.6)–(2.7), (2.9),
which reads, for all k = 1, . . . , N , as∫

Ω

σk : ∇sϕ dx =

∫
Ω

fk · ϕ dx+ 〈gk, ϕ〉, ∀ϕ ∈ H1
D(Ω;Rn) (3.2)

∇suk = ek + pk (3.3)

σk = σ̃(ek) (3.4)

pk − pk−1

tk − tk−1

= ψ(σk) (3.5)

uk = wk on ΓD (3.6)
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Remark 3.1 (Existence for the discrete scheme in the variational case). Assume
additionally that ψ is invertible and that σ̃ and ψ−1 are gradients of a potential.
In other words, let Q,R : Rn×n

s → R be differentiable and convex potentials such
that

DQ = σ̃, DR = ψ−1. (3.7)

Note that Q is automatically strictly convex.

Then the discrete scheme (3.2)–(3.5) possesses a solution.

Indeed, at every time step we minimize, for a given pk−1, the functional∫
Ω

{
Q(e) + (tk − tk−1)R

(
p− pk−1

tk − tk−1

)
− fk · u

}
dx− 〈gk, u〉 (3.8)

in the variables (u, e, p) under the constraint

e+ p = ∇su and u ∈ H1(Ω;Rn) satisfies u = wk on ΓD . (3.9)

The existence of a minimizer can be shown with the direct method.

A minimizing triplet (uk, ek, pk) ∈ H1(Ω;Rn)×L2(Ω;Rn×n
s )×L2(Ω;Rn×n

s ) sat-
isfies, by construction, equation (3.3) and the boundary condition. Furthermore,
it satisfies the Euler-Lagrange equation∫

Ω

{
σ̃(ek) : ξ + ψ−1

(
pk − pk−1

tk − tk−1

)
: ζ − fk v

}
dx− 〈gk, v〉 = 0 ∀ ξ + ζ = ∇sv ,

with v ∈ H1
D(Ω;Rn). We insert, for an arbitrary v, the variations ξ = ∇sv and

ζ = 0 and obtain (3.2), (3.4). Finally, we insert v = 0 and arbitrary ξ = −ζ to
obtain

σ̃(ek) = ψ−1

(
pk − pk−1

tk − tk−1

)
.

This provides relation (3.5). ¶

3.1 Galerkin scheme for the single time-step

Our aim is to show the solvability of the scheme (3.2)–(3.6) for general mono-
tone non-linear relations. Concentrating on a single time instance k, we regard
pk−1 ∈ L2(Ω;Rn×n

s ) as a given function. We introduce the (k-dependent) non-
linear function

ψ̃(Σ) := pk−1 + (tk − tk−1)ψ(Σ) (3.10)
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which is again monotone, since ψ is monotone. Omitting the subscript k, the
system now reads as∫

Ω

σ : ∇sϕ dx =

∫
Ω

f · ϕ dx+ 〈g, ϕ〉, ∀ϕ ∈ H1
D(Ω;Rn) (3.11)

∇su = e+ p in Ω (3.12)

σ = σ̃(e) in Ω (3.13)

p = ψ̃(σ) in Ω (3.14)

u = w on ΓD. (3.15)

In order to solve system (3.11)–(3.15), we use finite dimensional approxima-
tions of the function spaces and weak formulations of the equations. We choose a
sequence {wh} of H1(Ω;Rn) with

wh → w in H1(Ω;Rn) (3.16)

and a sequence of finite dimensional spaces V 0
h ⊂ H1

D(Ω,Rn), Xh ⊂ L2(Ω,Rn×n
s )

such that

∇sV 0
h ⊂ Xh (3.17)⋃

h

V 0
h is dense in H1

D(Ω;Rn) (3.18)

‖v0
h‖H1(Ω) ≤ C‖∇sv0

h‖L2(Ω), ∀v0
h ∈ V 0

h . (3.19)

Above C is a constant in Poincaré-Korn’s inequality which is independent of h.

Remark 3.2. Such a sequence of finite-dimensional spaces can always be con-
structed upon considering an orthonormal basis of eigenvectors {uj, j ∈ N} of
−4 with the boundary conditions u = 0 on ΓD and ∂u/∂ν = 0 on ΓN . With
index h ∈ N, the space V 0

h is that generated by the h-tuple (u1, ....., uh) and Xh

is the space of symmetric gradients of functions in V 0
h . ¶

Remark 3.3. In the case when ∂b∂ΩΓD is a smooth N−2 -dimensional manifold,
one possible choice of function spaces V 0

h and Xh are finite element spaces: Let
Th be a triangulation of a polygonal superdomain Ωh ⊃ Ω̄ with simplices, h > 0
indicating the diameter of the largest simplex; the union should be such that no
simplex has an empty intersection with Ω. We assume that Ωh approximates
the Lipschitz domain Ω from outside for h → 0. On boundary elements of ∂Ωh

that approximate ΓD (in the sense that the union of the closure of those elements
contains Γ̄D), we impose a nul boundary condition. The space V 0

h ⊂ H1
D(Ω,Rn)

is then defined as that of the piecewise affine and continuous functions on the
triangulation while elements of Xh ⊂ L2(Ω,Rn×n

s ) are piecewise constant functions
on the triangulation. ¶
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We construct a Galerkin scheme for the system (3.11)–(3.14) as follows. Find
(uh, eh, ph, σh) ∈ (wh + V 0

h )×Xh ×Xh ×Xh such that, for all ϕ0
h ∈ V 0

h , ηh ∈ Xh∫
Ω

σh : ∇sϕ0
h dx =

∫
Ω

f · ϕ0
h dx+ 〈g, ϕ0

h〉 (3.20)∫
Ω

(∇suh − eh − ph) : ηh dx = 0 (3.21)∫
Ω

(σh − σ̃(eh)) : ηh dx = 0 (3.22)∫
Ω

(ph − ψ̃(σh)) : ηh dx = 0. (3.23)

Lemma 3.4 (Solvability of the space-discrete equations (3.20)–(3.23)). Under
Assumption 2.1, the system (3.20)–(3.23) admits a solution

(uh, eh, ph, σh) ∈
(
wh + V 0

h

)
×Xh ×Xh ×Xh.

Proof. Step 1. There exists a Lipschitz continuous and strongly monotone map
Σ−1
h : Xh → Xh with the following solution property: for every σh ∈ Xh, the

function eh := Σ−1
h (σh) solves (3.22).

To prove this fact, we use the L2(Ω)-orthogonal projection Ph : L2(Ω)→ L2(Ω)
onto Xh, and study the map Σh : Xh → Xh given by Σh(eh) = Ph(σ̃(eh)). The
map Σh is Lipschitz continuous and strongly monotone on Xh (equipped with the
L2(Ω)-norm). This implies that Σh has an inverse, which provides the desired map
Σ−1
h . Lipschitz continuity and monotonicity of Σ−1

h follow from the corresponding
properties of Σh.

Step 2. There exists a Lipschitz continuous and strongly monotone map Φ−1
h :

Xh → Xh with the following property: for an arbitrary uh ∈ (wh + V 0
h ), the

functions σh := Φ−1
h (∇suh) together with eh := Σ−1

h (σh) and ph := Ph(ψ̃(σh))
solve (3.21)–(3.23).

We construct the map Φh : Xh → Xh as Φh := Σ−1
h + Ph ◦ ψ̃. Strong mono-

tonicity of Σ−1
h and monotonicity of Ph ◦ ψ̃ imply the strong monotonicity of Φh.

Since Φh is additionally Lipschitz continuous, Φh has an inverse Φ−1
h .

It remains to verify the solution properties. The choice eh := Σ−1
h (σh) implies

that (3.22) is satisfied. The choice ph := Ph(ψ̃(σh)) implies that (3.23) is satisfied.
Because of ∇suh = Φh(σh) = eh + ph, (3.21) is also satisfied.

Step 3. With the function Φ−1
h : Xh → Xh, system (3.20)–(3.23) can be

reduced to a single relation. Looking for the solution in the form uh = wh + vh,
the system (3.20)–(3.23) is equivalent to∫

Ω

Φ−1
h (∇s(wh + vh)) : ∇sϕ0

h dx =

∫
Ω

f · ϕ0
h dx+ 〈g, ϕ0

h〉 ∀ϕ0
h ∈ V 0

h , (3.24)

where the unknown is vh ∈ V 0
h . The left hand-side of relation (3.24) defines a map

Fh : V 0
h → (V 0

h )′ from the finite dimensional space V 0
h into its dual (V 0

h )′. The
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operator Fh is continuous and strongly monotone in view of the corresponding
properties of Φ−1

h ; note that we have used Poincaré-Korn’s inequality (3.19). We
conclude that the operator Fh is invertible. Since the right hand-side of relation
(3.24) defines a bounded linear functional on V 0

h , we have thus solved (3.20).

Lemma 3.5 (Existence for the time-discrete scheme). Under Assumption 2.1, the
single time-step system (3.11)–(3.15) admits a solution.

Remark 3.6. Since only finitely many time-steps are performed, Lemma 3.5
implies the existence of a solution to the time-discrete scheme (3.2)–(3.6). ¶

Proof. Step 1: The sequence of space-discrete solutions. Lemma 3.4 provides a
sequence of solutions, indexed by h, of the spatially discretized system (3.20)–
(3.23). The solution satisfies the uniform bound

‖eh‖L2(Ω;Rn×n
s ) + ‖ph‖L2(Ω;Rn×n

s ) + ‖σh‖L2(Ω;Rn×n
s ) + ‖uh‖H1(Ω;Rn) ≤ C . (3.25)

The bound above can be inferred from the construction in Lemma 3.4. We will
provide a different derivation with a testing procedure. Once (3.25) is established,
we can select a subsequence of h→ 0 so that those subsequences converge weakly
to e, p, σ, and u respectively in the appropriate topologies.

Consider the sequence of (3.16). Using ϕ0
h = uh − wh ∈ V 0

h as a test-function
in (3.20) yields, in view of (3.21)–(3.23),∫

Ω

f · (uh − wh) dx+ 〈g, uh − wh〉+

∫
Ω

σh : ∇swh dx =

∫
Ω

σh : ∇suh

=

∫
Ω

σh : eh dx+

∫
Ω

σh : ph dx =

∫
Ω

σ̃(eh) : eh dx+

∫
Ω

σh : ψ̃(σh) dx.

The strong monotonicity of σ̃ (see (2.5)) and the fact that σ̃(0) = 0 implies
that the first integral on the right hand-side controls γ‖eh‖2

L2(Ω;Rn×n
s )

. Since, by

monotonicity of ψ̃,

Σ : ψ̃(Σ) = (Σ− 0) : (ψ̃(Σ)− ψ̃(0)) + Σ : ψ̃(0) ≥ Σ : ψ̃(0),

we get

γ‖eh‖2
L2(Ω;Rn×n

s )
≤ ‖f‖L2(Ω;Rn)‖uh − wh‖L2(Ω;Rn) + ‖g‖H−1/2(∂Ω;Rn)‖uh − wh‖H1(Ω;Rn)

+ ‖σh‖L2(Ω;Rn×n
s )‖∇

swh‖L2(Ω;Rn×n
s ) + Cψ‖σh‖L2(Ω;Rn×n

s ) .

The strong monotonicity of σ̃−1 immediately implies that, in the previous inequal-
ity, the linear terms in ‖σh‖L2(Ω;Rn×n

s ) are bounded above by δ−1‖eh‖L2(Ω;Rn×n
s ). For

linear terms in ‖uh‖H1(Ω), we use the Poincaré-Korn inequality (3.19) and (3.21)
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(with ηh = ∇suh), which yields

‖uh − wh‖H1(Ω;Rn) ≤ C‖∇suh −∇swh‖L2(Ω;Rn×n
s )

≤ C
(
‖∇swh‖L2(Ω;Rn×n

s ) + ‖eh‖L2(Ω;Rn×n
s ) + ‖ph‖L2(Ω;Rn×n

s )

)
≤ C

(
‖∇swh‖L2(Ω;Rn×n

s ) + C ′‖eh‖L2(Ω;Rn×n
s )

)
. (3.26)

We finally obtain, for a new constant C > 0,

γ‖eh‖2
L2(Ω) ≤ C

(
1 + ‖eh‖L2(Ω)

)
, (3.27)

hence the L2(Ω;Rn×n
s )-estimate for eh. In turn, this provides the L2(Ω;Rn×n

s )-
estimates for σh and ph, and, in view of (3.26), an H1(Ω;Rn)-estimate for uh.

Step 2: Limit process in the linear relations. It remains to check that the weak
limit functions e, p, σ, and u solve the original system (3.11)–(3.15). Regarding
(3.11) we observe that, as a consequence of (3.20), the limit function σ satisfies∫

Ω

σ : ∇sϕ dx =

∫
Ω

f · ϕ dx+ 〈g, ϕ〉 ∀ϕ ∈ V 0
h , ∀h. (3.28)

Since, by (3.18), any ϕ ∈ H1
D(Ω;Rn) belongs to ∪hV 0

h , relation (3.28) holds true
for ϕ. The Dirichlet boundary condition on ΓD is satisfied by construction (the
Neumann boundary condition on ΓN is encoded in (3.28)). Similarly, we can take
the limit in (3.21) and obtain ∇su = e+ p, i.e. (3.12).

Step 3: Limit process in the non-linear relations with Minty’s lemma. First,
we claim that∫

Ω

{σ̃(eh) : eh + ψ̃(σh) : σh} dx =

∫
Ω

{σh : eh + ph : σh} dx→
∫

Ω

{σ : e+ p : σ} dx.

(3.29)
Indeed, test (3.20) with ϕ0

h = uh−wh ∈ V 0
h . In view of (3.28) with ϕ = u−w we

obtain ∫
Ω

σh : (eh + ph) dx =

∫
Ω

σh : ∇suh dx

=

∫
Ω

σh : ∇swh dx+

∫
Ω

f · (uh − wh) dx+ 〈g, uh − wh〉

→
∫

Ω

σ : ∇sw dx+

∫
Ω

f · (u− w) dx+ 〈g, u− w〉

=

∫
Ω

σ : ∇su dx =

∫
Ω

σ : (e+ p) dx,

hence (3.29).
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The monotonicity of σ̃ and ψ̃ and (3.29) imply that, for an arbitrary pair
(E,Σ) ∈ [L2(Ω;Rn×n

s )]2

0 ≤
∫

Ω

{
(σ̃(eh)− σ̃(E)) : (eh − E) + (ψ̃(σh)− ψ̃(Σ)) : (σh − Σ)

}
dx

→
{∫

Ω

(σ − σ̃(E)) : (e− E) + (p− ψ̃(Σ)) : (σ − Σ)

}
dx.

But, since σ̃ and ψ̃ are Lipschitz, we can choose (E,Σ) to be of the form (e +
εē, σ+εσ̄), ε > 0 with (ē, σ̄) arbitrary which yields, upon dividing by ε and letting
ε tend to 0, that

(σ, p) = (σ̃(e), ψ̃(σ)) . (3.30)

This verifies the non-linear relations (3.13) and (3.14).

3.2 Construction of time-continuous approximations

The next step in our construction is to introduce interpolations of the time-discrete
values. We proceed as follows.

Set X to be a given Hilbert space and consider a finite number of elements
rk ∈ X , k = 0, . . . , N and the corresponding times 0 = t0 < t1 < . . . < tN = T .
We define the piecewise affine continuous interpolation r̂N : [0, T ] → X and the
piecewise constant left-continuous interpolation r̄N : [0, T ]→ X as

r̄N(t) := rk ∀t ∈ (tk−1, tk],

r̂N(t) := µrk−1 + (1− µ)rk t = µtk−1 + (1− µ)tk, µ ∈ [0, 1].

Let the sequence (uk, ek, pk, σk)k=1,...,N be a solution to the family (3.2)–(3.6)
of time-discrete equations. Recalling the definition (3.10) of ψ̃, we have solved the
following system for almost every t ∈ (0, T ):∫

Ω

σ̄N : ∇sϕ dx =

∫
Ω

f̄N · ϕ dx+ 〈ḡN , ϕ〉, ∀ϕ ∈ H1
D(Ω;Rn) (3.31)

∇sūN = ēN + p̄N in Ω (3.32)

σ̄N = σ̃(ēN) in Ω (3.33)

∂tp̂
N = ψ(σ̄N) in Ω (3.34)

ūN = w̄N on ΓD. (3.35)

In the next section we will derive uniform estimates for solutions of (3.31)–
(3.35) and perform the limit N → ∞. The difficulty in the limit procedure is in
the handling of (3.33) and (3.34) because limit functions do not necessarily satisfy
the same non-linear relations. The limit is achieved through a strong convergence
result for ēN and σ̄N .



12 A doubly non-linear system in small-strain visco-plasticity

4 The time-continuous limit

We first establish some a priori bounds for ūN , ēN , p̄N , σ̄N .

Lemma 4.1 (Estimates for the time-discrete scheme). Under Assumption 2.1
there exists C > 0 independent of N such that

‖ēN‖L2(0,T ;L2(Ω;Rn×n
s )) + ‖p̄N‖L2(0,T ;L2(Ω;Rn×n

s ))+ (4.1)

‖σ̄N‖L2(0,T ;L2(Ω;Rn×n
s )) + ‖ūN‖L2(0,T ;H1(Ω;Rn)) ≤ C .

A similar estimate holds true for the piecewise affine interpolations.

Proof. The proof is almost identical to that of Step 1 in the proof of Lemma 3.5.
We fix a time instance t ∈ (0, T ) for which (3.31)–(3.35) are satisfied. We insert
(ūN − w̄N) into (3.31) and obtain, for the time instance t,∫

Ω

σ̄N : ∇sw̄N dx+

∫
Ω

f̄N · (ūN − w̄N) dx+ 〈ḡN , ūN − w̄N〉 =

∫
Ω

σ̄N : ∇sūN dx

=

∫
Ω

σ̄N : ēN dx+

∫
Ω

σ̄N : p̄N dx =

∫
Ω

σ̃(ēN) : ēN dx+

∫
Ω

σ̄N : p̄N dx.

The first integral in the right hand-side controls γ‖ēN‖2
L2(Ω;Rn×n

s )
. The strong

monotonicity of σ̃−1 implies that ‖σ̄N‖L2(Ω;Rn×n
s ) ≤ δ−1‖ēN‖L2(Ω;Rn×n

s ) and allows
one to conclude that

γ‖ēN‖2
L2(Ω;Rn×n

s )
≤ δ−1‖∇sw̄N‖L2(Ω;Rn×n

s )‖ē
N‖L2(Ω;Rn×n

s ) (4.2)

+ ‖f̄N‖L2(Ω;Rn)‖ūN − w̄N‖L2(Ω;Rn) + ‖ḡN‖
H− 1

2 (∂Ω;Rn)
‖ūN − w̄N‖H1(Ω;Rn)

+ δ−1‖ēN‖L2(Ω;Rn×n
s )‖p̄

N‖L2(Ω;Rn×n
s ).

The Poincaré-Korn inequality, together with (3.32), yields, for some C > 0 inde-
pendent of N ,

‖ūN‖H1(Ω;Rn) ≤ C
(

1 + ‖ēN‖L2(Ω;Rn×n
s ) + ‖p̄N‖L2(Ω;Rn×n

s )

)
.

Inserting that inequality into (4.2) yields with Young’s inequality, for some possi-
bly different C > 0, still independent of N ,

‖ēN(t)‖2
L2(Ω;Rn×n

s )
≤ C

(
1 + FN(t) + ‖p̄N(t)‖2

L2(Ω;Rn×n
s )

)
, (4.3)

where

FN(t) := ‖w̄N(t)‖2
H1(Ω;Rn) + ‖f̄N(t)‖2

L2(Ω;Rn) + ‖ḡN(t)‖2

H− 1
2 (∂Ω;Rn)

.
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The norm of p̄N(t) is computed as follows, for some C > 0, independent of N :

‖p̄N(t)‖2
L2(Ω;Rn×n

s )
=

∥∥∥∥p0 +

∫ t

0

∂tp̂
N(τ) dτ

∥∥∥∥2

L2(Ω;Rn×n
s )

≤ C

(
1 +

∥∥∥∥∫ t

0

ψ(σ̄N(τ)) dτ

∥∥∥∥2

L2(Ω;Rn×n
s )

)

≤ C

(
1 + δ−2L2

∥∥∥∥∫ t

0

|ēN(τ)| dτ
∥∥∥∥2

L2(Ω;Rn×n
s )

)

≤ C

(
1 + δ−2L2T

∫ t

0

‖ēN(τ)‖2
L2(Ω;Rn×n

s )
dτ

)
.

Inserting this into (4.3), we find

‖ēN(t)‖2
L2(Ω) ≤ C

(
1 + FN(t) +

∫ t

0

‖ēN(τ)‖2
L2(Ω) dτ

)
.

An application of a type of Gronwall’s inequality (see Lemma 4.2 below) finally
implies that

‖ēN‖L2(0,T ;L2(Ω;Rn×n
s )) ≤ C‖1 + FN‖L1(0,T ;R) ≤ C

(
1 + ‖f̄N‖L2(0,T ;L2(Ω;Rn×n

s ))

+‖w̄N(t)‖2
L2(0,T ;H1(Ω;Rn)) + ‖ḡN(t)‖2

L2(0,T ;H− 1
2 (∂Ω;Rn))

)
.

This is the desired estimate for ēN . As already used, bounds for ‖ēN(t)‖L2(Ω;Rn×n
s )

provide in turn bounds for ‖σ̄N(t)‖L2(Ω;Rn×n
s ), hence for ‖p̄N(t)‖L2(Ω;Rn×n

s ), and

finally for ‖ūN(t)‖H1(Ω;Rn).
Since the norms of the piecewise affine interpolations are controlled by the

norms of the piecewise constant interpolations, the analogous estimate also holds
true for the piecewise affine interpolations.

Lemma 4.2 (Gronwall in L1(0, T ;R)). Let Y : [0, T ] → R be non-negative and
satisfy the estimate

Y (t) ≤ C0

∫ t

0

Y (τ) dτ + F (t), F ∈ L1(0, T ;R) , t ∈ [0, T ].

Then, for some constant C independent of F ,

‖Y ‖L1(0,T ;R) ≤ C ‖F‖L1(0,T ;R) .

Proof. Set Z(t0) :=
∫ t0

0
Y (t) dt. Then,

Z(t0) ≤ C0

∫ t0

0

Z(t) dt+ ‖F‖L1(0,T ;R) .
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The classical Gronwall’s inequality implies that

Z(t) ≤ ‖F‖L1(0,T ;R) exp(C0t) .

Inserting t = T yields the desired result.

The uniform estimate of Lemma 4.1 enables us to choose a subsequence of
{N} (which will not be relabeled), as well as weak limits e, p, σ, u (resp. ê, p̂, σ̂,
û) such that, e.g.

ēN ⇀ e in L2(0, T ;L2(Ω;Rn×n
s )) (resp. êN ⇀ ê in L2(0, T ;L2(Ω;Rn×n

s ))).

Since weak convergence does not ensure the stability of the non-linear relations
(3.33) and (3.34) in the limit process, we propose to prove the following strong
convergence property.

Lemma 4.3 (Strong convergence). Under Assumption 2.1, let the data p0, w, g
and f be as in Theorem 2.4. Consider a dyadic discretization of [0, T ] and the
associated piecewise constant interpolation (ūN , ēN , p̄N , σ̄N) of the time-discrete
solutions to (3.2)-(3.6).

Then,
σ̄N → σ, ēN → e strongly in L2(0, T ;L2(Ω;Rn×n

s )).

Proof. We study two different indices N and K with N > K, so that the N th-
discretization is a refinement of the Kth-discretization. We consider a point in the
fine grid, t = tNn for some n ≤ N . We use (3.31) with indices N and K , take the
difference, and use [(ūN − w̄N)− (ūK − w̄K)](t) as a test function. We obtain∫

Ω

(σ̄N − σ̄K)(t) : ∇s(ūN − ūK)(t) dx =

∫
Ω

(f̄N − f̄K)(t) · (ūN − ūK)(t) dx

−
∫

Ω

(f̄N − f̄K)(t) · (w̄N − w̄K)(t) dx+

∫
Ω

(σ̄N − σ̄K)(t) : ∇s(w̄N − w̄K)(t) dx

+ 〈 (ḡN − ḡK)(t), [(ūN − ūK)(t)− (w̄N − w̄K)(t)] 〉 =: ε1(t) .

Inserting the decomposition (3.32) in this relation yields∫
Ω

(σ̄N − σ̄K)(t) : (ēN − ēK)(t) dx+

∫
Ω

(σ̄N − σ̄K)(t) : (p̄N − p̄K)(t) dx = ε1(t) .

Because of the strong monotonicity of σ̃ and of relation (3.33), the first integrand
is positive and provides an upper bound for γ‖(ēN − ēK)(t)‖2

L2(Ω;Rn×n
s )

. With

Young’s inequality, we obtain, for an arbitrary 1 > ζ > 0, the estimate

γ‖(ēN − ēK)(t)‖2
L2(Ω;Rn×n

s )
≤ δ−1‖(ēN − ēK)(t)‖L2(Ω;Rn×n

s )‖(p̄
N − p̄K)(t)‖L2(Ω;Rn×n

s )

+ δ−1‖∇s(w̄N − w̄K)(t)‖L2(Ω;Rn×n
s )‖(ē

N − ēK)(t)‖L2(Ω;Rn×n
s )

+ ‖(w̄N − w̄K)(t)‖2
H1(Ω;Rn) + ζ‖(ūN − ūK)(t)‖2

H1(Ω;Rn)

+ C(ζ)
{
‖(f̄N − f̄K)(t)‖2

L2(Ω;Rn) + ‖(ḡN − ḡK)(t)‖2

H− 1
2 (Ω;Rn)

}
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for some constant C(ζ) depending on ζ. The term containing (ūN − ūK)(t) is
bounded from above using Poincaré-Korn’s inequality. Collecting all terms, we
end up with

‖(ēN − ēK)(t)‖2
L2(Ω;Rn×n

s )

≤ C
(
‖(w̄N − w̄K)(t)‖2

H1(Ω;Rn) + ‖(f̄N − f̄K)(t)‖2
L2(Ω;Rn)+

+‖(ḡN − ḡK)(t)‖2

H− 1
2 (Ω;Rn)

+ ‖(p̄N − p̄K)(t)‖2
L2(Ω;Rn×n

s )

)
(4.4)

We recall (3.34), the identity p̄N(t) = p̂N(t) at a grid point t of the (fine)
N -grid, and obtain, at that point t,

‖(p̄N − p̄K)(t)‖L2(Ω;Rn×n
s ) ≤ ‖(p̂

N − p̂K)(t)‖L2(Ω;Rn×n
s ) + ‖(p̂K − p̄K)(t)‖L2(Ω;Rn×n

s )

=

∥∥∥∥∫ t

0

(ψ(σ̄N)− ψ(σ̄K))(τ) dτ

∥∥∥∥
L2(Ω;Rn×n

s )

+ ‖(p̂K − p̄K)(t)‖L2(Ω;Rn×n
s )

≤ δ−1L

∫ t

0

‖(ēN − ēK)(τ)‖L2(Ω;Rn×n
s ) dτ + ‖(p̂K − p̄K)(t)‖L2(Ω;Rn×n

s ) .

The norm of (p̂K − p̄K)(t) is estimated using time tKk ≥ t = tNn of the K-grid,
tKk − t ≤ ∆tK , where ∆tK := maxk≤K(tKk − tKk−1).∥∥(p̂K − p̄K)(t)

∥∥
L2(Ω;Rn×n

s )
=
∥∥p̂K(t)− p̂K(tKk )

∥∥
L2(Ω;Rn×n

s )

=

∥∥∥∥∥
∫ tKk

t

∂tp̂
K(τ) dτ

∥∥∥∥∥
L2(Ω;Rn×n

s )

≤ ∆tK
∥∥ψ(σ̄K(t))

∥∥
L2(Ω;Rn×n

s )

≤ ∆tKL
∥∥σ̄K(t)

∥∥
L2(Ω;Rn×n

s )
.

Inserting the two estimates above into (4.4) finally yields

1

C
‖(ēN − ēK)(t)‖2

L2(Ω;Rn×n
s )
≤ ‖(w̄N − w̄K)(t)‖2

H1(Ω;Rn) + ‖(f̄N − f̄K)(t)‖2
L2(Ω;Rn)

+ ‖(ḡN − ḡK)(t)‖2

H− 1
2 (Ω;Rn)

+ 2L2∆t2K
∥∥σ̄K(t)

∥∥2

L2(Ω;Rn×n
s )

+ 2δ−2L2

∫ t

0

‖(ēN − ēK)(τ)‖2
L2(Ω;Rn×n

s )
dτ .

We can now apply the Gronwall inequality of Lemma 4.2. With a new constant
C, we obtain

1

C
‖ēN − ēK‖2

L2(0,T ;L2(Ω;Rn×n
s ))

≤ ‖w̄N − w̄K‖2
L2(0,T ;H1(Ω;Rn))

+ ‖f̄N − f̄K‖2
L2(0,T ;L2(Ω;Rn)) + ‖ḡN − ḡK‖2

L2(0,T ;H− 1
2 (Ω;Rn))

+ ∆t2K
∥∥σ̄K∥∥2

L2(0,T ;L2(Ω;Rn×n
s ))

.

(4.5)
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Since, by Lemma 4.1, σ̄K is bounded in L2(0, T ;L2(Ω;Rn×n
s )), letting K →∞ in

(4.5) we conclude that ‖ēN − ēK‖L2(0,T ;L2(Ω;Rn×n
s )) → 0 for N ≥ K →∞.

Relation (3.33) and the Lipschitz continuous character of ψ then imply the cor-
responding strong convergence σ̄N → σ in L2(0, T ;L2(Ω;Rn×n

s )). This concludes
the proof.

With the above results, we have all necessary ingredients to conclude the proof
of Theorem 2.4.

Lemma 3.5 provides the existence of a solution sequence (ūN , ēN , p̄N , σ̄N) of the
time-discrete system (3.31)–(3.35). Lemma 4.1 provides a subsequence N → ∞
and limit functions (u, e, p, σ). Lemma 4.3 provides the strong convergence ēN → e
and σ̄N → σ. We take a further subsequence N →∞, such that the convergence
also holds pointwise almost everywhere.

It remains to show that the limit functions (u, e, p, σ) is a weak solution of
(2.1)–(2.8). This is immediate, except for (2.4). To obtain (2.4), we must pass to
the limit in (3.34). We obtain

∂tp̂ = ψ(σ).

In order to conclude that (2.4) holds true, we must have p = p̂. The strong
convergence of the right hand-side in the evolution equation (3.34) implies that

∂tp̂
N → ∂tp̂, strongly in L2(0, T ;L2(Ω;Rn×n

s )).

Since p(0) = p̂(0) = p0,

p̂N → p̂ strongly in L2(0, T ;L2(Ω;Rn×n
s )).

Lemma 4.4 below permits to conclude p = p̂.

The proof of Theorem 2.4 is complete.

The following lemma is taken from [4], where it is shown for equidistant dis-
cretizations. We repeat the simple proof for the reader’s convenience.

Lemma 4.4 (Comparison of interpolations). Let X be a Hilbert space and T > 0.
Let with points 0 = tN0 < tN1 < . . . < tNN = T be such that max0≤k≤N−1 |tNk+1−tNk | ≤
∆tN → 0 for N →∞. Let fNk ∈ X be given values for k = 0, 1, ..., N . We consider

the piecewise affine interpolation f̂N and the piecewise constant interpolation f̄N

of the point values, f̄N(tNk ) = f̂N(tNk ) = fNk . If

f̂N → g in L2(0, T ;X)

then,

f̄N → g in L2(0, T ;X). (4.6)
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Proof. First,

‖f̄N‖2
L2(0,T ;X) ≤ 6 ‖f̂N‖2

L2(0,T ;X) (4.7)

The computation is elementary: we omit the superscript N and use hk := tk+1−tk,

‖f̂N‖2
L2(0,T ;X) =

∑
k

hk

∫ 1

0

‖tfNk + (1− t)fNk+1‖2
X

=
∑
k

hk

∫ 1

0

(t2‖fNk ‖2
X + (1− t)2‖fNk+1‖2

X) + 2hk

∫ 1

0

t(1− t)〈fNk , fNk+1〉

≥ 1

6

∑
k

hk(‖fNk ‖2
X + ‖fNk+1‖2

X) ≥ 1

6

∫ T

0

‖f̄N‖2
X .

Given g ∈ L2(0, T ;X), we construct the averages

gNk :=
1

hk

∫ tk

tk−1

g(t) dt

and the corresponding piecewise affine and constant interpolations ĝN and ḡN .
The interpolations ĝN and ḡN converge strongly to g in L2(0, T ;X). By assump-
tion,

‖f̂N − ĝN‖L2(0,T ;X) ≤ ‖f̂N − g‖L2(0,T ;X) + ‖g − ĝN‖L2(0,T ;X) → 0.

Inequality (4.7) implies that

‖f̄N − ḡN‖2
L2(0,T ;X) ≤ 6‖f̂N − ĝN‖2

L2(0,T ;X) → 0.

Another application of the triangle inequality yields

‖f̄N − g‖L2(0,T ;X) ≤ ‖f̄N − ḡN‖L2(0,T ;X) + ‖ḡN − g‖L2(0,T ;X) → 0,

and hence the claim.
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