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Introduction

This thesis has two objectives; the first (Chapter 1), jump detection in a high frequency setting and,
second (Chapter 2 and 3), the analysis of certain jump dependence structures in a low frequency
setting. All used models are semimartingales that are of special interest in finance since they
provide a natural class for price processes, cf. Delbaen and Schachermayer [12, 13] and Shiryaev
[41].

The three chapters are summarised below in order to give the reader a quick overview. More
detailed introductions to the respective topics are given at the beginning of the respective chapters.

Itô semimartingales and jumps

The classical Black-Scholes model is a time continuous model with continuous sample paths, i.e. it is
not capable of modeling abrupt movements (jumps) in the financial market. Various investigations
confirm that there is an essential difference whether one works with a continuous model or if one
allows for jumps. It is therefore important to assess whether, for example, high frequency data (e.g.
returns of a stock-price) should be modeled with a continuous or a jump process. Barndorff-Nielsen
and Shephard [3] propose a nonparametric test to decide whether it suffices to use a continuous
stochastic volatility model or if an additional jump term is required.

We investigate and develop a test based on classical extreme value theory for the same purpose.
If there are no jumps and if the number of our observations tends to infinity on a fixed time interval,
our test converges weakly to the Gumbel distribution. If there are jumps, the test converges to
infinity. Simulation studies show that this technique results in a test with greater power than the
Barndorff-Nielsen and Shephard test.

Lévy processes and dependences

Let X be a d-dimensional Lévy process with Lévy triplet pΣ, ν, αq and d ¥ 2. Given the low
frequency observations pXtqt�1,...,n, the dependence structure of the jumps of X is estimated. The
Lévy measure ν describes the average jump behaviour in a time unit. Thus, the aim is to estimate
the dependence structure of ν by estimating the Lévy copula C of ν, cf. Kallsen and Tankov [21].

We use the low frequency techniques presented in a one dimensional setting in Neumann and
Reiß [29] and Nickl and Reiß [30] to construct a Lévy copula estimator pCn based on the above n
observations. In doing so we prove pCn Ñ C, nÑ8
uniformly on compact sets bounded away from zero with the convergence rate plog nq� 1

2 . This
convergence holds under quite general assumptions, which also include Lévy triplets with Σ � 0
and ν of arbitrary Blumenthal-Getoor index 0 ¤ β ¤ 2. Note that in a low frequency observation
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scheme, it is statistically difficult to distinguish between infinitely many small jumps and a Brownian
motion part. Hence, the rather slow convergence rate plog nq� 1

2 is not surprising.
In the complementary case of a compound Poisson process (CPP), an estimator pCn for the

copula C of the jump distribution of the CPP is constructed under the same observation scheme.
This copula C is the analogue to the Lévy copula C in the finite jump activity case, i.e. the CPP
case. Here we establish pCn Ñ C, nÑ8
with the convergence rate n�

1
2 uniformly on compact sets bounded away from zero.

Both convergence rates are optimal in the sense of Neumann and Reiß [29].

Copula relations in compound Poisson processes

We investigate in multidimensional compound Poisson processes (CPP) the relation between the
dependence structure of the jump distribution and the dependence structure of the respective
components of the CPP itself. For this purpose the asymptotic λt Ñ 8 is considered, where λ
denotes the intensity and t the time point of the CPP. For modeling the dependence structures we
are using the concept of copulas. We prove that the copula of a CPP converges under quite general
assumptions to a specific Gaussian copula, depending on the underlying jump distribution.

Let F be a d-dimensional jump distribution pd ¥ 2q, λ ¡ 0 and let Ψpλ, F q be the distribution
of the corresponding CPP with intensity λ at the time point 1 . Next denote the operator which
maps a d-dimensional distribution on its copula as T . The starting point for our investigation was
the validity of the equation

T pΨpλ, F qq � T pΨpλ, T F qq.
Our asymptotic theory implies that this equation is, in general, not true.
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Chapter 1

Itô semimartingales and jumps

In this chapter we have given high frequency observations from an underlying Itô semimartingale
process with a possible additional jump component. Hence, the model

dYt � σt dWt � bt dt� dJt, t ¥ 0

is used, where W denotes a Brownian motion, σ ¡ 0 a volatility process, b a drift coefficient and
J a possible additional (external) jump process. The goal of this chapter is the development and
investigation of a statistical test which, based on given high frequency observations, decides whether
Y possesses jumps pJ � 0q or not pJ � 0q. J is, for example, a compound Poisson process. dWt

denotes the differential of an Itô integral. Korn and Korn [23] provide an introduction to the Itô
integral from a financial point of view. Further literature related to this subject can be found in
the following publications [20, 22, 32, 35].

Section 1 outlines some technical preparations. Note that this section uses the rather restrictive
Assumptions 1.1.1. These restrictions have the advantage of allowing us that we are able to derive
some useful inequalities in Proposition 1.1.4, by using a certain moment estimation technique.
Compare the proof of Proposition 1.1.4 for details. The restrictive assumptions are finally weakened
to the more natural Assumptions 1.2.3 in the second section. They basically claim that each path
ω of the volatility t ÞÑ σtpωq has to be Hölder continuous and that the drift coefficient has to be
pathwise bounded.

Section 2 contains the first important result of this chapter: Theorem 1.2.5 states the conver-
gence to the Gumbel distribution under the weakened Assumptions 1.2.3 of the statistic

an2pTn � bn2q, nÑ8

in the case J � 0, i.e. absence of external jumps. Compare Corollary 1.2.2 for the notations.
We show in Section 6 that this statistic converges to infinity, if there are any external jumps,

i.e. J � 0. Thus, this statistic can be used as a test to distinguish between the existence and
non-existence of external jumps. The divergence behaviour of this statistic in the case of existing
external jumps is also investigated in Section 6. Here the two main results are Theorems 1.6.1
and 1.6.3. The former covers infinite activity jumps (J is a general semimartingale), while the
latter, Theorem 1.6.3, investigates the case of finite activity jumps (J is, for example, a compound
Poisson process). Of course, different divergence types and rates are proven, depending on the jump
activity. In particular, two different spot volatility estimators (see Definition 1.1.3) are investigated
as to their nature in the presence of external jumps. For their finite sample behaviour, Proposition
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1.6.5 should also be noted.
Section 7 explores the finite sample behaviour of the above mentioned jump test using numerical

Matlab computer simulations. A comparison between this test and the test of Barndorff-Nielsen,
Shephard [3] is made.

A further interesting question is the behaviour of the test statistic, if the volatility process σ
itself possesses any jumps. Section 5 is devoted to this point with the main results captured in
Theorem 1.5.3 and Corollary 1.5.7. If σ possesses only small jumps that are not larger than a certain
boundary and there are no external jumps, Theorem 1.5.3 states that the statistic still converges
to the Gumbel distribution. On the other hand, Corollary 1.5.7 provides an counter example of
where the statistic diverges to infinity in the presence of an oversized jump. As a consequence, the
above mentioned boundary is sharp. In this section, for technical simplification we assume that
σ is independent of W and b � 0. The technical benefits of these simplifications are discussed in
detail in Section 4.

As a by-product of the techniques developed in the Sections 1 and 2, we get a spot volatility
estimator, which converges uniformly and pathwise to the underlying true volatility process σ.
This spot volatility estimator is investigated in Section 3. The optimal convergence rate of this
estimator is derived in Theorem 1.3.1 and a simple relationship between the convergence rate and
the smoothness of the volatility process σ is proven, cf. (1.42) and (1.43).

After completion of our research on this chapter, we became aware of a paper by Lee and
Mykland [26] that investigates a similar test statistic for jump detection as we found. The separate
research of an independent team with the same objective, emphasizes the importance and relevance
of this research topic. Lee and Mykland [26], however, approached the topic from an economic point
of view. We complement these investigations by an mathematically point of view with a much more
subtle analysis. In order to give a transparent overview, a concise comparison between their results
in [26] and ours in Chapter 1 follows:

The convergence to the Gumbel distribution, i.e. the case of no external jumps, is covered by
Lee and Mykland [26] under the following assumptions.

Assumptions of Lee and Mykland [26]. It holds for every ε ¡ 0 the asymptotic

(i)
sup

0¤i n
sup

i
n
¤t¤ i�1

n

���bt � b i
n

��� � OP

�
n�p

1
2
�εq

	
, (1.1)

(ii)
sup

0¤i n
sup

i
n
¤t¤ i�1

n

���σt � σ i
n

��� � OP

�
n�p

1
2
�εq

	
for nÑ8.

Recall for two families of random variables pXnqnPN and pYnqnPN with P pXn � 0q � 0, n P N
the notation

Yn � OP pXnq : ðñ @δ ¡ 0 DK ¡ 0 : sup
nPN

P

����� YnXn

���� ¥ K



¤ δ.

This is basically the same as claiming that the volatility process σ and the drift coefficient b have
to be α-Hölder continuous in a stochastic sense for every α   1

2 . Lemma 1 in [26] corresponds
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to Theorem 1.2.5 of this thesis. Here we prove the convergence in distribution to the Gumbel
distribution under Assumptions 1.2.3 which we restate below to facilitate a direct comparison:

Assumptions 1.2.3. Let the volatility σ be pathwise Hölder continuous, strictly positive and let
the drift b be pathwise bounded. This means that there are two functions

α : Ω Ñ p0, 1s and K : Ω Ñ p0,8q

such that
|σtpωq � σspωq| ¤ Kpωq|t� s|αpωq, 0 ¤ s, t ¤ 1, ω P Ω

and
|σtpωq| _ |btpωq| ¤ Kpωq, 0 ¤ t ¤ 1, ω P Ω.

Note that our assumptions are much weaker since we do not have any Hölder continuity re-
striction as in (1.1) concerning the drift coefficient, and t ÞÑ σtpωq simply has to be αpωq-Hölder
continuous for every path. This means that α � αpωq does not have to be arbitrarily close to 1

2

and even infωPΩ αpωq � 0 is possible.
Concerning external jumps J , [26] requires J to have the special shape

dJt � Rt dQt, t ¥ 0

where Q is a counting process and R is the jump size. Furthermore, Q has to be independent of
W , and the jump sizes pRtqt have to be i.i.d. and independent of W and Q, compare the beginning
of the first paragraph in [26]. Concerning external jumps, we have proven more general results:
Theorem 1.6.1 is a statement regarding general semimartingales. In particular, external jumps of
infinite activity are possible. Moreover Theorem 1.6.3 treats finite activity jumps, but without any
dependency and distributive restrictions as in [26].

Finally, the interesting case where the volatility process σ itself possesses any jumps is not dealt
with by [26]. This is covered in Section 1.5 in our investigations. As a by-product of our analysis,
we also get optimal convergence rates of an interpolation based spot volatility estimator in Section
1.3, cf. Theorem 1.3.1.

1.1 Technical preparations

Let pΩ,F , pFtqtPr0,1s, P q be a filtered stochastic space and let pWtq,pσtq and pbtq respectively be
pFtq-adapted processes on this space. We assume here and throughout the chapter that the usual
hypotheses are fulfilled. W denotes a standard Brownian motion, σ the volatility process, and b

the drift coefficient of the Itô semimartingales

Yt
def�

» t
0
σs dWs, qYt def�

» t
0
σs dWs �Bt

def�
» t

0
σs dWs �

» t
0
bs ds, 0 ¤ t ¤ 1.

Throughout the chapter, we use the check notation qY , if we want to emphasize that this process
has a possible non-vanishing drift term. Note further that without loss of generality we always
consider the unit interval r0, 1s instead of an interval r0, T s for some T ¡ 0. This is only due to a
simpler notation.

In this section, the following assumptions (weakened to more natural ones in the following
sections of this chapter) are made:
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Assumptions 1.1.1. There are three global constants 0   V ¤ K   8 and 0   α ¤ 1, such that
we have for every ω P Ω

(i) σ is pathwise bounded, i.e.
V ¤ σtpωq ¤ K, 0 ¤ t ¤ 1,

(ii) σ is Hölder continuous, i.e.

|σspωq � σtpωq| ¤ K|t� s|α, 0 ¤ s, t ¤ 1,

(iii) t ÞÑ btpωq is Lebesgue measurable and

|btpωq| ¤ K, 0 ¤ t ¤ 1.

We remark that any dependence structure between W , σ and b is allowed.

In this chapter we are concerned with high-frequency statistical inference. To be more precise
we are working with the observation vector�

Y 0
N
pω0q, Y 1

N
pω0q, . . . , YN

N
pω0q

	
P RN�1 (1.2)

for large N P N and ω0 P Ω. If there is a drift term, we observe of course the respective variant
with a check in (1.2). For our statistical experiment, this means, that we only observe one possible
realisation, i.e. we see only one trajectory ω P Ω which we denote in (1.2) with ω0. Furthermore,
we are not able to see the full trajectory, but only finite many dates at equidistant distance on the
timeline. In (1.2) the sampling positions are 0, 1

N , . . . , 1. This means that we observe exactly N �1
dates on an equidistant grid and want to infer using this information.

In our approach we set N � n2 for n P N and interpret the above described grid of observations
as a double grid, in the sense that every observation position l

n2 , l � 0, . . . , n2 � 1 is uniquely
represented as

l

n2
� kn� j

n2
, 0 ¤ k, j   n. (1.3)

So the grid on the unit interval separates to two scales: the rough one, which is indexed in (1.3) by
k, and the finer one, which is indexed in (1.3) by j. With this two-scale grid separation in mind,
the following abbreviations become natural:

Abbreviations 1.1.2. Let 0 ¤ k, j   n and 0 ¤ t ¤ 1. We denote with

tk,j � kn� j

n2

a point on our equidistant two-scale grid. The index k stands for the rough scale and j for the fine
one. Next, we approximate the volatility σ with a step function via

σtpωq �
n2�1¸
k�0

1p k
n2 ,

k�1

n2 sptqσ k
n2
pωq.

In doing so we can write the Itô integral

Yt �
» t

0
σs dWs (1.4)
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in the closed-form expression

Ytk,j �
» tk,j

0
σs dWs �

kn�j�1¸
l�0

σ l
n2
pW l�1

n2
�W l

n2
q.

Next, regarding the increments of the finer scale, we set

∆Wk,j �Wtk,j� 1
n2
�Wtk,j , ∆Yk,j � Ytk,j� 1

n2
� Ytk,j , ∆ Yk,j � Ytk,j� 1

n2
�Ytk,j ,

∆Bk,j � Btk,j� 1
n2
�Btk,j

and note that (1.4) yields
∆ Yk,j � σtk,j∆Wk,j .

We further set
Zk,j � n∆Wk,j

and observe that pZk,jq0¤k,j n is a family of i.i.d. Np0, 1q distributed random variables, since W is
a Brownian motion. Finally, we set some abbreviations concerning the volatility:

σk,j � σtk,j , σk � σk,0, εk,j � σk,j � σk.

All abbreviations up to here are also defined with a check in an analogue manner.

Crucial in what follows are the following two high-frequency spot-volatility estimators:

Definition 1.1.3. Set for 0 ¤ k   n

pσ2
k

def� πn2

2pn� 1q
n�2̧

j�0

|∆Yk,j |∆Yk,j�1| (without drift),

qσ2
k

def� πn2

2pn� 1q
n�2̧

j�0

|∆qYk,j ||∆qYk,j�1| (with drift).

Note that the factor π
2 in the above Definition 1.1.3 results from E|Np0, 1q| �

b
2
π . Now we can

formulate our first essential proposition. In essence, this proposition makes the Itô integral for our
purpose mathematically feasible. The technique found in the proof is based on moment estimates
which follow from the Itô formula. This technique is motivated by the martingale moment inequal-
ities of Millar [27] and Novikov [31]. (See also Karatzas and Shreve [22][Chapter 3, Proposition
3.26]). Finally, the Markov inequality and elementary considerations yield the result:

Proposition 1.1.4. Set

ck,j
def� σk,jσk,j�1 � σ2

k, 0 ¤ k, j   n, j   n� 1,

Fk
def� pσ2

k �
π

2pn� 1q
n�2̧

j�0

pσ2
k � ck,jq|Zk,j ||Zk,j�1|, 0 ¤ k   n,

Hk,j
def� n∆Yk,j � pσk � εk,jqZk,j , 0 ¤ k, j   n.
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For every fixed m P N, there are two constants d1, d2 ¡ 0, such that the inequalities

P p|Fk| ¥ εq ¤ d1

n2αm�1εm
, 0 ¤ k   n, (1.5)

P p|Hk,j | ¥ εq ¤ d2

n4αmε2m
, 0 ¤ k, j   n. (1.6)

are true for every ε ¡ 0 and n P N. Furthermore, we have the trivial relations

|εk,j | ¤ K

nα
, |ck,j | ¤ 3K2

nα
, 0 ¤ k, j   n. (1.7)

Proof. We separate the proof into four steps. In the first step, we establish the already mentioned
moment inequalities. We prove (1.5) and (1.6) in the second and third step respectively. Finally,
(1.7) is verified in the fourth step.

step 1. Establishing the moment inequalities.

E|∆Yk,j �∆ Yk,j |2m � E

�����
» tk,j� 1

n2

tk,j

pσs � σsq dWs

�����
2m

¤ vmK
2m

n4αm�2m
, m ¥ 1 (1.8)

with
vm

def� mmp2m� 1qm.
To prove this, we apply Itô’s formula to f : x ÞÑ x2m P C2pRq and

Mt
def�

» t
tk,j

pσs � σsq dWs, tk,j ¤ t ¤ 1.

Mt is obviously a continuous martingale and f2pxq � 2mp2m� 1qx2m�2. This yields

M2m
tk,j� 1

n2
� f

�
Mtk,j� 1

n2

	
�

» tk,j� 1
n2

tk,j

f 1pMsq dMs �mp2m� 1q
» tk,j� 1

n2

tk,j

M2m�2
s d 〈M〉s

where 〈.〉 denotes the angle bracket, c.f. Jacod Shiryaev [20][p. 38 ff.]. Taking the expectation on
each side and using

〈M〉s �
» s
tk,j

|σr � σr|2 dr, tk,j ¤ s ¤ 1

results in

EM2m
tk,j� 1

n2
� mp2m� 1q

» tk,j� 1
n2

tk,j

EM2m�2
s |σs � σs|2 ds

¤ mp2m� 1qK
2

n4α

» tk,j� 1
n2

tk,j

EM2m�2
s ds

¤ mp2m� 1q K2

n4α�2
EM2m�2

tk,j� 1
n2

, m ¥ 1.

Note for the last inequality that pM2m�2
s ,Fsqs is a submartingale. So we get (1.8) by iteration.
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Consider further

E|∆Yk,j |2m � E

�����
» tk,j� 1

n2

tk,j

σs dWs

�����
2m

¤ vmK
2m

n2m
, m ¥ 1 (1.9)

with the same argumentation as in (1.8). So the Cauchy-Schwarz inequality together with (1.8)
and (1.9) yields

E
�|∆Yk,j |m|∆Yk,j�1 �∆ Yk,j�1 |m

� ¤ vmK
2m

n2αm�2m
, m ¥ 1.

Due to

E|∆ Yk,j�1 |2m � σ2m
k,j�1E|∆Wk,j�1|2m ¤ K2mµ2m

n2m
, µ2m

def� E|Np0, 1q|2m, m ¥ 1,

we also get

E
�|∆ Yk,j�1 |m|∆Yk,j �∆ Yk,j |m

� ¤ pvmµ2mq 1
2K2m

n2αm�2m
, m ¥ 1.

step 2. Proof of (1.5). Note in this regard�����pσ2
k �

πn2

2pn� 1q
n�2̧

j�0

|∆ Yk,j ||∆ Yk,j�1 |
����� (1.10)

¤ πn2

2pn� 1q
n�2̧

j�0

||∆Yk,j∆Yk,j�1| � |∆ Yk,j ∆ Yk,j�1 ||

¤ πn2

2pn� 1q
n�2̧

j�0

|∆Yk,j∆Yk,j�1 �∆ Yk,j ∆ Yk,j�1 |

¤ πn2

2pn� 1q
n�2̧

j�0

|∆Yk,j ||∆Yk,j�1 �∆ Yk,j�1 | � |∆ Yk,j�1 ||∆Yk,j �∆ Yk,j |.

Moreover, we have together with the results of the first step and the Markov inequality

P

�
πn2

2pn� 1q
n�2̧

j�0

|∆Yk,j ||∆Yk,j�1 �∆ Yk,j�1 | � |∆ Yk,j�1 ||∆Yk,j �∆ Yk,j | ¥ ε

�
(1.11)

¤
n�2̧

j�0

�
P

�
|∆Yk,j ||∆Yk,j�1 �∆ Yk,j�1 | ¥ 1

2pn� 1q
2pn� 1q
πn2

ε



� P

�
|∆ Yk,j�1 ||∆Yk,j �∆ Yk,j | ¥ 1

2pn� 1q
2pn� 1q
πn2

ε


�
¤ n

vmK
2mπmn2m

n2αm�2mεm
� n

pvmµ2mq 1
2K2mπmn2m

n2αm�2mεm

� d1

n2αm�1εm
,

and d1 is defined over the last equality. Now (1.5) follows from the inequalities in (1.10) and (1.11)
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together with

πn2

2pn� 1q
n�2̧

j�0

|∆ Yk,j ||∆ Yk,j�1 | � πn2

2pn� 1q
n�2̧

j�0

σk,jσk,j�1|∆Wk,j ||∆Wk,j�1|

� π

2pn� 1q
n�2̧

j�0

pσ2
k � ck,jq|Zk,j ||Zk,j�1|

and step 2 is accomplished.

step 3. Proof of (1.6). Consider for this purpose the decomposition

n∆Yk,j � n∆ Yk,j �np∆Yk,j �∆ Yk,jq (1.12)

� σk,jZk,j � np∆Yk,j �∆ Yk,jq
� pσk � εk,jqZk,j � np∆Yk,j �∆ Yk,jq

and write, using the results in step 1 and the Markov inequality:

P p|np∆Yk,j �∆ Yk,jq| ¥ εq ¤ n2mvmK
2m

ε2mn4αm�2m
� d2

ε2mn4αm

where d2 is defined over the last equality. Together with (1.12) this proves step 3.

step 4. Proof of (1.7). The first inequality in (1.7) follows directly from our Assumptions
1.1.1. The second inequality follows from the consideration

|ck,j | � |σkpεk,j � εk,j�1q � εk,jεk,j�1| ¤ 2K2

nα
� K2

n2α
¤ 3K2

nα
, 0 ¤ k, j   n,

and the proof is complete.

Next, we prove two P -a.s. convergences. These follow from the above Proposition 1.1.4, Corol-
lary A.2 and Proposition A.3 in the appendix, and several Borel-Cantelli arguments. We use the
abbreviations

max
k

fk
def� max

0¤k n
fk, max

k,j
gk,j

def� max
0¤k,j n

gk,j , n P N

for functions f resp. g with the domains t0 ¤ k   nu resp. t0 ¤ k, j   nu. In addition f and g

may depend on ω P Ω.

Proposition 1.1.5. It holds for γ   α

nγ max
k,j

|n∆Yk,j � σkZk,j | Ñ 0, P -a.s. (1.13)

and if additionally γ   1
2 , i.e. γ   α^ 1

2 , we have, furthermore,

nγ max
k
|pσ2
k � σ2

k| Ñ 0, P -a.s. (1.14)

Proof. We separate the proof into two steps one for each equation.
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step 1. Proof of (1.13). We write, using the notation in Proposition 1.1.4,

nγ max
k,j

|n∆Yk,j � σkZk,j | � nγ max
k,j

|εk,jZk,j �Hk,j | ¤ Knγ�α max
k,j

|Zk,j | � nγ max
k,j

|Hk,j |.

Using Proposition A.3, (1.6) and the Markov inequality, this yields for n sufficiently large

P pnγ max
k,j

|n∆Yk,j � σkZk,j | ¥ εq

¤ P

�
Knγ�α max

k,j
|Zk,j | ¥ ε

2



� P

�
nγ max

k,j
|Hk,j | ¥ ε

2



¤ 2mKmnmpγ�αq

εm
Epmax

k,j
|Zk,j |qm �

¸
0¤k,j n

P

�
|Hk,j | ¥ εn�γ

2




¤ nmpγ�αq
2mKm

εm

�
2mplog n2qm2 � 2m!

	
� n2d2

22mn2γm

ε2m
n�4αm

� O

�
1
n2



, (1.15)

for any fixed ε ¡ 0 and m large enough. The last equation holds because of γ   α since

mpγ � αq Ó �8, 2γm� 4αm Ó �8, m Ò 8.

Next we set

Al
def� lim sup

n

"
nγ max

k,j
|n∆Yk,j � σkZk,j | ¥ 1

l

*
, l P N.

Then, because of
°
n¡0 n

�2   8 and (1.15), the Borel-Cantelli lemma yields

P pAlq � 0, l P N.

Since � 8¤
l�1

Al

�c

� tnγ max
k,j

|n∆Yk,j � σkZk,j | Ñ 0u,

(1.13) is proven.

step 2. Proof of (1.14). In view of Proposition 1.1.4 we write

max
k
|pσ2
k � σ2

k|

� max
k

�����
�

π

2pn� 1q
n�2̧

j�0

|Zk,j ||Zk,j�1| � 1

�
σ2
k �

π

2pn� 1q
n�2̧

j�0

ck,j |Zk,j ||Zk,j�1| � Fk

�����
¤ K2 max

k

����� π

2pn� 1q
n�2̧

j�0

|Zk,j ||Zk,j�1| � 1

������ 3πK2

2pn� 1qnα
n�2̧

j�0

max
k
|Zk,j |max

k
|Zk,j�1|

�max
k
|Fk|

def� K2 max
k

η
pkq
1 � η2 �max

k
|Fk|. (1.16)
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Corollary A.2 and the Markov inequality imply

P

�
nγ max

k
η
pkq
1 ¡ ε



¤

ņ

k�0

P
�
η
pkq
1 ¡ εn�γ

	
¤ nCε�2mn2mγn�m.

Using γ   1
2 we have

2mγ �m Ó �8, m Ò 8,
so that the same Borel-Cantelli argument as in step 1 yields, for γ   1

2 , the convergence

nγK2 max
k

η
pkq
1 Ñ 0 P -a.s. (1.17)

In order to apply the same argument to η2, we use Proposition A.3 and note that the random
variables maxk |Zk,j | and maxk |Zk,j�1| are independent for every j � 0, . . . , n� 2. This yields

P

�
nγ�α

n�2̧

j�0

max
k
|Zk,j |max

k
|Zk,j�1| ¥ εpn� 1q

�

¤
n�2̧

j�0

P

�
max
k
|Zk,j |max

k
|Zk,j�1| ¥ εnα�γ



¤ pn� 1q

�
2mplog nqm2 � 2m!

	2
ε�mnmpγ�αq.

Since γ   α, we have
1�mpγ � αq Ó �8, m Ò 8

and Borel-Cantelli yields, for γ   α, the convergence

nγη2 Ñ 0 P -a.s. (1.18)

Finally, we consider (1.5) and estimate

P

�
nγ max

k
|Fk| ¡ ε



¤

n�1̧

k�0

P
�|Fk| ¡ εn�γ

� ¤ nε�mnγmd1n
1�2αm.

Again, since γ   α

2� γm� 2αm Ó �8, m Ò 8,
so that Borel-Cantelli once more yields, for γ   α, the convergence

nγ max
k
|Fk| Ñ 0 P -a.s. (1.19)

Lastly, an application of (1.17), (1.18) and (1.19) to (1.16) proves the claim (1.14).

Our next proposition is the first one which acts with the drift term. Note that this proposition
is itself interesting because it provides a possibility to estimate the spot volatility pathwise and
uniform on a grid. We provide a refinement of this result in Section 1.3 where we investigate a spot
volatility estimator, constructed via linear interpolation from the gridpoints.
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Proposition 1.1.6. We have for all γ   α^ 1
2 the convergence

nγ max
k,j

|qσk � σk| Ñ 0 P -a.s. (1.20)

Proof. First, we estimate

|qσ2
k � pσ2

k| �
����� πn2

2pn� 1q
n�2̧

j�0

|∆Yk,j ||∆Yk,j�1| � |∆qYk,j ||∆qYk,j�1|
�����

¤ πn2

2pn� 1q
n�2̧

j�0

|∆Yk,jp∆Yk,j�1 �∆qYk,j�1q �∆qYk,j�1p∆qYk,j �∆Yk,jq|

¤ πn2

2pn� 1q
n�2̧

j�0

|∆Yk,j ||∆Bk,j�1| � p|∆Yk,j�1| � |∆Bk,j�1|q|∆Bk,j |

¤ πn2

2pn� 1q
n�2̧

j�0

p|∆Yk,j �∆ Yk,j | � |∆Bk,j |q|∆Bk,j�1| � |∆Yk,j�1 �∆ Yk,j�1 ||∆Bk,j |

� πn2

2pn� 1q
n�2̧

j�0

|∆ Yk,j ||∆Bk,j�1| � |∆ Yk,j�1 ||∆Bk,j |

¤ πK

2pn� 1q
n�2̧

j�0

|∆Yk,j �∆ Yk,j | � K

n2
� |∆Yk,j�1 �∆ Yk,j�1 | (1.21)

� πK2

2pn� 1q
n�2̧

j�0

|∆Wk,j | � |∆Wk,j�1|

and write using (1.8)

P

�
nγ max

k

�
1

n� 1

n�2̧

j�0

|∆Yk,j �∆ Yk,j | � |∆Yk,j�1 �∆ Yk,j�1 |
�
¥ ε

�
(1.22)

¤
n�1̧

k�0

n�1̧

j�0

P
�
|∆Yk,j �∆ Yk,j | ¥ ε

2
n�γ

	
¤ n2 22mvmK

2mn2mγ

n4αm�2mε2m
.

Further, we write

nγ max
k

1
2pn� 1q

n�2̧

j�0

p|∆Wk,j | � |∆Wk,j�1|q � nγ�1 max
k

1
2pn� 1q

n�2̧

j�0

p|Zk,j | � |Zk,j�1|q

¤ nγ�1 max
k,j

|Zk,j |.

This implies together with Proposition A.3 the inequalities

P

�
nγ max

k

1
2pn� 1q

n�2̧

j�0

p|∆Wk,j | � |∆Wk,j�1|q ¥ ε

�
¤ P pmax

k,j
|Zk,j | ¥ εn1�γq (1.23)

¤ nmpγ�1q

εm

�
2mplog n2qm2 � 2m!

	
.
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Finally, (1.22) and (1.23) yield, together with (1.21) and the same Borel-Cantelli argument as in
Proposition 1.1.5, for all γ   1 the convergence

nγ max
k
|qσ2
k � pσ2

k| Ñ 0 P -a.s. (1.24)

Now (1.20) follows from (1.24) together with (1.14) and

nγ max
k
|qσk � σk| � nγ max

k

|qσ2
k � σ2

k|qσk � σk
¤ V �1nγ

�
max
k
|qσ2
k � pσ2

k| �max
k
|pσ2
k � σ2

k|


.

Recall the definition of V in Assumption 1.1.1 (i).

1.2 Extreme value theory and jumps

Proposition 1.2.1. Let Assumptions 1.1.1 hold and let γ   α^ 1
2 be constant. Then, it holds

nγ max
k,j

�����n∆qYk,jqσk � Zk,j

�����Ñ 0 P -a.s. (1.25)

Proof. Write

max
k,j

�����n∆qYk,jqσk � Zk,j

����� ¤ max
k,j

�����n∆qYk,jqσk � n∆Yk,j
σk

������ V �1 max
k,j

|n∆Yk,j � σkZk,j |.

Based on (1.13) it suffices to prove for γ   α^ 1
2 the convergence

nγ max
k,j

�����n∆qYk,jqσk � n∆Yk,j
σk

�����Ñ 0 P -a.s.

In order to prove this, note that

n1�δ max
k,j

|∆Yk,j | Ñ 0 P -a.s. (1.26)

holds for every δ ¡ 0. Consider for this purpose

n1�δ max
k,j

|∆Yk,j | ¤ n�δ max
k,j

|n∆Yk,j � σkZk,j | �Kn�δ max
k,j

|Zk,j | (1.27)

together with (1.13), Proposition A.3 and our standard Borel-Cantelli argument. Next, write�����n∆qYk,jqσk � n∆Yk,j
σk

����� � n
|∆qYk,jσk �∆Yk,jqσk|qσkσk

� n
|p∆qYk,j �∆Yk,jqσk �∆Yk,jpσk � qσkq|qσkσk

¤
K2

n � n|∆Yk,j ||σk � qσk|qσkσk (1.28)
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Note further that we have because of (1.20) the convergence

max
k
|qσkσk � σ2

k| ¤ K max
k
|qσk � σk| Ñ 0 P-a.s.

This yields

min
k
|qσkσk| ¥ min

k
pσ2
k � |qσkσk � σ2

k|q ¥ V 2 �max
k
|qσkσk � σ2

k| Ñ V 2 ¡ 0 P-a.s. (1.29)

Now choose δ ¡ 0 such that γ � δ   α^ 1
2 . Then observe

nγ max
k,j

�
K2

n
� n|∆Yk,j ||σk � qσk|
 ¤ K2nγ�1 � n1�δ max

k,j
|∆Yk,j |nγ�δ max

k
|σk � qσk|

Ñ 0 P -a.s. (1.30)

where we get the convergence from (1.20) and (1.26). Finally, (1.28), (1.29) and (1.30) prove this
proposition.

Corollary 1.2.2. Set

aN �
a

2 logN, bN
def� aN � logplogNq � logp4πq

2
?

2 logN
, N P N (1.31)

and define a statistic Tn via

Tn � nmax
k,j

�
∆qYk,jqσk

�
, n P N. (1.32)

Then, under the Assumptions 1.1.1 it holds the weak convergence

an2pTn � bn2q dÑ G, nÑ8

where G denotes the Gumbel distribution, i.e. the unique distribution with the cumulative distribu-
tion function x ÞÑ e�e�x , x P R.

Proof. It is known from extreme value theory that

an2pmax
k,j

Zk,j � bn2q dÑ G, nÑ8,

compare Example 1.1.7 in Haan, Ferreira [17]. This proves, together with Proposition 1.2.1, Slut-
sky’s theorem and Lemma A.7, our claim.

Note that the notation of Tn does not distinguish between the presence or absence of a non-
vanishing drift term, i.e. there is no check notation. This is only due to a simpler notation and
should not cause any ambiguity.

Up to this point it was assumed that the Assumptions 1.1.1 hold. However, these assumptions
have the disadvantage that the two constants V and K are chosen globally, i.e. they are independent
of the path ω. Particularly (ii) in Assumptions 1.1.1 is a huge restriction. A path dependent
counterpart to the Assumptions 1.1.1 is, therefore, formulated which even allows α to depend on
the path.
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Assumptions 1.2.3. Let the volatility σ be pathwise Hölder continuous, strictly positive and let
the drift b be pathwise bounded. This means that there are two functions

α : Ω Ñ p0, 1s and K : Ω Ñ p0,8q,

such that
|σtpωq � σspωq| ¤ Kpωq|t� s|αpωq, 0 ¤ s, t ¤ 1, ω P Ω (1.33)

and
|σtpωq| _ |btpωq| ¤ Kpωq, 0 ¤ t ¤ 1, ω P Ω. (1.34)

Furthermore, we claim t ÞÑ btpωq to be Lebesgue measurable for all ω P Ω.

Remark 1.2.4. Because every path is assumed to be continuous and strictly positive, it follows
from elementary analysis that

V pωq def� inf
0¤t¤1

σtpωq ¡ 0, ω P Ω.

We consider V just like K as a function V : Ω Ñ p0,8q. Of course we still assume the processes
W , σ and b to be resp. pFtq adapted.

In the following we generalize some of the results proved under the Assumptions 1.1.1 to the
weakened Assumptions 1.2.3. For this purpose we use stopping techniques and some properties
of the Itô-integral. We start with the weak convergence to the Gumbel distribution as claimed in
Corollary 1.2.2.

Theorem 1.2.5. The statement of Corollary 1.2.2 still holds with the weakened Assumptions 1.2.3.

Proof. Define for each m P N

Sp1qm
def� inf

"
t ¥ 0 : σt R

�
1
m
,m

�*
, Sp2qm

def� inftt ¥ 0 : |bt| ¡ mu

and
Sp3qm

def� inf
!
t ¥ 0 : Ds   t : |σt � σs| ¡ m|t� s| 1

m

)
with inf H def� 1. Clearly S

p1q
m and S

p2q
m are stopping times as outlined by Protter [35][p. 4].

Furthermore, Sp3qm is also a stopping time because of

tSp3qm   tu �
¤

0¤q1 q2 t,
q1,q2PQ

!
|σq2 � σq1 | ¡ m|q2 � q1|

1
m

)
P Ft,

taking into account that the Filtration pFtqt is right continuous. Set

Am
def�

3£
j�1

!
Spjqm � 1

)
X
"

1
m
¤ σ0 ¤ m

*
.

Then (1.33) and (1.34) yield Am Ò Ω. Note that σS
p3q
m is Hölder continuous with exponent 1

m and
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coefficient m. We only need to consider the critical case s   t � S
p3q
m to verify this:

|σ
S
p3q
m
� σs| � lim

k
|σ
S
p3q
m � 1

k

� σs| ¤ lim
k
m

����Sp3qm � 1
k
� s

���� 1
m

� m|Sp3qm � s| 1
m .

Next set Sm
def� S

p1q
m ^ S

p2q
m ^ S

p3q
m and

σ
pmq
t

def� 1r 1
m
,mspσ0qσSmt � 1

m
1r 1

m
,mscpσ0q

b
pmq
t

def� 1r0,Smqptqbt, 0 ¤ t ¤ 1, m P N.

Then σpmq and bpmq fulfill the Assumptions 1.1.1 with

α � V � 1
m
, K � m. (1.35)

As σpmq is pFtqt adapted and t ÞÑ b
pmq
t pωq is measurable, we can define

qY pmq
t

def�
» t

0
σpmqs dWs �

» t
0
bpmqs dλpsq, m P N.

Using results of Jacod, Shiryaev [20][p. 46 ff.] and the fact that Sm is a stopping time and
1r 1

m
,mspσ0q P F0, we obtain for every m P N and 0 ¤ t ¤ 1 the P -a.s. equality

» t
0
σpmqs dWs � 1r 1

m
,mspσ0q

�qY Sm
t � 1pSm,1sptqpWt �WSmqσSm

	
� 1r 1

m
,mscpσ0q 1

m
Wt.

This yields qY pmq
t pωq � qYtpωq, 0 ¤ t ¤ 1, ω P Am XN c

m,

for a family of negligible sets pNmq, so that we have for every r P R

P panpT pmqn � bnq ¤ rq ¤ P panpTn � bnq ¤ rq � P pAcmq, m, n P N. (1.36)

Write T pmqn for the statistic Tn in (1.32) with qY pmq instead of qY . Then Corollary 1.2.2 yields

anpT pmqn � bnq dÑG, nÑ8 (1.37)

for all m P N. From (1.36) and (1.37) follows

lim inf
n

P panpTn � bnq ¤ rq ¥ Gpp�8, rsq � P pAcmq, m P N,

so that we obtain because of Acm Ó H

lim inf
n

P panpTn � bnq ¤ rq ¥ Gpp�8, rsq, r P R.

Similar considerations yield

lim sup
n

P panpTn � bnq ¤ rq ¤ Gpp�8, rsq, r P R,
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providing the final prove for Theorem 1.2.5.

Next we generalize some P -a.s. convergence results to the weakened Assumptions 1.2.3 with a
fixed 0   α ¤ 1. To be more precise, we establish the following Corollary.

Corollary 1.2.6. Assume that the weakened Assumptions 1.2.3 hold with a function α independent
of the path ω, i.e. α ¡ 0 is constant. Then the P -a.s. convergences (1.13), (1.14), (1.20) and
(1.25) still hold.

Proof. First, note that the requirement on α, not to depend on the path ω, is natural in view of
what we are going to verify in this corollary. We use the same stopping techniques and notations
as in Theorem 1.2.5 with the only difference that we replace Sp3qm with

Sp3qm
def� inftt ¥ 0 : Ds   t : |σt � σs| ¡ m|t� s|αu (1.38)

because α is a constant in our actual setting. Here, we only prove (1.20), i.e.

nγ max
k
|qσk � σk| Ñ 0 P -a.s.

for all γ   α^ 1
2 because the proof of all assertions is based on the same idea.

Define pqσpmqk qk�0,...,n�1 as a function of p∆qY pmq
k,j q0¤k,j n instead of p∆qYk,jq0¤k,j n, i.e.

pqσpmqk q2 � πn2

2pn� 1q
n�2̧

j�0

|∆qY pmq
k,j ||∆qY pmq

k,j�1|, 0 ¤ k   n, m P N.

Then, (1.20) states that we have for every m P N, the convergence

nγ max
k,j

|qσpmqk � σ
pmq
k |pωq Ñ 0, nÑ8, ω PM c

m (1.39)

for a negligible set Mm. Crucial for this proof is, that we have

qσpmqk pωq � qσkpωq, σ
pmq
k pωq � σkpωq, 0 ¤ k   n, ω P Am XN c

m, m, n P N, (1.40)

with Am as in Theorem 1.2.5 and Am Ò Ω. Now fix any

ω P A def�
� ¤
mPN

Am XN c
m

�
X
� ¤
mPN

Mm

�c

.

Then there is a number m P N with ω P Am XN c
m XM c

m. Hence, (1.39) and (1.40) yield

nγ max
k,j

|qσk � σk|pωqp1.40q� nγ max
k,j

|qσpmqk � σ
pmq
k |pωqp1.39qÑ 0, nÑ8.

Since Am Ò Ω, we have P pAq � 1 and our claim is proven.

Remark 1.2.7. The rate α^ 1
2 in (1.20) is optimal as described in the next Section 1.3. Concerning

the optimality of (1.13), choose the deterministic volatility

σs
def� 1� sα, 0 ¤ s ¤ 1.
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Then we get using the Itô isometry

lim sup
n

E pnα|n∆Y0,n�1 � σ0Z0,n�1|q2 ¥ 1.

For this reason nα maxk,j |n∆Yk,j � σkZk,j | does not converge in L2 to zero. We obtain this result
by considering the equations

Epn∆Y0,n�1 � σ0Z0,n�1q2 � n2E

�» 1
n

1
n
� 1
n2

pσs � σ0q dWs

�2

� n2

» 1
n

1
n
� 1
n2

pσs � σ0q2 ds

and » 1
n

1
n
� 1
n2

pσs � σ0q2 ds �
» 1
n

1
n
� 1
n2

s2α ds ¥ 1
n2

�
1
n
� 1
n2


2α

� 1
n2

�
1
n


2α�
1� 1

n


2α

.

Finally, we state (1.25) itself as a theorem under the weakened assumptions because this result
is quite interesting in view of building a jump test in combination with Theorem 1.2.5.

Theorem 1.2.8. Let the weakened Assumptions 1.2.3 hold with a constant α ¡ 0. Then we obtain
for all γ   α^ 1

2 the convergence

nγ

�����nmax
k,j

∆qYk,jqσk �max
k,j

Zk,j

����� ¤ nγ max
k,j

�����n∆qYk,jqσk � Zk,j

�����Ñ 0 P -a.s.

Proof. This is a direct consequence of Corollary 1.2.6 together with Lemma A.7.

1.3 Uniform and pathwise estimate of the spot volatility

In this section, we are going to present an estimator for the spot volatility process σ, such that the
estimated spot volatility converges uniformly and pathwise to the true spot volatility. The optimal
convergence rate of this estimator is revealed. We emphasize that we only need very weak and
natural assumptions to establish the convergence. To be more precise we assume the Assumptions
1.2.3 with a fixed 0   α ¤ 1. Our estimator is a linear interpolation of the realised bipower
variation estimator in Definition 1.1.3 on the grid. Hence its calculation can be done very easily
and quickly. A similar approach with a kernel type estimator was also taken by Fan and Wang
[15]. They reach similar convergence rates as our test in the case α ¡ 1

2 . The case α   1
2 is

not covered by their results. An interesting result in [15] is the weak convergence of a suitably
scaled supremum norm to the Gumbel distribution (Theorem 2 in their paper) which is valid in the
case that σ is stationary. Nevertheless, we are interested in pathwise, uniform convergences under
consideration of the parameter α. Note also an interesting alternative approach by Hoffman, Munk
and Schmidt-Hieber [18]. They use a wavelet type estimator and consider the Lp error, p   8.

In order avoid confusion with the notation, the time argument of all processes in this section
is denoted in brackets and the grid fineness is denoted with an index. For (1.41), this means, for
instance, qσk is denoted as qσn � kn�. Set

qσn �n
n

	
def� qσn�n� 1

n



.
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Then the statement (1.20) in Corollary 1.2.6 yields, together with

nγ
����qσn�n� 1

n



� σ

�n
n

	���� ¤ nγ
����qσn�n� 1

n



� σ

�
n� 1
n


����� nγ�αKpωq,

the convergence

nγ max
0¤k¤n

����qσn�kn


� σ

�
k

n


����Ñ 0, P -a.s. (1.41)

for all γ   α^ 1
2 . Equation (1.41) is our starting point. Next, for every n P N, a natural estimatorqτn for the spotvolatility σ is defined which is based on n2�1 equidistant high-frequency observations

at the time points 0, 1
n2 ,

2
n2 , . . . , 1 of the underlying process qY , i.e. we have

qτn : Ω� r0, 1s Ñ R�, n P N.

For this purpose qτn is defined to be the linear interpolation of the points
�qσn � kn��k�0,1,...,n

. This
formally means

qτnptq def� rptqqσnpkptqq � p1� rptqqqσn�kptq � 1
n



, 0 ¤ t ¤ 1, n P N

with the two deterministic functions k, r : r0, 1s ÞÑ R� defined via

kptq def� tntu

n
, 0 ¤ t   1, kp1q def� n� 1

n

and

rptq def�
#

1, nt P t0, 1, . . . , n� 1u
rnts� nt, else

, 0 ¤ t ¤ 1.

An estimator pτn in the case of a vanishing drift term is defined in an analogous manner. Note
that our interpolation-based estimators coincide with the estimators in Definition 1.1.3 on the grid
points. Next we define for every 0   α ¤ 1 the following sets

Vα
def� tpσ, bq : pσ, bq satisfies Assumptions 1.2.3 with constant αu

and denote for any continuous function f : r0, 1s Ñ R with

}f}8 def� supt|fptq| : 0 ¤ t ¤ 1u

its supremum norm.

Now, a theorem concerning the convergence of the spot volatility estimator qτn can be formulated

Theorem 1.3.1. Let the Assumptions 1.2.3 hold with a fixed 0   α ¤ 1. Then, we have for all
γ   α^ 1

2 the convergence
nγ}qτn � σ}8 Ñ 0, nÑ8 P -a.s. (1.42)

and the upper bound α^ 1
2 is sharp in the sense that!

β P R : nβ}qτn � σ}8 P -a.s.Ñ 0 for all pσ, bq P Vα
)
�

�
�8, 1

2
^ α

�
. (1.43)
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Hence, the optimal convergence rate is n�pα^
1
2
q.

Proof. The proof is divided into two steps. The first one is devoted to the convergence result (1.42)
and the second one to the rate result (1.43).

step 1. Proof of (1.42). Using the linear interpolation approach, it holds for 0 ¤ t ¤ 1

|qτnptq � σptq| ¤ |qτnptq � qτnpkptqq| � |qτnpkptqq � σpkptqq| � |σpkptqq � σptq|
¤ 1

n
max

0¤k¤n
qσn�k

n



� |qσnpkptqq � σpkptqq| � Kpωq

nα

¤ 1
n

�
max

0¤k¤n

����qσn�kn


� σ

�
k

n


�����Kpωq


� |qσnpkptqq � σpkptqq| � Kpωq

nα

which implies together with (1.41) the claim (1.42).

step 2. Proof of (1.43). Set for any 0   α   1

σpsq � 1� sα, 0 ¤ s ¤ 1,

i.e. σ is positive, deterministic and the prototype of an α-Hölder continuous function. Furthermore,
set b � 0 and note that pσ, bq P Vα. Fix any β ¡ α. In what follows we are going to prove the
pointwise divergence

nβ}pτn � σ}8pωq Ñ 8, nÑ8, ω P Ω. (1.44)

This divergence to infinity is due to our interpolation approach. To prove it, we write for 0 ¤ t ¤ 1

pτnptq � rptqrσpkptqq � pσpkptqq � pσnpkptqqqs
�p1� rptqq

�
σ

�
kptq � 1

n



�
�
σ

�
kptq � 1

n



� pσn�kptq � 1

n



�
which implies

|pτnptq � σptq| �
����rptqrσpkptqq � σptqs � p1� rptqq

�
σ

�
kptq � 1

n



� σptq

�
�rptqrσpkptqq � pσnpkptqqs � p1� rptqq

�
σ

�
kptq � 1

n



� pσn�kptq � 1

n


�����
¥ rptq|σpkptqq � σptq| � p1� rptqq

����σ�kptq � 1
n



� σptq

����
�|σpkptqq � pσnpkptqq| � ����σ�kptq � 1

n



� pσn�kptq � 1

n


���� ,
so that we obtain

}pτn � σ}8 ¥ 1
3

sup
0¤t¤1

"
rptq|σpkptqq � σptq| � p1� rptqq

����σ�kptq � 1
n



� σptq

����* . (1.45)

Next, choose any 0   λ   β
α � 1 and set tn

def� n�p1�λq. Then we receive because of

tn � p1� n�λq � 0� n�λn�1
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the relations
kptnq � 0, rptnq � 1� n�λ.

This yields

nβ
�
rptnq|σpkptnqq � σptnq| � p1� rptnqq

����σ�kptnq � 1
n



� σptnq

����

� nβ

��
1� n�λ

	
n�αp1�λq � n�λ

�
n�α � n�αp1�λq

		
�

�
1� n�λ

	
n�αp1�λq�β � nβ�λ�α � nβ�λ�αp1�λq Ñ8, nÑ8 (1.46)

where the divergence to infinity holds since we have

�αp1� λq � β ¡ maxpβ � λ� α, 0q.

Finally, note that (1.45) and (1.46) establish (1.44). With (1.44) in mind, it obviously suffices to
verify

P

�
lim sup

n
n

1
2 }qτn � σ}8 ¡ 0



¡ 0 (1.47)

for a pair pσ, bq P V1 in order to establish our wanting claim (1.43). For this purpose, choose σ � 1
and b � 0, i.e. Y is a standard Brownian motion and it holds obviously pσ, bq P V1. Now, (1.47)
holds because of the classical central limit theorem (CLT) for i.i.d random variables. Nevertheless,
a rigorous proof of (1.47) is provided in the following: Note that

n
1
2

�
πn2

2pn� 1q
n�2̧

j�0

|∆Y0,j ||∆Y0,j�1| � 1

�
� πn

1
2

2pn� 1q
n�2̧

j�0

�
|Z0,j ||Z0,j�1| � 2

π



.

Write Zj
def� Z0,j , j P N and consider a decomposition as in (A.9), i.e. write

ξp1qn � ξp2qn � εn
def� n�

1
2

ņ

j�1

�
|Zj ||Zj�1| � 2

π



, n P N (1.48)

with
ξpjqn

dÑ Np0, τq, τ
def� 1

2
Var|Z1||Z2|, j � 1, 2

and
εn Ñ 0, P -a.s. and in L2 (1.49)

in the limit nÑ8 respectively. Note next that!
|ξp1qn � ξp2qn |2

)
nPN

(1.50)

is a family of uniformly integrable (u.i.) random variables because of

E|ξp1qn � ξp2qn |4 ¤ 8
�
E|ξp1qn |4 � E|ξp2qn |4

	
and Proposition A.1 together with (A.8). Now assume that (1.47) is not true. This and (1.49)
imply

ξp1qn � ξp2qn Ñ 0 P -a.s.
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Since (1.50) is u.i. it necessarily follows

E|ξp1qn � ξp2qn |2 Ñ 0, nÑ8.

But this is a contradiction to (1.48) because of (1.49) and the equations

1
n

�
ņ

j�1

�
|Zj ||Zj�1| � 2

π


�2

� 1
n

¸
0¤j,k n

E

��
|Zj ||Zj�1| � 2

π


�
|Zk||Zk�1| � 2

π


�

� 1
n

ņ

j�1

E

�
|Zj ||Zj�1| � 2

π


2

� Var|Z1||Z2| ¡ 0.

This proves (1.43). Thus, the proof of this theorem is completed under additional consideration of
(1.44).

1.4 Simplifications in the independent case

In this section it is assumed that the Brownian motion W , the volatility σ and the drift coefficient
b are independent. A proof of the quadratic variation version of Theorem 1.2.5 is stated with the
additional restriction that 0   α ¤ 1 is a constant, which, in this context, is the same as saying

inf
ωPΩ

αpωq ¡ 0. (1.51)

Note that we estimate the spot volatility in the following Theorem 1.4.2 with the realised quadratic
variation, i.e. by using the squares of the increments and not the product of two neighbour incre-
ments (realised bipower variation) as in Theorem 1.2.5. Nevertheless, after a few minor changes,
the proof of Theorem 1.4.2 also holds with the realised bipower variation estimator of the spot
volatility. Vice versa, Theorem 1.2.5 is true with the realised quadratic variation estimator, i.e. in
this sense both estimators are equivalent. Concerning external jumps, both estimators, however,
are different. Their differences are investigated in more detail in Section 1.6. As already mentioned
above, a redefinition is performed.

Redefinition 1.4.1. Set for 0 ¤ k   n

pσ2
k

def� n
n�1̧

j�0

p∆Yk,jq2 (without drift),

qσ2
k

def� n
n�1̧

j�0

p∆qYk,jq2 (with drift).

Due to the independence of W , σ and b, we are capable to give a direct and simpler proof than
the one of Theorem 1.2.5. The proof of Theorem 1.4.2 is based on the following representation (1.52)
which yields an immense technical simplification. For example, Proposition 1.1.4 is not required.
Representation (1.52) loosely states that we can assume w.l.o.g. that the volatility is deterministic.
In view of this interpretation our restriction (1.51) becomes natural. It is also customary to state
that we can condition on the volatility and drift processes.
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Theorem 1.4.2. The statement of Corollary 1.2.2 holds under the Assumptions 1.2.3 with constant
0   α ¤ 1 and the Redefinition 1.4.1.

Proof. The proof is divided into three steps. The first one is based on the independence of W , σ and
b. Here, it is shown that we can work w.l.o.g. on another probability space which gives us a useful
representation of the stochastic integral. The second step contains a short proof of Proposition
1.1.5 without using Proposition 1.1.4 due to the representation (1.52). Finally, the third step
accomplishes the proof under citation of the proof of Proposition 1.2.1 from (1.28) downwards.

step 1. A new probability space. Let prΩ, rF , rP q be a probability space which possesses a sequence
pZk,jqpk,jqPN0 �N0

, Zk,j � Np0, 1q of i.i.d. random variables on it. Define

Ω̄ � Ω� rΩ, F̄ � F b rF , P̄ � P b rP
and set

σ̄tpω̄q � σtpωq, b̄tpω̄q � btpωq, B̄tpω̄q �
» t

0
b̄spω̄qλpdsq, Z̄k,jpω̄q � Zk,jprωq

where ω̄ def� pω, rωq P Ω̄ and t P r0, 1s. Then pσ̄tq, pZ̄k,jq and pB̄tq are P̄ -independent and the law of
pσtq under P is equal to the law of pσtq under P . The crucial fact is that we have���» tk,j� 1

n2

tk,j

σ̄2
s ds

� 1
2

Z̄k,j ,∆B̄k,j

�
0¤k,j n

d� p∆Yk,j ,∆Bk,jq0¤k,j n. (1.52)

See also (11) in Barndorff-Nielsen and Shephard [4]. This paper is based on the above representa-
tion. Since we intend to prove the weak convergence

an2pTn � bn2q dÑ G, (1.53)

we can consider w.l.o.g. the left hand side of (1.53) as a function of the left hand side of (1.52).
However, for a more convenient notation pΩ,F , P q is written instead of pΩ̄, F̄ , P̄ q and the overline
notations of the processes are not used.

step 2. An alternative proof of Proposition 1.1.5. First the two convergences

nδ max
k

����� 1n
n�1̧

j�0

Z2
k,j � 1

����� Ñ 0, P -a.s., δ   1
2
, (1.54)

n�δ max
k,j

|Zk,j | Ñ 0, P -a.s., δ ¡ 0 (1.55)

are established beginning with (1.54). Write for this purpose with δ   1
2 , m P N and Corollary

A.2, the inequalities

P

�
nδ max

k

����� 1n
n�1̧

j�0

Z2
k,j � 1

����� ¥ ε

�
¤ nP

������ 1n
n�1̧

j�0

Z2
0,j � 1

����� ¥ εn�δ
�

¤ nCε�2mn2mδn�m

and note that 2δ � 1   0 since δ   1
2 . Thus, Borel-Cantelli yields the desired convergence. For
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proving (1.55), use the same argument with Proposition A.3. For completeness, we write for δ ¡ 0
and m P N the inequalities

P

�
n�δ max

k,j
|Zk,j | ¥ ε



¤ ε�mn�δm

�
2m

�
log n2

�m
2 � 2m!

	
� ε�mo

�
n�

δ
2
m
	

and note � δ
2   0 since δ ¡ 0. Next it is proven

nγ max
k,j

|n∆Yk,j � σkZk,j | Ñ 0, P -a.s., γ   α, (1.56)

nγ max
k
|pσ2
k � σ2

k| Ñ 0, P -a.s., γ   α^ 1
2
. (1.57)

Starting with (1.56), we write using (1.52) the equality

n∆Yk,j � σkZk,j �
���

n2

» tk,j� 1
n2

tk,j

σ2
s ds

� 1
2

� σk

�Zk,j , 0 ¤ k, j   n.

Note that we obtain from the mean value theorem for Riemann-integrals the estimates�����n2

» tk,j� 1
n2

tk,j

σ2
s ds� σ2

k

����� � |σ2
ξk,j

� σ2
k| � |σξk,j � σk||σξk,j � σk| ¤ 2K �K

����ξk,j � k

n

����α
¤ 2K2 1

nα
, 0 ¤ k, j   n (1.58)

where tk,j ¤ ξk,j ¤ tk,j � 1
n2 . Next fix any γ   α and δ ¡ 0 with γ � δ   α and consider the

inequality

nγ max
k,j

|n∆Yk,j � σkZk,j | ¤ V �1nγ�δ max
k,j

�����n2

» tk,j� 1
n2

tk,j

σ2
s ds� σ2

k

�����n�δ max
k,j

|Zk,j |.

This proves together with (1.55) and (1.58) the claim (1.56). Next, (1.57) is considered and for this
purpose it is stated

pσ2
k � n

n�1̧

j�0

p∆Yk,jq2 � 1
n

n�1̧

j�0

�
n2

» tk,j� 1
n2

tk,j

σ2
s ds� σ2

k � σ2
k

�
Z2
k,j , 0 ¤ k   n

which implies

pσ2
k � σ2

k � σ2
k

�
1
n

n�1̧

j�0

Z2
k,j � 1

�
� 1
n

n�1̧

j�0

�
n2

» tk,j� 1
n2

tk,j

σ2
s ds� σ2

k

�
Z2
k,j .

So we can estimate

|pσ2
k � σ2

k| ¤ K2

����� 1n
n�1̧

j�0

Z2
k,j � 1

������ max
0¤j n

�����n2

» tk,j� 1
n2

tk,j

σ2
s ds� σ2

k

����� �
������ 1n

n�1̧

i�0

Z2
k,i � 1

������ 1

�
.
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This yields together with (1.54) and (1.58) for γ   α^ 1
2 the inequality (1.57).

step 3. Drift analysis and handling the quotient. With the same argumentation as in the
proofs of Proposition 1.2.1 and Corollary 1.2.2, it suffices to verify

an2 max
k,j

�����n∆qYk,jqσk � n∆Yk,j
σk

�����Ñ 0 P -a.s. (1.59)

To this end we first establish

n1�δ max
k,j

|∆Yk,j | Ñ 0, P -a.s., δ ¡ 0, (1.60)

nγ max
k
|qσk � σk| Ñ 0, P -a.s., γ   α^ 1

2
. (1.61)

To prove (1.60) consider (1.27) and the statements (1.55) and (1.56). To prove (1.61) consider first
the analogue quadratic variation calculation to (1.21), i.e.

|qσ2
k � pσ2

k| � n

�����n�1̧

j�0

|∆qYk,j |2 � |∆Yk,j |2
�����

¤ n
n�1̧

j�0

���|∆Yk,j �∆Bk,j | � |∆Yk,j |
��� � ���|∆Yk,j �∆Bk,j | � |∆Yk,j |

���
¤ n

n�1̧

j�0

|∆Bk,j |p2|∆Yk,j | � |∆Bk,j |q

¤ 2K max
k,j

|∆Yk,j | � K2

n2
. (1.62)

This implies for any fixed γ   1 because of (1.60) and (1.62) the convergence

nγ max
k
|qσ2
k � pσ2

k| Ñ 0 P-a.s.

Now, we arrive together with (1.57) for γ   α^ 1
2 at the inequality

nγ max
k
|qσk � σk| � nγ max

k

|qσ2
k � σ2

k|qσk � σk
¤ V �1nγ

�
max
k
|qσ2
k � pσ2

k| �max
k
|pσ2
k � σ2

k|



which yields (1.61).

Having proven (1.60) and (1.61), the estimation of the quotient is exactly the same as in the
proof of Proposition 1.2.1 from (1.28) down to its end.

1.5 Jumps in the volatility process

Jumps in the volatility process σ cause some problems. Nevertheless, a positive result under
appropriate strong assumptions is our starting point.

Assumptions 1.5.1. Let the volatility σ ¡ 0 and the Brownian motion W be independent. Set
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further b � 0, i.e. absence of a drift, and assume

V pωq def� inf
0¤t¤1

σtpωq ¡ 0, ω P Ω.

Furthermore, fix 0 ¤ ε   1 and 0   α ¤ 1 and let t ÞÑ σtpωq be càglàd with, at most, finite many
jumps of size not larger than εp?2� 1qV pωq and α-Hölder continuous between the jumps for every
path ω P Ω. This means that there is a function N : Ω Ñ N0 and a sequence pSlql¥0 of stopping
times with S0

def� 0, #
Slpωq   Sl�1pωq, 1 ¤ l ¤ Npωq,
Slpωq � 8, l ¡ Npωq,

such that
|σspωq � σtpωq| ¤ Kpωq|t� s|α

holds for all

ps, tq P
Npωq¤
l�0

pSlpωq, Sl�1pωq ^ 1s2, ω P Ω.

Here, N denotes the number of jumps in the respective path and pSlq1¤l¤N are the jump positions.
Furthermore, we claim

0   |∆σSlpωq| ¤ εp
?

2� 1qV pωq, 1 ¤ l ¤ N, ω P Ω

and assume as usual
|σtpωq|   Kpωq, 0 ¤ t ¤ 1, ω P Ω.

Remark 1.5.2. The volatility σ is required to be càglàd in the above Assumptions 1.5.1. This is
due to the needed predictable integrands in the Itô-calculus. However, since the Brownian motion
W has continuous paths, there is in fact no difference to the corresponding càdlàg version, cf.
Karatzas, Shreve [22] or Jacod, Shiryaev [20].

Theorem 1.5.3. Corollary 1.2.2 holds under the Assumptions 1.5.1 with the spot volatility esti-
mator in Redefinition 1.4.1.

Remark 1.5.4. In general, Assumptions 1.5.1 say that sufficient small jumps with finite activity
in the volatility process are allowed. It turns out that the jump size bound p?2� 1qV is sharp in
the sense of Corollary 1.5.7 at the end of this section. We assume that W and σ are independent
to keep the technical overhead as small as possible. The independence has the advantage that we
can use the same technique as in the previous Section 1.4. In a way we generalize in what follows
the proof of Theorem 1.4.2.

Remark 1.5.5. For completeness, a formal proof is provided that such a sequence of stopping
times pSlql¥0 as stated in the Assumptions 1.5.1 exists, N is measurable and that K can be chosen
as a measurable function. This is also important for the proof of Theorem 1.5.3. Assume for this
purpose that the Assumptions 1.5.1 hold and set for l ¥ 1

Slpωq def�
#

Position of the l-th jump in σpωq, σpωq has at least l jumps,

8, else
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and set S0
def� 0. To understand that each Sl is a stopping time, an inductive argument is provided.

Firstly, define for this purpose with r, s, u, v P Q and m,n P N, the sets

Iu,v,n
def�

"
pr, sq P Q2 : u   r, s   v and |r � s|   1

n

*
,

Ar,s,m
def�

"
ω P Ω : |σrpωq � σspωq| ¡ 1

m

*
.

S0 is obviously a stopping time. Assume for the induction step that Sl is also a stopping time for
some l P N. Observe, furthermore, for t ¡ 0 and

Cu,v
def�

¤
mPN

£
nPN

¤
pr,sqPIu,v,n

Ar,s,m P Fv, 0   u, v   1

the relation
tSl�1   tu �

¤
0 s t,
sPQ

tSl   su X Cs,t P Ft

which proves that pSlq are stopping times due to the right continuity of the filtration pFtq. Next

tN � nu �
n£

m�1

tSm   8u X tSn�1 � 8u P F , n P N0

yields that N is measurable. It remains to establish that K can be chosen as a measurable function.
To understand this, set

ψt
def� σt �

8̧

l�1

∆σSl 1pSl,1sptq, 0 ¤ t ¤ 1, ∆σ8
def� 0

and observe that ψ is pFtq adapted since σ is pFtq adapted and pSlq are stopping times as proven
previously. Note that ψ is simply σ without jumps. Since ψ is pathwise α-Hölder continuous, we
can define

Kpωq def�
�� sup

0¤s t¤1,
s,tPQ

|ψtpωq � ψspωq|
|t� s|α

�_ sup
0¤t¤1,
tPQ

|σtpωq|   8, ω P Ω.

K is obviously measurable and fulfills the requirements of the Assumptions 1.5.1. Compare for
similar results in this context also Chapter I, Proposition 1.32 in Jacod, Shiryaev [20] or Chapter
I in Protter [35].

We assume w.l.o.g. P pS1 � 0q � 0 and set

Kl,n
def� prnSls� 1q1tl¤Nu�n1tl¡Nu,

Gl,n
def� tpg1, . . . , glq P t0, 1, . . . , n� 1ul : g1   g2   . . .   glu, l, n ¥ 1.

Now we turn to the proof.

Proof of Theorem 1.5.3. Since the volatility σ and the Brownian motion W are independent ac-
cording to the Assumptions 1.5.1, we consider the same probability space as the one in the proof
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of Theorem 1.4.2. This briefly means that we can assume w.l.o.g.

∆Yk,j �
�» tk,j� 1

n2

tk,j

σ2
s ds

� 1
2

Zk,j , 0 ¤ k, j   n, n P N.

A precise consideration of the proof of Theorem 1.4.2 shows that we have proven

an2 max
k1,j

����n∆Yk1,jpσk1 � Zk1,j

����Ñ 0, nÑ8, P -a.s.

where

k1 P t0, 1, . . . , n� 1u �
N¤
l�1

tKl,nu, j P t0, 1, . . . , n� 1u.

Note that k1 runs over all positions of the rough scaled grid in between the volatility does not
possess a jump. This implies that for proving this theorem, it suffices to establish the following
two convergences:

P

�
max
k,j

n∆Yk,jpσk �max
k1,j

n∆Yk1,jpσk1 ¡ 0


Ñ 0, nÑ8 (1.63)

and

P

�
max
k,j

Zk,j �max
k1,j

Zk1,j ¡ 0


Ñ 0, nÑ8. (1.64)

This is due to the inequality����max
k,j

n∆Yk,jpσk �max
k,j

Zk,j

����
¤ max

k1,j

����n∆Yk1,jpσk1 � Zk1,j

����� �
max
k,j

n∆Yk,jpσk �max
k1,j

n∆Yk1,jpσk1


�
�

max
k,j

Zk,j �max
k1,j

Zk1,j



, n P N.

The following is divided into three steps. The first two steps prove (1.63). The first step simplifies
the claim to a more elementary result which involves only the maximum of Np0, 1q i.i.d. random
variables. This simplified result is proven in the second step. Finally, in the third step, the first
two steps are used in order to prove (1.64).

step 1. Simplification of the claim. Set

ηk
def� pσk � σk

σk
, ζk,j

def� n∆Yk,j � σkZk,j , 0 ¤ k, j   n

and define for any fixed 0   γ   α^ 1
2

An
def�

N�1£
l�0

"
Sl�1 � Sl ¡ 1

n

*
X
!
V ¡

�
2Kn�

α
2

	
_ n�

γ
2

)
,

Bn
def�

#
max
k

����� 1n
n�1̧

j�0

Z2
k,j � 1

����� ¤ 1
nγ
, max

k1
|ηk1 | ¤ 1

ηγ
, max

k1,j
|ζk1,j | ¤ 1

nγ
, max

k,j
Zk,j ¡ 0

+
,
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with the notation tM1,M2u def� M1 XM2 for any sets M1,M2. Furthermore, we have with

rk P N¤
l�1

tKl,nu

the inequality

P

�
max
k,j

n∆Yk,jpσk �max
k1,j

n∆Yk1,jpσk1 ¡ 0



(1.65)

¤ P

�
maxrk,j

n∆Yrk,jpσrk ¡ max
k1,j

n∆Yk1,jpσk1 , An, Bn

�
� P pAcnq � P pBc

nq.

The proof of Theorem 1.4.2 shows P pBc
nq Ñ 0, nÑ8. Note also

lim supP pAcnq ¤ P plim supAcnq � P pplim inf Anqcq � P pHq � 0,

i.e. P pAcnq Ñ 0, nÑ8. Since we aim to verify (1.63), the above yields that it is sufficient to prove
that

8̧

l�1

¸
gPGl,n

P

�
maxrk,j

n∆Yrk,jpσrk �max
k1,j

∆Yk1,jpσk1 ¡ 0, pK1,n, . . . ,Kl,nq � g, N � l, An, Bn

�

tends to zero, if n tends to infinity. Define for this purpose

λk
def� inf

t k
n
¤s¤ k�1

n
u
σs, 0 ¤ k   n,

δ
def� sup

l¥1
|∆σSl |1tSl¤1u ¤ εp

?
2� 1qV.

Then we have for ω P An and every 0 ¤ k   n, i.e. in particular for rk
λkpωq ¤ σspωq ¤ λkpωq � 2Kpωqn�α � δpωq def� λkpωq � δnpωq, k

n
¤ s ¤ k � 1

n
.

This yields the estimates

λ2
k

1
n

n�1̧

j�0

Z2
k,j ¤ pσ2

k ¤ pλk � δnq2 1
n

n�1̧

j�0

Z2
k,j , ω P An

because of pσ2
k � n

n�1̧

j�0

p∆Yk,jq2 � n
n�1̧

j�0

» tk,j� 1
n2

tk,j

σ2
s dsZ

2
k,j .

Using this we can write with Cn
def� An XBn, n P N the inequalities

P

�
maxrk,j

n∆Yrk,jpσrk ¡ max
k1,j

n∆Yk1,jpσk1 , pK1,n, . . . ,Kl,nq � g, N � l, Cn

�
(1.66)
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¤ P

���maxrk,j
n
�

1
n2 pλrk � δnq2

� 1
2 Zrk,j�

λ2rk
�
1� 1

nγ

�	 1
2

¡ max
k1,j

σk1Zk1,j � ζk1,j
σk1p1� ηk1q , pK1,n, . . . ,Kl,nq � g, N � l, Cn

��
¤ P

��maxrk,j
λrk � δn

λrk
Zrk,j�

1� 1
nγ

� 1
2

¡ max
k1,j

Zk1,j

1� 1
nγ

�
1
nγ

V
�
1� 1

nγ

� , pK1,n, . . . ,Kl,nq � g, N � l, Cn

�.
We have on An for n large enough

λrk � δn

λrk
¤ 1� n�

α
2 V � εp?2� 1qV

V
�
?

2� n�
α
2 � p

?
2� 1qp1� εq ¤ ?

2� κ

for some constant κ ¡ 0. So if g P Gl,n, (1.66) is not larger than

P

�� ?
2� κ�

1� 1
nγ

� 1
2

maxrk,j Zrk,j ¡
1

1� 1
nγ

max
k1,j

Zk1,j � 2

n
γ
2

�P ppK1,n, . . . ,Kl,nq � g, N � lq

where the latter maxima run over

rk P l¤
j�1

tgju resp. k1 P t0, 1, . . . , n� 1u �
l¤

j�1

tgju.

Here, we used the independence of Z and σ. Define

Dg
l,n

def�
$&%

?
2� κ�

1� 1
nγ

� 1
2

maxrk,j Zrk,j ¡
1

1� 1
nγ

max
k1,j

Zk1,j � 2

n
γ
2

,.- , l, n ¥ 1, g P Gl,n.

It suffices to prove P pDπ
l,nq Ñ 0, n Ñ 8 with π

def� p0, 1, . . . , l � 1q P Gl,n for every fixed l ¥ 1
because

8̧

l�1

¸
gPGl,n

P pDg
l,nqP ppK1,n, . . . ,Kl,nq � g, N � lq

�
8̧

l�1

P pDπ
l,nq

¸
gPGl,n

P ppK1,n, . . . ,Kl,nq � g, N � lq

¤
8̧

l�1

P pDπ
l,nqP pN � lq

and

P pDπ
l,nqP pN � lq ¤ P pN � lq,

8̧

l�1

P pN � lq ¤ 1   8

holds. Finally, a dominated convergence argument, (1.65) and the results proven so far yields the
desired convergence (1.63).
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step 2. Convergence of pDπ
l,nqn. We know that

αl,n
def� maxrk,j Zrk,j � bln Ñ 0, βl,n

def� max
k1,j

Zk1,j � bpn�lqn Ñ 0, nÑ8 P -stoch.

Due to

P pDπ
l,nq

� P

�� ?
2� κ�

1� 1
nγ

� 1
2

pαl,n � blnq ¡ 1
1� 1

nγ
pβl,n � bpn�lqnq �

2

n
γ
2

�
� P

�� ?
2� κ�

1� 1
nγ

� 1
2

αl,n � 1
1� 1

nγ
βl,n ¡ 1

1� 1
nγ
bpn�lqn �

?
2� κ�

1� 1
nγ

� 1
2

bln � 2

n
γ
2

�
and the stochastic convergence of pαl,nqn and pβl,nqn to zero, it suffices to validate

1
1� 1

nγ
bpn�lqn �

?
2� κ�

1� 1
nγ

� 1
2

bln Ñ8, nÑ8. (1.67)

Substituting (1.31) in (1.67) yields

1
1� 1

nγ

a
2 logppn� lqnq �

d
2� κ

1� 1
nγ

a
2 logplnq � op1q, nÑ8

�
gffe2 log

�
ppn� lqnq

1

p1� 1
nγ q2

�
�
d

2 log
�
plnq

2�κ
1� 1

nγ



� op1q.

Since
1�

1� 1
nγ

�2 Ñ 1,
2� κ

1� 1
nγ

Ñ 2� κ   2, nÑ8,

step 2 is accomplished.

step 3. Proof of (1.64). Write as at the end of step 1

P

�
max
k,j

Zk,j �max
k1,j

Zk1,j ¡ 0, An



¤

8̧

l�1

¸
gPGl,n

P

�
maxrk,j Zrk,j ¡ max

k1,j
Zk1,j , pK1,n, . . . ,Kl,nq � g, N � l

�

�
8̧

l�1

¸
gPGl,n

P

�
maxrk,j Zrk,j ¡ max

k1,j
Zk1,j

�
P ppK1,n, . . . ,Kl,nq � g, N � lq.

Again it suffices to establish

P

�
maxrk,j Zrk,j ¡ max

k1,j
Zk1,j

�
Ñ 0, nÑ8 (1.68)

for every fixed l P N and g P Gl,n. It appears that the proof of (1.68) is a simpler version of what
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was performed for the second step (set κ � 1).

In the following, we demonstrate that the bound p?2 � 1qV is sharp in a certain sense. Our
main result in this context is Corollary 1.5.7 which is a stochastic generalization of the following
Proposition 1.5.6. We illustrate that the convergence to the Gumbel distribution does not have
to hold, if there is an oversized jump in the volatility process at some irrational position. Such
an irrational jump position causes some problems since our grid consists of equidistant rational
points. Compare the proof of the next Proposition 1.5.6 for an rigorous argumentation.

Proposition 1.5.6. Let h and c be two numbers, such that h ¡ ?
2 and 0   c   1 is an irrational

number. Set
σt

def� h1r0,csptq � 1pc,1sptq, 0 ¤ t ¤ 1

and b � 0. Then, there is a sequence pnlql of natural numbers, such that nl Ò 8 and

P pTnl � bn2
l
¥ εq Ñ 1, lÑ8 (1.69)

for all ε ¡ 0. This implies in particular

an2pTn � bn2q �Ñ G, nÑ8.

Proof. We use the fact that the spot volatility estimator pσk in Redefinition 1.4.1 estimates the
average value of the spot volatility in the interval

�
k
n ,

k�1
n

�
. Thus, if the spot volatility jumps in

this interval, we make obviously an error depending on the jump size. Our intention in the following
is to make this error as large as possible to get the negative convergence result (1.69).

The proof is divided into two steps. Similar to the proof of Theorem 1.5.3, the first step
simplifies our claim, so that it remains to prove a more elementary result which involves only the
maximum of Np0, 1q i.i.d. random variables. We prove this result in the second step.

step 1. Simplification of the claim. We have

Yt �
» t

0
σs dWs �

#
hWt, t ¤ c

Wt �Wc � hWc, t ¡ c.

Let
fnptq � tn2tu� ntntu, 0   t   1

denote the fine scale position of t, compare with the beginning of Section 1.1, and choose 0 ¤ k   n,
such that c P � kn , k�1

n

�
. Then we can write

pσ2
k � n

fnpcq�1¸
j�0

p∆Yk,jq2 � εk,n � n
n�1̧

j�fnpcq�1

p∆Yk,jq2, 0 ¤ εk,n ¤ h2

n
Z2
k,fnpcq

� h2

n

fnpcq�1¸
j�0

Z2
k,j �

1
n

n�1̧

j�fnpcq�1

Z2
k,j � εk,n.

Next set

r
def� h�?

2
4ph2 � 1q P p0, 1q (1.70)
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and note that Lemma A.5 implies that we have two sequences pnlql and pklql of natural numbers,
such that Yr

2
nl

]
¤ fnlpcq ¤ trnlu, c P

�
kl
nl
,
kl � 1
nl



, l P N

and nl Ò 8. This implies together with the weak law of large numbers

pσ2
kl
¤ h2

nl

trnlu¸
j�0

Z2
kl,j

� 1
nl

nl�1̧

j�trnlu�1

Z2
kl,j

Ñ rh2 � p1� rq, lÑ8 (P -stoch.)

which implicates

P
�pσ2

kl
¥ 1� 2rph2 � 1q� ¤ P

��������h
2

nl

trnlu¸
j�0

Z2
kl,j

� 1
nl

nl�1̧

j�trnlu�1

Z2
kl,j

� 1� rph2 � 1q
������ ¥ rph2 � 1q

�
Ñ 0, lÑ8. (1.71)

Next define
λ

def� h

1� 2rph2 � 1q ¡
?

2,

cf. (1.70) and

rl
def�

X
r
2nl

\
nl

¥ r

2
� 1
nl
, l ¥ 1.

And note that we have for arbitrary ε ¡ 0 the inequalities

P
�
Tnl � bn2

l
¥ ε

	
¥ P

�
nl max

0¤j t r2nlu

∆Ykl,jpσkl � bn2
l
¥ ε

�

¥ P

�
λ max

0¤j rlnl
Zkl,j � bn2

l
¥ ε, pσ2

kl
¤ 1� 2rph2 � 1q



.

Thus regarding (1.71), it suffices to establish

P

�
λ max

0¤j rlnl
Zkl,j � bn2

l
¥ ε



Ñ 1, lÑ8.

We complete this in the second step.

step 2. Divergence to infinity of a λ-scaled partial-maximum. Crucial in what follows is that
we have the lower bound λ ¡ ?

2, which is due to the choice of r. The notations

Ml
def� max

0¤j rlnl
Zkl,j , Al

def� arlnl pMl � brlnlq , l ¥ 1

are used in the following. We know that Al
dÑG, l Ñ 8, cf. Lemma 1.1.7 in Haan, Ferreira [17],

and write

P pλMl � bn2
l
¥ εq � P pλpAl � arlnlbrlnlq � arlnlbn2

l
¥ arlnlεq

� P

�
Al ¥ 1

λ

�
arlnlbn2

l
� arlnlε

	
� arlnlbrlnl



.
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Obviously it suffices to establish

1
λ
bn2

l
� brlnl Ñ �8, lÑ8.

This follows after a substitution of (1.31), i.e.

bn2
l
� λbrlnl �

b
2 log n2

l � λ
a

2 logprlnlq � op1q, lÑ8
� 2

a
log nl �

?
2λ

a
log rl � log nl � op1q

� 2
a

log nl

�����1� λ?
2loomoon

¡1

d
log rl
log nl

� 1loooooomoooooon
Ñ1

����� op1q

Ñ �8, lÑ8.

Corollary 1.5.7. Let pΩ,F , pFtq0¤t¤1, P q be a filtered probability space. Furthermore, assume
that W is a pFtq-adapted Brownian motion on this space and that there are two random variables
S,H : Ω Ñ R, such that pS,Hq is F0 measurable and independent of W . Next assume that the
distribution of pS,Hq has an atom at some point pc, hq. To be more precise, it is stated

P ppS,Hq � pc, hqq ¡ 0

for some pair pc, hq with
0   c   1, c R Q, h ¡

?
2.

Further set

σ
pS,Hq
t

def� H 1r0,Ssptq � 1pS,1sptq,

Y
pS,Hq
t

def�
» t

0
σpS,Hqs dWs, 0 ¤ t ¤ 1

and define
�
T
pS,Hq
n

	
n

analogue to pTnqn as a function of
�
Y
pS,Hq
t

	
t
. Then there is a sequence pnlq

of natural numbers with nl Ò 8, such that

P
�
T pS,Hqnl

� bn2
l
¥ ε

	
Ñ 1, lÑ8

for all ε ¡ 0. This implies in particular

an2pT pS,Hqn � bn2q �Ñ G, nÑ8.

Remark 1.5.8. The assumptions of Corollary 1.5.7 basically say that the volatility jumps at the
position S with the jumpsize H � 1 if 0   S ¤ 1 and H � 1. Furthermore, there is a positive
probability that σ jumps at some irrational position with a jumpsize larger than

?
2� 1. Note also

that the existence of a filtration as stated in Corollary 1.5.7 does not cause any problems. This is
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due to the fact that if H � F is a sub-σ-algebra, which is independent of F1, then

pWt,Htq0¤t¤1, Ht
def� σpHY Ftq, 0 ¤ t ¤ 1

is also a Brownian motion. We have to consider such technical subtleties because the construction
of the Itô integral needs σ to be pFtqt adapted.

Proof of Corollary 1.5.7. Using the independence of pS,Hq and W , P ppS,Hq � pc, hqq ¡ 0 and the
statement of Proposition 1.5.6 we can write for any ε ¡ 0

P
�
T pS,Hqn � bn2 ¥ ε

	
�

»
R2

P
�
T pS,Hqn � bn2 ¥ ε

��� pS,Hq � ps, uq
	
dP pS,Hqps, uq

¥ P ppS,Hq � pc, hqqP
�
T pS,Hqn � bn2 ¥ ε

��� pS,Hq � pc, hq
	

� P ppS,Hq � pc, hqqP
�
T pc,hqn � bn2 ¥ ε

	
.

This implies with the same sequence pnlql as in Proposition 1.5.6 the divergence

P
�
T pS,Hqnl

� bn2
l
¥ ε

	
Ñ 1, lÑ8

and the statement of the non-holding weak convergence to the Gumbel distribution follows from
Slutsky’s theorem together with an2 Ò 8 as nÑ8.

1.6 External jumps and divergence to infinity

In this section, the additional existence of external jumps is investigated. The behaviour of the
statistic an2pTn�bn2q in the presence of external jumps is of particular interest in regard to Theorem
1.2.5 and Theorem 1.5.3. It turns out that this statistic converges to infinity under appropriate
assumptions, compare Theorem 1.6.1 and Theorem 1.6.3 in this section. So we can use this statistic
in order to distinguish between the jump case (convergence to infinity) and the non-jump case
(convergence to the Gumbel distribution). We investigate by use of numerical simulations the
finite sample behaviour of the resulting statistical test in the next Section 1.7. In order to get
asymptotic correct confidence intervals, we use the quantiles of the Gumbel distribution.

We begin with a quite general result about semimartingales. Note that semimartingales have
in general infinite activity jump paths. Observe for this that a Lévy process is some kind of a
prototype semimartingale, cf. Jacod, Shiryaev [20][Chapter II, § 4c] and that every Lévy process
which is not compound Poisson, has infinite activity jump paths, cf. Cont, Tankov [11][Proposition
3.3].

Theorem 1.6.1. Let pXt,FtqtPr0,1s be a semimartingale with càdlàg paths and

Λ def� tω P Ω : Dt0 P p0, 1s : ∆Xt0pωq ¡ 0u. (1.72)

Let γ   1
2 . We assert the convergence

n�γan2pTn � bn2q Ñ 8 P -stoch. on Λ (1.73)

where an, bn are defined as in (1.31), and Tn is defined as in (1.32) with pXtqt instead of pqYtqt.
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Proof. First, let us validate that Λ P F : Choose a sequence of stopping times pTnqnPN that exhausts
the jumps of X, cf. Chapter I, Proposition 1.32 in Jacod, Shiryaev [20]. Then,

Λ �
¤

n,mPN

"
∆XTn ¡

1
m

*
P F1 � F .

Define two functions k, j : p0, 1s Ñ t0, . . . , n� 1u by

kptq � prnts� 1q, jptq � prn2ts� 1q � nMptq, t P p0, 1s

and set as usual
∆Xk,j � Xtk,j� 1

n2
�Xtk,j , 0 ¤ k, j   n.

Choose pω P Λ and let η P p0, 1s be such that ∆Xηppωq ¡ 0. Then we have

lim inf
n

max
k,j

∆Xk,jppωq ¥ lim inf
n

∆Xkpηq,jpηqppωq � ∆Xηppωq ¡ 0 (1.74)

where the equality sign above holds because the paths of pXtqtPr0,1s are càdlàg. We establish for
arbitrary L P R and γ   1

2 the convergence

P ptn�γan2pTn � bn2q ¤ Lu X Λq Ñ 0, nÑ8.

Suppose the opposite, i.e. the existence of a subsequence pnrqr is assumed, such that

P ptn�γr an2
r
pTnr � bn2

r
q ¤ Lu X Λq Ñ η ¡ 0, r Ñ8 (1.75)

holds. Due to
n�1̧

k�0

n�1̧

j�0

p∆Xk,jq2 Ñ rX,Xs1, nÑ8 (P -stoch.),

cf. Chapter I, Theorem 4.47 in Jacod, Shiryaev [20], there exists a subsequence pmlql of pnrqr, such
that we obtain

ml�1¸
k�0

ml�1¸
j�0

p∆Xk,jq2 Ñ rX,Xs1, sÑ8 (P -a.s.).

This yields together with

|∆Xk,j ||∆Xk,j�1| ¤ p∆Xk,jq2 � p∆Xk,j�1q2

the equation

P

�
lim sup

l

ml�1¸
k�0

ml�2¸
j�0

|∆Xk,j ||∆Xk,j�1|   8
�
� 1. (1.76)

Next consider the inclusions

lim sup
l

tml
�γam2

l
pTml � bm2

l
q ¤ Lu X Λ

� lim sup
l

#
Tml ¤

Lml
γ

am2
l

� bm2
l

+
X Λ
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� lim sup
l

tTml ¤ ml
γu X Λ

� lim sup
l

#?
2
?
ml � 1?
π

max
k,j

∆Xk,j

p°ml�2
i�0 |∆Xk,i||∆Xk,i�1|q 1

2

¤ ml
γ

+
X Λ

� lim sup
l

#
max
k,j

∆Xk,j

p°ml�2
i�0 |∆Xk,i||∆Xk,i�1|q 1

2

¤ 2ml
γ� 1

2

+
X Λ

� lim sup
l

$&%max
k,j

∆Xk,j ¤ 2ml
γ� 1

2

�
ml�1¸
k�0

ml�2¸
j�0

|∆Xk,j ||∆Xk,j�1|
� 1

2

,.-X Λ. (1.77)

The P -measure of the set in (1.77) is zero because of γ� 1
2   0, (1.74) and (1.76). Thus, the above

inclusions yield together with Fatou’s Lemma

lim sup
l

P ptml
�γam2

l
pTml � bm2

l
q ¤ Lu X Λq ¤ P plim sup

l
tml

�γamlpTml � bmlq ¤ Lu X Λq � 0,

which is a contradiction to (1.75) because of pmlql � pnrqr.

Remark 1.6.2. Note that (1.76) is the crucial property that we need for the proof of the above
Theorem. This is a quite general assumption which is, for example, fulfilled by a semimartingal
as proven above. Naturally, this raises the question, whether we can improve the convergence rate
n�

1
2 in (1.73) under stronger assumptions. Assume for this purpose that we observe a process

rY def� qY � J

instead of a general semimartingale X. Here, qY is as usual and J denotes an additive, finite activity,
external jump process. Then we obtain the heuristic

n
n�2̧

j�0

|∆rYk,j ||∆rYk,j�1| � n
n�2̧

j�0

|∆qYk,j � Jk,j ||∆qYk,j�1 � Jk,j�1| � OP p1q. (1.78)

Note for this that every couple of neighbouring increments possesses at most one jump if the
increment size is small enough, i.e. n is large enough. This is due to the fact that there are only
finite many jumps in each path. Using (1.78) we easily get the heuristic

nmax
k,j

∆rYk,jrσk � OP pnq (1.79)

with the self-explanatory notation prσkq0¤k n. Hence (1.73) should be true for each γ   1 instead
of γ   1

2 , i.e. we have the convergence rate n�1.
Note that, on the other hand, for the quadratic variation estimator in Redefinition 1.4.1 there

is the heuristic rσ2
k � n

n�1̧

j�0

p∆rYk,jq2 � n
n�1̧

j�0

p∆qYk,j �∆Jk,jq2 � OP pnq,

so that only a convergence rate of n�
1
2 can be expected, compare (1.79). Observe that the proof of

Theorem 1.6.1 also works with the quadratic variation estimator. Thus, the above heuristic implies
that Theorem 1.6.1 with the quadratic variation estimator yields the optimal convergence rate n�

1
2 ,
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despite we have in general infinite activity jump paths.
The following Theorem 1.6.3 proves rigor to the above heuristic.

Theorem 1.6.3. Let Assumptions 1.2.3 hold. Assume furthermore that there are two families
pHlqlPN and pRlqlPN of random variables on the same probability space with

Rlpωq Ò 8, 0   Rlpωq, Rlpωq   Rl�1pωq, l P N, ω P Ω

and pHlq arbitrary. Next, define a finite activity, pure jump process

Jt
def�

8̧

l�1

Hl 1rRl,8qptq, 0 ¤ t ¤ 1,

set rYt def� qYt � Jt, 0 ¤ t ¤ 1

and define pTnq in the usual manner as a function of rY . Fix any γ   1. Then it holds the divergence

n�γan2pTnpωq � bn2q Ñ 8, nÑ8, ω P ΛXN (1.80)

for a negligible set N . See (1.72) for the definition of Λ.

Proof. The proof is divided into three steps. The first step proves two useful P -a.s. convergences
under the Assumptions 1.1.1. The second step proves this theorem under these Assumptions by
using the first step. Finally, the third step generalizes the results to the Assumptions 1.2.3.

step 1. Two useful P -a.s. convergences. Define two functions k, j : p0,8q�RÑ t0, 1, . . . , nu
via

kpt, xq def� prnts� 1q1p0,1s�p0,8qpt, xq � n1pp0,1s�p0,8qqcpt, xq,
jpt, xq def� pprn2ts� 1q � nkpt, xqq1p0,1s�p0,8qpt, xq � n1pp0,1s�p0,8qqcpt, xq

and set
kRl

def� kpRl, Hlq, jRl
def� jpRl, Hlq, l P N

and
∆qYk,j def� ∆Yk,j

def� 0, if k R t0, . . . , n� 1u or j R t0, . . . , n� 1u.
We assume first the stronger Assumptions 1.1.1 with vanishing drift (i.e. b � 0) and show that
there exists a negligible set N P F , such that

nγ
n�2̧

j�0

|∆YkRl ,j ||∆YkRl ,j�1|pωq Ñ 0, nÑ8 (1.81)

nγ∆YkRl ,jRl �ρpωq Ñ 0, nÑ8 (1.82)

holds for every l P N, ρ P t�1, 1u and ω P N c. Starting with (1.81) and using the notation in
Proposition 1.1.4, we write

nγ
n�2̧

j�0

|∆YkRl ,j ||∆YkRl ,j�1| ¤ nγ�1 max
k,j

|∆Yk,j |2
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� nγ�1 max
k,j

|Hk,j � pσk � εk,jqZk,j |2

¤ 2nγ�1

�
max
k,j

|Hk,j |2 �K2 max
k,j

|Zk,j |2


. (1.83)

Note furthermore that we have, as stated in the Propositions 1.1.4 and A.3, for every m P N the
upper bounds

P

�
max
k,j

|Hk,j |2 ¥ ε



¤ n2 d2

n4αmεm
, (1.84)

P

�
max
k,j

|Zk,j |2 ¥ ε



¤ 2mplog n2qm2 � 2m!

ε
m
2

. (1.85)

Choosing m large enough and observing γ � 1   0, (1.83), (1.84) and (1.85) yield together with
Borel-Cantelli (1.81). Concerning (1.82) we write

nγ |∆YkRl ,jRl �ρ| ¤ nγ�1 max
k,j

n|∆Yk,j | ¤ nγ�1

�
max
k,j

|Hk,j | �K max
k,j

|Zk,j |


, ρ P t�1, 1u (1.86)

and the claim is proven analogous to (1.81). Next we assume that the drift does not necessarily
vanish, and prove that also the check variants of (1.81) and (1.82) hold for some negligible set
which is w.l.o.g. equal to N P F . For this purpose, consider for (1.81) the following estimation of
the difference between the check and non-check variant:�����nγ n�2̧

j�0

|∆qYkRl ,j ||∆qYkRl ,j�1| � nγ
n�2̧

j�0

|∆YkRl ,j ||∆YkRl ,j�1|
�����

¤ nγ
n�2̧

j�0

���∆qYkRl ,j∆qYkRl ,j�1 �∆YkRl ,j∆YkRl ,j�1

���
¤ nγ

n�2̧

j�0

K

n2

�
|∆YkRl ,j | � |∆YkRl ,j�1| �

K

n2



¤ K2

n3�γ � 2Knγ�1 max
k,j

|∆Yk,j |.

This means, using the proof of (1.81), that the difference tends P -a.s. to zero. Hence, the check
variant of (1.81) is also established and the check variant of (1.82) is trivial because of the obvious
convergence

nγ |∆BkRl ,jRl �ρ|pωq ¤ Knγ�2 Ñ 0, nÑ8, ω P Ω.

step 2. Divergence under the Assumptions 1.1.1. Set

pΛ def� ΛXN c

with N as in the first step and set

l � lppωq def� inftm P N : Hmppωq ¡ 0u � inftm P N : kRmppωq   nu, pω P pΛ.
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Assume w.l.o.g. γ ¡ 0. It obviously suffices to show that

pΛ � lim inf
n

tn�γan2pTn � bn2q ¥ Lu

holds for all L ¡ 0. Fix for this purpose any L ¡ 0. Then we have

lim inf
n

tn�γan2pTn � bn2q ¥ Lu X pΛ
� lim inf

n

"
Tn ¥ Lnγ

an2

� bn2

*
X pΛ

� lim inf
n

tTn ¥ nγu X pΛ
� lim inf

n

#?
2
?
n� 1?
π

max
k,j

∆rYk,j
p°n�2

i�0 |∆rYk,i||∆rYk,i�1|q 1
2

¥ nγ

+
X pΛ

� lim inf
n

$&%∆rYkRl ,jRl ¥ 2nγ�
1
2

�
n�2̧

j�0

|∆rYkRl ,j ||∆rYkRl ,j�1|
� 1

2

,.-X pΛ
� lim inf

n

#
∆qYkRl ,jRl �Hl ¥ 2

�
n2γ�1

�
n�2̧

j�0

|∆qYkRl ,j ||∆qYkRl ,j�1|
�

(1.87)

�Hln
2γ�1p|∆qYkRl ,jRl �1| � |∆qYkRl ,jRl �1|q

� 1
2
+
X pΛ

� pΛ.
Note that the last equality follows from 2γ�1   1 and from the check variants of (1.81) and (1.82).
Consider for the last inclusion

|∆rYkRl ,j ||∆rYkRl ,j�1|
¤ p|∆qYkRl ,j | � |∆JkRl ,j |qp|∆qYkRl ,j�1| � |∆JkRl ,j�1|q
� |∆qYkRl ,j ||∆qYkRl ,j�1| � |∆qYkRl ,j ||∆JkRl ,j�1| � |∆JkRl ,j ||∆qYkRl ,j�1| � |∆JkRl ,j ||∆JkRl ,j�1|,

and observe that we have for pω P pΛ and n large enough

|∆JkRl ,jRl ppωq| � Hlppωq ¡ 0, |∆JkRl ,jppωq| � 0, j P t0, . . . , n� 1u � tjRl u

because of Rlppωq Ò 8.

step 3. Generalizations to the Assumptions 1.2.3. The same stopping techniques as in the
proof of Theorem 1.2.5 respectively Corollary 1.2.6 are used, but without the replacement (1.38).
Set rY pmq

t
def� qY pmq

t � Jt, 0 ¤ t ¤ 1, m P N.
We have proven so far that there exists a negligible set Mm for each m P N, such that

n�γan2

�
T pmqn � bn2

	
pωq Ñ 8, nÑ8, ω P ΛXM c

m
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where T pmqn is in the usual manner a function of rY pmq. Note that in the notation of Theorem 1.2.5

rY pmq
t pωq � rYtpωq, 0 ¤ t ¤ 1, ω P Am XN c

m, m, n P N

holds. Set

B
def�

� ¤
mPN

Am

�
X
� ¤
mPN

Mm YNm

�c

X Λ.

Then we have with the same argumentation as the one in the proof of Corollary 1.2.6 that the
convergence

n�γan2pTnpωq � bn2q Ñ 8, nÑ8, ω P B
holds. Finally, the claim of this proposition is proven by setting

N
def�

¤
mPN

Mm YNm

for the negligible set N in (1.80).

As discussed above, we have shown that the bipower variation estimator is more suitable than
the quadratic variation estimator in the case of external jumps. Another interesting and natural
question is whether the bipower variation estimator converges even faster to the true volatility. It
will turn out that this is in general not the case. We want to analyse in what follows the exact
finite sample behaviour of both volatility estimators and assume for this that the volatility is the
constant 1, i.e. Y � W is a Brownian motion. Of course, this is a dramatical simplification, but,
nevertheless, this approach also provide some insight in more general volatility processes σ: For
example, assume that σ is independent of the Brownian motion W and that every path of σ is a
regulated function. Then, we can condition on σ as described in Section 1.4 and, hence, assume
that σ is deterministic. Finally, after an approximation of σ by deterministic step functions, we
can use the results for the case σ � 1.

We calculate in the following the L2 distance of the respective volatility estimators to the true
volatility σ � 1. To not only have the two singular cases of the bipower and quadratic variation
estimators, we define a family

tpσkpn, pq : 0 ¤ p ¤ 1, 0 ¤ k   n, n P Nu

of volatility estimators which interpolate both cases in a natural way. Set for this purpose

pσ2
kpn, pq def�

°n�1
j�0 |∆Yk,j |1�p|∆Yk,j�1|1�p

E
�°n�1

j�0 |∆Yk,j |1�p|∆Yk,j�1|1�p
	 (1.88)

and note that ppσ2
kpn � 1, 0qq0¤k n yields the estimator in Definition 1.1.3 and ppσ2

kpn, 1qq0¤k n the
estimator in Redefinition 1.4.1.

Remark 1.6.4. To get a connection between the above discussed goal and the next Proposition
1.6.5, we have concerning the L2 distance the equations (recall σ � 1)

E
�pσ2

kpn� 1, 0q � 1
�2 � E

�
π

2pn� 1q
n�2̧

j�0

|n∆Yk,j ||n∆Yk,j�1| � 1

�2

� hpn� 1, 0q (1.89)
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and

E
�pσ2

kpn, 1q � 1
�2 � E

�
1
n

n�1̧

j�0

|n∆Yk,j |2 � 1

�2

� hpn, 1q (1.90)

with h as in (1.91).

Proposition 1.6.5. Let pZjq0¤j¤n be a family of i.i.d. standard normal distributed random vari-
ables. Set for �3

2   p   3
2 and n P N

Xpn, pq def� 1
n

n�1̧

j�0

|Zj |1�p|Zj�1|1�p

and

hpn, pq def� E

�
Xpn, pq
EXpn, pq � 1


2

. (1.91)

Then we obtain
hpn, pq � f1ppq

n
� f2ppq

n2
, �3

2
  p   3

2
, n P N

where

f1ppq �
�

1
p2
� 4



sin2

�
pπ
2

�
cosppπq � 2

p
sin

�pπ
2

	
� 3, f2ppq � 2

�
1� sin

�
pπ
2

�
p

�
and, in particular,

pf1p1q, f2p1qq � p2, 0q, pf1p0q, f2p0qq �
�
π2

4
� π � 3, 2� π



� p2.609,�1.142q.

Proof. Note first that in the strict sense, f1 and f2 are not defined on the whole interval
��3

2 ,
3
2

�
.

However, this causes no problems since we always consider the continuous continuations which
exist in this case. The proof is divided into two steps: first, some identities related to the Gamma
function are calculated, second, in order to derive the claims of this proposition, these identities
are used.

step 1. Identities related to the Gamma function. Denote with

µprq def� E|Np0, 1q|r � 1?
2π

» 8

�8
|x|re�x2

2 dx, r ¡ �1

the r-th moment of the standard normal distribution. Then we have using the substitution y � x2

2

µprq � 2?
2π

» 8

0
xre�

x2

2 dx � 2
r
2?
π

» 8

0
y
r�1

2
�1e�y dy � 2

r
2?
π

Γ
�
r � 1

2



, r ¡ �1. (1.92)

Note that the Gamma function fulfills the Euler reflection identity

ΓpzqΓp1� zq � π

sinpπzq , z P C�Z, (1.93)

cf. Theorem 1.2.1 in Andrews, Askey and Roy [1]. We require for the second step the functions

ν1ppq def� µp1� pqµp1� pq, ν2ppq def� µp2� 2pqµp2� 2pq, p P
�
�3

2
,
3
2



.
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Now we can write using (1.92), (1.93) and the functional equation of the Gamma function

ν1ppq � 2
π

Γ
�

2� p

2



Γ
�

2� p

2



� 2
π

Γ
�

2� p

2



Γ
�

1�
�

1� 2� p

2




� 2

π

�
1� 2� p

2



Γ
�

2� p

2



Γ
�

1� 2� p

2



� p

sin
�
pπ
2

� , p P
�
�3

2
,
3
2



zt0u (1.94)

and

ν2ppq � 4
π

Γ
�

3� 2p
2



Γ
�

3� 2p
2



� 4
π

Γ
�

3� 2p
2



Γ
�

2�
�

1� 3� 2p
2




� 4

π

�
2� 3� 2p

2


�
1� 3� 2p

2



Γ
�

3� 2p
2



Γ
�

1� 3� 2p
2



� 1� 4p2

cosppπq , p P
�
�3

2
,
3
2



z
"
�1

2
,
1
2

*
. (1.95)

Note that since ν1, ν2 are continuous on
��3

2 ,
3
2

�
, the relations (1.94) and (1.95) hold on the whole

interval
��3

2 ,
3
2

�
, if we consider as always the continuous continuation of the right-hand functions.

step 2. Calculation of the crucial moments. Starting with

hpn, pq � EX2pn, pq � pEXpn, pqq2
pEXpn, pqq2 , p P

�
�3

2
,
3
2



, n P N (1.96)

the first and second moment of Xpn, pq are calculated. This yields

EXpn, pq � 1
n

n�1̧

j�0

E
�|Zj |1�p|Zj�1|1�p

� � ν1ppq.

For the calculation of the second moment, the random matrix�|Zj |1�p|Zj�1|1�p|Zk|1�p|Zk�1|1�p
�

0¤j,k n

is decomposed in its diagonal, two secondary diagonals and the remainder. This yields

EX2pn, pq � 1
n2

n�1̧

j�0

n�1̧

k�0

E
�|Zj |1�p|Zj�1|1�p|Zk|1�p|Zk�1|1�p

�
� 1

n2

�
nE

�|Z0|2�2p|Z1|2�2p
�� 2pn� 1qE

�
|Z0|1�p|Z1|p1�pq�p1�pq|Z2|1�p

	
�pn2 � n� 2pn� 1qqE �|Z0|1�p|Z1|1�p|Z2|1�p|Z3|1�p

� 	
� 1

n2

�
nν2ppq � 2pn� 1qν1ppq � pn2 � n� 2pn� 1qqpν1ppqq2

�
.

Thus, we can rewrite (1.96) as

hpn, pq � 1
n

�
ν2ppq � 2ν1ppq

pν1ppqq2 � 3


� 2
n2

�
1� 1

ν1ppq


, p P

�
�3

2
,
3
2



, n P N. (1.97)
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Now, (1.94) and (1.95) are substituted in (1.97) and it is calculated

f1ppq � ν2ppq � 2ν1ppq
pν1ppqq2 � 3 � 1� 4p2

cosppπq
sin2

�
pπ
2

�
p2

� 2
sin

�
pπ
2

�
p

� 3

�
�

1
p2
� 4



sin2

�
pπ
2

�
cosppπq � 2

p
sin

�pπ
2

	
� 3,

f2ppq � 2
�

1� 1
ν1ppq



� 2

�
1� sin

�
pπ
2

�
p

�
.

The remaining claims of this proposition concerning the values p � 0, 1 can be proven, for example,
by means of L’Hôspital’s rule and a numerical calculation.
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Figure 1.1: Interpolation between the bipower-estimator and the quadratic-estimator

Remark 1.6.6. The left-hand side in Figure 1.1 is a plot of the function p ÞÑ f1ppq. Note Remark
1.6.4 and the definition of the function h in Proposition 1.6.5 to get the link to the finite sample
behaviour of the volatility estimators in (1.88). The quadratic volatility estimator possesses the
smallest L2 distance to the true volatility σ � 1 because of

f1p1q � min
� 3

2
 p  3

2

f1ppq.

The right-hand side in Figure 1.1 considers only the cases p � 0, 1, i.e. our cases of interest. Here,
we have plotted the functions n ÞÑ hpn, 1q and n ÞÑ hpn � 1, 0q, compare with (1.89) and (1.90).
Note that the quadratic term f2ppq

n2 in hpn, pq particularly plays an important role for small n.

In conclusion, if external jumps are not of concern, the quadratic-volatility estimator is prefer-
able.

1.7 Simulation results

In this section, the efficiency of the test statistic (1.32) concerning a jump detection test is investi-
gated using numerical simulations. The resulting test is called the Gumbel test. Furthermore, the
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latter test is compared with a test developed by Barndorff-Nielsen and Shephard in [3], and both
tests are applied to a real dataset. For this purpose, some MATLAB functions were written.

First, consider the approximation to the Gumbel distribution in Theorem 1.2.5. For this purpose
the drift term is set zero and an Ornstein-Uhlenbeck process is chosen as the volatility process with
initial value a � 1, mean reversion µ � 1, mean reversion speed θ � 0.5 and diffusion σ � 0.2 which
is bounded away from zero, i.e.

dZt � θpµ� Ztq dt� σ dW t, Z0 � a, 0 ¤ t ¤ 1, (1.98)

σt � maxp0.1, Ztq. (1.99)

Here, W denotes a Brownian motion that is independent of the integrator W in Yt �
³t
0 σs dWs,

i.e. σ and W are independent. In Figure 1.2, the grid sizes 1
n2 , n � 20, 50, 200, 1000 are used and

the respective empirical distribution functions using 10000 paths for each n are calculated.
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Figure 1.2: Approximation to the Gumbel distribution

Next, set n � 50 and consider the additional jump process

Jt �
Nţ

i�0

Ui, 0 ¤ t ¤ 1 (1.100)

where N,U, σ,W are independent, N is a Poisson process with intensity λ and pUiqi are i.i.d. Γ
distributed random variables with shape parameter k and scale parameter θ, i.e. J is a compound
Poisson process. Figure 1.3 presents four simulation plots with the respective settings λ � 5,
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k � 10L2 and θ � 1
500L , L � 1, 2, 3, 4. This results in

EpUiq � L

50
, VarpUiq � 1

10 � 502
.

Note that it holds by the Chebyshev inequality

P

�����Ui � L

50

���� ¥ 1
50



¤ 1

10

and that, in the case of a constant, deterministic volatility σ � σ0 ¡ 0 and no external jumps
pJ � 0q, the process Yt � σ0Wt is obtained. In this case, it follows that

E|Y i�1

n2
� Y i

n2
| � σ0E|W 1

n2
| � σ0

?
2

n
?
π
� σ0

?
2?
π

� 1
50
.

Hence, the jumps have a critical size in the sense that it is not clear whether they can be detected
or not. (recall a � 1 in (1.98))
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Figure 1.3: Divergence from the Gumbel distribution

Next, the test proposed by Barndorff-Nielsen and Shephard in [3] is compared with the Gumbel
test. Barndorff-Nielsen and Shephard use the statistic

Sn � µ�2Y
r1,1s
n � Y

r2s
nb

ϑµ�4Y
r1,1,1,1s
n
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with

µ �
c

2
π
, ϑ � π2

4
� π � 5

and

Y r2s
n �

n2�1¸
i�0

|∆Yi|2, ∆Yi � Y i�1

n2
� Y i

n
,

Y r1,1s
n �

n2�2¸
i�0

|∆Yi||∆Yi�1|,

Y r1,1,1,1s
n �

n2�4¸
i�0

|∆Yi||∆Yi�1||∆Yi�2||∆Yi�3|.

It holds according to Theorem 1 in [3]

Sn
dÑ Np0, 1q, nÑ8

under certain conditions on σ which are fulfilled by the choice in (1.99). Furthermore, [3] states

Sn Ñ �8, nÑ8 P -stoch.,

if there is an additional external jump term J as in (1.100). Define the null hypothesis

H0 : there are no jumps

and the alternative hypothesis

H1 : there are jumps (i.e. J in (1.100) is added).

We have the two errors types

Type I error : rejecting a true null hypothesis,

Type II error : failing to reject a false null hypothesis

and decide that a path pω possesses a jump on the significance level α P p0, 1q, iff

Gpan2pTnppωq � bn2qq ¥ 1� α resp. F pSnppωqq ¤ α (1.101)

with
Gpxq � Gpp�8, xqq, F pxq � Np0, 1qpp�8, xqq, x P R .

Figure 1.4 is based on a setting with the gridsize 1
n2 , n � 50, the volatility process in (1.99) and

λ � 10, L � 4 for the jump process. Here, 2000 sample paths for each α � i
1000 , i � 0, 1, . . . , 100

were simulated and it is verified that the Gumbel test is more sensitive than the test proposed in
[3].

In order to check whether the Gumbel test has a larger power, both tests were recalibrated so
that the type I error is exactly α for both tests. Hence G and F are replaced by Gn and Fn in
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Figure 1.4: Error types

(1.101) with

Gnpxq def� P pan2pTn � bn2q ¤ xq � Gnpxq, Fnpxq def� P pSn ¤ xq, x P R pn � 50q.

Gn resp. Fn were approximated with the resp. empiric distribution functions based on 10000
paths. Figure 1.5 shows the type I error calculated with 2000 paths per α. Observe the desired
approximation to the diagonal.
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Figure 1.5: Recalibrated type I error

As mentioned above, the power of the tests was calculated. It is defined by

powerα � 1� type II errorα
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with Gn resp. Fn. For this purpose, we set λ � 2, 15 and L � 4.
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Figure 1.6: Power of tests

In this sense, the Gumbel test clearly has more power than the test proposed by Barndorff-Nielsen
and Shephard in [3]. Nevertheless, note that only a special setting (here an OU-process as volatility
process and a Γ distributed compound Poisson process as external jump process) can be simulated
and that the test statistic (1.32) has difficulties with jumps in the volatility process σ, see Section
1.5.
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Figure 1.7: Worldstock index

Finally, both tests are applied to a real dataset, i.e. the world stock indices of the USA and
Ireland. With rT � rTn � an2pTn � bn2q



1.7. SIMULATION RESULTS 53

the results

Gp rT up
Irelandq � 1, Gp rT down

Irelandq � 1, Gp rT up
USAq � 0.99268, Gp rT down

USA q � 1

and
F pSIrelandq � 0, F pSUSAq � 0.81401

are achieved. Note that the Gumbel test not only indicates a jump but also states the position and
direction of the jump, i.e. whether we have an upwards or downwards jump. In order to detect
downwards jumps, we simply have to switch from Y to �Y and the maximum in the Gumbel test
statistic turns to a minimum . This, of course, is an enormous advantage over the Barndorff-Nielsen
and Shephard test.

The latter results indicate the following: Using the Barndorff-Nielsen and Shephard test the
world stock index for Ireland possesses a jump but that of the USA does not. Using the Gumbel
test, the index for Ireland possesses an upwards and downwards jump and that for the USA has a
downwards jump for sure and an upwards jump with high probability. The different results for the
indices of the two countries are not surprising considering that the Gumbel test is more sensitive
as discussed above.

We are grateful to Prof. Dr. Eckhard Platen for providing us the world stock index data set.
See in this context also the publications [19, 33] by Platen et al.
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Chapter 2

Lévy processes and dependences

In this chapter, we analyse the dependence structure of jumps in a multidimensional Lévy process.
This Lévy process is discretely observed in a low frequency scheme. To be more precise, let pXtqt¥0

be a d-dimensional Lévy process on a probability space pΩ,F , PΣ,ν,αq with the Lévy triplet pΣ, ν, αq.
Based on the equidistant observations pXtppωqqt�0,1,...,n for some fixed path pω P Ω, we intend to
estimate the dependence structure of the jumps between the coordinates of X. Hence, we have a
statistical problem. Next, a rigorous formulation of what is meant by this dependence structure is
given:

First, we state a well-known concept proposed by Sklar [42]. In this context, see also the
monograph of Nelsen [28]. Given d random variables Y1, . . . , Yd : prΩ, rF , rP q Ñ pR,Bq, a well-
known concept to describe the dependence structure within pY1, . . . , Ydq is provided by its copula
CY1,...,Yd . This is a d dimensional distribution function with uniform margins, such that we have

rP pY1 ¤ y1, . . . Yd ¤ ydq � CY1,...,Ydp rP pY1 ¤ y1q, . . . , rP pYd ¤ ydqq, y1, . . . yd P R.

Thus, a copula provides in a certain sense the additional information that is needed to obtain
the vector distribution from the marginal distributions. However, in this chapter, we deal with a
stochastic process

X : R� � Ω Ñ Rd

and not with only finite many real valued random variables. Observe the notations

R�
def� r0,8q, R� def� Rzt0u, R�

�
def� R� XR�.

Generally, it is problematic to determine the meaning of the dependence structure of X or even
the dependence structure between the coordinates of the jumps of X. Nevertheless, in the case of
a Lévy process X, a natural approach is reported by Kallsen and Tankov [21] which uses the fact
that X is characterized by its Lévy triplet pΣ, ν, αq. Here, ν describes the jumps of X in the sense
that

νpAq � E|tt P r0, 1s : ∆Xt P Au|, A P BpRdq,
cf. Sato [38][Theorem 19.2]. With the jump structure of X, we mean the dependence structure of
ν. Observe the problem that ν is in general not a probability measure, so that the copula concept
cannot be applied to ν. However, it is at least known that»

Rd
|x|2 ^ 1 νpdxq   8
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holds which implies νpAq   8 for all A P BpRdq with 0 R A. Thus, 0 P Rd is the only possible
singular point. Based on these facts, Kallsen and Tankov [21] introduced the concept of Lévy-
copulas. We concisely state in what follows the definition of a Lévy copula and the analogous
statement to Sklars theorem. We quote for this purpose the respective issues in [21]. See also this
paper for a detailed discussion on this topic.

Set R def� RY t8u and

sgnpxq def�
#

1, x ¥ 0,

�1, x   0,
Ipxq def�

#
px,8q, x ¥ 0,

p�8, xs, x   0,
x P R

and write
pa, bs def� pa1, b1s � . . .� pad, bds, a, b P Rd.

Definition 2.1. in [21]. Let F : S Ñ R for some subset S � Rd. For a, b P S with a ¤ b and
pa, bs � S, the F -volume of pa, bs is defined by

VF ppa, bsq def�
¸

uPta1,b1u�...�tad,bdu
p�1qNpuqF puq,

where Npuq def� |tk : uk � aku|.

Definition 2.2. in [21]. A function F : S Ñ R for some subset S � Rd is called d-increasing if
VF ppa, bsq ¥ 0 for all a, b P S with a ¤ b and pa, bs � S.

Definition 2.4. in [21]. Let F : Rd Ñ R be a d-increasing function such that F pu1, . . . , udq � 0
if ui � 0 for at least one i P t1, . . . , du. For any non-empty index set I � t1, . . . , du, the I-margin
of F is the function F I : R|I| Ñ R, defined by

F IppuiqiPIq def� lim
aÑ8

¸
puiqiPIcPt�a,8u|Ic|

F pu1, . . . , udq
¹
iPIc

sgnpuiq,

where Ic def� t1, . . . , duzI.

Definition 3.1. in [21]. A function C : Rd Ñ R is called a Lévy copula if

(i) Cpu1, . . . , udq � 8 for pu1, . . . , udq � p8, . . . ,8q,

(ii) Cpu1, . . . , udq � 0 if ui � 0 for at least one i P t1, . . . , du,

(iii) C is d-increasing,

(iv) Ctiupuq � u for every i P t1, . . . , du, u P R.

Definition 3.3. in [21]. Let X be a Rd-valued Lévy process with Lévy measure ν. The tail integral
of X is the function U : pRzt0uqd Ñ R defined by

Upx1, . . . , xdq def�
d¹
i�1

sgnpxiqν
�

d¹
j�1

Ipxjq
�
.



57

Definition 3.4. in [21]. Let X be a Rd-valued Lévy process and let I � t1, . . . , du be non-empty.
The I-marginal tail integral U I of X is the tail integral of the process XI def� pXiqiPI . To simplify
notation, we denote one-dimensional margins by Ui

def� U tiu.

Theorem 3.6. in [21]. (i) Let X � pX1, . . . , Xdq be a Rd-valued Lévy process. Then there
exists a Lévy copula C such that the tail integrals of X satisfy

U IppxiqiPIq � CIppUipxiqqiPIq (2.1)

for any non-empty I � t1, . . . , du and any pxiqiPI P pRzt0uq|I|. The Lévy copula C is unique
on

±d
i�1 RanUi.

(ii) Let C be a d-dimensional Lévy copula and Ui, i � 1, . . . , d tail integrals of real-valued Lévy
processes. Then there exists a Rd-valued Lévy process X whose components have tail integrals
U1, . . . , Ud and whose marginal tail integrals satisfy (2.1) for any non-empty I � t1, . . . , du
and any pxiqiPI P pRzt0uq|I|. The Lévy measure ν of X is uniquely determined by C and
Ui, i � 1, . . . , d.

Proof. For the proof, refer also the paper of Kallsen, Tankov [21].

Our future assumptions in this chapter are going to ensure that the Lévy copula C has always
the special shape

Cpu, vq �
#
UpU�1

1 puq, U�1
2 pvqq, u, v ¡ 0,

0, u ¤ 0 or v ¤ 0
(2.2)

where

Upx, yq def� νprx,8q � ry,8qq, U1pxq def� νprx,8q �R�q, U2pyq def� νpR� � ry,8qq, x, y P R�.

Regarding this issue, also compare the remark in Kallsen, Tankov [21] below Theorem 3.6.
At this point we can specify the goal of this chapter: Our Aim is to construct and investigate

an estimator for the Lévy copula of ν based on low frequency observations. The only existing
reference in this context is, to our best knowledge, the unpublished paper of Schicks [39]. This
paper, however, only deals with the compound Poisson case and will be discussed later in this
thesis in the next chapter. Note that also Bücher, Vetter [8] and Laeven [25] and Krajina, Laeven
[24] have published relevant information close to this subject. Nevertheless, all their approaches
work with the following high frequency observation scheme:

pXtppωqqt�0,∆n,2∆n,...,n∆n , ∆n Ñ 0, n∆n Ñ8

which results in a completely different analysis than our low frequency observation scheme. Our
approach is mostly motivated by Neumann, Reiß [29] and Nickl, Reiß [30] which provide the required
low frequency techniques for our needs.

This chapter is divided into three sections. In Section 1, we state an estimator pνn for the Lévy
measure ν, which is based on the low frequency observations pXtppωqqt�0,1,...,n. Our assumptions in
this section imply that the second moment of ppνnq and ν exist, i.e.»

Rd
|x|2 νpdxq   8,

»
Rd
|x|2 pνnpdxq   8, n P N, ω P Ω.
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We prove in Theorem 2.1.5 the weak convergence of Borel measures

|x|2pνnpdxq wÑ|x|2νpdxq, nÑ8.

This means that we have PΣ,ν,α-a.s. the convergence»
Rd
fpxq|x|2 pνnpdxq Ñ »

Rd
fpxq|x|2 νpdxq, nÑ8

for all bounded, continuous functions f , i.e. f P CbpRdq. Our prove works only under the assumption
Σ � 0, i.e. with vanishing Brownian motion part. This is due to the fact that it is statistically
hard to distinguish between the small jumps of infinite activity and the Brownian motion part.
This issue is stated more precisely in Lemma 2.1.1. Note that Neumann and Reiß [29] solve this
problem in the one dimensional case by estimating

νσpdxq def� σ2δ0pdxq � x2νpdxq, x P R, σ2 def� Σ

instead of ν. As a result, the exponent of the characteristic function gets the shape

Ψνσ ,αpuq � iuα�
»
R

eiux � 1� iux

x2
νσpdxq, u P R,

assuming that the second moment of ν is finite, compare Section 4 in [29]. Unfortunately, such a
transition from ν to νσ does not work in the multidimensional case d ¥ 2. Nevertheless, we aim to
estimate the Lévy copula of ν under assumptions that do not exclude the existence of a Brownian
motion part, i.e. Σ � 0. Thus, we have to deal somehow with the small jumps of X.

This is described in Section 2. Here, everything is developed for the case d � 2. This is only due
to a simpler notation of the anyway high technical approach. We first construct an estimator pNn

based on the same n�1 equidistant observations as pνn, such that it holds under certain smoothness
and decay conditions on ν

sup
pa,bqPR

ηpa, bq
���νpra,8q � rb,8qq � pNnpa, bq

��� � OPΣ,ν,α

�plog log nq2?
log n



, nÑ8 (2.3)

with
R

def� r0,8q2ztp0, 0qu, ηpa, bq def� |pa, bq|2 ^ |pa, bq|4.
This is proven in Theorem 2.2.11. Note that the right hand side of (2.3) is independent of pa, bq P R.
If |pa, bq| Ñ 0, ηpa, bq � |pa, bq|4 Ñ 0 slows down the convergence speed in (2.3). Vice versa
|pa, bq| Ñ 8 implies ηpa, bq � |pa, bq|2 Ñ 8 which accelerates the convergence speed. This way of
treating the small jumps is sufficient of getting satisfying results concerning the estimation of the
Lévy copula. Note that (2.3) also yields estimations for νpra,8q � R�q resp. νpR� � rb,8qq by
setting a ¡ 0, b � 0 resp. a � 0, b ¡ 0. Our assumptions in this section ensure that the Lévy
copula of ν can be written in the form (2.2). We are capable to estimate U,U1, U2 with the use of
(2.3). Our intention is to create a plug-in estimator for (2.2), i.e. we also need an estimator for
U�1
k , k � 1, 2. This basically works by building the pseudo inverse of the estimator of Uk. At this

point, we again have to pay attention to the small jumps. This inverting procedure is performed
by Corollary 2.2.13 which is the stochastic counterpart of Proposition 2.2.12. This proposition
contains the analysis needed for the inversion operation. Finally, Theorem 2.2.14 states that the



2.1. ESTIMATING THE LÉVY MEASURE 59

resulting plug-in estimator pCn uniformly converges on compact sets bounded away from zero with
a convergence rate plog nq� 1

2 , i.e.: It holds for two arbitrary and fixed numbers 0   a   b   8 the
asymptotic

sup
a¤u,v¤b

|Cpu, vq � pCnpu, vq| � OPΣ,ν,α

�plog log nq9?
log n



. (2.4)

The term plog log nq9 in (2.4) is not relevant in the sense that we have

plog log nq9
plog nqε Ñ 0, nÑ8

for all ε ¡ 0. Note that the convergence in (2.4) holds in a wide, non-pathologic class of Lévy
triplets which contains Lévy measures of every Blumenthal Getoor index 0 ¤ β ¤ 2, i.e. the test
can separate the small jumps from the Brownian motion part in a low frequency setting even in the
case β � 2. This is proven in Corollary 2.2.6. Furthermore, observe that ra, bs � r0,8q2 is bounded
away from zero. However, we have to treat the small jumps tending to zero in order to estimate,
for example, U�1

k , k � 1, 2, compare the proof of Theorem 2.2.14. Apart from that, our technical
approach would easily yield a similar treatment of ra, bs2 in the case a Ó 0, b Ò 8 as in (2.3). The
respective η would then, however, depend on U , i.e. on ν which is the unknown estimating entity.
Hence, such convergence rates are not statistically feasible and thus, we have not calculated them.

Finally, in Section 3, we apply the techniques developed in Section 2 to the compound Poisson
process (CPP) case. For simplicity we assume that the intensity Λ � νpR2q is known. We propose
an estimator pCn for the copula C of the probability measure Λ�1ν, which is based on n � 1 low
frequency observations. For this purpose, we show that everything developed in the previous Section
2 also works in this case. Here, we obtain the better and natural convergence rate n�

1
2 as expected.

Namely, we show in Theorem 2.3.7 that

sup
a¤u,v¤b

|Cpu, vq � pCnpu, vq| � OPν,α

�plog nq10

?
n



, nÑ8

holds under certain assumptions in the CPP case.

Neumann and Reiß [29][Theorem 4.4] prove in a one dimensional setting that, in the case of a
non-vanishing Brownian motion part, a logarithmic convergence rate for estimating νσ is optimal.
Furthermore, n�

1
2 is the optimal rate in the CPP case. Hence, the convergence rates of our Lévy

copula estimators can be considered to be optimal in the sense that the optimal rates in the one
dimensional setting still hold in the multidimensional setting and after an inversion operation.

2.1 Estimating the Lévy measure

Let pXtqt¥0 be a d-dimensional Lévy process on a probability space pΩ,F , PΣ,ν,αq with the Lévy
triplet pΣ, ν, αq. Based on the equidistant observations pXtppωqqt�0,1,...,n for some fixed path pω P Ω,
we intend to estimate the Lévy triplet pΣ, ν, αq. First of all note that it is statistical not possible
to distinguish between the existence of a Brownian motion part and an accumulation of infinitely
many jumps in a uniform consistent way. This is explained by the following lemma which is a
generalization of Remark 3.2 in Neumann, Reiß [29].
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Lemma 2.1.1. Set d � 1 and write σ � Σ. Then we have

sup
σ,ν,α

Pσ,ν,α

�
|pσ � σ| ¥ 1

2



¥ 1

2

where pσ is any real valued random variable. For example pσ can be any estimator based on the above
low frequency observations.

Proof. Denote with Pm, m ¥ 1 the 2� 1
m symmetric stable law, i.e. the law with the characteristic

function

ϕmpuq � e�
|u|2�

1
m

2 .

As ϕm is Lebesgue integrable, Pm has the Lebesgue density

fmpxq � 1
2π

»
e�iuxϕmpuq du.

Now consider the total variation (TV) between Pm and P8
def� Np0, 1q. Scheffé’s Lemma yields

}Pm � P8}TV � 1
2

»
|fmpxq � f8pxq| dx. (2.5)

We have fm Ñ f8 pointwise because of

|fmpxq � f8pxq| ¤
»
|ϕmpuq � ϕ8puq| du

and the integrable L1pλ1q majorant

|ϕmpuq � ϕ8puq| ¤ 2e�
u2^|u|

2 , m P N.

This implies together with »
fmpxq dx �

»
f8pxq dx � 1

and a theorem of Riesz, cf. [5][Theorem 15.4] that fm Ñ f8 in L1pλq, i.e. with (2.5)

}Pm � P8}TV Ñ 0, mÑ8.

Now consider the two sets

A0
def�

"
|pσ| ¥ 1

2

*
, A1

def�
"
|pσ � 1| ¥ 1

2

*
.

Fix ε ¡ 0 and choose m large enough, such that }Pm � P8}TV   ε. Note that the Brownian part
σ of Pm is zero and the Brownian part of P8 is one. Assume that

Pm

�
|pσ � σ| ¥ 1

2



� PmpA0q   1

2
.

Then we have P8pA0q   1
2 � ε which yields because of A0 YA1 � Ω

P8pA1q � 1
2
� ε ¡ P8pA0q � P8pA1q ¥ P8pA0 YA1q � 1.
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This results in

P8

�
|pσ � σ| ¥ 1

2



� P8pA1q ¥ 1

2
� ε.

The lemma is proven since ε ¡ 0 was chosen arbitrarily.

We denote by

pϕnpuq def� 1
n

ņ

t�1

ei〈u,Xt�Xt�1〉, u P Rd

the empirical characteristic function of the increments and write, furthermore,

ϕΣ,ν,αpuq def� EΣ,ν,α

�
ei〈u,X1〉

	
, u P Rd.

Next let w : Rd Ñ R¡0 denote a weight function which is specified later. For the following we
only require that w is bounded and vanishes at infinity. Define the weighted supremum

}ψ}L8pwq def� sup
uPRd

twpuq|ψpuq|u

for mappings ψ : Rd Ñ C. The following proposition is needed in order to prove Theorem
2.1.5. This theorem yields a consistent estimator pνn for the Lévy measure ν as described in the
introduction of this chapter.

Proposition 2.1.2. For every pΣ, ν, αq with EΣ,ν,α|X1|4   8, there exists a PΣ,ν,α negligible set
N , such that ���� BlBulk ppϕnpuq � ϕΣ,ν,αpuqq

����
L8pwq

Ñ 0, nÑ8, l � 0, 1, 2, 1 ¤ k ¤ d (2.6)

holds on N c.

Proof. The proof is divided into two steps. We have to address the problem that the negligible set
N has to be independent of u P Rd in (2.6). Rd is uncountable and unbounded. Step 1 yields two
continuity inequalities, (2.7) and (2.8). These inequalities enable us to replace Rd in the second step
by certain countable sets. The use of a weight function w solves the problem that Rd is unbounded.
Finally, in step 2, all necessary analyses are performed to complete the proof.

We set k � 1, l � 2 to simplify the notation. Then (2.6) claims that

sup
uPRd

#
wpuq

����� 1n
ņ

t�1

pXt,1pωq �Xt�1,1pωqq2ei〈u,Xtpωq�Xt�1pωq〉 � EΣ,ν,αX
2
1,1e

i〈u,X1〉

�����
+
Ñ 0, nÑ8

holds for all ω P N c where Xt,1 P R denotes the first component of Xt P Rd.
step 1. We show that there exists a constant C ¡ 0, such that we have for all u, v P Rd the

inequalities ����B2ϕΣ,ν,αpuq
Bu2

1

� B2ϕΣ,ν,αpvq
Bv2

1

���� ¤ C|u� v|p1� |u| � |v|q, (2.7)����B2 pϕnpuq
Bu2

1

� B2 pϕnpvq
Bv2

1

���� ¤ pC � Ynq|u� v|p1� |u| � |v|q, n P N (2.8)
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for some random variables pYnqn with

Yn Ñ 0, nÑ8 pPΣ,ν,α-a.s.q.

Consider with u, v P Rd����B2 pϕnpuq
Bu2

1

� B2 pϕnpvq
Bv2

1

���� ¤ 1
n

ņ

t�1

pXt,1 �Xt�1,1q2
���ei〈u,Xt�Xt�1〉 � ei〈v,Xt�Xt�1〉

��� .
Using the identity

eix � 1� ix�
» x

0
px� yqeiy dy, x P R,

cf. Sato [38][Lemma 8.6], we can write

ei〈u,Xt�Xt�1〉 � ei〈v,Xt�Xt�1〉

� i 〈u� v,Xt �Xt�1〉�
» 〈u,Xt�Xt�1〉

0
p〈u,Xt �Xt�1〉� yqeiy dy

�
» 〈v,Xt�Xt�1〉

0
p〈v,Xt �Xt�1〉� yqeiy dy

� i 〈u� v,Xt �Xt�1〉�
» 〈v,Xt�Xt�1〉

0
〈v � u,Xt �Xt�1〉 eiy dy

�
» 〈u,Xt�Xt�1〉

〈v,Xt�Xt�1〉
p〈u,Xt �Xt�1〉� yqeiy dy.

This yields together with the Cauchy-Schwarz inequality

|ei〈u,Xt�Xt�1〉 � ei〈v,Xt�Xt�1〉|
¤ | 〈u� v,Xt �Xt�1〉 | � | 〈u� v,Xt �Xt�1〉 || 〈v,Xt �Xt�1〉 |

�| 〈u� v,Xt �Xt�1〉 |p| 〈u,Xt �Xt�1〉 | � | 〈v,Xt �Xt�1〉 |q
¤ |u� v|r|Xt �Xt�1| � |v||Xt �Xt�1|2 � |Xt �Xt�1|2p|u| � |v|qs
� |u� v||Xt �Xt�1| � |u� v|p|u| � 2|v|q|Xt �Xt�1|2.

Thus, we have ����B2 pϕnpuq
Bu2

1

� B2 pϕnpvq
Bv2

1

����
¤ |u� v| 1

n

ņ

t�1

pXt,1 �Xt�1,1q2|Xt �Xt�1|

�|u� v|p|u| � 2|v|q 1
n

ņ

t�1

pXt,1 �Xt�1,1q2|Xt �Xt�1|2

and the strong law of large numbers yields (2.8) which in turn implies (2.7). Set N1
def� tYn �Ñ 0u.

step 2. We split the supremum in (2.6) as follows

sup
uPRd

wpuq
���� B2

Bu2
1

ppϕnpuq � ϕΣ,ν,αpuqq
���� ¤ sup

uPKn
wpuq

���� B2

Bu2
1

ppϕnpuq � ϕΣ,ν,αpuqq
���� (2.9)
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� sup
uPKc

n

wpuq
���� B2

Bu2
1

ppϕnpuq � ϕΣ,ν,αpuqq
���� (2.10)

where Kn � Rd may depend on ω, i.e. Kn � Knpωq. We choose Kn in such a manner that

Rn
def� inft|u| : u P Kc

nu Ñ 8, nÑ8

for all ω P Ω. Due to���� B2

Bu2
1

ppϕnpuq � ϕΣ,ν,αpuqq
���� ¤ 1

n

ņ

t�1

pXt,1 �Xt�1,1q2 � EΣ,ν,αX
2
1,1,

the strong law of large numbers and

Rnpωq Ñ 8, nÑ8, ω P Ω

together with
wpuq Ñ 0, |u| Ñ 8,

(2.10) converges PΣ,ν,α-a.s. to zero, i.e. for all ω P N c
2 for some negligible set N2.

Next, we estimate (2.9). Set

Km
def� r�m,msd, ∆m

def� 1
m2

, m P N.

Define furthermore
Qm

def�
! z

m2
: z P Z

)d
, K

Q
m

def� Km XQm.

Then we have for any x P Km

inft|x� y| : y P KQ
mu ¤

��
1
m2


2

� . . .�
�

1
m2


2
� 1

2

�
?
d

m2
.

As
�8
m�1K

Q
m � Rd is countable, there exists because of the strong law of large numbers a negligible

set N3, such that

B2

Bu2
1

ppϕnpuq � ϕΣ,ν,αpuqq Ñ 0, nÑ8, ω P N c
3 , u P

8¤
m�1

K
Q
m.

Now, (2.7) and (2.8) yield

sup
uPKm

wpuq
���� B2

Bu2
1

ppϕnpuq � ϕΣ,ν,αpuqq
���� (2.11)

¤ }w}8
�

max
uPKQ

m

���� B2

Bu2
1

ppϕnpuq � ϕΣ,ν,αpuqq
����� 2pC � |Yn|q

?
d

m2
p1� 2

?
dmq

�
.

We obtain

max
uPKQ

m

���� B2

Bu2
1

ppϕnpuq � ϕΣ,ν,αpuqq
���� pωq ¤ 1

m
, ω P N c

3 (2.12)
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for all n ¥ Npm,ωq. We assume w.l.o.g. that Np�, ωq Ò 8 for every ω P N c
3 . Set

N�1pn, ωq def� suptm P N : Npm,ωq ¤ nu Ò 8, nÑ8, supH def� 1, ω P N c
3

and

Kn � Knpωq def�
#
KN�1pn,ωq, ω P N c

3

Kn, ω P N3.
(2.13)

Now, under consideration of (2.11) and (2.12), we obviously obtain

max
uPKn

wpuq
���� B2

Bu2
1

ppϕnpuq � ϕΣ,ν,αpuqq
����Ñ 0, nÑ8, ω P pN1 YN2 YN3qc,

ensuring together with (2.10) that everything is proven.

Remark 2.1.3. Note that this proof is an illustrative straightforward proof in contrast to the proof
of Theorem 2.1.6 which is much more involved. With the latter, we prove a similar statement using
a deep result from empirical process theory.

Assumptions 2.1.4. The Lévy triplet pΣ, ν, αq has a vanishing Brownian part and possesses a
finite fourth moment, i.e. »

|x|4νpdxq   8, Σ � 0.

The above Assumptions 2.1.4 are motivated by Lemma 2.1.1 and Proposition 2.1.2. Note that
given the Assumptions 2.1.4 we do not need a truncation function in the representation of the
characteristic function of the Lévy process, i.e. we are going to use the representation

ϕν,αpuq � exp
�
i 〈u, α〉�

»
Rd
pei〈u,x〉 � 1� i 〈u, x〉q νpdxq



. (2.14)

Define the following metric on C2pRdq :

dp2qpϕ1, ϕ2q def� }ϕ1 � ϕ2}L8pwq �
ḑ

k�1

���� B
Buk pϕ1 � ϕ2q

����
L8pwq

�
ḑ

k�1

���� B2

Bu2
k

pϕ1 � ϕ2q
����
L8pwq

.

Let Assumptions 2.1.4 hold. Given the equidistant observations as described at the beginning of
this section, we introduce the minimum distance estimator ppνn, pαnq via

dp2qppϕn, ϕpνn,pαnq ¤ inf
ν,α

dp2qppϕn, ϕν,αq � δn, n P N, ω P Ω (2.15)

for a given sequence δn Ó 0. This means that ppνn, pαnq are chosen in such a way that (2.15) and the
Assumptions 2.1.4 are fulfilled. This is exactly the multidimensional variant of (2.3) in Neumann,
Reiss [29].

Theorem 2.1.5. Let Assumptions 2.1.4 hold and let w be continuous and vanishing at infinity.
Then we have Pν,α-a.s. the weak convergence

|x|2pνnpdxq wÑ|x|2νpdxq.
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Proof. Proposition 2.1.2 yields

dp2qpϕpνn,pαn , ϕν,αq ¤ dp2qpϕpνn,pαn , pϕnq � dp2qppϕn, ϕν,αq
¤ 2dp2qppϕn, ϕν,αq � δn

Ñ 0, Pν,α-a.s. (2.16)

It follows for any compact K � Rd»
K
|ϕpνn,pαnpuq � ϕν,αpuq|λdpduq ¤

�
inf
uPK

wpuq

�1

λdpKq}ϕpνn,pαn � ϕν,α}L8pwq, ω P Ω. (2.17)

Note that
}ϕpνn,pαn � ϕν,α}L8pwq ¤ dp2qpϕpνn,pαn , ϕν,αq Ñ 0, Pν,α-a.s.

Fix any v � pv1, . . . , vdq P Rd and define

Kn � Knpωq def� rv1, v1 � εns � . . .� rvd, vd � εns � Rd, n P N

for a sequence pεnqn with εn Ó 0, which may depend on ω P Ω. Then we have because of the strict
positivity and continuity of w

C
def� sup

nPN

�
inf
uPKn

wpuq

�1

�
�

inf
uPK1

wpuq

�1

  8.

From (2.17), it follows that

1
εdn

»
Kn

|ϕpνn,pαnpuq � ϕν,αpuq|λdpduq ¤ C}ϕpνn,pαn � ϕν,α}L8pwq Ñ 0, Pν,α-a.s. (2.18)

As u ÞÑ |ϕpνn,pαnpuq � ϕν,αpuq| is continuous, we can choose εn � εnpωq small enough that���� 1
εdn

»
Kn

|ϕpνn,pαnpuq � ϕν,αpuq|λdpduq � |ϕpνn,pαnpvq � ϕν,αpvq|
���� ¤ 1

n
, ω P Ω.

This yields together with (2.18)

ϕpνn,pαnpvq Ñ ϕν,αpvq Pν,α-a.s.

and the negligible set is independent of v P Rd. As a result, Lévy-Cramér yields that we have
Pν,α-a.s. the weak convergence

PX1pνn,pαn
wÑ PX1

ν,α .

With (2.14), we have

»
Rd
|x|2 pνnpdxq �

ḑ

k�1

�Bϕpνn,pαn
Buk p0q


2

� B2ϕpνn,pαn
Bu2

k

p0q

Ñ
ḑ

k�1

�Bϕν,α
Buk p0q


2

� B2ϕν,α
Bu2

k

p0q �
»
Rd
|x|2 νpdxq, Pν,α-a.s.
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because of (2.16). It therefore suffices to prove the vague convergence, cf. Chung [10].

|x|2pνnpdxq vÑ|x|2νpdxq, Pν,α-a.s.

Let f : Rd Ñ R be a continuous function with compact support. It remains to verify»
Rd
fpxq|x|2pνnpdxq Ñ »

Rd
fpxq|x|2 νpdxq, Pν,α-a.s. (2.19)

For this purpose set

hεprq def�

$''&''%
0, 0 ¤ r   ε

2
2
ε

�
r � ε

2

�
, ε

2 ¤ r   ε

1, r ¥ ε

, r ¥ 0

and
gεpxq def� hεp|x|q, x P Rd.

Fix any δ ¡ 0 and choose ε � εpωq ¡ 0 small enough that

}f}8 sup
nPN

»
t|x|¤εu

|x|2 pνnpdxq   δ, }f}8
»
t|x|¤εu

|x|2 νpdxq   δ, Pν,α-a.s.

This is possible because of Sato [38] Theorem 8.7.(2) and our assumption Σ � pΣn � 0 on Ω. Based
on this, we obtain»

Rd
fpxqp1� gεpxqq|x|2pνnpdxq   δ,

»
Rd
fpxqp1� gεpxqq|x|2 νpdxq   δ, Pν,α-a.s. (2.20)

On the other hand, x ÞÑ fpxq|x|2gεpxq, x P Rd is a bounded, continuous function which vanishes
on a neighborhood of zero. Thus, Sato [38][Theorem 8.7.(1)] yields»

Rd
fpxqgεpxq|x|2pνnpdxq Ñ »

Rd
fpxqgεpxq|x|2 νpdxq, Pν,α-a.s.

Hence, together with (2.20), we obtain

lim sup
n

����»
Rd
fpxq|x|2pνnpdxq � »

Rd
fpxq|x|2 νpdxq

���� ¤ 2δ, Pν,α-a.s.

This proves (2.19) because δ ¡ 0 was chosen arbitrarily.

Set Zt � Xt �Xt�1, t P N and define

Anpuq def� n�
1
2

ņ

t�1

�
ei〈u,Zt〉 � E

�
ei〈u,Z1〉

		
, u P Rd, n P N.

Next, we aim to establish a similar result as in Proposition 2.1.2 which will be useful for the next
Section 2.2. The difference to the previous result is that we are not interested in a PΣ,ν,α-a.s.
result, but in finding an upper bound for the expectation values as stated in the next theorem.
Furthermore, Anpuq is scaled with n�

1
2 and not with n�1 as in Proposition 2.1.2. Therefore it is

not surprising that we have to make some further restrictions to the weight function w. To be more
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precise, we choose w as
wpuq � plogpe� |u|qq� 1

2
�δ, u P Rd

for some fixed δ ¡ 0. This is the natural generalization to d dimensions of the weight function in
[29].

The proof of the next Theorem 2.1.6 uses a result from empirical process theory. We briefly
repeat in the following some definitions needed for this result. The respective notations in van
der Vaart [43] are used: Let pX ,A, P q be a probability space and let F be a class of measurable
functions f : X Ñ R in L2pP q. Fix any ε ¡ 0 and let l, u : X Ñ R be two functions in L2pP q
with

³pl � uq2 dP   ε2. Then,

rl, us def� tf : X Ñ R, measurable, l ¤ f ¤ uu

is called an ε-bracket. Denote further with Nrspε,Fq the minimum number of such ε-brackets needed
to cover F . Note that l and u are not required to belong to F . Next

Jrspδ,Fq def�
» δ

0

b
logNrspε,Fq dε, δ ¡ 0

is called the bracketing integral. Let pXiqiPN be a sequence of i.i.d. X -valued and P distributed
random variables and set for n P N

Gnf
def� 1?

n

ņ

i�1

pfpXiq � EfpXiqq, }Gn}F def� sup
fPF

|Gnf |.

Then we have

Corollary 19.35 in van der Vaart [43]. For any class F of measurable functions with envelope
function F , it holds

E�}Gn}F À Jrs

�d»
|F |2 dP ,F

�
. (2.21)

Note that À means not larger up to a constant which does not depend on n P N. An envelope
function F is any L2pP q function, such that |f |pxq ¤ F pxq holds for all x P X and f P F . Finally,
observe the star notation E� instead of E. This is due to certain measurability problems which are
typical in empirical process theory, compare for this the first chapter in van der Vaart and Wellner
[44]. Fortunately, we are not concerned with such measurability problems in our case and, thus,
can simply write E instead of E� in (2.21). In general, observe also the helpful monographs of
Pollard [34] and Dudley [14].

Now, we can prove the next theorem which is a generalization of Theorem 4.1 in Neumann,
Reiß [29] to the multidimensional case:

Theorem 2.1.6. Let pΣ, ν, αq be a Lévy triplet, such that E|X1|8�γ   8 holds for some γ ¡ 0.
Then we have

sup
n¥1

EΣ,ν,α

���� BlBulkAnpuq
����
L8pwq

  8

for all l � 0, 1, 2, 3, 4 and 1 ¤ k ¤ d.

Proof. Write <pzq for the real part of a complex number z and =pzq for its imaginary part. It



68 CHAPTER 2. LÉVY PROCESSES AND DEPENDENCES

suffices to prove the Theorem separately for the real and imaginary part because of���� BlBulkAnpuq
����
L8pwq

¤
���� BlBulk<pAnpuqq

����
L8pwq

�
���� BlBulk=pAnpuqq

����
L8pwq

.

Here, we only treat the real part because the imaginary part can be proven in exactly the same
way. We have

<pAnpuqq � n�
1
2

ņ

t�1

pcosp〈u, Zt〉q � E cosp〈u, Z1〉qq, u P Rd.

Set

Gl,k
def�

"
z ÞÑ wpuq B

l

Bulk
cosp〈u, z〉q : u P Rd

*
with l � 0, 1, 2, 3, 4, 1 ¤ k ¤ d. Next, it is the crucial idea to apply the above Corollary 19.35 in
[43], i.e. empirical process theory. Here, we choose

fl,kpzq � |zk|l, z P Rd

as envelope function for the set Gl,k. Then the cited corollary implies

E

���� BlBulk<pAnpuqq
����
L8pwq

À Jrs
�b

EZ2l
1,k, Gl,k

	
(2.22)

in the above Notation. With

M
def� Mpε, l, kq � inf

!
m ¡ 0 : EpZ2l

1,k 1pm,8qp|Z1|qq ¤ ε2
)

for ε ¡ 0, define

g�j pzq def�
�
wpupjqq B

l

Bulk
cos

�〈
upjq, z

〉	
� ε|zk|l



1r0,Msp|z|q � |zk|l 1pM,8qp|z|q

for later defined fixed points upjq P Rd. This yields

Epg�j pZ1q � g�j pZ1qq2 ¤ E
�

4ε2Z2l
1,k 1r0,Msp|Z1|q � 4Z2l

1,k 1pM,8qp|Z1|q
	

¤ 4ε2pEZ2l
1,k � 1q.

Set C def� 2
b
EZ2l

1,k � 1. Then rg�j , g�j s is a C � ε-bracket. Since we are only interested in the

finiteness of the right-hand side of (2.22), we can assume w.l.o.g. C � 1. Hence, rg�j , g�j s is an
ε-bracket. Next we perform some calculations in order to determine the points upjq, such that the
upper bound in (2.22) is finite. Obviously,

w1prq def� plogpe� rqq� 1
2
�δ, r ¥ 0

is Lipschitz continuous, so that we have

|wpuq � wpvq| � |w1p|u|q � w1p|v|q| ¤ L||u| � |v|| ¤ L|u� v|, u, v P Rd
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for some L ¡ 0. With u, z P Rd and |z| ¤M , we obtain the inequalities����wpuq BlBulk cosp〈u, z〉q � wpupjqq B
l

Bulk
cos

�〈
upjq, z

〉	���� (2.23)

¤ |wpuq � wpupjqq|
���� BlBulk cosp〈u, z〉q

����
�|wpupjqq|

���� BlBulk cosp〈u, z〉q � Bl
Bulk

cos
�〈
upjq, z

〉	����
¤ L|u� upjq||zk|l �

���zlk �〈u, z〉� 〈
upjq, z

〉	���
¤ L|u� upjq||zk|l � |u� upjq||zk|l|z|
¤ |zk|l|u� upjq|pL�Mq.

This yields that (2.23) is not larger than

|zk|l min
!?

d|u� upjq|8pL�Mq, wpuq � wpupjqq
)
, z P Rd : |z| ¤M. (2.24)

Set

Upεq def� inf

#
u ¡ 0 : sup

vPRd : |v|¥u
wpvq ¤ ε

2

+
and

Jpεq def� inf
"
l P N :

lε?
dpL�Mq ¥ Upεq

*
. (2.25)

Now, we specify the points upjq as

upjq def� jε?
dpL�Mq , j P Zd : |j|8 ¤ Jpεq. (2.26)

This choice guarantees that
Gl,k �

¤
jPZd : |j|8¤Jpεq

rg�j , g�j s.

To understand this, fix any u P Rd. If

|u|8 ¤ Jpεqε?
dpL�Mq ,

set

ju
def�

�[?
dpL�Mq

ε
u1

_
, . . . ,

[?
dpL�Mq

ε
ud

_�
P Zd

with txu � �t|x|u, x   0. Note that |ju|8 ¤ Jpεq. Then

?
d|u� upjuq|8pL�Mq ¤ ε

and the corresponding function belongs to rg�ju , g�jus. If

|u|8 ¡ Jpεqε?
dpL�Mq ¥ Upεq,
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the corresponding function belongs to

ju
def� pJpεq, 0, . . . , 0q P Zd

because of (2.24) and

wp|u|q ¤ wp|u|8q ¤ ε

2
, wp|upjuq|q � w1

�
Jpεqε?
dpL�Mq



¤ ε

2
.

Note that (2.26) implies
Nrspε,Gl,kq ¤ p2Jpεq � 1qd. (2.27)

Next we establish

M ¤
�
E|Z1|2l�γ

ε2


 1
γ

. (2.28)

This is easily done by setting

mγ def� E|Z1|2l�γ
ε2

and considering the inequalities

E|Z1|2l�γ ¥ E
�
|Z1|2l�γ 1pm,8qp|Z1|q

	
¥ E

�
|Z1,k|2lmγ

1pm,8qp|Z1|q
	

� mγE
�
|Z1,k|2l 1pm,8qp|Z1|q

	
.

(2.25) yields

Jpεq ¤ Upεq?dpL�Mq
ε

� 1. (2.29)

The special shape of w, furthermore, yields

logpUpεqq �
� ε

2

	�pδ� 1
2
q�1

� op1q, εÑ 0,

so that we have together with (2.27), (2.28) and (2.29)

logpNrspε,Gl,kqq ¤ d logp2Jpεq � 1q
� O

�
ε�pδ� 1

2q�1

� log
�
ε
�1� 2

γ

		
, εÑ 0.

As
�
δ � 1

2

��1   2, we have established

» b
EZ2l

1,k

0

b
logpNrspε,Gl,kqq dε   8

and (2.22) is finite.

Next, we define a C4pRdq metric

dpϕ1, ϕ2q def� dp4qpϕ1, ϕ2q def� dp2qpϕ1, ϕ2q �
ḑ

k�1

���� B3

Bu3
k

pϕ1 � ϕ2q
����
L8pwq

�
ḑ

k�1

���� B4

Bu4
k

pϕ1 � ϕ2q
����
L8pwq

.
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Then, as a direct consequence of Theorem 2.1.6, it holds the following statement:

Corollary 2.1.7. Let pΣ, ν, αq be a Lévy triplet such that E|X1|8�γ   8 holds for some γ ¡ 0.
Then we have

EΣ,ν,αdppϕn, ϕΣ,ν,αq � O
�
n�

1
2

	
, nÑ8.

2.2 Nonparametric low frequency Lévy copula estimation

We denote with F the Fourier transform of a function or a finite measure. To be more precise, we
set for u P Rd

pFfqpuq def�
»
Rd
ei〈u,x〉fpxqλ2pdxq, f P L1pλdq

and
pFµqpuq def�

»
Rd
ei〈u,x〉 µpdxq,

where µ denotes a finite positive measure on the space pRd,BpRdqq.
As described in the introduction of this chapter, we aim to estimate the Lévy measure ν in order

to construct a Lévy copula estimator. Motivated by Nickl and Reiß [30], we do not estimate directly
ν, but a smoothed version of ν. The statistical estimation of this smoothed version is investigated
in the proof of Theorem 2.2.11. An upper bound of the error which we make by using a smoothed
version of ν instead of ν itself, is calculated in Lemma 2.2.7. We consider the convolution of ν
with a Kernel K in order to get such a smoothed version of ν, cf. Lemma 2.2.7. Such a Kernel, of
course, has to fulfill some assumptions which are stated next:

Assumptions 2.2.1. Let K : R2 Ñ R� be a kernel function with the properties

(i) K P L1pR2q X L2pR2q, ³
R
Kpxqλ2pdxq � 1

(ii) supppFKq � r�1, 1s2

(iii) u ÞÑ pFKqpuq is Lipschitz continuous.

It is natural to consider Lévy processes in the Fourier space because of the Lévy-Khintchine
formula. From this point of view, Assumption 2.2.1 (ii) is particularly useful because it provides
compact support for many important integrands we use.

Example 2.2.2. In the following example, we state a kernel function K which fulfills the Assump-
tions 2.2.1. First, set

K1 : R Ñ R�

x1 ÞÑ 2
π

�
sinpx1

2 q
x1


2

.

A straightforward calculation yields

pFK1qpu1q � p1� |u1|q1p�1,1qpu1q, u1 P R.

Set
Kpxq def� K1px1q �K1px2q, x � px1, x2q P R2.

This implies
pFKqpuq � pFK1qpu1q � pFK1qpu2q, u � pu1, u2q P R2.
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Note that K fulfills the desired conditions since»
R2

Kpxqλ2pxq � pFKqp0q � pFK1qp0q � pFK1qp0q � 1

and we have for u, v P R2

|FKpuq � FKpvq| ¤ |FK1pu1qpFK1pu2q � FK1pv2qq| � |FK1pv2qpFK1pu1q � FK1pv1qq|
¤ |FK1pu2q � FK1pv2q| � |FK1pu1q � FK1pv1q|
¤ |u2 � v2| � |u1 � v1|
¤

?
2|u� v|.

The remaining conditions are obviously true.

Next set for h ¡ 0

Khpxq def� h�2Kph�1xq � ph�1K1ph�1x1qq � ph�1K1ph�1x2qq, x P R2

and observe that standard results from Fourier analysis yield

pFKhqpuq � pFKqphuq, u P R2.

Recall the definitions

Upx, yq � νprx,8q � ry,8qq, U1pxq � νprx,8q �R�q, U2pyq � νpR� � ry,8qq, x, y P R�

and R � R2�ztp0, 0qu from the introduction of this chapter. Define, furthermore,

ga,bpxq def� 1
x4

1 � x4
2

1ra,8q�rb,8qpx1, x2q, pa, bq P R, x P R2.

Assumptions 2.2.3. Next we state some assumptions concerning the Lévy measure ν:

(i) ν
�
R2zr0,8q2� � 0, i.e. only positive jumps,

(ii) Dγ ¡ 0 :
³ |x|8�γ νpdxq   8, i.e. finite 8+γ-th moment,

(iii) Fppx4
1 � x4

2qνqpuq À p1� |u1|q�1p1� |u2|q�1, u P R2,

(iv) Uk : p0,8q Ñ p0,8q is a C1-bijection with U 1
k   0 and

inf
0 xk¤1

|U 1
kpxkq| ¡ 0, sup

xk¡0
p1^ x3

kq|U 1
kpxkq|   8, k � 1, 2. (2.30)

Remark 2.2.4. Assumption 2.2.3 (i) assures that there are no negative jumps. This simplifies
the shape of the Lévy copula of ν, cf. (2.2) and serves to keep the technical overhead as small
as possible. (ii) required to use the statement of Corollary 2.1.7. (iii) is perhaps the most non-
transparent assumption. It guarantees a certain decay behaviour of some integrands in the Fourier
space. Finally, (iv) is needed to build a pseudo inverse in order to estimate the Lévy copula of ν
which is our final goal.

Proposition 2.2.5. Let f : R2� Ñ R� be a continuous function with the properties
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(i) fpxq ¡ 0, x P pt0u �R��q � pR�� � t0uq,
(ii) |x|2 À fpxq À plog |x|q�2, x P R2� : |x| ¤ 1

2 ,

(iii) fpxq À p1� |x|q�p6�εq, x P R2�

for some ε ¡ 0. Then,
νpdxq def� 1Rpxqpx4

1 � x4
2q�1fpxqλ2pdxq

is a Lévy measure and fulfills the Assumptions 2.2.3 (i), (ii) and (iv).

Proof. First, observe that ν is a Lévy measure since»
R2
�
|x|2 νpdxq À

» 1
2

0
r2r�4plog rq�2r dr �

» 8

1
2

r2r�4p1� rq�p6�εqr dr   8

holds. Next, we turn to the claimed Assumptions 2.2.3 (i), (ii) and (iv).

(i) This is obviously true due to R � R2�.

(ii) Note that we have»
R2
�
|x|8� ε

2 νpdxq À
»
R2
�
|x|4� ε

2 fpxqλ2pdxq À
» 8

0
r4� ε

2 p1� rq�p6�εqr dr   8.

Hence, Sato [38][Theorem 25.3] yields that the p8 � γq-th moment with γ
def� ε

2 ¡ 0 of the
corresponding Lévy process exists.

(iv) First, observe
0 � lim

x1Ò8
U1px1q ¤ lim

x1Ó0
U1px1q � 8 (2.31)

because of
rx1,8q �R� Ó H, x1 Ò 8

and

νpR2
�q �

»
R2
�
px4

1 � x4
2q�1fpxqλ2pdxq Á

» 1
2

0
r�4 � r2r dr � 8.

Next, U1px1q ¡ 0 follows from fp�, 0q ¡ 0 on p0,8q and the continuity of f . Hence (2.31)
yields that U1 : p0,8q Ñ p0,8q is a surjection. We, furthermore, have for x1 ¡ 0

U 1
1px1q � B

Bx1

» 8

x1

» 8

0
py4

1 � y4
2q�1fpyq dy2 dy1 � �

» 8

0
px4

1 � y4
2q�1fpx1, y2q dy2. (2.32)

Again due to the continuity of f and fp�, 0q ¡ 0, this implies U 1
1   0 on p0,8q. Hence, U1 is

also injective, i.e. a bijection. Finally, (2.32) also implies (2.30) for k � 1. Observe for this
purpose

|U 1
1px1q| ¤ }f}8

» 8

0
px4

1 � y4
2q�1 dy2 � }f}8

?
2π

4x3
1

À x�3
1 , x1 ¡ 0

and, with the use of Fatou’s Lemma,

lim inf
x1Ñ0

|U 1
1px1q| ¥

» 8

0
lim inf
x1Ñ0

rpx4
1 � y4

2q�1fpx1, y2qs dy2 �
» 8

0
y�4

2 fp0, y2q dy2 ¡ 0.
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Now, (iv) is verified since everything works equally with U2 instead of U1.

Corollary 2.2.6. It exists, for every 0 ¤ β ¤ 2, a Lévy measure νβ with Blumenthal Getoor index
(BGi) β, such that νβ fulfills the Assumptions 2.2.3.

Proof. We treat the cases 0 ¤ β   2 and β � 2 separately in two steps:

step 1. The case 0 ¤ β   2. Set

fβpxq def� r2�βe�r, r
def� |x|, x P R2

�

and
νβpdxq def� 1Rpxqpx4

1 � x4
2q�1fβpxqλ2pdxq.

Then νβ is a Lévy measure of BGi β because it holds for γ ¡ β»
t|x|¤1u

|x|γ νpdxq À
» 1

0
rγr�4r2�βr dr �

» 1

0
rγ�β�1 dr   8

and for γ � β »
t|x|¤1u

|x|β νpdxq Á
» 1

0
rβr�4r2�βr dr �

» 1

0
r�1 dr � 8.

Furthermore, the Assumptions 2.2.3 (i), (ii) and (iv) are fulfilled because of Proposition 2.2.5 and

|x|2 À |x|2�βe�|x| À plog |x|q�2, x P R2
� : |x| ¤ 1

2
, 0 ¤ β   2.

Next, we show that νβ fulfills Assumption 2.2.3 (iii). Note for this after a straightforward calculation
the equations

Bfβ
Bxk pxq � xk

�
p2� βqr�β � r1�β

	
e�r, k � 1, 2,

B2fβ
Bx1Bx2

pxq � x1x2

�
βpβ � 2qr�β�2 � p2β � 3qr�β�1 � r�β

	
e�r.

Hence, it holds for x P R, r � |x| ¡ 0 and k � 1, 2����BfβBxk

���� pxq À 1p0,1qprqr1�β � r2e�r,
���� B2fβ
Bx1Bx2

���� pxq À 1p0,1qprqr�β � r2e�r.

Now, fix any 0   δ   1. Then, Proposition B.2 yields

Fpfβ � 1rδ,8q2qpuq ¤
Λβ,δ
|u1u2| , u P pR�q2 (2.33)

with

Λβ,δ � |fβpδ, δq| �
» 8

δ

Bfβ
Bx1

px1, δq dx1 �
» 8

δ

Bfβ
Bx2

pδ, x2q dx2 �
»
rδ,8q2

���� B2fβ
Bx1Bx2

���� pxq dx
À 1�

» 1

δ
px2

1 � δ2q 1�β
2 dx1 �

» 1

δ
pδ2 � x2

2q
1�β

2 dx2 �
» 1

δ
r�βr dr.



2.2. NONPARAMETRIC LOW FREQUENCY LÉVY COPULA ESTIMATION 75

If 0 ¤ β ¤ 1, we have

Λβ,δ À 1� 2
» 1

0
px2

1 � 1q 1�β
2 dx1 �

» 1

0
r1�β dr   8. (2.34)

If 1   β   2, it holds

Λβ,δ À 1� 2
» 1

0
x1�β

1 dx1 �
» 1

0
r1�β dr   8. (2.35)

Note that the constants in the À sign are independent of 0   δ   1 and that we obtain by dominated
convergence

Fpfβ � 1rδ,8q2qpuq Ñ Fpfβqpuq, δ Ó 0 (2.36)

pointwise for all u P R2. Thus, (2.33) - (2.36) yield together for fixed β

Fpfβqpuq À 1
|u1||u2| , u P pR�q2. (2.37)

Hence, νβ satisfies

Fppx4
1 � x4

2qνβqpuq À
1

|u1||u2| , u P pR�q2

This proves together with Lemma B.5 (i) and the continuity of u ÞÑ Fppx4
1�x4

2qνqpuq the Assump-
tion 2.2.3 (iii) and, thus, the first step is accomplished.

step 2. The case β � 2. Let φ : R2� Ñ r0, 1s be a C8 function with

φpxq �
#

1, |x| ¤ 1
2

0, |x| ¡ 3
4

, x P R2
�.

A detailed construction of such a function is given in Rudin [36][§1.46]. Set

f2pxq def� φprqplog rq�2 � p1� φprqqe�r, r � |x|, x P R

and observe that
ν2pdxq def� 1Rpxqpx4

1 � x4
2q�1f2pxqλ2pdxq

is a Lévy measure of BGi 2 because we have»
t|x|¤1u

|x|2 νpdxq À
» 3

4

0
r2r�4plog rq�2r dr �

�
log

�
4
3



�1

  8

and »
t|x|¤1u

|x|2�γ νpdxq Á
» 1

2

0
r2�γr�4plog rq�2r dr Á

» 1
2

0
r�1� γ

2 dr � 8

for every γ ¡ 0. Note further that the Assumptions 2.2.3 (i), (ii) and (iv) hold because of Propo-
sition 2.2.5 and

|x|2 À plog |x|q�2 � e�|x|p1� φp|x|qq À plog |x|q�2, x P R2
� : |x| ¤ 1

2
.

Next, we establish the Assumption 2.2.3 (iii). For this purpose, set Lr def� r log r, r ¡ 0 and note
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that it holds for 0   r   1
2 and k � 1, 2

Bf2

Bxk pxq � xkpφ1prqpLrq�2r � 2φprqpLrq�3rq, k � 1, 2,

B2f2

Bx1Bx2
pxq � x1x2pφ2prqpLrq�2 � 4φ1prqpLrq�3 � φ1prqpLrq�2r�1 � 6φprqpLrq�4

�4φprqpLrq�3r�1q.

This implies for 0   r   1
2 the asymptotics���� Bf2

Bxk

���� pxq À r�1plog rq�2,

���� B2f2

Bx1Bx2

���� pxq À r�2plog rq�2.

Observe that we have in the complementary case r ¡ 1

Bf2

Bxk pxq � �xkr�1e�r,

B2f2

Bx1Bx2
pxq � x1x2pr�2 � r�3qe�r.

This yields for r ¡ 1 the asymptotics���� Bf2

Bxk

���� pxq À e�r,
���� B2f2

Bx1Bx2

���� pxq À e�r.

Now, we get the claim of Assumption 2.2.3 (iii) with the same procedure as in the first step.

Denote with pKhλ
2q � ppx4

1 � x4
2qνq in the following the convolution of the two finite Borel

measures dpKhλ
2q def� Kh dλ

2 and dppx4
1 � x4

2qνq def� px4
1 � x4

2q dν.

Lemma 2.2.7. Let the above Assumptions 2.2.1 and 2.2.3 (iii) hold. Then we have����νpra,8q � rb,8qq �
»
R2

ga,bpxqrpKhλ
2q � px4

1 � x4
2qνqspdxq

���� À |h log h|p|pa, bq|�2 _ |pa, bq|�4q

for all pa, bq P R and 0   h   1
2 .

Proof. Write

����νpra,8q � rb,8qq �
»
R2

ga,bpxqrpKhλ
2q � ppx4

1 � x4
2qνqspdxq

����
�

����»
R2

ga,bpxq
 rpx4

1 � x4
2qνspdxq � rpKhλ

2q � ppx4
1 � x4

2qνqspdxq
(����

� 1
4π

����»
R2

pFga,bqp�uqp1� pFKhqpuqqFppx4
1 � x4

2qνqpuqλ2pduq
���� (2.38)

where we use Lemma B.6 and the fact that a convolution becomes a simple multiplication in the
Fourier space for the last inequality. Note further

|1� pFKhqpuq| � |pFKqp0q � pFKqphuq| À minph|u|, 1q, u P R2,
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due to the Lipschitz continuity and our assumption that K is normalized. Hence, using Corollary
B.4 together with Lemma B.5 (i), (2.38) is up to a constant not larger than I1 � I2 with

I1
def� h|pa, bq|�2

»
r�1,1s2

|u|p1� |u1|q�1p1� |u2|q�1 λ2pduq

and
I2

def� |pa, bq|�4

»
R2

minph|u|, 1qp1� |u1|q�2p1� |u2|q�2 λ2pduq.

This finally proves under consideration of Lemma B.5 (ii), Fubinis theorem and

minph|u|, 1q ¤ minph|u1|, 1q �minph|u2|, 1q,
»
R

p1� |z|q�2 λ1pdzq   8

this lemma.

Lemma 2.2.8. Let ϕΣ,ν,α be the characteristic function of an infinitesimal divisible two dimensional
distribution with Lévy triplet pΣ, ν, αq and finite second moment. Then we have

|ϕΣ,ν,αpuq| ¥ e�Cp1�|u|q
2
, u P R2 (2.39)

with a constant C depending only on the triplet pΣ, ν, αq.

Remark 2.2.9. Note, that the fast exponential decay to zero in (2.39) as |u| tends to infinity results
from a possible non-vanishing Σ. Otherwise ϕΣ,ν,αpuq may possibly have a slower convergence rate
to zero. In this context, review the results in Neumann, Reiß [29]. In the case of a compound
Poisson process, it is even bounded away from zero, cf. Lemma 2.3.4.

Proof of Lemma 2.2.8. We have ϕpuq � exppΨpuqq with

Ψpuq � �1
2
〈u,Σu〉� i 〈u, α〉�

»
R2

�
ei〈u,x〉 � 1� i 〈u, x〉

	
νpdxq, u P R2. (2.40)

Next, we estimate each summand of Ψ separately:

| 〈u,Σu〉 | ¤ |u||Σu| ¤ |Σ||u|2,
| 〈u, α〉 | ¤ |α||u|, u P R2.

Furthermore, Sato [38][Lemma 8.6.] yields

ei〈u,x〉 � 1� i 〈u, x〉� θu,x
| 〈u, x〉 |2

2
, u, x P R2, θu,x P C, |θu,x| ¤ 1

which implies����»
R2

pei〈u,x〉 � 1� i 〈u, x〉q νpdxq
���� ¤ »

R2

| 〈u, x〉 |2 νpdxq ¤ |u|2
»
R2

|x|2 νpdxq.

This yields with C
def� |α| � |Σ| � ³

R2 |x|2 νpdxq the estimate

|ϕpuq| � |eΨpuq| ¥ e�|Ψpuq| ¥ e�Cp1�|u|q
2
, u P R2
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and this Lemma is proven.

In the following we construct, based on low frequency observations, a uniform estimator for the
values

tνpra,8q � rb,8qq : pa, bq P Ru.
Let us assume that the corresponding Lévy process has a finite fourth moment. Our motivation is
the following fact: �B4ΨΣ,ν,α

Bu4
1

� B4ΨΣ,ν,α

Bu4
2



puq �

»
R2

ei〈u,x〉px4
1 � x4

2q νpdxq

� Fppx4
1 � x4

2qνqpuq, u P R2. (2.41)

Remark 2.2.10. Note that we have to take at least the third derivations of Ψ in order to dump
the Brownian motion part. However, this seems not to be sufficient to deal with Lévy measures
with Blumenthal Getoor indices greater than one. That is why we take the fourth derivations of
Ψ. Doing so, we are, for example, capable to prove Corollary 2.2.6.

A simple calculation yields for k � 1, 2

B4ΨΣ,ν,α

Bu4
k

� B4ϕΣ,ν,α

Bu4
k

ϕ�1
Σ,ν,α � 4

BϕΣ,ν,α

Buk
B3ϕΣ,ν,α

Bu3
k

ϕ�2
Σ,ν,α � 3

�B2ϕΣ,ν,α

Bu2
k

ϕ�1
Σ,ν,α


2

(2.42)

�12
�BϕΣ,ν,α

Buk


2 B2ϕΣ,ν,α

Bu2
k

ϕ�3
Σ,ν,α � 6

�BϕΣ,ν,α

Buk ϕ�1
Σ,ν,α


4

.

Note that we are going to estimate ϕΣ,ν,α by

pϕnpuq � 1
n

ņ

t�1

ei〈u,Xt�Xt�1〉, u P R2.

Hence, we set for k � 1, 2

BpΨn

Bu4
k

def� B4 pϕn
Bu4

k

pϕ�1
n � 4

B pϕn
Buk

B3 pϕn
Bu3

k

pϕ�2
n � 3

�B2 pϕn
Bu2

k

pϕ�1
n


2

� 12
�B pϕn
Buk


2 B2 pϕn
Bu2

k

pϕ�3
n (2.43)

�6
�B pϕn
Buk pϕ�1

n


4

,

i.e. B4 pΨn
Bu4
k

is a function of derivatives of pϕn in exactly the same manner as B4ΨΣ,ν,α

Bu4
k

is a function of

the derivatives of ϕΣ,ν,α, compare (2.42). Of course we cannot write pϕnpuq � e
pΨnpuq since pϕn need

not be a characteristic function of an infinitesimal divisible measure for each ω P Ω.
Considering (2.41), we set

rNnpa, bq def�
»
R2

ga,bpxqF�1

��
B4pΨn

Bu4
1

� B4pΨn

Bu4
2

�
FKh

�
pxqλ2pdxq, pa, bq P R (2.44)

for an estimator of νpra,8q � rb,8qq. Note furthermore that (2.44) is only well-defined on

rAh,n def�
#
ω P Ω : pϕnpuq � 0, for all u P

�
�1
h
,

1
h

�2
+
, h ¡ 0, n P N
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because supppFKhq �
�� 1

h ,
1
h

�2 and pϕn has to be non-zero on supppFKhq. At the same time, we
have for ω P rAh,n �

B4pΨn

Bu4
1

� B4pΨn

Bu4
2

�
pωq � FKh P L1pR2q X L2pR2q

since the left-hand side is a continuous function with compact support. Thus, the inverse Fourier
transform in (2.44) is well-defined on rAh,n. Set

Ah,n
def�

#
|pϕnpuq| ¡ 1

2
|ϕpuq|, u P

�
�1
h
,

1
h

�2
+
� rAh,n, h ¡ 0, n P N.

Based on the above discussion, finally set

pNnpa, bq def�
$&%
³
R2 ga,bpxqF�1

��
B4 pΨn
Bu4

1
� B4 pΨn

Bu4
2

	
FKh

	
pxqλ2pdxq, ω P Ah,n,

0, ω P Ach,n,

for all pa, bq P R, h ¡ 0, n P N. Of course, the bandwidth h � hn has to be chosen in an optimal
manner. It turns out that

hn
def� log log n?

log n
, n P N

yields a satisfying result:

Theorem 2.2.11. It holds, under the Assumptions 2.2.1 and 2.2.3 (i)-(iii), the asymptotic

sup
pa,bqPR

|pa, bq|2 ^ |pa, bq|4
���νpra,8q � rb,8qq � pNnpa, bq

��� � OPΣ,ν,α

�plog log nq2?
log n



, nÑ8. (2.45)

Proof. The proof is divided into three steps. The probability that the inverse Fourier transform
is well defined tends to one. This is shown in the first step. The second step estimates the
approximation error between pΨn and Ψ. Finally, the third step uses these estimations together
with the statement of Lemma 2.2.7 to prove the desired convergence rate.

step 1. First, we establish P pAcnq Ñ 0, n Ñ 8 with An
def� Ahn,n, n P N and P

def� PΣ,ν,α.

Note for this that we have with B 1
h

def� �� 1
h ,

1
h

�2 and ϕ
def� ϕΣ,ν,α the inclusions

Ach,n �
"
Du P B 1

h
: |pϕnpuq| ¤ 1

2
|ϕpuq|

*
�

"
Du P B 1

h
:
|pϕnpuq � ϕpuq|

|ϕpuq| ¥ 1
2

*
�

"
Du P B 1

h
:

dppϕn, ϕq
|ϕpuq||wpuq| ¥

1
2

*
.

Observe
wpuq � plogpe� |u|qq� 1

2
�δ ¥ e�p 1

2
�δq|u|, u P R2,

so that together with Lemma 2.2.8 we obtain

|ϕpuq||wpuq| ¥ e�Cp1�|u|q
2
, u P R2 (2.46)
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with a constant C ¡ 0. This, finally, implies"
Du P B 1

h
:

dppϕn, ϕq
|ϕpuq||wpuq| ¥

1
2

*
�

"
dppϕn, ϕqeC�1�

?
2
h

	2

¥ 1
2

*
,

and, the Markov inequality yields together with Corollary 2.1.7

P pAch,nq ¤ n�
1
2 e
C
�

1�
?

2
h

	2

Op1q À n�
1
2 e

4C
h2 � e�

1
2

logn� 4C
h2 , n P N. (2.47)

A substitution with hn � log logn?
logn

yields

�1
2

log n� 4C
h2
n

� �1
2

log n� 4C
log n

plog log nq2 Ñ �8, nÑ8,

so that (2.47) implies P pAcnq Ñ 0, nÑ8.

step 2. Next, we consider the difference

B4pΨn

Bu4
k

� B4Ψ
Bu4

k

, k � 1, 2, n P N.

(2.42) and (2.43) consist of respectively five terms. Subtracting (2.42) from (2.43), results in five
difference terms. We rearrange for k � 1, 2 these terms in (2.48) - (2.52) for our needs:

Blϕ
Bulk

ϕ�1 � Bl pϕn
Bulk

pϕ�1
n , l � 1, 2, 3, 4 (2.48)

� Blpϕ� pϕnq
Bulk

pϕ�1
n � Blϕ

Bulk
ϕ�1ppϕn � ϕqpϕ�1

n ,

Bϕ
Buk

B3ϕ

Bu3
k

ϕ�2 � B pϕn
Buk

B3 pϕn
Bu3

k

pϕ�2
n (2.49)

� Bϕ
Bukϕ

�1

�B3ϕ

Bu3
k

ϕ�1 � B3 pϕn
Bu3

k

pϕ�1
n



� B3 pϕn

Bu3
k

pϕ�1
n

� Bϕ
Bukϕ

�1 � pϕn
Buk pϕ�1

n



,

�B2ϕ

Bu2
k

ϕ�1


2

�
�B2 pϕn
Bu2

k

pϕ�1
n


2

(2.50)

�
�B2ϕ

Bu2
k

ϕ�1 � B2 pϕn
Bu2

k

pϕ�1
n


�B2ϕ

Bu2
k

ϕ�1 � B2 pϕn
Bu2

k

pϕ�1
n



,

� Bϕ
Buk


2 B2ϕ

Bu2
k

ϕ�3 �
�B pϕn
Buk


2 B2 pϕn
Bu2

k

pϕ�3
n (2.51)

�
� Bϕ
Buk


2

ϕ�2

�B2ϕ

Bu2
k

ϕ�1 � B2 pϕn
Bu2

k

pϕ�1
n



� B2 pϕn

Bu2
k

pϕ�1
n

�� Bϕ
Bukϕ

�1


2

�
�B pϕn
Buk pϕ�1

n


2
�
,
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� Bϕ
Bukϕ

�1


4

�
�B pϕn
Buk pϕ�1

n


4

(2.52)

�
�� Bϕ

Bukϕ
�1


2

�
�B pϕn
Buk pϕ�1

n


2
��� Bϕ

Bukϕ
�1


2

�
�B pϕn
Buk pϕ�1

n


2
�
.

Next, after some straightforward calculations, observe

Bϕ
Bukϕ

�1 � BΨ
Buk , (2.53)

B2ϕ

Bu2
k

ϕ�1 �
� BΨ
Buk


2

� B2Ψ
Bu2

k

, (2.54)

B3ϕ

Bu3
k

ϕ�1 �
� BΨ
Buk


3

� B3Ψ
Bu3

k

� 3
BΨ
Buk

B2Ψ
Bu2

k

, (2.55)

B4ϕ

Bu4
k

ϕ�1 �
� BΨ
Buk


4

� 3
�B2Ψ
Bu2

k


2

� 6
� BΨ
Buk


2 B2Ψ
Bu2

k

� 4
BΨ
Buk

B3Ψ
Bu3

k

� B4Ψ
Bu4

k

. (2.56)

In what follows, we estimate the derivatives of Ψ:

〈u,Σu〉 � σ11u
2
1 � 2σ12u1u2 � σ22u

2
2, u P R2

and the representation (2.40) yields

BΨ
Bu1

puq � �1
2
p2u1σ11 � 2u2σ12q � iα1 �

»
R2

�
ix1e

i〈u,x〉 � ix1

	
νpdxq

which yields together with ���ei〈u,x〉 � 1
��� ¤ | 〈u, x〉 | ¤ |u||x|, u, x P R2

and
³
R2 |x|2 νpdxq   8 the inequality���� BΨ

Bu1

���� puq À 1� |u|, u P R2

where the constant in the À sign depends only on the Lévy triplet pΣ, ν, αq. Similarly we get����B2Ψ
Bu2

1

���� puq � �����σ11 �
»
R2

x2
1e
i〈u,x〉 νpdxq

���� ¤ σ11 �
»
R2

x2
1 νpdxq   8

and ����B3Ψ
Bu3

1

���� puq �
�����i »

R2

x3
1e
i〈u,x〉 νpdxq

���� ¤ »
R2

|x1|3 νpdxq   8,����B4Ψ
Bu4

1

���� puq �
����»
R2

x4
1e
i〈u,x〉 νpdxq

���� ¤ »
R2

x4
1 νpdxq   8.
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The derivatives Bl
Bul2

, l � 1, 2, 3, 4 yield analogous estimates. Hence, (2.53) - (2.56) imply

���� BlϕBulkϕ�1

���� puq À p1� |u|ql, u P R2, l � 1, 2, 3, 4. (2.57)

Additionally (2.57) yields together with (2.48) on An����Bl pϕnBulk
pϕ�1
n

���� puq ¤
���� BlϕBulkϕ�1

���� puq � ���� BlϕBulkϕ�1 � Bl pϕn
Bulk

pϕ�1
n

���� puq (2.58)

À
�

1� dpϕ, pϕnq
wpuq|ϕpuq|



p1� |u|ql, u P

�
� 1
hn
,

1
hn

�2

, l � 1, 2, 3, 4.

Hence, (2.42), (2.43) and (2.48) - (2.52) and (2.57), (2.58) finally yield on An�����B4pΨn

Bu4
k

� B4Ψ
Bu4

k

����� puq À 4̧

j�1

�
dpϕ, pϕnq
wpuq|ϕpuq|


j
p1� |u|q4, u P

�
� 1
hn
,

1
hn

�2

.

step 3. Next, observe with Sato [38][Proposition 2.5 (xii)]

F�1

��B4Ψ
Bu4

1

� B4Ψ
Bu4

2



FKhn



λ2 � pKhnλ

2q � ppx4
1 � x4

2qνq.

Using the Plancherel identity, we get the following essential estimates:

1An

�����
»
R2

ga,bpxqF�1

��
B4pΨn

Bu4
1

� B4pΨn

Bu4
2

�
FKhn

�
pxqλ2pdxq

�
»
R2

ga,bpxqF�1

��B4Ψ
Bu4

1

� B4Ψ
Bu4

2



FKhn



pxqλ2pdxq

����
� 1An

1
4π2

�����
»
R2

pFga,bqp�uq
2̧

k�1

B4ppΨn �Ψq
Bu4

k

puqFKhnpuqλ2pduq
�����

À 1An |pa, bq|�2

»
�
� 1
hn
, 1
hn

�2
4̧

j�1

�
dpϕ, pϕnq
wpuq|ϕpuq|


j
p1� |u|q4 λ2pduq. (2.59)

Note that
dpϕ, pϕnq � OP pn�

1
2 q

and
pwpuq|ϕpuq|q�jp1� |u|q4 À eCp1�|u|q

2
, j � 1, 2, 3, 4, u P R2

hold for suitable C ¡ 0, compare (2.46). Hence, (2.59) is not larger than

|pa, bq|�2

»
�
� 1
hn
, 1
hn

�2 eCp1�|u|q
2
λ2pduq �OP pn�

1
2 q

� |pa, bq|�2

» ?
2

hn

0
eCp1�rq

2p1� rq dr �OP pn�
1
2 q � |pa, bq|�2 e

Cp1�rq2

2C

�����
?

2
hn

0

�OP pn�
1
2 q
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� |pa, bq|�2n�
1
2 e

4C

h2
n �OP p1q � |pa, bq|�2e

�
4C

plog lognq2�
1
2

	
logn

OP p1q � |pa, bq|�2OP pnε�
1
2 q

for every ε ¡ 0. Together with Lemma 2.2.7 and

|hn log hn| � � log logn?
log n

plog log log n� 1
2

log lognq À plog log nq2?
log n

this proves this theorem.

The inverting operation

Considering the Lévy copula (2.2), our next goal is to establish an inversion operation. For this
purpose, we first define some function spaces and an inversion operation I on those spaces: Set

pC def� tg : p0,8q Ñ R�, g P C, lim
xÑ8 gpxq � 0u,

Dδ
def� th : p0,8q Ñ R�, h is càdlàg, decreasing and lim

xÑ8hpxq � δu, δ ¡ 0,

D def�
¤
δ¡0

Dδ

and
I : pC � p0,8q Ñ D

pg, δq ÞÑ pz ÞÑ inftx ¥ δ : infδ¤y¤x gpyq ¤ zuq. (2.60)

Furthermore, let R : p0,8q Ñ p0,8q be a function and pεnq, pδnq be two sequences of positive
numbers, such that

γn
def� Rpδnqεn Ñ 0, εn Ó 0, δn Ó 0, nÑ8

hold. Note that we have
Ipg, δq P Dδ, g P pC, δ ¡ 0.

The next Proposition 2.2.12 investigates the behaviour of an approximation error under the
inversion operation I. Note that I is the pseudo inverse with the starting position δ ¡ 0, cf.
(2.60). The introduction of such an offset δ ¡ 0 is required for the subsequent treatment of the
small jumps. Note that we have Λ � 8 (Λ in Proposition 2.2.12) in this section. The case Λ   8
is important for the investigations in the next Section 2.3 of the compound Poisson process case.

Proposition 2.2.12. Let f : p0,8q Ñ p0,Λq, Λ P p0,8s be a C1-bijection with

f 1   0, inf
0 x¤1

|f 1pxq| ¡ 0

and let pfnqn � pC be a family of functions, such that

sup
x¥δn

|fnpxq � fpxq| ¤ γn, n P N

holds. Fix any 0   a   b   Λ. Then it holds also for each n P N with 2γn   a ^ pΛ � bq and
δn   f�1pb� 2γnq the inequality

sup
a¤z¤b

|Ipfn, δnqpzq � f�1pzq| ¤ 2γn

�
inf

0 x¤f�1pa2 q
|f 1pxq|

��1

.
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Proof. Set
Fnpxq def� inf

δn¤y¤x
fnpyq, hnpzq def� Ipfn, δnqpzq, x ¥ δn, z ¡ 0.

Note that Fn : rδn,8q Ñ R� is a decreasing, continuous function with Fnpxq Ñ 0, xÑ8 for each
n P N. First, we show the inequality

sup
x¥δn

|fpxq � Fnpxq| ¤ γn, n P N. (2.61)

Note for this
Fnpxq � fnpcxq ¤ fnpxq, δn ¤ cx ¤ x

and

fpxq � Fnpxq � fpxq � fnpcxq ¤ fpcxq � fnpcxq ¤ γn,

fpxq � Fnpxq ¥ fpxq � fnpxq ¥ �γn

for all n P N. Next, fix any 0   a ¤ z ¤ b   Λ and n P N with 2γn   a^pΛ�bq, δn   f�1pb�2γnq.
Set

y
def� z � γn ¡ a

2
, y1 def� z � 2γn   Λ

and
x

def� f�1pyq ¥ x1 def� f�1py1q ¥ f�1pb� 2γnq ¥ δn.

(2.61) implies Fnpxq ¤ fpxq � γn which yields, since hn is the pseudo-inverse of Fn,

hnpzq � hnpfpxq � γnq ¤ x � f�1pz � γnq.

Equally, we have Fnpx1q ¥ fpx1q � γn ¡ fpx1q � 2γn which implies

hnpzq � hnpfpx1q � 2γnq ¥ x1 � f�1pz � 2γnq,

so that, altogether we have

f�1pz � 2γnq ¤ hnpzq ¤ f�1pz � γnq.

Using the mean value theorem, this yields, on the one hand,

hnpzq � f�1pzq ¤ f�1pz � γnq � f�1pzq � �γnpf�1q1pξ1q

and on the other hand

f�1pzq � hnpzq ¤ f�1pzq � f�1pz � 2γnq � �2γnpf�1q1pξ2q

with
ξ1, ξ2 P rz � γn, z � 2γns �

�a
2
,Λ

	
.

Thus, we finally obtain

|hnpzq � f�1pzq| ¤ 2γn sup
a
2
¤y Λ

|pf�1q1pyq| � 2γn

�
inf

0 x¤f�1pa2 q
|f 1pxq|

��1

.
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Next, we state a stochastic version of Proposition 2.2.12, which is adapted to our later needs.

Corollary 2.2.13. Given a probability space pΩ,F , P q and a family of functions

pZn : Ω Ñ pC, n P N,

such that ω ÞÑ r pZnpωqspxq is F-measurable for every n P N, x ¡ 0 and such that

sup
x¥δn

| pZnpxq � fpxq| � OP pγnq, nÑ8 (2.62)

holds with a function f as in Proposition 2.2.12. Then it also holds for any fixed 0   a   b   Λ

sup
a¤z¤b

|Ip pZn, δnqpzq � f�1pzq| � OP pγnq, nÑ8.

Proof. Write pγn �XnqnPN instead of OP pγnq in (2.62), i.e. pXnqn is a family of random variables,
which are uniformly bounded in probability. Set, furthermore,

An
def�  

2γnXn   a^ pΛ� bq, δn   f�1pb� 2γnXnq
(
, n P N.

Then, Proposition 2.2.12 states that we have for ω P An

sup
a¤z¤b

|Ip pZnpωq, δnqpzq � f�1pzq| ¤ 2γnXnpωq
�

inf
0 x¤f�1pa2 q

|f 1pxq|
��1

À γnXnpωq.

This proves this Corollary since P pAcnq Ñ 0 for nÑ8.

Denote with <�pcq def� <pcq _ 0 the positive real part of a complex number c P C. Finally, we
combine the statements developed so far and get the following main result:

Theorem 2.2.14. Let the Assumptions 2.2.1 and 2.2.3 hold and 0   a   b   8 be two fixed
numbers. Set δn

def� plog log nq�1 and

pU�1
1,n

def� Ip<� pNnp�, 0q, δnq, pU�1
2,n

def� Ip<� pNnp0, �q, δnq, n P N.

Then, it holds with the plug-in estimator

pCnpu, vq � pNnppU�1
1,npuq, pU�1

2,npvqq, u, v ¡ 0

the asymptotic

sup
a¤u,v¤b

|Cpu, vq � pCnpu, vq| � OPΣ,ν,α

�plog log nq9?
log n



, nÑ8.

Proof. First, note that we can replace pNn by <� pNn and (2.45) is still valid. This is due to the fact
that we have for all c P C and r P R� the inequality

|c� r| �
a
p<pc� rqq2 � p=pc� rqq2 ¥ |<pc� rq| � |<pcq � r| ¥ |<�pcq � r|.
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Observe, furthermore,
<� pNnp�, 0q, <� pNnp0, �q P pC, n P N.

Set

εn
def� plog log nq2?

log n
, Rpxq def� x�4, x ¡ 0

and note that

γn � Rpδnqεn � plog log nq6?
log n

Ñ 0, nÑ8.

Theorem 2.2.11 states

sup
x¥δn

|<� pNnpx, 0q � U1pxq| � OPΣ,ν,α
pγnq, nÑ8,

so that Corollary 2.2.13 implies with Λ def� 8, pZn def� <� pNnp�, 0q and Assumption 2.2.3 (iv)

sup
a¤u¤b

|pU�1
1,npuq � U�1

1 puq| � OPΣ,ν,α
pγnq, nÑ8. (2.63)

Of course, exactly the same considerations yield the U2 analogue of (2.63). Next, write

un
def� U1 � pU�1

1,npuq, vn
def� U2 � pU�1

2,npvq, a ¤ u, v ¤ b

and note that the Lévy-copula C is Lipschitz continuous, cf. Kallsen, Tankov [21][Lemma 3.2].
More precise, we have

|Cpu, vq � Cpu1, v1q| ¤ |u� u1| � |v � v1|, u, u1, v, v1 ¡ 0. (2.64)

Together with the mean value theorem and pU�1
1,n P Dδn we have for a ¤ u ¤ b

|u� un| � |U1 � U�1
1 puq � U1 � pU�1

1,npuq| � |U�1
1 puq � pU�1

1,npuq||U 1
1pxq|, x P rU�1

1 pbq ^ δn,8q.

Thus, (2.63) yields together with Assumption 2.2.3 (iv)

sup
a¤u¤b

|u� un| � δ�3
n OPΣ,ν,α

pγnq, nÑ8. (2.65)

Hence, (2.64) and (2.65) imply

sup
a¤u,v¤b

|Cpu, vq � Cpun, vnq| ¤ sup
a¤u¤b

|u� un| � sup
a¤v¤b

|v � vn| � δ�3
n OPΣ,ν,α

pγnq, nÑ8. (2.66)

Theorem 2.2.11 yields because of pU�1
j,n P Dδn , j � 1, 2 the asymptotic

sup
a¤u,v¤b

|Cpun, vnq � pCnpu, vq| � sup
a¤u,v¤b

|UppU�1
1,npuq, pU�1

2,npvqq � pNnppU�1
1,npuq, pU�1

2,npvqq|

� OPΣ,ν,α
pγnq, nÑ8. (2.67)

Finally, (2.66) and (2.67) prove this theorem.
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2.3 The Compound Poisson Process Case

Note that we do not use the special shape of the weight function

wpuq � plogpe� |u|qq� 1
2
�δ, δ ¡ 0, u P R2

in the previous Section 2.2. Neither do we use the convergence rate n�
1
2 obtained in Theorem 2.1.6.

In fact, the proofs in the previous section also work if we only had

e�Cp1�|u|q
2 À wpuq, u P R2

for some constant C ¡ 0 and, concerning Theorem 2.1.6,

n�
1
2
�ε sup

n¥1
EΣ,ν,α

���� BlBulkAnpuq
����
L8pwq

  8, k � 1, 2, l � 0, 1, 2, 3, 4

for some ε ¡ 0. This is due to the fast decay behaviour of ϕΣ,ν,α if Σ � 0, cf. Lemma 2.2.8.
Therefore we cannot derive any benefit from these stronger results. However, if ϕΣ,ν,α decays
more slowly, we can benefit from these stronger results as we shall demonstrate in the case of a
compound Poisson process with drift. This is, in some sense, the complementary case of the one
we investigated in the previous section.

Assumptions 2.3.1. We state here the assumptions concerning ν in the compound Poisson case:

(i) The corresponding Lévy process is a compound Poisson process with intensity 0   Λ   8 and
has only positive jumps, i.e.

0   Λ def� νpR2q � νpR2
�q   8,

(ii) Dγ ¡ 0 :
³ |x|8�γ νpdxq   8, i.e. finite 8+γ-th moment,

(iii) Fppx4
1 � x4

2qνqpuq À p1� |u1|q�1p1� |u2|q�1, u P R2,

(iv) Uk : p0,8q Ñ p0,Λq is a C1-bijection with U 1
k   0 and

inf
0 xk¤1

|U 1
kpxkq| ¡ 0, sup

xk¡0
p1^ xkq|U 1

kpxkq|   8, k � 1, 2.

Proposition 2.3.2. Let f : R2� Ñ R� be a continuous function with the properties

(i) fpxq ¡ 0, x P pt0u �R��q � pR�� � t0uq,

(ii) fpxq À |x|2plog |x|q�2, x P R2� : |x| ¤ 1
2 ,

(iii) fpxq À p1� |x|q�p6�εq, x P R2�

for some ε ¡ 0. Then
νpdxq def� 1Rpxqpx4

1 � x4
2q�1fpxqλ2pdxq

is a Lévy measure and fulfills the Assumptions 2.3.1 (i), (ii) and (iv).

Proof. We only highlight the deviations from the proof in Proposition 2.2.5:
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(i) We have

0   Λ � νpR2
�q À

»
R2
�
|x|�4fpxqλ2pdxq À

» 1
2

0
r�4r2plog rq�2r dr �

» 8

1
2

r�4r dr   8.

(iv) Observe first
rx1,8q �R� Ò R�

� �R�, x1 Ó 0,

so that we obtain

U1px1q � νprx1,8q �R�q Ñ νpR�
� �R�q � νpR2

�q � Λ.

This yields that U1 : p0,8q Ñ p0,Λq is a surjection. Compare for this the argumentation in
Proposition 2.2.5. Finally, note that it holds for x1 ¡ 0

|U 1
1px1q| �

» 8

0
px4

1 � y4
2q�1fpx1, y2q dy2 À

» 1

0
px1 � y2q�2 dy2 �

» 8

1
y�4

2 dy2 � 1
x1

� 1
x1 � 1

� 1
3

which implies
sup
x1¡0

p1^ x1q|U 1
1px1q|   8.

Corollary 2.3.3. It exists a Lévy measure ν0 that fulfills the Assumptions 2.3.1 with the property»
R2

|x|�εν0pdxq � 8

for all ε ¡ 0.

Proof. We imitate the proof of step 2 in Corollary 2.2.6. For this purpose, set

f0pxq def� ψprqplog rq�2 � p1� φprqqe�r, r
def� |x|, x P R

and
ν0pdxq def� 1Rpxqpx4

1 � x4
2q�1f0pxqλ2pdxq

with φ as in the proof of Corollary 2.2.6 and

ψpxq def� |x|2φpxq � r2φprq, x P R.

Then Assumptions 2.3.1 (i), (ii) and (iv) are fulfilled because of Proposition 2.3.2. Furthermore,
we have »

R2

|x|�ε ν0pdxq ¥
» 1

2

0
r�εr�4r2plog rq�2r dr Á

» 1
2

0
r�1� ε

2 dr � 8

for all ε ¡ 0. Concerning Assumption 2.3.1 (iii), note that it holds for r ¥ 0

ψ1prq � 2rφprq � r2φ1prq,
ψ2prq � 2φprq � 4rφ1prq � r2φ2prq,
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i.e. }ψ}8   8, }ψ1}8   8 and }ψ2}8   8. The remaining proof works exactly as step 2 in the
proof of Corollary 2.2.6.

Note that Assumption 2.3.1 (iv) implies that the one-dimensional compound Poisson coordinate
processes also have the intensity Λ. Furthermore, we have the representation

ϕν,αpuq � exp
�
i 〈u, α〉�

»
R2

pei〈u,x〉 � 1q νpdxq


, u P R2

with a finite measure ν and α P R2. Lemma 2.2.8 now turns into the following statement:

Lemma 2.3.4. Given a Lévy triplet pΣ, ν, αq with Σ � 0 and νpR2q   8. Then it holds

inf
uPR2

|ϕν,αpuq| ¡ 0.

Proof. We have

|ϕν,αpuq| �
����exp

�»
R2

�
ei〈u,x〉 � 1

	
νpdxq


���� ¥ expp�2νpR2qq ¡ 0.

Using this, we can prove the following theorem with the same technique as Theorem 2.2.11. Set
hn

def� n�
1
2 .

Theorem 2.3.5. It holds under the Assumptions 2.2.1 and 2.3.1 (i)-(iii) the asymptotic

sup
pa,bqPR

|pa, bq|2 ^ |pa, bq|4|νpra,8q � rb,8qq � pNnpa, bq| � OPν,α

�plog nq5?
n



, nÑ8.

Proof. We only note the changes in the proof of Theorem 2.2.11 :

First, we establish

P pAcnq � P pAchn,nq � P

�
Ac1?

n
,n



Ñ 0, nÑ8.

Note

Acn �
"
Du P B 1

hn

:
dppϕn, ϕq

|ϕpuq||wpuq| ¥
1
2

*
�

!
n�

1
2 plogpe�

?
2n

1
2 qq 1

2
�δOP p1q ¥ 1

)
, n P N,

so that n�
1
2 plog nq 1

2
�δ Ñ 0 yields P pAcnq Ñ 0. Note furthermore���� BΨ

Buk

���� puq À 1, u P R2, k � 1, 2,

since »
R2

|xk| νpdxq   8, k � 1, 2, cf. Assumptions 2.3.1 (i), (ii).
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This is why (2.59) can be replaced by

1An

»
�
� 1
hn
, 1
hn

�2plogpe� |u|qq2�4δ|Fga,bp�uq|λ2puqOP pn�
1
2 q

� 1An |pa, bq|�2 _ |pa, bq|�4�
1�

»
�
� 1
hn
, 1
hn

�2plogpe� |u|qq2�4δp1� |u1|q�1p1� |u2|q�1 λ2pduq
�
OP pn�

1
2 q. (2.68)

Set w.l.o.g. δ def� 1
4 . Then, (2.68) is not larger than

1An |pa, bq|�2 _ |pa, bq|�4plog nq3
�» 1

hn

0
p1� xq�1 λ1pdxq

�2

OP pn�
1
2 q

� 1An |pa, bq|�2 _ |pa, bq|�4plog nq5OP pn�
1
2 q.

Again this proves together with Lemma 2.2.7 and |hn log hn| � logn
2
?
n

this theorem.

Note that we are interested in estimating the copula C of pνpR2qq�1ν instead of the Lévy copula
C of ν. Here, we do not need the principle of a Lévy copula because ν has no singularity in the
origin. Nevertheless, we still treat the origin with our technique as a singularity point. This is due
to the fact that we have originally developed this technique for the setting of the previous Section
2.2. However, it is also possible to get some considerable results in case of the compound Poisson
with this technique without much extra effort.

Definition 2.3.6. Let Assumptions 2.2.1 and 2.3.1 hold. Set with the same notation as in Theorem
2.2.14, but δn

def� plog nq�1

V1px1q def� Λ�1νpr0, x1s �R�q, V2px2q def� Λ�1νpR� � r0, x2sq, x1, x2 ¡ 0,pV �1
1,n puq def� pU�1

1,npΛp1� uqq, pV �1
2,n pvq def� pU�1

2,npΛp1� vqq, 0   u, v   1

and

xMnpa, bq def� 1� Λ�1p pNnpa, bq � pNnpa, 0q � pNnp0, bqq, pa, bq P R,pCnpu, vq def� xMnppV �1
1,n puq, pV �1

2,n pvqq, 0   u, v   1.

Let furthermore C denote the unique copula of the probability measure Λ�1ν, i.e.

Cpu, vq �MpV �1
1 puq, V �1

2 pvqq, 0   u, v   1

with

Mpa, bq def� Λ�1νpr0, as � r0, bsq � 1� Λ�1pUpa, bq � Upa, 0q � Up0, bqq, pa, bq P R.

Note that Vk : p0,8q Ñ p0, 1q, k � 1, 2 is a bijection and that its inverse is

V �1
k puq � U�1

k pΛp1� uqq, u P p0, 1q.

Theorem 2.3.7. Set δn
def� plog nq�1 and let the Assumptions 2.2.1 and 2.3.1 hold. Then we have
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for arbitrary and fixed 0   a   b   1 the asymptotic

sup
a¤u,v¤b

|Cpu, vq � pCnpu, vq| � OPν,α

�plog nq10

?
n



, nÑ8.

Proof. We imitate in the following the proof of Theorem 2.2.14. First Theorem 2.3.5 yields with

εn
def� plog nq5?

n
, Rpxq def� x�4, x ¡ 0

and the notation

γn
def� Rpδnqεn � plog nq9?

n
Ñ 0, nÑ8

the asymptotic
sup
x¥δn

|<� pNnpx, 0q � U1pxq| � OPν,αpγnq, nÑ8.

Next Corollary 2.2.13 implies, since the Assumption 2.3.1 (iv) holds

sup
a¤u¤b

|pV �1
1,n puq � V �1

1 puq| � sup
Λp1�bq¤u¤Λp1�aq

|pU�1
1,npuq � U�1

1 puq| � OPν,αpγnq, nÑ8. (2.69)

Again as in Theorem 2.2.14, set

un
def� V1 � pV �1

1,n puq, vn
def� V2 � pV �1

2,n pvq, a ¤ u, v ¤ b

and note that a copula also is Lipschitz continuous, cf. Nelsen [28][Theorem 2.2.4.]. In particular,
we have

|Cpu, vq � Cpu1, v1q| ¤ |u� u1| � |v � v1|, 0   u, u1, v, v1   1. (2.70)

Together with the mean value theorem and

pU�1
1,n P Dδn ùñ inf

0 u 1
pV �1

1,n puq ¥ inf
u¡0

pU�1
1,npuq � δn, (2.71)

we have for a ¤ u ¤ b

|u� un| � |V1 � V �1
1 puq � V1 � pV �1

1,n puq| � |V �1
1 puq � pV �1

1,n puq||V 1
1pxq|, x P rV �1

1 paq ^ δn,8q.

So (2.69) yields together with the Assumption 2.3.1 (iv)

sup
a¤u¤b

|u� un| � δ�1
n OPν,αpγnq, nÑ8. (2.72)

Hence (2.70) and (2.72) imply

sup
a¤u,v¤b

|Cpu, vq � Cpun, vnq| ¤ sup
a¤u¤b

|u� un| � sup
a¤v¤b

|v � vn| � δ�1
n OPν,αpγnq, nÑ8. (2.73)

Furthermore, Theorem 2.3.5 yields together with (2.71)

sup
a¤u,v¤b

|Cpun, vnq � pCnpu, vq| � sup
a¤u,v¤b

|MppV �1
1,n puq, pV �1

2,n pvqq � xMnppV �1
1,n puq, pV �1

2,n pvqq|

� OPν,αpγnq, nÑ8. (2.74)
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Finally, (2.73) and (2.74) prove this theorem.



Chapter 3

Copula relations in compound Poisson

processes (CPP)

Let pNtqt¥0 be a Poisson process on a probability space pΩ,F , P q with intensity λ ¡ 0 and let

Xj : pΩ,Fq Ñ pR,BpRdqq, j P N

be a sequence of i.i.d. random variables, such that pXjqjPN and pNtqt¥0 are independent. Set

F
def� PX1 and

Yt
def�

Nţ

j�1

Xj , t ¥ 0. (3.1)

Then Y is a Lévy process with Lévy triplet pΣ, ν, αq � p0, λF, 0q, i.e. a compound Poisson process
(CPP). In Chapter 2, Section 3, we constructed for d � 2 an estimator pCn for the jump distribution
F was based on the n�1 low frequency observations pYtppωqqt�0,1,...,n, where pω denotes our observed
path. Our approach in Chapter 2 based on the Lévy triplet estimation techniques by Neumann,
Reiß [29] and further techniques motivated by Nickl, Reiß [30]. In the current Chapter 3, we
explicitly treat compound Poisson processes (CPP), i.e. pΣ, ν, αq � p0, ν, 0q, λ � νpRdq   8. In
this case, the paper of Buchmann, Grübel [7] also offers a possibility of estimating the Lévy triplet
under the same low frequency observation scheme for d � 1. The techniques in [7] do not, in
contrast to [29, 30], use any Fourier inversion operations, but are based on a direct deconvolution
approach. To get more acquainted with their approach, we quote Lemma 7 in [7]:

Lemma 7 of Buchmann, Grübel [7]. Let F and G be probability distributions on R� with³
p0,8q e

�τy Gpdyq   e�λ for some λ, τ ¡ 0 and

G
def� Ψpλ, F q def� e�λ

8̧

j�0

λj

j!
F �j .

Then it holds

F � Φpλ,Gq def�
8̧

j�1

p�1qj�1eλj

λj
G�j .

The convergence of the right-hand sum holds in some suitable Banach space Dpτq introduced
in detail in Buchmann, Grübel [7].

Note that (3.1) implies the relation P Y1 � Ψpλ, F q. Under this point of view, Φ in the quoted

93
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Lemma 7 regains the jump distribution F out of Ψpλ, F q. Schicks [39] generalizes the paper of
Buchmann and Grübel [7] to the multidimensional case and estimates the copula CF of the jump
distribution F with this approach. As before, everything in this chapter is stated in the two
dimensional case d � 2 which again is only due to a simpler notation.

Given the assumption that the intensity λ ¡ 0 is known, Schicks proposes in [39] for a jump
distribution F with no negative jumps, i.e. F pr0,8q2q � 1, the following estimator for the copula
CF : pCBGn pu, vq def� Φrλ,GnpG�1

1,n � Eλ, G�1
2,n � Eλqspu, vq, 0 ¤ u, v ¤ 1, n P N, (3.2)

where the index BG stands for Buchmann, Grübel. Note that Φ in (3.2) is applied to a two di-
mensional distribution. It can be shown in a straightforward consideration that a multidimensional
analogue of Lemma 7 also holds, cf. Schicks [39]. Nevertheless, it is unnecessary to indicate this in
our notation, i.e. we again simply write Φ. We proceed in the same way with Ψ. Further, we use
the notations

Gj,n � 1
n

ņ

k�1

1r0,xspYj,k � Yj,k�1q, x ¥ 0, j � 1, 2,

Gnpx, yq � 1
n

ņ

k�1

1r0,xs�r0,yspYk � Yk�1q, x, y ¥ 0,

Eλ � Ψpλ,U r0, 1sq,

where Yj,k, j � 1, 2 denotes the coordinates of Yk and U r0, 1s denotes the uniform distribution on
r0, 1s. Finally, G�1

j,n, j � 1, 2 denote the respective pseudo inverse. (3.2) implies that it holds in the
limit nÑ8 the identity

CF � Φpλ,CGpEλ, Eλqq ðñ Ψpλ,CF q � CGpEλ, Eλq,

if pCBGn is close to CF in some sense. This is equivalent to

CΨpλ,CF q � CΨpλ,F q. (3.3)

Thus, the estimator in (3.2) would only be correct under this heuristic point of view, if (3.3) were
true. For a better point of view, (3.3) is re-formulated by using the underlying compound Poisson
process: Let

Yt �
Nţ

j�1

Xj , Bt �
Nţ

j�1

Aj

be two compound Poisson processes. Then (3.3) is true if, and only if,

CX1 � CA1 ùñ CY1 � CB1

holds. As we shall see from of the results in this chapter, (3.3) is in general false.

Nevertheless, this provides an interesting starting point to investigate the correlation of the
dependence structure (via copulas) between the components of pYtq and the dependence structure
of the underlying jump distribution, i.e. CX1 . Concerning this, we prove some asymptotic results.
This chapter is divided into three sections:

Section 1 simply states some useful definitions for our needs. If F is a two dimensional distribu-
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tion with continuous margins, i.e. F PMc, we denote with T F its unique copula, cf. Proposition
3.1.1. Note furthermore that we use, in this chapter, the notation C for the set of all copulas and
not for the set of all continuous functions as in Chapter 2.

In Section 2, we consider the copula of a compound Poisson process Y under the asymptotic
λtÑ8, i.e. we consider the limit behaviour of

T P Yt � T Ψpλt, PX1q, λtÑ8. (3.4)

Obviously, (3.4) implies that we can fix w.l.o.g. t def� 1 and consider only the intensity limit λÑ8.
In this context, Theorem 3.2.5 yields the convergence

T Ψpλ, F q Ñ T Np0,Σq, λÑ8

which is uniform on r0, 1s2. Here, Σ P R2�2 denotes a positive definite matrix defined in Theorem
3.2.5. Hence, it follows that the copula of a CPP uniformly converges under this asymptotic to
the Gaussian copula T Np0,Σq. To distinguish between the Gaussian limit copulas, we have to
investigate whether T Np0,Σq � T Np0,Σ1q holds for two positive definite matrices Σ,Σ1 P R2�2.
This is done in Proposition 3.2.4: With the notations in Section 1 the entity

ρpPX1q � ρpF q �
³
xy dF px, yqb³

x2 dF px, yq ³ y2 dF px, yq

determines the limit copula of the CPP with jump distribution F � PX1 . Using this asymptotic
approach, the statement of Corollary 3.2.6 implies that (3.3) is in general not true, compare Remark
3.2.7.

Finally, in Section 3, we analyse the resulting limit copulas of all compound Poisson processes
in a certain way. For this purpose, we investigate the map F ÞÑ ρpF q. First, note that Cauchy
Schwarz yields for every F the inequalities �1 ¤ ρpF q ¤ 1. Note that ρ can be geometrically
interpreted as the cosinus of the two coordinates of X1 in the Hilbert space L2pΩ,F , P q. The first
interesting question is whether

ρpCq ?�ρpMc
�q � p0, 1s

holds where Mc� denotes all two dimensional distributions F with F pr0,8q2q � 1 and continuous
margins. To say it in prose: The question is, whether the set of jump distributions which consists
of the set of copulas C, can generate every limit copula, which belongs to a CPP with positive
jumps. Proposition 3.3.1 states that this is not the case because it holds

ρpCq �
�

1
2
, 1
�
.

Thus, from the above geometric point of view, copulas always span an angle between 0 and 60
degrees. Additionally, Example 3.3.2 states that all limit copulas that are reachable by a copula
jump distribution are even obtained by a Clayton copula, i.e.

ρptCθ : θ P r�1,8qzt0uu Y tΠu Y tMuq �
�

1
2
, 1
�
,

see Section 1 for the notation. Finally, Example 3.3.3 provides the answer to the question of how
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to obtain the remaining limit copulas which belong to ρ P �
0, 1

2

�
. In this example, we describe a

constructive procedure how to construct such jump distributions: Fix any 0   ε   1. Simulate
two independent U r0, 1s distributed random variables U and V . If |U � V | ¥ ε, make the jump
pU, V q P R2. Else repeat this procedure until the difference between U and V is not less that ε,
and make afterwards the jump pU, V q P R2. All necessary repetitions are performed independently
from each other. Then, if ε runs through the interval p0, 1q, we get a set of corresponding ρ values
that includes

�
0, 1

2

�
. Note that the resulting jumps of the above procedure are all positive.

3.1 Basic definitions

We denote with M the set of all probability measures on pR2,B2q. Here B2 are the Borel sets of
R2. Furthermore write

F PMc : ðñ F PM and F ptxu �Rq � F pR� txuq � 0, x P R,

i.e. the case that the margins of F are both continuous. If we have even

F pr0, xs �Rq � F pR� r0, xsq � x, 0 ¤ x ¤ 1,

we write F P C and call it a copula. Hence, we have defined a further subclass and have altogether
the inclusions

C �Mc �M.

Define next
M�

def�  
F PM : F

�pR2
�qc

� � 0
(
, Mc

�
def� M� XMc

and note C �Mc�.

For a more convenient notation, we do not distinguish between a probability measure and its
distribution function, e.g. we shall write without confusion

F pp�8, xs � p�8, ysq � F px, yq, x, y P R, F PM.

The definition of the map T in the following proposition is crucial for our purpose.

Proposition 3.1.1. There exists a unique map

T : Mc Ñ C

with the property
F px, yq � pT F qpF1pxq, F2pyqq, x, y P R.

Here, Fk, k � 1, 2 denotes the k-th marginal distribution of F PMc.

Proof. This is a consequence of Theorem 2.3.3. (Sklar) in Nelsen [28].

T is a map that transforms a probability measure in its copula. We require the margins to be
continuous in order to get a unique map. Note that of course T|C � id|C . We shall deal with the
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following concrete copulas. Let 0 ¤ u, v ¤ 1.

Πpu, vq � uv independence copula,
W pu, vq � maxpu� v � 1, 0q Fréchet-Hoeffding lower bound,
Mpu, vq � minpu, vq Fréchet-Hoeffding upper bound,

Cθpu, vq �
!�

maxtu�θ � v�θ � 1, 0u�� 1
θ

)
θPr�1,8qzt0u

family of Clayton copulas.

Furthermore, we define a function ρ via

ρpF q �
³
xy dF px, yqb³

x2 dF px, yq³ y2 dF px, yq

on the domain of all F P Mc which possess square integrable margins. We further write as in
Buchmann and Grübel [7]

Ψpλ, F q � e�λ
8̧

k�0

λk

k!
F �k, F PM.

3.2 Asymptotic results

Lemma 3.2.1. Given F, G PMc and λ ¡ 0. Then F �G PMc and Ψpλ, F q PMc holds.

Proof. Fix any r P R. Then, Fubinis theorem yields

pF �Gqjptruq � pFj bGjqptpx, yq P R2 : x� y � ruq, j � 1, 2

�
»
R

»
R

1tr�yupxq dFjpxq dGjpyq

�
»
R

Fjptr � yuq dGjpyq
� 0.

In order to prove the second assertion note that we have

Ψpλ, F qjptruq �
�
e�λ

8̧

k�0

λk

k!
F �k

�
j

ptruq, j � 1, 2

� e�λ
8̧

k�0

λk

k!
pF �kqjptruq

� 0

where the last expression equals zero because of what we have proven at the beginning.

Proposition 3.2.2. Let pFnqnPN0 �Mc and

Fn
dÑ F0, nÑ8.

Then we have
sup

u,v Pr0,1s
|pT Fnqpu, vq � pT F0qpu, vq| Ñ 0, nÑ8. (3.5)



98 CHAPTER 3. COPULA RELATIONS IN COMPOUND POISSON PROCESSES (CPP)

Proof. Set Cn
def� T Fn and let F jn, j � 1, 2 denote the two marginal distributions of Fn. Fix

pu, vq P p0, 1q2. Then, there exist x, y P R with

F 1
0 pxq � u, F 2

0 pyq � v.

We have
F0px, yq � C0pF 1

0 pxq, F 2
0 pyqq � C0pu, vq.

Since, with the margins of F0, F0 itself is also continuous, the assumption Fn
dÑ F0 yields

CnpF 1
npxq, F 2

npyqq � Fnpx, yq Ñ F0px, yq � C0pu, vq, nÑ8. (3.6)

Next, it holds

|Cnpu, vq � CnpF 1
npxq, F 2

npyqq| ¤ |u� F 1
npxq| � |v � F 2

npyq| Ñ 0, nÑ8 (3.7)

because every copula is Lipschitz continuous, cf. Nelsen [28][Theorem 2.2.4]. The latter convergence
to zero results from F jn

dÑ F j0 , j � 1, 2 which is a direct consequence of the Cramér-Wold Theorem.
The pointwise convergence in (3.5) follows from (3.6) and (3.7).

For the uniform convergence, fix ε ¡ 0 and choose any m ¡ 1
ε , m P N. Then, we have for all

0 ¤ u, v ¤ 1 and

um
def� tumu

m
, vm

def� tvmu

m

|Cnpu, vq � Cpu, vq| ¤ |Cnpu, vq � Cnpum, vmq| � |Cnpum, vmq � Cpum, vmq|
�|Cpum, vmq � Cpu, vq|

¤ 4
m
� max

0¤j,k¤m

����Cn� j

m
,
k

m



� C

�
j

m
,
k

m


����
¤ 5ε

for all n P N large enough.

Observe also the paper of Sempi [40] for further results in this area.

Remark 3.2.3. Let Σ P R2�2 be a positive-semidefinite matrix. Then, we obviously have

Np0,Σq PMc ðñ σ11σ22 ¡ 0.

Assume this is the case, i.e. σ11σ22 ¡ 0. Then

(i) Σ is strictly positive definite, iff |σ12|?
σ11σ22

  1.

(ii) T Np0,Σq �W , iff σ12?
σ11σ22

� �1.

(iii) T Np0,Σq �M , iff σ12?
σ11σ22

� 1.

Proposition 3.2.4. Let Σ, Σ1 P R2�2 be two positive-definite matrices with σ11σ22 ¡ 0. Then we
have

T Np0,Σq � T Np0,Σ1q ðñ σ12?
σ11σ22

� σ112a
σ111σ

1
22

. (3.8)
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Proof. First, we can assume because of the previous Remark 3.2.3 w.l.o.g. that Σ and Σ1 are strictly
positive definite. We have

T Np0,Σqpu, vq � ΦΣpφ�1
σ11
puq, φ�1

σ22
pvqq, u, v P r0, 1s

where φΣ resp. φσjj denotes the cumulative distribution function of Np0,Σq resp. Np0, σjjq, j � 1, 2.

Set further φ def� φ1. Considering the respective densities, the equality of the left hand side in (3.8)
is equivalent to

B2

BuBvT Np0,Σqpu, vq �
B2

BuBvT Np0,Σ
1qpu, vq, u, v P r0, 1s.

Note that

B2

BuBvΦΣpφ�1
σ11
puq, φ�1

σ22
pvqq � Bφ�1

σ11

Bu
Bφ�1

σ22

Bv
B2ΦΣ

BxBy

�
��e

� x2

2σ11
� y2

2σ22

2π
?
σ11σ22

��1

e
� 1

2
px,yqΣ�1pxyq

2πpdet Σq 1
2

�������pxyq�p?σ11φ
�1puq

?
σ22φ

�1pvqq

�
c
σ11σ22

det Σ
e�

1
2
ztpΣ�1�D�2qz

����
z�pxyq

,

with

D
def�

� ?
σ11 0
0

?
σ22

�
.

We have

ztpΣ�1 �D�2qz �
�
D

�
φ�1puq
φ�1pvq



t
pΣ�1 �D�2qD

�
φ�1puq
φ�1pvq



�

�
φ�1puq
φ�1pvq


t
DtpΣ�1 �D�2qD

�
φ�1puq
φ�1pvq



.

Furthermore, note

DtpΣ�1 �D�2qD � DΣ�1D � I � pD�1ΣD�1q�1 � I

� 1
1� a2

�
1 �a
�a 1

�
� I, a

def� σ12?
σ11σ22

and
det Σ
σ11σ22

� 1� a2.

This proves, together with the fact that

p0, 1q2 Ñ R2

pu, vq ÞÑ pφ�1puq, φ�1pvqq

is a surjection, our claim.
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Theorem 3.2.5. Let F PMc be a distribution with square integrable margins, i.e.»
px2 � y2q dF px, yq   8.

Then,
sup

0¤u,v¤1
|T Ψpλ, F q � T Np0,Σq| Ñ 0, λÑ8

with

Σ def�
� ³

x2 dF px, yq ³
xy dF px, yq³

xy dF px, yq ³
y2 dF px, yq

�
.

Proof. Denote with
°Ntpλq
j�1 Xj the corresponding compound Poisson process to Ψpλ, F q, i.e.

PZλ � e�λ
8̧

k�0

λkF �k

k!
� Ψpλ, F q

with

Zλ
def�

N1pλq¸
j�1

Xj , λ ¡ 0.

Next, define a map
ϕλ : R2 Ñ R2

px, yq ÞÑ 1?
λ
ppx, yq � EZλq.

It suffices to show that
ϕλpZλq dÑ Np0,Σq, λÑ8 (3.9)

because Theorem 2.4.3 in Nelsen [28] yields

T PϕλpZλq � T PZλ � T Ψpλ, F q,

so that Proposition 3.2.2 proves this theorem. Note that the latter application of T is allowed
because of Lemma 3.2.1 and the fact that ϕλ is injective.

We verify (3.9) by use of Lévy’s continuity theorem: For a convenient notation, first set

Yv
def� 〈v,X1〉 , v P R2.

Next, observe that we have

FNp0,Σqpvq � exp
�
�v

tΣv
2



� exp

�
�EY

2
v

2



.

Hence, it suffices to establish for every v P R2 the convergence

FrZλspvq Ñ exp
�
�EY

2
v

2



, λÑ8.

Write for this purpose

E pexp pi 〈v, ϕλpZλq〉qq � E

�
exp

�
i?
λ
p〈v, Zλ〉� λE 〈v,X1〉q
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� E

��exp

�� i?
λ

N1pλq¸
j�1

〈v,Xj〉

��expp�i
?
λE 〈v,X1〉q

� exp
�
λpFrYvspλ�

1
2 q � 1q

	
expp�i

?
λEYvq

� exp
�
λ

�
i?
λ
EYv � 1

2λ
EY 2

v � opλ�1q




expp�i
?
λEYvq

� exp
�
�EY

2
v

2
� op1q



, λÑ8.

This proves the desired convergence. Note that we used Sato [38][Theorem 4.3] for the third
equal sign and Chow, Teicher [9][8.4 Theorem 1] for the fourth equal sign.

Corollary 3.2.6. Let F PMc be a distribution with square integrable margins. Then there exists
another such distribution G and a number Λ ¡ 0, such that T F � T G, but

T Ψpλ, F q � T Ψpλ,Gq, λ ¥ Λ.

To be more precise, there exists u0, v0 P p0, 1q such that

lim
λÒ8

|T Ψpλ, F q � T Ψpλ,Gq| pu0, v0q ¡ 0.

Additionally, we can choose G PMc� if F PMc�.

Proof. For any c, d ¥ 0 set G def� δpc,dq � F P Mc and observe G P Mc� if F P Mc�. Note that
because of Theorem 2.4.3 in Nelsen [28] we have T F � T G. Next, let X be a random variable with
X � F , so that pX1 � c,X2 � dq � G. Due to Theorem 3.2.5 together with Proposition 3.2.4, we
only have to show that we can choose c and d such that ρpF q � ρpGq. For this purpose, note that

EpX1 � cq2 � EX2
1 � 2cEX1 � c2

EpX2 � dq2 � EX2
2 � 2dEX2 � d2

EpX1 � cqpX2 � dq � EX1X2 � cEX2 � dEX1 � cd.

Set rρ : R2� Ñ r0, 1s
pc, dq ÞÑ

�
EpX1�cqpX2�dq?
EpX1�cq2EpX2�dq2


2

and observe rρpc, dq � pEX1X2 � cEX2 � dEX1 � cdq2
pEX2

1 � 2cEX1 � c2qpEX2
2 � 2dEX2 � d2q .

Assume pc, dq ÞÑ rρpc, dq is constant. Then

d ÞÑ qρpdq def� lim
cÒ8

rρpc, dq � pEX2 � dq2
EpX2 � dq2

is also constant. This implies
pEX2q2
EX2

2

� qρp0q � lim
dÒ8

qρpdq � 1
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which is only possible if VarX2 � 0, i.e. X2 is a.s. constant which is a contradiction to the assumed
continuity of the second marginal distribution of F .

Remark 3.2.7. (3.3) is equivalent to (12) in [39]. Unfortunately, (12) in [39] does not hold in view
of Corollary 3.2.6. The equality in (12) is an important assumption of the test constructed in that
paper, i.e. (3.2). Nevertheless, we think that the basic ideas in [39] can still yield a useful Lévy
copula estimator. However, the limit distribution will probably depend on the margins of the jump
distribution in contrast to what is claimed in [39].

3.3 Two examples

Consider the introduction of this chapter for the motivation of the following two examples.

Proposition 3.3.1. We have
1
2
¤ ρpCq ¤ 1, C P C.

Proof. The upper bound is a direct consequence of the Cauchy-Schwarz inequality. For the lower
bound suppose pU, V q � C, i.e. in particular U, V � U r0, 1s. We then have to show that

EUV ¥ 1
6
.

Cauchy-Schwarz yields
Ep1� V qU ¤ pEp1� V q2EU2q 1

2 � EU2.

This implies

EUV ¥ EU � EU2 � 1
2
� 1

3
� 1

6
which proves the claim.

Example 3.3.2. Let pCθqθPr�1,8qzt0u be the family of Clayton copulas. Then we have

ρptCθ : θ P r�1,8qzt0uu Y tΠu Y tMuq �
�

1
2
, 1
�
.

Proof. First, we show the continuity of the map

θ ÞÑ ρpCθq, θ P r�1,8qzt0u. (3.10)

For this purpose, choose a sequence pθnqnPN0 � r�1,8qzt0u with θn Ñ θ0. The pointwise conver-
gence

Cθnpu, vq Ñ Cθ0pu, vq, 0 ¤ u, v ¤ 1

yields the convergence of measures Cθn
dÑ Cθ0 . Define the product function

H : r0, 1s2 Ñ r0, 1s, pu, vq ÞÑ uv.

Since H is continuous, we have CHθn
dÑ CHθ0 , which implies

CθnpH ¤ tq Ñ CθpH ¤ tq, θn Ñ θ pt-a.e.q. (3.11)
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Finally we can write����» H dCθn �
»
H dCθ

���� �
����» 1

0
CθnpH ¡ tq dt�

» 1

0
CθpH ¡ tq dt

����
¤

» 1

0
|CθnpH ¤ tq � CθpH ¤ tq| dtÑ 0, nÑ8

where the last convergence holds because of (3.11) and dominated convergence. This proves the
claimed continuity. Next, observe the pointwise convergences

Cθn Ñ Π, θn Ñ 0, θn P r�1,8qzt0u,
Cθn ÑM, θn Ñ8

and C�1 �W , cf. Nelsen [28] (4.2.1). This completes, together with the continuity of (3.10),

ρpW q � 1
2
, ρpΠq � 3

4
, ρpMq � 1

and Proposition 3.3.1, the proof.

Example 3.3.3. Let tUk : k P Nu Y tVk : k P Nu be a family of i.i.d U r0, 1s distributed random
variables and fix any 0   ε   1. Set

Tε
def� inftk P N : |Uk � Vk| ¥ εu.

Then the following two statements are true:

(i) pUTε , VTεq � UpIεq with Iε � tpu, vq P r0, 1s2 : |u� v| ¥ εu.

(ii) Set
ϕ : p0, 1q Ñ r0, 1s

ε ÞÑ ρpP pUTε ,VTε qq.
It holds p0, 3

4q � ϕpp0, 1qq.

Proof. To have an unambiguous notation in this proof, the two dimensional Lebesgue measure is
denoted in the following with l2 instead of λ2.

(i): Let A P B2. Then we have

P ppUTε , VTεq P Aq

�
8̧

k�1

P ppUTε , VTεq P A|Tε � kqP pTε � kq

�
8̧

k�1

P ppUk, Vkq P A|pU1, V1q P Icε , . . . , pUk�1, Vk�1q P Icε , pUk, Vkq P IεqP pTε � kq

�
8̧

k�1

P ppUk, Vkq P A|pUk, Vkq P IεqP pTε � kq

� P ppU1, V1q P AX Iεq
P ppU1, V1q P Iεq .
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Note that P pTε � 8q � 0.
(ii): Obviously l2pIεq � p1� εq2 holds. Next, we obtain

EU2
Tε � pl2pIεqq�1

»
r0,1s2

u2
1Iεpu, vqdl2pu, vq

� p1� εq�2

�» 1

ε

» u�ε
0

u2 dv du�
» 1

ε

» v�ε
0

u2 du dv



� ε2

6
� 1

3

and

EpUTεVTεq � pl2pIεqq�1

»
r0,1s2

uv 1Iεpu, vq dl2pu, vq

� 2p1� εq�2

» 1

ε

» u�ε
0

uv dv du

� p1� εqp3� εq
12

.

A symmetry argument yields EpV 2
Tε
q � EpU2

Tε
q, so that we have

ϕpεq � p1� εqp3� εq
2pε2 � 2q .

Continuity of ϕ and

0 � lim
εÒ1

ϕpεq   lim
εÓ0

ϕpεq � 3
4

proves (ii).



Appendix A

Auxiliary results for Chapter 1

Proposition A.1. Let pHiqiPN be a family of i.i.d. random variables with the property

Dr ¡ 0 : EetH1   8, t P p�r, rq.

Then we have for every N P N

E

��� 1?
n

ņ

i�1

pHi � EH1q
�2N

��Ñ ErNp0,Var H1qs2N , nÑ8, (A.1)

which in turn implies

E

�
1
n

ņ

i�1

Hi � EH1

�2N

� O

�
1
nN



, nÑ8. (A.2)

Proof. First, we establish for all N P N

sup
nPN

E

�
1?
n

ņ

i�1

pHi � EH1q
�2N

  8. (A.3)

Fix for this purpose any t P p0, rq and note that because of

t2N

p2Nq!

�
1?
n

ņ

i�1

pHi � EH1q
�2N

¤ e
t?
n

°n
i�1pHi�EH1q, n,N P N,

it suffices to verify
sup
nPN

E
�
e

t?
n

°n
i�1pHi�EH1q

	
  8.

Further, since
E
�
e

t?
n

°n
i�1pHi�EH1q

	
�

�
E
�
e

t?
n
pH1�EH1q

	�n
, n P N,

it is enough to prove

E
�
e

t?
n
pH1�EH1q

	
¤ 1� C

n
, n P N
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for some constant C ¡ 0. Consider for this

E
�
e

t?
n
pH1�EH1q

	
¤ 1�

8̧

k�2

1
k!

�
t?
n


k
Ep|H1 � EH1|kq

¤ 1� 1
n

8̧

k�2

tk

k!
E|H1 � EH1|kloooooooooooomoooooooooooon

def�C

, n P N

and
C ¤ E

�
et|H1�EH1|

	
¤ et|EH1| �E �

etH1
�� E

�
e�tH1

��   8.
Next, Bauer [5][§21, Exercise 5] implies together with (A.3) the uniform integrability of$&%

�
1?
n

ņ

i�1

pHi � EH1q
�2N

,.-
nPN

. (A.4)

Moreover, the central limit theorem states

1?
n

ņ

i�1

pHi � EH1q dÑ Np0,Var H1q. (A.5)

Finally Billingsley [6][Theorem 3.5.] proves together with the uniform integrability of (A.4) and
the weak convergence (A.5) the claim (A.1).

Corollary A.2. Let pZiqiPN be a family of Np0, 1q i.i.d. random variables and N P N. Then there
is a constant C � CpNq ¡ 0 such that

P

������ 1n
n�1̧

i�0

Z2
i � 1

����� ¥ ε

�
¤ C

ε2NnN
(A.6)

and

P

������ π

2pn� 1q
n�2̧

i�0

|Zi||Zi�1| � 1

����� ¥ ε

�
¤ C

ε2NnN
(A.7)

for every n P N and ε ¡ 0.

Proof. Note that

EetZ
2
1 � 1?

2π

»
R

etx
2
e�

x2

2 dx   8, t   1
2
.

Hence, (A.6) follows from the Markov inequality and Proposition A.1.
To prove (A.7), observe

E|Z1||Z2| � 2
π
, Eet|Z1||Z2| ¤ Ee

t
2
pZ2

1�Z2
2 q �

�
Ee

t
2
Z2

1

	2
  8, t   1 (A.8)

and decompose

π

2pn� 1q
n�2̧

i�0

|Zi||Zi�1| � 1
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� π

2pn� 1q
n�2̧

i�0

�
|Zi||Zi�1| � 2

π




� π

4

�� 2
n� 1

rn
2
s�2¸
i�0

�
|Z2i||Z2i�1| � 2

π



� 2
n� 1

rn
2
s�2¸
i�0

�
|Z2i�1||Z2i�2| � 2

π



(A.9)

� 2
n� 1

|Zn�2||Zn�1|12Npnq � 4
πpn� 1q 12Npnq



.

Once again, (A.7) follows from the Markov inequality and Proposition A.1.

Proposition A.3. Let pZiqiPN be a family of i.i.d. random variables with Zi � Np0, 1q and N P N.
Then we have

E

�
max

1¤i¤n
|Zi|


N
¤ 2N plog nqN2 � 2N !

for all sufficient large n P N. To put a finer point on it, the above inequality holds at least for
n ¥ 55.

Proof. The proof is divided into two steps. The first step derives some elementary inequalities.
Finally, the second step estimates the desired N -th moment of the maximum using the inequalities
in the first step.

step 1. Compilation of some helpful inequalities. First, we note the best-known inequality

1� y ¤ exppyq, y P R . (A.10)

For the opposite direction, an analysis of the extrema of the function

y ÞÑ logp1� yq � y � y2, y ¡ �1

implies

logp1� yq ¥ y � y2, �1
2
  y   8. (A.11)

Further, we have

P pZ1 ¥ tq � 1?
2π

» 8

t
e�

x2

2 dx ¤ 1?
2π

» 8

t

x

t
e�

x2

2
dx � 1?

2π
e�

t2

2

t
, t ¡ 0,

which yields

2P pZ1 ¥ tq ¤
c

2
π

1
t
e�

t2

2 ¤ e�
t2

2 , t ¥ 1. (A.12)

If n ¥ re4s � 55, it follows 2
?

log n ¥ 2
a

log e4 � 4. Hence, t ¥ 2
?

log n obviously implies t2

4 ¥ t.
Due to this, we get for n ¥ 55 the implications

t ¥ 2
a

log n ùñ t2 ¥ 4 log n,
t2

4
¥ t ùñ e

t2

2
� t2

4 ¥ n,
t2

4
¥ t ùñ e

t2

2
�t ¥ n,

so that we have
t ¥ 2

a
log n, n ¥ 55 ùñ 1

n
e�t ¥ e�

t2

2 . (A.13)
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step 2. Estimate of the expected value. We have

E
�

max
1¤i¤n

|Zi|N
� � N

» 8

0
tN�1P

�
max

1¤i¤n
|Zi| ¡ t



dt

� N

» 8

0
tN�1p1� rP p|Z1| ¤ tqsnq dt

� N

» 8

0
tN�1p1� r1� 2P pZ1 ¥ tqsnq dt

pA.12q
¤ N

» 2
?

logn

0
tN�1 dt�N

» 8

2
?

logn
tN�1

�
1�

�
1� e�

t2

2


n

dt

pA.13q
¤ 2N plog nqN2 �N

» 8

2
?

logn
tN�1

�
1�

�
1� e�t

n


n

dt.

With y
def� � e�t

n inequality (A.11) yields

n log
�

1� e�t

n



¥ n

�
�e

�t

n
� e�2t

n2



,

so that �
1� e�t

n


n
¥ e�e

�t� e�2t

n

pA.10q
¥ 1� e�t � e�2t

n
.

This yields, using the Gamma function,

N

» 8

2
?

logn
tN�1

�
1�

�
1� e�t

n


n

dt ¤ N

» 8

0
tN�1

�
e�t � e�2t

n



dt

� N

» 8

0
tN�1e�t dt� N

n2N

» 8

0
tN�1e�t dt

� N

�
1� 1

n2N



pN � 1q!

¤ 2N !

which proves the claim.

Remark A.4. In view of the scaling constants that are needed to make the maximum of i.i.d.
normal distributed random variables converge to the Gumbel distribution, the upper bound in the
above Proposition A.3 seems natural.

Lemma A.5. Fix any 0   c, r   1 and let c be an irrational number. Then there are sequences
pnlq and pklq of natural numbers with the properties

nl Ò 8, 0 ¤ kl   nl

and
kl
nl
� r

2nl
  c   kl

nl
� r

nl
, l ¥ 1. (A.14)

Remark A.6. Note that the statement of Lemma A.5 is wrong if c P Q. To understand this,
assume

c � p

q
P p0, 1q, p, q P N
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and note that (A.14) is equivalent to

qkl � qr

2
  pnl   qkl � qr, l ¥ 1. (A.15)

Next, set

r
def� 1

2q
P p0, 1q

and observe that �
qkl � 1

4
, qkl � 1

2



XN � H

since qkl P N. This is a contradiction to (A.15) because of pnl P N. Nevertheless, we are going to
prove that the lemma holds if c R Q.

Proof of Lemma A.5. Consider the function

g : NÑ r0, 1s, n ÞÑ nc� tncu.

gpNq is a dense subset of r0, 1s. This is due to the irrationality of c and can be proven by the
pigeon-hole principle, c.f. Arnold [2][§24, page 222]. Observe that (A.14) is the same as claiming

nlc� kl P
�r

2
, r
	
, l ¥ 1. (A.16)

Since
�
r
2 , r

� � r0, 1s is open and gpNq is dense in r0, 1s, it follows that

gpNq X
�r

2
, r
	
� r0, 1s

consists of infinite many points. So we can choose a sequence nl Ò 8 of natural numbers such that

gpnlq P
�r

2
, r
	
, l ¥ 1 (A.17)

holds. Finally, we set
0 ¤ kl

def� tnlcu   nl, l ¥ 1

and observe that this choice yields the equivalence of (A.16) and (A.17) which proves this lemma.

Eventually, let us state an easy, but useful lemma.

Lemma A.7. Fix a1, . . . , an, b1, . . . , bn P R. Then, the following inequalities hold:

(i)
minpb1, . . . , bnq ¤ maxpa1 � b1, . . . , an � bnq �maxpa1, . . . , anq ¤ maxpb1, . . . , bnq

(ii)
|maxpa1 � b1, . . . , an � bnq �maxpa1, . . . , anq| ¤ maxp|b1|, . . . , |bn|q

Proof. (i) implies (ii), because

maxpb1, . . . , bnq ¤ maxp|b1|, . . . , |bn|q
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and
minpb1, . . . , bnq � �maxp�b1, . . . ,�bnq ¥ �maxp|b1|, . . . , |bn|q.

We therefore only have to show (i): Consider for this

maxpa1 � b1, . . . , an � bnq ¥ maxpa1 �min
k
bk, . . . , an �min

k
bkq

� maxpa1, . . . , anq �minpb1, . . . , bnq

and

maxpa1 � b1, . . . , an � bnq ¤ maxpmax
k

ak � b1, . . . ,max
k

ak � bnq
� maxpa1, . . . , anq �maxpb1, . . . , bnq.



Appendix B

Auxiliary results for Chapter 2

Proposition B.2 is a generalization of the following Proposition B.1 which can be proven with
standard results from Fourier analysis.

Proposition B.1. Let f : R2 Ñ R be a Schwartz space function. Then it holds

|Ff |puq ¤ 1
|u1u2|

»
R2

���� B2f

Bx1Bx2
pxq

���� λ2pdxq, u P pR�q2. (B.1)

Proof. Due to Rudin [36][Theorem 7.4 (c)], it holds the equation

u1u2pFfqpuq � �F
� B2f

Bx1Bx2



puq, u P R2

which implies

|Ff |puq � 1
|u1u2|

����F � B2f

Bx1Bx2


���� puq ¤ 1
|u1u2|

»
R2

���� B2f

Bx1Bx2
pxq

���� λ2pdxq, u P pR�q2.

The situation is more involved in Proposition B.2 since f does not need to be a Schwartz space
function. Generally, it is not even a continuous function. The claim of Proposition B.2 states that,
in this situation, a similar result as (B.1) also holds. We only have to take the boundaries into
account. Here, we are going to provide, for completeness, an elementary proof of Proposition B.2,
although the technique is straightforward.

Proposition B.2. Let g : R2� Ñ R be a C2-function with

g P L1pR2
�q,

���� BgBxj
���� pxq À p1� |x|q�p1�εq, B2g

Bx1Bx2
P L1pR2

�q, j � 1, 2

for some ε ¡ 0 and define a function f : R2 Ñ R via

fpxq �
#
gpxq, x P pR��q2,
0, else.

(B.2)
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Set

Λg
def� |gp0, 0q| �

»
R�

���� BgBx1

���� px1, 0qλ1pdx1q �
»
R�

���� BgBx2

���� p0, x2qλ1pdx2q �
»
R2
�

���� B2g

Bx1Bx2

���� pxqλ2pdxq.

Then it holds
|Ff |puq ¤ Λg

|u1u2| , u P pR�q2. (B.3)

Remark B.3. Note first that Ff is, of course, independent of the values of f on the negligible set

Np0,0q
def� pt0u �R�q Y pR� � t0uq.

We only choose the representation in (B.2) for a more comfortable approach in the subsequent
proof.

Note furthermore that it holds for every y P R

Ffpuq � ei〈u,y〉Fpfp� � yqqpuq, u P R2.

Hence, our discontinuity set could also have been

Npy1,y2q
def� pty1u � ry2,8qq Y pry1,8q � ty2uq

and the above Proposition B.2 remains true. The choice y � 0 is only due to a simpler notation.

Proof of Proposition B.2. The proof is divided into three steps. In the first step, we approximate
f with a sequence of step functions and prove the L1 convergence of the sequence to the given
function f . The second step calculates the Fourier transforms of those step functions in relation to
the Fourier transform of f . Finally, the third step combines the results of the first two steps and
proves the desired result.

step 1. Set for j, k P Z and n P N

Anj,k
def�

�
j

n
,
j � 1
n



�
�
k

n
,
k � 1
n



.

Next, approximate f by

rn,mpxq def�
m�1̧

j�0

m�1̧

k�0

f

�
j

n
,
k

n



1Anj,k

pxq, x P R2, m P N.

Fix any N P N. If x P p0, N s2 and m
def� N � n, we have

|rn,mpxq � fpxq| �
����f � jn, kn



� fpxq

���� , if x P Anj,k
Ñ 0, nÑ8,

because of ����� jn, kn


� x

���� ¤ ?
2
n

and the continuity of f on p0, N s2. Using the dominated convergence theorem with the constant
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L1pp0, N s2q majorant
sup

xPp0,Ns2
|fpxq| � sup

xPr0,Ns2
|gpxq|   8,

we get rn,N �n Ñ f , nÑ8 in L1pp0, N s2q, i.e.»
r0,Ns2

|rn,N �npxq � fpxq|λ2pdxq Ñ 0, nÑ8.

Set
nN

def� inftl P N :
»
r0,Ns2

|rn,N �npxq � fpxq|λ2pdxq   1
N
, @n ¥ lu

and
rN

def� rnN ,N �nN , N P N.
Then, we have»
R2
�
|rN pxq � fpxq|λ2pdxq �

»
R2
�zr0,Ns2

|fpxq|λ2pdxq �
»
r0,Ns2

|rN pxq � fpxq|λ2pdxq Ñ 0, N Ñ8,

i.e. rN Ñ f in L1pR2�q.

step 2. Write with u � pu1, u2q P R2

Frn,mpuq � � 1
u1u2

m�1̧

j�0

m�1̧

k�0

f

�
j

n
,
k

n


�
ei
j�1
n
u1 � ei

j
n
u1

	�
ei
k�1
n
u2 � ei

k
n
u2

	
and set

fj,k
def� f

�
j

n
,
k

n



, aj

def� ei
j
n
u1 , bk

def� ei
k
n
u2 , j, k P Z.

This implies

Frn,mpuq � � 1
u1u2

m�1̧

j�0

paj�1 � ajq
m�1̧

k�0

fj,kpbk�1 � bkq. (B.4)

Note next that it holds for arbitrary s0, . . . , sl�1, t0, . . . , tl P C, l P N the equality

l�1̧

k�0

skptk�1 � tkq �
l�1̧

k�0

sktk�1 �
l�2̧

k��1

sk�1tk�1 � sl�1tl � s0t0 �
l�2̧

k�0

tk�1psk�1 � skq. (B.5)

This yields, in particular,

m�1̧

k�0

fj,kpbk�1 � bkq �
def� pIqhkkkkikkkkj

fj,m�1bm�
�0hkkikkj

fj,0b0 �

def� pIIqhkkkkkkkkkkkkkikkkkkkkkkkkkkj
m�2̧

k�0

bk�1pfj,k�1 � fj,kq .

Regarding pIq together with (B.4) we next consider

m�1̧

j�0

fj,m�1paj�1 � ajq � fm�1,m�1am �
�0hkkkikkkj

f0,m�1a0�
m�2̧

j�0

aj�1pfj�1,m�1 � fj,m�1q
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� amfm�1,m�1 �

p�qhkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj
m�2̧

j�1

aj�1pfj�1,m�1 � fj,m�1q�a1f1,m�1.

Note that fm�1,m�1 and f1,m�1 tends to zero, if m
n tends to infinity since f vanishes at infinity.

Next, there exists for each 1 ¤ j ¤ m� 2 a number ηj P
�
j
n ,

j�1
n

�
such that

fj�1,m�1 � fj,m�1 � 1
n

Bf
Bx1

�
ηj ,

m� 1
n



.

This implies, together with our assumptions,

|fj�1,m�1 � fj,m�1| À 1
n

�
n

m� 1


1�ε
,

so that we have�����m�2̧

j�1

aj�1pfj�1,m�1 � fj,m�1q
����� ¤ m�2̧

j�1

|fj�1,m�1 � fj,m�1| À m

n

�
n

m� 1


1�ε
.

Regarding pIIq together with (B.4) and (B.5), we consider

m�1̧

j�0

paj�1 � ajq
m�2̧

k�0

bk�1pfj,k�1 � fj,kq

�

cf. p�qhkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkj
am

m�2̧

k�0

bk�1pfm�1,k�1 � fm�1,kq�

�0hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj
a0

m�2̧

k�0

bk�1pf0,k�1 � f0,kq

�
m�2̧

j�0

aj�1

m�2̧

k�0

bk�1pfj�1,k�1 � fj�1,k � fj,k�1 � fj,kqloooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon
def� pIIIq

.

So it remains to consider pIIIq. Decompose for this purpose

m�2̧

j�0

m�2̧

k�0

|fj�1,k�1 � fj�1,k � fj,k�1 � fj,k|

� |f1,1 � f1,0 � f0,1 � f0,0| �
m�2̧

k�1

|f1,k�1 � f1,k � f0,k�1 � f0,k|

�
m�2̧

j�1

|fj�1,1 � fj�1,0 � fj,1 � fj,0| �
m�2̧

j�1

m�2̧

k�1

|fj�1,k�1 � fj�1,k � fj,k�1 � fj,k|

� |f1,1| �
m�2̧

k�1

|f1,k�1 � f1,k| �
m�2̧

j�1

|fj�1,1 � fj,1| �
m�2̧

j�1

m�2̧

k�1

|fj�1,k�1 � fj�1,k � fj,k�1 � fj,k|.
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Each addend of the above expression is considered separately. First, note

|f1,1| �
����g� 1

n
,

1
n


���� .
Next consider

m�2̧

k�1

|f1,k�1 � f1,k| ¤
m�2̧

k�1

1
n

sup
k
n
¤x2¤ k�1

n

���� BgBx2

���� � 1
n
, x2



(B.6)

and set

hnpx2q def�
m�2̧

k�1

sup
k
n
¤x2¤ k�1

n

���� BgBx2

���� � 1
n
, x2



1r kn , k�1

n qpx2q, x2 P p0, N s

Set as in the first step m
def� N � n and note that we have because of the continuity of Bg

Bx2
on R2�

the pointwise convergence

hnpx2q Ñ
���� BgBx2

���� p0, x2q, nÑ8, x2 P p0, N s.

The dominated convergence theorem with the constant L1pp0, N sq majorant

sup
px1,x2qPr0,1s�r0,Ns

���� BgBx2

���� px1, x2q   8

yields

hn Ñ
���� BgBx2

���� p0, �q, nÑ8 in L1pp0, N sq.

This means that

N �n�2¸
k�1

1
n

sup
k
n
¤x2¤ k�1

n

���� BgBx2

���� � 1
n
, x2



Ñ

»
r0,Ns

���� BgBx2

���� p0, x2qλ1pdx2q, nÑ8.

So (B.6) implies

lim sup
n

n�N�2¸
k�1

|f1,k�1 � f1,k| ¤
»
r0,Ns

���� BgBx2

���� p0, x2qλ1pdx2q. (B.7)

Equally, we get

lim sup
n

n�N�2¸
j�1

|fj�1,1 � fj,1| ¤
»
r0,Ns

���� BgBx1

���� px1, 0qλ1pdx1q. (B.8)

Note further that we have for 1 ¤ j, k ¤ m� 2 and x � px1, x2q P R2 the estimate

|fj�1,k�1 � fj�1,k � fj,k�1 � fj,k| �
�����
»
Aj,k

B2f

Bx1Bx2
λ2pdxq

����� ¤ 1
n2

sup
xPAj,k

���� B2f

Bx1Bx2

���� pxq.
Hence, we get with a similar argumentation

lim sup
n

pn�N�2q¸
j�1

pn�N�2q¸
k�1

|fj�1,k�1 � fj�1,k � fj,k�1 � fj,k| ¤
»
r0,Ns2

���� B2g

Bx1Bx2

���� λ2pdxq. (B.9)
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step 3. In view of (B.7) set

n
p1q
N

def� inftl P N :
n�N�2¸
k�1

|f1,k�1 � f1,k| ¤
»
R�

���� BgBx2

���� p0, x2qλ1pdx2q � 1
N
, @n ¥ lu.

Set analogously np2qN and n
p3q
N regarding (B.8) and (B.9). Finally, define

mN
def� nN _ n

p1q
N _ n

p2q
N _ n

p3q
N , fN

def� rmN ,N �mN , N P N.

Considering the results in the first step together with the estimates in the second step and (B.7),
(B.8) and (B.9), we have for u P pR�q2

|Ffpuq| ¤ |Fpf � fN qpuq| � |FfN puq| ¤ }f � fN}1 � 1
|u1u2|AN , N P N (B.10)

with a sequence pAN qN independent of u P pR�q2 and

lim sup
N

AN ¤ Λg, lim
N
}f � fN}1 � 0.

Taking the limes superior on both sides of (B.10), finally, yields (B.3).

Corollary B.4. Recall

ga,bpxq def� 1
x4

1 � x4
2

1ra,8q�rb,8qpx1, x2q, pa, bq P R, x P R2

and
R

def� r0,8q2ztp0, 0qu.
It holds for all pa, bq P R and u P R2 the inequality

|Fga,b|puq À
� |pa, bq|�4

|u1u2| 1pR�q2puq


^ |pa, bq|�2

where the constant in the above À is independent of pa, bq P R.

Proof. Note that we have

|Fga,b|puq ¤
»
ra,8q�rb,8q

1
x4

1 � x4
2

λ2pdxq À
»
ra,8q�rb,8q

1
|x|4 λ

2pdxq

À
»
r|pa,bq|,8q

1
r4
r λ1pdrq � 2�1|pa, bq|�2

where we have used the norm equivalence in R2 and a polar coordinate transformation.

Next, fix any u P pR�q2 and apply Proposition B.2. Observe for this purpose that we have»
ra,8q

���� BBx1

1
x4

1 � x4
2

���� px1, bqλ1pdx1q � �
»
ra,8q

B
Bx1

1
x4

1 � b4
λ1pdx1q � 1

a4 � b4
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and analogously»
rb,8q

���� BBx2

1
x4

1 � x4
2

���� pa, x2qλ1pdx2q � �
»
rb,8q

B
Bx2

1
a4 � x4

2

λ1pdx2q � 1
a4 � b4

.

Finally, a similar consideration yields»
ra,8q�rb,8q

���� B2

Bx1Bx2

1
x4

1 � x4
2

���� pxqλ2pdxq � 1
a4 � b4

À |pa, bq|�4.

Lemma B.5. This lemma states two simple but useful facts.

(i) We have with u P R2 and |u1|, |u2| ¥ 1 the inequality

1
|u1u2| ¤

4
p1� |u1|qp1� |u2|q . (B.11)

(ii) It holds for every 0   h   1
2 »

R

minph|z|, 1q
p1� |z|q2 dz À |h log h|.

Proof. (i): Set
εj

def� |uj | � 1 ¥ 0, j � 1, 2.

(B.11) is equivalent to

p2� ε1qp2� ε2q
!¤4p1� ε1qp1� ε2q � p2� 2ε1qp2� 2ε2q

which is obviously true.
(ii): Write »

R

minph|z|, 1q
p1� |z|q2 dz � 2

» 1
h

0

hz

p1� zq2 dz � 2
» 8

1
h

dz

p1� zq2

� 2h
�

log
�

1� h

h



� 1

1� h



� 2h

1� h

� 2hplogp1� hq � log hq
À |h log h|, 0   h   1

2
.

Next, we state a version of the Plancherel theorem. The well-known classical Plancherel theorem
as stated in Rudin [36][Theorem 7.9] yields the equality»

R2

fpxqgpxqλ2pdxq � 1
4π

»
R2

pFfqpuqpFgqpuqλ2pduq (B.12)

for all complex valued functions f, g P L2pλ2q. Lemma B.6 establishes that an analogous version
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also holds for g replaced by a measure µ under certain assumptions. The proof of Lemma B.6
demonstrates how to use the well-known result (B.12) in order to verify the claim (B.13).

Lemma B.6. Let µ be a finite positive measure on pR2,BpR2qq and f : R2 Ñ R be a measurable
bounded function, such that Fµ P L2pλ2q and f P L1pλ2q hold. Then we have»

f dµ � 1
4π

»
pFfqp�uqpFµqpuqλ2pduq. (B.13)

Proof. First, note that the integral of the right-hand side in (B.13) exists:

|f |2 ¤
�

sup
xPR2

|fpxq|


� |f | P L1pλ2q

implies f P L2pλ2q and therefore Ff P L2pλ2q. This yields together with the Hölder inequality

u ÞÑ pFfqp�uqpFµqpuq P L1pλ2q.

The proof is divided into two steps. We assume in the first step that f is continuous and, finally,
drop this restriction in the second step.

step 1. Suppose, additionally, that f is continuous. Set

µn
def� µ �

�
N

�
0,

1
n



bN

�
0,

1
n




, n P N

and note that we have »
|Fµn| dλ2 �

»
|Fµ|puqe� |u|2

2n λ2pduq   8, n P N.

Hence, Sato [38][Proposition 2.5 (xii)] yields the existence of a bounded and continuous λ2 density

fn
def� dµn

dλ2
P L1pλ2q, n P N.

The boundedness of f and fn implies f, fn P L2pλ2q, so that the classical Plancherel theorem (B.12)
yields »

f dµn �
»
ffn dλ

2 � 1
4π

»
FfFfn dλ2, n P N. (B.14)

Furthermore, the pointwise convergence

Fµn � Fµ � F
�
N

�
0,

1
n



bN

�
0,

1
n




Ñ Fµ, nÑ8

implies µn
dÑ µ, i.e. »

f dµn Ñ
»
f dµ, nÑ8. (B.15)

Finally, dominated convergence and |FfFµn| ¤ |FfFµ| P L1pλ2q yield»
FfFfn dλ2 �

»
FfFµn dλ2 Ñ

»
FfFµdλ2, nÑ8.
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This accomplishes together with (B.14), (B.15) and Ffp�q � Ffp��q step 1.

step 2. Next, we drop the restriction on f to be continuous. Note that the space Cc of contin-
uous functions with compact support is a dense subspace of L1pλ2 � µq, cf. Rudin [37][Theorem
3.14]. Hence, there is a sequence of functions pgnqn � Cc with gn Ñ f in L1pλ2 � µq. We can
assume furthermore }gn}8 ¤ }f}8, n P N because f is bounded. This yields in particular

gn Ñ f in L1pµq and L2pλ2q. (B.16)

Since F is an isometric L2pλ2q isomorphism, we, in particular, have Fgn Ñ Ff in L2pλ2q which
implies by using of the Hölder inequality»

Fgnp��qFµdλ2 Ñ
»
Ffp��qFµdλ2, nÑ8. (B.17)

Finally, (B.16) and (B.17) prove together with step 1 the claim of this lemma.
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Appendix C

Matlab listings

In the following, the Matlab source code files for the numerical simulations in Chapter 1, Section 7
are provided. The files are listed in alphabetical order and separated into Matlab macros and Matlab
function files. Further, a concise description of the meaning of the respective files is provided. Every
figure in Chapter 1.7 is created using exactly one macro file which is based on the stated function
files:

GApprox.m, GApproxJmp.m, errorTypes.m, GBNSCompRef.m, GBNSComp.m, realTest.m

create Figures 1.2 up to Figure 1.7, in this order. An execution of the file doAll.m creates all figures
in Chapter 1.7. However, the needed calculations may take several hours on a customary personal
computer with our parameter setting.

Explanations of the function files are as follows:

• approxBNScdf.m calculates the empirical distribution function of the test statistic by Barn-
dorff -Nielsen and Shephard. For this purpose, we sample the underlying unit interval with
the grid fineness 1

n2 and use the jump diffusion process in Chapter 1.7 with the parameters
lambda, k � 10L2 and θ � 1

10L�n . Thus, the jump distribution has expectation L
n and vari-

ance 1
10n2 . Finally, to get the empirical distribution function, the test statistic is evaluated

m times, based on m independent simulations of the underlying jump diffusion process. The
result is exported in the vector r which is, of course, discretized, i.e. we obtain r as a function
on �I,�I � dt,�I � 2dt, � � � , 2I with a suitable stepsize dt.

• approxGcdf.m proceeds in the same way as approxBNScdf.m with the Gumbel statistic in-
stead of then Barndorff-Nielsen and Shephard statistic.

• CGamPoiss.m simulates a compound Poisson process with a Gamma distributed jump distri-
bution. Here, lambda is the intensity of the process and k, theta are the parameters of the
Gamma distribution. Again, 1

n2 describes the sampling step size.

• getQuantile.m calculates the quantile function, i.e. the pseudo-inverse of a given distribution
function F which is defined on the discretized interval r�I, Is with step size dt.

• OU.m simulates an Ornstein-Uhlenbeck process with the parameters: a starting point; mu

mean reversion level; theta mean reversion speed; sigma volatility. The parameter n is again
used for the grid fineness.

• powerBNS.m calculates the power of the Barndorff-Nielsen and Shephard test. For this pur-
pose, it is assumed that the test statistic has the finite sample distribution given by the
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quantile function q, if there are no jumps. Based on m independent simulations with the grid
fineness 1

n2 , the power concerning the significance levels a, a� dt, a� 2dt, . . . , b is calculated.
The underlying process is again the jump diffusion process in Chapter 1.7 with the jump
parameters L and lambda, cf. approxBNScdf.m.

• powerG.m is the same as powerBNS.m, but based on the Gumbel test.

• testBNS.m applies the Barndorf-Nielsen and Shephard test m-times on m independently
simulated jump diffusion processes or, alternatively, on a real dataset Y . Again, n is used for
the grid fineness and L, lambda is used for the compound Poisson jump process.

• testG.m is an analogue to testBNS.m, but based on the Gumbel test.

• Yf.m simulates the underlying jump diffusion processes.
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Matlab macros

errorTypes.m

%m1 = 10000;

m2 = 2000;

n = 50;

I = 20;

z = (-I:0.0001:I);

alpha = (0:0.001:0.1);

G = exp(-exp(-z));

F = normcdf(z);

qG = getQuantile(G,I,0.0001);

qF = getQuantile(F,I,0.0001);

error1G = powerG(n,m2,qG,0,0.1,0.01,0,0); %Type I error

error1F = powerBNS(n,m2,qF,0,0.1,0.01,0,0);

error2G = 1 - powerG(n,m2,qG,0,0.1,0.01,4,10); %Type II error

error2F = 1 - powerBNS(n,m2,qF,0,0.1,0.01,4,10);

figure(3);

subplot(2,2,1);

plot(alpha,error1G,’.’,’Color’,’k’);

hold on;

plot(alpha,alpha,’Color’,’red’);

title(’no jumps, Gumbel’);

subplot(2,2,2);

plot(alpha,error1F,’.’,’Color’,’k’);

hold on;

plot(alpha,alpha,’Color’,’red’);

title(’no jumps, Barndorff-Nielsen’);

subplot(2,2,3);

plot(alpha,error2G,’.’,’Color’,’k’); title(’jumps, Gumbel’);

subplot(2,2,4);

plot(alpha,error2F,’.’,’Color’,’k’); title(’jumps, Barndorff-Nielsen’);

set(gcf,’PaperPositionMode’,’Auto’);

GApprox.m

m = 10000;

I = -3;

J = 7;

x = (I:0.001:J);

y = exp(-exp(-x));
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F20 = approxGcdf(20,m,0.001,I,J,0,0);

F50 = approxGcdf(50,m,0.001,I,J,0,0);

F200 = approxGcdf(200,m,0.001,I,J,0,0);

F1000 = approxGcdf(1000,m,0.001,I,J,0,0);

figure(1);

subplot(2,2,1); plot(x,F20,’r’,x,y,’k’); title(’n = 20’);

subplot(2,2,2); plot(x,F50,’r’,x,y,’k’); title(’n = 50’);

subplot(2,2,3); plot(x,F200,’r’,x,y,’k’); title(’n = 200’);

subplot(2,2,4); plot(x,F1000,’r’,x,y,’k’); title(’n = 1000’);

set(gcf,’PaperPositionMode’,’Auto’);

GApproxJmp.m

m = 10000;

I = -3;

x_1 = (I:0.001:10);

x_2 = (I:0.001:10);

x_3 = (I:0.001:15);

x_4 = (I:0.001:20);

y_1 = exp(-exp(-x_1));

y_2 = exp(-exp(-x_2));

y_3 = exp(-exp(-x_3));

y_4 = exp(-exp(-x_4));

F50_1 = approxGcdf(50,m,0.001,I,10,1,5);

F50_2 = approxGcdf(50,m,0.001,I,10,2,5);

F50_3 = approxGcdf(50,m,0.001,I,15,3,5);

F50_4 = approxGcdf(50,m,0.001,I,20,4,5);

figure(2);

subplot(2,2,1); plot(x_1,F50_1,’r’,x_1,y_1,’k’); title(’L = 1’);

subplot(2,2,2); plot(x_2,F50_2,’r’,x_2,y_2,’k’); title(’L = 2’);

subplot(2,2,3); plot(x_3,F50_3,’r’,x_3,y_3,’k’); title(’L = 3’);

subplot(2,2,4); plot(x_4,F50_4,’r’,x_4,y_4,’k’); title(’L = 4’);

set(gcf,’PaperPositionMode’,’Auto’);

GBNSComp.m
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m1 = 10000;

m2 = 2000;

n = 50;

I = 20;

alpha = (0:0.001:0.1);

F = approxBNScdf(n,m1,0.0001,I,0,0);

qF = getQuantile(F,I,0.0001);

G = approxGcdf(n,m1,0.0001,-I,I,0,0);

qG = getQuantile(G,I,0.0001);

pF1 = powerBNS(n,m2,qF,0,0.1,0.01,4,2);

pF2 = powerBNS(n,m2,qF,0,0.1,0.01,4,15);

pG1 = powerG(n,m2,qG,0,0.1,0.01,4,2);

pG2 = powerG(n,m2,qG,0,0.1,0.01,4,15);

figure(5);

subplot(1,2,1);

plot(alpha,pF1,’.’,’Color’,’r’);

hold on;

plot(alpha,pG1,’o’,’Color’,’k’);

title(’\lambda = 2’);

leg = legend(’Barndorff-Nielsen’,’Gumbel’);

set(leg,’Location’,’SouthEast’);

subplot(1,2,2);

plot(alpha,pF2,’.’,’Color’,’r’);

hold on;

plot(alpha,pG2,’o’,’Color’,’k’);

title(’\lambda = 15’);

leg = legend(’Barndorff-Nielsen’,’Gumbel’);

set(leg,’Location’,’SouthEast’);

set(gcf,’PaperPositionMode’,’Auto’);

GBNSCompRef.m

m1 = 10000;

m2 = 2000;

n = 50;

I = 20;

alpha = (0:0.001:0.1);

x = (0:0.0001:0.1);

F = approxBNScdf(n,m1,0.0001,I,0,0);

qF = getQuantile(F,I,0.0001);

G = approxGcdf(n,m1,0.0001,-I,I,0,0);
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qG = getQuantile(G,I,0.0001);

pF = powerBNS(n,m2,qF,0,0.1,0.01,0,0);

pG = powerG(n,m2,qG,0,0.1,0.01,0,0);

figure(4);

subplot(1,2,1);

plot(alpha,pF,’.’,’Color’,’k’);

hold on;

plot(x,x,’Color’,’r’);

title(’Barndorff-Nielsen’);

subplot(1,2,2);

plot(alpha,pG,’.’,’Color’,’k’);

hold on;

plot(x,x,’Color’,’r’);

title(’Gumbel’);

set(gcf,’PaperPositionMode’,’Auto’);

realTest.m

data = xlsread(’LogEWI104s_nonstandardized.xls’);

usa = data(:,1)’;

ireland = data(:,14)’;

usa = [0 cumsum(usa)];

ireland = [0 cumsum(ireland)];

N = 93^2;

usa = usa(1:N+1);

ireland = ireland(1:N+1);

uG = exp(-exp(-testG(93,1,-1,-1,usa)));

iG = exp(-exp(-testG(93,1,-1,-1,ireland)));

uGMin = exp(-exp(-testG(93,1,-1,-1,-usa)));

iGMin = exp(-exp(-testG(93,1,-1,-1,-ireland)));

uBNS = normcdf(testBNS(93,1,-1,-1,usa));

iBNS = normcdf(testBNS(93,1,-1,-1,ireland));

figure(6);

x = 1973.6+(0:1/N:1)*(2005.6-1973.6);

plot(x,ireland,’k’,x,usa,’r’);

leg = legend(’ireland’,’usa’);

set(leg,’Location’,’SouthEast’);

axis([1973.6 2005.6 -1 6])

%---- Print the test results ---
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iG

iGMin

uG

uGMin

iBNS

uBNS

%-------------------------------

set(gcf,’PaperPositionMode’,’Auto’);

doAll.m

GApprox;

GApproxJmp;

errorTypes;

GBNSCompRef;

GBNSComp;

realTest;
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Matlab functions

approxBNScdf.m

function [r] = approxBNScdf(n,m,dt,I,L,lambda)

T = testBNS(n,m,L,lambda);

T = sort(T); %empirical distribution function

r = zeros(1,2*I/dt+1);

for j = (1:m)

v = ceil((T(j)+I)/dt);

if (v <= 2*I/dt)

r((max(v+1,1):end)) = r((max(v+1,1):end)) + 1;

end

end

r = r/m;

r(end) = 1;

approxGcdf.m

function [r] = approxGcdf(n,m,dt,I,J,L,lambda)

T = testG(n,m,L,lambda);

T = sort(T); %empirical distribution function

r = zeros(1,(J-I)/dt+1);

for j = (1:m)

v = ceil((T(j)-I)/dt);

if (v <= (J-I)/dt)

r((max(v+1,1):end)) = r((max(v+1,1):end)) + 1;

end

end

r = r/m;

r(end) = 1;

CGamPoiss.m

function [r] = CGamPoiss(n,lambda,k,theta)

N = n^2;

J = zeros(1,N+1); %n^2+1 row vector

jQuant = poissrnd(lambda); %quantity

jPos = sort(rand(1,jQuant),2); %position
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jSize = gamrnd(k,theta,1,jQuant); %size

jCumSize = cumsum(jSize);

pos = [ceil(jPos*N) N+1];

for k = (1:jQuant)

for h = (pos(k)+1:pos(k+1))

J(h) = jCumSize(k);

end

end

r = J;

getQuantile.m

function [r] = getQuantile(F,I,dt)

m = 1/dt;

q = zeros(1,m+1);

j = 0;

for k = (0:m)

while ((j+1 <= size(F,2)) && (F(j+1) < k/m))

j = j+1;

end

q(k+1) = j;

end

r = 2*I*q/(size(F,2)-1) - I;

r(1) = -inf;

r(end) = inf;

OU.m

function [r] = OU(n,a,mu,theta,sigma)

N = n^2;

dt = 1/N;

dW = sqrt(dt)*randn(1,N);

z = (0:1/N:1);

x = a * exp(-theta*z) + mu*(1-exp(-theta*z)); %deterministic part

J = sigma*exp(theta*z(1:end-1)).*dW; %stochastic integral

J = cumsum(J);

J = J.*exp(-theta*z(2:end));

r = x + [0 J];
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powerBNS.m

function [r] = powerBNS(n,m,q,a,b,dt,L,lambda)

A = 1/dt;

v = zeros(1,A+1);

for i = (0:A)

alpha = i * dt * (b-a) + a;

Q = q(floor(alpha*(size(q,2)-1) + 1));

T = testBNS(n,m,L,lambda);

v(i + 1) = sum(T >= Q) / m;

end

r = 1 - v;

powerG.m

function [r] = powerG(n,m,q,a,b,dt,L,lambda)

A = 1/dt;

v = zeros(1,A+1);

for i = (0:A)

alpha = i * dt * (b-a) + a;

Q = q(floor((1-alpha)*(size(q,2)-1) + 1));

T = testG(n,m,L,lambda);

v(i + 1) = sum(T <= Q) / m;

end

r = 1 - v;

testBNS.m

function [r] = testBNS(n,m,L,lambda,Y)

theta = pi^2/4 + pi - 5;

mu1 = sqrt(2/pi);

T = zeros(1,m);

for j = (1:m) %produces m values of the statistic
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if (lambda >= 0)

Y = Yf(n,L,lambda);

end

dY = abs(Y(2:end)-Y(1:end-1));

dY2 = dY*dY’;

dY11 = dY(1:end-1)*dY(2:end)’;

dY1111 = sum(dY(1:end-3).*dY(2:end-2).*dY(3:end-1).*dY(4:end));

T(j) = (mu1^(-2)*dY11 - dY2)/sqrt(theta*mu1^(-4)*dY1111);

end

r = T;

testG.m

function [r] = testG(n,m,L,lambda,Y)

aa = 2*sqrt(log(n));

bb = aa - (log(log(n)) + log(8*pi))/(4*sqrt(log(n)));

T = zeros(1,m);

for j = (1:m) %produces m values of the statistic

if (lambda >= 0)

Y = Yf(n,L,lambda);

end

dY = Y(2:end)-Y(1:end-1);

sigma = zeros(1,n^2);

for k = (1:n)

dYpartial = abs(dY((k-1)*n + 1 : k*n));

sigma(((k-1)*n + 1 : k*n)) = dYpartial(1:end-1)*dYpartial(2:end)’;

end

sigma = sqrt(pi/(2*(n-1))*sigma);

dY = dY./sigma;

T(j) = aa*(max(dY) - bb);

end

r = T;

Yf.m

function [r] = Yf(n,L,lambda)

N = n^2;

dt = 1/N;

dW = sqrt(dt)*randn(1,N);
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sigma = max(OU(n,1,1,0.5,0.2),0.1);

y = cumsum(sigma(1:end-1).*dW);

J = 0;

if (L > 0) %mean = L/n , variance = 1/(10n^2)

J = CGamPoiss(n,lambda,10*L^2,1/(10*L*n));

end

r = [0 y] + J;
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[7] Buchmann, B., Grübel, R. (2003). Decompounding: An estimation problem for Poisson
random sums. The Annals of Statistics 31 (4), 1054-1074.
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