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Thèse de doctorat

pour obtenir le grade de Docteur
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Abstract

We study the robustness of topologically ordered phases under perturbation by consid-
ering the specific examples of the toric code and Kitaev’s honeycomb models. More
precisely, by means of high-order series expansions (pCUT) combined with a variational
method (iPEPS) we analyze transitions between the topological and polarized phases
of the toric code in a uniform magnetic field. We first describe the phase diagram of
the perturbed toric code, and develop a quasi-particle picture of its elementary anyonic
excitations. The effective model of interacting quasi-particles we derive allows us to
analyze spectral properties of the low-energy physics of the perturbed toric code and
unveil the presence of bound states. In a second step, we compute dynamical correlation
functions (spectral densities) that are relevant for potential scattering experiments. Fi-
nally, we draw a connection between Kitaev’s honeycomb model in a vortex superlattice
and graphene in a strongly-modulated magnetic field, and present analytical results on
metal-insulator transitions in these systems.

Wir untersuchen die Stabilität topologisch geordneter Phasen unter Einfluss von Stö-
rungen, anhand zweier Gittermodelle: dem Toric Code und dem Wabengittermod-
ell von Kitaev. Mittels Hochordnungsreihenentwicklungen (pCUT), kombiniert mit
einer variationellen Methode (iPEPS), werden Phasenübergänge zwischen der topol-
ogisch geordneten und der polarisierten Phase des Toric Code in einem homogenen
Magnetfeld analysiert und das Phasendiagramm bestimmt. Weiterhin finden wir eine
Quasiteilchenbeschreibung der elementaren anyonischen Anregungen für den gestörten
Toric Code. Das somit formulierte effektive Modell wechselwirkender Quasiteilchen
ermöglicht eine Analyse des Niederenergiespektrums des Toric Code, wo gebundene
Zustände eine entscheidende Rolle spielen. Zusätzlich berechnen wir die für potentielle
Experimente relevanten dynamischen Korrelationsfunktionen (spektrale Dichten). Die
Beziehung zwischen Kitaevs Wabengittermodell unter Einfluss eines Vortexübergitters
und Graphen in einem stark modulierten magnetischen Feld wird beleuchtet und der
damit zusammenhängende Metall-Isolator-Übergang in diesen Modellen erklärt.

Nous étudions la robustesse des phases topologiques en présence d’une perturbation en
considérant les cas spécifiques du code torique et du modèle de Kitaev sur réseau hexago-
nal. Plus précisément, en utilisant une combinaison de méthodes variationnelle (iPEPS)
et perturbative (pCUT), nous analysons les transitions entre la phase topologique et la
phase polarisée du code torique dans un champ magnétique uniforme. Nous décrivons
tout d’abord le diagramme de phase à température nulle et développons une image
des excitations élémentaires en termes de quasi-particules. Le modèle effectif que nous
dérivons permet d’analyser les propriétés spectrales de basses énergies et de mettre en
évidence l’existence d’états liés d’anyons. Dans un second temps, nous calculons les fonc-
tions de corrélations dynamiques (densités spectrales), pertinentes pour de potentielles
expériences de diffusion. Enfin, nous établissons un lien entre le modèle de Kitaev sur
réseau hexagonal en présence d’une super-réseau de vortex et le graphène sous champ
magnétique fortement inhomogène et présentons des résultats analytiques concernant la
transition métal-isolant dans ces systèmes.
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Chapter 1
Introduction

The deep relationship between phase transitions and symmetry breaking is one of the

most far-reaching concepts in theoretical physics. The observation that different phases

of matter have different symmetries and that a transition from one phase to another

must be accompanied by symmetry breaking has been merged into a phenomenological

theory by L. Landau in the late 1930’s. For almost half a century, Landau’s symmetry

breaking theory has been successfully applied to describe phase transitions in all known

materials. However, in the 1980’s, its limits have been revealed by experimental evi-

dence of emergent phenomena in a two-dimensional electron gas where, in the presence

of a magnetic field, the so-called fractional quantum Hall states form various phases

not distinguishable by symmetry. This discovery has opened up a new playground for

theorists since it demanded a new classification scheme for states of matter. X. G. Wen

suggested to categorize these novel phases as a class of so-called topological orders, de-

scribed by topological field theory. This has led to an exciting development of a new

branch of condensed matter physics during the last two decades. Topological order has

been found numerically in various models, particularly in frustrated spin models for

quantum magnetism. Furthermore, the robustness of topological states with respect to

local perturbations has drawn attention in the field of quantum computation where the

spectacular concept of a ’topological’ quantum computer, protected from decoherence,

has been developed. The practical aspect of topological order has been put forward

even stronger by A. Kitaev who, in a series of groundbreaking works, introduced two

exactly solvable lattice models (the toric code, and the eponymous honeycomb model).

These models are particularly well suited to probe topological order, in analogy to the

Ising model which, in statistical physics, serves as a kind of prototype to demonstrate

phenomena in ’conventionally’ ordered systems.

1



Chapter 1. Introduction 2

In this introductory chapter, we will discuss the basic concepts mentioned above in more

detail and motivate the main goals of this thesis.

1.1 Topological order

The power of Landau’s symmetry breaking theory [1–3] is the generality of the concept

which is used to understand phase transitions independently of the underlying micro-

scopic model. In this context, phase transitions can be described by using a local order

parameter O. When the system is tuned through a phase transition, O goes from a finite

value in the ordered phase to zero in the disordered phase, thus defining a transition

point between the two phases. The phase transition from the disordered phase into the

ordered phase involves the loss of a symmetry, commonly referred to as ’spontaneous

symmetry breaking’. A representative example of this mechanism is the heating of a

ferromagnet. Here, the magnetization serves as a classical order parameter. While the

magnetization has a finite value in the magnetic (ordered) phase, it vanishes when the

temperature of the material is tuned beyond the Curie value. Then, the system is in a

non-magnetic (disordered) phase. In a similar fashion, one is able to understand phase

transitions for zero as well as finite temperatures in metals, superconductors, superfluids

and many other materials.

So what is topological order? And why is it so interesting? By definition, Landau’s the-

ory is local so that it might be challenging to describe, for example, a phase transition

between two highly entangled quantum ground states. Such an exotic transition is not

merely hypothetical, in fact, the area of research concerned with topologically-ordered

matter has been initiated by actual experiments. In 1989, Wen [4, 5] introduced the

term ’topological order’ to emphasize the non-local character of the so-called chiral-spin

states [6], proposed to describe the ground state in high-temperature superconductors.

The degeneracy of chiral spin states depends on the global shape of the system. Al-

ready in 1988, Laughlin [7] pointed out a connection between the mechanism behind

high-temperature superconductivity in La2−xBaxCuO4 and the fractional quantum Hall

(FQH) effect1, discovered by Tsui et al. [8, 9] in 1982.

According to Wen, a formal description of topologically-ordered quantum states is pro-

vided by topological field theory [10, 11]. However, we prefer to use a slightly more

intuitive definition of topological order suggested by Nussinov and Ortiz [12, 13]. Con-

sider a gapped quantum system at zero temperature with a set of Ng orthonormal ground

states labeled by {|gα〉}, with α ∈ {1, . . . , Ng}. In addition, we introduce the operator

1We remark that while the relevance of topological order for high-temperature superconductivity is
under debate, it is essential for the FQH effect.
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V =
∑

i vi, with quasi-local operators vi. This means that V is generally a superposition

of operators, each one acting in a finite area (the size of this area should not scale with

system size). A system is topologically ordered if, for any V satisfying the above criteria,

the following equation holds

〈gα|V |gβ〉 = νδαβ + cαβ, (1.1)

where ν is a constant and cαβ is either zero or it vanishes in the thermodynamic limit.

Thus, a finite-order perturbation theory does not couple any of the ground states. This

is a formal way to say that a topologically-ordered state is stable against local per-

turbations. This robustness is a characteristic feature of all topological orders. It

is also present in the generalization of the above definition to finite temperatures in

Ref. [13]. The most striking implication of this property is that one cannot distinguish

topologically-ordered states by local measurements. Since there is no local order param-

eter, Landau’s symmetry breaking theory does not apply. So, how can we characterize

topological order? Topologically-ordered states can be labeled by using global operators

(often referred to as topological invariants). Therefore, boundary conditions are crucial

in the sense that the ground-state degeneracy depends on the topology, and properties

of edge excitations become important attributes. Oshikawa et al. [14] have shown that

there is a fundamental connection between topological order and the fractionalization

of quantum numbers. More precisely, elementary excitations of a topologically-ordered

system can be Abelian or non-Abelian anyons, discussed in the next section.

1.2 Exotic particles and their applications

One of the fascinating properties of topologically-ordered systems is the emergence of

anyons as elementary excitations. Anyons are often called exotic particles because they

obey neither the Fermi-Dirac statistics nor the Bose-Einstein statistics. Let us shortly

recall that all elementary particles (leptons, quarks, gluons,. . . ) are known to fall into

either of the two categories: fermions or bosons. When two identical particles at posi-

tions r1 and r2 are interchanged, the probability distribution of the global wave function

Ψ (r1, r2) must stay the same

|Ψ (r1, r2)|2 = |Ψ (r2, r1)|2. (1.2)

Thus, the exchange of positions yields a global phase:

Ψ (r1, r2) = eiθΨ (r2, r1) . (1.3)
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Interchanging the particles one more time brings the system into its original state so

that the global phase becomes +1. This yields the two possible solutions: θ = 0 and

θ = π. In the first case, Ψ is fully symmetric and, due to the spin-statistics theorem,

the particles are identified with bosons. In the second case, Ψ is fully antisymmetric so

that the corresponding particles must be fermions. Leinaas and Myrheim [15] pointed

out the weakness of the notation in (1.2) which does not take into account the space

geometry so that the operation ’interchange’ is actually not well-defined. Indeed, the

above argumentation holds only in a space with three or more dimensions where all

paths leading a particle to its initial position can be continuously contracted and are thus

topologically equivalent. In two dimensions this is not the case. Figure 1.1 illustrates

Figure 1.1: A pair of identical particles in two spatial dimensions. The solid and the
dashed lines, represent two topologically distinct paths of a particle.

that moving one particle around the other yields a non-contractible ’knot’ (also called

’braid’), in contrast to a trivial path where the particle encircles the vacuum. Using

similar arguments, Leinaas and Myrheim [15] have shown that equation (1.3) admits

further solutions in two dimensions, in the sense that θ may actually be any rational

number. This defines a new type of particles, dubbed ’anyons’ by Wilczek [16]. The

statistics of anyons is referred to as ’fractional’ because it interpolates between the one

of bosons and fermions (“any-on”).

Initially, anyons have drawn a purely academic interest. Although charge-flux compos-

ites show anyonic behavior [16], due to the Aharonov-Bohm effect [17], Wilczek remarked

that “practical applications of these phenomena seem remote” [16]. However, it turns

out that anyons not only do exist in nature, but they also play a key role in the physics

of topologically-ordered systems. Most prominently, the elementary excitations of the

FQH liquids are strong candidates for anyonic quasi-particles. In their famous FQH

experiment, Tsui, Störmer, and Gossard [8] confined electrons to two dimensions, on the

interface between two semiconductors. At almost zero temperature and in the presence

of a strong magnetic field, the electrons form a correlated quantum liquid. For specific

values of the magnetic field, where the filling of the lowest Landau level is ν = n/m with

integer n and m, one finds gapped excitations. The corresponding ground states are,

for odd m, excellently described by the Laughlin wave function [9]. Using the Laughlin
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ground state, Arovas et al. [18] have shown that, for m > 1, the elementary excitations

behave as anyons. The precise correspondence between experiment and theory (the

comprehension of the FQH effect has been acknowledged by a Nobel prize in 1998) is a

convincing evidence of the existence of anyons. However, a direct measurement of the

braiding phase remains challenging and is an active research area [19–21].

So far, our discussion focused on the so-called Abelian anyons, where the term ’Abelian’

refers to the fact that all braiding operations (moving one particle around the other)

commute. The concept of anyons can be generalized to the non-Abelian case, with non-

commuting braiding operations. This property enlarges the Hilbert space of anyons.

This means that the [U(1)] one-dimensional phase, associated with braiding of Abelian

anyons, has to be replaced by a higher-dimensional operator. For more details on the

physics of non-Abelian anyons we refer the reader to the review [22]. Non-Abelian

anyonic states have been suggested as possible ground states in the ’even-denominator’

phases of the FQH effect [23, 24], and recent experimental data seem to confirm this

proposal [25–27].

Kitaev has realized that braiding properties of anyons can be used to encode informa-

tion [28]. Even more fascinating, one can perform logical operations by manipulating

non-Abelian anyons [28]. Thus, the idea of a topological quantum computer has been

born. A topological quantum computer has the fantastic feature of being robust against

decoherence, a long-standing obstacle on the way to realize a practical computer with

quantum logic. This can be roughly explained by regarding a loop of one particle around

another. Local perturbations caused by decoherence may distort the shape of the loop.

However, the information stored in the braiding phase is saved as long as these distor-

tions are small compared to the distances of the particles.

1.3 Modeling of topological order

Topological phases are expected to appear in systems with strongly-correlated quantum

ground states. Thus it is common to work at zero temperature or, at least, in the regime

where quantum fluctuations dominate over thermal fluctuations. In addition to contin-

uous theories describing, e.g., FQH physics, topological order is also found in certain

lattice models of quantum magnets. One of the earliest models featuring a fractional-

ization of quantum numbers has been proposed by Anderson in 1973 [29]. The so-called

resonating valence bond theory describes a frustrated Heisenberg magnet by considering

spin-1/2 degrees of freedom on typically triangular, kagome, or pyrochlore lattices [29–

32]. The ground state is formed by a superposition of disordered singlets (a quantum

spin liquid), and is usually gapped in the short range regime of the model where singlets
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are formed by neighboring spins. Signatures of topological order are globally conserved

parity operators (their eigenvalues cannot be changed by a local rearrangement of singlet

dimers), the number of which depends on the boundary conditions. Possible elementary

excitations are charge-free spin-1/2 quasi-particles (spinons) while, intuitively, one would

expect (triplet) excitations with an integer spin. Pairing of spinons has been proposed

to be a possible explanation of high-temperature superconductivity in cuprates [33].

While this proposal is under debate [7], the concept of quantum spin liquids has re-

ceived much attention in recent years [32] because topologically-ordered ground states

of various models (including the toric code) are indeed quantum spin liquids [34–36].

A particularly simple model with a topologically-ordered ground state has been pro-

posed and solved exactly by Kitaev in his seminal paper [28]. Kitaev named the model

’toric code’ since it has non-trivial properties on the torus and has been developed in

the context of stabilizer codes [37, 38], used for topological quantum computation. It

describes spins-1/2 on bonds of a square lattice (the toric code is closely related to

Wen’s plaquette model [39] in which spins reside on vertices of the square lattice). The

Hamiltonian contains solely four-body interactions between spin quadruples neighboring

a vertex or sharing a plaquette of the lattice. It has become one of the standard examples

of topologically-ordered systems. As will be discussed in more detail in Section 4 of this

manuscript, the toric code allows to clearly demonstrate several important principles of

topological order. The ground state is a Z2 quantum spin liquid protected by a gap and

has a degeneracy which depends on the topology. Elementary excitations have braiding

properties of Abelian anyons so that they can be used to construct a robust quantum

memory [40]. The Z2 toric code can be generalized to ZN [41, 42] or to so-called string-

net models on trivalent graphs [35]. While, from a technical point of view, the Z2-toric

code is a rather simple model, its particular interaction patterns are difficult to realize

in an experiment. Commonly discussed experimental setups involve polar molecules [43]

or Rydberg atoms [44] in optical latices, Josephson-junction arrays [45, 46], trapped

ions [47, 48] or polarized photons [49].

One of the biggest experimental obstacles in realizing the toric code in an experiment are

its particular four-body interactions. This problem is less pronounced in the so-called

Kitaev model on the honeycomb lattice [36] which is based on two-body interactions

and also features a topologically-ordered ground state. We will introduce the honey-

comb model in detail in Chapter 8. Here, we simply wish to point out that, in a certain

limit, this model is intimately connected with (however not equivalent to) the toric

code2. The honeycomb model hosts gapped fermions and Abelian anyons as elementary
2In fact, the effective low-energy theory of the honeycomb model in the limit of weakly-coupled dimers

is the toric code with additional effective interactions. These appear at higher orders in perturbation
theory [50].
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excitations. An additional feature, when comparing to the toric code, is a gapless region

in the parameter space. Time-reversal symmetry breaking operators, e.g., a magnetic

field, or three-spin interactions, may open a gap that gives rise to non-Abelian elemen-

tary excitations. The rich structure of the phase diagram as well as the appearance

of non-Abelian anyons are particularly interesting because the honeycomb model is, by

construction, easier to realize in an experiment than, e.g., the toric code. There are

concrete proposals to build this model using polar molecules in optical lattices [51, 52],

Josephson-junction arrays [45, 46] and quantum circuits [53]. Additionally, there is legit-

imate hope to discover Kitaev’s honeycomb model in solid-state systems. For instance,

strong spin-orbit coupling in iridates may lead to the kind of anisotropic interactions

which are essential to realize this model [54, 55].

In the models discussed above, the robustness of the ground state with respect to local

perturbations arises from conservation of topological invariants. In contrast, the so-

called symmetry protected topological states are, as their name already suggests, robust

with respect to local perturbations which conserve their symmetry. The concept of sym-

metry protected topological states has drawn much attention recently in the context of

topological insulators [56–58]. These are band insulators with metallic edge states, pro-

tected against Anderson localization. There are several types of topological insulators.

However, all of them feature gapless edge excitations with fractionalized quantum num-

bers (see the review in Ref. [59]). Well-controlled experiments on topological insulators

give hope for a realization of a topological quantum computer [60, 61]. Remarkably,

topological insulators also exist in three dimensions [62, 63] where edge excitations are

proposed to be non-Abelian surface states.

1.4 Goals of the thesis

There are two important motivations to study topologically-ordered systems. On the

one hand it is interesting to learn more about exotic states of matter, on the other hand

there are exciting applications in the field of quantum computation. A major question

in this area of research concerns the robustness of a topological phase. We have already

claimed that topological phases are stable under local perturbations. A rigorous proof

for small perturbations can be found in Ref. [64]. However, it should be clear that a

very strong disturbance will eventually destroy a topological phase. To give a simple

example, a magnetic field which is much stronger than the interactions stabilizing the

toric code will polarize the system and thus lead to a conventional phase with a unique

ground state and magnon excitations.
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The main goal of this thesis is to study the breakdown of topologically-ordered phases.

More specifically, we will investigate phase transitions between the topologically-ordered

and the polarized phases of the toric code in a uniform magnetic field. Note that, at

zero temperature, a magnetic field is one of the simplest perturbations in a spin sys-

tem. So far, the toric code in a magnetic field has been analyzed with Monte Carlo

simulations [65–67] and series expansions [68, 69]. However, these studies concentrated

on specific directions of the field, referred to as ’parallel’ and ’transverse’. It has been

demonstrated that the low-energy physics is completely different in both cases. Gen-

erally, a magnetic field excites particles of two different types, referred to as ’charges’

and ’fluxes’. As will be shown explicitly in Chapter 4, particles with different flavors

behave as Abelian anyons while among themselves they are bosons. A parallel mag-

netic field generates quantum fluctuations consisting of pairs of dispersive charges or

fluxes. The condensation of either kind of elementary excitations leads to a continuous

(second-order) phase transition in the universality class of the 3d transverse-field Ising

model. Except in a symmetric point, where fluxes and charges condense simultaneously.

Here, a different universality class is found [68]. When the toric code is perturbed by

a transverse magnetic field, charges and fluxes are always excited simultaneously. They

form bound states which are either non-dispersive, or dispersive in only one spatial di-

mension. In deep contrast to the parallel-field case one finds that the phase transition

is discontinuous (first-order). In this manuscript, we go beyond these limiting cases,

treated by previous studies, and consider a general field direction in order to determine

the full phase diagram of the toric code and study the interplay of the described physical

properties. For which parameters of the magnetic field is the phase transition of first

or second order? What is the fate of bound states when a parallel field is added to the

transverse field? Does the system stay in the universality class of the 3d transverse-field

Ising model when a transverse field is included? These are typical questions we shall

address in this thesis.

Interestingly, the robustness of a topological phase with respect to thermal fluctuations

has been the topic of several recent papers. General studies of the stability with respect

to temperature [70–72] indicate that topological order in the toric code might break

down at finite temperatures. The robustness of the quantum memory property of the

toric code with respect to noise and disorder has been discussed in Refs. [73, 74]. It has

been found that, due to localization effects, the memory is stable under certain noise

thresholds.

Let us shortly discuss some methodological aspects of this study. From a technical point

of view, the difficulty to investigate phase transitions in topologically-ordered matter

stems from the fact that there is no local order parameter. Often, the sign problem

prevents an efficient use of quantum Monte Carlo. One can use a variational ansatz to
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simulate ground states of strongly-correlated quantum systems with tensor networks [75–

77]. Especially the so-called projected entangled-pair state (PEPS) seems to be well

suited to the problem at hand since, as has been shown in Ref. [78], it represents the

exact ground state of the unperturbed toric code. However, it should be stressed that

often the necessary computational effort to simulate states with pronounced long-range

entanglement exceeds the available resources. In Refs. [50, 68, 69, 79–81] it has been

successfully demonstrated that the breakdown of topological order can be studied by

means of high-order perturbative expansions. The advantage of this approach is that it

does not suffer from the sign problem, neither is it generally sensitive to the amount of

entanglement in the system. Consequently, we shall use perturbative continuous unitary

transformations [82, 83] (pCUT) in order to perform perturbation theory for the toric

code in the limit of small magnetic fields. Besides being a powerful tool to perform

perturbation theory, the pCUT approach provides a systematic way to obtain a quasi-

particle picture of the model which leads to an intuitive and clear illustration of the

essential physics governing the low-energy regime of a topological phase. Note that it is

a nontrivial task to develop a quasi-particle picture for the elementary (anyonic) excita-

tions of the toric code because of their non-local properties. However, the description of

the low-energy subspace via quasi-particles is utterly important since their condensation

defines a critical point. Furthermore, we shall use the effective model of quasi-particles

to study interactions between anyons which, depending on the field direction, may lead

to bound states. Moreover, we are interested in observables that can be ingeniously

computed with the pCUT technique. We shall also compute dynamical equal-time cor-

relation functions (spectral densities) relevant for scattering experiments, and discuss

their behavior as a function of the direction of the magnetic field.

We begin our study with a short introduction to the pCUT method in Chapter 2 and

continue by discussing formal properties of series expansions on graphs in Chapter 3. In

Chapter 4, we discuss the unperturbed toric code and the exact construction of its ground

state as well as elementary excitations. The exact solvability is lost when a magnetic field

is included. However, we show that, in certain limiting cases, exact mappings onto known

models exist. In Chapter 5, we develop a concrete scheme which allows one to apply

pCUT on finite-size graphs to the toric code in a field. We provide a detailed guidance on

how to perform this task in the low-field as well as high-field limits of the model. Being

a technical chapter, the Chapter 5 also includes a short discussion on our computer

program as well as methods used to extrapolate the series expansions. We compute

the series expansion of the ground-state energy and the single-anyon dispersion for the

toric code and present the results in Chapter 6. We use the limiting cases where exact

mappings and numerical studies exist to check our method and estimate its accuracy. In

order to study phase transitions of first and second order, we introduce a new approach
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based on a combination of a variational method (iPEPS) with pCUT. In Chapter 7, the

two-particle subspace inside the topological phase is considered. Here, we analyze the

spectral properties by means of exact diagonalization of the effective model. We discuss

the main features of the spectrum consisting of a two-particle continuum and bound

states that appear to depend on the field direction and strength. We are interested

in the general properties of these bound states. Additionally it would be interesting

to find out whether they can even drive phase transitions in the perturbed toric code.

Finally, our study of the toric code in a field is completed by the computation of the

density of states as well as spectral densities. With these results, we gain an insight to

interesting features one might observe in potential scattering experiments. In Chapter 8,

we discuss Kitaev’s honeycomb model which seems closer to an experimental realization.

We propose a generalization of this model to an infinite set of exactly solvable models.

Furthermore, we show that the spectrum of certain subspaces of the honeycomb model

(non-trivial vortex configurations) is equivalent to the one of graphene in a strongly-

modulated magnetic field. We discuss how the commensurability of the superlattice

triggers the gap opening. Our most important results are summarized and discussed in

Chapter 9 where we also give perspectives for further studies on this topic.



Chapter 2
Perturbative continuous unitary

transformations

Most of the results in this work are based on series expansions obtained with pertur-

bative continuous unitary transformations (pCUT). With pCUT, a Hamiltonian can be

transformed into an optimal basis, in which the low-energy physics of a many-body sys-

tem can be described by quasi-particles. This quasi-particle picture is very useful for

an intuitive understanding of the low-energy physics. For specific Hamiltonians where

the CUT can be performed in a perturbative fashion one profits from the fact that, in

the optimal basis, the perturbative expansion can be pushed to rather high orders. If

one is interested in the non-perturbative regime of a model, a high-order expansion is

inevitable in order to obtain quantitative results with significant precision. The main

goal of this chapter is to introduce the basic ideas behind this method in a short but

consistent way. For a detailed introduction to the pCUT technique we refer to origi-

nal works by Wegner [82], G lazek and Wilson [84], Stein [85], and Uhrig, Knetter, and

Schmidt [83, 86, 87].

2.1 Notation

For discussions involving quasi-particles we will first specify a useful notation. Let us,

consider a particle-counting operator Q with an eigenbasis {|n〉}, where n ∈ N, and |n〉
represents an n-particle state:

Q |n〉 = n |n〉 . (2.1)

11
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Naturally, we will need a particle creation (or annihilation) operator Tm = T †−m (with

m ∈ Z) which changes the number of particles in a state by m:

Tm |n〉 =

|n+m〉 , for m+ n ≥ 0,

0, for m+ n < 0.
(2.2)

From the above definitions it follows the important relation

[Q,Tm] = mTm, (2.3)

which can be easily checked by letting the operators act in the eigenbasis of Q. As shall

become clear in the next section, we will benefit from a compact notion of sequences of

Tm operators, where it is useful to denote a k-tuple of indices mi ∈ Z as follows

m = (m1,m2,m3, . . . ,mk), (2.4)

|m| = k, (2.5)

M(m) =
k∑
i=1

mi. (2.6)

A k-fold product of creation or annihilation operators will thus be denoted as:

T (m) = Tm1Tm2Tm3 . . . Tmk . (2.7)

For later purposes, we generalize Eq. (2.3) to:

[Q,T (m)] =
k∑
i=1

mi T (m) = M(m)T (m). (2.8)

2.2 Continuous unitary transformations

As it is well known, most many-body problems in physics cannot be solved directly

by diagonalization. In an attempt to ’almost diagonalize’ a Hamiltonian, Wegner [82]

introduced the concept of a continuous unitary transformation (CUT) and successfully

applied it to the one-dimensional n-orbital model in the thermodynamic limit. In a

parallel work, G lazek and Wilson [84] suggested an akin approach, motivated by an

optimization of perturbation theory in high-energy physics.

As will be explained in more detail below, one aims to find a transformation which

decouples certain subspaces of the Hilbert space, in order to be able to study them

separately. Thus, the problem would be greatly simplified, while the unitarity of the
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transformation ensures that the spectrum does not change. Formally, the transformation

rotates the initial Hamiltonian H into a block-diagonal shape.

Generally, a continuous unitary transformation can be represented by an infinite se-

quence of discrete unitary transformations. However, it is more convenient to parametrize

the transformation by a running parameter l, defined implicitly by

H(l = 0) = H, (2.9)

H(l > 0) = U(l)H(0)U †(l), (2.10)

where H is the initial Hamiltonian, and U(l) an arbitrary unitary transformation. The

dependence of H on the parameter l can now be formulated in terms of flow equations

d

dl
H(l) =

[
d

dl
U(l)

]
H(0)U †(l) + U(l)H(0)

[
d

dl
U †(l)

]
, (2.11)

=
[
d

dl
U(l)

]
U †(l)H(l) +H(l)U(l)

[
d

dl
U †(l)

]
, (2.12)

= [η(l), H(l)] , (2.13)

η(l) =
[
d

dl
U(l)

]
U †(l) = −U(l)

[
d

dl
U †(l)

]
, (2.14)

where in the second line, the identity U †(l)U(l) = 1 has been used. The CUT can thus be

performed by choosing a function η(l) (usually referred to as the ’generator’) which, due

to (2.12), must be antihermitian. The choice of the generator can be problem-dependent.

Nevertheless, generally, one is interested to make off-diagonal matrix elements vanish in

the limit l→∞. Our special interest is to derive an effective Hamiltonian

Heff = lim
l→∞

H(l), (2.15)

which conserves the number of quasi-particles. To say this differently, we want to de-

couple Hilbert spaces with different numbers of quasi-particles. Requiring quasi-particle

conservation leads to the condition

[Q,Heff ] = 0. (2.16)

With (2.13), a possible choice for the generator is

η(l) = [Q,H(l)] . (2.17)

As long as the right-hand side of (2.17) is non-zero, H(l) is subject to a finite flow,

governed by (2.13). If it does turn zero, the flow stops and H(l) is converged into its

l→∞ limit. This generator has been designed by Mielke [88] and generalized by Knetter
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and Uhrig [83]. Furthermore, it has the property to preserve a possible block diagonality

of the initial Hamiltonian. The modified generator can be best defined through its matrix

elements:

ηij(l) = sgn(qi,i − qj,j)hij(l) =


hij(l), for qi,i > qj,j

−hij(l), for qi,i < qj,j

0, for qi,i = qj,j

, (2.18)

where ηij(l) and hij(l) are the respective matrix elements of η(l), and H(l) in the eigen-

basis of Q, and qi,i is the number of quasi-particles in the state |i〉.

Finally, CUT can be applied to a Hamiltonian by discretizing (2.13) and thus generating

a set of coupled differential equations which can be successively solved under certain

(problem-dependent) approximations [82, 89–92]. Often, these approximations are based

on various truncation schemes which close the flow equations thus keeping the number

of differential equations finite. In the next chapter, we will follow an alternative route

by solving the flow equations perturbatively.

2.3 Perturbative solution of the flow equations

Generally, a perturbatively treatable problem can be represented by

H = H0 + λV, (2.19)

where the exact solution of H0 is known, and V is a perturbation, kept small by λ.

There are two different strategies to obtain a perturbative solution of the flow equations

(2.13). One approach is to apply a series ansatz in order to directly solve the flow

equations by a numerical algorithm, e.g., Runge-Kutta methods [93]. However, for

specific Hamiltonians, it is possible to solve (2.13) in an analytical way. We will explain

this second approach (referred to as pCUT) in more detail since it is well suited for an

application to the toric code. The constraints which must be introduced in order to use

this technique are listed in the following.

(i) The spectrum of the unperturbed Hamiltonian H0 is discrete and bound-

ed from below.

In other words, H0 can be represented by a finite or a semi-infinite matrix. For

later purposes, we label the discrete energy levels by εi (with i ∈ N) and define

elementary excitation energies ∆εi = εi − ε0.
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(ii) There must be a ∆ε, such that any elementary excitation can be written

as

∆εi = ni∆ε, (2.20)

with ni ∈ N. Note that the most simple realization of this condition is an equidis-

tant spectrum. It is natural to set ∆ε = 1 so that the energy cost of an elementary

excitation corresponds to the number of particles. Within this description, H0

turns out to be exactly the particle-counting operator Q, defined in (2.1).

(iii) There exists a number N ∈ N such that the perturbation V can be

written as:

V =
m=+N∑
m=−N

Tm, (2.21)

where the operator Tm changes the number of particles in the system by m [as

defined in (2.2)].

Surely, the above conditions restrain the applicability of pCUT; still there exists a no-

table amount of models suitable for this method, e.g., in the area of low-dimensional

quantum magnets including frustration, spin ladders, supersolids, nuclear physics, as

well as stabilizer codes and cluster Hamiltonians including topologically-ordered spin

models [42, 50, 68, 69, 80, 81, 87, 94–99], to name just a few.

In the following, we will follow the route of Stein, Knetter, and Uhrig [83, 85], and

reduce the flow equation problem to coupled differential equations for which a recursive

solution is presented. The commutator structure of the flow equations leads to the

following general ansatz for the flow-dependent part of the Hamiltonian, namely V (l):

V (l) =
∞∑
k=1

λk−1
∑
|m|=k

F (l;m)T (m). (2.22)

The second sum runs over all permutations of k-tuples of mi ≤ N with N ∈ N. The

unknown functions F (l;m) are determined below. See also Section (2.1) for notations.

In order to directly use the definition of the quasi-particle-conserving generator (2.18),

we consider the matrix elements of our Hamiltonian in the eigenbasis of its unperturbed

part Q

〈ni|H(l) |nj〉 = 〈ni|Q+ λV (l) |nj〉 = qi,j + λvi,j , (2.23)

〈ni|T (m) |nj〉 = ti,j(m). (2.24)
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Note that there is no l-dependence in Q since it already is diagonal. The generator can

now be expressed in terms of T operators:

〈ni| η(l) |nj〉 = ηi,j(l) (2.25)

= sgn(qi,i − qj,j) (qi,j + λvi,j(l)) (2.26)

= sgn(qi,i − qj,j)λvi,j(l) (2.27)

=
∞∑
k=1

λk
∑
|m|=k

F (l;m) sgn(qi,i − qj,j) ti,j(m), (2.28)

where we used the diagonality of Q in the second line. Using (2.8), one can perform a

crucial simplification, by eliminating the unperturbed part of the Hamiltonian from the

generator:

M(m)T (m) = [Q,T (m)] , (2.29)

M(m)ti,j(m) = [Q,T (m)]i,j (2.30)

= (qi,i − qj,j) ti,j(m), (2.31)

sgn[M(m)] ti,j(m) = sgn(qi,i − qj,j) ti,j(m). (2.32)

The equation (2.32) inserted into (2.28), yields the following operator identity:

η(l) =
∞∑
k=1

λk
∑
|m|=k

F (l;m) sgn[M(m)] T (m). (2.33)

Inserting η(l), as well as the ansatz for V (l), into the flow equation (2.13) yields (note

that d
dlQ = 0):

d

dl
H(l) = λ

d

dl
V (l), (2.34)

= λ [η(l), V (l)]− [Q, η(l)] , (2.35)

= λ [η(l), V (l)]−
∞∑
k=1

λk
∑
|m|=k

F (l;m) sgn[M(m)] [Q,T (m)]︸ ︷︷ ︸
M(m)T (m)

. (2.36)

Now, we insert the ansatz (2.22) for V (l), and collect powers of λ on the right-hand side

of (2.34)

∞∑
k=1

λk
∑
|m|=k

d

dl
F (l;m)T (m) =

∑
k1,k2
|m1|=k1
|m2|=k2

λk1+k2F (l;m1)F (l;m2)sgn[M(m1)] [T (m1), T (m2)]

−
∞∑
k

|m|=k

λkF (l;m)|M(m)|T (m). (2.37)
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The functions F (l;m) are thus determined through coupled differential equations, found

by comparing coefficients in (2.36) and (2.37):

d

dl
F (l;m) =− |M(m)|F (l;m)

+
∑

{m1,m2}=m
|m|≥2

{sgn[M(m1)]− sgn[M(m2)]}F (l;m1)F (l;m2). (2.38)

In the second term of the right-hand side the sum runs through all possible partitions

{m1,m2} = m, which for the general case |m| = k are defined as follows:

m1 m2

(m1) (m2, . . . ,mk)

(m1,m2) (m3, . . . ,mk)
...

...

(m1, . . . ,mk−1) (mk) . (2.39)

An elegant way to get rid of the linear term in (2.38) is to introduce

F (l;m) = e−|M(m)|lf(l;m). (2.40)

Finally we obtain

d

dl
f(l;m) =

∑
{m1,m2}=m
|m|≥2

e(|M(m)|−|M(m1)|−|M(m2)|)l

×{sgn[M(m1)]− sgn[M(m2)]} f(l;m1)f(l;m2). (2.41)

The recursive nature of (2.41) allows us to compute the f(l;m), with |m| = k, given

that all f(l;m), with |m| < k, are known. Initial conditions can be derived from V (0)

in (2.21):

F (0;m) =

1, for |m| = 1 and m ∈ {0,±1,±2, . . . ,±N}
0, else

. (2.42)

Since we are interested in the limit l→∞, it is convenient to define coefficients C(m):

C(m) = lim
l→∞

F (l;m). (2.43)
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After successively computing the functions F (l;m), the quasi-particle-conserving, effec-

tive Hamiltonian is known exactly order by order. It has the general structure:

lim
l→∞

H(l) = Heff = Q+
∞∑
k=1

λk
∑
m=k

M(m)=0

C(m)T (m). (2.44)

Note that all terms with M (m) 6= 0 disappear in the limit l→∞, due to the exponen-

tial function in (2.40) so that Heff indeed does not change the number of quasi-particles

in the system. Thus, our initial goal of decoupling subspaces with different numbers of

quasi-particles is achieved, and the effective Hamiltonian in fact gains a block-diagonal

structure. We would like to emphasize that the coefficients C(m) are problem indepen-

dent, in the sense that they can be used for any Hamiltonian meeting the constraints

listed in Section (2.3). They have been computed once and for all up to high orders.

This is in contrast to the alternative approach by Krull et al. [93] where the restrictions

from Section (2.3) are not necessary while Heff has to be numerically recomputed for

every new problem.

2.4 Continuous unitary transformation of operators

In addition to the transformation of the Hamiltonian H, one would like to be able to

apply the same transformation to any operator acting in the Hilbert space of H. This is

crucial since observables, in particular correlation functions, can be much easier accessed

experimentally than the characteristic energies of the spectrum. Moreover, correlation

functions can provide useful insights into the spectral properties of a model, as will be

discussed in detail in Chapter 7.

An operator O can be transformed in exactly the same way as the Hamiltonian if its

flow is governed by the same generator. In the following, we will use the same strategy

as in Section (2.2) and (2.3), by first introducing a running parameter l so that the

transformation can be defined by

d

dl
O(l) = [η(l),O(l)] . (2.45)

We concentrate on a special case, assuming that H fulfills the conditions necessary for

pCUT since then it is possible to write O as a sum over quasi-particle creation and

annihilation operators Tm. Then, the initial conditions for the above equation can be
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written as O(l = 0) =
∑

m Tm. One uses a similar ansatz as in (2.22) of the form

O(l) =
∞∑
k=0

λk
k+1∑
i=1

∑
|m|=k

G(l;m; i)O(m; i), (2.46)

whereG(l;m; i) are numerically valued functions andO(m; i) are defined (given |m| = k)

through

O(m; i = 1) = OTm1 . . . Tmk , (2.47)

O(m; i > 1) = Tm1 . . . Tmi−1OTmi . . . Tmk . (2.48)

One now can proceed systematically by inserting the ansatz (2.46) and the generator

(2.33) into the flow equation and successively finding solutions for G(l;m; i) order by

order. The details of this calculation can be found in literature [86, 100, 101]. Finally,

in the l→∞ limit, the effective operator acquires the general shape

Oeff =
∞∑
k=0

λk
k+1∑
i=1

∑
|m|=k

C̃(m; i)O(m; i), (2.49)

where C̃(m; i) are rational numbers. We would like to point out the generality of (2.49).

Since the only condition demanded for O was that it is an operator acting in the Hilbert

space of H, it is possible to use the computed coefficients C̃(m; i) for a wide range of

problems. Unlike Heff , the operator Oeff is generally not quasi-particle conserving. For

this reason, it will turn out to be quite useful to split up the effective operator according

to the quasi-particle subspaces it connects:

Oeff =
∞∑

d′=−∞

∞∑
d=0

Od′,d , (2.50)

where Od′,d acts on a state with at least d quasi-particles in such a way that the resulting

state contains precisely d + d′ quasi-particles (under condition that d′ > −d, otherwise

the result is zero). Throughout this work, we will be interested exclusively in zero-

temperature physics, which corresponds to setting d = 0. Particularly relevant for local

measurements (e.g., neutron scattering) are observables acting locally at site r (contrary

to Heff which acts on every site). An effective T = 0 local observable can thus be written

as

Oeff(r) =
∞∑
d′=0

Od′,0(r). (2.51)





Chapter 3
Linked-cluster expansions

One of the strengths of the pCUT method presented in the previous chapter is that it

allows to consider a problem directly in the thermodynamic limit, as long as elementary

excitations are local1 in real space. The physical argument for this is the fact that the

effective particle-conserving Hamiltonian (2.44) is as a sum over local terms. Therefore,

the dressed quasi-particles it represents must also be local (a formal proof of this state-

ment will be given in Section 3.2). This leads to the important conclusion that effective

Hamiltonians constructed with pCUT are suitable for a treatment with finite-cluster

methods [86, 87, 102].

The aim of this chapter is to give a short introduction to the so-called linked-cluster

expansions, allowing to perform efficient calculations on finite graphs, and to present

general recipes on how series expansions can be generated for local effective Hamiltoni-

ans.

3.1 Introduction and overview

Finite-cluster calculations can be performed for local Hamiltonians [see (3.9)] with a

variety of methods, e.g., exact diagonalization, Monte Carlo, or renormalization group.

In order to avoid finite-size scaling one can first perform a graph expansion and then treat

the systems on local graphs, e.g., with exact diagonalizations (an optimization to the low-

energy part of the spectrum is known as the contractor renormalization approach [103]),

CUT (this approach is known as gCUT [104]), or series expansion methods. Series

expansions in general have the advantage that one is able to directly compute them in

the thermodynamic limit. In addition, the pCUT approach yields analytic series, unlike
1To be precise, local means that there is no dependence on the system size.

21
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the numerical techniques mentioned above. Furthermore, one benefits from the fact that

the computations are split in two separated tasks: perturbation theory is performed on

clusters which previously have been identified by an independent algorithm. This feature

makes it possible to optimize each part of the job independently. Also the self-consistent

nature of the computation (namely the cluster subtraction, see Section 3.3) can be used

for internal checks. To be more specific, an error in an expansion on a certain graph

or even missing graphs would inevitably lead to discrepancies in the resulting series,

destroying symmetries of certain terms, for example. Series expansions are especially

powerful, if the so-called ’linked-cluster theorem’ can be applied, then the number of

finite clusters to consider is substantially reduced.

In the following sections, we will give more details on some of the concepts mentioned

above, in particular on the ones relevant for our applications. A general review about the

topic of series expansions on finite graphs can, for example, be found in Refs. [105–107].

3.2 Linked-cluster theorem

An essential premise for our method to work, is the linked-cluster theorem which is

actually not a theorem in a strictly mathematical sense but rather a universal concept

often used in perturbation theory (most prominently in the formalism of Feynman di-

agrams [108]). The main statement is that in a diagrammatic expansion it is sufficient

to consider only connected (linked) diagrams, and to eliminate the disconnected ones,

which greatly simplifies the calculation. However, we must emphasize that while, for

example, Feynman diagrams correspond to some physical processes, the term ’cluster’

(or equivalently ’graph’) in this manuscript will always refer to a set of lattice sites and

bonds which provide coordinates for the degrees of freedom of a model.

There exists plenty of literature on the topic of linked-cluster expansions, therefore we

would like to redirect the interested reader to a brief selection of references [106, 107, 109–

111] and focus on how the linked-cluster approach naturally emerges from pCUT. The

ideas presented in the following can also be found in Ref. [102].

The effective Hamiltonian (2.44) can alternatively be represented by an infinite sum

of nested commutators2 of Tm, weighted by numerical coefficients. Generally, terms

of order r are (r-1)-fold nested commutators. This is a direct consequence from the

perturbative treatment of the flow equations, as will be shown below. Next, let us take

into account the structure of operators Tm. These are generally defined as sums of
2To be precise concerning our definition of nesting, a commutator without nesting, e.g., [a, b] is

indexed by a nesting number 0, terms like [a, [b, c]] or [[a, b], c] have a nesting number 1 and so on.
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locally acting operators Tm,ν1...νn , where ν1 . . . νn is a local (usually neighboring) set of

sites:

Tm =
∑
〈ν1...νn〉

Tm,ν1...νn . (3.1)

Before proving the statements about the nested commutators, we can already antic-

ipate the main result by pointing out that the commutator structure, combined with

local properties of Tm operators, guarantees that only spatially connected processes con-

tribute to Heff since any pair of Tm,ν1...νn commutes, when they do not share a common

lattice site. Thus, the fulfillment of the linked-cluster theorem appears to be an intrinsic

property of our method.

Let us once again consider the equations (2.22), (2.33) and (2.34):

V (l) =
∞∑
k=1

λk−1
∑
|m|=k

F (l; m)T (m),

η(l) =
∞∑
k=1

λk
∑
|m|=k

F (l; m) sgn(M(m)) T (m),

d

dl
H(l) = λ

d

dl
V (l) = λ [η(l), V (l)]− [Q, η(l)] .

We shorten the notation by including the l-dependence into the Tm operators and ex-

panding them in λ

Tm(l) ≡
∞∑
k=1

T (k)
m (l), (3.2)

T (k)
m (l) ≡ λkF (k)(l;m)Tm ≡ λkF (l; m)T (m), with m = M(m). (3.3)

With this, the perturbation and the generator can be written as

V (l) = λ−1
∑
m

Tm(l), (3.4)

η(l) =
∑
m

sgn(m)Tm(l). (3.5)

Now, the flow equation of the effective Hamiltonian can be split into a set of coupled

flow equations for the Tm(l).

d

dl

∑
m

Tm(l) =
∑
n,n′

[sgn(n)Tn(l), Tn′(l)]−
∑
m

[Q, sgn(m)Tm(l)] (3.6)

=
∑
n,n′

[sgn(n)Tn(l), Tn′(l)]−
∑
m

|m|Tm(l), (3.7)



Chapter 3. Linked-cluster expansion 24

where we again have used (2.8). Expanding in λ, leads to

d

dl
T (k)
m (l) =

∑
n,n′

n+n′=m

k−1∑
q=1

[sgn(n)T (k−q)
n (l), T (q)

n′ (l)]− |m|T (k)
m (l) (3.8)

We observe that the l-dependence of the Tm operators is governed by commutators.

The first term on the right-hand side is responsible for the nested structure of the

commutators. Using the initial conditions (determined by the unperturbed system), one

can recursively solve these equations order by order, and then take the limit l → ∞ to

obtain Heff . However, at this point we already achieved our goal to show that Heff must

depend on nested commutators of Tm.

3.3 Series expansions on finite graphs

Let us consider a model on a lattice Λ, described by the Hamiltonian

H =
∑
〈ν1...νn〉

hν1...νn , (3.9)

where each hν1...νn acts on a local set of n (typically neighboring) sites, and generally

consists of a diagonal part, as well as a non-diagonal part (the perturbation), weighted

by a small parameter. The local nature of (3.9) allows for a linked-cluster expansion.

A linked cluster is defined by a set of lattice sites connected by bonds (see Figure (3.1)

for an example). We are interested in a series expansion of an extensive quantity P per

lattice site. Following the notation of Gelfand et al. [106], we write P as a function of

connected clusters c:

P (Λ)/N =
∑
c

L(Λ, c)W (c), (3.10)

W (c) = P (c)−
∑
c′⊂c

W (c′). (3.11)

Here, N is the number of sites, L(Λ, c) is the number of embeddings of a cluster c per

lattice site, usually referred to as the ’lattice constant’. W (c) is the (reduced) weight of

a cluster c. One computes W (c) by first calculating the series expansion of P on cluster

c, and then subtracting the weights of all subclusters c′ 6= c which can be embedded in

c (denoted by c′ ⊂ c).

Specifically in the present work, P represents a matrix element of the effective Hamil-

tonian, corresponding to the ground-state energy or hopping amplitudes of n particles

in the n-particle Hilbert space. Alternatively to using pCUT, the series expansion of P
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(b)
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Figure 3.1: (a) An example of a connected four-site cluster on a square lattice for a
local Hamiltonian, where each term acts on pairs of nearest neighbors [this corresponds
to n = 2 in (3.9)]. (b) Distinct subclusters associated with the cluster in (a). Each
subcluster contains at least two sites, due to n = 2.

can be computed with any perturbative method, e.g., the standard Rayleigh-Schrödinger

perturbation theory [107, 112], or the efficient formalism developed by Kato and Taka-

hashi [113, 114] for systems with degeneracy. All of the above methods yield the same

result for scalar-valued P . However, when P is a matrix, the quasi-particle picture

provided by pCUT turns out to be quite powerful because in contrast to many other

methods, it allows to directly compute individual hopping amplitudes, even for multi-

particle states.

Usually one is free to choose between different strategies to tackle the linked-cluster part

of the problem, each having its own advantages and downsides as listed below.

(i) Linked-cluster expansion

As a first step, one has to determine all contributing clusters c, as well as their

(relative) embedding numbers. One can use, for example, the ’pegs in holes’ algo-

rithm by Oitmaa et al. [107] to perform this task efficiently. Next, perturbation

theory is performed on each graph. Finally, the series expansion of P is obtained

by an appropriate summation of the results, using equations (3.11) in order to ob-

tain the reduced weights W (c). This seems to be the most efficient method since

no redundant calculations are performed. However, the number of relevant graphs

increases severely with perturbation order (especially for differently colored bonds

or sites) so that even when using symmetries to reduce the number of graphs, the

actual computation can become rather challenging.

(ii) Single periodic cluster

A kind of opposite approach, compared to (i), is to perform a one-step calculation.

As can easily be followed from the linked-cluster theorem, a finite-order series ex-

pansion can be computed on a single piece of the lattice, as long as it is big enough.

The minimal size of the cluster depends on the lattice structure, the Hamiltonian,
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and the perturbation order. One of the simplest strategies is therefore to use a

finite cluster with with periodic boundary conditions, thereby realizing exactly (for

a fixed perturbation order) the translational symmetry of a system in the thermo-

dynamic limit. Although this is an elegant way to incorporate the linked-cluster

theorem in order to avoid dealing with a plethora of graphs, one is usually limited

to relatively low perturbation orders, due to the rapidly increasing system size,

and finite hardware resources. Still, this is a useful approach to compute the first

few terms of a series and use it as an independent check for the more involved

graph-based calculations.

(iii) Finite-lattice method

For square lattices, the so-called ’finite-lattice method’ has been developed by

de Neef and Enting [115] in the context of the classical Ising model, and applied

for the first time to a quantum system by Dusuel et al. [102]. If applicable, this is

a very efficient approach since it optimally combines the advantages of (i) and (ii).

The basic idea is to consider only rectangular subclusters Cm×n with m× n sites.

These can be easily constructed and, more importantly, their embedding numbers

can be found algebraically so that no combinatorial tasks have to be performed.

Furthermore, the total amount of graphs is dramatically decreased. The equations

(3.10) and (3.11) simplify to

P (Λ)/N =
∑
m≤n

L(Λ,Cm×n)W (Cm×n), (3.12)

W (Cm×n) = P (Cm×n)−
∑
m′≤m
n′<n

∑
m′<m
n′=n

(m−m′ + 1)(n− n′ + 1) W (Cm′×n′),

(3.13)

where the last sum is constructed to run through all m′ and n′, such that Cm′×n′

can be embedded in Cm×n, with Cm′×n′ 6= Cm×n. The lattice constant in (3.12)

equals to one, for square-shaped subclusters, and to two, for other rectangular

shapes. This can be verified by counting the number of embeddings Nemb of a

rectangular cluster Cm×n in a square lattice. Generally

Nemb =

2mn, if m 6= n

m2, if m = n
. (3.14)

Dividing Nemb by the number of sites (mn for m 6= n and m2 for m = n) yields the

lattice constant3. The relations (3.12) and (3.13) are valid in the thermodynamic
3The factor two for cases with m 6= n can be understood, by realizing that non-square shapes have

less symmetries, e.g., contrary to square clusters, they are not invariant under a mirror transformation
on their diagonal.
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limit. However, due to the linked-cluster theorem, in a finite-order calculation

maximal m and n can be found so that the above sums become limited. This step

is problem dependent, and we refer to Chapter 5 for an explicit example where we

will demonstrate the finite-lattice method (more precisely its generalized quantum

version) by applying it to the toric code in a field. It should be mentioned that

this method can also be used similarly for triangular lattices [116]; however, the

subclusters and their embeddings are then less trivial. It is possible to extend the

finite-lattice method to higher dimensions [117], as well as other lattices (checker-

board lattice in Section 5.1.1), as long as one is able to find an algebraic expression

for the embedding numbers of subclusters. In practice, calculations are limited by

the perturbation order dependent size of the largest cluster. While the largest

Cm×n has generally less sites than the largest cluster from (ii), it is clearly big-

ger than any cluster from (i). Nevertheless, this disadvantage [compared to (i)] is

compensated by a significantly lower total number of graphs, as well as an almost

trivial subtraction scheme.





Chapter 4
The toric code

In this chapter, the toric code and its exact solution are presented. We address the

properties of the topologically-ordered ground states as well as of elementary excitations

which are static non-interacting anyons or bosons. When exposed to a magnetic field,

the anyons generally become dispersive and start to interact. Certain limiting cases of

the toric code in a magnetic field can be mapped onto known models and we are able

to resort to literature in order to learn about basic properties of the critical behavior of

the model.

4.1 Model and ground-state properties

The toric code [28] is a two-dimensional spin-1/2 quantum system. Following Kitaev’s

convention, the spins are located at bonds of a square lattice [see Figure 4.1 (a)] and

their interaction is governed by the Hamiltonian

HTC = −J
∑
s

As − J
∑
p

Bs, (4.1)

As =
∏
i∈s

σxi , (4.2)

Bp =
∏
i∈p

σzi , (4.3)

with J > 0. Here, s stands for ’star’, or equivalently vertex of the square lattice in Fig-

ure 4.1 (a), p denotes elementary (square) plaquettes, and σαi are SU(2) Pauli operators,

acting at site i. Within this notation, As (Bp) is defined as a product of Pauli operators

along the boundaries of a star (plaquette), thus H consists entirely of four-body inter-

actions. Note that throughout this work we will will use the same amplitude J for the

29
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(a)

As

Bp

(b)

As

Bp

Figure 4.1: Two possible ways to define the toric code on a lattice. (a) Following
Kitaev’s convention, spins are placed on bonds of a square lattice, the operators As
(Bp) act on vertices (plaquettes). (b) An equivalent representation of the toric code.
Here spins are positioned on vertices of a checkerboard lattice, the operators As (Bp)
act on white (gray) plaquettes.

two types of interactions. Sometimes, it is convenient to consider an equivalent picture

of the toric code where the system is geometrically rotated by π/4 so that spins can be

placed on vertices of a checkerboard lattice and interact through As on white, and Bp on

gray plaquettes, as shown in Figure 4.1 (b). Generally, the spin lattice can be embedded

on various two-dimensional manifolds. However, it should be clear that the topological

properties of the toric code strongly depend on the boundary conditions. In order to

function as a quantum memory, the system should be able to carry various topologically-

protected sectors which, in the toric code, are characterized by non-contractible loops

directly related to the genus g of the manifold. Therefore, one is often led to define the

spin lattice on closed and orientable surfaces with g > 0. The simplest representative of

such a manifold (with g = 1) is a torus. Nevertheless, it is also useful to consider the

toric code on an open infinite plane, in order to compute local properties of HTC (such

as eigenenergies) which do not depend on boundary conditions. It should be mentioned

that for an experimental realization it might also be useful to consider this model on a

finite perforated plane, where instead of non-contractible loops around the whole system

topological invariants are constructed by strings around holes, or strings connecting dis-

tant edges of the system, as suggested by Ioffe et al. [45] and Douçot et al. [46, 118] for

an implementation in Josephson junction arrays. In the present manuscript, however,

we will focus mainly on properties of the model, valid in the thermodynamical limit,

where the influence of system edges can safely be neglected.
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There is an extensive number of conserved quantities in the toric code. For all s and p,

the As and Bp commute with each other and consequently with the Hamiltonian.

[As, As′ ] = 0 = [Bp, Bp′ ], (4.4)

[As, Bp] = 0. (4.5)

This follows directly from the commutation relations of Pauli operators and the fact

that any star-plaquette pair has either two or zero spins in common. It is helpful to

realize that due to

A2
s = 1 = B2

p , (4.6)

the local spectrum of each As and Bp has two energy levels with eigenvalues ±1. On a

torus (but not on an open plane) these degrees of freedom are, further, subject to the

global constraint

∏
s

As = 1 =
∏
p

Bp. (4.7)

Since in a lattice with N spins there are N/2 stars and N/2 plaquettes, we have so far

N − 2 conserved quantities. There are two additional conserved quantities on a torus.

We will find them by considering products of σx or σz along certain closed paths, called

’loops’ in the following. One has to distinguish between contractible and non-contractible

loops. Figure 4.2 exemplifies, how a product of overlapping As is equivalent to a product

of σx along a closed loop (same holds for Bp and loop products of σz) because spins

inside the area enclosed by the loop are acted upon twice by the same Pauli operator.

It can be argued that in the thermodynamic limit, products of As and Bp can only

be related to contractible loops (and vice versa). Thus it is obvious that loops of this

kind also commute with the Hamiltonian. However, they are not independent degrees

of freedom since they are isospectral to the product of enclosed As or Bp respectively.

On the contrary, non-contractible loops, as depicted in Figure 4.3, cannot be represented

by products of star or plaquette operators and therefore are independent conserved

quantities. Let us consider the non-contractible loop operators

Xµ =
∏
i∈Cµ

σx, (4.8)

Zµ =
∏
i∈Cµ

σz, (4.9)

with µ ∈ {1, 2}, and Cµ are contours defined in Figure 4.3. While Xµ and Zµ commute

with the Hamiltonian they generally do not commute with each other so that on the
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(a)

As

As′

As′′

Bp

Bp′

(b)

∏
σxi

∏
σzi

Figure 4.2: Contractible loops in the toric code. A product of As (Bp) [for instance
the one shown in (a)] can be represented by a product of σx (σz) on the outermost sites
of the enclosed region, as shown in (b). Loop operators of this kind by construction
commute with the Hamiltonian.

torus only two of them can be chosen independently.

[Xµ,Xν ] = 0, (4.10)

[Zµ,Zν ] = 0, (4.11)

[Xµ,Zν ] = 2XµZν (1− δµν) . (4.12)

This way we recover two additional independent degrees of freedom which compensate

for the constraints in (4.7), and thus maintain the exact solvability of the toric code

(in total there are N conserved quantities in a system with N spins). As previously,

it is easy to check that X 2
µ = 1 = Z2

µ. Consequently, the eigenvalues of each of these

loop operators are limited to ±1 so that each configuration of As- and Bp-degrees of

freedom is four-fold degenerate. Thus, the Hilbert space of H separates in topologically-

protected subspaces which, in the thermodynamic limit, cannot be connected by a local

perturbation. The number of non-contractible loops and consequently the degeneracy of

each state scales as 22g with the genus g of the manifold, on which the model is defined.

Thus, we obtain the interesting result that the ground-state degeneracy depends on the

topology of the system, which is an important attribute of topological order. Note that

on an infinite open plane all loops are contractible, hence the ground state is unique.

We proceed by constructing the exact ground state |g〉 where all As and Bp should have

positive eigenvalues (+1), due to (4.1) and J > 0:

As |g〉 = |g〉 , (4.13)

Bp |g〉 = |g〉 . (4.14)
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(a)

(b)

C1 C2

Figure 4.3: Non-contractible loops on a torus: a closed, orientable g = 1 manifold.
(a) Two different non-contractible loops exist on the surface of a torus. (b) In two
dimensions a torus can be represented by a plane with the following periodic boundary
conditions: the lower edge of the plane is identified with the top edge and the right
edge with the left. In the toric code, loop operators are defined as products of Pauli
operators along the highlighted sites, denoted by C1 and C2.

Furthermore, we use the operators Z1 and Z2 (this choice is, however, not unique),

with respective eigenvalues z1 and z2, to unambiguously identify the subspace of non-

contractible loops. Due to (4.12), the zi ∈ {±1} can be set independently. They will

be used as quantum numbers labeling the ground state |g, z1, z2〉. Let us now consider

an arbitrary reference state |ref〉. We will work with local projectors (1 +As) /2 and

(1 +Bp) /2, in order to build an eigenstate of H with the minimal energy, where all

eigenvalues of As and Bp are set to +1:

|g, z1, z2〉 = Nref

(
1 + z1Z1

2

)(
1 + z2Z2

2

)∏
s

(
1 +As

2

)∏
p

(
1 +Bp

2

)
|ref〉 , (4.15)

where Nref is a normalization constant. Provided that the above state is non zero, it is

an exact four-fold degenerate ground state of the toric code. With this technique one

can build any eigenstate of the toric code, as will be shown in an explicit example in the

next section.

At this point, it can be instructive to consider the specific reference spin state |⇑〉 where

all spins point upward (in the z-direction). This state is already an eigenstate of the



Chapter 4. The toric code 34

Bp-ground-state projector, so we obtain

|g, z1, z2〉 = N
(
1+ z1Z1

2

)(
1 + z1Z2

2

)∏
s

(
1 +As

2

)
|⇑〉 , (4.16)

where N is a normalization constant. Expanding the remaining projector yields

|g, z1, z2〉 = N
(
1 + z1Z1

2

)(
1 + z2Z2

2

)(
1
2

)N/21 +
∑
s

As +
∑
s,s′

AsAs′ + . . .

 |⇑〉 ,
(4.17)

where we accounted for (4.7), and the fact that a system of N spins has N/2 stars. As

has been already shown (Figure 4.2), each product of As corresponds to a closed loop

of flipped spins. Thus the ground state of the toric code can be considered as an equal-

weight superposition of all possible loops and combination of loops (this is sometimes

referred to as ’loop gas’) within the four topologically separated sectors fixed by z1 and

z2. We point out that on an open plane the ground state can be constructed in exactly

the same way as a product of local projectors, but since all loops are contractible, there

are no topologically distinct sectors, and the ground state is unique.

4.2 Properties of elementary excitations

Elementary excitations (also referred to as ’particles’ in the following) of the toric code

are obtained by changing the eigenvalues of the star and plaquette degrees of freedom

from +1 to -1. Due to the special structure of the model, any local operator flips

eigenvalues of As (as well as Bp) pairwise. Such elementary flips can be realized by

acting with σα operators on the ground state. Consider, for example, the operator σxi
(σzi ) which acts on a site i. While this operator anticommutes with each of the two

neighboring p (s) sharing the site i, it commutes with every remaining term in the

Hamiltonian. With the same argument, σyi = iσxi σ
z
i anticommutes with two p and two

s, connected to the site i. Consider Figure 4.4 for an intuitive picture of the discussed

commutator relations. For convenience, we will call excitations on stars s, ’charges’, and

the ones on plaquettes p, ’fluxes’. The naming is motivated by actual charges and fluxes

from electrodynamics since, as in the Aharonov-Bohm effect, moving a charge around a

flux yields a phase shift in the corresponding wave function, as will be discussed in more

detail below.
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(a)

σz

σx

(b)

Figure 4.4: Examples of how local excitations of the toric code are created by acting
with Pauli operators. White and gray squares correspond to the eigenvalue +1 (the
local ground-state energy) of As and Bp respectively. s (p) with eigenvalues -1 are
illustrated by orange (blue) shapes, referred to as charges (fluxes) in the text. (a)
A σz flips two neighboring charges, and a σx flips to neighboring fluxes. (b) A σy

simultaneously flips a pair of charges and fluxes.

By construction, charges and fluxes are static excitations which do not interact. The

energy of an excited state can thus simply be obtained by counting the number of

particles in the system. On the torus, the particle vacuum is protected by a gap of 4J ,

corresponding to the energy cost of creating a particle pair. Let us consider a case, where

σz operators act on certain neighboring spins, as illustrated in Figure 4.5. Obviously,

(a)

σz

(b)

σz

(c)

σz

Figure 4.5: Through successive application of σz operators a pair of charges is
created and moved apart. Alternatively, one can consider charges as ends of open
strings highlighted by blue lines in the figure. All of the presented states have the same
energy.

when the eigenvalue of an As is flipped from -1 to +1, the charge it carries is destroyed.

In the particular case shown in Figure 4.5 (b)-(c), the charge is simultaneously created

on a previously ’empty’ neighboring star. This process does not change the energy of the

state because the number of particles in the system is constant. One can observe two

important properties of these elementary excitations. Firstly, a pair of charges is always

connected by a ’string’ of σz (one can alternatively consider the elementary excitations

as end points of open strings). Secondly, the string is free of energy, it does not produce
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any ’tension’ between particles. This fact enables us to study single charges, by driving

a pair of particles sufficiently far apart. Due to the finite excitation gap, all correlations

vanish exponentially and the charge is indeed deconfined. Locally, an isolated charge

(with its partner at infinity) is equivalent to a single charge on an infinite open plane,

whereas one end of the string is connected to the charge and the other one to the plane

edge at infinity. This will be essential for series expansions we perform with pCUT in the

one-quasi-particle subspace of the effective Hamiltonian. All of the above considerations

can, mutatis mutandis, be applied to fluxes. Figure 4.6 illustrates what we will call a

’single particle’. Formally, it is possible to define single particle states on an infinite

(a) (b)

Figure 4.6: Single particles in the toric code. (a) A single charge with a string of
σz operators. (b) A single flux with a string of σx operators. There are two ways to
consider these figures. (i) On the one hand they can be regarded as local views of a
torus in the thermodynamic limit, then the shown particles are connected by a string
with their respective partner at infinity. (ii) Alternatively one can view the lattices
in (a) and (b) as finite open planes, where only fully shown stars and plaquettes are
part of the model. Because edge-spins of the plane are connected to single stars and
plaquettes, the model admits the creation of single particles which, however, are always
attached to an edge by a string. In the thermodynamic limit, where edges of the open
plane are at infinity, the local properties of single particles are equivalent in (i) and (ii).

open plane, where the unique ground state can be denoted by

|g〉plane = N
∏
s

(
1 +As

2

)
|⇑〉 . (4.18)

A single-charge state with a charge positioned at star s can be written as

|s〉 =

(∏
i∈Cs

σzi

)
|g〉plane = N

(
1−As

2

) ∏
s′ 6=s

(
1 +As′

2

)
|⇑〉 , (4.19)

where Cs is a one-dimensional semi-infinite path on the lattice, with one endpoint at s

and the other one at the edge of the infinite plane. Similarly, we define a single-flux
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state as

|p〉 =

∏
i∈Cp

σxi

 |g〉plane = N
∏
s

(
1 +As

2

)
|Cp〉 , (4.20)

where the flux is positioned at p and Cp is defined analogically. The notation of the state

|Cp〉 symbolizes that all spins are up, except the ones belonging to Cp. Multi-particle

states can easily be defined in the same fashion. We point out that the lack of symmetry

in the notation of single charges and fluxes is the consequence of our explicit choice of the

basis, where the reference state |⇑〉 denotes a state with all spins up. Also, it should be

stressed that while the presented construction of single-particle states might be difficult

to implement in an experiment, it is legitimated by the fact that perturbation theory is

a ’local’ approach.

Certainly, one of the most remarkable features of the toric code is the unusual statistics

of the quasi-particles. While two charges behave as hard-core bosons1 (same holds for

two fluxes), a charge and a flux are mutual Abelian anyons. Sometimes they are called

’semions’ since braiding a single flux around a single charge (or vice versa) yields the

initial state multiplied by a minus sign. This corresponds to a phase of π and is one

half of the phase one would get for fermions. To prove this, we will profit from the

simplicity of the toric code where braiding operations can be performed by acting with

Pauli operators and where the mutual statistics of the elementary excitations can be

explicitly demonstrated in a more or less trivial way.

Let us consider a state |ψ〉 where two distinct pairs of particles are aligned as shown in

Figure 4.7 (a). We will now perform two independent operations:

(i) Move a flux along the contour Cflux highlighted in Figure 4.7 (b), by applying the

operator Obraid =
∏

i∈Cflux

σxi .

(ii) Move a charge inside the area enclosed by the path of the flux, by acting with σzi

on site i.

Algebraically, it is clear that since Obraid and σzi do not commute, the order in which they

are applied matters. Physically, Obraidσ
z
i |ψ〉 = |ψ′〉braid [Figure 4.7 (b)] corresponds to

a braid of the flux around a charge. The case σziObraid |ψ〉 = |ψ′〉 [Figure 4.7 (c)] yields

an identical final state, however, no braiding has been performed.
1These particles are so-called ’hard-core’ bosons because the local Hilbert space allows for an occu-

pation of at most one particle per star or plaquette.
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(a)

i

(b)

Cflux

(c)

Figure 4.7: Braiding a flux (blue) around a charge (orange) reveals the anyonic
character of elementary excitations in the toric code. (a) The initial state |ψ〉. (b)
First, a charge is displaced into the area enclosed by Cflux, then a flux hops along a loop
path around the charge and back to its initial position. The resulting state is |ψ′〉braid.
(c) First, a flux moves along Cflux, then the charge hops to its final position. Effectively
no braiding has been performed and we obtain |ψ′〉.

Thus, we obtain

Obraidσ
z
i |ψ〉 = −σziObraid |ψ〉 , (4.21)∣∣ψ′〉
braid

= − ∣∣ψ′〉 = eiπ
∣∣ψ′〉 . (4.22)

We conclude that the performed braid yields a non-trivial global phase of 2θ = π,

contrary to what is expected for fermions (2θ = 2π) or bosons (2θ = 0) under the same

operations. It should be emphasized that the anyonic behavior is the direct consequence

of the non-local structure of the elementary excitations (due to strings). In order to

demonstrate that charges are mutual bosons one can proceed in a similar fashion by

braiding a charge around another charge. But, one can also simply argue that strings of

charges commute so that braiding has no effect. Consequently, a state where two charges

exchange positions (half a braid) yields a global phase of θ = 0 which is a signature of

bosons. Same considerations can be carried out for fluxes. In the same spirit as for

single particles, one can straightforwardly show that pairs of charges (or fluxes) form a

boson, while a charge-flux pair is a fermion.

4.3 Toric code in a magnetic field: limiting cases

The exactly solvable toric code is one of the few known models one can use to study

quantum phase transitions in a topologically-ordered system. Furthermore, the robust-

ness of the topological phase against external perturbations is relevant to determine its

potential usability as a quantum memory. In this section, we will discuss known results

about the toric code perturbed by a magnetic field which is one of the simplest uni-

form perturbations in a quantum spin system. The toric code in an arbitrary uniform
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magnetic field is defined as

HTCF = −J
∑
s

As − J
∑
p

Bs︸ ︷︷ ︸
HTC

−hx
∑
i

σxi − hy
∑
i

σyi − hz
∑
i

σzi , (4.23)

where sums over index i run through all lattice spins, σαi are the usual Pauli operators,

and hα the respective field amplitudes. Motivated by the structure of As and Bp, in

literature, one usually refers to the hx- and hz fields as ’parallel’ and to the hy field as

’transverse’. We argue that HTCF features at least two distinct phases. In the zero-field

limit we obtain the topologically-ordered HTC with anyonic elementary excitations, as

discussed in the previous section. For J = 0, the ground state is unique (whatever the

system topology) and polarized in the field direction, so there must be a quantum phase

transition. Interestingly, in certain limits of (4.23), exact mappings to already known

models can be found and will be presented below. These models are usually easier to

tackle numerically and unravel important properties of the toric code in a magnetic field.

Furthermore, the connection to known results provides an additional check for our own

studies (see Chapter 6).

We begin with the simplest case of a single parallel magnetic field. This perturbation

is sufficient to drive the toric code out of its topological phase. In Refs. [65, 119] it has

been found that the spectrum of the toric code in a single parallel field is equivalent (up

to degeneracies) to the one of the ferromagnetic transverse-field Ising model

HTFIM = −JI
∑
〈i,j〉

σzi σ
z
j − hI

∑
i

σxi , (4.24)

where quantum spins are placed on vertices i of a square lattice and 〈i, j〉 stands for

nearest neighbors. In what follows, we will adapt the notation of Ref. [102]. Each term of

the Ising-interaction corresponds to a two-level system one can mimic by a pseudo-spin

σ̃zβ = σzi σ
z
j , (4.25)

where β represents a bond connecting neighboring sites i and j. Note that this mapping

conserves neither the degeneracy nor the dimension of the Hilbert space, but only the

spectrum. The field term is slightly more intricate. We recall that a vertex on a square

lattice with four attached bonds is called ’star’. The operator σxi flips a spin at site i,

thus inverting the eigenvalues of our new bond variables σ̃zβ on such a star

Ãs =
∏
β∈s

σ̃xβ = σxi , (4.26)
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where the product runs over four bonds attached to site i. We obtain

H̃TFIM = −JI
∑
β

σ̃zβ − hI
∑
s

Ãs. (4.27)

In a single hz field, the Bp degrees of freedom are still conserved. This means that their

local eigenvalues and can be fixed to a constant value, in other words we consider fluxes

as ’frozen out’ at low energies. This way H̃TFIM is isospectral to the toric code, adjusted

by a global energy shift that depends on the Bp eigenvalues. Since we are interested

in low-energy physics, we choose the local eigenvalues of each Bp to be +1. Note that

low-field limit of H̃TFIM (low hI) corresponds to the high-field limit of the toric code and

vice-versa. HTFIM is known to display a second-order phase transition from the ordered,

polarized (JI � hI) phase to a disordered phase at (JI/2hI)c = 0.32847(2) computed

by mapping the HTFIM onto its three-dimensional classical analogue and applying the

continuous-time Monte Carlo technique [120]. The natural order parameter for HTFIM

is the magnetization per site 〈∑i σ
z
i 〉 /N . However, from this it cannot be concluded

that a local order parameter exists in the toric code. It has been checked by Monte

Carlo calculations [65, 67] and also derived from series expansions [68, 121, 122] that

the magnetization per bond2 σ̃zβ/2N of the toric code is non-zero throughout the whole

parameter range (except in the trivial zero-field limit). As Kitaev aptly remarks: “a

hidden long-range order [. . . ] cannot be described by any local order parameter” [28].

Note also that H̃TFIM and HTFIM are truly different at finite temperatures where the

degeneracy of energy levels becomes important in the partition function. Finally, we

remark that the toric code in a single hx field can be treated in an analogue way. One

has to perform a basis rotation σx → σz, σz → −σx and obtains again (4.27) (the

As-degrees of freedom are frozen out).

Tupitsyn et al. [66] found a way to map the toric code including both parallel fields hx
and hz onto the anisotropic Z2 gauge Higgs model [123] which again can be studied

using its classical counterpart. The rather technical procedure will be sketched only

briefly, more details can be found in Ref. [66]. The mapping relies on artificial spin

degrees of freedom which are centered on stars s and are denoted by µxs and µzs. After

the transformation

σzi → µzsiσ
z
i µ

z
s′i
, (4.28)

σxi → σxi , (4.29)

where s and s′ are neighboring stars sharing the site i, the Hilbert space is enlarged, but

the physical states |ψ〉 can be projected out with µxs |ψ〉 = |ψ〉. The additional degrees
2Note that on the square lattice the number of bonds is twice the number of sites.
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of freedom generate a local symmetry and thus impose a gauge invariant transformation

for the physical states

µxsAs |ψ〉 = |ψ〉 . (4.30)

In the next step, one considers the evolution in imaginary time of the resulting effective

Hamiltonian Hphys which preserves the physical subspace of the enlarged Hilbert space

Hphys = −Jx
∑
s

µxs − Jz
∑
p

Bp − hx
∑
i

σxi − hz
∑
i

µzsiσ
z
i µ

z
s′i

(4.31)

When Hphys is mapped onto (2+1) dimensional classical model, one recovers the aniso-

tropic Z2-gauge Higgs model. The anisotropy results from the fact that the coupling

in the imaginary-time direction is different from the one in spatial directions. However,

Tupitsyn et al. considered the isotropic case which fixes a certain ratio of the four free

parameters of (4.31). Note also that in contrast to (4.1), here generally Jx 6= Jz. In

consequence, one cannot compare the obtained phase diagram quantitatively to the one

of the toric code, considered in this manuscript. Minor parameter changes, however, do

not affect the critical behavior so that the phase diagram discussed in Ref. [66] contains

all main features of the toric code in a parallel field. Indeed, this phase diagram is is

agreement with series expansions results by Vidal et al. [68], as well as recent quantum

Monte Carlo simulations [performed directly in (2+1) dimensions] by Wu et al. [67] (see

Figure 4.8).

Let us discuss this phase diagram in more detail. On the axes hx = 0 and hz = 0

one recovers a second-order phase transition in the 3d Ising universality class at

h/J = 0.32847(2). The phase transition along red curves belongs to the same univer-

sality class, this has been shown generally in the context of the isotropic Z2 Higgs

model [123] and also by comparing critical exponents [68]. For hx < hz, the transition

into a magnetically-ordered phase (spins are polarized in the direction of the field) is

triggered by condensation of charges, whereas for hx > hz, fluxes condense first. In-

terestingly, the charge-condensed phase is separated from the flux-condensed one by a

first-order phase transition line which terminates at the second-order transition point

P2. The exact connection of the phase boundaries around P1 is still under debate but,

according to Tupitsyn et al. [66], the scenario where all three lines meet at one point

is rather likely. Assuming this is indeed the case, P1 is a multicritical point since it

borders three critical manifolds. This picture is consistent with pCUT calculations in

Ref. [68], where the value of the critical exponent zν at P1 was found to be different

from the Ising one, indicating a distinct universality class. From the physical point of

view, it is also expected that the critical behavior at hx = hz, where the Hamiltonian

has an increased Z2-symmetry, is truly different compared to hx 6= hz. While along the
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P1

P2

Figure 4.8: Phase diagram of the toric code (with J = 1) perturbed by the parallel
fields hx and hz. The figure is taken from Ref. [67], where the phase boundaries were
computed with continuous-time quantum Monte Carlo and are precise up to the third
digit. Red lines denote a continuous Ising-type phase transition, while the dotted blue
line marks a first-order phase transition. On the symmetric line hx = hz the Ising-type
boundaries of the topological phase meet a first-order phase transition line at the point
P1 : hx = hz = 0.340(2). The discontinuous transition line connects the multicritical
point P1 with a second-order transition point P2 : hx = hz = 0.418(2). The low-field
phase corresponds to the topological phase of the toric code, while regions A and B are
charge-condensed and respectively flux-condensed phases, smoothly connected at the
high-field limit where elementary excitations are magnons.

red line the phase transition occurs when bosonic particles condense (either charges or

fluxes), at P1 the two kinds of elementary excitations condense simultaneously so that

their anyonic character may become relevant for the phase transition.

Another limiting case of interest is the toric code in a transverse magnetic field, inves-

tigated by Vidal et al. in Ref. [69].

HTF = −J
∑
s

As − J
∑
p

Bs − hy
∑
i

σyi , (4.32)

Here, the system is governed by an utterly different physics, e.g., elementary excitations

can combine into bound states and show dimensional reduction in their kinetics, con-

trary to ’freely’ dispersive fluxes and charges in the parallel field case [69]. We shall

discuss bound states in detail in Chapter 7. However, one can already understand the

dimensional reduction of the kinetics, by considering Figure 4.4. The operator σy flips

eigenvalues of two stars, as well as two plaquettes, surrounding a site. Thus, the ac-

tion of the particle conserving effective Hamiltonian can shift a vertically (horizontally)

adjacent charge-flux pair into horizontal (vertical) direction. Movements in any other
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direction are forbidden since they always involve a creation of additional particles. Sim-

ilarly, two neighboring particles of the same type are not dispersive because the only

particle conserving action of σy is the transformation of the charge pair into a flux pair

(and vice versa), without moving the center of mass of the particle pair. Analogue ar-

guments can be used to explain the dimensional reduction of bound states with more

then two particles.

Using a non-local mapping, the model (4.32) can be transformed onto a self-dual model

proposed by Xu and Moore [124, 125].

HXM = −J
∑
i

σxi − hy
∑
p

∏
i∈p

σzi , (4.33)

where quantum spins-1/2 are placed at vertices i of a square lattice and i ∈ p denotes,

as usual, the four sites around a square plaquette p. In order to transform HTF, we

consider the toric code on an infinite open plane with spins positioned on bonds of Λ.

We will use illustrations in order to guide through this somewhat sophisticated mapping.

First, the Z2 degrees of freedom on stars and plaquettes are replaced by effective spin

variables

σ̃zjs = As, (4.34)

σ̃zjp = Bp, (4.35)

so that sites j lie on a rhombic superlattice Λ̃, represented by gray squares in Fig-

ure 4.9 (a). The magnetic field is subject to a non-local mapping via

σ̃xj =
∏
i<j

σyi , (4.36)

where the sum on the right runs through all i ∈ Λ, relatively to j ∈ Λ̃ as depicted in

Figure 4.9 (b). Finally, we argue that the toric code in a transverse magnetic field is

isospectral to

H̃XM = −J
∑
j

σ̃zj − hy
∑
ep
∏
j∈ep σ̃

x
j , (4.37)

where j ∈ p̃ is a product along the boundary sites j ∈ Λ̃ of the plaquette p̃ of the

lattice Λ̃. Note that this mapping is not exact concerning degeneracies (also we end

up with a tilted square lattice, but this has no physical effect). However, the first sum

counts the number of charges and fluxes and its spectrum is equivalent to the one of the

unperturbed toric code. Considering a single term from the second sum, we illustrate

the action of
∏
j∈ep σ̃xj in Figure 4.9 (c). Since acting an even number of times with a Pauli
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(a)

Λ↙

⇒
Λ̃↘

(b)

j

(c)

p̃

Figure 4.9: Illustration of the mapping of the toric code in a transverse field (4.32)
onto the Xu-Moore model (4.37). (a) In addition to the initial spins of the toric code,
positioned on lattice Λ, effective spins on stars and plaquettes are introduced. They
are depicted by gray squares which assemble into a rhombic lattice Λ̃. (b) Action of
σ̃xj =

∏
i<j σ

y
i . The site j is highlighted by a blue square, while the sites i < j are

encircled with an orange color, covering a quarter of the infinite open plane. (c) Action
of
∏
j∈ep σ̃xj , p̃ is marked by a thick border. The spins acted upon twice (four times)

are highlighted by dashed (solid), gray circles. The spin inside the plaquette p̃ is acted
upon only once.

operator is equivalent to unity, the non-local part of this term is canceled out and what

is left is a single σyi with i ∈ Λ. Thus, the second sum can be identified with
∑
i∈Λ

σyi and

H̃XM has indeed the same spectrum as HTF.

The Xu-Moore model itself can also be mapped onto the quantum compass model [126]

which in turn can be mapped onto the so-called cluster-state Hamiltonian [127–129],

relevant for measurement-based quantum computing. The quantum compass model has

been known for a fairly long time in the context of frustrated magnetism [130] and

received intensive interest through the last decade [118, 126, 131–134]. Several of these

studies have argued that the system undergoes a discontinuous phase transition at the

self-dual point J = hy. This has also been clarified by series expansions (with pCUT)

as well as exact diagonalizations in Ref. [69]. Additionally, in Ref. [69] it has been

shown that the low-energy physics of the toric code in a transverse field is very different

from the one in a parallel field. In a presence of pure transverse field a single charge

(or equivalently a single flux) is dispersionless, while multi-particle composites hop in a
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correlated way along typical one-dimensional paths. This is in deep contrast to what is

found in the toric code with a parallel magnetic field, where the dispersion of charges

and fluxes is truly two-dimensional. In the following section, we will show how the

quasi-particle picture provided by pCUT naturally explains these phenomena.

We summarize that exact mappings of the toric code in a solely parallel as well as a solely

transverse magnetic field to well known models provide us with a rich phase diagram. In

the parallel field with hx 6= hz condensation of either fluxes or charges yields a quantum

phase transitions of second-order with critical exponents from 3d Ising universality class.

For hx = hz, charges and fluxes condense simultaneously so that their mutual anyonic

character directly influences the critical behavior. Indeed, it has been found that the

critical exponents for this case differ from the 3d Ising universality class. Furthermore,

the phase transition point for hx = hz is multicritical since it is very likely connected to a

first-order phase transition line outside the topological phase. Due to the sign problem,

quantum Monte Carlo simulations cannot be performed efficiently for the general field

case so that perturbative expansions and variational methods are the only available tools

to tackle the problem. We have seen that in the transverse field the topological phase of

the toric code undergoes a discontinuous phase transition. Low-energy series expansions

in one phase are, by construction, blind to level-crossings, and are therefore unable to

detect first-order phase transitions. Therefore, we have been led to combine pCUT with

a variational method (see Section 5.3.3 for more details) in order to obtain the full phase

diagram.





Chapter 5
pCUT method for the toric code in a field

Our goal in this chapter is to demonstrate how the pCUT technique is applied in practice.

In the low-field limit of the toric code, the system is topologically ordered, and we face

the challenge of deriving a quasi-particle picture for anyons, which is a non-trivial task

in a highly-entangled system. Furthermore, in order to profit from the finite-lattice

method, it has to be adapted to the specific lattice of the toric code, where elementary

graphs are more complex than the ones of a square lattice. Subsequently, we draw our

attention to the limit of high magnetic fields. In this case, the system is polarized in

the field direction and the pCUT approach is applied to compute the gap of a dressed

magnon. Finally, we discuss the general structure of the algorithm used in our computer-

aided analysis, and we explain extrapolation methods essential to determine the phase

boundaries from high-order series expansions.

5.1 Applying pCUT to a topological phase

5.1.1 First steps: effective operators, finite clusters

In order to apply the pCUT method to a model of interest, one first needs to make

sure that the conditions (i)-(iii) listed in Section 2.1 are fulfilled. We have already seen

that the spectrum of the unperturbed toric code (4.1) is discrete and equidistant. Let

us focus on open-plane boundary conditions. The ground-state energy of a system with

N spins is then exactly −NJ , and the distance between neighboring energy levels1 is

constantly 4J . We set once and for all J = 1/2 so that the excitation energy of each
1We point out that the equidistant spectrum is realized as long as the cost of creating charges and

fluxes is the same. Introducing individual coupling amplitudes Js 6= Jp would destroy this feature and
hereby the applicability of pCUT .

47
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state above the ground state coincides with the number of particles in the system. Thus,

we meet already the conditions (i) and (ii). Next, we reformulate the perturbation by

the magnetic field in terms of operators Tm that change the number of fluxes and charges

by m. While in Section 4.2 we considered the action of Pauli operators on the ground

state (see in particular Figure 4.4), we now generalize their action to an arbitrary quasi-

particle sector.

It is important to note that the perturbing operators always act on single spins and

thus affect the Z2 eigenvalues of a pair of stars and a pair of plaquettes surrounding the

spin. Therefore it is legitimate to consider an elementary piece Cs
2×2 of the lattice to

fully determine the action of each Pauli operator. We adopt the notation of rectangular

subclusters from Section 3.3, taking into account the specific characteristics of the toric

code: firstly, particles live on stars and plaquettes instead of sites, and secondly p and

s form a checkerboard lattice, where subclusters, in addition to their dimension, are

characterized by tile symmetry. Inversion of tile colors yields generally a cluster not

related to the initial one by any rotational or mirror symmetry. For example: 6=
(formally Cs

3×3 6= Cp
3×3). The two possible colorings for each checkerboard subcluster

are distinguished by an upper index s or p depending on the type of the lower left tile.

In what follows, we will use the graphical notation according to Table 5.1, in order to

denote physical states on a given cluster.

zero particles, spin up zero particles, spin down

single charge, spin up single flux, spin up

Table 5.1: Illustration of the graphical notation of the Z2 degrees of freedom of the
toric code, exemplified on an elementary piece of the lattice. Spins are represented by
round shapes: the black dot stands for spin up and the purple circle for spin down. An
s (p) not carrying a particle will be represented by a white (gray) square. Particles are
shown as colored rectangular shapes. Although it is unambiguous whether a particle is
a charge or a flux, we find it helpful to distinguish them additionally by color: orange
stands for charges and blue for fluxes.

With the introduced graphical language at hand, the action of Pauli operators can now

be summarized as it is done in Table 5.2. In principle, we have to consider the action

of every Pauli operator on each of the 25 possible states on the clusters Cs
2×2, as well

as Cp
2×2 (and this is actually done in our computer-aided analysis). However, at this

point, we find it useful to only show basic non-trivial processes, characteristic for the

toric code in a magnetic field (see Table 5.2) and refer to Appendix A.1 for the complete

list.



Chapter 5. pCUT method for the toric code in a field 49

T0 T±2 T±4

σz ↔ ↔

σx ↔ ↔

σy
↔ ↔ ↔

↔ ↔

Table 5.2: Action of Pauli matrices on eigenstates of the toric code. Only represen-
tatives of non-zero processes are shown. The table should be viewed as follows. Acting
with T0, T+2 or T+4 on a state to the left of the double arrow (in each respective col-
umn) yields the state on the right. In the same spirit, acting with T0, T−2 or T−4 on
a state to the right of the double arrow yields the state on the left. Note that some
operations may involve a change of amplitude (to ±1 or ±i), this is not shown here in
order to keep a clear overview. See Appendix A.1 for more details.

Thereby, we have shown that the perturbing magnetic field can be represented by Tm op-

erators, and the last criterion (iii) is met. This is sufficient to run the pCUT machinery

on the given problem. The performance of our computations will, however, be signifi-

cantly improved when making use of the finite-cluster approach (see Section 3.3). In the

next step we will present a generalized version of the finite-cluster method, by updating

(3.12) and (3.13) to the formalism of quantum mechanics, and also the somewhat un-

usual toric code subclusters (in the sense that in addition to a square lattice of spins we

have two tilted square sublattices (a checkerboard) of stars and plaquettes).

The above considerations allow us to establish the notion of ’linked’ for clusters of the

toric code. Let us remind that the effective Hamiltonian Heff at order k is a superposition

of T (m), with |m| = k. Incorporating relation (3.1), one can expand all terms in Heff

and obtains generally a superposition of T (m, i1, i2 . . . ik) (referred to as ’processes’ later

on) constructed as follows:

T (m, i1, i2 . . . ik) = Tm1,i1Tm2,i2 . . . Tmk,ik . (5.1)

These are k-fold products of operators with mj ∈ {0,±2,±4} and
∑

jmj = 0. An

operator Tmj ,ij changes the number of particles by mj , by acting on site ij . The question

is, what is the maximal distance between two sites of this k-fold product so that the

resulting process can be linked? This is crucial for determining the maximal cluster size

and thus the bounds of the sum in (3.12). At order one, T (m, i1) consists of a single

operator, acting on exactly one site. In this case, trivially, there are no linked processes
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involving more then one site. At order two, we have to consider the operator T (m, i1, i2).

This operator generates linked processes, if the sites i1 and i2 are neighboring sites on the

vertical, horizontal, or diagonal. In this sense, a site on the square lattice is surrounded

by 8 direct neighbors, 16 secondary neighbors and 8(k − 1) k-degree neighbors. Using

this definition we conclude that T (m, i1, i2 . . . ik) can only be linked, if any two sites

ij , ij′ are neighbors of degree k or less. Therefore, at order k, the biggest clusters

to consider are Cs
m×n and Cp

m×n (as well as Cs
n×m and Cp

n×m) with m = k + 1 and

n ∈ {2, 3, . . . k + 1}, see Table 5.3 for an example. The total number of contributing

clusters grows quadratically with order.

order 1

order 2

order 3

Table 5.3: Toric code clusters relevant for computations at a given order. For the
sake of clarity we show only Cs

m×n. The contributing Cp
m×n can be obtained through

tile-color inversion.

Let us generally denote a quantum state living on a cluster Cm×n by |Cm×n, ϕ〉, where

ϕ is a set of quantum numbers fully characterizing the state. We define a matrix element

of a Hamiltonian H acting in the Hilbert space of the finite cluster as

P (Cm×n;ϕ′;ϕ) =
〈
Cm×n, ϕ′

∣∣H |Cm×n, ϕ〉 . (5.2)

On the toric code lattice ΛTC, the matrix element at order k is, in the thermodynamic

limit, found to be

P (ΛTC;ϕ′;ϕ)(k)/N =
k+1∑
m=2

k+1∑
n=2

W̃+(Cm×n;ϕ′;ϕ), (5.3)

W̃±(Cm×n;ϕ′;ϕ) =
W (Cs

m×n;ϕ′;ϕ)±W (Cp
m×n;ϕ′;ϕ)

2
, (5.4)

where W are subtracted weights to be defined below, W̃+ is symmetrized and W̃− is

antisymmetrized with respect to s and p. Note that in contrast to (3.12), we dropped

the condition m ≤ n in the double sum. While this is irrelevant for m = n, the

lattice constant of non-square subclusters has to be multiplied with 1/2, thus the lattice

constant dependent prefactor of all W̃ is set to one. Let us now define the reduced
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weights:

W (Cs
m×n;ϕ′;ϕ) =

P (Cs
m×n;ϕ′;ϕ)−

∑
m′≤m
n′<n

∑
m′<m
n′=n

[
∆x∆y W̃+(Cm′×n′ ;ϕ′;ϕ) + δxδy W̃−(Cm′×n′ ;ϕ′;ϕ)

]
,

(5.5)

W (Cp
m×n;ϕ′;ϕ) =

P (Cp
m×n;ϕ′;ϕ)−

∑
m′≤m
n′<n

∑
m′<m
n′=n

[
∆x∆y W̃+(Cm′×n′ ;ϕ′;ϕ)− δxδy W̃−(Cm′×n′ ;ϕ′;ϕ)

]
,

(5.6)

where we abbreviated

∆x = m−m′ + 1 (5.7)

∆y = n− n′ + 1 (5.8)

δx = (m mod 2) + (m′ mod 2)− 1 (5.9)

δy = (n mod 2) + (n′ mod 2)− 1. (5.10)

The basic idea behind the above formulae is the same as in (3.12) and (3.13). We

construct reduced weights of each cluster, by subtracting all contributions which would

fit on a cluster with a smaller size. On a checkerboard lattice, one has to account for

alternating colors, which results in more complicated functions governing the type and

the number of subtracted subclusters. In order to exemplify the general expressions

(5.2) -(5.10) in a useful context, we will next consider their application in various quasi-

particle subspaces of interest.

5.1.2 General procedure

The effective particle-conserving Hamiltonian has been determined model-independently

up to a high order [102]. We denote

Heff =
∑
k

H
(k)
eff , (5.11)

where H(k)
eff is the effective Hamiltonian at order k. To be specific, in the case of the

toric code model in a magnetic field, the first three orders of Heff read

H
(0)
eff = −NJ +Q, (5.12)

H
(1)
eff = T0, (5.13)
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H
(2)
eff =

1
2
T2T−2 − 1

2
T−2T2 +

1
4
T4T−4 − 1

4
T−4T4, (5.14)

H
(3)
eff =

1
16
T−4T0T4 +

1
8
T−4T2T2 − 1

32
T−4T4T0 +

1
8
T−2T−2T4 +

1
4
T−2T0T2

− 1
8
T−2T2T0 − 1

4
T−2T4T−2 − 1

32
T0T−4T4 − 1

8
T0T−2T2 − 1

8
T0T2T−2

− 1
32
T0T4T−4 − 1

4
T2T−4T2 − 1

8
T2T−2T0 +

1
4
T2T0T−2 +

1
8
T2T2T−4

− 1
32
T4T−4T0 +

1
8
T4T−2T−2 +

1
16
T4T0T−4, (5.15)

where N is the number of spins and Q the particle-counting operator. The small param-

eters (fields hx, hy and hz) are included in the definitions of Tm. Note that in the toric

code, terms including T±1, T±3 and T±m with m > 4 do not exist and are therefore not

shown. A further technical remark is that formally the coefficients of any term in H
(k)
eff

can be rescaled to the ones of an effective Hamiltonian with exclusively T0, T±1 and T±2

operators by the factor (1/2)k−1. Next, we will demonstrate the general procedure of

applying the pCUT and the finite-cluster methods to the perturbed toric code.

Our general approach is to compute matrix elements of Heff in various (low) quasi-

particle subspaces by acting with Heff on appropriate states. In the toric code, this

seems to be a non-trivial task because of the ’projector structure’ of the eigenstates.

Let us begin by considering the ground state (4.16). In the thermodynamic limit, the

four-fold degenerate ground states cannot be connected by H
(k)
eff with finite k because

of the topological order and also due to the linked-cluster theorem. Thus, without loss

of generality, one can derive local properties of the model exclusively in the subspace

|gs, 1, 1〉, i.e., there are no non-contractible loops in the ground state of the system. Note

that it is possible to perform calculations using any of the ground states, but the choice

must be consistent.

As argued in Section 4.1, the ground state of the toric code can be viewed as an equal-

weight superposition of states, each one being characterized by a distinct combination of

closed spin-down loops in an all-spins-up reference state |⇑〉 [see (4.17)]. This picture will

be useful in the following. An important consequence of the particle-conserving feature

of Heff is that instead of a loop-gas state it is sufficient to consider a single representative,

namely the reference state |⇑〉. This can be understood by realizing that in the ground

state the effective Hamiltonian commutes with the projectors which generate the loop

gas because the local eigenvalues of As are kept constantly +1.

Heff |gs, 1, 1〉 =NHeff

∏
s

(
1 +As

2

)
|⇑〉 = N

∏
s

(
1 +As

2

)
Heff |⇑〉 . (5.16)
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Given the fact that for any projector P it follows P 2 = P , one gets

〈gs, 1, 1|Heff |gs, 1, 1〉 = 〈⇑|N 2
∏
s

(
1 +As

2

)
Heff |⇑〉 = 〈gs, 1, 1| NHeff |⇑〉 . (5.17)

In a similar fashion, one can get rid of the loop gas in a one-particle state. For example

let us consider the action of Heff on single-particle states, as defined in (4.19) and (4.20).

Heff |s〉 = NHeff

(
1−As

2

) ∏
s′ 6=s

(
1 +As′

2

)
|⇑〉 (5.18)

= N
∏
s′ 6=s

(
1 +As′

2

)
Heff

(
1−As

2

)
|⇑〉 , (5.19)

Heff |p〉 = NHeff

∏
s

(
1 +As

2

)
|Cp〉 (5.20)

= N
∏
s

(
1+As

2

)
Heff |Cp〉 . (5.21)

A matrix element of Heff in the one-particle subspace is thereupon

〈
s′
∣∣Heff |s〉 =

〈
s′
∣∣NHeff

(
1−As

2

)
|⇑〉 , (5.22)〈

p′
∣∣Heff |p〉 =

〈
p′
∣∣NHeff |Cp〉 . (5.23)

One can straightforwardly generalize this for multi-particle states. Thus, we have shown

that if one is interested to compute matrix elements of the effective Hamiltonian, the

vacuum of Heff can be represented by the reference state |⇑〉. This is an essential premise

to apply pCUT efficiently in the given context.

Finally, we demonstrate how pCUT is performed under use of the finite-lattice method by

explicitly calculating the ground-state energy up to order two. After convincing ourselves

that the loop-gas can be avoided in our computations, we find that the clusters shown

in Table 5.3 actually already carry the ground state (under adherence of the notation

in Table 5.1) and can directly be used to compute (5.17). Generally, when acting on

the ground state, Heff creates an even number of particles, makes them hop on a square

sublattice of s and p and annihilates them again. Since only particles of the same type

can annihilate, the geometry of the lattice allows only an even number of hoppings before

an annihilation. Thus, the series expansion of the ground state contains only even terms.

At order zero, we already know the ground-state energy to be −JN . Formally, we use

(5.12) to write

e
(0)
0 =

−N/2
N/2 +N/2

= −1
2
, (5.24)
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where, e(0)
0 is the zeroth order contribution to the ground-state energy per site in the

thermodynamic limit. As usual, J has been set to 1/2, and N/2 is the number of stars

and plaquettes in a lattice of N spins.

We compute e(2)
0 , by first calculating

E(Cs
2×2) = E(Cp

2×2) =
〈
Cs

2×2

∣∣H(2)
eff

∣∣Cs
2×2

〉
, (5.25)

E(Cs
3×2) = E(Cp

3×2) = E(Cp
2×3) = E(Cp

2×3) =
〈
Cs

3×2

∣∣H(2)
eff

∣∣Cs
3×2

〉
, (5.26)

E(Cs
3×3) =

〈
Cs

3×3

∣∣H(2)
eff

∣∣Cs
3×3

〉
, (5.27)

E(Cp
3×3) =

〈
Cp

3×3

∣∣H(2)
eff

∣∣Cp
3×3

〉
, (5.28)

where the notation from (5.2) has been used to denote the ground state
(∣∣Cs

m×n
〉

or∣∣Cp
m×n

〉)
as well as the (unsubtracted) ground-state energy E(Cm×n) of a cluster Cm×n.

Here, we denote energies without the index corresponding to perturbation order because

it is clear that we work at order two. The equalities in (5.25) and (5.26) are valid due to

rotational symmetry of the concerned clusters. Let us now insert the explicit expression

of H(2)
eff from equation (5.14) in order to compute (5.25).

〈 ∣∣∣H(2)
eff

∣∣∣ 〉
=
〈 ∣∣∣ 1

2
T2T−2 − 1

2
T−2T2 +

1
4
T4T−4 − 1

4
T−4T4

∣∣∣ 〉
. (5.29)

Terms annihilating particles on the ground state yield zero by definition. The two

remaining terms are now processed as follows

〈 ∣∣∣T−2T2

∣∣∣ 〉
=
〈 ∣∣∣T−2

(
− hz

∣∣∣ 〉
− hx

∣∣∣ 〉)
(5.30)

=
〈 ∣∣∣h2

z + h2
x

∣∣∣ 〉
= h2

z + h2
x (5.31)〈 ∣∣∣T−4T4

∣∣∣ 〉
= −ihy

〈 ∣∣∣T−4

∣∣∣ 〉
= h2

y

〈 ∣∣∣ 〉
= h2

y, (5.32)

and we find

E(Cs
2×2) = −1

2
(
h2
z + h2

x

)− 1
4
h2
y. (5.33)

Obviously, at order two, all processes in Heff involve exclusively single spins2 when

acting on the ground state. Therefore, E(Cs
2×2) is already equivalent to the second-

order contribution to ground-state energy per site. However, it is the purpose of this

exercise to demonstrate the properties of the finite-lattice method and we continue the

calculation even though the following results might seem trivial. In the same way as
2Note that this is a model-specific feature, rather than a general feature of Heff .
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above, we obtain the remaining terms

E(Cs
3×2) = −h2

z − h2
x −

1
2
h2
y, (5.34)

E(Cs
3×3) = −2

(
h2
z + h2

x

)− h2
y, (5.35)

E(Cp
3×3) = −2

(
h2
z + h2

x

)− h2
y. (5.36)

Note that generally E(Cs
3×3) 6= E(Cp

3×3). However, since at order two neighboring spins

are not linked, Heff does not feel the different symmetry of Cs
3×3 and Cp

3×3. Now we

apply the subtraction scheme defined in (5.3) and we obtain

W (Cs
2×2) = E(Cs

2×2), (5.37)

W (Cp
2×2) = E(Cp

2×2), (5.38)

W̃+(C2×2) =
E(Cs

2×2) + E(Cp
2×2)

2
= E(Cs

2×2), (5.39)

where the last equality is due to (5.25). For the remaining quantities we find

W (Cs
3×2) = E(Cs

3×2)− 2W̃+(C2×2) = E(Cs
3×2)− 2E(Cs

2×2), (5.40)

W (Cp
3×2) = E(Cp

3×2)− 2W̃+(C2×2) = E(Cs
3×2)− 2E(Cs

2×2), (5.41)

W (Cs
2×3) = E(Cs

2×3)− 2W̃+(C2×2) = E(Cs
3×2)− 2E(Cs

2×2), (5.42)

W (Cp
2×3) = E(Cp

2×3)− 2W̃+(C2×2) = E(Cs
3×2)− 2E(Cs

2×2), (5.43)

W̃+(C3×2) =
W (Cs

3×2) +W (Cp
3×2)

2
= E(Cs

3×2)− 2E(Cs
2×2), (5.44)

W̃+(C2×3) =
W (Cs

2×3) +W (Cp
2×3)

2
= E(Cs

2×3)− 2E(Cs
2×2). (5.45)

Here we used the relations (5.26) for the energies.

W (Cs
3×3) = E(Cs

3×3)− 4W̃+(C2×2)− 2W̃+(C3×2)− 2W̃+(C2×3) (5.46)

= E(Cs
3×3)− 2E(Cs

3×2)− 2E(Cs
2×3) + 4E(Cs

2×2), (5.47)

W (Cp
3×3) = E(Cp

3×3)− 4W̃+(C2×2)− 2W̃+(C3×2)− 2W̃+(C2×3) (5.48)

= E(Cp
3×3)− 2E(Cs

3×2)− 2E(Cs
2×3) + 4E(Cs

2×2), (5.49)

W̃+(C3×3) =
W (Cs

3×3) +W (Cp
3×3)

2
, (5.50)

=
E(Cs

3×3) + E(Cp
3×3)

2
− 2E(Cs

3×2)− 2E(Cs
2×3) + 4E(Cs

2×2). (5.51)
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By inserting the ground-state energies computed for each subcluster in (5.33)-(5.36) we

obtain the symmetrized reduced weights

W̃+(C2×2) = −1
2
(
h2
z + h2

x

)− 1
4
h2
y, (5.52)

W̃+(C3×2) = 0, (5.53)

W̃+(C2×3) = 0, (5.54)

W̃+(C3×3) = 0. (5.55)

Finally, the (trivial) summation (5.3) yields the second-order contribution to the ground-

state energy per site

e
(2)
0 = −1

2
(
h2
z + h2

x

)− 1
4
h2
y. (5.56)

Generally, in a perturbative expansion to higher orders, there are linked processes in-

volving multiple sites. So the subtraction is less trivial, in contrast to the presented

specific example, where most subtracted symmetrized weights are zero. Furthermore,

with higher perturbation orders the number of subclusters grows quadratically, while

the number of terms in Heff grows exponentially so that one should tackle the problem

with high-performance computing.

Some of the exotic features of the toric code start to appear only beyond order four

in perturbation since four is the minimal number of sites necessary for a closed loop.

An explicit order four calculation is already beyond the scope of a written manuscript.

However, it might be insightful to consider a certain non-trivial process. Let us examine

the action of the order four term T−2T0T0T2 on the ground state of the cluster Cs
3×3. We

will focus on the specific process T−2,4T0,3T0,2T+2,1, where sites are numbered according

to Figure 5.1. The final state of the process shown in Figure 5.1 is clearly a ground state

(because it contains zero particles). Thus we have shown, how a vacuum fluctuation

induced by Heff ’leaves a trace’ in the form of a closed loop. Obviously, at higher orders

1 2

34 T+2,1−−−→ T0,2−−→ T0,3−−→ T−2,4−−−→

Figure 5.1: Action of the process T−2,4T0,3T0,2T+2,1 on the ground state of the cluster
Cs

3×3. The first index of T refers to the change of the particle number, while the second
one indicates the number of a site. In the shown process, a pair of fluxes is created and,
after two hoppings, annihilated again so that the system is back in its ground state.
This is a typical example of how closed loops are generated by the particle-conserving
Hamiltonian.
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in perturbation bigger loops in various shapes can be generated. While in the zero-

quasi-particle sector these loops do not play a role because of their zero weight, their

appearance becomes particularly important when studying one- or multi-quasi-particle

subspaces, where a particle encircled by a loop generally yields a global minus sign

originating from the anyonic statistics (see Section 5.1.4).

5.1.3 Multi-particle subspace I: translational invariance

In principle, the computational procedure shown in the previous chapter is the same for

any quasi-particle sector. Instead of the single reference state per cluster (the ground

state with all spins up) one now has to consider all possible starting positions ri of

each multi-particle combination on every contributing cluster. Let us denote the set

of positions of µ particles relatively to their center of mass by Rµ = {r1, r2, . . . , rµ}
and the set of particle types (charges or fluxes) by τµ = {τ1, τ2, . . . , τµ}. The particle-

conserving Hamiltonian generally shifts the quasi-particles to a set of positions R′µ, and

it might also change the types to τ ′µ so that the quantity of interest in the µ-particle

subspace is

tdcm,Dµ,τ ′µ,τµ =
∑

R′µ−Rµ=Dµ

P (ΛTC;R′µ, τ
′
µ;Rµ, τµ), (5.57)

where dcm is the hopping distance of the center of mass, and Dµ are relative hopping

distances of the µ particles. This general formula becomes more transparent after the

detailed treatment of specific cases discussed below.

To explore the low-energy physics, we are mainly interested in low quasi-particle sub-

spaces. The Fourier transform of the one-particle sector yields the dispersion of the

quasi-particle which can be minimized in order to obtain the series expansion of the

gap. The two-particle subspace is also of significant interest since it contains infor-

mation about the mutual interaction of the quasi-particles. Furthermore, it allows to

determine certain correlation functions, e.g., spectral weights, which play a major role

in the possible experimental implementation of the model.

The calculations performed with pCUT are valid in the thermodynamic limit, where

the system is translationally invariant, so it is natural to consider the action of Heff in

momentum space. The structure of Heff as well as its mathematical properties in real

and momentum spaces have been widely investigated in Refs. [86, 87, 100, 101]. Here, we

focus only on details relevant for computations performed in this thesis. In Chapter 2, it

has been shown that the effective Hamiltonian Heff is block-diagonal in real space since

it preserves the number of quasi-particles. Let us remind that each block Hµ of the
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semi-infinite matrix Heff spans a Hilbert subspace Hµ with an individual number µ of

dressed elementary excitations. In addition, these blocks are sorted in increasing order

respectively the number of quasi-particles in their characteristic subspace. Generally,

we write

Heff |µqp =
µ∑

µ′=0

Hµ′ , (5.58)

where Heff |µqp contains all matrix elements of Heff which contribute in Hµ.

According to (5.58), in the single-particle sector H1 the action of Heff can be reduced

to the one of H0 and H1.

Heff |1qp = H0 +H1. (5.59)

Let us denote a single-particle state by |r〉, where r is the position of the particle. In

the toric code, only particle pairs of the same type can be created or annihilated (as can

also be verified in Table 5.2). Consequently, in the single-particle sector of our effective

Hamiltonian, the particle type is preserved and does not need to be indexed. The action

of the effective Hamiltonian on a single-particle state yields

H0 |r〉 = E0 |r〉 , (5.60)

H1 |r〉 =
∑
r′

tr′
∣∣r + r′

〉
. (5.61)

While H0 is diagonal in the zero-particle subspace, under the action of H1, the quasi-

particle moves from r to r + r′ with a hopping amplitude tr′ . In general, the hopping

amplitude may also depend on r, however, this is not the case for a translationally

invariant system, so we omit the corresponding index. Given a system with N possible

single-particle positions, the Fourier transform of |r〉 is defined as

|k〉 =
1√
N

∑
r

eikr |r〉 . (5.62)

We verify that, here, Heff is responsible for single-particle dynamics by considering its

action in the momentum space:

H0 |k〉 = E0 |k〉 , (5.63)
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H1 |k〉 =
1√
N

∑
r,r′

eikr tr′
∣∣r + r′

〉 r→r−r′=

(∑
r′

tr′ e−ikr′

)
1√
N

∑
r

eikr |r〉 (5.64)

=

t0 +
∑

r′ ∈ Dpos

2 tr′ cos
(
kr′
) |k〉 (5.65)

= ω(k) |k〉 , (5.66)

where we used the symmetry of the square sublattice to set tr′ = t−r′ . In (5.65) the

sum over r′ is limited to ’positive’ distances, as defined in the following. Using the unit

vectors n1 and n2 from Figure 5.2, the hopping distance is generally r′ = pn1 + qn2,

with (p, q) ∈ Z2. We refer to the distance as ’positive’, if(
p = 0 ∧ q > 0

)
∨ p > 0. (5.67)

This is illustrated in Figure 5.2. Note that the dispersion ω(k) is also a function of the

n1n2

Figure 5.2: Set Dpos of distances, relevant for the treatment of the one- and two-
particle subspaces of the toric code. n1 and n2 are unit vectors, placed at the origin
of our coordinate system. The rhombic contours highlight possible positions of a flux
within a distance r′ ∈ Dpos from the origin. We call these distances ’positive’ because
in the present model the symmetries of the lattice require tr′ = t−r′

perturbation since the hopping amplitudes tr′ are series expansions in the perturbation

parameters. The maximal hopping distance is limited by the finite order of perturba-

tion. However, it generally increases with the perturbation order since larger and larger
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fluctuations are possible. In the one-particle sector, our goal is to calculate the dispersion

ω(k) = 〈k|H1 |k〉 = 〈k|
(
Heff |1qp −H0

)
|k〉 , (5.68)

= 〈k| (Heff −H0) |k〉 , (5.69)

where we used the fact that, due to (5.59), the action of Heff on one-particle states is

equivalent to the one of Heff |1qp. We proceed along similar lines as in Section 5.1.2, by

acting with Heff onto every one-particle state of contributing clusters. Note that the

contribution from H0 has to be subtracted, as implied in (5.68). As can be followed

from (5.62) this contribution is only non-zero for local hoppings, i.e., initial and final

positions of the particle coincide. Formally, using the notation from (5.57), we compute

hopping amplitudes

tr′ =
∑
r

P (ΛTC; r + r′; r), (5.70)

with contributions from finite clusters as defined in (5.2) and (5.3)

P (Cm×n; r + r′; r) =
〈
Cm×n, r + r′

∣∣H1 |Cm×n, r〉 (5.71)

=
〈
Cm×n, r + r′

∣∣Heff −H0 |Cm×n, r〉 . (5.72)

We now examine the two-particle space which, in the toric code on an infinite plane,

separates in two decoupled subspaces. Either a pair of particles is of the same type (i.e.,

two charges or two fluxes), or we have a pair with unequal types (one charge and one

flux). As already argued above, Pauli operators may create or destroy only equal-type

pairs of particles. Therefore, under the action of Heff two charges can transform into two

fluxes (and vice versa), but never into a charge-flux pair. From this, it can generally be

concluded that no local perturbation can couple subspaces with even and odd numbers

of either charges or fluxes. At this point, we will concentrate only on particle pairs of the

same type since this case is relevant for spectral densities to be computed in Section 7.3.

We will use the index τ to denote the type of the pair (either charge-charge or flux-flux).

A two-particle state in the toric code can thus generally be denoted by |r, r + d, τ〉,
where r and r + d are particle coordinates. Let us now consider the action of Heff , or

more precisely, its relevant blocks in the subspace H2.

H0 |r, r + d, τ〉 = E0 |r, r + d, τ〉 , (5.73)

H1 |r, r + d, τ〉 =
∑
r′ 6=d

tr′
∣∣r + r′, r + d, τ

〉
+
∑
r′ 6=−d

tr′
∣∣r, r + r′ + d, τ

〉
, (5.74)
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H2 |r, r + d, τ〉 =
∑
r′,d′,τ ′

d′∈Dpos

td,τ
r′,d′,τ ′

∣∣r + r′, r + r′ + d′, τ ′
〉
, (5.75)

H0 is, again, diagonal in the given basis. While H1 lets either one of the two particles

hop, H2 involves both particles and shifts them to new positions generally changing

the pair-type from τ to τ ′. Note that we accounted for the hard-core constraint of the

particles by excluding certain hopping distances in (5.74) and (5.75). In momentum

space, two-particle states are constructed as follows

|K,d, τ〉 =
1√
N

∑
r

eiK(r+d/2) |r, r + d, τ〉 , (5.76)

where K is the total momentum of the pair and r + 1
2d is the position of the center of

mass. Here we use the fact that K is conserved due to translational invariance and is

therefore a good quantum number. Now we would like to compute the action of Heff in

the Fourier-transformed space.

H0 |K,d, τ〉 =E0 |K,d, τ〉 , (5.77)

H1 |K,d, τ〉 =
1√
N

∑
r

eiK(r+d/2)

×

∑
r′ 6=d

tr′
∣∣r + r′, r + d, τ

〉︸ ︷︷ ︸
r→r−r′

+
∑
r′ 6=−d

tr′
∣∣r, r + r′ + d, τ

〉 , (5.78)

=
1√
N

∑
r′ 6=d

t−r′
∑
r

eiK(r−r′+d/2)
∣∣r, r − r′ + d, τ〉+

1√
N

∑
r′ 6=−d

tr′
∑
r

eiK(r+d/2)
∣∣r, r + r′ + d, τ

〉
, (5.79)

=
∑
r′

e−iKr′/2

{
t−r′

∣∣K,d− r′, τ〉 [1− δr′,d]+ tr′
∣∣K,d+ r′, τ

〉 [
1− δr′,−d

] }
. (5.80)

With the same arguments as above, we now use the relation tr′ = t−r′ to sum up

symmetric terms.

H1 |K,d, τ〉 =
∑

r′∈Dpos

2 tr′ cos
(
Kr′/2

) ∣∣K,d+ r′, τ
〉 (

1− δr′,−d
)
, (5.81)

where r′ is restricted to positive distances. Finally, we consider the action of H2 onto a

momentum state.
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H2 |K,d, τ〉 =
1√
N

∑
r

eiK(r+d/2)
∑
r′,τ ′

d′∈Dpos

td,τ
r′,d′,τ ′

∣∣r + r′, r + r′ + d′, τ ′
〉
, (5.82)

r→r−r′=
1√
N

∑
r′,τ ′

d′∈Dpos

td,τ
r′,d′,τ ′

∑
r

eiK(r−r′+d/2)
∣∣r, r + d′, τ ′

〉
, (5.83)

=
∑
r′,τ ′

d′∈Dpos

td,τ
r′,d′,τ ′

eiK
“

d−d′
2
−r′

” ∣∣K,d′, τ ′
〉
, (5.84)

where the particle distance d′ is without loss of generality restricted to Dpos because

in the toric code, particles of the same type are indistinguishable. Note that since

the action of H2 must involve both particles, in a finite-order calculation the linked-

cluster theorem fixes a maximal interaction distance, |dmax| < Lconst, where Lconst is

a positive constant that depends on the order. The two-particle hopping amplitudes

td,τ
r′,d′,τ ′

of particles at a distance beyond dmax must be zero. In contrast, there is no such

restriction of the mutual distance concerning the action of H1. According to (5.81), only

the hopping radius of an individual particle is limited, while the distance d can take any

value. Therefore, in the basis |K,d, τ〉, the matrix elements of the effective Hamiltonian

in the subspace H2 can be grouped into two parts. For distances within the range of

dmax, the matrix elements are determined by 〈K,d, τ |H1 +H2

∣∣K,d′, τ ′
〉
, outside this

range we have 〈K,d, τ |H1

∣∣K,d′, τ ′
〉
. We do not include H0 in this matrix because in

experiments usually energies relatively to the ground-state energy are accessible. Note

that in practice one has to introduce a finite cutoff for the mutual distance (lets say

|d| < Lcutoff with Lcutoff � Lconst) in order to be able to diagonalize the matrix. The

full spectrum of the system with two quasi-particles is thus obtained approximately,

but, of course, we try to make this cutoff as large as possible to enhance the numerical

precision and check the convergence of the calculation.

Matrix elements for distances beyond dmax can be easily reconstructed using the single-

particle hopping amplitudes obtained in a preceding calculation of the one-particle sec-

tor. So that, in the two-particle sector, our primary goal is to obtain two-particle hopping

amplitudes, by letting Heff act on every two-particle configuration on each contributing

cluster. Similarly as for (5.70)-(5.72), we compute

td,τ
r′,d′,τ ′

=
∑
r

P (ΛTC; r + r′, r + r′ + d′, τ ′; r, r + d, τ), (5.85)
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with the following contributions from finite clusters

P
(
Cm×n; r + r′, r + r′ + d′, τ ′; r, r + d, τ

)
=
〈
Cm×n; r + r′, r + r′ + d′, τ ′

∣∣H2 |Cm×n; r, r + d, τ〉 (5.86)

=
〈
Cm×n; r + r′, r + r′ + d′, τ ′

∣∣Heff −H1 −H0 |Cm×n; r, r + d, τ〉 . (5.87)

We point out that the subtraction in (5.87) is non-trivial, especially in view of the fact

that single-particle hoppings in the two-particle subspace cannot be compared to the

ones in the one-particle subspace. Due to their hard-core character, the presence of a

second particle prohibits certain hopping paths of the first. One can tackle this problem

by tracing the action of Heff and keeping only processes, where each of the particles has

been acted upon at least once. However, the complexity of this task is comparable to

the one of a linked-cluster expansion. It turns out to be much cheaper to act with Heff

onto a two-particle state and perform a subtraction using our explicit knowledge about

the particle behavior. To be more precise, if both particles have changed their position,

we know that exclusively H2 has been involved so that nothing has to be subtracted.

If the position of only one of the particles has changed we subtract the contribution of

H1 acting on one of the particles in presence of the other. If the final positions of the

particle pair correspond to their initial positions, we subtract the local single-particle

hopping of each of the particles in presence of the other as well as the contribution of

H0.

All of the above considerations can simply be extended to the case of particles with

different types (on an open plane) by dropping the hard-core constraint and the index

τ . We recall that charges and fluxes live, by definition, on different sublattices and

the pair-type of the charge-flux composite is conserved. Of course, for particles with

different types one has in addition to account for semi-infinite strings which generally

have an effect on the single-particle hopping independent of the distance dmax, as will

be discussed in more detail in the next section.

5.1.4 Multi-particle subspace II: non-locality

In the toric code on an infinite plane, single particles are defined as ends of semi-infinite

strings (see Figure 4.6). The formalism developed in the preceding section does not

account for strings explicitly, but they can be included in the definition of quasi-particles

as long as we follow certain conventions introduced below.
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(i) Fixed string-gauge

A single particle is connected to infinity (or to an edge of a finite system) by a string.

There are infinitely many possibilities to shape this string, without changing the par-

ticles position and energy. In order to construct a complete basis in one-quasi-particle

subspace, we incorporate the semi-infinite string into our definition of a fixed spin back-

ground, by following the convention that on any finite lattice the particle string should

point down left, as shown in Figure 5.3 (a) and (c). Other conventions are also possible.

However, it is crucial to keep a fixed convention since a consistent single-particle picture

is necessary to keep track of braiding signs in the two-particle subspace. When under

(a) (b) (c)

Bp Bp

Bp

Bp

Bp

Bp

Bp

Figure 5.3: Including the semi-infinite string into the spin background. Our con-
vention is that any semi-infinite string should point down left as shown in (a) and (c).
(b) illustrates a common final state resulting after the action of Heff on the state in
(a). Generally the particle changes its initial position so that the semi-infinite string is
deformed. By acting with Bp on p inside the highlighted area, or more generally, on p
enclosed by the strings in (a) and (c) as well as the hopping path of the particle, the de-
formed string is gauged to our convention. For single fluxes the situation is analogous,
except that instead of Bp (gray plaquettes), As (white plaquettes) are enclosed.

the action of Heff a particle is displaced, our string convention requires a kind of gauge

transformation of the string, depicted in Figure 5.3. The transformation is realized by

acting with a contractible loop operator assembled by the particle-string in the initial

state, the path of the particle, and the correctly shaped string of the final state. Accord-

ing to Section 4.1 (see also Figure 4.2) this is equivalent to an action of Bp operators

for charges and As operators for fluxes on p (or s respectively) inside the enclosed area

of the loop. Using this approach, one automatically collects a minus sign, if there is an

odd number of particles (of opposite type), inside the enclosed area.

(ii) Counting of loops

A closed loop of a charge around a flux (and vice versa) yields a global minus sign which,

in an algebraic computation, would simply result from the non-commuting operators on

the site, where the infinite string of the single particle crosses the loop. However, in our

representation of states, strings of charges are ’invisible’, contrary to strings belonging to
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fluxes (see Figure 5.4). This is a purely technical issue, resulting from our choice of the

basis of Pauli operators. Even though it is possible to choose a basis where both kinds

of strings can be treated on equal terms, the advantage of the current basis is that it

provides an intuitive graphical language, directly implementable in a computer program

(see Section 5.3.1). The consequence of ’hidden’ σz-strings is that loops around charges

(a) (b)

Figure 5.4: Loops around single particles in the σz-basis. (a) A single flux is attached
to a string of σx operators (connected by an orange line as a guide to the eye). Given
our choice of the ground state (all spins are up) and basis of Pauli operators, the
string of a flux is ’visible’ as a string of spins pointing down. A loop of σz operators
along the dashed line, yields a global minus sign which results from the action on
the down-spin belonging to the flux-string. (b) A single charge with a string of σz

operators (highlighted by a blue line), is invisible in our graphical language because of
our choice of the basis. A loop of σx operators along the dashed line does not produce
the required minus sign so that our algorithm has to explicitly detect loops around
charges and impose the correct sign onto the final state.

and fluxes have to be treated differently. While, in our computer program, σz-loops

around a single flux ’automatically’ yield the required minus sign [see Figure 5.4 (a)],

σx-loops around a single charge have to be detected explicitly, in order to set the sign

to its physically correct value. Note that at higher orders in perturbation theory one

has to account for cases where there is more than one loop around a particle, or where

multiple particles are encircled by a loop and so forth. The braiding rules of semions

are such that only an odd number of σz-loops around an odd number of charges yields

a minus sign.

Finally, we remark that in the one-quasi-particle subspace it is sufficient to study exclu-

sively the single-flux case. There is a flux-charge symmetry in the problem, which allows

us to reconstruct charge hopping-amplitudes from flux hopping-amplitudes through a

basis rotation: σx → σz, σz → −σx, σy → σy. However, it is a good test of our string-

detection procedure to compute both dispersions independently and then check that

they are equivalent under the above rotation.
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5.2 Applying pCUT to the high-field phase

In the limit J = 0, the Hamiltonian (4.23) becomes

HHF = −
∑
i

hσi, (5.88)

where on each site i we have a scalar product of the field amplitudes and the correspond-

ing Pauli operators

h ={hx, hy, hz}, (5.89)

σi ={σxi , σyi , σzi }. (5.90)

In the ground state, the system is fully polarized in the field direction. Hence, it is

natural to rotate the basis of the local Hilbert space of the spins-1/2 so that the z-axis

points into the field direction h. The basis transformation yields

σ̃ = Rσ, (5.91)

where R is the following rotation matrix

R =


cosφ cos θ − sin θ cos θ sinφ

cosφ sin θ cos θ sinφ sin θ

− sinφ 0 cosφ

 , (5.92)

and angles φ and θ parametrize the three-dimensional magnetic field as shown in Fig-

ure 5.5.

h

y

z

x

φ

θ

Figure 5.5: Parametrization of the three-dimensional magnetic field h in spherical
coordinates. For φ = 0 and θ = 0, we obtain the original basis of (5.88).

In the new basis, we have on each site a two-level system with eigenvalues±
√
h2
x + h2

y + h2
z .

For brevity we introduce h̃z =
√
h2
x + h2

y + h2
z . In a system with N spins, the ground-

state energy is thus −Nh̃z. Elementary excitations are local spin flips, hence H̃HF has
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an equidistant spectrum with a constant gap of 2 h̃z between the energy levels. Obvi-

ously, the system meets constraints (i) and (ii) (see Section 2), necessary for a treatment

with pCUT. To make sure that (iii) is also fulfilled, we examine the system under per-

turbation, where for finite J the perturbing operators are the well-known toric code

interactions, rotated into the optimal basis.

H̃TCF = −h̃z
∑
i

σ̃zi − J
∑
s

Ãs − J
∑
p

B̃p, (5.93)

Ãs =
∏
i∈s

σ̃xi , (5.94)

B̃p =
∏
i∈p

σ̃zi . (5.95)

The expressions of the four-spin interactions Ãs and B̃p are generally superpositions of

four-fold products of Pauli operators with all possible combinations of σx, σy and σz.

Due to R, every term has a θ- and φ-dependent amplitude. In other words, all matrix

elements of the 24-dimensional Hilbert space of the four spins on a star (or a plaquette)

are non-zero, and depend on the direction of the field. Consequently, the action of Ãs as

well as B̃p contains every possible change in number of spin flips and can be represented

by particle creation and annihilation operators Tm with m ∈ {0,±1,±2,±3,±4}, as

illustrated in Table 5.4. Thus, the condition (iii) from Section 2.3 is fulfilled, and we can

T0 T±1 T±2 T±3 T±4

, , . . . , , . . . , , . . .

, , . . . , , . . . , , . . . , , . . .

, , . . . , , . . . , , . . .

, , . . . , , . . .

Table 5.4: Action of the perturbing (toric code) operators in the polarized phase.
Entries with dots show only a subset of possible states, all of which can be reconstructed
by rotational symmetry. The table should be viewed as follows. Acting with T0, T+1,
T+2, T+3 or T+4 on a state in the most left column yields the state on the right. The
reverse process corresponds to an action of T0, T−1, T−2, T−3 or T−4 respectively. Note
that all of these operations have generally unique amplitudes which depend on the tile
color (here only white tiles are shown) and the direction of the magnetic field. The
complete list of operators and the corresponding amplitudes is given in Appendix A.2.

apply pCUT also to the high-field limit of the toric code. Note that while the matrix

elements of Ãs and B̃p are the same concerning the change in particle number, they

differ in their φ- and θ-dependence so that the action of the perturbation is different

on stars and plaquettes. Therefore, we have to consider similar subclusters (depicted

in Table 5.5) as in the low-field limit. In order to perform the finite-cluster method
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order 1

order 2

order 3

Table 5.5: Subclusters relevant for computations at a given order in the high-field
limit of the toric code. Here we show only Cs

m×n to keep a clear overview. The
contributing Cp

m×n can be obtained through tile-color inversion. In contrast to the low-
field limit (see Table 5.3), quasi-particles live on sites instead of stars and plaquettes.
However, due to the structure of the perturbation, one has to consider checkerboard-like
clusters.

one can still apply the general formulas (5.3)-(5.10), accounting for the fact that here

quasi-particles are located at sites instead of stars and plaquettes.

To give a simple example, we present a calculation of the ground-state energy up to

order one. As in the previous chapter, the effective Hamiltonian in the rotated basis can

be written as

H
(0)
eff =−Nh̃z + 2̃hzQ, (5.96)

H
(1)
eff = T0, (5.97)

where Q counts the number flipped spins. We set h̃z = 1/2 so that the cost of a single

particle in the unperturbed system is one. The ground state corresponds to a particle

vacuum with Q = 0 so that, at order zero, the ground-state energy per site is

e
(0)
0 =− h̃z = −1

2
. (5.98)

At order one, we first compute the reduced weights

W
(
Cs

2×2

)
=
〈 ∣∣∣T0

∣∣∣ 〉
= −J cos4φ

〈 ∣∣∣ 〉
= −J cos4φ, (5.99)

W
(
Cp

2×2

)
=
〈 ∣∣∣T0

∣∣∣ 〉
= −J cos4θ sin4φ

〈 ∣∣∣ 〉
= −J cos4θ sin4φ. (5.100)

The order one contribution to the ground-state energy is thus

e
(1)
0 =W̃+(C2×2) =

1
2

[
W
(
Cs

2×2

)
+W

(
Cp

2×2

)]
(5.101)

=− J

2

[
cos4φ+ cos4θ sin4φ

]
. (5.102)
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It is instructive to consider a special direction of the magnetic field h = (0, 0, hz), or

equivalently R = 1. This leads to Ãs = As and B̃p = Bp. The toric code in a single

parallel field can be mapped onto the Ising model in a transverse field, as we have learned

in Section 4.3. An interesting property of the model is that with increasing J , the four -

quasi-particles gap is the first one to close, as will be shown explicitly in Section 6.5.

There are two equivalent explanations for this behavior. On the one hand, one can

argue that the high-field limit of the toric code corresponds to the low-field limit of the

Ising model. In this mapping, the toric code is constructed by effective Z2-variables

on bonds of a square lattice so that single spin flips in the Ising model correspond to

a simultaneous flipping of four effective spins on the surrounding bonds. At the same

time, there is no local operator which flips the eigenvalue of a single interaction term in

the Ising model3. Therefore, local elementary excitations of the toric code in a large σz

field are flips of four spins on a star. On the other hand, operators Bp commute with

the Hamiltonian, which means that the number of fluxes is conserved. States with open

loops of flipped spins (including the one with a single flipped spin) generally belong to

a 2µ-flux sector (with µ ∈ N and µ ≥ 1) so that for finite J their energy is lifted up,

proportionally to µ. This is similar for states which contain closed loops; however, here

it is possible to construct states which belong to the zero-flux sector, e.g., a loop around

a single star (so at least four flipped spins are necessary).

It is reasonable to assume that at least for small deviations from the Ising line [field

direction h = (0, 0, h)], the true elementary excitations are still of four-particle type.

However, at least in the field direction h = (h, 0, h) the transformed operators Ãs and

B̃p allow single spin flips, and none of them commutes with the Hamiltonian so that the

flux sector is not preserved. Therefore, we have a strong hint that here the one-particle

gap is the relevant one.

Let us close this section with the remark that there is a major difference between the

situation we encounter here compared to the one in the low-field limit. While processes

listed in Table 5.2 have an amplitude which is either ±1 or ±i, every process shown

in Table 5.4 has an individual amplitude, depending on the type of the tile (star or

plaquette) and on rotation angles φ and θ. This together with the fact that the number

of Tm operators is larger than in the low-field case make the computation numerically

heavier. Therefore, while in the high-field limit the quasi-particle picture seems to be

less challenging than in the topological phase, only relatively low orders in perturbation

can be reached.
3Note that this is consistent with the unmapped toric code, where in the high-field limit, none of the

perturbing operators As and Bp can flip single spins.
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5.3 Numerical tools

5.3.1 Computer program

As has been already discussed in previous sections, our strategy to compute series ex-

pansions of matrix elements of the effective particle-conserving Hamiltonian Heff is to

consider each quasi-particle subspace separately, and to let Heff act on every state from

the corresponding Hilbert space. We emphasize that it is important to reach a signifi-

cantly high perturbation order so that extrapolations of the series can be used efficiently

for a quantitative study of the critical properties of the model (see the upcoming section

for more details). In this section, we estimate the magnitude of the computational task

and introduce a computational algorithm to tackle this problem. The basic ideas of the

algorithm can also be found in Refs. [83, 100, 101].

The number of terms in Heff grows exponentially, and (in two dimensions) the number

of relevant subclusters grows quadratically with order so that the computational task

is intensive in time and memory, especially at high perturbation orders. In Table 5.6,

we list the number Nterms of terms in the effective Hamiltonian. Even though a few

Order Nterms, mmax = 2 Nterms, mmax = 4
1 1 1
2 4 8
3 18 60
4 84 488
5 380 3950
6 1750 32660
7 8134 273126
8 38164
9 180324
10 856944

Table 5.6: Number of terms in the particle-conserving effective Hamiltonian Heff ,
where operators Tm are characterized by m ∈ {0,±1,±2, . . . ±mmax}. Each row lists
the number of individual same-order terms. These terms are model-independent and are
available up to a high order (see Ref. [102]). Here, we refer only to terms actually used
in our computations, where we have reached order 10 for the low-field limit (mmax = 2)
and order 7 for the high-field limit (mmax = 4) of the toric code.

terms have vanishing coefficients, and at subspaces with a low particle number many

terms yield zero by definition, the growth of Nterms is still exponential. Therefore, the

computational demands at order (r+ 1) are usually about an order of magnitude higher

than in order r. Every term of order r consists of r-fold products of Tm operators which,

in turn, are sums over local particle creation and annihilation operators. Expanding this

r-fold product yields generally (p q)r processes (as the one discussed in Figure 5.1) per
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term on the cluster Cp×q. Note that not all of these processes are linked. However, by

construction, only the linked ones yield a non-zero contribution at the end. In the low-

as well as in the high-field limit of the toric code, clusters with (p, q) ∈ {2, 3, . . . , r+ 1}2
contribute at order r. As illustrated in Figure 5.6, the computation of each matrix

element in the µ-particle subspace is performed by acting with Heff on every possible µ-

particle state which lives on the contributing subclusters, and collecting the final states.

loop over perturbation orders

loop over clusters

loop over µ-particle states

loop over terms in Heff

1 2

C1 C2
constant
order r

|φ1〉 |φ2〉 constant
cluster C

T (m1)T (m2)
constant initial
state |φ〉

apply T (m) onto
input-state |φ〉

T (m) |φ〉 = Tm1Tm2 . . . Tmr |φ〉 = |Φ〉tmp

Tm |φ〉 =
P
i∈C
Tm,i |φ〉

constant
operator T (m)

start with |Φ〉out = 0
then continue with
|Φ〉out = |Φ〉out + |Φ〉tmp

until the end of this loop

superposition of
final states: |Φ〉out

. . .

. . .

. . .

. . .

Figure 5.6: Scheme of the algorithm to compute matrix elements of the effective
particle-conserving Hamiltonian Heff . Arrows with white heads indicate iterations. In
each shaded block, the algorithm performs operations according to the description in
the upper left corner. The remarks on the upper right of each shaded area are comments
used to fix the notation of a general operation, carried out in the most inner loop. Yellow
areas contain the input and output information of the program. Matrix elements (as
defined in (5.2)) are obtained by performing the scalar product 〈φ |Φ〉out.

Next, let us discuss how the necessary objects are realized in the computer program. A

local Z2-degree of freedom can be represented by a bit which is either zero or one. The

Hilbert space of a state on a finite cluster, with n Z2-degrees of freedom (and therefore

2n energy levels), can be mapped onto n bits. A state is thus constructed by a set of

bits and is characterized by a fixed configuration of all degrees of freedom. Consider

Figure 5.7 for a concrete example. The central part of our code is the action of a Tm,i
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(a)

0 1 2

3 4 5
6 7

0 1 2 3 4 5 6 7

(b) 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

(c) 1 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

(d) 1 0 0 0 0 1 0 1
0 1 2 3 4 5 6 7

Figure 5.7: Representing a toric code state by a set of bits. In the topological
phase of the toric code, a state is characterized by Z2-degrees of freedom on stars and
plaquettes and through a spin background, where spins 1/2 can be either up or down.
The eigenvalues of As and Bp are either +1 or -1, depending on whether a particle
is present or not. Our convention is that an absent particle is represented by bit 0,
otherwise the bit is set to 1. Bits representing spin-1/2 degrees of freedom will be set to
0 (1) if the correspondent spin is up (down). (a) All degrees of freedom on the cluster
Cs

3×2 are numbered in an arbitrary but consistent way and mapped onto a set of bits.
(b) Zero-particle state on the cluster Cs

3×2. (c) An example of a single-charge state.
(d) A typical two-particle state.

operator on a state (see most inner area in Figure 5.6). It is realized through a function

which selects a set of neighboring degrees of freedom and modifies them according to

Table 5.2 in the topological phase or Table 5.4 in the polarized phase. Note that in

addition to the bit configuration our state is characterized by an amplitude which is,

generally, a polynomial in the perturbation parameters.

Finally, we remark that the loop structure of our algorithm is suitable for parallelization

so that, in practice, the biggest computational barrier is the finite memory resource,

rather than computing time. Nevertheless, the computation4 of the relevant quantities

has consumed in total roughly 5 · 104 CPU-hours. Of course, we have also made use

of model-specific optimizations, e.g., symmetries between certain clusters and matrix

elements.

5.3.2 Extrapolation methods

Perturbative series approximate an analytic function well for small perturbation pa-

rameters. Usually, it is possible to extrapolate a finite-order series, in order to capture

certain analytic properties in the non-perturbative regime. To the best of our knowl-

edge, Domb and Sykes [135, 136] were the first to determine critical exponents using

perturbative series, more than half a century ago. This approach regained popularity

in the 1970’s and various series analysis methods were introduced and successively op-

timized for specific cases, as is summarized in a review by Guttmann [137]. Generally,

there is no extrapolation technique which is optimal for any series so that one usually

has to try different methods and test their convergence. In this section, we introduce a
4To cope with the high demand on RAM memory and CPU time, we have used computer clusters

cl1, PhiDO and LiDOng in Dortmund.
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few series analysis methods which are standard in our field of research and have been

applied successfully in the past for similar problems [42, 81, 83, 102, 104, 121, 122, 138].

Let us consider an analytical function f(x) and its Taylor series at order N around x = 0

SN (x) =
N∑
i=0

aix
i. (5.103)

A widely known approach is to extrapolate SN (x) by a rational function, the so-called

Padé approximant [139], defined as

P[L(x),M(x)] =
PL(x)
QM (x)

, (5.104)

where PL(x) and QM (x) are polynomials in x, of degree L and M respectively.

PL(x) =
L∑
i=0

pix
i, (5.105)

QM (x) =
M∑
i=0

qix
i. (5.106)

In order to keep notations short, we will write P[L,M ] as well as SN without the explicit

x-dependence. The series expansion of the Padé approximant P[L,M ] at order N must

be equivalent to SN . Comparing coefficients leads to a set of N linear equations for

pi, qi and ai, with a unique solution for L + M ≤ N . In our context, the coefficients

ai are exactly known. While in the perturbative limit the Padé approximants are, by

construction, very close to f(x), for large L and M they are expected to give a better

representation of f(x) than the bare series; even though P[L,M ] can have up to M poles

in the complex plane, which are usually not physical poles. For a rigorous discussion of

convergence of Padé approximants we refer to Ref. [140].

If f(x) is a quantity with an algebraic divergence at the critical point xc

lim
x→xc

f(x) = A (xc − x)−θ , (5.107)

it is common to approximate its logarithmic derivative:

d
dx

ln [f(x)] =
f ′(x)
f(x)

= lim
x→xc

θ

xc − x, (5.108)

With this trick a Padé extrapolation of the left-hand side of (5.108) (referred to as

DlogP[L,M ]) can be used to approximate the critical point xc through its poles and

the critical exponent θ through its residues. Generally a DlogP[L,M ] yields up to M

pole-residue pairs. In order to identify the physical one, a detailed knowledge about
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the model is needed. Here, we are interested in real-valued functions f(x) with positive

x. If the approximant DlogP[L,M ] (or P[L,M ]) features real poles closer to the origin

than the physical singularity, it is called defective. The existence of spurious poles is

quite common in the Padé analysis and can lead to an impression of pseudo-convergence.

As it is shown in Ref. [137], a defective approximant [L,M ] can be related to a non-

defective approximant [L − 1,M − 1] so that effectively a higher-order series yields

no new information. The usual practice is to gather results from all approximants

DlogP[L,M ] with L + M ≤ N − 1 in a so-called Padé table and try to find sequences

of stable approximations to estimate the accuracy of the extrapolation. Often the best

approximants are [L− 1, L], [L,L] and [L,L− 1].

The method of Padé approximations has been generalized in various ways [137], a cer-

tain class of generalizations is known under the name differential approximants (DA).

Consider the Padé approximation of the left-hand side of (5.108)

d
dx

ln [f(x)] =
f ′(x)
f(x)

=
PL(x)
QM (x)

. (5.109)

Rearranging terms yields

QM (x)f ′(x)− PL(x)f(x) = 0. (5.110)

Guttmann and Joyce generalized (5.110) by adding a higher derivative of f(x), weighted

by a polynomial [141]. An alternative approach is a to add an inhomogeneous term

instead or to combine both types of generalizations [142–144]. However, here, we focus

on the approach by Guttmann, where the approximation problem can be reformulated

to finding polynomials TM (x), RM (x) and SM (x) with M ≤ b(N − 1) /3c (brc denotes

the floor function which selects the highest integer not greater than r) so that the Taylor

expansion of f(x) satisfies

TM (x)
d2

dx2
f(x) +RM (x)

d
dx
f(x) + SM (x)f(x) = 0. (5.111)

Similarly as above, the Taylor expansion of f(x) provides sufficient information to de-

termine the coefficients of TM (x), RM (x) and SM (x). We refer the interested reader to

Ref. [141] for an explicit algorithm. Let us now insert (5.107) into the above equation

TM (x)
θ (1 + θ)
(xc − x)2 +RM (x)

θ

xc − x + SM (x) = 0, (5.112)

TM (x)θ (1 + θ) +RM (x)θ (xc − x) + SM (x) (xc − x)2 = 0. (5.113)

Assuming that all polynomials have distinct zeroes and θ 6= −1, in the limit x→ xc the

equation (5.113) can only be fulfilled if T (x) = 0. Thus the roots of T (x) approximate
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the location xc of the pole. The critical exponent θ is then determined through

θ = lim
x→xc

[
1 +

RM (x)
TM (x)

(xc − x)
]
. (5.114)

Guttmann argues that this method is superior to the DlogPadé approximation since it

is robust for a wider spectrum of types of singularities [141]. However, one has to keep

in mind that the number of possible approximants decreases when derivatives of higher

orders are required.

Consider one more time the relation (5.110). If QM (x) does not have zeros with multi-

plicity greater than one, then for p ≤M and p ≤ L+ 1 the general solutions of (5.110)

are the functions

f(x, p) =
p∏
i=1

(1−Aix)ni . (5.115)

Yukalov et al. [145–147] developed an extrapolation scheme, based on (5.115); however,

with complex-valued Ai and ni. The so-called self-similar factor approximants (SSFA)

are thus more general than the Padé or DlogPadé approximations [148] which are kind

of a subset of SSFA. As usual, the constants Ai and ni are determined by comparison of

coefficients of the Taylor-expanded f(x) with SN , which yields 2p equations constructed

below.

p∑
i=1

niA
m
i =

(−1)m−1

(m− 1)!
lim
x→0

(
dm

dxm
ln SN

)
, with m ∈ {1, 2, . . . , 2p} (5.116)

Since the number of free parameters in f(x, p) is always even, for odd N one of them

must be set to a constant (a convenient choice is A1 = 1). After solving (5.116), the

critical value xc can be obtained from the roots of f(x, p). In the region of the pole,

f(x, p) diverges with the critical exponent

θ =
p∑
i=1

ni. (5.117)

Finally, let us mention that the Padé approximants can be generalized to treat series

in more than one variable [149, 150]. However, for our purposes, it will be sufficient to

scan the multi-variable space in fixed directions, and apply the single-variable methods

introduced above.
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5.3.3 iPEPS

We recall that while it is possible to extrapolate the series expansions obtained with

pCUT , in order to find second-order phase transitions, the finite series do not capture a

first-order transition. Therefore, in this last subsection, we would like to briefly discuss

a variational method which, in our context, is specifically used to detect discontinuous

(first-order) phase transitions in the perturbed toric code. The idea is to use a network

of interconnected tensors as a variational ansatz for the ground state of a quantum

system [151]. In particular the projected entangled-pair state (PEPS), as well as its

translationally invariant version infinite PEPS (iPEPS) have proved to be well suited to

simulate ground states of strongly-correlated quantum systems in two dimensions [75–

77]. Here, we will only present basic concepts of the method, which are reviewed in more

detail in Ref. [152].

Generally, the Hilbert space of an N -body quantum system is constructed by a tensor

product of the N local Hilbert spaces. A state can then generally be written as

|ψN 〉 =
∑

s1,s2,...,sN

Cs1,s2,...,sN |s1, s2, . . . , sN 〉 , (5.118)

where a basis {si} is assigned to each local degree of freedom and Cs1,s2,...,sN are complex-

valued coefficients. Let di be the dimension of the local Hilbert space at site i. Then,

the state |ψN 〉 can be represented through its coefficients stored in an N -dimensional

tensor with di elements in each dimension, as depicted in Figure 5.8 (a). A reasonable

approximation for the ground state of local Hamiltonians on a lattice is to assume that

the entanglement in the system is short-ranged [153, 154], as illustrated in Figure 5.8 (b).

Due to this simplification, the number of coefficients (and thus the computational com-

plexity) grows only polynomially with N , in contrast to an exponential growth for an

exact representation of a quantum many-body state. Of course, the approximation of a

general state by a PEPS becomes better with increasing dimension D of shared indices

(referred to as ’bond dimension’) since then a spatially wider entanglement is taken into

account5. However, in practice, a low bond dimension is used and for D � N , this ap-

proach fails to describe a system close to criticality because of the diverging correlation

length.

The PEPS approach is well suited to treat the perturbed toric code model. It can

be shown that the ground state of the unperturbed toric code is exactly a PEPS with

D = 2 [153]. In the high-field limit, where the toric code interactions can be neglected,

the ground state is simply a state, where all spins point into the polarization direction.

This exactly corresponds the fully disentangled PEPS with D = 1. In between these two
5In the limit D = N , we recover exactly the general quantum state ψN .
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(a)

ψN

s1

s2
. . .

sN

(b)

sisi−1 si+1

si′si′−1 si′+1

si′′si′′−1 si′′+1

Figure 5.8: Representing a quantum state through a tensor network. (a) An N -
dimensional tensor can be illustrated as an object with N legs, where each leg is labeled
by an index running from 1 to di, the dimension of the local Hilbert space at site i.
(b) Excerpt of a tensor network. Interconnecting bonds represent shared indices of
neighboring tensors. In addition, a tensor at site i is assigned an index si to label the
local Hilbert space.

limiting cases, the ground state |ψgs〉 is approached variationally through an evolution

in imaginary time

|ψgs〉 = lim
τ→∞

e−τH |ψ0〉
‖e−τH |ψ0〉‖ , (5.119)

where H is the Hamiltonian, and |ψ0〉 is some reference state which must have a finite

overlap with the ground state. Using the Suzuki-Trotter decomposition, τ is discretized

so that the operator action on the right-hand side of (5.119) can be written as a product

of so-called gates e−δτHi , where δτ is a finite step in imaginary time and Hi a local

term of the Hamiltonian. After an action of each gate on a set of neighboring sites (or

equivalently neighboring tensors) of the PEPS |ψ(τ)〉, the state is updated to |ψ(τ + δτ)〉
where the coefficients of the tensors, comprised by the gate, are chosen to minimize∥∥∥∣∣∣ψ̃(τ + δτ)

〉
−
∣∣∣ψ(τ)

〉∥∥∥2
=
〈
ψ(τ)

∣∣∣ψ(τ)
〉

+
〈
ψ̃(τ + δτ)

∣∣∣ψ̃(τ + δτ)
〉

−
〈
ψ̃(τ + δτ)

∣∣∣ψ(τ)
〉
−
〈
ψ(τ)

∣∣∣ψ̃(τ + δτ)
〉
, (5.120)

where

∣∣∣ψ̃(τ + δτ)
〉

=e−δτHi
∣∣∣ψ(τ)

〉
. (5.121)

Note that the computation of (5.120) involves a contraction of the tensor network or,

in other words, a summation over all shared bonds. There are different strategies to

perform the contraction efficiently and we refer to literature for details [76, 77]. However,

it should be mentioned that the contraction method chosen in the present study involves

a further approximation, controlled by the so-called environment bond dimension χ.
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Summarizing, we have an efficient numerical tool at hand, which allows to approximate

the ground-state energy of the toric code in a variational manner. This method is

especially sensitive to first-order phase transitions. Sources of errors are the finite bond

dimension D and the environment bond dimension χ as well as the discrete step size in

imaginary time δτ . The parameters χ and δτ can be varied until the precision reaches

certain limits, but it is (computationally) much harder to increase D.



Chapter 6
Phase diagram of the toric code in a

uniform magnetic field

In this chapter, we present and analyze the exact perturbative expansions of the ground-

state energy and the one-particle gap of the toric code in a uniform magnetic field. Some

of the most important results of this chapter have been published in Ref. [99]. Our main

focus lies on the study of the topological phase of the toric code (low-field limit), where

the obtained series confirm known results for the purely parallel field [68] as well as a

single transverse field [69], and in the case of the parallel field upgrade the expansion to

higher orders. Most importantly, our series expansions allow for the first time to study

the toric code and its critical behavior under a simultaneous effect of the parallel and

transverse magnetic fields in order to answer questions concerning the structure of the

phase diagram as well as critical behaviors for this general case.

Furthermore, we introduce a new approach [42, 99] where iPEPS, a variational method,

is combined with series expansions, obtained by pCUT. This technique is well suited to

precisely determine the boundaries of a phase, where first- as well as second-order phase

transitions are expected to occur.

6.1 Preliminaries

We begin by presenting series expansions of the ground-state energy and the gap of the

lowest-lying excitation in the topological phase. Then, we discuss our strategy to deter-

mine the boundaries of the topological phase, where we have to cope with continuous

as well as discontinuous phase transitions. If the transition is continuous, our series are

used to compute certain critical exponents of the model.

79
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6.1.1 Series expansion results

The results presented in this chapter, are based on perturbative series, we have computed

with pCUT, as described in Section 5.1. The ground-state energy per site e0, has been

obtained up to order 10 in the limit hx, hy, hz � J = 1/2. There are certain symmetries

in the expression of e0 which reflect a symmetry between charges and fluxes. Thus, we

introduce auxiliary variables Sk = hkx+hkz and P2k = hkxh
k
z and write the series expansion

of ground-state energy as

e0 =− 1
2
− 1

2
S2 − 1

4
h2
y −

15
8
S4 − 7

32
S2h

2
y +

1
4
P4 − 13

192
h4
y −

147
8
S6 − 371

128
S4h

2
y

+
113
32

S2P4 − 1045
3456

S2h
4
y +

2003
384

P4h
2
y −

197
3072

h6
y −

18003
64

S8 − 1954879
36864

S6h
2
y

+
6685
128

S4P4 − 34054175
3981312

S4h
4
y +

146861
2304

S2P4h
2
y −

15343549
26542080

S2h
6
y +

20869
384

P8

+
5020085
497664

P4h
4
y −

163885
1769472

h8
y −

5420775
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S10 − 1563459523
1327104

S8h
2
y +

39524033
36864

S6P4

− 1115105409427
5733089280

S6h
4
y +

10058235445
7962624

S4P4h
2
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191102976000

S4h
6
y

+
5650925

6912
S2P8 +

20854097563
143327232

S2P4h
4
y −
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S2h
8
y +

1202498305
1990656

P8h
2
y

+
1994817656221
71663616000

P4h
6
y −

186734746441
1146617856000

h10
y . (6.1)

The matrix elements of the effective Hamiltonian in the one-particle sector correspond to

hopping amplitudes tr of a single quasi-particle [see (5.61)]. As argued in Section 5.1.3

the index r is limited to a finite range which depends on the perturbation order. We

computed all relevant tr up to order 8. The lengthy expressions are listed in the Ap-

pendix B.1. With Fourier transformation, we obtain the one-quasi-particle dispersion

ω (k) [see (5.66)]. For a single dressed charge and k = (kx, ky), the dispersion at order

three reads

ω (k) = 1− 2hz (cos kx + cos ky)− h2
y + 2h2

z − h2
z (cos 2kx + 4 cos kx cos ky + cos 2ky)

1
8
hz (cos kx + cos ky)

[
8h2

x + 11h2
y + 48h2

z − 16h2
z (cos 2kx + 4 cos kx cos ky + cos 2ky)

]
.

(6.2)

The series expansion of the dispersion of a single dressed flux can be simply constructed

by exchanging hx and hz in the above expression (for hz = hx both dispersions are

equivalent). In Figure 6.1, we plot ω (k) of a charge along the conventional symmetry

lines in the Brillouin zone. We find that the dispersion has a minimum at k = (0, 0) = k0,

a maximum at k = (π, π), and a saddle point at k = (π, 0) (as well as at k = (0, π),

due to rotational symmetry). These specific points play a major role in understanding

the structure of the two-quasi-particle continuum which we discuss in Section 7.3. For
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Figure 6.1: Dispersion ω (k) of a single charge in the magnetic field h = (hx, hy, hz),
for three typical parameter configurations. As will be shown below, the values of the
magnetic field are chosen such that the system is topologically ordered and far away
from the phase transition. The difference between the black and the red, dashed curve
is less than 10−3, due to the small amplitude of the parallel field.

the remainder of the current chapter, however, we concentrate on the one-quasi-particle

gap ∆ = ω (k0). For the case of a single dressed charge, we obtain the series

∆ = 1− 4hz − h2
y − 4h2

z + 2h2
xhz +
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z. (6.3)

This expression is valid for hz ≥ hx. At hx ≥ hz one has to consider the gap of a single

dressed flux. As already discussed for the general case of a single-particle dispersion,

the series expansion of the flux gap is constructed by exchanging hx and hz in the above

expression (for hz = hx both gaps are equivalent).
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The parallel-field case is numerically easier to tackle so that setting hy = 0, we are able

to obtain an additional order of the expansion:

∆par =1− 4hz − 4h2
z − 12h3
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where ∆par is the gap of the toric code in a parallel field for hz ≥ hx.

6.1.2 Combining pCUT and iPEPS

The series expansions of the single-particle gap from one phase, do not allow to capture

a discontinuous transition. However, if the system becomes critical, we can use various

extrapolation methods (see Section 5.3.2) in order to determine the position of the

critical point with remarkable precision. In this regard, iPEPS is a kind of antipodal

method. Here, the ground-state energy is computed in a variational manner, and the

precision depends rather on the amount of entanglement in the ground state than on

the ratio of the interaction J and the perturbation parameters hx, hy, and hz. While

iPEPS is sensitive to discontinuous phase transitions, the detection of a second-order

phase transition is significantly less accurate because of the finite bond dimension and

the fact that with each derivation of the minimized energy the influence of numerical

noise is increased.

As discussed in Section 4.3, the toric code undergoes a second-order phase transition for

hy = 0 and a first-order phase transition for hx = hz = 0. Apart from these limiting

cases, the type of phase transition is a priori not known. By combining pCUT and

iPEPS methods, we develop a powerful criterion to decide whether the phase transition

outside the limiting cases is continuous or not. Figure 6.2 shows a typical behavior

of the ground-state energy per site e0 and the gap ∆ in a certain direction of the

magnetic field, parametrized by the (one-dimensional) variable h. The ground-state

energy computed with pCUT and iPEPS is dubbed epCUT
0 (h) and eiPEPS

0 (h) respectively.

In the perturbative regime, where h is close to 0, we typically find that eiPEPS
0 (h) is

slightly above epCUT
0 (h), due to the approximations listed in Section 5.3.3, as well as

numerical errors (however, the Figure 6.2 shows an idealized example). The perturbative

expansions are valid up to the point h∗, where a variationally-computed energy minimum
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(a)

epCUT
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eiPEPS
0

h

e 0

h∗0
(b)

∆pCUT

h

∆

hc0

Figure 6.2: A qualitative sketch of the ground-state energy and the single-particle gap
dependence on the magnetic field h. (a) The variational energy eiPEPS

0 (h) undershoots
the perturbatively computed energy eiPEPS

0 (h) at the point h∗, enlarged in the inset.
(b) A typical shape of the one-particle gap extrapolated from a perturbative series. The
gap closes at hc.

below epCUT0 (h) is found:

epCUT
0 (h)− eiPEPS

0 (h) ≤0 for h ≤ h∗, (6.5)

epCUT
0 (h)− eiPEPS

0 (h) >0 for h > h∗. (6.6)

As shown in Figure 6.2 (b), ∆ vanishes at h = hc, thus the critical field hc is implicitly

defined through

∆ (h < hc) > 0, (6.7)

∆ (hc) = 0. (6.8)

If the gap vanishes inside the perturbative validity range (hc < h∗), then the system

indeed undergoes a continuous phase transition at hc, while in the opposite case (hc > h∗)

we interpret h∗ as a first-order transition point. We point out that our perturbative

treatment tracks exclusively the single quasi-particle gap and is blind to the scenario,

where multi -particle modes (e.g., bound states condense), or, generally, a level crossing

of a high-energy mode with the ground-state energy occurs before the gap is fully closed.

Note that alternatively one can identify h∗ with the position of the kink in eiPEPS
0 (h)

(or its derivation). However, unlike in the illustration 6.2 (a), the kink is usually less

pronounced so that, in practice, its position cannot be determined as sharply as the

criterion (6.5)-(6.6) allows us to do.

6.1.3 Critical exponents

One of our main goals in this chapter is to find the critical field hc where the topological

phase breaks down. In general, when a system is close to criticality, the correlation
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length ξ diverges with the critical exponent ν

ξ ∝ (h− hc)−ν . (6.9)

The correlation length should be proportional to 1/∆, where ∆ is the mass gap which

behaves as

∆ ∝ (h− hc)zν . (6.10)

The condensation of elementary excitations is a clear signal of a phase transition. There-

fore we are interested to determine the critical field hc where the gap becomes zero. By

means of extrapolation methods, introduced in Subsection 5.3.2, we are also able to

obtain the critical exponent zν from the gap series. In addition, we will compute the

dynamical exponent z which links the characteristic time and length scales through

τ ∝ ξ−z, (6.11)

where τ is the correlation time. This exponent can be obtained from the dispersion of

the lowest excited state at hc with

ω (hc,k) ∝ |k − k0|z , (6.12)

where k0 minimizes the dispersion [155]. We calculate the quantity zν by extrapolating

the series expansion of ∆, as discussed in Section 5.3.2. However, we cannot use this

approach to compute z because we do not have the series expansion of ω in k. Instead,

in order to determine the dynamical exponent, we use a trick. For fixed momenta k with

|k − k0| � 1, we extrapolate ω (k) and evaluate the gap at the critical point hc. Thus

one can track the k-dependence of the extrapolated gap at the point hc and perform

a logarithmic fit, to obtain z. As we will see below, this approach is less precise than

’direct’ extrapolation methods.

6.2 Low-field limit: Ising line

As a first check, we verify that our results for the parallel field case are consistent

with series expansions by He et al. [121] for the (2+1)-dimensional transverse-field Ising

model. We denote the magnetic field vector by h = (hx, hy, hz). Setting h = (0, 0, h) [or

alternatively h = (h, 0, 0)], we compare the series coefficients of the ground-state energy

per site, as well as the one-particle gap (see Table 6.1). Note that the series are rescaled,

due to J = 1/2. We find an exact correspondence, as can be verified by representing our
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order e0 (He et al. ) e0 (this work) ∆ (He et al. ) ∆ (this work)

0 0 0 2 2

1 0 0 -4 −4

2 -0.5 −1
2 -2 −2

3 0 0 -3 −3

4 -0.46875 −15
32 -4.5 −9

2

5 0 0 -11 −11

6 -1.1484375 −147
128 - 20.5078125 −2625

128

7 0 0 -57.69921875 −14771
256

8 -4.395263671875 −18003
4096 - 114.83630371 −940739

8192

9 0 0 -350.106719971 −11472297
32768

10 -20.6786155701 −5420775
262144 -730.535977681 −287258435

393216

Table 6.1: Coefficients of high-temperature series for the (2+1)-dimensional Ising
model and the low-field series expansion of the toric code in the direction h = (0, 0, h).
The floating point coefficients for the ground-state energy per site e0 and the one-
particle gap ∆ were obtained by He et al. [121] with a full graph expansion. The
coefficients in form of rational numbers were computed with pCUT using the finite-
lattice method, and have been rescaled to the J = 1 case for comparison reasons.

rational coefficients as floats. While He et al. reach a higher order in perturbation [121],

due to a superior method (full graph expansion) and a simpler model, our series feature

exact coefficients and are, in addition, obtained from a special case of a multi-variable

expansion.

We point out that there is no standard method to estimate the error of series extrap-

olations. Fortunately, we are able to test the accuracy of our method in the limiting

case where the toric code in a field is isospectral to the Ising model. Note that, here,

higher orders of the series expansion are available [121, 122] and lead to more accurate

results. However, our goal is to determine the order of magnitude of the precision, when

using our expansion. Specially because this is relevant to estimate the accuracy of our

calculations outside this limiting case.

Let us now compute the position of the critical point hc where the Ising model under-

goes a second-order phase transition. Table 6.2 shows that the DlogPadé approximants

capture the first three digits of the most accurately known value of the critical field

hc = 0.164235(10) [120]. The (2+1)-dimensional Ising model is characterized by the

critical exponent ν = 0.630 [156] and the dynamical exponent z = 1 [157]. Note that

most reliable methods seem to agree on the first three digits of ν (which is sufficient

for our purposes), while the precise value of this critical exponent is under debate, as
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L\M 1 2 3 4 5 6 7 8

1 0.162162 0.164716 0.165169 0.164830 0.164564 0.164501 0.164471 0.164415
2 0.168182 0.165165 0.164986 0.162453 0.164485 0.164441 0.164540* -
3 0.162242 0.164836 0.161609 0.164602 0.164457 0.164502* - -
4 0.166905 0.164563 0.164477 0.164454 0.164311 - - -
5 0.162267 0.164496 0.164444 0.164489* - - - -
6 0.166615 0.164467 0.164531* - - - - -
7 0.162424 0.164413 - - - - - -
8 0.166252 - - - - - - -

(a)

L\M 1 2 3 4 5 6 7 8

1 0.631118 0.655552 0.660874 0.655370 0.650053 0.648568 0.647738 0.646000
2 0.704042 0.660812 0.658256 0.550128 0.648094 0.646692 0.649284* -
3 0.609726 0.655478 0.492657 0.651404 0.647264 0.648487* - -
4 0.702536 0.650009 0.647874 0.647155 0.641474 - - -
5 0.593233 0.648413 0.646815 0.648151* - - - -
6 0.713861 0.647612 0.649081* - - - - -
7 0.582253 0.645905 - - - - - -
8 0.718074 - - - - - - -

(b)

Table 6.2: DlogPadé approximants DlogP[L,M ]. (a) Estimate of the critical value
hc. (b) The corresponding critical exponent νz. Values highlighted by an asterisk
correspond to defective approximants. While the critical value is approximated well up
to the third digit, the critical exponent zν seems to be overestimated by a few percent.

summarized in Ref. [156]. Considering Table 6.2 we observe that our approach yields a

rather precise estimate of the critical value of the field, while the critical exponent ν is

slightly overestimated, which is typical for series expansions [68, 122]. Additionally, we

determine the dynamical exponent to be approximately z ≈ 1.3, which is rather far off

the literature value. As explained in the previous section, we cannot extrapolate ω di-

rectly in k. Furthermore, by construction, the momentum dependence in our dispersion

enters only in cosines (due to tr = t−r, see Section 5.1.3). Since these are even functions,

the convergence towards a linear vanishing of the gap around k = 0 is conceivably bad.

On the contrary, for cases where z = 2, our extrapolation should become much more

precise. Even though our series seem to be not well suited to determine the dynamical

exponent of the transverse field Ising model, we find a value which is significantly closer

to one than two, therefore at least a qualitative agreement can be reached.

Next, we compute the differential approximants (DA) forM ∈ {1, 2, 3} which extrapolate

series of orders 4, 7, and 10 respectively. Note that this extrapolation cannot be used

to compute z because the approximated function enters only implicitly, but its explicit

form is necessary in order to study the momentum dependence. As shown in Table 6.3,

the differential approximants seem to converge towards values obtained with DlogPadé

approximants. The self-similar factor approximants (SSFA) are also in agreement with

DlogPadé approximants (see Table 6.4).
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order 4 7 10
hc 0.172414 0.163924 0.164098
zν 0.737940 0.643978 0.644724

Table 6.3: Critical field hc and critical exponent zν computed with differential
approximants [141]. The approximation is governed by the integer parameter M which
restricts the contributing orders of a series to 1 + 3M .

order 2 4 6 8 10
hc 0.166667 0.164716 0.164986 0.164602 0.164311
zν 0.666667 0.653061 0.661396 0.628658 0.656814
z 1.33398 1.31058 1.31634 1.30207

Table 6.4: Critical field hc, and exponents zν and z computed with self-similar
approximants. Note that zν and z have been computed independently, in the sense
that zν is obtained by extrapolating the gap at k0 and z is determined by the behavior
of the dispersion at hc in the vicinity of k0.

DlogP[L, L]

DlogP[L− 1, L]

DlogP[L, L− 1]

DA

SSFA

2 4 6 8 10

r

0.160

0.165

0.170

0.175

h
c

Figure 6.3: Transition point hc of the (2+1)-dimensional Ising model extrap-
olated from finite-order series with different methods. The ’best’ literature value
hc = 0.164235(10) [120] is highlighted by the dashed line, r is the order of the se-
ries. To keep a clear overview, only the standard Padé approximants [L,L], [L− 1, L]
and [L,L− 1] are shown, with L = [r − (r mod 2)] /2.

Summarizing, we observe that different extrapolation schemes yield consistent results

with high precision (roughly 0.2%) for the critical point of the (2+1)-dimensional Ising

model (see Figure 6.3). The computed critical exponent ν is close to the literature

value, but less accurate (the deviation is approximately 3%, as shown Figure 6.4). Each

extrapolation method shows a tendency to converge towards the known value for higher

orders. Our result for the dynamical exponent appears to be closer to the correct value

z = 1 than for example z = 2, which of course is only a qualitative statement. It is

reasonable to assume that the accuracy of our calculations does not change significantly
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Figure 6.4: Critical exponent zν of the (2+1)-dimensional Ising model, extrapolated
with different methods, using perturbative expansions of the gap. The literature values
of the critical exponents are z = 1 and ν = 0.630 (highlighted by the dashed line), r is
the order of the polynomial used in the extrapolations. To keep a clear overview only
the standard Padé approximants [L,L], [L − 1, L] and [L,L − 1] are included, where
L = [r − (r mod 2)] /2.

in the vicinity of the Ising point studied in this section. Therefore, the presented results

should provide an intuition for the precision of our results away from the direction of

the magnetic field h = (0, 0, hz).

6.3 Low-field limit: parallel fields

The toric code in a two-dimensional parallel magnetic field has been studied with

pCUT in Refs. [68, 99] and has already been the subject of several publications (see

the discussion in Section 4.3). In the recent Ref. [67], the boundaries of the topological

phase were computed by means of continuous-time Monte Carlo simulations. The high-

precision calculations confirm the pCUT (low-field expansions based) predictions with

great accuracy. In this chapter, we discuss these pCUT results in more detail, updating

the series expansions to a higher order and including additional extrapolation methods.

One of the strength of our approach is that the obtained perturbative series allow to

study each point in the three-dimensional parameter space of the magnetic field with a

relatively low cost. This is in contrast with, for example, quantum Monte Carlo, where

heavy numerics have to be performed for every constant set of variables (an even more

crucial difference is the fact that quantum Monte Carlo cannot be applied efficiently to

the toric code in a non-zero transverse magnetic field, due to the sign problem). The
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parallel magnetic field can be parametrized by h = (h sinϕ, 0, h cosϕ), where ϕ = 0

corresponds to the Ising direction studied in the previous section. We obtain hc(ϕ), by

successively fixing ϕ to a constant (which sets a certain direction of the magnetic field)

and performing different extrapolations in order to compute hc for the given direction

of the field. Due to the charge-flux symmetry, it is sufficient to consider the parameter

range ϕ ∈ [0, π/4]. In the case ϕ = π/4, the amplitudes of both parallel fields are

equivalent and, as shown in the phase diagram in Figure 4.8, the phase boundary is

multicritical.

In Figure 6.5, we report how the value of the critical magnetic field hc changes when ϕ is

tuned between these two significant points. First, and most importantly, we observe that

all approximants are in a very good agreement on at least two digits of the critical field.

Since it is not known how to specify exact error bars when extrapolating finite series,
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Figure 6.5: Boundary of the topological phase of the toric code in a parallel magnetic
field. (a) Dependence of the critical value of the field on the angle ϕ between hx and
hz. To keep a clear overview, the bundle of Padé approximants is represented by a few
high-order extrapolations. The lower index of the differential approximants (DA) as well
as the self-similar factor approximants (SSFA) denotes the order of the extrapolated
series. (b) and (c) zoom on regions where a local failure of certain approximates is
compensated by the set of remaining approximates.



Chapter 6. Phase diagram of the toric code in a uniform magnetic field 90

it is common to consider the variation of hc computed with various approximations, as

a rough measure of accuracy. We will perform more concrete accuracy checks below

by comparing our results with quantum Monte Carlo data. Furthermore, we notice

that some approximants seem to diverge at certain directions of the magnetic field.

This feature is an extrapolation artifact, as can be best understood by considering the

denominator of a DlogPadé. Zeroes of this quantity determine the position of poles

and thus define the phase transition point. In Figure 6.6 we consider the behavior of a

specific DlogPadé extrapolation in proximity of its divergence. The analytic form of the

(a)
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Figure 6.6: Example of how the non-physical behavior of the critical field is an
extrapolation artifact. (a) The DlogP[4,3] approximant yields a diverging hc in the
shown parameter range. Since hc is computed from poles of DlogP[4,3], it is useful to
consider the zeroes of the denominator of DlogP[4,3]. We refer to the this denominator
as Q[4, 3]. (b) Behavior of Q[4, 3] for certain fixed angles ϕ (highlighted in (a) by
crosses). With increasing ϕ the real zeroes move closer to the origin and make the
approximant defective at some point. The extrapolation fails and yields non-physical
results when the minimum of the local parabola either touches the horizontal axis (so
that the multiplicity of the pole becomes two) or moves above the zero axis, making
the pole disappear.

denominator of this approximant is such that with increasing ϕ the real-valued zeroes are

shifted to the left. Exactly at the position of the divergence, the multiplicity of the lowest

zero goes from one to two, violating one of the premises of our extrapolation scheme1.

Further increasing of ϕ makes the extrapolation defective. Obviously, in the parameter

domain where an approximant is diverging it has to be considered non-physical so that

in order to describe the phase boundary smoothly, one has to take into account the

whole set of approximations.

Let us consider the resulting phase diagram in convenient coordinates (as in Figure 4.8).

Figure 6.7 shows that the boundary of the topological phase is obtained in a precise

and consistent way. In regions where certain approximants diverge, others are smooth.

Furthermore, the critical values obtained from various approximants are considerably

close to each other. Indeed, as we will show below, the accuracy of our method is

comparable to the one of quantum Monte Carlo (see Figure 6.9). With perturbative

1We recall that a DlogPadé, approximates the function θ
(xc−x)

where the multiplicity of the pole is

explicitly one (see Section 5.3.2 for details).
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Figure 6.7: Phase diagram of the toric code in a parallel magnetic field. The plot
is based on the same data as shown in Figure 6.5, except that here we use Cartesian
coordinates. In contrast to Figure 4.8, we do not show the finite first-order transition
line on the symmetry axis hx = hz, but only the boundary of the topologically-ordered
phase. In addition to the known results from Ref. [68], the boundary has been computed
with various DlogPadé approximations as well as other extrapolation methods, using
a series expansion of the one-particle gap of order 9. Note that since we set J = 1/2,
there is a factor 2 difference in our coordinates, when compared with the ones from
Ref. [67].

series it is not possible to access directly the first-order phase transition line, attached

to the multicritical point at hx = hz = 0.170. However, we will tackle this problem using

high-field series expansions in Section 6.5.

Next, we investigate how the critical exponent zν changes in the interval 0 < ϕ < π/4.

Figure 6.8 shows that, as anticipated in Section 4.3, the critical exponent remains con-

stant for ϕ > 0, except in the region close to the multicritical point. We observe that

apart from the negligible (since non-physical) divergences, the DlogPadé approximants

are remarkably converged. Thus, we find that the universality class of the model is

still compatible with the one of the (2+1)-dimensional Ising model (provided z = 1),

even when ϕ is varied. The significant increase of the critical exponent at ϕ = π/4

indicates that here the universality class is likely different from the (2+1)-dimensional

Ising model. Since our analysis is based on finite-order series which are extrapolated by

rational functions, we do not observe a discontinuous change in zν, but rather a smooth

increase near the multicritical point.
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Figure 6.8: Critical exponent zν, obtained from the vanishing one-particle gap of
the toric code in a two-dimensional parallel magnetic field. The lower index of the
differential approximants (DA) as well as the self-similar factor approximants (SSFA)
denotes the order of the extrapolated series. While the best DA extrapolation agrees
with the Padé results, the highest-order SSFA approximation seems to fail for ϕ > π/8.
Here, we show only a subset of DlogPadé approximants which give reliable results in
the Ising point. For example, we do not show DlogPadé[8,1] because it clearly is an
outlier, as shown in Table 6.2.

The quantum Monte Carlo calculations of the critical field in Ref. [67] allow us to

compare the series results quantitatively in two distinct points of the phase diagram.

Figure 6.9 confirms the notable accuracy of our results for the phase boundary. Note

that in Figure 6.9 (a) the QMC simulation is performed for a constant hx = 0.15 so that

in order to compare with our parametrization of the problem, we had to find a ϕ such

that the hx-component of extrapolated hc corresponds (up to numerical noise) precisely

to the QMC value.

Let us take a closer look at the multicritical point, where hx = hz and consequently

ϕ = π/4. In analogy to our study of the Ising point, Table 6.5 lists DlogPadé approx-

imants for the critical field hc and the critical exponents zν. We find that the critical

exponent is approximately zν ≈ 0.69, which is significantly different from the Ising

value (0.630).

The differential approximants at order 7, listed in Table 6.6, seem to be close to values

from DlogPadé approximants. While the self-similar factor approximation yields con-

sistent result for the critical field, it fails to approximate the critical exponent. As also

shown in Figure 6.8, the SSFA results at the highest available order of the series are not

reliable at the multicritical point.
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Figure 6.9: Comparison of the critical field hc (computed with different series ex-
trapolation methods at order r) with numerically precise values obtained by QMC
simulations in Ref. [67]. The error of the QMC result is highlighted by a blue stripe.
(a) Critical point for the direction of the magnetic field ϕ ≈ 0.73. Here, the system is
found to be critical at hz = 0.1665(5), which corresponds to hc ≈ 0.2241. (b) hc at the
critical point ϕ = π/4 (see also Table 6.5). The QMC simulation yields hc ≈ 0.2404,
and is in remarkable agreement with extrapolations from finite-order series.
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L\M 1 2 3 4 5 6 7

1 0.239022 0.232428* 0.241975 0.240962 0.241057 0.240892 0.240998
2 0.246101 0.241872 0.241210 0.241047 0.240997 0.240956 -
3 0.235859 0.241010 0.241042 0.240568 0.240950 - -
4 0.246457 0.241043 0.241017 0.240946 - - -
5 0.235639 0.240903 0.240955 - - - -
6 0.246113 0.240988 - - - - -
7 0.236273 - - - - - -

(a)

L\M 1 2 3 4 5 6 7

1 0.685578 0.666935* 0.706586 0.695017 0.696391 0.693521 0.695686
2 0.748312 0.705431 0.698410 0.696227 0.695462 0.694744 -
3 0.631304 0.695680 0.696133 0.683496 0.694608 - -
4 0.786467 0.696158 0.695758 0.694530 - - -
5 0.600786 0.693723 0.694727 - - - -
6 0.814576 0.695446 - - - - -
7 0.587719 - - - - - -

(b)

Table 6.5: DlogPadé approximants DlogP[L,M ] at the multicritical point hx = hz.
(a) Estimate of the critical value hc. (b) The corresponding critical exponent zν. Values
highlighted by an asterisk correspond to defective approximants.

order 4 7
hc 0.216291 0.239916
zν 0.352024 0.691748

Table 6.6: Critical field hc and critical exponent zν at the multicritical point hx = hz,
computed with differential approximants. The approximation is governed by the integer
parameter M which restricts the contributing orders of a series to 1 + 3M .

order 2 4 6 8
hc 0.235702 0.232428 0.241210 0.240568
zν 0.666667 0.662069 0.756161 0.790959
z 1.33392 - 1.39665 1.36378

Table 6.7: Critical field hc and critical exponents zν and z at the multicritical point
hx = hz, computed with self-similar approximants. Note that zν and z have been
computed independently, in the sense that zν is obtained by extrapolating the gap at
k0 and z is determined by the behavior of the dispersion at hc in the vicinity of k0.
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Figure 6.10 summarizes our estimates for the critical exponents zν of the multicritical

point. From our study of the Ising point in Section 6.2, we know that the resulting

extrapolations typically tend to overestimate the critical exponent. However, because

of the fact that in the field hx = hz and hy = 0 the Hamiltonian has an additional

symmetry, and taking into account the accuracy of the presented results, we are confident

that the point hx = hz = 0.170 indeed belongs to a universality class distinct from the

(2+1)-dimensional Ising model.
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Figure 6.10: Critical exponents zν of the multicritical point hx = hz computed with
various approximants at order r. Except the SSFA results (which are non-physical,
as shown in Figure 6.8), the extrapolations seem to agree on zν ≈ 0.69, which is
clearly distinct from the value of the (2+1)-dimensional Ising model. The DlogPadé
approximations seem to be more converged than other extrapolation methods at this
point.

6.4 Low-field limit: arbitrary fields

After the close examination of the toric code in a parallel magnetic field, we consider the

simultaneous perturbation by parallel and transverse fields. Note that here no Monte

Carlo data is available since the simulations suffer from the sign problem 2. However, we

have seen in the previous section that the perturbative approach gives accurate results

for the critical values of the parallel magnetic field, thus we expect a similar precision in

our calculations for the case where a transverse magnetic field is present. As it has been

discussed in Section 4.3, the transition from the topological phase into the polarized

phase can be either of first or of second order. We tackle this problem by including the

variational iPEPS method in addition to our perturbative analysis. Let us remind that
2In the special case of a pure transverse field, the toric code can be mapped to the quantum compass

model where the sign problem can be avoided [133].
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the ground-state energies computed with pCUT and iPEPS are denoted via epCUT
0 and

eiPEPS
0 , the critical field hc is determined by extrapolations of the perturbative series of

the gap, and h∗ is found by comparing epCUT
0 and eiPEPS

0 , as discussed in Section 6.1.2.

In order to give a demonstrative example, we consider two specific directions of the field

where our approach of combining these two methods allows to decide clearly about the

nature of the phase transition. As shown in Figure 6.11, we distinguish two cases. While

in Figure 6.11 (a) the critical field hc is smaller than h∗, we find the opposite scenario in

(a)
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0

hc
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0.36 0.38 0.40 0.42 0.44 0.46 0.48

h
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Figure 6.11: Ground-state energy of the toric code exposed to the magnetic field
h = (0, h sin θ, h cos θ). The notation in the legend has been introduced in Section 6.1.2.
The critical field hc has been computed with various DlogPadé approximants, not spec-
ified here. (a) For θ = 0.38125π, the one-particle gap seems to close in a region where
the numerically minimized ground-state energy is clearly above the perturbative one,
which indicates a second-order phase transition. (b) At θ = 0.44375π, we find h∗ < hc.
In this case, a first-order phase transition occurs before the gap vanishes.
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Figure 6.11 (b). Using our definition from Section 6.1.2, we identify a continuous phase

transition at hc in the first case and a discontinuous transition at h∗ in the second. In

the pCUT validity range (at magnetic field h < h∗), eiPEPS
0 is always slightly above

epCUT
0 because the iPEPS ground-state energy has been computed variationally. An

additional cause could be the finite bond dimension D = 2 of the iPEPS. Increasing D

to 3, however, does not lead to a significant improvement of the results (not shown).

Note that the field directions discussed in Figure 6.11 correspond to two points from the

phase diagram in Figure 6.12 that will be discussed next.

Similarly to the previous section, we parametrize the magnetic field h with the following

spherical coordinates: h = h (sinϕ cos θ, sin θ, cosϕ cos θ). For fixed angles ϕ = 0, π/8,

and π/4 we compute the critical values hc and h∗ while varying θ in small discrete steps.

Let us begin by considering the case ϕ = 0 in Figure 6.12. One has to keep in mind

that the vertical axis at constant θ corresponds to a certain direction of the magnetic

field. The system undergoes a phase transition from a topologically-ordered phase at

low fields, to a polarized phase. The critical values hc, shown as continuous lines (which

actually consist of a dense set of discrete points), are determined by the vanishing of the

one-particle gap, extrapolated with various methods. The critical value h∗ is computed

by comparing epCUT
0 and eiPEPS

0 , as described in Section 6.1.2. In Figure 6.12 (a), we

distinguish three distinct domains separated by vertical dashed lines. According to the

criteria of Section 6.1.2, in the left (right) region, the phase transition is of second

(first) order, while in the intermediate region a clear conclusion is not possible. The

discontinuities in the curvature of hc are attributed to the already familiar numerical

artifacts, discussed in the previous section. Note that at certain points our calculations

can be checked with known results. The transition point at θ = 0 (or equivalently

hy = 0), corresponds to the Ising point, already discussed in Figure 6.9, where we

confirm the second-order phase transition at hz ≈ 0.164, as found for the transverse-

field Ising model. At θ = π/2 (or equivalently hz = 0), it is known from Ref. [69] that

the point hy = 1/2 is a self-dual point where the system undergoes a first-order phase

transition. Figure 6.12 confirms that also at this point our approach yields the correct

result with significant precision.
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Figure 6.12: Phase diagram of the toric code (in polar and Cartesian coordinates)
perturbed by the magnetic field h = h (0, sin θ, cos θ). (a) As visualized in the inset,
we scan the hz − hy plane of the three-dimensional orientation of the magnetic field.
Colored curves correspond to hc, computed with extrapolation methods as listed in the
legend of (b). Vertical dashed lines at θ = 1.26 and θ = 1.34 delimit an uncertainty
region which begins approximately at the point where the value of hc starts to strongly
depend on the extrapolation method (leading to a spreading of the colored curves),
and ends where h∗, denoted by a green crosses, become smaller than the predominant
subset of hc’s. The two distinct field directions, discussed in Figure 6.11 are highlighted
by encircled crosses. (b) Phase boundary of the topological phase as a function of hy
and hz. It seems that in the region 0.08 < hy < 0.2 most approximants undergo a
non-physical divergence.
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Now, we perform the same considerations for a fixed ϕ = π/8 on a plane parallel to

the hy-axis, as shown in the inset of Figure 6.13. We find a very similar picture of the

phase diagram, where to the left (right) of the uncertainty region 1.252 < θ < 1.316

the system undergoes a second-order (first-order) phase transition. At θ < 5π/16, the

iPEPS calculations do not yield conclusive results due to numerical problems. However,

it is reasonable to assume that close to θ = 0 (or equivalently hy = 0), where the phase

transition is known to be of second order, the ’missing’ iPEPS points would yield hc . h∗.

This scenario is supported by the behavior of the critical exponents (see Figure 6.16)

which do not indicate a phase transition for θ < 5π/16, as will be discussed below.

In the preceding section we have given special attention to the symmetry line hx = hz

(with hy = 0) where the Hamiltonian has an enhanced symmetry. Moreover, both types

of elementary excitations, charges as well as fluxes, condense simultaneously so that their

non-conventional mutual statistics might becomes relevant when the system approaches

criticality. Indeed, we have shown that while the phase transition of the toric code for

hx 6= hz is known to be in the universality class of the transverse-field Ising model, the

universality class of the phase transition in the distinguished symmetry point is clearly

different. Thus, one of the most intriguing questions for the phase diagram of the toric

code in a field concerns the transition properties on the symmetry line hx = hz and

hy > 0. Figure 6.14 reveals the phase diagram on this line for finite hy. In contrast

to the previous cases, the extrapolated hc are consistently close to each other even

beyond the point θ = 1.082, where the nature of the phase transition changes from

second order (at θ < 1.082) to first order. Similarly to the phase diagram discussed

in Figure 6.13, the minimization procedure of the iPEPS ground-state energy suffers

from numerical difficulties around a certain parameter region, where, remarkably, also

the series approximants yield non-physical divergences. It seems that in this parameter

domain the system is especially difficult to handle. In Figure 6.14 (b), we observe that

the first-order transition line at the top of the phase diagram has a linear dependence in

hz (which is equivalent to hx for the current parametrization) up to the crossing point

with the second-order transition line. Thus, instead of an uncertainty region, we are

able to give precise coordinates of this crossing point Pcrit = (0.175, 0.465, 0.175).
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Figure 6.13: Phase diagram of the toric code (in polar and Cartesian coordinates)
perturbed by the magnetic field h = h

(
sin π

8 cos θ, sin θ, cos π8 cos θ
)
. (a) The shaded

area of the inset corresponds to the investigated parameter range. Colored curves rep-
resent hc, computed with extrapolation methods as listed in the legend in (b). Vertical,
dashed lines at θ = 1.252 and θ = 1.316 delimit an uncertainty region which begins
approximately at the point where the value of hc starts to strongly depend on the
extrapolation method (leading a spreading of the colored curves) and ends where h∗,
denoted by green crosses, become smaller than the predominant subset of hc’s. (b)
Phase boundary of the topological phase as a function of hx, hy and hz, where the
horizontal axis corresponds to the bottom of the shaded plane in the inset of (a) (so
that hx = hz tanπ/8). It seems that in the region 0.08 < hy < 0.2 most approximants
undergo a non-physical divergence. Furthermore, in this parameter range the iPEPS
method fails to provide reliable results for h∗.
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Figure 6.14: Phase diagram of the toric code (in polar and Cartesian coordinates)
in the magnetic field parametrized by h = h

(
sin π

4 cos θ, sin θ, cos π4 cos θ
)
. (a) The

shaded area of the inset corresponds to the investigated parameter range. Colored
curves represent hc, computed with extrapolation methods as listed in the legend of
(b). The vertical dashed line at θ = 1.082 separates two domains of the phase diagram,
where the system undergoes a second-order (θ < 1.082) or a first-order (θ > 1.082)
phase transitions. (b) Phase boundary of the topological phase as a function of hx, hy
and hz, where the horizontal axis corresponds to the bisection of the hx-hz-plane. In
the region around hy = 0.3, all approximants feature non-physical divergences. In the
same parameter range, the iPEPS method fails to provide reliable results for h∗. The
crossing point Pcrit of the first-order and the second-order transition lines is highlighted
by the arrow.
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After the detailed analysis of the phase diagram at three distinct angles ϕ, we complete

this study by performing extrapolations in the intermediate regions, which yields the full

phase diagram of the toric code in a uniform magnetic field, presented in Figure 6.15.

We find that the first-order transition point at h = (0, 1/2, 0) belongs to a first-order

transition sheet S1, while the well-known second-order transition lines on the hx-hz-plane

become second-order sheets S2 at finite hy. S2 highlights the parameter range where

the topologically-ordered phase breaks down, due to the condensation of charge-quasi-

particles (in the range hz ≥ hx), or flux-quasi-particles (in the range hz ≤ hx). The

sheet S1 is rather flat for small parallel magnetic fields so that the hy-coordinate of

the intersection lines (green in Figure 6.15) of the sheets S1 and S2 is approximately

hy ≈ 0.49. Due to the large value of the magnetic field, the perturbative expansions are

not reliable enough for an accurate estimation of the corresponding hx and hz coordinates

(see also Figures 6.12-6.13). However, the remarkably converged results on the symmetry

line hx = hz allow us to determine the precise location of the point Pcrit, shown in

Figure 6.15.
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Figure 6.15: Sketch of the phase diagram of the toric code in a uniform magnetic
field. The topologically-ordered phase is delimited by a first-order transition sheet S1

and a second-order transition sheet S2. On the hx- as well as hz-axis the model can be
mapped onto the transverse-field Ising model, where the location of the second-order
phase transition point (denoted by filled circles) is well known. The self-dual point
at h = (0, 1/2, 0) (denoted by a filled rhomb) features a first-order phase transition,
as discussed in Ref. [69] (as well as Section 4.3). The intersection lines of S1 and S2

are pointed out by a green color, while the charge-flux symmetry line with hx = hz is
colored red. The red line ends at a the point Pcrit at h = (0.175, 0.465, 0.175) which is
highlighted by an empty rhomb.

Let us now consider the critical exponent zν. In Figure 6.16 we observe that while

θ is increased, zν stays constant except near the first-order transition domain, where

it is not defined. As expected, here the extrapolations from finite series become less
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reliable, in accordance with previously obtained results of the critical field. Outside the

uncertainty region, defined in Figure 6.12 and Figure 6.13, the system seems to remain

in the universality class of the transverse-field Ising model.
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Figure 6.16: Critical exponent zν for the parameter range highlighted in the top left
inset. The vertical dashed line marks the beginning of the first-order phase transition
domain, where the low-field expansion fails to describe the correct physics. Besides the
non-physical divergences in the range π/8 < θ < π/4, we observe that DlogP[3,3] and
DlogP[2,4] vary strongly around θ = 0. Since θ = 0 corresponds to the Ising line, where
we already have a precise result (see Table 6.2), the values of DlogP[3,3] and DlogP[2,4]
in this range must be considered as unphysical. The remaining approximants yield
a consistent picture of a constant critical exponent, except near the first-order phase
transition domain, where zν starts to decrease. This effect, however, becomes weaker
for extrapolation of higher orders and probably disappears when very high perturbation
orders are taken into account.
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Our computation of the dynamical critical exponent z yields, as discussed previously,

only a rough estimate. We recall that, on the Ising line, the expected value z = 1

is overestimated by almost 30 percent. Nevertheless, Figure 6.17 seems to confirm our

observation that, in the considered parametrization, the critical exponents do not depend

on θ. As in previous figures, the extrapolations become non-reliable when θ is close

the first-order transition domain. Interestingly, the gap exponents on the intersection

line of the second-order transition plane and the first-order transition plane might be

compatible with the ones of a tricritical 3d-Ising point (where ν = 1/2) [158, 159]. While
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Figure 6.17: Critical exponents z for the parameter range highlighted in the top left
inset. The vertical dashed line marks the beginning of the first-order phase transition
domain. Interestingly, the behavior of zν (Figure 6.16), although computed indepen-
dently, yields to qualitatively same behavior of the approximants.
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this remains to be checked, our results from Figure 6.16 and Figure 6.17 tend to support

this scenario (z ≈ 1 and zν ≈ 0.5).

The situation is rather different on the symmetric plane hx = hz. It is shown in Fig-

ure 6.18 that we obtain a continuously increasing zν with a maximum precisely around

θ = 1.08, which is the location of Pcrit. Only for θ > 1.08, where, as we already know,

the system undergoes a first-order phase transition before the charge (or equivalently

the flux) gap vanishes, the approximants start to spread out. This is an additional
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Figure 6.18: Critical exponent zν on the symmetry plane hx = hz. Various ap-
proximants yield a consistent picture of a continuously varying critical exponent with
a maximum at Pcrit, denoted by a dashed vertical line. Beyond the critical line, the
extrapolations do not have a physical meaning. This is in agreement with the fact that
here, at a fixed θ, one obtains strongly varying results depending on the extrapolation.

argument that the validity range of the perturbative expansions ends at Pcrit. Note

that all approximation methods we have used yield the same continuous increase of the

critical exponent with θ. This is very different from the cases ϕ = 0 and ϕ = π/8,

shown in Figure 6.16. There, the exponent deviates from its constant value only in the

parameter domain where the approximants are not reliable anymore (since the results

start to depend strongly on the extrapolation method). A continuously varying critical

exponent is an interesting feature found only in a few known 2d quantum theories, with

prominent examples being the Ashkin-Teller model and the eight-vertex model [160–

162]. However, one has to keep in mind that we approximate polynomials of finite order

by rational functions. Their residua can, by construction, only be continuous functions

of θ. In other words, using only a finite order perturbation theory, our method does not

allow to distinguish a continuously varying critical exponent from a scenario where there

is a discrete jump. Thus the results shown in Figure 6.18 admit the interpretation that

the critical exponent is constantly zν ≈ 0.69 for θ > 0, and discontinuously changes to
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zν = 1 at the point Pcrit. Or, alternatively, the jump of the critical exponent could be at

an intermediate θ value; for example, close to the point where most of the approximants

seem to diverge.

Finally, we compute the dynamical exponent z, shown in Figure 6.19. We recover a simi-

lar behavior of a continuously varying critical exponent, or alternatively, a discontinuous

change with a jump at the point Pcrit. Let us recall that, by construction, our method

of computing the dynamical critical exponent is more precise when z is close to 2 rather

than to 1 (see Section 6.2). Independently of how the continuous change of the critical

exponents is interpreted, we find that the model is in a distinct universality class at the

point Pcrit, with z = 2 and correspondingly ν = 1/2. Interestingly, the toric code is

known to feature a so-called conformal quantum critical point [157, 163], with the exotic

characteristic that all equal-time correlators in the quantum ground state are equivalent

to correlation functions of a local two-dimensional classical model. Even though the

relation between the deformed toric code studied in Ref. [157] and the toric code in a

magnetic field is not yet clear, Pcrit might be compatible with a conformal quantum

critical point in the universality class of a certain limit of the eight-vertex model [157].
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Figure 6.19: Critical exponent z on the symmetry plane hx = hz. Various approxi-
mants yield a consistent picture of a continuously varying z with a maximum at Pcrit,
denoted by a dashed vertical line. The divergences around θ = 9π/32 are extrapolation
artifacts. Beyond the dashed line, our approximants do not have a physical meaning,
which is in agreement with the fact that here, at a fixed θ, one obtains strongly varying
results, depending on the extrapolation.

In order to learn more about the fascinating properties of the critical line on the charge-

flux symmetry plane hz = hx, we shall perform series expansions in the opposite limit

of high magnetic fields in the following chapter.
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6.5 High-field limit

In the limit J � |h|, we have computed the ground-state energy and the one-quasi-

particle gap up to order 5. For the lengthy expressions, we refer to the Appendix B.3.

As has been discussed in Section 5.2, the derivation of an effective model with pCUT is

much more challenging in the high-field limit than in the low-field case. Thus the

maximally feasible order of perturbative expansions is relatively low. First, we examine

the system gap at θ = 0. Following up our discussion on page 69, we regard the vanishing

of the one-particle gap ∆1 as an indicator for a phase transition, only at the critical point

hx = hz. Let us recall that on the Ising line [h = (0, 0, hz)] the ground state cannot be

excited into a single-particle state by any local operator. Consequently, in the effective

language of the toric code, the four-particle gap ∆4 is the relevant one. The perturbative

expansion of ∆4 has been computed using pCUT in Ref. [102] and is in precise agreement

with the low-temperature series of the Ising model in a transverse field [122].

∆4(ϕ = 0) = 4− 3
2
J̃2 +

43
96
J̃4, (6.13)

∆1(ϕ = 0) = 1 + 4J̃ − 1
2
J̃2 +

3
32
J̃4, (6.14)

∆1(ϕ = π/4) = 1− J̃ − 11
48
J̃2 +

71
256

J̃3 − 1101497
552960

J̃4 +
13570006967
1300561920

J̃ 5

− 721074550661327
16387080192000

J̃6 + 175.70719J̃7, (6.15)

where we parametrize J̃ = J/2h̃z in order to be able to compare with the low-field

limit results (where J = 1/2). Furthermore, we choose h̃z =
√
h2
x + h2

y + h2
z = 1/2 so

that the energy scale is set to natural units, such that the energy of the unperturbed

system is given by the number of excitations. We stress that ∆1 has been calculated for

general angles up to order 5. However, for θ = 0 and ϕ = 0 the order 5 contribution

is exactly zero [see (6.14)]. Therefore, although higher orders of the polynomial 6.13

are available, they are obsolete in our comparison of ∆4 and ∆1 at ϕ = 0. At angles

θ = 0 and ϕ = π/4, we were able to push the calculation to higher orders [see (6.15)].

However, due to numerical optimizations, the order 7 coefficient is obtained as a float.

Most importantly, on the Ising line (ϕ = 0), ∆4 vanishes at finite J̃ , in contrast to ∆1,

as shown in Figure 6.20. We observe that, here, the energy of ∆1 increases with J ,

obviously due to the linear term which is the direct consequence of two ’frozen’ fluxes,

created by a single spin flip. While on the symmetry line ϕ = π/4 (where Bp is not a

conserved quantity) the one-particle gap vanishes relatively close to the phase transition

point predicted by quantum Monte Carlo simulations [67]. The Padé table (Table 6.8)

at ϕ = π/4 does not show the convergent behavior, we have observed in the low-field

limit in the previous chapter.
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Figure 6.20: One-particle gap ∆1 for θ = 0. Here we show SSFA extrapolations of
order 4; however, other extrapolation schemes yield similar results. ∆1 does not show
a tendency to close, except at ϕ near π/4. The QMC value of the phase transition
point at ϕ = π/4 is J̃c = 2−3/2/0.418(2) ≈ 0.846, as denoted by a vertical dashed line,
where the blue region highlights the error margin. The factor 2−3/2 accounts for the
renormalization of the gap.

L\M 1 2 3 4 5

1 0.207397 0.464383 0.477246 0.580899
2 3.67012 0.477746 0.464972 -
3 0.120621 0.346677 - -
4 2.02746 - - -
5 - - - -

Table 6.8: DlogPadé approximants DlogP[L,M ] of the critical field for θ = 0 and
ϕ = π/4. Note that, as in the previous tables, cases where the order N series cannot
be extrapolated because the condition L+M ≤ N −1 is not fulfilled are denoted by ’-’.
Empty entries indicate that, although an extrapolation exists, no real positive solutions
are found. Physically relevant approximants are highlighted by a gray background.

L\M 2 3

1 0.774118 0.727404
2 0.724905 0.772795

Table 6.9: DlogPadé approximants DlogP[L,M ] of the critical exponent zν for θ = 0
and ϕ = π/4. Here, we show results from the physically meaningful approximants,
highlighted in Table 6.8.

In addition to the relatively low order of the series, we find that most approximants do

not have poles near the phase transition point hc = 0.418(2), determined with QMC. The

solely four approximants with physically relevant poles, highlighted in Table 6.8, yield an

hc which is 10 to 15 percent off the QMC value. Obviously, we do not reach an adequate

precision to estimate critical exponents. As we already saw in the previous sections, the

accuracy of the extrapolated critical exponent zν is smaller than the one of the critical
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field. Nevertheless, we give the corresponding approximants in Table 6.9 which, however,

should be taken into account with caution. Integrated differential approximants yield

no physical results, while with self-similar approximants (at higher orders) we find poles

at precisely the same location as with DlogPadé, this is shown in Table 6.10.

order 2 4 6
hc 0.515599 0.464383 0.464972
zν 0.685714 0.776411 0.774984

Table 6.10: Critical field hc and critical exponents zν, computed with self-similar
approximants for θ = 0 and ϕ = π/4. Interestingly, at order 2 and 4 these approx-
imants are found to be equivalent to DlogP[1,2] and DlogP[2,3], respectively. The
corresponding critical exponents are slightly different though.

Even though the high-field expansion does not yield high-precision results, it is interest-

ing to perform a further study, and to see what happens on the plane ϕ = π/4 for θ > 0,

or in other words: how does the endpoint of the first-order line evolve, when the field hy
is switched on? Despite the obvious extrapolation difficulties, we expect to capture at

least the qualitative behavior of this unexplored part of the phase diagram. Figure 6.21

DlogP, low-field limit

DlogP[2, 2], high-field limit

DlogP[1, 3], high-field limit

SSA4, high-field limit

DlogP’[2, 2], high-field limit

DlogP’[1, 3], high-field limit

h∗
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Figure 6.21: Phase diagram of the toric code on the hx = hz-plane. The boundaries
of the topological phase (shaded area) have been computed in the previous chapter.
On the horizontal axis it is known that there is a first-order transition line, connecting
the boundary of the topological phase to a second-order transition point, highlighted
by a vertical gray line. This point has been computed with quantum Monte Carlo
simulations in Ref. [67]. In addition to the commonly used series extrapolations, which
do not show a conclusive behavior for hy > 0.1, we extrapolate the high-field series
using a variable transformation J = λ, h = 1− λ. The resulting series (highlighted by
dashed lines) contain the infinite-field limit (λ = 1), but can be extrapolated around
λ = 1/2. This approach yields directly the critical field in the parameters of the low-field
expansion.
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shows that indeed the high-field limit approximants cannot reach the accuracy of the

low-field limit, studied in the previous chapter. Unfortunately, there are only a few

approximants with real and positive poles. Especially at finite hy the computed critical

value of the field depends strongly on the extrapolation method. Although the high-

field approximants do not give reliable results, they indicate that the end-point of the

first-order phase transition line is likely shifted towards the boundary of the topological

phase for hy > 0. This would lead to a mitt-shaped ( ) first-order transition plane.

The point where an upper boundary of this plane meets the second-order transition line

of the topologically-ordered phase could have a different criticality, then the rest of the

line. A possible scenario is that this point is located around hy = 0.3 which appears

to be the most difficult point to tackle numerically. But, one can also not exclude the

possibility that the end point of the mitt coincides with the point Pcrit.

6.6 Chapter summary

In order to investigate the phase diagram of the toric code in a uniform magnetic field,

we have joined two distinct methods into a powerful tool to detect phase transitions of

first and second orders. While the purely numerical approach (iPEPS) is sensitive to

first-order phase transitions, the analytical, perturbative series, obtained with pCUT,

are ideally suited to detect continuous phase transitions. This strategy allowed us to

determine the precise boundaries of the topological phase of the perturbed toric code.

In addition, we were able to make qualitative predictions concerning the structure of the

first-order cusp inside the polarized phase, by means of high-field series expansions. In

principle, iPEPS is well suited to investigate the precise shape of this cusp. Therefore,

this part of the phase diagram might be subject to future studies.

As illustrated in Figure 6.15, the topological phase of the perturbed toric code is bounded

by two second-order and one first-order phase transition planes. The second-order planes

are adiabatically connected to the Ising points of the model, where the perturbation

consists of a single hz field (or equivalently a single hx field). The first-order plane is

adiabatically connected to the self-dual point, where the perturbation is a single hy field.

Using series resummation techniques, we have computed critical exponents and were able

to identify the universality class of the second-order planes to be equivalent to the one

of the 3d Ising model. The intersection lines between the first- and second-order planes

seem to correspond to tricritical 3d Ising points. Most interestingly, the intersection line

of the two second-order transition planes (which is the symmetry line hx = hz) shows

clearly a distinguished critical behavior which supports the idea that on this special line

the system is in a separate universality class. This is likely because here the Hamiltonian
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has an additional Z2 symmetry. Furthermore, the one-quasi-particle gaps of charges and

of fluxes are degenerate, consequently both types of particles condense simultaneously

and their semionic statistics possibly plays a role at the phase transition point. The

intersection point Pcrit of all three planes, just discussed, might be compatible with

a conformal quantum critical point which has unusual critical characteristics and is

therefore of particular interest. We have determined the precise location of this point

and found critical exponents very close to z = 2 and ν = 1/2. While we have shown

that Pcrit belongs to a different universality class than the multicritical point at hx = hz

and hy = 0, our study does not allow to clearly decide, whether for intermediate values

of the transverse field, the critical exponents vary continuously, or not.

So far, we have considered the zero- and one-quasi-particle subspaces of the effective

Hamiltonian. From this study alone, it is not clear whether bound states (of two or

more particles) can drive the phase transition for certain directions of the field. A first

step to answer this question is the analysis of the two-particle subspace of the toric code

in a field, which we perform in the next chapter.





Chapter 7
Bound states and spectral properties of

the perturbed toric code

In the previous chapter, we have investigated the phase diagram of the toric code in a

field by considering the one-quasi-particle subspace of the effective low-energy model.

In the present chapter, we analyze the spectrum of the toric code’s two-quasi-particle

subspace, following up and extending the study in Ref. [69]. We determine specific areas

inside the topological phase of the toric code where there are bound states or, in other

words, collective states with two interacting particles, energetically favored over a pair

of ’free’ particles (without interaction). The energy gain is commonly interpreted as a

result of an attractive interaction which leads to binding effects. As shall be discussed in

detail, the pCUT technique allows to perform a quantitative analysis of the low-energy

properties of spectral densities. This are a dynamical structure factors most likely to be

measured spectroscopically in a potential experimental realization of the toric code.

7.1 Spectrum of the two-quasi-particle subspace

In Section 5.1, we have discussed how to compute matrix elements of the two-quasi-

particle subspace of the effective Hamiltonian Heff . We recall that in the toric code one

has to consider two distinct subspaces which in the following shall be denoted by Hf and

Hb. Here, the indices point out the (bosonic or fermionic) statistics of the particle-pair

composite. As we have argued in Section 4.2, charge-flux pairs are fermions while charge-

charge and flux-flux pairs are bosons. Note that states with an odd number of charges

or fluxes can only be constructed within a system with open boundary conditions. In

contrast, the subspace Hb, which contains only particle pairs of the same type (so either

113
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charge-charge or flux-flux), is compatible with any boundary condition (in addition, the

subspace Hb is particularly relevant for the computation of local observables, as shall

be discussed below). Thus, there are two different sets of quantum numbers for the two-

particle subspace. While in Hf , a state is fully characterized1 by the relative position of

the two particles and the position of their center of mass, inHb the particle type has to be

specified in addition. In the limit of small magnetic fields, we compute the two-particle

hopping amplitudes td,τ
r′,d′,τ ′

, defined in (5.75), as series in the three field variables hx, hy,

and hz up to order 6. One must keep in mind that for a finite perturbation order, there is

a maximal distance dmax below which two particles can directly interact. Beyond dmax,

the remaining matrix elements of Heff |2qp can be constructed from one-quasi-particle

hopping amplitudes. However, in the charge-flux subspace, where the two particles are

mutual semions, the sign of the hopping has to be adjusted so that it is consistent with

the global string gauge. Since the Hilbert space Hf is only accessed in a system with

open boundary conditions, the two particles are connected to the edge of the system by

semi-infinite strings. This means that even if a charge and a flux are very far apart, a

hopping in a local region can lead to a sign change of the global wave function. This non-

locality is the main difficulty (and interest) of the present work. The hopping amplitudes

of particle pairs at distances |d| ≤ |dmax| are listed in the Appendix B.2.

7.1.1 First steps

Before we investigate the two-quasi-particle spectrum of the perturbed toric code inside

the topological phase, there are a few technical remarks to be made. Since the total

momentum of a particle pair is a conserved quantity, it is useful to switch to center of

mass coordinates with unit vectorsm1 = (n1 − n2) /2 andm2 = (n1 + n2) /2, where ni
are defined in Figure 5.2. The rhombic structure of the reciprocal lattice allows to limit

our considerations to a few symmetry lines connecting the points Γ = (0, 0), X = (0, π)

and L = (π/2, π/2). For a fixed set of field variables hi and a total momentum K of a

particle pair, we diagonalize a finite n × n-matrix. This corresponds to a finite system

where only states |K,d, τ〉 with |d| ≤ |dm| are taken into account. For dm = mn1, the

order n of the matrix is a simple function of m

n = 2m (m+ 1) . (7.1)

This function can be understood by considering the specific example presented in Fig-

ure 7.1. In order to eliminate finite-size effects, we increase n until the energy levels

converge up to the third digit, which occurs typically at n ≈ 104. It should be stressed
1Once again, we follow our convention of the gauge choice, as introduced in Section 5.1.4.
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(a)

n1 n2

(b)

n1 n2

Figure 7.1: Examples of possible two-particle distances for m = 2 so that one obtains
n = 12 with (7.1). Without loss of generality, we fix the position of one of the particles
(the charge) to the origin. The rhombic contours highlight possible positions of the
second particle which must be a charge in the Hilbert space Hb shown in (a), or a
flux in the Hilbert space Hf shown in (b). Note that in the subspace Hb particles are
indistinguishable so that only one half of the depicted two-particle distances are taken
into account in the calculation. However, the factor one half is exactly compensated by
the fact that (unlike in Hf) in Hb charge pairs can transmute to flux pairs.

that such numerical precision is one of the benefits of the pCUT method which allows

to decouple the two-particle sector from the rest of the Hilbert space.

We expect that in a two-particle system where single particles are dispersive the asymp-

totic behavior leads to a spectrum with a continuous band limited by an upper and a

lower band edge εub(K) and εlb(K). These can be computed from the single-particle

dispersion relations as follows. All energy levels of the two-particle continuum can be

obtained from

ωττ
′

cont (K, q) = ωτ1

(
K

2
+ q
)

+ ωτ
′

1

(
K

2
− q
)
, (7.2)

where ω1 is the dispersion of a single particle, q is the relative momentum and τ the

particle type. This definition implies that τ = τ ′ in Hb and τ 6= τ ′ in Hf . Energies at

the boundaries of the continuum can then be obtained via

εub(K) = max
q

[
ωττ

′
cont (K, q)

]
, (7.3)

εlb(K) = min
q

[
ωττ

′
cont (K, q)

]
. (7.4)

The one-particle dispersion of a charge and a flux has been computed in the thermody-

namic limit up to high orders (see Section 6.1.1), thus we have an additional convergence

check of the finite-size diagonalizations.
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Let us consider the simple case of a charge-flux pair in a parallel magnetic field (hy = 0),

shown in Figure 7.2. For hx = 0 and finite hz, the flux is ’frozen’, which means that

its energy distribution in momentum space is constant. Consequently, the boundaries

of the continuum do not depend on K [see Figure 7.2 (a)]. For hx > 0 both particles

are dispersive, and the band edges depend on K as well as on the ratio of hx and hz

[see Figure 7.2 (b)]. The gap at K = (0, 0) decreases when the total field strength |h|
is enlarged [see Figure 7.2 (c)]. In the special case of hx = hz, shown in Figure 7.2 (d),

both types of particles have the same dispersion so that boundaries of the continuum

are equivalent to the ones obtained for charge-charge (or flux-flux) pairs from the sector

Hb. In the subspace Hb, the continuum edges do not depend so strongly on the ratio

of hx and hz, as shall be explained in the following. For hz > hx, the extremal energies

of the continuum must be dominated by charge dispersions because the dependence of

the dispersion of a single charge (single flux) on hz starts at order one (three), while hx
begins to contribute at order three (one) [see (6.2)]. Thus, when hx is varied the energy

of the continuum edges changes in leading order by 4h2
zhx, which for the parameter

range from Figure 7.2 is at most ≈ 10−3. This energy difference cannot be seen with

the naked eye on the scale of Figure 7.2.
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Figure 7.2: Synoptic view of the spectrum of the toric code in the two-particle
subspace Hf with hy = 0, hz = 0.06 and (a) hx = 0, (b) hx = 0.01, (c) hx = 0.03, and
(d) hx = 0.06.

In the limit hx = hz = 0 and hy > 0, there is no continuum because single particles

are not dispersive. This can be best understood by considering the parity operators∏
i∈C1 σ

y
i and

∏
i∈C2 σ

y
i , where the C1 and C2 are contours (referred to as ’diagonal’
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and antidiagonal) shown in Figure 4.3 (b). In absence of a parallel field, these parity

operators are conserved quantities because they commute with every As and Bp, as well

as (trivially) with the transverse field. Here, ’parity’ refers to the number of flipped

spins along each Ci. Since this number is conserved, we have a strong restriction on the

mobility of elementary excitations, e.g., single particles can only hop locally2. Similarly,

this effect of dimensional reduction is also found for two-particles states since the mutual

distance of two particles cannot be changed without altering the eigenvalues of the parity

operators. As it has been shown in Ref. [69] there are two types of two-particle states.

The first type characterizes states, where pairs of particles are positioned in a vertical

or horizontal direction. These states have a one-dimensional dispersion since they are

mobile only in the spatial direction perpendicular to their relative distance vector. All

other two-particle states are not dispersive. In the next step, we will have a closer look

at the energy spectrum of the two-particle subspace of the toric code in a transverse

field. Moreover, we analyze how the spectrum is influenced by the simultaneous presence

of transverse as well as parallel fields.

7.1.2 Bound states in Hb

Let us begin by considering the subspace Hb which is of special interest since, as shall

be discussed in the following section, it dominates the low-energy physics in a system

with periodic boundary conditions. Two-particle states are characterized by distances

d = pm1 + qm2 and shall therefore be labeled by
∣∣Ψb

p q

〉
where the upper index refers

to the respective subspace. We find the exact eigenstates
∣∣Ψb

p q

〉
, and the corresponding

two-particle excitation energies eb
pq, listed in the following.

eb
11 = 2∓ hy − 5

4
h2
y ±

1
8
h3
y −

353
192

h4
y ±

1355
2304

h5
y −

247511
55296

h6
y, (7.5)

eb
02 = 2− 2h2

y (1± cos kx)− h4
y

(
1
48
∓ 1

2
cos kx +

13
16

cos 2kx

)
− h6

y

(
32527
13824

+
77
128

cos 2kx ± 871
1728

cos 3kx ± 167
1152

cos kx

)
, (7.6)

eb
20 = 2− 2h2

y (1± cos ky)− h4
y

(
1
48
∓ 1

2
cos ky +

13
16

cos 2ky

)
− h6

y

(
32527
13824

+
77
128

cos 2ky ± 871
1728

cos 3ky ± 167
1152

cos ky

)
, (7.7)

eb
04 = 2− 2h2

y − h4
y

(
15
8
± 2 cos kx

)
− h6

y

(
575
192
± 21

16
cos kx

)
, (7.8)

eb
40 = 2− 2h2

y − h4
y

(
15
8
± 2 cos ky

)
− h6

y

(
575
192
± 21

16
cos ky

)
, (7.9)

2As it is common in literature, with ’local hopping’ we refer to a zero-momentum hopping, realized
through a process, where the final position of a particle corresponds to its initial one. This should not
be confused with the definition of ’local’ in the context of operators.
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eb
06 = 2− 2h2

y −
15
8
h4
y − h6

y

(
575
192
± 2 cos kx

)
, (7.10)

eb
60 = 2− 2h2

y −
15
8
h4
y − h6

y

(
575
192
± 2 cos ky

)
, (7.11)

eb
22 = 2− 2h2

y − h4
y

(
49
24
± 5

3

)
− h6

y

(
116851
27648

± 487
432

)
, (7.12)

eb
31 = 2− 2h2

y ± h3
y −

15
8
h4
y ±

13
64
h5
y −

122227
55296

h6
y, (7.13)

eb
33 = 2− 2h2

y −
15
8
h4
y −

166501
55296

h6
y, (7.14)

eb
52 = 2− 2h2

y −
15
8
h4
y ± h5

y −
575
192

h6
y, (7.15)

eb
rest = 2− 2h2

y −
15
8
h4
y −

575
192

h6
y. (7.16)

Here we use a symmetrized notation in order to combine energies of symmetric and

antisymmetric eigenstates into the same expression. Obviously, more distant particles

become dispersive at a higher order, which is clearly a consequence of the local nature

of the perturbation. With eb
rest, we denote all remaining eigenenergies in the thermo-

dynamic limit. They are degenerate up to order 6 in a perturbative expansion, but the

degeneracy is lifted at higher orders. Our result for the minimal energy of eb
11 and eb

20 is

in agreement with the series expansion in Ref. [69]. The full spectrum is plotted in Fig-

ure 7.3 (a), where the lowest-energy branch is two-fold degenerate. The corresponding

eigenstates are ∣∣∣Ψb
11

〉
=

1√
2

(
|K,m1 +m2, τ〉+ i

∣∣K,m1 −m2, τ
′〉 ), (7.17)∣∣∣Ψb

1−1

〉
=

1√
2

(
|K,m1 −m2, τ〉+ i

∣∣K,m1 +m2, τ
′〉 ). (7.18)

Dispersive states with the lowest energies are

∣∣∣Ψb
20

〉
=

1√
2

(
|K, 2m1, τ〉 −

∣∣K, 2m1, τ
′〉 ), (7.19)∣∣∣Ψb

02

〉
=

1√
2

(
|K, 2m2, τ〉 −

∣∣K, 2m2, τ
′〉 ). (7.20)

When, in addition to the transverse field, the parallel field is switched on the spectrum

develops two significant features, shown in Figure 7.3. Firstly, a continuum evolves

around erest and becomes wider with increasing hx and hz, and secondly, there are

energy branches below the continuum. These energies are associated with collective

bound states. The structure of these bound states is more complicated than the one

discussed for the case of a pure transverse field because in an arbitrary magnetic field

charges and fluxes are dispersive quasi-particles, as shown in Figure 7.4. We point out,
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however, that bound states with the lowest energy are the ones connected adiabatically

to Ψb
1,±1.
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Figure 7.3: Synoptic view of the spectrum of the toric code in the two-particle
subspace Hb with hy = 0.3, hx = hz and (a) hx = 0, (b) hx = 0.005, (c) hx = 0.02,
and (d) hx = 0.06. While (a) shows the analytic functions (7.5)-(7.16), the remaining
plots result from numerical diagonalizations.

(a) ∣∣∣ 〉
+ i

∣∣∣ 〉 (b) ∣∣∣ 〉
+ i

∣∣∣ 〉

(c) ∣∣∣ 〉
+ i

∣∣∣ 〉 (d) ∣∣∣ 〉
+ i

∣∣∣ 〉

Figure 7.4: Wave function of a bound state. We show the real-space representation
of the eigenstate with the lowest energy at the Γ-point in absolute values. For overview,
the superposition of charge-pairs (orange) is represented by the ket on the left, and,
similarly, superpositions of flux-pairs (blue) is shown as a ket on the right of each
subfigure. The field parameters are chosen as follows: hy = 0.3, hx = hz and (a)
hx = 0, (b) hx = 0.005, (c) hx = 0.02, (d) hx = 0.06. While charges and fluxes have
unique positions in (a) (in our notation it is the state

∣∣Ψb
1,1

〉
), in an additional parallel

field, quasi-particles and two-particle states are delocalized in real space.
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Figure 7.5: Synoptic view of the spectrum of the toric code in the two-particle
subspace Hb with hx = hz = 0.06 and (a) hy = 0, (b) hy = 0.1, (c) hy = 0.2, and
(d) hy = 0.3.
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Figure 7.6: Synoptic view of the spectrum of the toric code in the two-particle
subspace Hb with hx = 0, hz = 0.06 and (a) hy = 0, (b) hy = 0.1, (c) hy = 0.2, and
(d) hy = 0.3.



Chapter 7. Bound states and spectral densities of the perturbed toric code 121

To give an idea about how the spectrum depends on the direction of the magnetic field,

we fix the value of the parallel field strength and compute the spectrum at different hy
values. As it is shown in Figure 7.5 and Figure 7.6, the continuum is hardly affected

by the transverse field. Because, as can be verified from the single-particle dispersion

in (6.2), the transverse field starts to contribute to a hopping of a single particle only

at order two. Therefore, its effect on the boundaries of the continuum is an order of

magnitude below the one of the parallel field. On the contrary, the transverse field

has a much stronger effect on the bound states (and also antibound states, above the

continuum), e.g., two neighboring particles can interact already in order one. If two

particles are not adjacent, then the leading-order difference to non-interacting single

particles is an order two contribution to the local hopping by the operator T−2T+2 (see

the effective action of σy in Table 5.2). Furthermore, we observe that changing the ratio

hx/hz, lifts some degeneracies of the low-energy modes (for example between the X-

and Γ-points). Setting hx to zero eliminates certain interaction terms. Therefore bound

states have lower energies at hx > 0, as can be clearly observed, for example, at the

Γ-point in Figure 7.5 (d) and in Figure 7.6 (d).

7.1.3 Bound states in Hf

Similarly to the previous subsection, we have computed the series expansions of two-

quasi-particle excitation energies in the subspace Hf , for hx = hz = 0.

ef
01 = 2± 2hy sin kx +

1
2
h2
y (cos 2kx − 1)∓ 1

4
h3
y (sin 3kx + 2 sin kx)

− h4
y

(
109
96
− 1

8
cos 2kx +

5
32

cos 4kx

)
− h5

y

(
±1379

1152
sin kx ± 121

576
sin 3kx − 7

64
sin 5kx

)
− h6

y

(
6337
2304

− 289
864

cos 2kx +
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3456

cos 4kx − 21
256

cos 6kx

)
, (7.21)

ef
10 = 2± 2hy sin ky +

1
2
h2
y (cos 2ky − 1)∓ 1

4
h3
y (sin 3ky + 2 sin ky)

− h4
y

(
109
96
− 1

8
cos 2ky +

5
32

cos 4ky

)
− h5

y

(
±1379
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576
sin 3ky − 7

64
sin 5ky

)
− h6

y

(
6337
2304

− 289
864

cos 2ky +
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3456
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256

cos 6ky

)
, (7.22)

ef
03 = 2− 2h2

y ± 2h3
y sin kx − 15

8
h4
y ±

13
32
h5
y sin kx

+ h6
y

(
1523
1024

cos 2kx − 12071
13824

)
, (7.23)
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ef
30 = 2− 2h2

y ± 2h3
y sin ky − 15

8
h4
y ±

13
32
h5
y sin ky

+ h6
y

(
1523
1024

cos 2ky − 12071
13824

)
, (7.24)

ef
05 = 2− 2h2

y −
15
8
h4
y ± 2h5

y sin kx − 575
192

h6
y, (7.25)

ef
50 = 2− 2h2

y −
15
8
h4
y ± 2h5

y sin ky − 575
192

h6
y, (7.26)

ef
21 = 2− h2

y (2± 1)− h4
y

(
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96
∓ 1

4

)
− h6

y

(
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)
, (7.27)

ef
41 = 2− 2h2

y − h4
y

(
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8
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)
− h6

y

(
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± 21

32

)
, (7.28)

ef
61 = 2− 2h2

y −
15
8
h4
y − h6

y

(
575
192
± 1
)
, (7.29)

ef
32 = 2− 2h2

y −
15
8
h4
y − h6

y

(
90893
27648

± 16181
6912

)
, (7.30)

ef
rest = 2− 2h2

y −
15
8
h4
y −

575
192

h6
y. (7.31)

As in (7.5), we use a short notation to denote energies of symmetric as well as an-

tisymmetric states with the same expression. In contrast to the previously discussed

two-particle sector Hb, the lowest-energy modes are dispersive. We find their exact

expressions to be ∣∣∣Ψf
10

〉
=

1√
2

(
|K,m1, τ〉 −

∣∣K,−m1, τ
′〉 ), (7.32)∣∣∣Ψf

01

〉
=

1√
2

(
|K,m2, τ〉 −

∣∣K,−m2, τ
′〉 ). (7.33)

These are two-particles states, where a charge and a flux are direct neighbors and can

therefore hop together already in order one (as can be easily verified in Table 5.2). All

other modes feature momentum dependence exclusively at even orders in perturbation.

Once again, we are able to check that the series expansion of ef
01 at its minimum is

in agreement with the gap computed in Ref. [69]. The minimal energy is found at

K = (0, π/2), (π/2, 0) and (π/2, π/2), see also Figure 7.7 (a). The lowest non-dispersive

energy mode is four-fold degenerate∣∣∣Ψf
2±1

〉
=

1√
2

(
|K,±2m1 ±m2, τ〉 ±

∣∣K,−2m1 ±m2, τ
′〉 ), (7.34)∣∣∣Ψf

±12

〉
=

1√
2

(
|K,±m1 − 2m2, τ〉 ±

∣∣K,±m1 + 2m2, τ
′〉 ). (7.35)

We observe that, as in the previous discussion, a continuum is present for a finite parallel

magnetic field. However, a major difference here is that the total gap of the system is

not necessarily at the Γ-point. The momentum K which minimizes the energy rather

depends on the amplitude of the perturbation.
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Figure 7.7: Synoptic view of the spectrum of the toric code in the two-particle
subspace Hf with hy = 0.3, hx = hz and (a) hx = 0, (b) hx = 0.005, (c) hx = 0.02, and
(d) hx = 0.06. While (a) shows the analytic functions (7.21)-(7.31), the remaining
plots result from numerical diagonalizations.

Now, let us consider the effect of the transverse magnetic field, when the strength of the

parallel field is fixed (see Figure 7.8 and Figure 7.9). We observe the same mechanism

as in the subspace Hb. Bound states arise with increasing hy, while the continuum

boundaries hardly depend on the transverse field. It is, however, a peculiarity of the

charge-flux subspace that the spectrum heavily depends on the hx/hz-ratio. We find that

in any case, bound states with the lowest energy are the ones adiabatically connected

to
∣∣Ψf

01

〉
and

∣∣Ψf
10

〉
.

An important question is whether bound states can close the gap inside the boundaries

of the topological phase, computed in Chapter 6, and drive the transition in this case.

We recall that the phase boundaries were determined by considering the one-particle

sector of Heff , where, by definition, no binding effects are present. However, we argue

that a crossing between a two-quasi-particle bound-state energy level and the energy of a

single-particle mode, inside the topological phase is unlikely. As it is shown in Figure 7.5

and Figure 7.8, even at relatively large magnetic fields, the lowest energy of the two-

quasi-particle subspace are clearly above the one-particle gap at zero field (E = 1).

A numerical diagonalization of the two-quasi-particle sector much closer on the phase

boundary is challenging because in contrast to the one-quasi-particle calculation, one

cannot extrapolate via Padé approximations. Still, our numerics suggest that higher-

order corrections would not be sufficient for a condensation of bound states to occur

before the one-particle gap has vanished.
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Figure 7.8: Synoptic view of the spectrum of the toric code in the two-particle
subspace Hf with hx = hz = 0.06 and (a) hy = 0, (b) hy = 0.1, (c) hy = 0.2, and (d)
hy = 0.3.
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Figure 7.9: Synoptic view of the spectrum of the toric code in the two-particle
subspace Hf with hx = 0, hz = 0.06 and (a) hy = 0, (b) hy = 0.1, (c) hy = 0.2,
and (d) hy = 0.3. Note that the edges of the continuum band in (b)-(c) have a weak
dispersion. The reason is that the frozen flux becomes dispersive at order 4 in hy, an
effect only sufficiently pronounced in (d), where hy is large.
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7.2 Density of states

So far, the density of states [to be denoted as D(E) in the following] in the toric code

model has been an unstudied issue. Beside being an interesting topic in itself, D(E) as

well as its dependence on the magnetic field, should play a major role in understanding

certain features of the spectral densities to be discussed in the next section. As we

recall, the two-particle subspace of the toric code can be divided into a fermionic and a

bosonic channels. We are interested to observe the differences as well as similarities of

the density of states in these two sectors. Furthermore, we will try to understand certain

features of the momentum dependence of D(E) by using one-particle properties, first for

conceptual clarity, and second as a check of the numerical results with analytical series.

7.2.1 Subspace Hb

As has been discussed in Chapter 4, elementary excitations of the toric code with periodic

boundary conditions are two-particle states where both particles have the same flavor.

Therefore the subspace Hb, where charges and fluxes only appear in pairs, is of specific

interest. Using the energy spectra calculated in the previous section we compute the

density of states D(E) ∝ N(E + δE), where N(E + δE) is the number of energy levels

inside the energy interval [E + δE].

In order to understand some distinct features of D(E), let us begin by considering the

dispersion of a single charge in the center of mass coordinate system. With (6.2) and

K = (Kx,Ky), the expression at order one reads

ω (K) = 1− 2hz [cos (Kx +Ky) + cos (Kx −Ky)] , (7.36)

as can also be derived from the hopping elements t1,0 = t0,1 given in the Appendix B.1.

Using (7.2), we find the energy of a two-particle mode at order one to be

ωb
cont (K, q) = 2− 8hz

(
cos

Kx

2
cos

Ky

2
cos qx cos qy + sin

Kx

2
sin

Ky

2
sin qx sin qy

)
,

(7.37)

where q = (qx, qy), is the relative momentum of the two particles. For any K, qx = nπ,

and qy = mπ with (n,m) ∈ N2, this function is minimized by n −m ∈ Neven, and has

a maximum at n−m ∈ Nodd. The corresponding energy levels are thus exactly the

boundaries of the two-particle continuum at order one. Obviously, the energy of the

system is minimized (maximized) for relative momenta, where each particle is at its en-

ergetic minimum (maximum) according to the single-particle dispersion. We point out
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that this somewhat trivial statement is only valid at order one in perturbation theory.

Higher-order corrections involve antisymmetric terms in the single-particle dispersion

so that, generally, the momenta of the two particles at the extremal energies of the

continuum do not necessarily correspond to the ones at the minimum (or maximum)

of the single-particle dispersion. Besides the minimum and the maximum, the disper-

sion of a single charge features a saddle point. As we shall see below, for a constant

K, D(E) is maximal, when both particles are at a saddle point of their dispersion be-

cause here ωb
cont (K, q) is locally flat. This is realized when the relative momentum is

q = 1/2 (nπ,mπ). Note that due to rotational symmetry, there are actually two distinct

saddle points, identified by whether n−m is even or odd. This behavior is qualitatively

similar to what is known for certain spin-ladder models [87, 95, 164, 165].

In Figure 7.10, we consider the density of states computed at order six on the ’Ising’-line

of the toric code, as well as characteristic two-particle modes with relative momentum

q = (qx, qy) and eigenenergy E (K, q) (see Subsection 7.1.1 for notation). As expected,

we find maxima of D(E) at momenta, where the two-particle continuum is flat. However,

as already anticipated, in contrast to order one, the energy of the two-particle continuum

is not necessary minimized for the relative momentum q = (0, 0), e.g., at K = (0, π)

the energy minimum is obtained for q = (0, π/2). Furthermore, we observe a constant,

sharp maximum of D(E) at the energy E = 2. These are the energies of flux-pairs which

are frozen out on the ’Ising’-line. This means that the flux-pairs are non-dispersive and

cannot lower their energy, due to the field. Consequently, their D(E) is a delta function

at the two-particle creation energy.

How is the density of states affected by finite hx and hy fields, moving away from the

’Ising’-line? In Figure 7.11 we present our results based on the spectra computed in

the previous chapter. Once again, these numerical results are in agreement with the

continuum boundaries, calculated from series expansions of the single-particle disper-

sions. First, let us consider the effect of a finite hx field (keeping hy = 0) shown in

Figure 7.11 (a)-(b). For hx > 0, the flux-pairs become dispersive and for hx < hz we

observe two overlapping structures, each one similar to the one shown in Figure 7.10. As

long as the transverse magnetic field is zero, there is no matrix element connecting the

subspace of charge pairs with the subspace of flux pairs. Thus, one can consider D(E)

of charge-pairs, as well as flux-pairs separately. There is an obvious symmetry between

the density of states of these two subspaces. This is the consequence of the fact that

the one-quasi-particle dispersions a charge and a flux are related by the exchange of hx-

and hz-variables. The range of the spectrum (the difference between the maximal and

minimal energy), as well as the position of the maxima of the density of states are pro-

portional to the ratio hz/hx for charges and to hx/hz for fluxes. Once again, we find the

local maxima of D(E) for two-particle modes with relative momenta as in Figure 7.10.
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Figure 7.10: Density of states D(E) at the ’Ising’-line of the toric code. These results
have been obtained at order 6 perturbation theory for the toric code in the magnetic
field h = (hx, hy, hz) = (0, 0, 0.06). D(E) is a function of energy E and momentum K.
We have used energy intervals of δE = 0.006, to determine D(E). The noisy structures
for low D(E) are due to the finite size of the diagonalized matrix. (a) Density of states
for certain fixed values of K. (b) Alternative illustration of D(E), where K is varied
along the symmetry lines of the Brillouin zone. The amplitude of D(E) is indicated by
the color gradient, where dark (bright) colors stand for low (high) density. The fixed
K-values from (a) are highlighted by vertical dotted lines. Significant modes of the
two-particle continuum where q refers to the relative momentum of a particle pair, are
represented by colored lines.

However, here one must consider two-charge modes as well as two-flux modes. When

hx = hz [Figure 7.11 (b)], the dispersions of charges and fluxes are equivalent and we

obtain a similar plot as in Figure 7.10, except that here, there is obviously no distinctive

maximum at E = 2 because both types of particles are dispersive.
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When in addition to the parallel field, a transverse field is switched on, one expects to

find bound states, as has been demonstrated in the previous chapter. However, since

the number of two-particle modes in the interval δE inside the two-particle continuum

is extensively larger than the degeneracy of the discrete bound states, the density of

bound states is too small to be visible in our illustrations. The most pronounced effect

of the transverse field on the two-particle continuum is a global shift to lower energies

while the local minima and maxima of D(E) are hardly affected. The strong, almost

constant peak of D(E) in Figure 7.11 (c), at approximately E ≈ 1.8, appears because

a finite transverse field introduces a small dispersion to the otherwise ’frozen’ fluxes so

that the sharp peak observed in Figure 7.10 is slightly broadened for certain K-values.
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Figure 7.11: Density of states D(E) of the toric code in the subspace Hb, perturbed
by the magnetic field (a) h = (0.03, 0, 0.06), (b) h = (0.06, 0, 0.06), (c) h = (0, 0.3, 0.06)
and (d) h = (0.06, 0.3, 0.06). The amplitude of D(E) is indicated by the color gradient,
where dark (bright) colors stand for low (high) density. The continuum boundaries,
computed from single-particle dispersions, are highlighted by cyan lines.

7.2.2 Subspace Hf

The fermionic sector of the two-particle subspace is relevant for open systems, where

single charges and/or fluxes are created at the boundary and stay connected to this

boundary by a string, while propagating through the system. However, our considera-

tions concern only the scenario, where in the thermodynamic limit, the particle pair is

far away from any boundary. Furthermore, the subspace Hf provides us with the unique
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possibility to study a two-anyon composite, where, in contrast to the bosonic sector, the

anyon pair has a non-trivial mutual statistics.

We apply the same technique as in the previous subsection, and compute D(E) by

counting energy levels inside the interval E + δE. Consider the Figure 7.12, where we

present the density of states of the toric code, when subjected to a magnetic field with

various field configurations computed at order 6. As already argued in Subsection 7.1.3,
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Figure 7.12: Density of states D(E) of the toric code in the subspace Hf , perturbed
by the magnetic field (a) h = (0, 0, 0.06), (b) h = (0.03, 0, 0.06), (c) h = (0, 0.3, 0.06)
and (d) h = (0.06, 0.3, 0.06). The amplitude of D(E) is indicated by the color gradient,
where dark (bright) colors stand for low (high) density. The continuum boundaries,
computed from single-particle dispersions, are highlighted by cyan lines.

on the ’Ising’-line with hz > 0 and hx = hy = 0, the two-particle states are built from

a single ’frozen’ flux and a dispersive charge. Thus, the dispersion of the two-particle

continuum consists of a constant energy sheet at E = 1 plus the dispersion of the charge

which, as can be verified in Figure 6.2, has a saddle point at E = 1. This has the effect

that the saddle points of the continuum are close to E = 2, which is consistent with a

maximal D(E) at this energy [see Figure 7.12 (a)]. Note that in contrast to the bosonic

case, the relative momenta of two-particle modes with energies, where D(E) is maximal,

can depend on K. This is also the case beyond the ’Ising’-line, e.g., in Figure 7.12 (b),

where for the same parameters of the field as in Figure 7.11 (a), we find the maxima

of the D(E) not for relative two-particle momenta q = (π/2,±π/2), but at some K-

dependent values. This interesting behavior is the consequence of the fact that when two
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particles with different dispersion relations are combined, the position of saddle points

of the resulting two-particle mode generally depends on the total momentum.

While the behavior of the D(E) in the bosonic, as well as the fermionic subspace is

similar for hx = hz [compare Figure 7.11 (d) and Figure 7.12 (d)], due to degenerate

dispersion relations of charges and fluxes, the case of hx = 0 and finite hz and hy fields

is substantially different [see Figure 7.12 (c)]. As in the preceding discussion, here, the

D(E) is almost constant for fixed values of E. However, a close look at Figure 7.12 (c)

reveals that the boundaries of the continuum are slightly dispersive. This is due to the

fact that with finite hy, the flux acquires a finite dispersion. Since the dependence of the

continuum boundaries on the total momentum starts only at order four, the amplitude

of the two-particle dispersion is rather small.

After inspecting the spectrum of the two-particle subspace we aim to determine observ-

ables, which are more natural to be accessed by experiments than the spectrum itself.

As shall be seen later, the information gathered from the density of states is essen-

tial to understand certain features of the continuum when the system is probed by an

observable.

7.3 Spectral densities

In this section, we discuss how spectral densities can be computed in the pCUT for-

malism, and present results for the toric code in a magnetic field. To be more specific,

we compute the equal-time propagator of a bosonic two-charge composite which should

provide valuable information for potential spectroscopic experiments.

As we already learned in Chapter 4, as well as in the previous section, a local perturbation

of the toric code in its ground state will excite pairs of particles of the same type (charge-

charge or flux-flux). Thus, typically, a scattering experiment will probe the bosonic

channel of the model. Note that this lack of one-particle physics in the spectral response

is a general feature of spin liquids and in particular of topologically-ordered Z2 spin

liquids, as the toric code [29, 32, 166].

7.3.1 Preliminaries

A common experimental procedure to investigate spectral properties of a physical system

are scattering experiments. The scattered particles, prevalently neutrons or photons,

provide information on the dynamical3 correlation functions, modeled in linear response
3Here, we refer to zero-temperature dynamics in momentum space, rather than to time evolution.



Chapter 7. Bound states and spectral densities of the perturbed toric code 131

theory by the retarded Green’s function G (K, ω). At zero temperature, this function is

defined as

GT=0(K, ω) = lim
ε→0+

〈0| O†(K)
1

ω − [H(K)− E0] + iε
O(K) |0〉 , (7.38)

where E0 is the eigenenergy of the ground state |0〉, ω is the frequency, and K the total

momentum of an excitation created by the observable O(K), when it acts on the ground

state. To give an intuitive picture of the above expression, the operator O(K) ’injects’ a

two-particle excitation into the vacuum, the resolvent makes the excited state propagate

in momentum space, and finally the excitation is destroyed by O†(K). The imaginary

part of the propagator (7.38) is proportional to the so-called spectral density

S (K, ω) = − 1
π

Im GT=0(K, ω) . (7.39)

While S (K, ω) is invariant under unitary transformations, it is important to apply the

same unitary transformation to the Hamiltonian and the observable. In a general fash-

ion, a unitary transformation can be performed by inserting several UU † = 1 into (7.38).

We may then simply replace the Hamiltonian by the effective Hamiltonian Heff , and the

observables by effective observables Oeff . In the following, we consider exclusively effec-

tive observables and therefore drop the corresponding index, to keep a light notation.

Note that the ground state |0〉 is now represented in a unitary transformed basis. Here,

we also spare a corresponding index since we will work only in the transformed basis

from now on.

Let us introduce the standard approach to compute S (K, ω). Using an algorithm based

on the Lanczos method [167, 168], one can write the resolvent (7.38) as

GT=0(K, ω) = lim
ε→0+

〈0| O†(K)O(K) |0〉
CF(ω + iε)

= lim
ε→0+

∑
d∈Dpos

∑
τ
|AKd τ |2

CF(ω + iε)
, (7.40)

where the coefficients AKd τ shall be defined below [see (7.57)], and CF(ω + iε) is a

continued fraction

CF(ω + iε) = ω + iε− a0 +
b1

ω + iε− a1 +
b2

ω + iε− a2 + . . .

. (7.41)

The continued fraction is constructed from the tridiagonalized effective Hamiltonian.

Here, the ai are matrix elements on the diagonal, and bi on the second diagonal of the

tridiagonalized form. They are computed through a successive assembling of the Lanczos

basis {|ψ〉i} with
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ai = 〈ψ|Heff |ψ〉i i , (7.42)

bi = 〈ψ |ψ〉i i , (7.43)

|ψ〉i+1 =
1
bi

(
Heff |ψ〉i − ai

∣∣ψ〉
i
− bi

∣∣ψ〉
i−1

)
, (7.44)

and the initial conditions

∣∣ψ〉
i<0

= 0 , (7.45)∣∣ψ〉
i=0

=
1

〈0| O†(K)O(K) |0〉 O(K) |0〉 . (7.46)

Generally [167], at i→∞, the ai and bi converge to

a∞ =
εub(K) + εlb(K)

2
, (7.47)

b∞ =
εub(K)− εlb(K)

2
, (7.48)

where εub(K) and εlb(K) are the continuum boundaries, defined in (7.3)-(7.4). In

practice, however, the coefficients of the continued fraction converge already after a

relatively small number of recursions because we work in an orthogonal basis, set up by

the Lanczos-procedure. On the one hand, we use the coefficients a∞ and b∞, computed

from the one-particle dispersions, as a consistency check as well as convergence check of

our results. On the other hand, one of the standard methods to terminate the continued

fraction is to insert a large number of a∞ and b∞ in its tail. Another technical remark

is that it is common to work with a small but finite ε, especially in order to give distinct

resonances of GT=0(K, ω) a finite width. The trick is to choose ε small enough so that

the artificial broadening does not distort the general features of the spectral density. It

should also be mentioned that typically, in an actual experiment, the finite resolution

leads effectively to a non-zero ε.

In Section 2.4, we have shown how to obtain the effective observable in the same basis

as the effective Hamiltonian Heff . The action of the effective observable in real space is

given by the expansion (2.49). The coefficients of this series have been computed model-

independently up to a high order in Ref. [86]. We have argued that at zero temperature,

the effective observable can be written as a superposition of operators Od,0(r) [see (2.51)]

which connect the zero-particle subspace with a d-particle subspace. One of the simplest

observables to consider in a quantum spin model are the Pauli operators σα. Since the

action of σx or σz on the ground state of the toric code yields a two-particle excitation

and the action of σy a four-particle excitation (see Figure 4.4), an effective observable
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for the toric code in a magnetic field can be generally expressed as

Oeff(r) = O2,0(r) +O4,0(r) +O6,0(r) + . . . (7.49)

As already explained above, the low-energy physics of the perturbed toric code is gov-

erned by two-particle excitations so that we are interested in the observables σx and σz.

In principle, an investigation of spectral densities in the four-particle subspace would

also be interesting as a follow-up study. However, it should be clear that one must, in

addition, obtain the effective Hamiltonian in the corresponding subspace. To give an

idea about the structure of effective observables in the toric code, we give the expression

of O2,0(r) for the observable σz up to order one

O2,0(r) = T ′2(r)− 1
2
T ′0(r)T2 − 1

4
T ′−2(r)T4, (7.50)

where the Tm are the operators defined in Table 5.4 and T ′m(r) correspond to the effective

action of σz at site r (note that the operator structure of σx is the same, up to a charge-

flux inversion). Here, we see explicitly that unlike Heff , the effective observable is not

particle-conserving. We will refer to the first term on the right-hand side of (7.50) as

the zeroth-order contribution, the following two terms are the order one contribution,

corresponding to the power of the expansion parameter ’hidden’ in the definition of Tm
(without prime). For the observable σz we have Oeff(r) = O2,0(r) at order zero. Due to

σzσz = 1, the total spectral weight must be 1. At higher orders in perturbation there

is generally a finite contribution by Od,0(r) with d > 2. However, at low magnetic fields

these high-order corrections can be neglected, as will be shown in the following. In order

to find out the relative amount of the spectral weight contained in O2,0, we calculate

the series expansion of the numerator in (7.40). The resulting expression at order four

reads

〈0| (O2,0
)†O2,0 |0〉 = 1− (h2

x + h2
z

)− 3
8
h2
y −

1
2
(
13h4

x + 33h4
z

)
+

13
8
h2
xh

2
z,

− 1
64
(
425h2

xh
2
y + 354h2

yh
2
z

)− 3445
2304

h4
y. (7.51)

As has been discussed above, we see that for zero magnetic fields all of the spectral

weight is concentrated in the channel governed by O2,0(r). In this case, the resolvent

in (7.38) yields 1/(ω − 2 + iε) because the Hamiltonian simply measures the excitation

energy of the particle-pair. Consequently, the spectral density features a momentum-

independent sharp resonance at ω = 2. At finite magnetic fields, the right-hand side of

(7.51) gradually decreases [at the same time the resolvent in (7.38) becomes less trivial].

However, even at the largest magnetic fields where the spectral density is analyzed in the

following (hy = 0.3, hx = hz = 0.06) the relative amount of the spectral weight captured

by O2,0(r) is above 94%.
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Let us gather some general considerations from Ref. [86] concerning the action of the

effective observable. When acting on the particle vacuum, the operator O2,0(r) generally

creates a superposition of particle pairs with mutual distances d and flavor τ

O2,0(r) |0〉 =
∑
r′d τ

ωr′d τ
∣∣r + r′, r + r′ + d, τ

〉
. (7.52)

The Fourier transform of this operator is

O2,0 (K) =
1√
N

∑
r

eiKrO2,0 (r) , (7.53)

where N is the total number of sites. Now, we can construct the general expression of

the observable action in momentum space, necessary to evaluate (7.40).

O2,0 (K) |0〉 =
1√
N

∑
r

eiKr
∑
r′d τ

ωr′d τ
∣∣r + r′, r + r′ + d, τ

〉
, (7.54)

r→r−r′=
∑
r′d τ

e−iK(r′+d/2)ωr′d τ
1√
N

∑
r

eiK(r+d/2) |r, r + d, τ〉 , (7.55)

=
∑
r′d τ

e−iK(r′+d/2)ωr′d τ |K,d, τ〉 , (7.56)

=
∑

d∈Dpos
τ

AKd τ |K,d, τ〉 , (7.57)

where |K,d, τ〉 is a two-particle state in momentum space, defined in (5.76), and the

distances are limited to the set Dpos, defined in Subsection 5.1.3, accounting for the fact

that two charges (or two fluxes) are indistinguishable. We compute the series expan-

sions of amplitudes AKd τ up to order four (see Appendix B.4). This is the minimal

order where the anyonic character of the elementary excitations contributes to the ma-

trix elements of the effective Hamiltonian. It might be not so obvious at this point

that the bottleneck of this computation is actually (7.46). Since our O2,0(K) creates

two particles, the minimal size of an open cluster, to compute (7.46) up to order r is

2(r + 1)× 2(r + 1) plaquettes. In addition to the big cluster, one has to deal with more

coefficients, in the case of the non-particle-conserving effective observable than for the

computation of the effective Hamiltonian.

It is specific to the toric code that the effective action of σx and σz is essentially the

same, up to a charge-flux inversion. Above all, this is the consequence of (4.1), where

we choose the weight of As and Bp to be equal. Thus, we argue that the spectral density

one obtains from the observable σz, when the toric code is exposed to a magnetic field

with hz ≥ hx (and arbitrary hy) is the same as for σx and a magnetic field hx ≥ hz.

From here we will therefore only focus on the observable σz. Note that when acting on

the ground state, at order zero, the operator σz creates a pair of neighboring charges,
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with an orientation, depending on r. This is visualized in Figure 7.13. We will refer to

O2,0
b (K) (or equivalently to O2,0

r (K)) as non-symmetric, to
[
O2,0
b (K) +O2,0

r (K)
]
/
√

2

as symmetric, and to
[
O2,0
b (K)−O2,0

r (K)
]
/
√

2 as antisymmetric, where the indices r

and b refer to the sublattices shown in Figure 7.13. We assume that the non-symmetric

observables are not relevant for experiments since in a scattering experiment one can

hardly control on which sublattice the scattering takes place. It is more likely that one

observes an equal-weight superposition of scattering on both sublattices. Therefore we

are mostly interested in the symmetric observable.

(a) (b)

Figure 7.13: Effective action of the observable σz at order zero. Depending on the
lattice site, two charges are created with a different mutual orientation. Translational
invariance is fulfilled, if one considers an equal-weight superposition of operators, acting
on the black sublattice (a) and the red sublattice (b).

7.3.2 Examples and checks

To provide a better understanding of our computational algorithm, we present the outset

of the calculation of AKd τ . Furthermore, we show that on the Ising line our results for

the spectral density are supported by an independent calculation.

We begin by letting the effective observable (7.50) act in real space, in order to compute

the ωr′d τ . Note that, once again, we use the coordinate system defined in Section 7.1.

At order zero we obtain

T ′2(rb) |0〉 =
∣∣∣∣r − 1

2
(m1 +m2) , r +

1
2

(m1 +m2) , c
〉
, (7.58)

T ′2(rr) |0〉 =
∣∣∣∣r − 1

2
(m1 −m2) , r +

1
2

(m1 −m2) , c
〉
, (7.59)

where the lower index of r refers to the sublattice, and we use the letters ’c’ and ’f’ (for

charges and fluxes) to identify the flavor of the particle pair.
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At order one, we will only concentrate on the sublattice rb; the procedure on rr is very

similar. We obtain

−1
2
T ′0(rb)T2 |0〉 =

1
2
hz

(∣∣∣∣r − 3
2

(m1 +m2) , r +
1
2

(m1 +m2) , c
〉

+
∣∣∣∣r − 3

2
(m1 +m2) , r +

1
2

(m1 − 3m2) , c
〉

+
∣∣∣∣r − 3

2
(m1 +m2) , r − 1

2
(3m1 −m2) , c

〉
+
∣∣∣∣r − 1

2
(m1 +m2) , r +

3
2

(m1 +m2) , c
〉

+
∣∣∣∣r − 1

2
(m1 +m2) , r +

1
2

(3m1 − 1m2) , c
〉

+
∣∣∣∣r − 1

2
(m1 +m2) , r − 1

2
(m1 − 3m2) , c

〉)
, (7.60)

−1
4
T ′−2(rb)T4 |0〉 =− i

4
hy

∣∣∣∣r − 1
2

(m1 −m2) , r +
1
2

(m1 −m2) , f
〉
. (7.61)

Now, we can construct the coefficients AKd τ by using the formula (7.57), where coeffi-

cients ωr′d τ acquire a phase factor proportional to the shift of the center of mass of the

particle pair in respect to r.

O2,0
b (K) |0〉 = |K,m1 +m2, c〉

+ hz cos
(
Kx −Ky

2

)
|K, 2m1, c〉

+ hz cos
(
Kx −Ky

2

)
|K, 2m2, c〉

− i

4
hy |K,m1 −m2, f〉 , (7.62)

where we used the notation K = (Kx,Ky). This is consistent with coefficients of the

non-symmetric observable O2,0(rb) listed in Table B.9 (see Appendix B.4).

Certainly, it is very helpful to have a direct check of the spectral density computed

with the recursive method described in the previous subsection. In the following, we

argue that on the Ising line our results can be compared to the simple case of hard-core

bosons on a square lattice. As we have shown in (7.58), at order zero, the observable

σz injects a pair of adjacent charges. We consider their propagation under influence of

the effective Hamiltonian at order one, where the toric code is perturbed by a single hz
field. In other words, we choose a configuration of our effective model such that it solely

contains charge hoppings to neighboring sites. Given the general considerations from

Section 4.2, one should see that, in this scenario, the physics is equivalent to the one of

two hard-core bosons on a square lattice, described by the Ising Hamiltonian which at
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order one reads

Hb,sq = −J
∑
i

ni − hz
∑
〈i,j〉

(
b†ibj + b†jbi

)
, (7.63)

where i and j are neighboring vertices of a square lattice, and b†i (bi ) is the bosonic cre-

ation (annihilation) operator. Note that in our scenario the counterpart of the observable

σz(rb) in the toric code is the operator b†ib
†
i+1 which creates a pair of neighboring bosons

in the horizontal. We computed the corresponding propagator for the model Hb,sq and

indeed find numerically exactly coinciding coefficients of the continued fraction (7.41),

when comparing to the toric code in a single hz field at order one4.

In Figure 7.14 we show the resulting spectral density as a function of the total momen-

tum K = (Kx,Ky) and the energy ω. There is a striking similarity with the density

of states, calculated in the preceding subsection (see Figure 7.10) for the toric code on

the ’Ising’-line. We recall that one can find two-particle modes with relative momen-

tum q = (qx, qy), and eigenenergy ω (K, q), corresponding exactly to the energy at the

continuum boundaries. Furthermore, the maxima of spectral density are found for two-

particle modes with energies, where the density of states is also maximal. However, in

contrast to Figure 7.10, we consider an order one calculation, which is special since there

are no antisymmetric terms in the single-quasi-particle dispersions. Another important

difference is that the spectral density lacks the strong, constant peak at the energy E = 2

because we consider an observable which only probes the two-charge sector of Hb so that

no frozen fluxes are excited.

Not surprisingly, the weight distribution depends on the type of the observable, as shown

in Figure 7.15. Note that the only difference between the non-symmetric observables

is the orientation of the injected particle pair (see Figure 7.13). While physically these

two cases are identical, Figure 7.15 (a)-(b) shows a difference which simply stems from

the fact that the L-point is only a symmetry point for the symmetrized observables.

In the following, we will therefore mostly focus on the symmetric observable [shown

in Figure 7.15 (c)] which preserves the initial symmetry of the problem. In all cases

presented in Figure 7.15 it seems that the maxima of the density of states, at saddle

points of the two-particle dispersion (discussed in the previous subsection), are related

to the characteristic features inside the continuum.

4The calculation of the spectral density of two hard-core bosons has been performed with an inde-
pendently written computer code, which is a further check of our computational procedure.
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Figure 7.14: Spectral density of the non-symmetric observable Ob = σz at order zero,
for the toric code in the magnetic field h = (hx, hy, hz) = (0, 0, 0.06) at perturbation
order one. This spectral density is the same as the one of the observable Ob = b†i b

†
i+1

for the model Hb,sq. The spectral density S(K, ω) is a function of the energy ω and
the total momentum K = (Kx,Ky). We have used ε = 0.005, to give the energy peaks
a finite width. Consequently, the boundaries of the continuum are artificially smoothed
out, most drastically for the case K = (0, π) where the total weight is concentrated
in a single two-particle mode. (a) Spectral density for certain fixed values of K. (b)
Alternative illustration of the spectral density, where K is varied along the symmetry
lines of the Brillouin zone. The color gradient corresponds to the amplitude of S(K, ω).
The fixed K values from (a) are highlighted by vertical dotted lines; q refers to the
relative momentum of a particle pair.
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Figure 7.15: Spectral density of the toric code in the magnetic field h = (0, 0, 0.06),
at order 1 with ε = 0.005 and (a) the non-symmetric observable Ob, (b) the non-
symmetric observable Or, (c) the symmetric observable, and (d) the antisymmetric
observable. The amplitude of S(K, ω) corresponds to the color scale at the top. In (a)
and (b) S(K, ω) has been re-normalized by a factor two, in order to compare to the
symmetrized cases. The boundaries of the continuum are highlighted by green dashed
lines.

7.3.3 Results

In this subsection, we present our results on the spectral density of the toric code in

a general magnetic field using the symmetric version of the observable σz (denoted

by
[
O2,0
b (K) +O2,0

r (K)
]
/
√

2 in previous discussions). Analogue plots for the non-

symmetric as well as the antisymmetrized cases can be found in the Appendix C. The

computations are based on our findings from previous chapters, where we were able to

obtain the effective observable up to order four and the effective Hamiltonian up to order

six with pCUT. We will follow the strategy from Section 7.1 where the influence of the

magnetic field on the two-quasi-particle spectrum was studied by scanning the parameter

space along representative symmetry lines. Thus, one can directly match the spectra

computed in Section 7.1 with the weight distribution among the corresponding energy

levels to be presented below. For the remainder of this chapter, a broadening ε = 0.002

is used, unless stated otherwise. Furthermore, we have checked that in the considered

parameter regions the spectral densities are converged with perturbation order, which

means that there are no significant changes at higher orders.
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We begin by considering the case of a pure transverse field in Figure 7.16 (a). Here,

the total weight of the spectral density is concentrated in the non-dispersive bound

states
∣∣Ψb

11

〉
and

∣∣Ψb
1−1

〉
[see (7.17)]. The reason is simply that these are the only states

generated by the effective observable when hx = hz = 0. Formally, the amplitudes

AKd τ of any other state are zero in the thermodynamic limit (see also Table B.11).

The physical explanation is that due to dimensional reduction in this special point of

the parameter space, single charges and single fluxes are non-dispersive. Thus, the

only possible two-particle states which can be generated by a local observable are two

neighboring charges or two-neighboring fluxes which are the exact constituents of
∣∣Ψb

11

〉
and

∣∣Ψb
1−1

〉
. As can be observed in Figure 7.16 (b)-(d), at finite parallel fields the two-

particle continuum carries some spectral weight. However, clearly, the bound states (as

well as antibound states above the continuum) are dominating the spectral density. Note

that a four-particle continuum should appear at higher energies (ω = 4). Considering

the lowest two-particle energy (ω ≈ 1.3) in Figure 7.16 (d), we estimate that the lowest

energy of four -particle bound states is close to ω ≈ 2.6 so that in the discussed parameter

region there is no ’interference’ with the two-particle physics.
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Figure 7.16: Spectral density of the toric code in the magnetic field hy = 0.3, hx = hz
and (a) hx = 0, (b) hx = 0.005, (c) hx = 0.02, (d) hx = 0.06. See Figure 7.3 for a
comparison with the corresponding energy spectrum. The amplitude of S(K, ω) corre-
sponds to the color scale at the top. The boundaries of the continuum are highlighted
by green dashed lines.
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A compelling feature in the discussed plots is the decay of bound states that one can

observe in regions where the bound-state dispersions enter the two-particle continuum.

Apparently, bound states ’survive’ even inside the continuum, at least when the par-

allel field strength is small, see for example the continuum in Figure 7.16 (c) around

K = (0, π/2) and K = (π/2, π/2). For a larger parallel field ’resonances’ remain from

bound states inside the continuum [see Figure 7.16 (d)]. The weight agglomeration

inside the continuum can be understood as a combined effect of ’saddle point’-modes

which seem to play a role even with high-order corrections and several decaying bound

states. We shall discuss these points in more detail by considering Figure 7.17, where

at fixed values of K we show the spectral density between the L- and Γ-points of Fig-

ure 7.16 (d). This parameter region allows us to observe more closely how the dispersion

of a bound state changes after entering the continuum band. First, let us comment on

some of the rich features of the two-particle continuum. The two-particle modes with

a relative momentum q = (0, 0) and q = (0, π) have the exact energy of the lower and

respectively upper boundary of the continuum. The saddle-point modes, indicated by

green dashed lines in Figure 7.17, flag significant points (kinks of the otherwise smooth

curvature) of the continuum. These modes correspond to two-particle states where the

relative momenta of the two particles are either q = (−π/2, π/2) (left vertical line)

or q = (π/2, π/2) (right vertical line). This behavior is typical since it is known that

at saddle-modes frequencies one usually finds discontinuities or zeroes of the spectral

density, at least in (quasi-) one-dimensional systems [87, 95, 164, 165].

Next, we focus on the bound state represented by the sharp peak in spectral density

close to the lower boundary of the continuum highlighted in Figure 7.17 (a). With

decreasing total momentum [moving from left to right in Figure 7.16 (d)], the bound

state enters the continuum and its spectral density is strongly lowered. However, the

remaining resonance can still be clearly identified inside the continuum. By tracking

the maximum of its amplitude, the decay of a bound state can be observed even more

clearly in Figure 7.18. After entering the continuum the spectral weight of the bound

state drops by an order of magnitude and then slowly continues to decrease.

Let us one more time draw our attention to Figure 7.16 in order to discuss an interesting

property of S(K, ω), found when comparing with the corresponding energy spectrum

in Figure 7.3. The most striking difference is the absence of spectral weight for certain

bound states. This is related to interference effects which, depending on the symmetry

of eigenstates and the observable, can be constructive or destructive. Indeed, as can

be verified in Figure 7.19, modes suppressed in the case of the symmetric observable

are dominant for the antisymmetric observable. We shall specify this statement by

examining the lowest energy branch, which is degenerate in the limit h = (0, hy, 0)

and corresponds to eigenstates
∣∣Ψb

11

〉
and

∣∣Ψb
1−1

〉
in this limit [see (7.17)-(7.18) for
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Figure 7.17: Decay of a bound state. Here we consider the spectral density
(ε = 0.001) of the toric code, subjected to the magnetic field h = (hx, hy, hz) with
hy = 0.3 and hx = hz = 0.06. The particle pair has a total momentum of K = (K,K)
and (a) K = 3π/7 ≈ 0.43π, (b) K = 11π/28 ≈ 0.39π, (c) K = 47π/140 ≈ 0.34π and
(d) K = 39π/140 ≈ 0.28π, which corresponds to the region between the L- and Γ-
points, plotted in Figure 7.16 (d). Red (green) dashed lines are boundaries of the
continuum (saddle modes), computed from one-particle dispersions. The bound state
of interest is identified by a peak in the spectral density, highlighted by a light blue
color.
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Figure 7.18: Dependence of the maximal amplitude of the bound-state peak, high-
lighted in Figure 7.17 on the total momentum K = (K,K) of the quasi-particle pair.
Encircled data points correspond to values of K discussed in Figure 7.17. A strong
decrease of the amplitude occurs as soon as the bound state enters the continuum, thus
characterizing the decay of this bound state.
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the definition]. At finite parallel fields, the degeneracy is lifted for certain momenta

and the eigenenergies of states connected adiabatically to the symmetric wave function∣∣Ψb
11

〉
as well as the antisymmetric wave function

∣∣Ψb
1−1

〉
can be dealt with separately.

Figure 7.19 clearly indicates that the symmetric observable allocates the spectral weight

mostly into the symmetric bound state, while the antisymmetric observable preferably

collects the most weight in the antisymmetric bound state. Obviously, the symmetry

of eigenstates does not play a role for non-symmetric observables, where the spectral

density is distributed equally among states with different symmetry. Analogue behavior

can be observed for ’antibound’ states above the two-particle continuum.
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Figure 7.19: Spectral density of the toric code in the magnetic field hy = 0.3 and
hx = hz = 0.06 for (a) the non symmetric observable Ob, (b) the non symmetric
observable Or, (c) the symmetric observable(Ob +Or) /

√
2 , and (d) the antisymmetric

observable (Ob −Or) /
√

2 .

We now return to the symmetric observable and regard the spectral density for a constant

parallel field and an increasing transverse field. Figure 7.20 illustrates how, starting from

a continuum band without bound states at zero transverse field hy, a finite hy causes

bound states to arise and progressively pick up spectral weight. More weight is shifted

from the two-particle continuum into the bound states, as the transverse field is turned

up. Similarly to previous cases, we find that the spectral weight inside the continuum

displays significant features at saddle-modes energies. In contrast to the order one

calculation presented in Figure 7.15, the symmetry of the continuum with regard to

the diagonal energy is distorted due to higher order corrections, as it is also the case
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Figure 7.20: Spectral density of the toric code in the magnetic field hx = hz = 0.06
and (a) hy = 0, (b) hy = 0.1, (c) hy = 0.2, (d) hy = 0.3. See Figure 7.5 for a comparison
with the corresponding energy spectrum. The amplitude of S(K, ω) corresponds to the
color scale at the top. The continuum boundaries are highlighted by green dashed lines.

for the density of states in Figure 7.10. While at hy = 0 the maximum of S(K, ω) is

concentrated around the point K = (0, π) [or equivalently K = (π, 0)], bound states

induced by a finite transverse field accommodate most of the spectral weight so that

effectively a pseudo-gap at K = (0, π) is formed. It should not be overlooked that

for the given parameters the lowest-energy gap of the system is the one-particle gap at

∆ < 1. However, as already remarked earlier, the one-particle physics is not relevant for

the observable at hand.

Finally, we consider the system in the hz-hy-plane. For hy = 0, the model is isospectral

to the transverse-field Ising model (see Section 4.3) so that naturally our results should

apply to the Ising model as well. To the best of our knowledge, this is the first study of a

two-particle dynamical correlation function for the Ising model. As shown in Figure 7.21,

the most notable difference to the case with a finite hx-field in Figure 7.20 is the loss

of spectral weight at energies close to ω = 2; which becomes more pronounced with

increasing hy. At large transverse fields, one effectively obtains two distinct energy

bands with most weight accumulated in the lower band. Even though there seems to be

a bound state close to the continuum edge around the Γ point, using our results from

Figure 7.6 we argue that this is an effect of a finite ε so that the spectral density is

actually very high at the band edge, but there is no bound state at the point Γ.
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Figure 7.21: Spectral density of the toric code in the magnetic field hx = 0, hz = 0.06
and (a) hy = 0, (b) hy = 0.1, (c) hy = 0.2, (d) hy = 0.3. See Figure 7.6 for a comparison
with the corresponding energy spectrum. The amplitude of S(K, ω) corresponds to the
color scale at the top. The boundaries of the continuum are highlighted by green dashed
lines.

Certainly it would be interesting to observe how the spectral densities change, as one

approaches the boundary of the topological phase. In principle this problem could be

tackled with optimized perturbation theory [87, 169] or, for hy = 0, with quantum Monte

Carlo, and shall be put forward for future projects.

7.4 Chapter summary

In this final chapter on the toric code in a uniform field, the spectral properties of

the two-particle subspace in the topological phase have been studied. We have gained

insight into the dependence of the spectrum on the magnetic field and, in particular,

the behavior of collective bound states as well as dynamical correlation functions of the

perturbed toric code in its topologically-ordered phase.

The bound states have been classified by their adiabatic connection to the exact eigen-

states of the toric code in a transverse field. We have found elementary differences

between the two distinct two-particle sectors of the toric code: Hb and Hf . In Hb, the

particle pair is always of the same flavor, thus the boundaries of the continuum hardly

depend on the ratio hx/hz. By contrast, in the subspace Hf , where one always has a
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charge-flux pair, the continuum depends strongly on this ratio. While in the sector Hb

the energetic minimum of the lowest-lying bound state is always found at K = (0, 0),

it does depend on K in Hf . It seems that bound states (in Hb as well as in Hf) are

not likely to condense (and thus drive the phase transition) before the one-particle gap

vanishes. However, an analysis of the two-particle subspace at larger magnetic fields is

necessary to verify this statement.

For the first time, the density of states as well as two-particle dynamical correlation

functions have been computed in the topological phase of the toric code in a magnetic

field. In the special case of a single parallel field, our results are also relevant for the

transverse-field Ising model. A plethora of structures inside the continuum has been re-

vealed and interpreted as a superposition of local minima and maxima at ’saddle’-modes

energies, as well as decaying bound states. We have shown that an increasing transverse

magnetic field drives spectral weight out of the two-particle continuum into the bound

(as well as antibound) states. Depending on the symmetry of the observable (symmetric

or antisymmetric), certain bound states acquire the most spectral weight, while oth-

ers are suppressed, corresponding to the symmetry of the adiabatically connected exact

eigenstates of the toric code in a single transverse field. For certain directions of the

magnetic field the bound states dominate the spectral density at low energies.



Chapter 8
Kitaev’s honeycomb model

One of the biggest obstacles in an experimental realization of the toric code is certainly

the appearance of exotic multi-spin interactions which consist of four-body terms and

require an absence of two- and three-body interactions. In experimentally accessible

materials, the nearest-neighbor interaction is most often the dominant one. The topic

of the present chapter is the Kitaev model on a honeycomb lattice. This model is based

solely on two-spin interactions and therefore seems to be less difficult to implement than

the toric code. Indeed, many experimental proposals have been already made for this

model [51–53, 170, 171]. Moreover, Kitaev’s honeycomb model is a prominent example of

a topologically-ordered system and features, despite its simplicity, Abelian, non-Abelian

and fermionic elementary excitations [36]. In the isolated dimer limit (see below), it is

directly related to the toric code which emerges as an effective model at fourth order in

perturbation theory [36, 50]. Furthermore, there is an extensive number of conserved

quantities so that it is possible to solve the model exactly, as well as construct the exact

ground state.

Within this chapter, we introduce the Kitaev model as well as its generalizations. We

propose a new extension of the model which leads to an infinite set of exactly solvable

models with Abelian vortices as elementary excitations in the low-energy regime [81].

At the isotropic point (also referred to as ’graphene point’ in the following), all of

these models are equivalent to the original one and have a vanishing gap. A time-

reversal symmetry breaking term, e.g., a magnetic field, may open this gap, leading to

a topological phase with non-Abelian (Ising-type) elementary excitations. Interestingly,

the system can also be tuned into a topological phase where elementary excitations are

Abelian Z2 anyons, by opening the gap without breaking the time-reversal symmetry.

We are able to explain this gap-opening mechanism by considering the problem as a

147
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special case of graphene in a strongly-modulated magnetic field, thereby establishing a

new type of metal-insulator transition in this highly topical material [172].

8.1 Definitions and basic properties

The Kitaev model describes quantum spins-1/2 located at the vertices of a hexagonal

lattice and interact via the Hamiltonian

H = −
∑

α=x,y,z

∑
(i,j)α

Jα σ
α
i σ

α
j , (8.1)

where σαi are the usual Pauli matrices at sites i, and (i, j)α denotes a link of type α,

connecting sites i and j. In what follows, we consider only Jα > 0; however, as we shall

see below, the ground-state energy of this model does not depend on the sign of Jα. In

the original model [36], Kitaev considered the case where the type of the link (α = x, y, or

z) depends only on its orientation, as depicted in Figure 8.1. The three-spin term breaks

time-reversal symmetry and is essential to open a gap in the non-Abelian phase of the

model1. Before we discuss the physical properties of this model in detail, let us briefly

n1n2

Figure 8.1: The Kitaev model with two sites per unit cell spanned by vectors n1 and
n2. Red, green, and blue links represent x, y, and z links respectively.

review its most important variations. The Kitaev model can also be defined on different

lattices [173–177] or with a different underlying algebra [12, 178]. For spin-1/2, the

exact solvability of this model is generally preserved, if the following two constraints are

satisfied: (i) each site of the system must be trivalent, and (ii) the three links connected

to a given site are of different types (x, y, and z). Thus, the Hamiltonian (8.1) can

be defined and solved on any trivalent graph. In Ref. [81], we suggested to consider

the Kitaev model on a honeycomb lattice but for different configurations of links, as

for example the ones shown in Figure 8.2. The number of possible link distributions

permitted by the condition (i) and (ii) is equivalent to the number of dimer covering on
1To be more precise, this gap is required in order for the non-Abelian statistics to be well defined.
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Figure 8.2: Variations of the Kitaev model with (a) four sites per unit cell and (b)
six sites per unit cell. Conventions are the same as in Fig. 8.1 and labels ’a’, ’b’, and
’c’ refer to the different kinds of plaquettes.

the honeycomb lattice. A simple way to see this, is to consider, without loss of generality,

the limit Jz � Jx, Jy. A valid link configuration yields a set of strongly linked pairs of

sites (dimers) weakly coupled by Jx and Jy, as shown in Figure 8.3.

a
b

c
a

b

(a) (b) (c)

Figure 8.3: Effective lattices obtained in the isolated-dimer limit Jz � Jx, Jy through
a replacement of z-dimers by effective sites (filled black circles). The effective lattice of
the original Kitaev model is shown in (a). The analogue effective lattices of the models
from Figure 8.2 are presented in (b) and (c). Gray-shaded areas show the different
types of effective plaquettes identified by the same labels as in Figure 8.2. Red (green)
bonds denote x (y) links.

The honeycomb lattice has two sites per unit cell so that any periodic dimer covering

will have 2n sites per unit cell. The distribution of link types in the original model,

as shown in Figure 8.1, corresponds to n = 1 and shall be called ’covering I’ in the

following. For the bigger unit cells of link distributions shown in Figure 8.2 one finds

n = 2 and n = 3 so that these models will be referred to as ’covering II’ and ’covering

III’. On the honeycomb lattice, the infinite number of dimer configurations (and thus

the infinite number of models) will generally yield effective triangle-, square-, pentagon-

and hexagon-plaquettes. As we shall see below, the shape of the effective plaquettes is

directly related to the fundamental properties of the model.
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The exact solvability of the Kitaev model and its generalizations roots on the fact that

there is an extensive number of conserved quantities. The Hamiltonian (8.1) indeed

commutes with every plaquette operator Wp, defined as

Wp =
∏
i∈p

σ
out(i)
i , (8.2)

where p is a hexagonal plaquette of the honeycomb lattice and out(i) denotes the type of

the link, connected to site i and facing outward with respect to p [36, 50]. Furthermore,

all Wp operators commute with each other, as can be straightforwardly derived from

the algebraic properties of Pauli operators (on the honeycomb lattice plaquettes share

either zero, or an even number of sites), and have eigenvalues wp = ±1 due to W 2
p = 1.

Following Kitaev [36], it is common to characterize the conserved Z2 degrees of freedom

by saying that there is a vortex on plaquette p, if wp = −1 and no vortex if wp = +1.

Since [H,Wp] = 0, one can diagonalize H in each vortex sector given by a configuration

of the wp’s. This is realized by an exact mapping to non-interacting fermions, to be

discussed in the next section. However, let us anticipate the important result that in the

transformed model one can use Lieb’s argument [179] to argue that the ground state lies

in the vortex-free sector. Similar to our discussion of the toric code in Chapter 4, not only

the plaquette operators but rather all closed-loop operators Wl with Wl =
∏
i∈l σ

out(i)
i

are conserved. Especially for a lattice on a closed manifold with genus g, one can pick up

our argumentation from Chapter 4 to assert that the ground-state degeneracy depends

on the number of non-contractible loops, and consequently on the genus, which is a clear

indication of topological order. To be more precise the number of degenerate ground

states is 22g in the Abelian phase of the model. It should be mentioned that if one

breaks the time-reversal symmetry, e.g., by exposing the model to a magnetic field, the

model can be tuned into a distinct topological phase with non-Abelian Ising anyons as

elementary excitations [36], where the degeneracy of the ground state in the presence

of 2n well-separated anyons on a torus is 22n [180, 181]. However, we will not include

time-reversal symmetry breaking terms in the following considerations.

As has been already mentioned earlier, the honeycomb model and the toric code are

deeply related. Kitaev has shown [36] that perturbation theory for weakly-coupled

dimers in the limit Jz � Jx, Jy yields only a constant energy shift up to order three. At

order four, the first non-trivial term has the same algebraic structure as the plaquette

and star interactions we know from the toric code [see (4.1)]. Indeed, the effective model

at order four is exactly connected to the toric code by a unitary transformation [36].

Thus the ground states in both models are in the same topological phase. A perturbation

theory of higher order has been presented in Refs. [50, 79, 80]. Beyond order four, one

obtains an extended toric code with multi-plaquette interactions. The same approach
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has been used to investigate low-energy properties of the models shown in Figure 8.2.

While covering I and covering II are rather similar, in the case of covering III an effective

toric-code-like Hamiltonian on the kagome lattice emerges. The phase diagrams as well

as the effective vortex-vortex interactions of these new dimer covering models have been

studied in Refs. [81, 182].

8.2 Mapping to fermions

After the rather general discussion in the last paragraph, let us turn to the explicit

solution of the model(s) and discuss the structure of the resulting phase diagram. Ki-

taev’s idea was to use an enlarged Hilbert space where a single fermionic mode am is

represented by two so-called Majorana modes c2m−1 and c2m

c2m−1 = am + a†m, (8.3)

c2m =
1
i

(
am − a†m

)
. (8.4)

Although one would expect that it is more complicated to work in a Hilbert space

with a larger dimension, as we shall see below, this transformation brings the initial

Hamiltonian to a simpler form. Obviously the properties of the Majorana operators are

very different from fermions since the majoranas are identical to their own antiparticles

and obey the commutator relation

cmcn + cncm = 2δnm. (8.5)

A single spin-1/2 at site j is represented by two fermionic modes (say aj,1 and aj,2) and

in the Majorana language, by four operators

cj,1 = aj,1 + a†j,1 cj,2 =
1
i

(
aj,1 − a†j,1

)
, (8.6)

cj,3 = aj,2 + a†j,2 cj,4 =
1
i

(
aj,2 − a†j,2

)
. (8.7)

In the following, we will use the helpful notation introduced by Kitaev [36]

cj,1 = bxj , cj,2 = byj , cj,3 = bzj , cj,4 = cj . (8.8)

The initial two-dimensional subspace (also called physical subspace) of the extended

four-dimensional Hilbert space at site j can be identified by using the local projector

Dj = bxj b
y
j b
z
jcj which acts as the identity in the original Hilbert space of the Kitaev
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model. The Pauli operators σαj become σ̃αj in the extended Hilbert space.

σ̃xj = ibxj cj , σ̃yj = ibyj cj , σ̃zj = ibzjcj . (8.9)

These operators fulfill the usual Pauli algebra and preserve the physical subspace since

they commute with Dj . Finally the Hamiltonian (8.1) is transformed to

H̃ =
i
2

∑
j,k

Jjkû
α
jkcj ck , (8.10)

with ûαjk = ibαj b
α
k . The operators ûαjk commute with the Hamiltonian and with each other.

Due to (8.5), their eigenvalues are uαjk = ±1. Thus, H̃ obviously describes free fermions

in a static Z2 gauge field. The transformed plaquette operator W̃p is represented by a

product of ûαjk along the boundary of a plaquette:

W̃p =
∏

j,k∈boundary(p)

ûαjk. (8.11)

It can easily be checked that the eigenvalues of W̃p are indeed ±1. Every vortex configu-

ration corresponds to a certain gauge. However, this correspondence is not unique, e.g.,

the vortex-free sector can be fixed by setting every uαjk to +1 (or to −1), as well as

setting exclusively uzjk to +1 (or to −1) and so on. Generally, any vortex subspace can

be realized by fixing the gauge fields. Then the problem is reduced to the one of free

fermions, and numerical diagonalization can be applied efficiently. One should keep in

mind that due to the enlarged Hilbert space a projection onto the physical subspace is

necessary. This can in principle be avoided by using an alternative mapping based on

Jordan-Wigner transformation [183], but we shall stick to the approach used by Kitaev.

The spectrum of the original Kitaev model (covering I) in the vortex-free subspace

(wp = +1, ∀p) consists of two fermionic bands ε(k). Using Fourier transformation, one

obtains the analytical result:

ε(k) = ± |f(k)|, (8.12)

f(k) = 2
(
Jxeikn1 + Jyeikn2 + Jz

)
, (8.13)

with momentum k and unit vectors in real space ni, defined in Figure 8.1. The fermionic

gap for the case of covering I is then a linear function of the two-spin couplings Ji:

∆I = Max {2 (Jz − Jx − Jy) , 0} , (8.14)

where without loss of generality we consider the parameter region Jz ≥ Jx, Jy. While

for covering II we find the same expression for the gap, the covering III yields a totally
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different result (see Ref. [81] for more details)

∆III = 2
√
J2
x + J2

y + J2
z − JxJy − JyJz − JzJx . (8.15)

A symmetric view on the resulting phase diagrams is given in the Figure 8.4.

Jx = 1 Jy = 1

Jz = 1

Jx = 1 Jy = 1

Jz = 1

(a) (b)

Figure 8.4: Phase diagrams of the Kitaev model for various dimer coverings. We
choose a common parametrization of the two-spin couplings Jα, where Jα ≥ 0, and the
depicted triangle lies on the plane intersecting each of the three Jα-axes at the points
Jα = 1. (a) Covering I and covering II have an equivalent phase diagram where the
shaded areas are gapped and the white triangle in the center highlights the gapless
domain. (b) The model described by covering III has a dramatically different phase
diagram where the system is gapped everywhere except at the isotropic point. For
any covering, one finds Abelian anyons as elementary excitations in the gapped regions
as long as any time-reversal symmetry breaking operators are absent, otherwise also
elementary excitations with non-Abelian statistics can arise [36, 81].

Kitaev has shown that in the gapped phases (shaded areas in Figure 8.4), vortices

behave as Abelian anyons. Their statistics can be demonstrated explicitly with the

same method we used in Section 4.2. More elegantly, one can simply argue that in

the gapped phase the model is adiabatically connected to the dimer limit where we

know that an extended toric code emerges as the effective low-energy theory. Therefore,

the properties of elementary excitations must be the same. A finite magnetic field (or

generally any time-reversal symmetry breaking operator) opens the fermionic gap inside

the otherwise gapless regions of the phase diagram and gives rise non-Abelian excitations

which are Ising anyons. This has been shown in Ref. [36] by computing the so-called

Chern number [184] which is a topological invariant often used to characterize topological

phases. We refer to Refs. [36, 185] for the precise definition of the Chern invariant. For

our purposes it is sufficient to know that, as rigorously shown by Kitaev [36], this

integer is directly related to the statistics of elementary excitations. An even (odd)

Chern number unambiguously signals that the elementary excitations are Abelian (non-

Abelian) anyons.

Certainly, the appearance of topological phases with Abelian as well as non-Abelian ele-

mentary excitations in a simple lattice model is quite fascinating and can be understood
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in a formal as well as in a physical way, as shall be briefly explained in the following. A

surprising variety of topological phases is generated when the Kitaev model is consid-

ered on a square-octagon lattice [174, 186], and a finite three-spin coupling2 is included.

This coupling breaks the time-reversal symmetry and is controlled by the amplitude

K. Here, the Chern invariant is used to distinguish topological phases As explained by

Kells et al. in Ref. [186], due to the doubled number of energy bands (the unit cell of

the square-octagon lattice contains four sites) the so-called transfer of Chern integers

between distinct energy modes leads to a larger number of possible values for Chern

numbers. Phases with different (odd as well as even) Chern numbers are realized by

varying the parameters Jα and K. Lahtinen et al. [187] have found a variety of Abelian

phases in the original Kitaev model on the honeycomb lattice by considering periodic

vortex patterns (instead of the vortex-free sector). On the one hand, a multi-band spec-

trum and a Chern integer exchange mechanism similar to Ref. [186] is obtained. On

the other hand, the emergence of different topological phases can be traced back to

vortex-vortex interactions 3.

Both works discussed in the previous paragraph (Refs. [186, 187]) rely on the (time-

reversal symmetry breaking) three-spin coupling in order to open a fermionic gap at

the isotropic point. Surprisingly, we find that even without a time-reversal symmetry

breaking term this gap can be opened at the isotropic point and thus give rise to new

Abelian phases. We shall explain the gap-opening mechanism in a more general setup

in the following section.

8.3 Fate of Dirac points in a vortex superlattice

Motivated by the Kitaev model and its mapping onto Majorana fermions in a gauge

field [see (8.10)], we consider the general problem of non-interacting fermions on the

honeycomb lattice in the presence of magnetic vortices. Here, similarly to Ref. [188],

the flux per plaquette can be tuned continuously, in contrast to the Kitaev model where

this flux is restricted to two distinct values. Our main goal in this section is to show

that, depending on a superlattice of vortices, a gap may open at zero energy. These

results directly apply to Kitaev’s honeycomb model in a vortex superlattice. At the

same time we illustrate an original example of a metal-insulator transition induced by

a strongly-modulated magnetic field in graphene (see below).

The electronic properties of graphene are commonly obtained from a tight-binding ap-

proximation on the honeycomb lattice. Its band structure has been known since several
2We remark that even when this coupling is included, the model is still exactly solvable [36].
3To be precise, Lahtinen et al. derive an effective model for Majorana fermions, where the effective

interaction is renormalized by a fixed vortex configuration [187].
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decades [189] and its modifications in the presence of a uniform magnetic field have

been first investigated more than twenty years ago by Rammal [190]. The surprising

experimental discovery of graphene by Geim and Novoselov [191] in 2004 has led to a

Nobel prize and renewed the interest in this topic (see Ref. [192] for a review). One of

graphene’s most salient features in zero field is the existence of a point-like Fermi surface

at zero energy, the celebrated Dirac points, giving rise to a relativistic dispersion in their

neighborhood (the so-called Dirac cones). Interestingly, these discrete zero-energy states

are still present when a uniform magnetic field is added [190, 193]. The stability of these

states has led several groups to analyze the influence of a nonuniform magnetic field and

it is now commonly accepted that a smoothly-modulated magnetic field is not sufficient

to open a gap at zero energy [194–196]. In what follows, we will show that it is actu-

ally possible to open this gap by considering the opposite limit of a strongly-modulated

magnetic field. In this case, unlike previous studies [194–196], one cannot neglect the

coupling between Dirac cones which is directly responsible for this dramatic effect. As

a consequence, the opening of the gap does not require the simultaneous presence of a

scalar and a vector potentials.

To analyze this problem, we consider a vortex superlattice with fluxes ±φ as depicted

in Fig. 8.5. Our choice is motivated by the commensurability of the triangular and

hexagonal structures and by the fact that this alternated pattern leads to the smallest

possible unit cell of the superlattice. In the small-φ limit, we show that, although the

system remains gapless at first order, a gap proportional to φ2 may open, providing a nice

example of a metal-insulator transition induced by a magnetic field in the honeycomb

lattice. We derive the necessary and sufficient condition to open this gap in terms of

the superlattice periodicity and we give an expression of the gap at order two in the

small-φ limit. When the size of the superlattice unit cell increases, i.e., in the limit of

vanishing vortex density ν, we find that the gap vanishes as ν ln ν−1. Although obtained

in a perturbative framework, our conclusions remain qualitatively valid for arbitrary

fluxes as checked by exact diagonalizations. Furthermore, at φ = φ0/2 (φ0 being the

elementary flux quantum), the same gap-opening mechanism applies to the celebrated

Kitaev model [36] introduced in the previous sections. However, in the case of graphene

we consider free fermions, in contrast to the Kitaev model which is mapped to ’free’

Majorana particles in an extended Hilbert space.

The starting point of our study is the following tight-binding Hamiltonian

Htb = −
∑
〈i,j〉

ti,j |i〉〈j| , (8.16)

where |i〉 denotes a spinless-electron state localized on site i. The sum is performed

over all nearest-neighbor sites of the honeycomb lattice and the hopping term in the
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(a)

a1a2

b2

b1

(b)

a1a2

b2

b1

Figure 8.5: A piece of the magnetic vortex superlattice L(p, q) spanned by primitive
vectors b1 and b2 for the specific cases (a) p = 1, q = 1, and (b) p = 2, q = 1. Vectors
a1 and a2 are primitive vectors of the honeycomb lattice. Green (orange) plaquettes
contain a flux +φ (−φ), whereas white plaquettes are flux-free. Blue links with arrows
indicate oriented hopping terms “carrying” the flux.

presence of a vector potential A is given by the so-called Peierls substitution [197]:

ti,j = t e
2iπ
φ0

R j
i Adl. Thus, setting the flux and energy scales to unity (φ0 = t = 1), the

(oriented) product of the hopping terms over a closed loop is simply e2iπφ, where φ is

the dimensionless magnetic flux inside the corresponding loop.

The vortex superlattice considered here is defined as follows. Let us assume that there

is a flux +φ in the elementary plaquette centered in r. Then, the superlattice L(p, q)

is generated by requiring that the plaquette located at r + b1/2 contains a flux −φ and

the one located at r + b2 contains a flux +φ, where

b1 = 2(p a1 + q a2), (8.17)

b2 = − q a1 + (p+ q) a2. (8.18)

Vectors a1 and a2 are primitive vectors of the honeycomb lattice, and p, q are positive

integers. In the following, without loss of generality, we only consider the case p > q. It

is straightforward to check that the total flux per unit cell of L(p, q) spanned by b1 and

b2 is zero. In addition, the vortex density, defined as the number of vortices per number

of plaquettes in a unit cell, is simply given by

ν =
1

p2 + p q + q2
. (8.19)

A convenient gauge choice realizing such a flux pattern can be obtained starting from

an initial +φ plaquette center and by choosing ti,j = e2iπφ for all links crossed by going

p times in direction a1 and then q times in the direction a2 (see Figure 8.5 for concrete
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examples). The orientation of the first link fixes all others since we wish to have a flux

−φ in the final plaquette and zero in all intermediate ones. In other words, one creates

a string of links carrying the flux. This string connects a vortex to an antivortex. As

a side remark, let us note that with this gauge choice one can study any value of the

flux without changing the size of the unit cell, in deep contrast with the uniform field

problem discussed in Ref. [190].

As for any bipartite lattice, the spectrum of Htb is symmetric with respect to the energy

ε = 0 for all φ. For φ = 0, it consists of two symmetric bands [189]

ε±(k) = ±
{

3 + 2 cos(ka1) + 2 cos(ka2) + 2 cos[k (a1 − a2)]
}1/2

. (8.20)

We point out that this spectrum is exactly equivalent to the one of the Kitaev hon-

eycomb model in the vortex-free sector, as introduced in (8.12), in the isotropic point

Jx=Jy=Jz=1/2. The symmetric bands touch at ε = 0 when the momentum k coincides

with the so-called Dirac points D = 1
3a
∗
1 + 2

3a
∗
2 and D′ = 2

3a
∗
1 + 1

3a
∗
2, where a∗1 and a∗2

are primitive vectors of the reciprocal lattice associated to a1 and a2 (a∗iaj = 2πδi,j).

Consequently, the energy ε = 0 is four-fold degenerate for φ = 0. We aim to determine

the fate of these zero-energy states for φ 6= 0. Note that in the limiting case φ = 1/2,

this problem is equivalent to Kitaev’s honeycomb model with a fixed vortex sector, the

vortices being placed on the superlattice L(p, q).

To address this problem, we shall analyze perturbatively the small-φ limit. However, one

can already predict that if the perturbation does not couple any of the two eigenstates

corresponding toD with the two eigenstates corresponding toD′, the system will remain

gapless. Indeed, in this case, the single-cone approximation proposed in Refs. [194–196]

can be made safely, leading to a finite gap only when a scalar as well as a vector potential

are present. Thus, to open the gap one must have a perturbing potential which couples

these two two-fold degenerate subspaces. Since this potential has, by construction, the

same periodicity as L(p, q), this condition requires the existence of a reciprocal lattice

vector associated to b1 and b2 which equals D′−D. In the following we will prove that

this condition is equivalent to

1
ν

= 0 mod 3, (8.21)

where ν is the vortex density defined in (8.19). Dirac states then have a momentum

k = (0, 0) mod (b∗1, b
∗
2) where b∗1 and b∗2 are primitive vectors of the reciprocal lattice

associated to b1 and b2 (b∗i bj = 2πδi,j). Let us underline that this is a necessary condi-

tion which might not be sufficient to open a gap but, as we shall see, it is. The explicit
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expression of the reciprocal lattice vectors is found to be

b∗1 =
ν

2

[
(p+ q)a∗1 + q a∗2

]
, (8.22)

b∗2 = ν (−q a∗1 + pa∗2) . (8.23)

The necessary condition to couple the Dirac points yields

n b∗1 +m b∗2 = ±1
3

(a∗1 − a∗2) , (8.24)

with (n,m) ∈ Z2. These equations are satisfied for

p = ± (m− n) , (8.25)

q = ∓m+ 2n
2

. (8.26)

Thus we obtain

1
ν

= p2 + p q + q2 =
3
4
(
m2 − 2mn+ 4n2

)
. (8.27)

Using the fact that p and q have been defined as integers, one follows that 1/ν must be

a multiple of three, hence (8.21) is indeed a required property of the vortex-superlattice

potential to open a gap in graphene.

A naive first-order degenerate perturbation theory consists in considering the subspace

spanned by the four Dirac states, denoted |ψ〉i. At k = (0, 0) and zero flux, these

states can be constructed exactly, as shall be explained in the following. We recall

that the honeycomb lattice, as pictured in Figure 8.5, is built from two sublattices,

say, Λb and Λw, each consisting of black and white sites respectively. Without loss of

(a)
ω ω

1

0

(b)
ω ω

1

0

(c)
ω ω

1

0

(d)
ω ω

1

0

Figure 8.6: Exact construction of zero-energy eigenstates of Htb at zero momentum
(in the base b∗i ) and flux φ = 0. The figure shows elementary constituents of the
honeycomb lattice as well as the corresponding amplitudes for the four Dirac states (a)
|ψ〉1, (b) |ψ〉2, (c) |ψ〉3, and (d) |ψ〉4. Note that the cyclic order of the weights in each
state is the same on every site.

generality we focus on the construction of the state |ψ〉1. Here, all sites of sublattice Λw
have zero-amplitudes, and the ones from sublattice Λb have weights 1, ω = e2iπ/3 and
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ω = e−2iπ/3 (which are the third roots of unity), as depicted in Figure 8.6 (a). Due to

the trivalence of the lattice, every site from Λw is connected to exactly three sites from

Λb (and vice versa). Therefore the action of the Hamiltonian Htb on |ψ〉1 leads to either

a sum of three zeroes, or 1 + ω + ω = 0. Thus the state |ψ〉1 is indeed a zero-energy

eigenstate of the problem. The remaining three states can now be constructed in a

similar way, by conjugating the amplitudes [Figure 8.6 (b)] and interchanging Λb and

Λw [Figure 8.6 (c)-(d)]. It is important to note that the presented construction recipe

works only if the amplitudes can be placed in a periodic way. This implies the condition

(p mod 3) = (q mod 3) . (8.28)

As can easily be checked, this is exactly equivalent to the condition (8.21) which selects

the subclass of vortex superlattices L(p, q), we were interested in from the outset.

For small φ, the Hamiltonian (8.16) can be rewritten as

Htb = H0 + V, (8.29)

= −
∑
〈i,j〉
|i〉〈j| −

∑
〈i,j〉

(
e2iπφ(i,j) − 1

)
|i〉〈j| , (8.30)

= −
∑
〈i,j〉
|i〉〈j| −

∑
〈i,j〉

(
2iπφ− 2π2φ2 + . . .

) |i〉〈j| , (8.31)

where H0 is the unperturbed part with φ = 0, and V is the flux-dependent perturbation

with φ(i, j) = φ on links 〈i, j〉 which we choose to fix the gauge (see for example Fig-

ure 8.5) and φ(i, j) = 0 on all other links. Following standard perturbation theory [114],

the perturbative expansion of (8.29) in the small φ limit yields

Htb = h0 + h1 + h2 + . . . , (8.32)

h0 = E0P0, (8.33)

h1 = P0V P0, (8.34)

h2 = P0V SV P0, (8.35)

where the eigenvalues of hi are proportional to φi, E0 is the ground-state energy and P0

the projector onto the ground-state subspace U0. S is a resolvent operator, defined as

follows

S = − 1− P0

H0 − E0
. (8.36)

As we already know, the zero-energy level of Htb is four-fold degenerate (E0 = 0). The

corresponding subspace U0 is spanned by the Dirac states which we can construct exactly

for any vortex superlattice L(p, q). Using our gauge choice, introduced in the paragraph



Chapter 8. Kitaev model on the honeycomb lattice 160

following (8.19), as well as the basis |ψ〉i, introduced above, we find for general p and q

at order one

P0V P0 =


0 0 M1 M2

0 0 M2 M1

M∗1 M∗2 0 0

M∗2 M∗1 0 0

 . (8.37)

The exact construction of the basis states allows us to derive general results for the

matrix elements Mi. For arbitrary vortex superlattices L(p, q) we find

M1 = iπφ (p− qω) , (8.38)

M2 = 0. (8.39)

The zeroes of the corresponding characteristic polynomial

P (λ) =
(
λ2 + π2φ2ν

)2
, (8.40)

are then clearly ±πφ√ν . This way, we find, at order one and any vortex superlattice

L(p, q), the finite gap ∆ [k = (0, 0)] = 2πφ
√
ν .

One should bear in mind that the perturbation can shift the Dirac cones [198] (without

renormalizing the Fermi velocity at ε = 0). In this case ∆ [k = (0, 0)] would not be the

minimal gap. The reason is that the condition (8.21) together with the similar conic

dispersions near D and D′ implies that states in the vicinity of the Dirac cones are also

coupled by the perturbation and one generally must look for k 6= (0, 0) states which

have a lower gap. Of course, the corresponding subspace depends directly on the vector

potential. For vortex configurations fulfilling (8.21), we indeed find that, at first order

in φ, the Dirac cones are shifted along the boundary of the Brillouin zone. For ν ≤ 1/12

we obtain the exact result that the state which has the lowest-positive energy is found

for

k0 = −φ
2
b∗2. (8.41)

We have checked by exact diagonalizations that (8.41) is valid even for large values of

the flux φ (outside the perturbative regime). While this remarkable result remains to

be understood, we conjecture that the state with the lowest positive energy is always

found at k0. Of course, the corresponding energy may be degenerate and found also for

other momenta as is, for example, the case for φ = 1/2.
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As a next step, we perform degenerate perturbation theory in the k = k0 subspace.

Consistently with exact diagonalization results, we find that all matrix elements of h1

are exactly zero. At second order, the computation becomes more involved, even though

the condition (8.41) greatly simplifies the problem. Thus, we first concentrate on vortex

superlattices with highest vortex densities satisfying condition (8.21). The second-order

term of the gap can be computed analytically for certain cases, as it is presented in

Table 8.1.

1/ν p q ∆/(πφ)2

3 1 1 1/3
9 3 0 5/21
12 2 2 1/6
21 4 1 0.077586
27 3 3 0.061324
36 6 0 11/130

Table 8.1: Gap ∆(k0) = 0 at order φ2 for the first values of 1/ν satisfying Eq. (8.21).
For 1/ν = 21 and 27, the gap cannot be expressed as a simple fraction and we only
give the first digits obtained numerically.

Although, in general, it is difficult to get a simple expression of ∆ for arbitrary vortex

superlattices L(p, q), one can derive exact formulas for the special case q = 0 (p being

a multiple of 3) that allow one to (numerically) investigate large unit cell systems that

would be out of reach with exact diagonalizations. From now on, we will mainly focus

on this subset of configurations for which the gap at order 2 reads

∆(p, q = 0)
(πφ)2

= Cp −
√
B2
p +

(
Ap − 1

p

)2

, (8.42)

with

Ap =
1

2p4

p−1∑
n=0

2p−1∑
m=1

ξ(p,m)
ε2(m,n)

{
3 + 4 cos

[
π
(
m
p + 2

3

)]
+ 2 cos

[
2π
(
m
p − 1

3

)]}
×
{

1 + cos
(

2πn
p

)
+ cos

[
π
p (2n−m)

]}
, (8.43)

Bp =
1

2p4

p−1∑
n=0

2p−1∑
m=1

ξ(p,m)
ε2(m,n)

{
3 + 4 cos

[
π
(
m
p + 2

3

)]
+ 2 cos

[
2π
(
m
p − 1

3

)]}
×
{

sin
(

2πn
p

)
+ sin

[
π
p (2n−m)

]}
, (8.44)

Cp =
4
p4

p−1∑
n=0

2p−1∑
m=1

ξ(p,m)
ε2(m,n)

[
cos
(

2πm
p

)− cos
(
πm
p

) ]
×
{

1 + cos
(

2πn
p

)
+ cos

[
π
p (2n−m)

]}
, (8.45)
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where the sum over m is performed over odd integers only. For convenience, we have

introduced ε2(m,n) = ε2±(k = m
2pa
∗
1 + n

pa
∗
2) [see (8.20)], and

ξ(p,m) =

sin−2
(

3πm
2p

)
if m 6= 0 mod p

3 ,
1−(−1)p/3

2 otherwise.
(8.46)

In the large-p limit, it is clear that ∆ vanishes because one has to recover the spectral

properties of the zero-flux problem. To analyze this infinitely-diluted vortex limit, we

computed the gap using Eq. (8.42) up to p = 20000. A close inspection of Ap, Bp, and Cp
led us to conjecture that the gap vanishes as ∆/φ2 ∼ ν ln ν−1 in the large-(p = 1/

√
ν )

limit. A convincing check of this result is displayed in Fig. 8.7.

A natural question that arises at this stage concerns the behavior of the gap away from

the perturbative regime analyzed up to now. To investigate arbitrary fluxes, one must

diagonalize H numerically but the main advantage is that one only has to consider the

subspace corresponding to k = k0 where the lowest-positive energy state lies. However,

for arbitrary fluxes, one is restricted to small values of p since the number of sites per

unit cell is 4p2 and we need the full spectrum of the k = k0 subspace. In Fig. 8.8, we
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Figure 8.7: Behavior of p2∆/φ2 as a function of ln p (for q = 0) in the small-φ
limit. Exact results are obtained from Eq. (8.42) and the full line is a linear fit in good
agreement with the conjecture discussed in the text.

display the behavior of the gap as a function of φ and for q = 0 and p = 3, 6, . . . , 51.

As can be seen, ∆ is a monotonously decreasing (increasing) function of p (of φ in the

interval [0, 1/2]). We have also observed that the way ∆ vanishes when p increases

depends on φ. However, the lack of large-p data prevents to perform a sound analysis

of these behaviors.
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As already observed in the small-φ limit (see Table 8.1), the maximum value of the gap

is obtained for the largest vortex density satisfying Eq. (8.21), i.e., ν = 1/3, but it is

also obtained for the largest possible flux, i.e., φ = 1/2. In this case we can derive the

exact expression of the gap. Since the unit cell of the vortex superlattice which realizes

the vortex filling ν = 1/3 consists of six sites, one has to diagonalize a 6 × 6 matrix.

Denoting x∗, the smallest-positive root of the following polynomial

P (x) = x6 − 18 x5 + 117 x4 − 340 x3 + 428 x2 − 176 x+ 16, (8.47)

one gets

∆(p = 1, q = 1, φ = 1/2) = 2
√
x∗ ' 0.70884. (8.48)

Let us remind that for φ = 1/2 the problem considered here is directly connected to

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

3
15

27
39

51
p

0
1/8

1/4
3/8

1/2

φ

0.2

0.4

0.6

∆

Figure 8.8: ∆ as a function of φ and p (for q = 0). The maximum is reached for p = 3
and φ = 1/2 where ∆ ' 0.611132.

Kitaev’s honeycomb model, where the value of the (effective) flux in each elementary

plaquette is restricted to φ = 0 or 1/2. This correspondence allowed Kitaev to identify

the vortex configuration where the ground state of his system (Fermi sea at half-filling

in the present electron language) lies. Indeed, as early suggested in the flux-phase

framework [199–201], the lowest energy at half-filling is obtained for φ = 0. In this

problem, the more general question was: for a given electron density, what is the flux

density (and the flux pattern) which minimizes the energy? Although the answer has

been provided by Lieb [179] for the special case of half-filling, exact results are still

missing for arbitrary electron density.

An interesting question is how to observe this metal-insulator transition induced by

a vortex superlattice in the honeycomb lattice. Obviously, the main difficulty is the

realization of the superlattice with the ad hoc parameters. The most realistic choice

would be a flux φ = 1/2 for which vortices and antivortices are equivalent and one
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can use the exact correspondence to the Kitaev model for which many experimental

proposals exist [51–53, 170, 171]. Otherwise, in the context of graphene, a type-II

superconductor might be used in the mixed state where the Abrikosov vortex lattice is

found. Then, given φ = 1/2, one could think about gluing a graphene sheet on top of

the superconductor. However, one faces the problem that the vortex core is much larger

than a single elementary plaquette. One therefore has to investigate the gap-opening

problem in the presence of extended though localized flux spots. Another appealing

approach would be to consider optical flux lattices recently suggested in Refs. [202, 203]

that seem especially adapted to our problem.

Finally, given the occurrence of Dirac points in many experimental devices (see Refs. [198,

204] for a recent discussion), we hope that the present work will motivate further investi-

gations concerning the fate of these singularities in the presence of a vortex superlattice.

8.4 Chapter summary

In this study, we have introduced an infinite family of exactly solvable models based on

Kitaev’s exactly solvable honeycomb model on trivalent lattices. The original model by

Kitaev is one of the simplest examples of a system with a topologically-ordered ground

state. The gapped elementary excitations are fermions as well as Abelian Z2 anyons.

When a time-reversal symmetry breaking terms is added, new topological phases arise

with non-Abelian Ising anyons as elementary excitations. In literature, a variety of

extensions of the Kitaev model has been proposed, most of which suggest to change

the lattice (maintaining its trivalent structure). In contrast, our idea is to keep the

honeycomb lattice and change the link configurations or, for a fixed link distribution, to

vary the flux configurations. As we have shown, changing the distribution of coupling

types in the Kitaev model can lead to major changes in the phase diagram, e.g., in our

covering III the gapless phase is reduced to a single point. We have investigated the effect

of vortex superlattices in Kitaev’s original model (at its isotropic point) by considering

it as a special case of graphene in a strongly-modulated magnetic field. Surprisingly,

certain vortex configurations may open a gap. We explain the gap opening mechanism

by showing that a magnetic superlattice leads to a direct coupling of the Dirac cones.

In addition, we perform a second-order perturbation theory and obtain the gap as a

function of the superlattice.

The present study raises a complementary question: given a flux density, what is the

flux pattern which maximizes the gap? Undoubtedly, this question is even more difficult

and the answer likely depends on the electron density. For the Kitaev model (half-

filling and φ = 0, 1/2), we investigated several periodic configurations corresponding to
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fixed flux density ν satisfying (8.21) and we are led to conjecture that the flux pattern

maximizing the gap is always L(3, 0). One way to understand this result is to argue that

the vortex-vortex interaction for φ = 1/2 leads to a formation of a triangular (Abrikosov-

like) superlattice as an optimal pattern. However, it would be valuable to prove this

result rigorously. Alternatively, one could also try to find gapped flux configurations for

arbitrary ν. It would also be worth adding further hopping processes, as discussed in

Ref. [205], that may give rise to a nontrivial insulator. Such considerations are clearly

beyond the scope of the present work, but we hope to have underlined that interesting

phenomena may occur for nontrivial vortex configurations in the honeycomb lattice (see

also Refs. [187, 188] for related studies of the Kitaev model). An obvious consequence of

our results for the Kitaev model is that there must be a finite gapped region around the

isotropic point where a gap is induced by the vortex superlattice. The reason is that an

insulator, as the one considered here, is robust to small deformations like for example

anisotropies in the hopping elements.





Chapter 9
Summary and Discussion

In this chapter we outline the results obtained in this thesis and give a perspective for

further studies.

Computational aspects

We have considered the toric code in a uniform magnetic field. In contrast to previ-

ous studies, limited to a single transverse or parallel fields, we allow the field to point

in an arbitrary direction. As we have explained in Section 4.3, this brings about a

substantial increase in complexity concerning the quantum fluctuations. Therefore, we

have optimized the pCUT method to give results valid in the thermodynamic limit from

calculations on finite rectangular checkerboard graphs with open boundary conditions.

With this optimization, we were able to perform perturbation theory up to high orders.

We have computed the series expansion of the ground-state energy in the low-field limit

up to order 10, the single-quasi-particle dispersion up to order 8 (order 9, in a parallel

field), and matrix elements of the effective two-quasi-particle sub-block up to order 6. In

the high-field limit, we have computed the series expansion of the ground-state energy,

as well as the single quasi-particle dispersion up to order 5. For the specific case of zero

transverse field and a symmetric parallel field (hx = hz) the series have been obtained

up to order 7.

A possible optimization of this procedure could be a full graph expansion. Also one

could use floats instead of rational numbers for the coefficients of the series. Obviously,

a magnetic field in a specific direction is much easier to handle. Thus it could be useful

to perform a series expansion for particular interesting points that we have identified in

167
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the phase diagram.

Phase diagram of the toric code

Using various extrapolation schemes and our perturbative series of the single-anyon

dispersion, as well as iPEPS data provided by Dr. Román Orús, we have determined

the boundary of the topological phase of the toric code in a magnetic field. For specific

points of the phase diagram we were able to compare to known results and estimate the

precision of our calculations. In a three-dimensional view, the topological phase of the

toric code is bounded by two second-order and one first-order phase transition planes.

In regions where the phase transition is of second order, we have computed critical

exponents which agree with the universality class of the 3d Ising model. The phase

transition on the symmetry plane hx = hz clearly belongs to a different universality

class. In the high-field limit, results are less conclusive. However, it seems that the

first-order transition line in the plane hy = 0 evolves into an additional first-order plane

for hy > 0.

Several open questions concerning the phase diagram still remain. It is not fully clear

whether the continuously varying gap exponent on the symmetry plane hx = hz is a

physical feature or rather a crossover between parameter regions with different univer-

sality classes. A natural task would be to use iPEPS in order to investigate the shape

of the first-order transition plane which we roughly outlined with high-field expansions.

Additionally, one could try to push these expansions to higher orders and analyze the

behavior of bound states in the high-field limit. It would be interesting to find out

whether the intersection point Pcrit of all three phase transition planes is a conformal

quantum critical point or not. We have observed a remarkable agreement in our series

extrapolations at Pcrit. Thus, we were able to determine its precise location and found

gap exponents very close to z = 2 and ν = 0.5. Furthermore, it would be interesting to

see what kind of physics is found in models similar to the toric code, i.e., lattice models

with topologically-ordered ground states. Possible candidates are the toric code with

asymmetric or negative amplitudes of charges and fluxes, the toric code on different

lattices, the ZN toric code or string-net models.

Bound states and dynamical correlation functions

We have computed matrix elements of the effective low-energy Hamiltonian in the two-

quasi-particle subspace. In a next step, we have used exact diagonalizations to determine

the spectrum in the bosonic as well as in the fermionic channels of the model. We have
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found and analyzed bound states and their dependence on the magnetic field. In addi-

tion, we have computed the density of states as well as dynamical correlation functions

and have studied how they are affected by a magnetic field. We have understood cer-

tain features of the two-particle continuum from single-particle dispersions and found a

symmetry argument, explaining why the spectral density of certain bound states is very

high or suppressed.

Of course, the most exciting continuation of this study would be a comparison with

experimental data. However, to this day, the toric code has not been realized, although

many experimental proposals exist. The fate of bound states in the parameter region

close to the phase transition could be determined with optimized perturbation theory

which allows to extrapolate the matrix elements of the effective Hamiltonian. The anal-

ysis of spectral densities close to the phase transition point should also involve a study of

the four-particle channel which cannot be neglected for relatively high magnetic fields.

However, it is a highly non-trivial task to obtain and especially diagonalize the four-

particle block of the effective Hamiltonian.

Kitaev’s honeycomb model

We have found that, in its gapless phase, Kitaev’s honeycomb model may acquire a gap in

the presence of a vortex superlattice. This is particularly interesting because this vortex

lattice does not break the time-reversal symmetry. We have generalized the problem to

the one of graphene in a strongly-modulated magnetic field and have explained how the

symmetry of the vortex superlattice is the relevant factor in the gap-opening mechanism.

Using perturbation theory, we have shown that this gap vanishes as νlnν−1 in the limit

of low vortex density ν.

Since we have only studied a certain subclass of vortex superlattices (the ones with the

triangular symmetry of the honeycomb), it is natural to ask whether other vortex con-

figurations (regular or random) would open this gap or minimize the energy for a fixed

vortex filling.

Concluding remarks

In this thesis, we aimed to learn more about topological phases under a perturbation.

We have analyzed two standard models in this area of research: Kitaev’s toric code and

honeycomb models. These models are among the simplest ones with topologically or-

dered ground states, and therefore often serve as trial candidates to study the properties

of topologically-ordered matter as well as properties of elementary excitations with frac-

tionalized quantum numbers. They are good candidates to realize a topological quantum
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memory so that it is important to know how stable the topological phase is under ex-

ternal perturbations. We have answered this question for the toric code in a uniform

magnetic field through a quantitative analysis of the boundaries of its topological phase.

Despite a tremendous interest in the toric code, this model has not yet been realized in

an experiment. The spectral properties of the toric code in a magnetic field, especially

the dynamical correlation functions computed in this thesis, predict distinct features

one should observe in an experiment. In Kitaev’s honeycomb model, we have found

an interesting gap-opening mechanism and we have illuminated the connection between

this model in a vortex superlattice and graphene in a strongly modulated magnetic field.

Our study of topological quantum phase transitions in the toric code has been performed

by means of series expansions in combination with a variational method. This approach

opens a promising route to study a wide range of distinct models with topologically

ordered ground states.



Appendix A
Effective operators

A.1 Toric code in the low-field limit

When the toric code is perturbed by a uniform magnetic field, the action of Pauli matrices can
be represented in terms of charge and flux creation and annihilation operators. The perturbing
operators act on individual spins of the lattice and thus modify the local eigenvalues of the
neighboring stars and plaquettes. In the same spirit as in Section 5.3.1, we introduce a notation
where a local state on an elementary piece of the toric code lattice is represented by set of bits.
For example, the state shown in Figure A.1 will be denoted as |00000〉 since it contains zero

⇒
A1

A2

B1

B2

s |A1, A2;B1, B2; s〉

Figure A.1: Representing a local toric code state by a set of bits. The eigenvalues of As
(white tiles) and Bp (gray tiles) are either +1 or -1, depending on whether a particle is present
or not. Our convention is that an absent particle is represented by a bit 0, otherwise the bit
is set to 1. The bit s represents the spin-1/2 degree of freedom and will be set to 0 (1) if
the corresponding spin is up (down). We follow the convention that the degrees of freedom
denoted on the left are represented by the ket-vector on the right, where operators are replaced
by bits representing the corresponding eigenvalues.

particles and the spin is down. With this notation at hand the action of Pauli operators has
been summarized in Tables A.1, A.2, and A.3.

T0 T+2 T−2

|10;B1B2; 0〉 → |01;B1B2; 0〉
|01;B1B2; 0〉 → |10;B1B2; 0〉
|10;B1B2; 1〉 → − |01;B1B2; 1〉
|01;B1B2; 1〉 → − |10;B1B2; 1〉

|00;B1B2; 0〉 → |11;B1B2; 0〉
|00;B1B2; 1〉 → − |11;B1B2; 1〉

|11;B1B2; 0〉 → |00;B1B2; 0〉
|11;B1B2; 1〉 → − |00;B1B2; 1〉

Table A.1: Action of σz. B1 and B2 can independently be replaced by bits 0 or 1.
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T0 T+2 T−2

|A1A2; 10; 0〉 → |A1A2; 01; 1〉
|A1A2; 01; 0〉 → |A1A2; 10; 1〉
|A1A2; 10; 1〉 → |A1A2; 01; 0〉
|A1A2; 01; 1〉 → |A1A2; 10; 0〉

|A1A2; 00; 0〉 → |A1A2; 11; 1〉
|A1A2; 00; 1〉 → |A1A2; 11; 0〉

|A1A2; 11; 0〉 → |A1A2; 00; 1〉
|A1A2; 11; 1〉 → |A1A2; 00; 0〉

Table A.2: Action of σx. A1 and A2 can independently be replaced by bits 0 or 1.

T0 T+2 T−2

|11; 00; 0〉 → i |00; 11; 1〉
|11; 00; 1〉 → −i |00; 11; 0〉
|00; 11; 0〉 → i |11; 00; 1〉
|00; 11; 1〉 → −i |11; 00; 0〉
|10; 10; 0〉 → i |01; 01; 1〉
|10; 01; 0〉 → i |01; 10; 1〉
|01; 10; 0〉 → i |10; 01; 1〉
|01; 01; 0〉 → i |10; 10; 1〉
|10; 10; 1〉 → −i |01; 01; 0〉
|10; 01; 1〉 → −i |01; 10; 0〉
|01; 10; 1〉 → −i |10; 01; 0〉
|01; 01; 1〉 → −i |10; 10; 0〉

|10; 00; 0〉 → i |01; 11; 1〉
|01; 00; 0〉 → i |10; 11; 1〉
|00; 10; 0〉 → i |11; 01; 1〉
|00; 01; 0〉 → i |11; 10; 1〉
|10; 00; 1〉 → −i |01; 11; 0〉
|01; 00; 1〉 → −i |10; 11; 0〉
|00; 10; 1〉 → −i |11; 01; 0〉
|00; 01; 1〉 → −i |11; 10; 0〉

|01; 11; 0〉 → i |10; 00; 1〉
|10; 11; 0〉 → i |01; 00; 1〉
|11; 01; 0〉 → i |00; 10; 1〉
|11; 10; 0〉 → i |00; 01; 1〉
|01; 11; 1〉 → −i |10; 00; 0〉
|10; 11; 1〉 → −i |01; 00; 0〉
|11; 01; 1〉 → −i |00; 10; 0〉
|11; 10; 1〉 → −i |00; 01; 0〉

T+4 T−4

|00; 00; 0〉 → i |11; 11; 1〉
|00; 00; 1〉 → −i |11; 11; 0〉

|11; 11; 0〉 → i |00; 00; 1〉
|11; 11; 1〉 → −i |00; 00; 0〉

Table A.3: Action of σy.

A.2 Toric code in the high-field limit

In the following, we list the effective action of the toric code operators in the limit of high mag-
netic fields. The 24 possible four-spin states of the elementary cell will be denoted, similarly to
the previous paragraph, by a set of four bits where 0 represents a spin up and 1 represents a spin
down. The action of Ãs [as defined in (5.94)] is gathered into tables where each header shows
the corresponding effective particle creation and annihilation operator Tn.

T+4

|0000〉 → − sin4φ |1111〉

T−4

|1111〉 → − sin4φ |0000〉

T+3

|1000〉 → − cosφ sin3φ |1111〉
|0100〉 → − cosφ sin3φ |1111〉
|0010〉 → − cosφ sin3φ |1111〉
|0001〉 → − cosφ sin3φ |1111〉
|0000〉 → cosφ sin3φ

“
|1110〉 + |1101〉 + |1011〉 + |0111〉

”

T−3

|1111〉 → − cosφ sin3φ
“
|1000〉 + |0100〉 + |0010〉 + |0001〉

”
|1110〉 → cosφ sin3φ |0000〉
|1101〉 → cosφ sin3φ |0000〉
|1011〉 → cosφ sin3φ |0000〉
|0111〉 → cosφ sin3φ |0000〉
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T+2

|1100〉 → − cos2φ sin2φ |1111〉
|1010〉 → − cos2φ sin2φ |1111〉
|1001〉 → − cos2φ sin2φ |1111〉
|0110〉 → − cos2φ sin2φ |1111〉
|0101〉 → − cos2φ sin2φ |1111〉
|0011〉 → − cos2φ sin2φ |1111〉
|1000〉 → − sin4φ |0111〉 + cos2φ sin2φ

“
|1110〉 + |1101〉 + |1011〉

”
|0100〉 → − sin4φ |1011〉 + cos2φ sin2φ

“
|1110〉 + |1101〉 + |0111〉

”
|0010〉 → − sin4φ |1101〉 + cos2φ sin2φ

“
|1110〉 + |1011〉 + |0111〉

”
|0001〉 → − sin4φ |1110〉 + cos2φ sin2φ

“
|1101〉 + |1011〉 + |0111〉

”
|0000〉 → − cos2φ sin2φ

“
|1100〉 + |1010〉 + |1001〉 + |0110〉 + |0101〉 + |0011〉

”

T−2

|1111〉 → − cos2φ sin2φ
“
|1100〉 + |1010〉 + |1001〉 + |0110〉 + |0101〉 + |0011〉

”
|1110〉 → − sin4φ |0001〉 + cos2φ sin2φ

“
|1000〉 + |0100〉 + |0010〉

”
|1101〉 → − sin4φ |0010〉 + cos2φ sin2φ

“
|1000〉 + |0100〉 + |0001〉

”
|1011〉 → − sin4φ |0100〉 + cos2φ sin2φ

“
|1000〉 + |0010〉 + |0001〉

”
|0111〉 → − sin4φ |1000〉 + cos2φ sin2φ

“
|0100〉 + |0010〉 + |0001〉

”
|1100〉 → − cos2φ sin2φ |0000〉
|1010〉 → − cos2φ sin2φ |0000〉
|1001〉 → − cos2φ sin2φ |0000〉
|0110〉 → − cos2φ sin2φ |0000〉
|0101〉 → − cos2φ sin2φ |0000〉
|0011〉 → − cos2φ sin2φ |0000〉

T+1

|1110〉 → − cos3φ sinφ |1111〉
|1101〉 → − cos3φ sinφ |1111〉
|1011〉 → − cos3φ sinφ |1111〉
|0111〉 → − cos3φ sinφ |1111〉
|1100〉 → cos3φ sinφ

“
|1110〉 + |1101〉

”
− cosφ sin3φ

“
|1011〉 + |0111〉

”
|1010〉 → cos3φ sinφ

“
|1110〉 + |1011〉

”
− cosφ sin3φ

“
|1101〉 + |0111〉

”
|1001〉 → cos3φ sinφ

“
|1101〉 + |1011〉

”
− cosφ sin3φ

“
|1110〉 + |0111〉

”
|0110〉 → cos3φ sinφ

“
|1110〉 + |0111〉

”
− cosφ sin3φ

“
|1101〉 + |1011〉

”
|0101〉 → cos3φ sinφ

“
|1101〉 + |0111〉

”
− cosφ sin3φ

“
|1110〉 + |1011〉

”
|0011〉 → cos3φ sinφ

“
|1011〉 + |0111〉

”
− cosφ sin3φ

“
|1110〉 + |1101〉

”
|1000〉 → − cos3φ sinφ

“
|1100〉 + |1010〉 + |1001〉

”
+ cosφ sin3φ

“
|0110〉 + |0101〉 + |0011〉

”
|0100〉 → − cos3φ sinφ

“
|1100〉 + |0110〉 + |0101〉

”
+ cosφ sin3φ

“
|1010〉 + |1001〉 + |0011〉

”
|0010〉 → − cos3φ sinφ

“
|1010〉 + |0110〉 + |0011〉

”
+ cosφ sin3φ

“
|1100〉 + |1001〉 + |0101〉

”
|0001〉 → − cos3φ sinφ

“
|1001〉 + |0101〉 + |0011〉

”
+ cosφ sin3φ

“
|1100〉 + |1010〉 + |0110〉

”
|0000〉 → cos3φ sinφ

“
|1000〉 + |0100〉 + |0010〉 + |0001〉

”

T−1

|1111〉 → − cos3φ sinφ
“
|1110〉 + |1101〉 + |1011〉 + |0111〉

”
|1110〉 → cos3φ sinφ

“
|1100〉 + |1010〉 + |0110〉

”
− cosφ sin3φ

“
|1001〉 + |0101〉 + |0011〉

”
|1101〉 → cos3φ sinφ

“
|1100〉 + |1001〉 + |0101〉

”
− cosφ sin3φ

“
|1010〉 + |0110〉 + |0011〉

”
|1011〉 → cos3φ sinφ

“
|1010〉 + |1001〉 + |0011〉

”
− cosφ sin3φ

“
|1100〉 + |0110〉 + |0101〉

”
|0111〉 → cos3φ sinφ

“
|0110〉 + |0101〉 + |0011〉

”
− cosφ sin3φ

“
|1100〉 + |1010〉 + |1001〉

”
|1100〉 → − cos3φ sinφ

“
|1000〉 + |0100〉

”
+ cosφ sin3φ

“
|0010〉 + |0001〉

”
|1010〉 → − cos3φ sinφ

“
|1000〉 + |0010〉

”
+ cosφ sin3φ

“
|0100〉 + |0001〉

”
|1001〉 → − cos3φ sinφ

“
|1000〉 + |0001〉

”
+ cosφ sin3φ

“
|0100〉 + |0010〉

”
|0110〉 → − cos3φ sinφ

“
|0100〉 + |0010〉

”
+ cosφ sin3φ

“
|1000〉 + |0001〉

”
|0101〉 → − cos3φ sinφ

“
|0100〉 + |0001〉

”
+ cosφ sin3φ

“
|1000〉 + |0010〉

”
|0011〉 → − cos3φ sinφ

“
|0010〉 + |0001〉

”
+ cosφ sin3φ

“
|1000〉 + |0100〉

”
|1000〉 → cos3φ sinφ |0000〉
|0100〉 → cos3φ sinφ |0000〉
|0010〉 → cos3φ sinφ |0000〉
|0001〉 → cos3φ sinφ |0000〉
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T0

|1111〉 → − cos4φ |1111〉
|1110〉 → − cos2φ sin2φ

“
|1101〉 + |1011〉 + |0111〉

”
+ cos4φ |1110〉

|1101〉 → − cos2φ sin2φ
“
|1110〉 + |1011〉 + |0111〉

”
+ cos4φ |1101〉

|1011〉 → − cos2φ sin2φ
“
|1110〉 + |1101〉 + |0111〉

”
+ cos4φ |1011〉

|0111〉 → − cos2φ sin2φ
“
|1110〉 + |1101〉 + |1011〉

”
+ cos4φ |0111〉

|1100〉 → cos2φ sin2φ
“
|1010〉 + |1001〉 + |0110〉 + |0101〉

”
− cos4φ |1100〉 − sin4φ |0011〉

|1010〉 → cos2φ sin2φ
“
|1100〉 + |1001〉 + |0110〉 + |0011〉

”
− cos4φ |1010〉 − sin4φ |0101〉

|1001〉 → cos2φ sin2φ
“
|1100〉 + |1010〉 + |0101〉 + |0011〉

”
− cos4φ |1001〉 − sin4φ |0110〉

|0110〉 → cos2φ sin2φ
“
|1100〉 + |1010〉 + |0101〉 + |0011〉

”
− sin4φ |1001〉 − cos4φ |0110〉

|0101〉 → cos2φ sin2φ
“
|1100〉 + |1001〉 + |0110〉 + |0011〉

”
− sin4φ |1010〉 − cos4φ |0101〉

|0011〉 → cos2φ sin2φ
“
|1010〉 + |1001〉 + |0110〉 + |0101〉

”
− sin4φ |1100〉 − cos4φ |0011〉

|1000〉 → − cos2φ sin2φ
“
|0100〉 + |0010〉 + |0001〉

”
+ cos4φ |1000〉

|0100〉 → − cos2φ sin2φ
“
|1000〉 + |0010〉 + |0001〉

”
+ cos4φ |0100〉

|0010〉 → − cos2φ sin2φ
“
|1000〉 + |0100〉 + |0001〉

”
+ cos4φ |0010〉

|0001〉 → − cos2φ sin2φ
“
|1000〉 + |0100〉 + |0010〉

”
+ cos4φ |0001〉

|0000〉 → − cos4φ |0000〉

Action of the operator B̃p as defined in (5.95).

T+4

|0000〉 → − (cosφ cosθ − i sinθ)4 |1111〉

T−4

|1111〉 → − (cosφ cosθ + i sinθ)4 |0000〉

T+3

|1000〉 → sinφ cosθ (cosφ cosθ − i sinθ)3 |1111〉

|0100〉 → sinφ cosθ (cosφ cosθ − i sinθ)3 |1111〉

|0010〉 → sinφ cosθ (cosφ cosθ − i sinθ)3 |1111〉

|0001〉 → sinφ cosθ (cosφ cosθ − i sinθ)3 |1111〉

|0000〉 → − sinφ cosθ (cosφ cosθ − i sinθ)3
“
|1110〉 + |1101〉 + |1011〉 + |0111〉

”

T−3

|1111〉 → sinφ cosθ (cosφ cosθ + i sinθ)3
“
|1000〉 + |0100〉 + |0010〉 + |0001〉

”
|1110〉 → − sinφ cosθ (cosφ cosθ + i sinθ)3 |0000〉

|1101〉 → − sinφ cosθ (cosφ cosθ + i sinθ)3 |0000〉

|1011〉 → − sinφ cosθ (cosφ cosθ + i sinθ)3 |0000〉

|0111〉 → − sinφ cosθ (cosφ cosθ + i sinθ)3 |0000〉

T+2

|1100〉 → − sin2φ cos2θ (cosφ cosθ − i sinθ)2 |1111〉

|1010〉 → − sin2φ cos2θ (cosφ cosθ − i sinθ)2 |1111〉

|1001〉 → − sin2φ cos2θ (cosφ cosθ − i sinθ)2 |1111〉

|0110〉 → − sin2φ cos2θ (cosφ cosθ − i sinθ)2 |1111〉

|0101〉 → − sin2φ cos2θ (cosφ cosθ − i sinθ)2 |1111〉

|0011〉 → − sin2φ cos2θ (cosφ cosθ − i sinθ)2 |1111〉

|1000〉 → sin2φ cos2θ (cosφ cosθ − i sinθ)2
“
|1110〉 + |1101〉 + |1011〉

”
− (cosφ cosθ − i sinθ)3 (cosφ cosθ + i sinθ) |0111〉

|0100〉 → sin2φ cos2θ (cosφ cosθ − i sinθ)2
“
|1110〉 + |1101〉 + |0111〉

”



Appendix A. Effective operators 175

− (cosφ cosθ − i sinθ)3 (cosφ cosθ + i sinθ) |1011〉

|0010〉 → sin2φ cos2θ (cosφ cosθ − i sinθ)2
“
|1110〉 + |1011〉 + |0111〉

”
− (cosφ cosθ − i sinθ)3 (cosφ cosθ + i sinθ) |1101〉

|0001〉 → sin2φ cos2θ (cosφ cosθ − i sinθ)2
“
|1101〉 + |1011〉 + |0111〉

”
− (cosφ cosθ − i sinθ)3 (cosφ cosθ + i sinθ) |1110〉

|0000〉 → − sin2φ cos2θ (cosφ cosθ − i sinθ)2
“
|1100〉 + |1010〉 + |1001〉 + |0110〉 + |0101〉 + |0011〉

”

T−2

|1111〉 → − sin2φ cos2θ (cosφ cosθ + i sinθ)2
“
|1100〉 + |1010〉 + |1001〉 + |0110〉 + |0101〉 + |0011〉

”
|1110〉 → sin2φ cos2θ (cosφ cosθ + i sinθ)2

“
|1000〉 + |0100〉 + |0010〉

”
− (cosφ cosθ − i sinθ) (cosφ cosθ + i sinθ)3 |0001〉

|1101〉 → sin2φ cos2θ (cosφ cosθ + i sinθ)2
“
|1000〉 + |0100〉 + |0001〉

”
− (cosφ cosθ − i sinθ) (cosφ cosθ + i sinθ)3 |0010〉

|1011〉 → sin2φ cos2θ (cosφ cosθ + i sinθ)2
“
|1000〉 + |0010〉 + |0001〉

”
− (cosφ cosθ − i sinθ) (cosφ cosθ + i sinθ)3 |0100〉

|0111〉 → sin2φ cos2θ (cosφ cosθ + i sinθ)2
“
|0100〉 + |0010〉 + |0001〉

”
− (cosφ cosθ − i sinθ) (cosφ cosθ + i sinθ)3 |1000〉

|1100〉 → − sin2φ cos2θ (cosφ cosθ + i sinθ)2 |0000〉

|1010〉 → − sin2φ cos2θ (cosφ cosθ + i sinθ)2 |0000〉

|1001〉 → − sin2φ cos2θ (cosφ cosθ + i sinθ)2 |0000〉

|0110〉 → − sin2φ cos2θ (cosφ cosθ + i sinθ)2 |0000〉

|0101〉 → − sin2φ cos2θ (cosφ cosθ + i sinθ)2 |0000〉

|0011〉 → − sin2φ cos2θ (cosφ cosθ + i sinθ)2 |0000〉

T+1

|1110〉 → sin3φ cos3θ (cosφ cosθ − i sinθ) |1111〉

|1101〉 → sin3φ cos3θ (cosφ cosθ − i sinθ) |1111〉

|1011〉 → sin3φ cos3θ (cosφ cosθ − i sinθ) |1111〉

|0111〉 → sin3φ cos3θ (cosφ cosθ − i sinθ) |1111〉

|1100〉 → − sin3φ cos3θ (cosφ cosθ − i sinθ)
“
|1110〉 + |1101〉

”
+ sinφ cosθ (cosφ cosθ − i sinθ)2 (cosφ cosθ + i sinθ)

“
|1011〉 + |0111〉

”
|1010〉 → − sin3φ cos3θ (cosφ cosθ − i sinθ)

“
|1110〉 + |1011〉

”
+ sinφ cosθ (cosφ cosθ − i sinθ)2 (cosφ cosθ + i sinθ)

“
|1101〉 + |0111〉

”
|1001〉 → − sin3φ cos3θ (cosφ cosθ − i sinθ)

“
|1101〉 + |1011〉

”
+ sinφ cosθ (cosφ cosθ − i sinθ)2 (cosφ cosθ + i sinθ)

“
|1110〉 + |0111〉

”
|0110〉 → − sin3φ cos3θ (cosφ cosθ − i sinθ)

“
|1110〉 + |0111〉

”
+ sinφ cosθ (cosφ cosθ − i sinθ)2 (cosφ cosθ + i sinθ)

“
|1101〉 + |1011〉

”
|0101〉 → − sin3φ cos3θ (cosφ cosθ − i sinθ)

“
|1101〉 + |0111〉

”
+ sinφ cosθ (cosφ cosθ − i sinθ)2 (cosφ cosθ + i sinθ)

“
|1110〉 + |1011〉

”
|0011〉 → − sin3φ cos3θ (cosφ cosθ − i sinθ)

“
|1011〉 + |0111〉

”
+ sinφ cosθ (cosφ cosθ − i sinθ)2 (cosφ cosθ + i sinθ)

“
|1110〉 + |1101〉

”
|1000〉 → sin3φ cos3θ (cosφ cosθ − i sinθ)

“
|1100〉 + |1010〉 + |1001〉

”
− sinφ cosθ (cosφ cosθ − i sinθ)2 (cosφ cosθ + i sinθ)

“
|0110〉 + |0101〉 + |0011〉

”
|0100〉 → sin3φ cos3θ (cosφ cosθ − i sinθ)

“
|1100〉 + |0110〉 + |0101〉

”
− sinφ cosθ (cosφ cosθ − i sinθ)2 (cosφ cosθ + i sinθ)

“
|1010〉 + |1001〉 + |0011〉

”
|0010〉 → sin3φ cos3θ (cosφ cosθ − i sinθ)

“
|1010〉 + |0110〉 + |0011〉

”
− sinφ cosθ (cosφ cosθ − i sinθ)2 (cosφ cosθ + i sinθ)

“
|1100〉 + |1001〉 + |0101〉

”
|0001〉 → sin3φ cos3θ (cosφ cosθ − i sinθ)

“
|1001〉 + |0101〉 + |0011〉

”
− sinφ cosθ (cosφ cosθ − i sinθ)2 (cosφ cosθ + i sinθ)

“
|1100〉 + |1010〉 + |0110〉

”
|0000〉 → − sin3φ cos3θ (cosφ cosθ − i sinθ)

“
|1000〉 + |0100〉 + |0010〉 + |0001〉

”



T−1

|1111〉 → sin3φ cos3θ (cosφ cosθ + i sinθ)
“
|1110〉 + |1101〉 + |1011〉 + |0111〉

”
|1110〉 → − sin3φ cos3θ (cosφ cosθ + i sinθ)

“
|1100〉 + |1010〉 + |0110〉

”
+ sinφ cosθ (cosφ cosθ − i sinθ) (cosφ cosθ + i sinθ)2

“
|1001〉 + |0101〉 + |0011〉

”
|1101〉 → − sin3φ cos3θ (cosφ cosθ + i sinθ)

“
|1100〉 + |1001〉 + |0101〉

”
+ sinφ cosθ (cosφ cosθ − i sinθ) (cosφ cosθ + i sinθ)2

“
|1010〉 + |0110〉 + |0011〉

”
|1011〉 → − sin3φ cos3θ (cosφ cosθ + i sinθ)

“
|1010〉 + |1001〉 + |0011〉

”
+ sinφ cosθ (cosφ cosθ − i sinθ) (cosφ cosθ + i sinθ)2

“
|1100〉 + |0110〉 + |0101〉

”
|0111〉 → − sin3φ cos3θ (cosφ cosθ + i sinθ)

“
|0110〉 + |0101〉 + |0011〉

”
+ sinφ cosθ (cosφ cosθ − i sinθ) (cosφ cosθ + i sinθ)2

“
|1100〉 + |1010〉 + |1001〉

”
|1100〉 → sin3φ cos3θ (cosφ cosθ + i sinθ)

“
|1000〉 + |0100〉

”
− sinφ cosθ (cosφ cosθ − i sinθ) (cosφ cosθ + i sinθ)2

“
|0010〉 + |0001〉

”
|1010〉 → sin3φ cos3θ (cosφ cosθ + i sinθ)

“
|1000〉 + |0010〉

”
− sinφ cosθ (cosφ cosθ − i sinθ) (cosφ cosθ + i sinθ)2

“
|0100〉 + |0001〉

”
|1001〉 → sin3φ cos3θ (cosφ cosθ + i sinθ)

“
|1000〉 + |0001〉

”
− sinφ cosθ (cosφ cosθ − i sinθ) (cosφ cosθ + i sinθ)2

“
|0100〉 + |0010〉

”
|0110〉 → sin3φ cos3θ (cosφ cosθ + i sinθ)

“
|0100〉 + |0010〉

”
− sinφ cosθ (cosφ cosθ − i sinθ) (cosφ cosθ + i sinθ)2

“
|1000〉 + |0001〉

”
|0101〉 → sin3φ cos3θ (cosφ cosθ + i sinθ)

“
|0100〉 + |0001〉

”
− sinφ cosθ (cosφ cosθ − i sinθ) (cosφ cosθ + i sinθ)2

“
|1000〉 + |0010〉

”
|0011〉 → sin3φ cos3θ (cosφ cosθ + i sinθ)

“
|0010〉 + |0001〉

”
− sinφ cosθ (cosφ cosθ − i sinθ) (cosφ cosθ + i sinθ)2

“
|1000〉 + |0100〉

”
|1000〉 → − sin3φ cos3θ (cosφ cosθ + i sinθ) |0000〉

|0100〉 → − sin3φ cos3θ (cosφ cosθ + i sinθ) |0000〉

|0010〉 → − sin3φ cos3θ (cosφ cosθ + i sinθ) |0000〉

|0001〉 → − sin3φ cos3θ (cosφ cosθ + i sinθ) |0000〉

T0

|1111〉 → − sin4φ cos4θ |1111〉

|1110〉 → − sin2φ cos2θ
“
cos2φ cos2θ + sin2θ

” “
|1101〉 + |1011〉 + |0111〉

”
+ sin4φ cos4θ |1110〉

|1101〉 → − sin2φ cos2θ
“
cos2φ cos2θ + sin2θ

” “
|1110〉 + |1011〉 + |0111〉

”
+ sin4φ cos4θ |1101〉

|1011〉 → − sin2φ cos2θ
“
cos2φ cos2θ + sin2θ

” “
|1110〉 + |1101〉 + |0111〉

”
+ sin4φ cos4θ |1011〉

|0111〉 → − sin2φ cos2θ
“
cos2φ cos2θ + sin2θ

” “
|1110〉 + |1101〉 + |1011〉

”
+ sin4φ cos4θ |0111〉

|1100〉 → sin2φ cos2θ
“
cos2φ cos2θ + sin2θ

” “
|1010〉 + |1001〉 + |0110〉 + |0101〉

”
− sin4φ cos4θ |1100〉

−
“
cos2φ cos2θ + sin2θ

”2
|0011〉

|1010〉 → sin2φ cos2θ
“
cos2φ cos2θ + sin2θ

” “
|1100〉 + |1001〉 + |0110〉 + |0011〉

”
− sin4φ cos4θ |1010〉

−
“
cos2φ cos2θ + sin2θ

”2
|0101〉

|1001〉 → sin2φ cos2θ
“
cos2φ cos2θ + sin2θ

” “
|1100〉 + |1010〉 + |0101〉 + |0011〉

”
− sin4φ cos4θ |1001〉

−
“
cos2φ cos2θ + sin2θ

”2
|0110〉

|0110〉 → sin2φ cos2θ
“
cos2φ cos2θ + sin2θ

” “
|1100〉 + |1010〉 + |0101〉 + |0011〉

”
− sin4φ cos4θ |0110〉

−
“
cos2φ cos2θ + sin2θ

”2
|1001〉

|0101〉 → sin2φ cos2θ
“
cos2φ cos2θ + sin2θ

” “
|1100〉 + |1001〉 + |0110〉 + |0011〉

”
− sin4φ cos4θ |0101〉

−
“
cos2φ cos2θ + sin2θ

”2
|1010〉

|0011〉 → sin2φ cos2θ
“
cos2φ cos2θ + sin2θ

” “
|1010〉 + |1001〉 + |0110〉 + |0101〉

”
− sin4φ cos4θ |0011〉

−
“
cos2φ cos2θ + sin2θ

”2
|1100〉

|1000〉 → − sin2φ cos2θ
“
cos2φ cos2θ + sin2θ

” “
|0100〉 + |0010〉 + |0001〉

”
+ sin4φ cos4θ |1000〉

|0100〉 → − sin2φ cos2θ
“
cos2φ cos2θ + sin2θ

” “
|1000〉 + |0010〉 + |0001〉

”
+ sin4φ cos4θ |0100〉

|0010〉 → − sin2φ cos2θ
“
cos2φ cos2θ + sin2θ

” “
|1000〉 + |0100〉 + |0001〉

”
+ sin4φ cos4θ |0010〉

|0001〉 → − sin2φ cos2θ
“
cos2φ cos2θ + sin2θ

” “
|1000〉 + |0100〉 + |0010〉

”
+ sin4φ cos4θ |0001〉

|0000〉 → − sin4φ cos4θ |0000〉



Appendix B
Series results

B.1 Hopping amplitudes of a dressed charge

In the following, we list the hopping amplitudes of a single dressed charge in the low-field regime
of the toric code (4.23). The series are valid for hz ≥ hx and J = 1/2. The same quantities
for a single flux can be obtained by interchanging hx and hz. The amplitude tp,q denotes the
hopping distance pn1 + qn2, where n1 and n2 are unit vectors as defined in Figure 5.2. Due to
the symmetries of the lattice, hopping amplitudes are related through:

tp,q = tp,−q = t−p,q = t−p,−q = tq,p = tq,−p = t−q,p = t−q,−p. (B.1)
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B.2 Two-particle hopping amplitudes

As introduced in Section 5.1.3, the two-quasi-particle sector of the particle-conserving effective
Hamiltonian Heff is described by a semi-infinite hermitian matrix

H|2qp = H0 +H1 +H2, (B.27)

where H0 yields a constant energy shift of 2 since we set J = 1/2. Therefore, in what follows,
we only consider the non-trivial part of the Hamiltonian: H1 + H2. The semi-infinite tail of
this matrix can be constructed using one-particle hopping amplitudes given in Appendix B.1.
Hopping amplitudes relevant for the finite ’head’ (the size of which depends on the maximal
perturbation order) are listed in the following tables. We computed these amplitudes up to
order 6. However, they are to numerous to be listed in a written form so that we only give the
first three orders. The remaining amplitudes are available upon request.

Hopping amplitudes in the subspace Hf are denoted by td,τ
d′,τ ′, tcm

where τ and τ ′ are the initial
and final pair types, d and d′ are the corresponding mutual particle distances, and tcm the
hopping distance of the center of mass. To keep a clear overview, we list the indices and the
corresponding hopping amplitudes in a tabular form. The following table contains only hopping
amplitudes which cannot be recovered from the symmetry relation

td,τ
d′,τ ′, tcm

= td,τ
d′,τ ′,−tcm

= td′,τ ′

d,τ, tcm
, (B.28)

where the complex conjugate is denoted by an asterisk.

τ d τ ′ d′ tcm td,τ
d′,τ ′, tcm

c {0, 2} c {1, -1} {1/2, -3/2} 1
2h

3
z

c {0, 2} c {1, -1} {3/2, -1/2} 1
2h

3
z

c {0, 2} c {1, -1} {1/2, 1/2} 1
2h

2
xhz + 3

2h
3
z + 29

32h
2
yhz

c {0, 2} c {1, 1} {1/2, 3/2} 1
2h

3
z

c {0, 2} c {1, 1} {3/2, 1/2} 1
2h

3
z

c {0, 2} c {1, 1} {1/2, -1/2} 1
2h

2
xhz + 3

2h
3
z + 29

32h
2
yhz

c {0, 2} f {0, 2} {0, 1} −i hxhyhz

c {0, 2} f {0, 2} {1, 0} h2
y + i 2hxhyhz

c {0, 2} f {1, -3} {1/2, 1/2} 1
2hxh

2
y

c {0, 2} f {1, -3} {3/2, -1/2} 1
2hxh

2
y

c {0, 2} f {1, -1} {3/2, 1/2} 1
2hxh

2
y

c {0, 2} f {1, -1} {1/2, -1/2} − 3
4hxh

2
y + 3

4hxh
2
z − i

1
2hyhz

c {0, 2} f {1, 1} {3/2, -1/2} 1
2hxh

2
y

c {0, 2} f {1, 1} {1/2, 1/2} − 3
4hxh

2
y + 3

4hxh
2
z − i

1
2hyhz

c {0, 2} f {1, 3} {1/2, -1/2} 1
2hxh

2
y

c {0, 2} f {1, 3} {3/2, 1/2} 1
2hxh

2
y
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c {0, 2} f {2, -2} {1, -1} −i 1
2hxhyhz

c {0, 2} f {2, -2} {0, 0} −i hxhyhz

c {0, 2} f {2, 0} {0, 1} −i hxhyhz

c {0, 2} f {2, 0} {1, 0} −i hxhyhz

c {0, 2} f {2, 2} {1, 1} −i 1
2hxhyhz

c {0, 2} f {2, 2} {0, 0} −i hxhyhz

c {1, -3} f {0, 2} {1/2, 1/2} 1
2h

2
yhz

c {1, -3} f {0, 2} {3/2, -1/2} 1
2h

2
yhz

c {1, -3} f {1, -1} {1, -1} −i 1
2hyh

2
z

c {1, -3} f {1, 1} {0, 1} −i hyh2
z

c {1, -3} f {1, 3} {0, 0} i h3
y

c {1, -1} c {1, -1} {1, -1} 1
2h

2
z

c {1, -1} c {1, -1} {0, 0} − 5
4h

2
y + 4h2

z

c {1, -1} c {2, -2} {3/2, -3/2} 1
2h

3
z

c {1, -1} c {2, -2} {1/2, -1/2} 1
2h

2
xhz + 1

2h
3
z + 29

32h
2
yhz

c {1, -1} c {2, 0} {1/2, -3/2} 1
2h

3
z

c {1, -1} c {2, 0} {3/2, -1/2} 1
2h

3
z

c {1, -1} c {2, 0} {1/2, 1/2} 1
2h

2
xhz + 3

2h
3
z + 29

32h
2
yhz

c {1, -1} c {2, 2} {1/2, -1/2} 1
2h

3
z

c {1, -1} c {2, 2} {1/2, 3/2} − 1
2h

3
z

c {1, -1} c {2, 2} {3/2, 1/2} − 1
2h

3
z

c {1, -1} f {0, 2} {3/2, 1/2} 1
2h

2
yhz

c {1, -1} f {0, 2} {1/2, -1/2} 3
4h

2
xhz −

3
4h

2
yhz − i

1
2hxhy

c {1, -1} f {1, -3} {1, -1} −i 1
2h

2
xhy

c {1, -1} f {1, 1} {1, 1} i 1
2h

2
xhy

c {1, -1} f {1, 1} {1, -1} i 1
2hyh

2
z

c {1, -1} f {1, 1} {0, 0} hxhz + i
“

1
8h

3
y + 3

2h
2
xhy + 3

2hyh
2
z − hy

”
c {1, -1} f {1, 3} {0, 1} −i h2

xhy

c {1, -1} f {2, -2} {1/2, 1/2} 3
2h

2
yhz

c {1, -1} f {2, 0} {1/2, 3/2} 1
2h

2
yhz

c {1, -1} f {2, 0} {1/2, -1/2} 3
4h

2
xhz −

3
4h

2
yhz − i

1
2hxhy

c {1, -1} f {2, 2} {1/2, 1/2} 3
4h

2
xhz + 1

4h
2
yhz − i

1
2hxhy

c {1, -1} f {3, -1} {1, -1} −i 1
2h

2
xhy

c {1, -1} f {3, 1} {1, 0} −i h2
xhy

c {1, -1} f {3, 3} {1, 1} −i 1
2h

2
xhy

c {1, 1} c {1, 1} {1, 1} 1
2h

2
z

c {1, 1} c {1, 1} {0, 0} − 5
4h

2
y + 4h2

z

c {1, 1} c {2, -2} {1/2, -3/2} − 1
2h

3
z

c {1, 1} c {2, -2} {1/2, 1/2} 1
2h

3
z

c {1, 1} c {2, -2} {3/2, -1/2} − 1
2h

3
z

c {1, 1} c {2, 0} {1/2, 3/2} 1
2h

3
z

c {1, 1} c {2, 0} {3/2, 1/2} 1
2h

3
z

c {1, 1} c {2, 0} {1/2, -1/2} 1
2h

2
xhz + 3

2h
3
z + 29

32h
2
yhz

c {1, 1} c {2, 2} {3/2, 3/2} 1
2h

3
z

c {1, 1} c {2, 2} {1/2, 1/2} 1
2h

2
xhz + 1

2h
3
z + 29

32h
2
yhz

c {1, 1} f {0, 2} {3/2, -1/2} 1
2h

2
yhz

c {1, 1} f {0, 2} {1/2, 1/2} 3
4h

2
xhz −

3
4h

2
yhz − i

1
2hxhy

c {1, 1} f {1, -3} {0, 1} −i h2
xhy

c {1, 1} f {1, -1} {1, -1} i 1
2h

2
xhy

c {1, 1} f {1, -1} {1, 1} i 1
2hyh

2
z

c {1, 1} f {1, -1} {0, 0} hxhz + i
“

1
8h

3
y + 3

2h
2
xhy + 3

2hyh
2
z − hy

”
c {1, 1} f {1, 3} {1, 1} −i 1

2h
2
xhy

c {1, 1} f {2, -2} {1/2, -1/2} 3
4h

2
xhz + 1

4h
2
yhz − i

1
2hxhy

c {1, 1} f {2, 0} {1/2, -3/2} 1
2h

2
yhz
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c {1, 1} f {2, 0} {1/2, 1/2} 3
4h

2
xhz −

3
4h

2
yhz − i

1
2hxhy

c {1, 1} f {2, 2} {1/2, -1/2} 3
2h

2
yhz

c {1, 1} f {3, -3} {1, -1} −i 1
2h

2
xhy

c {1, 1} f {3, -1} {1, 0} −i h2
xhy

c {1, 1} f {3, 1} {1, 1} −i 1
2h

2
xhy

c {1, 3} f {0, 2} {1/2, -1/2} 1
2h

2
yhz

c {1, 3} f {0, 2} {3/2, 1/2} 1
2h

2
yhz

c {1, 3} f {1, -3} {0, 0} i h3
y

c {1, 3} f {1, -1} {0, 1} −i hyh2
z

c {1, 3} f {1, 1} {1, 1} −i 1
2hyh

2
z

c {2, -2} f {0, 2} {1, -1} −i 1
2hxhyhz

c {2, -2} f {0, 2} {0, 0} −i hxhyhz

c {2, -2} f {1, -1} {1/2, 1/2} 3
2hxh

2
y

c {2, -2} f {1, 1} {1/2, -1/2} 1
4hxh

2
y + 3

4hxh
2
z − i

1
2hyhz

c {2, -2} f {2, 0} {1, -1} −i 1
2hxhyhz

c {2, -2} f {2, 0} {0, 0} −i hxhyhz

c {2, -2} f {2, 2} {0, 1} −i 1
2hxhyhz

c {2, -2} f {2, 2} {1, 0} −i 1
2hxhyhz

c {2, 0} f {0, 2} {0, 1} −i hxhyhz

c {2, 0} f {0, 2} {1, 0} −i hxhyhz

c {2, 0} f {1, -1} {1/2, 3/2} 1
2hxh

2
y

c {2, 0} f {1, -1} {1/2, -1/2} − 3
4hxh

2
y + 3

4hxh
2
z − i

1
2hyhz

c {2, 0} f {1, 1} {1/2, -3/2} 1
2hxh

2
y

c {2, 0} f {1, 1} {1/2, 1/2} − 3
4hxh

2
y + 3

4hxh
2
z − i

1
2hyhz

c {2, 0} f {2, -2} {1, -1} −i 1
2hxhyhz

c {2, 0} f {2, -2} {0, 0} −i hxhyhz

c {2, 0} f {2, 0} {1, 0} −i hxhyhz

c {2, 0} f {2, 0} {0, 1} h2
y + i 2hxhyhz

c {2, 0} f {2, 2} {1, 1} −i 1
2hxhyhz

c {2, 0} f {2, 2} {0, 0} −i hxhyhz

c {2, 0} f {3, -1} {1/2, -3/2} 1
2hxh

2
y

c {2, 0} f {3, -1} {1/2, 1/2} 1
2hxh

2
y

c {2, 0} f {3, 1} {1/2, -1/2} 1
2hxh

2
y

c {2, 0} f {3, 1} {1/2, 3/2} 1
2hxh

2
y

c {2, 2} f {0, 2} {1, 1} −i 1
2hxhyhz

c {2, 2} f {0, 2} {0, 0} −i hxhyhz

c {2, 2} f {1, -1} {1/2, 1/2} 1
4hxh

2
y + 3

4hxh
2
z − i

1
2hyhz

c {2, 2} f {1, 1} {1/2, -1/2} 3
2hxh

2
y

c {2, 2} f {2, -2} {0, 1} −i 1
2hxhyhz

c {2, 2} f {2, -2} {1, 0} −i 1
2hxhyhz

c {2, 2} f {2, 0} {1, 1} −i 1
2hxhyhz

c {2, 2} f {2, 0} {0, 0} −i hxhyhz

c {3, -3} f {1, 1} {1, -1} −i 1
2hyh

2
z

c {3, -1} f {1, -1} {1, -1} −i 1
2hyh

2
z

c {3, -1} f {1, 1} {1, 0} −i hyh2
z

c {3, -1} f {2, 0} {1/2, -3/2} 1
2h

2
yhz

c {3, -1} f {2, 0} {1/2, 1/2} 1
2h

2
yhz

c {3, -1} f {3, 1} {0, 0} i h3
y

c {3, 1} f {1, -1} {1, 0} −i hyh2
z

c {3, 1} f {1, 1} {1, 1} −i 1
2hyh

2
z

c {3, 1} f {2, 0} {1/2, -1/2} 1
2h

2
yhz

c {3, 1} f {2, 0} {1/2, 3/2} 1
2h

2
yhz

c {3, 1} f {3, -1} {0, 0} i h3
y

c {3, 3} f {1, -1} {1, 1} −i 1
2hyh

2
z
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f {0, 2} f {1, -1} {1/2, -3/2} 1
2h

3
x

f {0, 2} f {1, -1} {3/2, -1/2} 1
2h

3
x

f {0, 2} f {1, -1} {1/2, 1/2} 3
2h

3
x + 29

32hxh
2
y + 1

2hxh
2
z

f {0, 2} f {1, 1} {1/2, 3/2} 1
2h

3
x

f {0, 2} f {1, 1} {3/2, 1/2} 1
2h

3
x

f {0, 2} f {1, 1} {1/2, -1/2} 3
2h

3
x + 29

32hxh
2
y + 1

2hxh
2
z

f {1, -1} f {1, -1} {1, -1} 1
2h

2
x

f {1, -1} f {1, -1} {0, 0} 4h2
x −

5
4h

2
y

f {1, -1} f {2, -2} {3/2, -3/2} 1
2h

3
x

f {1, -1} f {2, -2} {1/2, -1/2} 1
2h

3
x + 29

32hxh
2
y + 1

2hxh
2
z

f {1, -1} f {2, 0} {1/2, -3/2} 1
2h

3
x

f {1, -1} f {2, 0} {3/2, -1/2} 1
2h

3
x

f {1, -1} f {2, 0} {1/2, 1/2} 3
2h

3
x + 29

32hxh
2
y + 1

2hxh
2
z

f {1, -1} f {2, 2} {1/2, -1/2} 1
2h

3
x

f {1, -1} f {2, 2} {1/2, 3/2} − 1
2h

3
x

f {1, -1} f {2, 2} {3/2, 1/2} − 1
2h

3
x

f {1, 1} f {1, 1} {1, 1} 1
2h

2
x

f {1, 1} f {1, 1} {0, 0} 4h2
x −

5
4h

2
y

f {1, 1} f {2, -2} {1/2, -3/2} − 1
2h

3
x

f {1, 1} f {2, -2} {1/2, 1/2} 1
2h

3
x

f {1, 1} f {2, -2} {3/2, -1/2} − 1
2h

3
x

f {1, 1} f {2, 0} {1/2, 3/2} 1
2h

3
x

f {1, 1} f {2, 0} {3/2, 1/2} 1
2h

3
x

f {1, 1} f {2, 0} {1/2, -1/2} 3
2h

3
x + 29

32hxh
2
y + 1

2hxh
2
z

f {1, 1} f {2, 2} {3/2, 3/2} 1
2h

3
x

f {1, 1} f {2, 2} {1/2, 1/2} 1
2h

3
x + 29

32hxh
2
y + 1

2hxh
2
z

Table B.1: Hopping amplitudes of particle pairs in the low-field limit of the toric code, as

defined in Section 5.1.3. Here, we consider the subspace Hf .

Hopping amplitudes in the subspace Hb are denoted by td′,d, tcm , where d and d′ are the initial
and final mutual distances of the particle pair and tcm the hopping distance of the center of mass.
We follow the convention that the distances are always given in a coordinate system where the
charge is at the origin. To keep a clear overview, we list the indices and the corresponding
hopping amplitudes in a tabular form. The following table contains only hopping amplitudes
which cannot be recovered from the symmetry relation

td′,d, tcm = t∗d,d′, tcm = t̃d′,d,−tcm , (B.29)

where the complex conjugate is denoted by an asterisk and in t̃ the field variables are subject to
the transformation hx → hz, hy → −hy, and hz → hx.

d d′ tcm td′,d, tcm d d′ tcm td′,d, tcm
{-3, -2} {0, -1} {3/2, 1/2} − 3

2h
3
x {-1, 0} {1, 0} {0, 1} i

“
1
4h

3
y + 3

2h
2
xhy + 3

2hyh
2
z − hy

”
{-3, -2} {0, 1} {3/2, 3/2} − 1

2h
3
x {-1, 0} {1, 2} {2, 0} −i 1

2h
2
xhy

{-3, -2} {1, 0} {1, 0} i 1
2h

2
xhy {-1, 0} {1, 2} {0, 2} i h2

xhy

{-3, -2} {1, 0} {1, 2} −i 1
2h

2
xhy {-1, 0} {1, 2} {1, -1} −i 1

2hxhyhz

{-3, -2} {2, -1} {1/2, 1/2} 1
2hxh

2
y {-1, 0} {1, 2} {1, 1} − 1

2h
2
x − i

1
2hxhyhz

{-3, 0} {0, -1} {3/2, -1/2} − 3
2h

3
x {-1, 0} {1, 2} {0, 0} −i

“
− 1

2h
2
xhy + 1

2hyh
2
z

”
{-3, 0} {0, 1} {3/2, 1/2} − 3

2h
3
x {-1, 0} {2, -3} {3/2, -3/2} − 1

2h
3
x

{-3, 0} {1, 0} {1, -1} i h2
xhy {-1, 0} {2, -1} {3/2, -1/2} − 1

2h
3
x

{-3, 0} {1, 0} {1, 1} −i h2
xhy {-1, 0} {2, -1} {1/2, 1/2} − 1

4h
2
xhz −

3
4h

2
yhz − i

1
2hxhy



Appendix B. Series results 183

{-3, 0} {2, -1} {1/2, -1/2} 1
2hxh

2
y {-1, 0} {2, -1} {1/2, -3/2} 1

4h
2
xhz −

1
4h

2
yhz + i 1

2hxhy

{-3, 0} {2, 1} {1/2, 1/2} − 1
2hxh

2
y {-1, 0} {2, 1} {3/2, 1/2} 1

2h
3
x

{-3, 0} {3, 0} {0, 1} i h3
y {-1, 0} {2, 1} {1/2, 3/2} − 1

4h
2
xhz + 1

4h
2
yhz − i

1
2hxhy

{-3, 2} {0, -1} {3/2, -3/2} − 1
2h

3
x {-1, 0} {2, 1} {1/2, -1/2} 1

4h
2
xhz + 3

4h
2
yhz + i 1

2hxhy

{-3, 2} {0, 1} {3/2, -1/2} − 3
2h

3
x {-1, 0} {2, 3} {3/2, 3/2} − 1

2h
3
x

{-3, 2} {1, 0} {1, -2} i 1
2h

2
xhy {-1, 0} {3, -2} {1, -2} i 1

2h
2
xhy

{-3, 2} {1, 0} {1, 0} −i 1
2h

2
xhy {-1, 0} {3, -2} {1, 0} −i 1

2h
2
xhy

{-3, 2} {2, 1} {1/2, -1/2} − 1
2hxh

2
y {-1, 0} {3, 0} {1, -1} i h2

xhy

{-2, -3} {-1, 0} {1/2, 3/2} − 3
2h

3
x {-1, 0} {3, 0} {1, 1} −i h2

xhy

{-2, -3} {-1, 2} {1/2, 1/2} 1
2hxh

2
y {-1, 0} {3, 2} {1, 0} i 1

2h
2
xhy

{-2, -3} {0, 1} {0, 1} i 1
2h

2
xhy {-1, 0} {3, 2} {1, 2} −i 1

2h
2
xhy

{-2, -3} {0, 1} {2, 1} −i 1
2h

2
xhy {-1, 2} {0, -3} {1/2, -1/2} 1

2hxh
2
y

{-2, -3} {1, 0} {3/2, 3/2} − 1
2h

3
x {-1, 2} {0, -1} {1/2, -3/2} − 1

2h
3
x

{-2, -1} {-1, -2} {1/2, -1/2} 1
2h

3
x + 11

16hxh
2
y + 1

2hxh
2
z {-1, 2} {0, -1} {3/2, -1/2} 1

4h
2
xhz −

1
4h

2
yhz − i

1
2hxhy

{-2, -1} {-1, 0} {1/2, -3/2} 9
32hxh

2
y {-1, 2} {0, -1} {1/2, 1/2} − 3

4hxh
2
y −

1
4hxh

2
z − i

1
2hyhz

{-2, -1} {-1, 0} {1/2, 5/2} 9
32hxh

2
y {-1, 2} {0, 1} {5/2, -1/2} 9

32hxh
2
y

{-2, -1} {-1, 0} {1/2, 1/2} 1
2h

3
x + 9

8hxh
2
y + 1

2hxh
2
z {-1, 2} {0, 1} {3/2, 1/2} 9

32h
2
yhz

{-2, -1} {-1, 2} {1/2, 3/2} − 3
2h

3
x {-1, 2} {0, 1} {1/2, -1/2} 1

2h
3
x + 9

8hxh
2
y + 1

2hxh
2
z

{-2, -1} {-1, 2} {1/2, -1/2} 1
2hxh

2
y {-1, 2} {1, -2} {2, -1} −i 1

2h
2
xhy

{-2, -1} {0, -1} {2, 1} −i 1
2h

2
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2
y

{-1, 0} {1, 0} {0, 3} i 1
8h

3
y {1, 2} {2, -1} {1/2, -3/2} 3

2h
3
x

{-1, 0} {1, 0} {2, -1} i 1
2h

2
xhy {1, 2} {2, -1} {1/2, 1/2} − 1

2hxh
2
y

{-1, 0} {1, 0} {2, 1} −i 1
2h

2
xhy {1, 2} {2, 1} {1/2, -1/2} − 1

2h
3
x −

11
16hxh

2
y −

1
2hxh

2
z

Table B.2: Hopping amplitudes of particle pairs in the low-field limit of the toric code, as

defined in Section 5.1.3. Here, we consider the subspace Hb.

B.3 High-field series expansions

In the following, we list series expansions of the ground-state energy per site as well as the
one-particle gap. Both expressions are polynomials in the variable J/h̃z (see Section 5.2 for
details). The lengthy coefficients of these polynomials are themselves polynomials in sines as
well as cosines of φ and θ, which are angles determining the direction of the magnetic field in a
spherical coordinate system. To keep a clear overview we summarize the monomials

C cospθ cosqφ sinrθ sinsφ (B.30)

in tabular form where each monomial is denoted by its characteristic numbers p, q, r, s, and
C. To give an example, using Table B.3, the order-one coefficient of the ground-state energy
expansion reads

−1
2

cos4θ sin4φ− 1
2

cos4φ, (B.31)
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which is in agreement with (5.101) calculated in Section 5.2. Let us remind that at order zero
the ground-state energy per site is h̃z =

√
h2
x + h2

x + h2
x and the one particle gap is 2h̃z. In the

following, we list the results for the first three orders of the expansion. The orders four and five
are available upon request.

(i) Ground-state energy

p q r s C
4 0 0 4 -1/2

0 4 0 0 -1/2

Table B.3: Order 1 contribution to the ground-state energy per site.

p q r s C p q r s C p q r s C
8 8 0 0 -1/8 6 0 2 6 -4 2 0 6 2 -2/3

8 6 0 2 -2/3 4 4 4 0 -3/4 0 6 0 2 -4

8 4 0 4 -3/2 4 4 0 4 6 0 4 0 4 -3/2

8 2 0 6 -4 4 2 4 2 -2 0 2 0 6 -2/3

6 6 2 0 -1/2 4 0 4 4 -3/2 0 0 8 0 -1/8

6 4 2 2 -2 2 2 6 0 -1/2 0 0 0 8 -1/8

6 2 2 4 -3 2 2 2 4 2

Table B.4: Order 2 contribution to the ground-state energy per site.

p q r s C p q r s C p q r s C
12 8 0 4 -7/12 8 0 4 8 -21 4 0 8 4 -7/12

12 6 0 6 -29/9 6 8 2 2 8/3 4 0 4 8 -1

12 4 0 8 -21 6 6 2 4 34/3 2 6 2 4 -26

12 2 0 10 16 6 4 2 6 70 2 4 6 2 8/9

10 6 2 4 -7/3 6 2 6 4 -7/3 2 4 2 6 13

10 4 2 6 -29/3 6 2 2 8 -26 2 2 6 4 2/9

10 2 2 8 -42 6 0 6 6 -29/9 2 2 2 8 2/9

10 0 2 10 16 4 8 0 4 -143/3 0 10 0 2 16

8 10 0 2 8/9 4 6 4 2 8/3 0 8 0 4 -21

8 8 0 4 50/9 4 6 0 6 57 0 6 0 6 -29/9

8 6 0 6 57 4 4 4 4 6 0 4 4 4 -1

8 4 4 4 -7/2 4 4 0 8 50/9 0 4 0 8 -7/12

8 4 0 8 -143/3 4 2 4 6 13

8 2 4 6 -29/3 4 2 0 10 8/9

Table B.5: Order 3 contribution to the ground-state energy per site.

(ii) One-particle gap

p q r s C p q r s C
4 2 0 2 -6 0 4 0 0 4

4 0 0 4 4 0 2 0 2 -6

2 0 2 2 -6
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Table B.6: Order 1 contribution to the one-particle gap.

p q r s C p q r s C p q r s C
8 8 0 0 -1/2 4 4 4 0 -3 2 0 2 6 4

8 6 0 2 -6 4 4 0 4 -308/3 0 6 0 2 56

8 4 0 4 -12 4 2 4 2 -18 0 4 0 4 -12

8 2 0 6 56 4 2 0 6 12 0 2 4 2 4

6 6 2 0 -2 4 0 4 4 -12 0 2 0 6 -6

6 4 2 2 -18 2 4 2 2 16 0 0 8 0 -1/2

6 2 2 4 -24 2 2 6 0 -2 0 0 0 8 -1/2

6 0 2 6 56 2 2 2 4 -20

4 6 0 2 12 2 0 6 2 -6

Table B.7: Order 2 contribution to the one-particle gap.

p q r s C p q r s C p q r s C
12 10 0 2 -17/8 6 8 2 2 6 2 8 2 2 -96

12 8 0 4 105/2 6 6 2 4 404 2 6 2 4 2200/3

12 6 0 6 -1598/9 6 4 6 2 -85/4 2 4 6 2 10/3

12 4 0 8 756 6 4 2 6 -20440/9 2 4 2 6 -5324/9

12 2 0 10 -224 6 2 6 4 210 2 2 6 4 956/9

10 8 2 2 -85/8 6 2 2 8 2200/3 2 2 2 8 956/9

10 6 2 4 210 6 0 6 6 -1598/9 2 0 10 2 -17/8

10 4 2 6 -1598/3 6 0 2 10 -32 2 0 6 6 -160/9

10 2 2 8 1512 4 10 0 2 -64 2 0 2 10 1/2

10 0 2 10 -224 4 8 0 4 10772/9 0 10 0 2 -224

8 10 0 2 11/6 4 6 4 2 7 0 8 0 4 756

8 8 0 4 1340/9 4 6 0 6 -15116/9 0 6 4 2 -32

8 6 4 2 -85/4 4 4 4 4 1084/3 0 6 0 6 -1598/9

8 6 0 6 -15116/9 4 4 0 8 1340/9 0 4 4 4 172/3

8 4 4 4 315 4 2 8 2 -85/8 0 4 0 8 105/2

8 4 0 8 10772/9 4 2 4 6 -1828/3 0 2 8 2 1/2

8 2 4 6 -1598/3 4 2 0 10 11/6 0 2 4 6 -160/9

8 2 0 10 -64 4 0 8 4 105/2 0 2 0 10 -17/8

8 0 4 8 756 4 0 4 8 172/3

Table B.8: Order 3 contribution to the one-particle gap.

B.4 Spectral densities coefficients

The series expansions of coefficients AKd τ for the observable σz, as defined in (7.57), have been
computed up to order four. Given the sheer number of coefficients we present only the first few
orders of this expansion (up to order two). The full list is available electronically upon request.
In the upcoming tables, we will follow the notation K = {Kx,Ky} and d = {dx, dy}. The flavor
of the particle pair will be denoted by ’c’ for charges and ’f’ for fluxes.
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τ d AKd τ

c {0 , 2} (hz − i
2hxhy) cos

“
Kx−Ky

2

”
c {1 , 1} 1− 1

2h
2
x −

7
32h

2
y −

5
4h

2
z + 1

4h
2
z(3 cosKx cosKy + sinKx sinKy)

c {1 , -1} 3
2h

2
z(cosKx + cosKy)

c {1 , -3} 1
4h

2
z

ˆ
1 + 5 cos(Kx −Ky)

˜
c {1 , 3} 1

2h
2
z(cosKx + 5 cosKy)

c {2 , 0} (hz − i
2hxhy) cos

“
Kx−Ky

2

”
c {2 , 2} (hz − i

2hxhy) cos
“
Kx+Ky

2

”
c {3 , -1} 1

4h
2
z

ˆ
1 + 5 cos(Kx −Ky)

˜
c {3 , 1} 1

2h
2
z(5 cosKx + cosKy)

c {3 , 3} 1
4h

2
z

ˆ
1 + 5 cos(Kx +Ky)

˜
f {0 , 2} − i8hxhy cos

“
Kx+Ky

2

”
f {1 , -1} − i4hy

f {2 , 0} − i8hxhy cos
“
Kx+Ky

2

”
f {2 , -2} − i8hxhy cos

“
Kx−Ky

2

”
Table B.9: Coefficients of the non-symmetric observable O2,0(rb).

τ d AKd τ

c {0 , 2} (hz − i
2hxhy) cos

“
Kx+Ky

2

”
c {1 , -1} 1− 1

2h
2
x −

7
32h

2
y −

5
4h

2
z + 1

4h
2
z(3 cosKx cosKy − sinKx sinKy)

c {1 , 1} 3
2h

2
z(cosKx + cosKy)

c {1 , 3} 1
4h

2
z

ˆ
1 + 5 cos(Kx +Ky)

˜
c {1 , -3} 1

2h
2
z(cosKx + 5 cosKy)

c {2 , 0} (hz − i
2hxhy) cos

“
Kx+Ky

2

”
c {2 , -2} (hz − i

2hxhy) cos
“
Kx−Ky

2

”
c {3 , 1} 1

4h
2
z

ˆ
1 + 5 cos(Kx +Ky)

˜
c {3 , -1} 1

2h
2
z(5 cosKx + cosKy)

c {3 , -3} 1
4h

2
z

ˆ
1 + 5 cos(Kx −Ky)

˜
f {0 , 2} − i8hxhy cos

“
Kx−Ky

2

”
f {1 , 1} − i4hy

f {2 , 0} − i8hxhy cos
“
Kx−Ky

2

”
f {2 , 2} − i8hxhy cos

“
Kx+Ky

2

”
Table B.10: Coefficients of the non-symmetric observable O2,0(rr).

τ d AKd τ

c {0 , 2} (2hz − ihxhy) cos Kx2 cos
Ky
2

c {1 , -1} 1− 1
2h

2
x −

7
32h

2
y −

5
4h

2
z + 1

4h
2
z

`
6 cosKy + 6 cosKy + 3 cosKx cosKy − sinKx sinKy

´
c {1 , 1} 1− 1

2h
2
x −

7
32h

2
y −

5
4h

2
z + 1

4h
2
z

`
6 cosKy + 6 cosKy + 3 cosKx cosKy + sinKx sinKy

´
c {1 , 3} 1

4h
2
z

ˆ
1 + 2 cosKx + 10 cosKy + 5 cos(Kx +Ky)

˜
c {1 , -3} 1

4h
2
z

ˆ
1 + 2 cosKx + 10 cosKy + 5 cos(Kx −Ky)

˜
c {2 , 0} (2hz − ihxhy) cos Kx2 cos

Ky
2

c {2 , -2} (hz − i
2hxhy) cos

“
Kx−Ky

2

”
c {2 , 2} (hz − i

2hxhy) cos
“
Kx+Ky

2

”
c {3 , 1} 1

4h
2
z

ˆ
1 + 10 cosKx + 2 cosKy + 5 cos(Kx +Ky)

˜
c {3 , -1} 1

4h
2
z

ˆ
1 + 10 cosKx + 2 cosKy + 5 cos(Kx −Ky)

˜
c {3 , -3} 1

4h
2
z

ˆ
1 + 5 cos(Kx −Ky)

˜
c {3 , 3} 1

4h
2
z

ˆ
1 + 5 cos(Kx +Ky)

˜
f {0 , 2} − i4hxhy cos Kx2 cos

Ky
2

f {1 , -1} − i4hy



f {1 , 1} − i4hy

f {2 , 0} − i4hxhy cos Kx2 cos
Ky
2

f {2 , -2} − i8hxhy cos
“
Kx−Ky

2

”
f {2 , 2} − i8hxhy cos

“
Kx+Ky

2

”
Table B.11: Coefficients of the symmetric observable

ˆ
O2,0(rb) +O2,0(rr)

˜
/
√

2 .

τ d AKd τ

c {0 , 2} (2hz − ihxhy) sin Kx
2 sin

Ky
2

c {1 , -1} −1 + 1
2h

2
x + 7

32h
2
y + 5

4h
2
z + 1

4h
2
z

ˆ
6 cosKx + 6 cosKy − 3 cosKx cosKy + sinKx sinKy

˜
c {1 , 1} 1− 1

2h
2
x −

7
32h

2
y −

5
4h

2
z −

1
4h

2
z

ˆ
6 cosKx + 6 cosKy − 3 cosKx cosKy − sinKx sinKy

˜
c {1 , 3} 1

4h
2
z

ˆ
−1 + 2 cosKx + 10 cosKy − 5 cos(Kx +Ky)

˜
c {1 , -3} 1

4h
2
z

ˆ
1− 2 cosKx − 10 cosKy + 5 cos(Kx −Ky)

˜
c {2 , 0} (2hz − ihxhy) sin Kx

2 sin
Ky
2

c {2 , -2} (−hz + i
2hxhy) cos

“
Kx−Ky

2

”
c {2 , 2} (hz − i

2hxhy) cos
“
Kx+Ky

2

”
c {3 , 1} − 1

4h
2
z

ˆ
1− 10 cosKx − 2 cosKy + 5 cos(Kx +Ky)

˜
c {3 , -1} 1

4h
2
z

ˆ
1− 10 cosKx − 2 cosKy + 5 cos(Kx −Ky)

˜
c {3 , -3} − 1

4h
2
z

ˆ
1 + 5 cos(Kx −Ky)

˜
c {3 , 3} 1

4h
2
z

ˆ
1 + 5 cos(Kx +Ky)

˜
f {0 , 2} i

4hxhy sin Kx
2 sin

Ky
2

f {1 , -1} − i4hy

f {1 , 1} i
4hy

f {2 , 0} i
4hxhy sin Kx

2 sin
Ky
2

f {2 , -2} − i8hxhy cos
“
Kx−Ky

2

”
f {2 , 2} i

8hxhy cos
“
Kx+Ky

2

”
Table B.12: Coefficients of the antisymmetric observable

ˆ
O2,0(rb)−O2,0(rr)

˜
/
√

2 .

Appendix C
Spectral densities

In this paragraph, we present spectral densities computed for the toric code in a magnetic field
h = (hx, hy, hz) for the observable σz. In the symmetric case (Or +Ob)

√
2 (see Section 7.3 for

notation), we have investigated the subspace hz ≥ hx. However, it might also be interesting
to consider a direction of the magnetic field with hx > hz because, in constrast to the exact
spectrum of the two-quasi-particle subspace, the spectral density is obviously not symmetric in
hx and hz. In the following three plots we vary the ratio hx/hz and show how the spectral
density depends on the transverse field hy for each ratio.

189
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Figure C.1: Spectral density of the toric code in the magnetic field hx = 0.03, hz = 0.06
and (a) hy = 0, (b) hy = 0.1, (c) hy = 0.2, (d) hy = 0.3. The continuum boundaries of
charge-pairs (flux-pairs) are highlighted by green (gray) dashed lines.
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Figure C.2: Spectral density of the toric code in the magnetic field hx = 0.06, hz = 0.03
and (a) hy = 0, (b) hy = 0.1, (c) hy = 0.2, (d) hy = 0.3. The continuum boundaries of
charge-pairs (flux-pairs) are highlighted by green (gray) dashed lines. Here, we have used a
broadening ε = 0.008.
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Figure C.3: Spectral density of the toric code in the magnetic field hx = 0.06, hz = 0
and (a) hy = 0, (b) hy = 0.1, (c) hy = 0.2, (d) hy = 0.3. The continuum boundaries of
charge-pairs (flux-pairs) are highlighted by green (gray) dashed lines. Here, we have used a
broadening ε = 0.008.

Let us shortly discuss the presented figures. While for hz > hx the boundaries of the continuum
are determined by charge pairs (we remind that in the currently considered sector of the two-
particle subspace, charges and fluxes only appear in pairs), energies of flux pairs are limited by
a distinct region, e.g., the one clearly visible in Figure C.1 (b). These boundaries have been
computed from single-particle dispersions of charges and fluxes, and seem to match perfectly
with according features in the spectral density. In the parameter range hz < hx, the roles of
charges and fluxes concerning the continuum boundaries are interchanged.

The spectral density of the observable σz shows interesting features for hx > hz. For exam-
ple, at zero transverse field the weight of charges is fully suppressed [see Figure C.2 (a) and
Figure C.3 (a)]

While in Section 7.3.3 we have discussed the symmetrized observable, in the following plots we
show the non-symmetric as well as the antisymmetric cases. In the non-symmetric cases the
observable acts on a specific sublattice (see Fig. 7.13), while in the antisymmetric case there
is an alternating sign in the action of the observable on each sublattice. As we have discussed
in Section 7.3, in the presented plots one clearly observes differences in the distribution of the
spectral density into the symmetric as well as antisymmetric bound states.
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Figure C.4: Spectral density S(K, ω) of the observable Ob of the toric code in the magnetic
field hx = hz = 0.06 and (a) hy = 0, (b) hy = 0.1, (c) hy = 0.2, (d) hy = 0.3. See Figure 7.5 for
a comparison with the corresponding energy spectrum. The amplitude of S(K, ω) corresponds
to the color scale at the top. The continuum boundaries are highlighted by green dashed lines.
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Figure C.5: Spectral density S(K, ω) of the observable Ob of the toric code in the mag-
netic field hx = 0, hz = 0.06 and (a) hy = 0, (b) hy = 0.1, (c) hy = 0.2, (d) hy = 0.3.
See Figure 7.6 for a comparison with the corresponding energy spectrum. The amplitude of
S(K, ω) corresponds to the color scale at the top. The continuum boundaries are highlighted
by green dashed lines.
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Figure C.6: Spectral density S(K, ω) of the observable Or of the toric code in the magnetic
field hx = hz = 0.06 and (a) hy = 0, (b) hy = 0.1, (c) hy = 0.2, (d) hy = 0.3. See Figure 7.5 for
a comparison with the corresponding energy spectrum. The amplitude of S(K, ω) corresponds
to the color scale at the top. The continuum boundaries are highlighted by green dashed lines.
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Figure C.7: Spectral density S(K, ω) of the observable Or of the toric code in the mag-
netic field hx = 0, hz = 0.06 and (a) hy = 0, (b) hy = 0.1, (c) hy = 0.2, (d) hy = 0.3.
See Figure 7.6 for a comparison with the corresponding energy spectrum. The amplitude of
S(K, ω) corresponds to the color scale at the top. The continuum boundaries are highlighted
by green dashed lines.
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Figure C.8: Spectral density S(K, ω) of the observable (Ob −Or) /
√

2 of the toric code in
the magnetic field hx = hz = 0.06 and (a) hy = 0, (b) hy = 0.1, (c) hy = 0.2, (d) hy = 0.3.
See Figure 7.5 for a comparison with the corresponding energy spectrum. The amplitude of
S(K, ω) corresponds to the color scale at the top. The continuum boundaries are highlighted
by green dashed lines.

Γ X L Γ Γ X L Γ

0 2 4 6

1.5

2.0

2.5

ω

(a) (b)

(0, 0) (0, π
2
) (0, π) (π

4
, 3π

4
) (π

2
, π

2
) (π

4
, π

4
)

K

1.5

2.0

2.5

ω

(c)

(0, 0) (0, π
2
) (0, π) (π

4
, 3π

4
) (π

2
, π

2
) (π

4
, π

4
)

K

(d)

Figure C.9: Spectral density S(K, ω) of the observable (Ob −Or) /
√

2 of the toric code in
the magnetic field hx = 0, hz = 0.06 and (a) hy = 0, (b) hy = 0.1, (c) hy = 0.2, (d) hy = 0.3.
See Figure 7.6 for a comparison with the corresponding energy spectrum. The amplitude of
S(K, ω) corresponds to the color scale at the top. The continuum boundaries are highlighted
by by green dashed lines.
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[48] N. Lang, H. P. Büchler. Minimal instances for toric code ground states. Phys. Rev. A 86,

022336 (2012).

[49] J. K. Pachos, W. Wieczorek, C. Schmid, N. Kiesel, R. Pohlner, H. Weinfurter. Revealing

anyonic features in a toric code quantum simulation. New J. Phys. 11, 083010 (2009).

[50] J. Vidal, K. P. Schmidt, S. Dusuel. Perturbative approach to an exactly solved problem: Kitaev

honeycomb model. Phys. Rev. B 78, 245121 (2008).

[51] L.-M. Duan, E. Demler, M. D. Lukin. Controlling spin exchange interactions of ultracold atoms

in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

[52] A. Micheli, G. K. Brennen, P. Zoller. A toolbox for lattice-spin models with polar molecules.

Nat. Phys. 2, 341 (2006).

[53] J. Q. You, X.-F. Shi, X. Hu, F. Nori. Quantum emulation of a spin system with topologically

protected ground states using superconducting quantum circuits. Phys. Rev. B 81, 014505 (2010).

[54] J. Chaloupka, G. Jackeli, G. Khaliullin. Kitaev-Heisenberg model on a honeycomb lattice:

Possible exotic phases in iridium oxides A2IrO3. Phys. Rev. Lett. 105, 027204 (2010).

[55] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W. Ku, S. Trebst, P. Gegen-

wart. Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A2IrO3.

Phys. Rev. Lett. 108, 127203 (2012).

[56] B. A. Bernevig, T. L. Hughes, S.-C. Zhang. Quantum spin Hall effect and topological phase

transition in HgTe quantum wells. Science 314, 1757 (2006).
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Dr. Román Orús has provided the iPEPS data for the toric code in a field, for which I

am very thankful.

I have enjoyed being able to work in Dortmund as well as Paris and having met many

different people and great physicists. I thank my colleagues at the Lehrstuhl für Theo-

retische Physik I/II in Dortmund and the LPTMC in Paris for a friendly atmosphere,

in particular Marc D. Schulz (who also proof-read the manuscript), Nils A. Drescher,
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