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Motivation

Today more than ever before, we monitor time series and want to detect state changes in

them. A state change can be defined as a change in the normal behaviour of the majority

of the data. A common state change is for example the outlier. An outlier is an observa-

tion that is unusually far from the bulk of the data. Its effects on statistical procedures

can be very severe if not appropriately dealt with. Correctly determining when the state

changes occurs helps decision makers understand them and allows for a shorter reaction

time and the definition of an appropriate course of action. Due to the amount of data

available nowadays and the advances made in computer science (processor speed for in-

stance), statistics (more complex models) and in other relevant fields of science, the task

of building a good monitoring procedure is a much more challenging task today. Harrison

& Stevens (1971) developed a state change detection procedure and a part of this thesis

is based on their work. The main objective of this thesis is to improve this state change

detection procedure by widening its spectrum of application and using up-to-date statis-

tical techniques to enhance its results. One of the most frequent assumptions of statistical

procedures is the one of normally distributed data. However, this requirement is usually

not met in practice, for example manufacturing data are often positive and right skewed.

Harrison & Stevens also make this assumption hereby narrowing the area of application

of their procedure.

We opt for a transformation of the data to achieve approximate normality. From the wide

range of transformation procedures, we chose to use the Box-Cox transformation. The

parameter of the transformation must be estimated from a start sequence of the data if

historical data is not available. A particular challenge are the outliers that can occur in

8



the start sequence, so that we need a robust estimator of the transformation parameter.

Several robust estimators are available, but the problem is that the transformation only

achieves approximate normality. Therefore we define a new robust estimator which is

based on the optimization of a new robust measure of normality. This idea is further

supported by the fact that there is actually not only one transformation that can yield

approximate normality, or there could be no transformation that achieves normality at

all.

Speaking of measures of normality directs us towards tests for normality. Several robust

test for normality have been developed but to the best of our knowledge, none of them is

a robustification of the Shapiro-Wilk test which is known to be one of the most powerful

tests for normality and has already been used to estimate the Box-Cox transformation

parameter non robustly.

In Chapter 1, we derive a robust Shapiro-Wilk test for normality and determine its asymp-

totic null distribution. Simulations show that our new robust test outperforms its com-

petitors in many respects, as expected. In Chapter 2, we use the robust Shapiro-Wilk test

statistic to derive a robust estimator of the Box-Cox transformation parameter. The new

robust estimator outperforms all the other robust estimators and the maximum-likelihood

estimator in terms of better transformation to normality and bias in presence of outliers,

but yields a slightly larger variance than its competitors. Finally we apply the robust

transformation in Chapter 3 to transform the data before conducting the state change de-

tection procedure. After some other improvements to the procedure, the obtained results

are very appealing and most of our goals have been reached. We conclude this work with

a summary and an outlook.
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Chapter 1

Robust Shapiro-Wilk test for normality

1.1 Introduction

A large number of statistical methods relies on the assumption of normality, but in prac-

tice, this assumption is not always met. In this case, statistical procedures based on

normality can suffer drastic consequences. A wide range of statistical procedures have

been developed to test for normality. The most common tests for normality are the

Shapiro-Wilk test and the Jarque-Bera test, also known as Browman-Shenton test. These

tests are powerful but also very sensible to outliers. However, many statistical procedures

based on robust estimators or outlier detection and elimination perform well if the data is

normal with some outliers. Before applying such procedures, one wants to check whether

the majority of the data comes from a normal distribution, or whether the data is not

normal at all. In the presence of outliers, one thus needs robust tests. Robustifications of

the Jarque-Bera test have been proposed by Brys et al. (2004b) and by Gel & Gastwirth

(2008). Gel et al. (2007) introduced a new robust normality test against heavy-tailed

alternatives. In this chapter, we propose a robust version of the Shapiro-Wilk test of

normality. In Section 2, we present some classical tests of normality. In Section 3, we

review some robust tests for normality found in the literature. We introduce our new

robust test in Section 4 and derive some asymptotic properties in Section 5. We compare

the already existing robust tests to our proposal in Section 6 via simulations.
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1.2 Tests of normality

1.2.1 The Shapiro-Wilk test

Let Y = (y1, y2, . . . , yn)

t be n ordered observations of iid data. The Shapiro-Wilk test is

used to test the given data for normality. For this purpose, let m = (m1, m2, . . . ,mn)

t

denote a vector of expected values of a standard normal order statistic and let V0 = (vij)

be the corresponding n ⇥ n covariance matrix. This means, if Xn1  Xn2  · · ·  Xnn

is an ordered statistic from n iid standard normal random variables, then the following

holds:

E(Xni) = mi, i = 1, 2, . . . , n ,

Cov(Xni, Xnj) = vij, i, j = 1, 2, . . . , n .

The W statistic of the Shapiro-Wilk test is given by

W =

(

Pn
i=1 aiyi)

2

Pn
i=1 (yi � ȳ)

2 ,

where

at
= (a1, a2, . . . , an) =

mtV �1
0

�
mtV �1

0 V �1
0 m

� 1
2

. (1.1)

The W statistic has the following analytical properties:

• W is location and scale invariant.

• The distribution of W depends only on the sample size n, for samples from a normal

distribution.

• W is statistically independent from the sample variance and mean, for a sample

from a normal distribution.

• The maximum value of W is 1 and the minimum is
na2

1

n� 1

.
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• The half and first moments of W are given by:

EW 1/2
=

R2
�(

n�1
2 )

C�(

n
2 )

p
2

EW =

R2
(R2

+ 1)

C2
(n� 1)

,

where R2
= mtV �1

0 m and C2
= mtV �1

0 V �1
0 m.

• For n = 3, the density of W is

3

⇡
(1� w)

�1/2w�1/2, 3/4  w  1.

The density of the W statistic is difficult to determine for sample sizes greater than 20.

This difficulty arises from the determination of the values of the ai given in (1.1) necessary

for the computation of the W statistic, due to the fact that the covariance matrix V0 = (vij)

was only obtainable up to sample size 20. To solve the problem, Shapiro & Wilk (1965)

proposed an approximation of the ai and proved that when the sample size grows the

difference between the approximated and the exact values tends to zero.

Royston (1995) gave an approximation to the weights ai that can be used for any n in

the range 3  n  5000 and proposed an algorithm to perform the Shapiro-Wilk test.

Leslie et al. (1986) derived the asymptotic distribution of the Shapiro-Wilk test statistic

and proved the consistency of the test using the work of Stephens (1975), who mainly

shows that the vector m converges towards an eigenvector of V0, i.e.

kV0m� 1

2

mk n!1���! 0,

where k • k is the Euclidean norm.

1.2.2 The Jarque-Bera test

The Jarque-Bera test of normality introduced in Jarque & Bera (1980) is based on the

classical skewness and kurtosis coefficients denoted by �1 and �2, respectively, which are

12



defined as follows:

�1(F ) =

µ3(F )

µ2(F )

3/2
(1.2)

�2(F ) =

µ4(F )

µ2(F )

2
, (1.3)

where F represents any distribution with finite k-th central moments µk (k  4).

Under the normality assumption with �1(F ) = 0 and �2(F ) = 3 it is known that the sam-

ple skewness b1 and the sample kurtosis b2 are asymptotically independent and normally

distributed (see Brys et al. (2004b)) with

p
n

0

@b1

b2

1

A �!D N
0

@

0

@0

3

1

A ,

0

@6 0

0 24

1

A

1

A . (1.4)

This leads us to the Jarque-Bera test statistic

JB = n

✓
b2
1

6

+

(b2 � 3)

2

24

◆
H0�!D �

2
2 . (1.5)

Because the sample skewness and kurtosis are sensible to outliers, this test is not robust

to outliers.

1.3 Robust tests of normality in the literature

1.3.1 Robustification of the Jarque-Bera test

Brys et al. (2004b) proposed a robust version of the Jarque-Bera test, using the robust

measure of skewness and tail weight of Brys et al. (2004a). Let X t
= (x1, x2, . . . , xn) be

a sample of n independent observations from a continuous univariate distribution F. For

simplicity, we assume x1 < x2 < · · · < xn. The medcouple (MC) is given by

MC = medximnxjh(xi, xj),

with mn = F�1
n (0.5) the median of Xn and the kernel function h is defined for all xi 6= xj

as

h(xi, xj) =

(xj �mn)� (mn � xi)

xj � xi
,

13



for some i 6= j.

If xi = xj = mn then there are observations tied to the median. Let the corresponding

indices be r1 < r2 < · · · < rk so that xrl
= mn for all l = 1, . . . , k. In this case, the kernel

is given as follows:

h(xri , xrj) =

8
>>>>><

>>>>>:

�1, if i + j � 1 < k

0, if i + j � 1 = k

+1, if i + j � 1 > k

They also considered the left medcouple (LMC) and right medcouple (RMC), which are

left and right tail weight measures, respectively. These robust measures are given by

LMC = �MC(x < mn) and RMC = MC(x > mn). MC(x > mn) means that we

compute the medcouple considering only observations in the sample that are larger than

the median, and MC(x < mn) has an analogue meaning.

To define a general test statistic, let !̂ = (!̂1, !̂2, . . . , !̂k) be an estimator of an unknown

parameter ! = (!1,!2, . . . ,!k). If

p
n(!̂1, !̂2, . . . , !̂k) �!D Nk(!,⌃k),

then the generalized test statistic T = n(!̂ � !)

t
⌃

�1
k (!̂ � !) �!D �2

k. The Jarque-Bera

test can be seen as a special case of this general test, if we take k = 2, (!̂1, !̂2) = (b1, b2)

and (!1,!2) = (�1, �2) = (0, 3).

Brys et al. (2004b) proposed 3 alternative robust tests as special cases of the general test:

1. Test MC1 uses only the medcouple with k = 1, !̂1 = MC and !1 = 0.

2. Test MC2 uses k = 2, (!̂1, !̂2) = (LMC,RMC) and (!1,!2) = (0.199, 0.199).

3. Test MC3 uses k = 3, (!̂1, !̂2, !̂3) = (MC, LMC, RMC) and (!1,!2,!3) = (0, 0.199, 0.199).

The asymptotic means !k mentioned above and the asymptotic covariance matrices ⌃k

for each test are given in Brys et al. (2004b). They have been derived from the influence

functions of the estimators.

The evaluation of the performances of the four tests of normality at Tukey’s class of gh-

distributions (see Hoaglin et al. (1985)) conducted in Brys et al. (2004b) leads them to the

14



conclusion that the JB test outperforms the other tests in the absence of contamination,

followed by MC3, which is much more conservative.

Additionally, contaminations were considered as mixtures of the form (1 � �)N (0, 1) +

�N (µ,�2
) where � = 1% or 5%. Samples of size 1000 and the following scenarios were

considered:

• Scenario 1: µ = 0 and �2
= 0.05

• Scenario 2: µ = 0 and �2
= 5

• Scenario 3: µ = 7 and �2
= 1

• Scenario 4: µ = �7 and �2
= 1

The robust normality tests perform better than the JB test in all these contaminated

cases. The performances of the robust tests are rather similar except in the last two

scenarios, when � = 5%. There the MC3 seems to be less robust than the other two

robust tests.

1.3.2 Robust test of normality against heavy-tailed alternatives

Gel et al. (2007) introduced the SJ test as a new robust test of normality.

Let X1, X2, . . . , Xn be independent and identically distributed random variables with

mean µ, median µ̂n and standard-deviation �. The new robust SJ test is defined via the

ratio

R =

Sn

Jn
(1.6)

of the empirical standard deviation estimator Sn and a robust measure of spread Jn, the

average absolute deviation from the sample median (MAAD) defined as

Jn =

C

n

nX

i=1

|xi � µ̂n|, (1.7)
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where C =

p
⇡/2.

The authors show that under the null hypothesis of normality, the following holds

p
n(R� 1) �!D N (0,�2

R), (1.8)

with �2
R =

⇡ � 3

2

. This test is shown via simulations to outperform the Shapiro-Wilk test

and the Jarque-Bera test with respect to power against heavy-tailed alternatives.

1.3.3 A robust modification of the Jarque-Bera test

Gel & Gastwirth (2008) have modified the Jarque-Bera test by replacing the sample

skewness and kurtosis by more robust estimators. Let X = (x1, x2, . . . , xn)

t be a sample

of n independent observations with sample median µ̂n. Let ⌫k (k  4) be finite central

moments and Jn the average absolute deviation from the sample median as defined in

equation (1.7).

These authors define robust estimates of skewness and kurtosis as
⌫̂3

J3
n

and
⌫̂4

J4
n

, respectively,

where ⌫̂k denotes the sample estimate of the k-th central moment. Then the robust test

statistic is defined as follows:

RJB =

n

C1

✓
⌫̂3

J3
n

◆2

+

n

C2

✓
⌫̂4

J4
n

� 3

◆2

, (1.9)

where C1 = 6 and C2 = 64 are recommended by the authors to achieve the nominal

significance level of ↵ = 0.05. Under the null hypothesis of normality the authors show

that

p
n

0

B@

⌫̂3

J3
n

⌫̂4

J4
n

� 3

1

CA �!D N
0

@

0

@0

0

1

A ,

0

@C1 0

0 C2

1

A

1

A , (1.10)

so that RJB asymptotically follows a �2
2-distribution with 2 degrees of freedom. This

test outperforms the Shapiro-Wilk, the Jarque-Bera and the SJ test (Gel et al., 2007)

in terms of power against moderately heavy-tailed alternatives, especially in small and

moderate sample sizes. The RJB is less powerful than the SJ test in case of heavy-tailed

alternatives such as the double exponential distribution, because the SJ test is directed

towards such alternatives.
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1.3.4 Assessing when a sample is mostly normal

To robustify statistical procedures one often trims the data to exclude potential outliers.

Alvarez-Esteban et al. (2010) present a method for trimming the data and afterwards

comparing the distribution of the trimmed sample with a trimmed sample from a normal

distribution to assess "mostly" normality.

They define the L2-Wasserstein distance between two distributions P and Q on the real

line as the L2-distance between the quantile functions (respectively F�1 and G�1) given

by:

W2(P, Q) =

Z 1

0

�
F�1

(t)�G�1
(t)
�2

dt

�1/2

. (1.11)

Let P be a probability measure on the real line and 0  ↵  1. P ⇤ is called an ↵-trimming

of P, if P ⇤ is absolutely continuous with respect to P and
dP ⇤

dP
 1

1� ↵
. Define T↵(P )

as the set of ↵-trimmings of P. T↵(P ) can be parametrized in terms of ↵-trimmings of

the uniform distribution on (0, 1). Let C↵ be the class of absolutely continuous functions

h : [0, 1] ! [0, 1] such that h(0) = 0 and h(1) = 1, with derivative 0  h0  1

1� ↵
and Ph

denote the probability measure with distribution function h(P (�1, t]). Then we have:

T↵(P ) = {Ph : h 2 C↵} .

Assume that X1, . . . , Xn are n i.i.d. observations with common distribution P and let

N stand for the normal distribution family. Then the distance of the data sample from

normality can be defined as follows:

⌧↵(P,N ) = inf

h2C↵,Q2N
W2

2 (Ph, Qh) .

If ⌧↵(P,N ) = 0 then there is a normal distribution Q which is equal to P after removing

a fraction of mass, of size at most ↵, from P and Q. A small value of ⌧↵(P,N ) indicates

that most of the distribution underlying the data is not far from normality. Assessing

"mostly" normality amounts to fixing a threshold �2
0 and testing:

H0 : ⌧↵(P,N ) � �2
0 vs. H1 : ⌧↵(P,N ) < �

2
0. (1.12)
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The authors show that ⌧↵(P,N ) is location invariant but not scale invariant. In order to

solve this problem, they define

v(h) = min

Q2N
W2

2 (Ph, Qh)

so that ⌧↵(P,N ) = infh2C↵ v(h). They assume that v(h) admits a unique minimizer h0

and define the standardized trimmed distance to normality as

⌧̃↵(P,N ) =

⌧↵(P,N )

V ar(F�1 � h�1
0 )

,

which is scale invariant (Alvarez-Esteban et al., 2010), and they prove asymptotic nor-

mality of the new statistic. The new test problem is

H0 : ⌧̃↵(P,N ) � ˜

�

2
0 vs. H1 : ⌧̃↵(P,N ) < ˜

�

2
0, (1.13)

where the thresholds �2
0 and ˜

�

2
0 from equations (1.12) and (1.13) are usually not the

same.

In the next sections, when we run simulations and compare this test with the other robust

tests, we shall refer to it with the name TRIM↵.

1.4 New robust Shapiro-Wilk test

As we mentioned earlier, the Shapiro-Wilk test for normality can suffer severe conse-

quences due to outliers. Since the Shapiro-Wilk test is one of the most powerful tests for

normality, a robust version of this test can prove very useful. Our robustification method

is based on detecting outliers, especially in skewed data. First we introduce some basic

notions.

1.4.1 The adjusted boxplot

The boxplot is a well known and very useful tool in univariate data analysis. It gives

us informations on the spread, the skewness and outliers, among other things. However,

in the construction of the boxplot, we implicitly assume symmetry within the data since
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the same multiple of the interquartile range is used for the detection of upper and lower

outliers. In addition, the position of the whiskers is determined by a rule assuming

normality. The boxplot is therefore not well suited for the representation of skewed data.

Hubert & Vandervieren (2008) developed an adjusted boxplot more suited for skewed

datasets.

The usual boxplot consists of a box limited by the first and the third quartile. In addition,

the whiskers are the lower and upper bounds determined so that under the normality

assumption, data that falls outside the whiskers are considered to be outliers. The usual

boundaries are given by

[Q1 � 1.5IQR,Q3 + 1.5IQR],

where Q1 and Q3 are respectively the first and the third quartile, and IQR = Q3 � Q1

denotes the interquartile range. For skewed data too many points fall outside the whiskers

and are hence falsely classified as outliers.

The idea of the adjusted boxplot is to find a function h(MC) of the medcouple (Brys et al.,

2004b) to shift the whiskers and allow skewness in the data. After extensive simulations

(Hubert & Vandervieren, 2008), the best boundaries were found to be

[Q1 � 1.5e�3.5MCIQR,Q3 + 1.5e4MCIQR] when MC � 0, and

[Q1 � 1.5e�4MCIQR,Q3 + 1.5e3.5MCIQR] otherwise.

The authors shows that the adjusted boxplot is much better suited for skewed data than

the original one. Generally, it classifies less points falsely as outliers in case of skewed

distributions. Note that the adjusted boxplot reduces to the original one in case of

symmetrical data (MC = 0).

1.4.2 Outlier detection for skewed data

To detect outliers in skewed data, we can either use the adjusted boxplot introduced in

the previous subsection or compute coefficients of outlyingness and derive a classification

rule for outliers from them. Stahel (1981) and Donoho (1982) define the outlyingness of
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a univariate data point xi within a sample X = (x1, x2, . . . , xn)

t of length n as follows:

SDOi = SDO(xi, X) =

|xi � µ̂n|
�̂n

, (1.14)

where µ̂n is the sample median and �̂n is the median absolute deviation of the sample

that we suppose to be corrected for consistency under normality.

This outlyingness coefficient measures the distance of each point to the center of the data

standardized with a robust scale. It does not take skewness into account since it does not

matter if the point is on the left or on the right hand side of the median. Hubert & Van

der Veeken (2008) extended the outlyingness to an adjusted outlyingness defined by

AOi = AO(xi, X) =

8
>><

>>:

xi � µ̂n

w1 � µ̂n
, if xi � µ̂n,

µ̂n � xi

µ̂n � w2
otherwise,

(1.15)

where w1 and w2 are the upper and lower whiskers of the adjusted boxplot applied to the

dataset X introduced in the previous section. Note again that the adjusted outlyingness

reduces to the outlyingness for symmetrical data. In theory, the adjusted outlyingness

(AO) can resist 25% outliers, although one notices a substantial bias of the medcouple

when the contamination exceeds 10%. Furthermore, the authors prove that the AO has

a bounded influence function.

Under normality, the AO is asymptotically �2
1 distributed (for univariate data), but for

skewed data the distribution is unknown. Hence to detect outliers after computing the

AO, the authors propose to use the adjusted boxplot (AB) for right skewed data applied

to the AO to classify points that are larger than the upper whiskers as outliers. We

will use the adjusted boxplot and the adjusted outlyingness to detect outliers and then

derive robust versions of the Shapiro-Wilk test in the same manner as our proposed robust

normality test that we introduce in the next subsection. In the next sections, we shall

refer to these tests respectively with the names RSWAB and RSWAO.

1.4.3 New robust tests of normality

Our idea is to apply an outlier detection procedure to derive a robust test for normality

in the presence of outliers based on the Shapiro-Wilk test.
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Let X = (x1, x2, . . . , xn)

t denote a sample of ordered iid data of size n. Let µ̂n represent

the sample median of X and �̂n the sample median absolute deviation (MAD), that

are respectively robust estimators of the mean µ and the standard-deviation �. We

assume the MAD to be already corrected for consistency under the hypothesis of a normal

distribution. Let ˜X be an additional ordered random sample of length n, generated

artificially from the normal distribution with mean µ̂n and variance �̂2
n.

We now investigate two new robustifications of the Shapiro-Wilk test.

1.4.3.1 Symmetrical trimming

Under the null hypothesis of normality, a large percentage of the data should be equally

spread around the mean within a radius of about 3 standard deviations.

Let O = {t|xt /2 [µ̂n � 3�̂n, µ̂n + 3�̂n]} denote the set of indices of assumed very unlikely

(outlying) observations under the normality assumption. We define:

yt =

8
><

>:

xt, if t /2 O

x̃t, if t 2 O.

The observations of the sample X are replaced by those of the sample ˜X, so that the Ln

smallest outlying observations in X are replaced by the Ln smallest observations of ˜X,

where Ln denotes the number of observations of X that are less than µ̂n�3�̂n. The similar

replacement procedure holds for the Un largest observations of X, where by analogy Un

denotes the number of observations of X that are greater than µ̂n + 3�̂n. To test X for

normality, we apply the Shapiro-Wilk test of normality to the modified data Y and denote

the new test by RSW .
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1.4.3.2 Asymmetrical trimming

Considering the fact that in the presence of skewed data it might make more sense to

trim the data asymmetrically, we consider the left and right MAD that we define as:

�̂n,l = MADleft = c0 med
xi<µ̂n

(µ̂n � xi)

�̂n,r = MADright = c0 med
xi>µ̂n

(xi � µ̂n),

where c0 is a correction constant to achieve consistency under normality.

Analogously to the previous subsection, we consider O = {t|xt /2 [µ̂n � 3�̂n,l, µ̂n + 3�̂n,r]}
the set of indices of outlying observations under the normality assumption and define

yt =

8
><

>:

xt, if t /2 O

x̃t, if t 2 O,

i.e. we replace the observations in the sample X in the same manner as we did in the

symmetric case.

To test X for normality, we apply the Shapiro-Wilk test of normality to the modified

data set Y . We call this test asymmetrical robustified Shapiro-Wilk test and denote it by

RSWAS.
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1.5 Asymptotic theory for the new test

In this section, we investigate the asymptotic limit of the empirical distribution function

of the symmetrically modified sequence and determine the asymptotic distribution of the

new robust Shapiro-Wilk test statistic.

Let X = (X1, X2, . . . , Xn)

t be a sample of iid data from a normal distribution with mean

µ and variance �2. Let X(n) = (Xn1, Xn2, . . . , Xnn) be the order statistic of the sample.

We assume that each random variable Xi is defined on the probability space (⌦1, A1, P ),

so that Xi : ⌦1 �! R.

Further we define µ̂n and �̂n the sample median and the sample MAD as robust estimators

for the mean and standard-deviation of X, i.e. these estimators are random variables

defined on ⌦1.

Conditional on µ̂n and �̂n, let ˜X = (

˜X1, ˜X2, . . . , ˜Xn)

t be an artificially generated iid

sample of size n from a normal distribution with mean µ̂n and variance �̂2
n, so that

˜X(n) = (

˜Xn1, ˜Xn2, . . . , ˜Xnn)

t is the corresponding order statistic. Each random variable ˜Xi

is defined on the probability space (⌦1 ⇥ ⌦2, A1 ⇥ A2, P ⌦ P ), so that ˜Xi : ⌦1⇥⌦2 �! R.

For convenience, we will use P as probability measure for events in ⌦1 and ⌦1⇥⌦2, when

no confusion is possible.

We symmetrically trim X and use the values in ˜X to replace the outlying values of X,

thus obtaining the sample Y = (Y1, Y2, . . . , Yn)

t as explained above.

1.5.1 Notations

Let

• Ln denote the number of observations of X smaller than µ̂n � 3�̂n.

• Un denote the number of observations of X larger than µ̂n + 3�̂n.

• � be the distribution function of the standard normal distribution.

• F be the distribution function of the normal distribution with mean µ and variance

�2.
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• ˜Fn be the empirical distribution function of the modified sequence Y .

• Fn denote the empirical distribution function of the original sequence X.

• Gn be the distribution function of the normal distribution with mean µ̂n and variance

�̂2
n.

• ˆGn be the empirical distribution function of the sequence ˜X.

• Hn(x) denote the number of observations among the Ln smallest and the Un largest

observations of ˜X that are less than x.

• Nn = {i 2 N, so that i  n} for n 2 N.
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1.5.2 Asymptotic distribution of the modified sequence

The first result we want to establish is the asymptotic distribution of the modified sequence

under the null hypothesis of normal distributed data.

Theorem 1

Assuming the original data X follows a normal distribution, we have

sup

x2R

��� ˜Fn(x)� F (x)

��� wp1��! 0,

i.e. the empirical distribution of the modified sequence converges uniformly to the distri-

bution function underlying the original data.

For the proof of Theorem 1 some auxiliary results are needed.

1.5.2.1 Properties

Lemma 1

The distribution function Gn of the normal distribution with mean µ̂n and variance �̂2
n

fulfils

sup

x2R
|Gn(x)� F (x)| wp1��! 0,

i.e. the distribution function from which the artificial data are generated converges uni-

formly to the distribution function underlying the original data.

Proof

We know that µ̂n
wp1��! µ and �̂n

wp1��! �, see Serfling & Mazumder (2009), so that we have

µ̂n
wp1��! µ ) x� µ̂n

wp1��! x� µ 8x 2 R ) x� µ̂n

�̂n

wp1��! x� µ

�
8x 2 R.

Since the normal distribution function � is continuous, we can apply the continuous

mapping theorem to obtain the following relation:

�

✓
x� µ̂n

�̂n

◆
wp1��! �

✓
x� µ

�

◆
8x 2 R

)
�����
✓

x� µ̂n

�̂n

◆
� �

✓
x� µ

�

◆����
wp1��! 0 8x 2 R
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Because F is continuous, we can apply the theorem of Polya (Serfling, 1980, page. 18).

Hence from the pointwise convergence follows the uniform convergence.

Lemma 2

Let (✏, x) 2 R2 be a vector with positive coordinates and x + ✏ < 1. For the function

g1(✏, x) defined by

g1(✏, x) =

✓
x

x + ✏

◆x+✏✓
1� x

1� x� ✏

◆1�x�✏

,

it follows that 0 < g1(✏, x) < 1.

Proof

Define

g2(✏, x) = log (g1(✏, x))

= (x + ✏) [log(x)� log(x + ✏)] + (1� x� ✏) [log(1� x)� log(1� x� ✏)] .

We have

@g2

@✏
(✏, x) = log

✓
x

x + ✏

◆
+ (x + ✏)

✓ �1

x + ✏

◆
� log

✓
1� x

1� x� ✏

◆
+ (1� x� ✏)

✓
1

1� x� ✏

◆

= log

✓
x

x + ✏

◆
+ log

✓
1� x� ✏

1� x

◆
< 0 8✏ > 0 .

This means that g2(✏, x) is a monotone decreasing function of ✏ for every fixed value of x.

It follows for all (✏, x) as defined above that

log (g1(✏, x)) = g2(✏, x) < g2(0, x) = 0

, 0 < g1(✏, x) < 1

Lemma 3

sup

x2R

��� ˆGn(x)� F (x)

��� wp1��! 0,

i.e. the empirical distribution of the simulated data converges uniformly to the distribution

function underlying the original data.
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Proof

Let the sample X1, X2, . . . , Xn denote n independent realisations of the random variable

X : ⌦1 �! R and for each !1 2 ⌦1, we generate artificially the sequence ˜X1, ˜X2, . . . , ˜Xn

from a N (µ̂n(!1), �̂2
n(!1))-distribution, representing n realisations of the random variable

˜X : ⌦1 ⇥ ⌦2 �! R. Furthermore let x 2 R.

Define for each n 2 N and !1 2 ⌦1, Zni(!1, •) = I
⇣

˜Xni(!1, •)  x
⌘

for 8i 2 Nn. For

each fixed value of n 2 N, and fixed value of !1 2 ⌦1, the sequence Zn1, Zn2, . . . is an iid

sequence of Bernoulli distributed data with parameter ↵n(!1) = Gn(x)(!1).

According to Lemma 1, we have ↵n
wp1��! F (x). Let in the following

A = {!1 2 ⌦1 : ↵n(!1)
n!1���! F (x)} .

We have P (A) = 1.

Fix !1 2 A and ✏ > 0 at an arbitrary value. Define

Pn(!1) = P

 �����
1

n

nX

j=1

Znj(!1, •)� ↵n

����� � ✏

!
= Pn1(!1) + Pn2(!1) where

Pn1(!1) = P

 
1

n

nX

j=1

Znj(!1, •) � ↵n + ✏

!
and

Pn2(!1) = P

 
1

n

nX

j=1

Znj(!1, •)  ↵n � ✏

!
.

We now show that
1X

n=1

Pn(!1) < 1.

It is clear that if ✏ � 1, then we have Pn(!1) = Pn1(!1) = Pn2(!1) = 0. Hence we will

consider ✏ < 1 in the remaining of the proof. Let us study the two probabilities Pn1(!1)

and Pn2(!1) for a fixed value of n 2 N, starting with the case of Pn1(!1).

If ↵n(!1) + ✏ > 1 holds, we have Pn1(!1) = 0.

If ↵n(!1) + ✏ = 1, we get Pn1(!1) = P
⇣

1
n

Pn
j=1 Znj(!1, •) � 1

⌘
= (↵n(!1))

n.

If ↵n(!1) + ✏ < 1 holds, Chernoff (1952) and Hoeffding (1963) show that we can bound
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Pn1(!1) as follows

Pn1(!1) 
"✓

↵n(!1)

↵n(!1) + ✏

◆↵n(!1)+✏✓
1� ↵n(!1)

1� ↵n(!1)� ✏

◆1�↵n(!1)�✏
#n

.

Let

g1(✏,↵n(!1)) =

✓
↵n(!1)

↵n(!1) + ✏

◆↵n(!1)+✏✓
1� ↵n(!1)

1� ↵n(!1)� ✏

◆1�↵n(!1)�✏

.

Since ↵n(!1) + ✏ < 1 holds, we have 0 < g1(✏,↵n(!1)) < 1 (see Lemma 2) . Figure 1.1

shows a surface plot of the function g1(✏,↵n).

Figure 1.1: Surface plot of g1(✏,↵n).

Also note that for every fixed value of ✏, g1(✏,↵n(!1)) is a continuous function of

↵n(!1). From the convergence of ↵n(!1) in Lemma 1, it follows that ↵n(!1) is bounded

in a closed set ⇥(!1) ⇢ (0, 1) for n sufficiently large. Since g1(✏,↵n(!1)) 2 (0, 1) for any

finite n 2 N, it follows that 9✓✏(!1) 2 (0, 1) such that

✓✏(!1) = sup

n2N
g1(✏,↵n(!1)) .
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This yields

Pn1(!1)  ✓n
✏ (!1) .

Hence we have shown that
8
>>>>><

>>>>>:

Pn1(!1) = 0, if ↵n(!1) + ✏ > 1

Pn1(!1) = ↵n
n(!1), if ↵n(!1) + ✏ = 1

Pn1(!1)  ✓n
✏ (!1), if ↵n(!1) + ✏ < 1

In conclusion, if we define b✏(!1) = supn2N(↵n(!1), ✓✏(!1)), we get that b✏(!1) < 1 and

Pn1(!1)  bn
✏ (!1).

By analogy to the case of Pn1(!1), we can show also by using the Chernoff inequality for

Pn2(!1) that Pn2(!1)  an
✏ (!1), for some a✏(!1) 2 (0, 1). This implies that

8✏ > 0 : Pn(!1)  bn
✏ (!1) + an

✏ (!1)

)8✏ > 0 :

1X

n=1

Pn(!1) 
1X

n=1

bn
✏ (!1) +

1X

n=1

an
✏ (!1)

,8✏ > 0 :

1X

n=1

P

 �����
1

n

nX

j=1

Znj(!1, •)� ↵n(!1)

����� � ✏

!
 1

1� b✏(!1)
+

1

1� a✏(!1)
< 1 .

We have shown that

8✏ > 0 :

1X

n=1

P

 �����
1

n

nX

j=1

Znj(!1, •)� ↵n(!1)

����� � ✏

!
< 1 with probability one .

The theorem of Borel-Cantelli thus yields

8!1 2 A :

�����
1

n

nX

j=1

Znj(!1, •)� ↵n(!1)

�����
wp1��! 0

,8!1 2 A :

�����
1

n

nX

j=1

Znj(!1, •)�Gn(x)(!1)

�����
wp1��! 0 .

Define the set

N = {! = (!1,!2) : !1 /2 A or !2 2 C(!1)}, where

C(!1) = {!2 2 ⌦2 :

�����
1

n

nX

j=1

Znj(!1,!2)�Gn(x)(!1)

����� 9 0} .
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Fubini’s theorem implies P (N) = 0. Since

8! = (!1,!2) 2 N c
:

�����
1

n

nX

j=1

Znj(!1,!2)�Gn(x)(!1)

�����! 0 8x 2 R

,
��� ˆGn(x)�Gn(x)

��� =

�����
1

n

nX

j=1

Znj �Gn(x)

�����
wp1��! 0 8x 2 R

We get with the use of Lemma 1
��� ˆGn(x)� F (x)

��� wp1��! 0, 8x 2 R .

Again with the theorem of Polya (Serfling, 1980, page. 18) follows the result

sup

x2R

��� ˆGn(x)� F (x)

��� wp1��! 0 .

Lemma 4

The fraction
Ln

n
of replaced lower outliers fulfils

����
Ln

n
� �(�3)

����
wp1��! 0 .

Proof

From the theorem of Glivenko-Cantelli follows that

D1n = |Fn (µ̂n � 3�̂n)� F (µ̂n � 3�̂n)|  sup

x2R
|Fn(x)� F (x)| wp1��! 0 .

Using the continuous mapping theorem, we obtain

µ̂n � 3�̂n
wp1��! µ� 3�

)D2n = |F (µ̂n � 3�̂n)� F (µ� 3�)| wp1��! 0 .

We deduce
����
Ln

n
� �(�3)

���� = |Fn (µ̂n � 3�̂n)� F (µ� 3�)|

 D1n + D2n
wp1��! 0 .

Hence
����
Ln

n
� �(�3)

����
wp1��! 0 .
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Lemma 5

The fraction
Un

n
of replaced upper outliers fulfils

����
Un

n
� �(�3)

����
wp1��! 0 .

Proof

The proof is analogue to that of Lemma 4.

1.5.2.2 Proof of Theorem 1

Proof

Given µ̂n, �̂n, Ln and Un, we can write:

˜Fn(x) =

8
>>>>><

>>>>>:

Hn(x)
n , if x < µ̂n � 3�̂n

Fn(x)� Ln
n +

Hn(x)
n , if µ̂n � 3�̂n  x  µ̂n + 3�̂n

n�Un�Ln
n +

Hn(x)
n , if x > µ̂n + 3�̂n

(1.16)

This is equivalent to the following equation:

˜Fn(x) =

Hn(x)

n
+ min

⇢
max

⇢
Fn(x)� Ln

n
, 0

�
, 1� Un + Ln

n

�
, (1.17)

where

Hn(x)

n
= min

⇢
ˆGn(x),

Ln

n

�
+ max

⇢
ˆGn(x)� n� Un

n
, 0

�
. (1.18)

We know that given two real numbers u and v, we have

min{u, v} =

1

2

(u + v � |u� v|) = min{u� v, 0}+ v

max{u, v} =

1

2

(u + v + |u� v|) = max{u� v, 0}+ v .

Hence min{u, v} and max{u, v} are both continuous functions of their arguments, so

that we can apply the continuous mapping theorem to both functions. It follows with

Lemmas 3, 4, and 5 and with equations (1.17) and (1.18) that we can write:

8x 2 R, ˜Fn(x)

wp1��! ˜F (x) = min{F (x),�(�3)}+ max{F (x)� (1� �(�3)) , 0}+
+ min{max{F (x)� �(�3), 0}, 1� 2�(�3)} .
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We consider three cases:

Case 1: x < µ� 3�

In this case, we have F (x) < F (µ� 3�) = �(�3), so that

˜F (x) = min{F (x),�(�3)}+ max{F (x)� (1� �(�3)) , 0}+
+ min{max{F (x)� �(�3), 0}, 1� 2�(�3)}

=F (x) + 0 + min{0, 1� 2�(�3)} = F (x) + 0,

i.e. ˜F (x) =F (x) .

Case 2: µ� 3�  x  µ + 3�

Here, we have �(�3) = F (µ� 3�)  F (x)  F (µ + 3�) = �(3). It follows

˜F (x) = min{F (x),�(�3)}+ max{F (x)� (1� �(�3)) , 0}+
+ min{max{F (x)� �(�3), 0}, 1� 2�(�3)}

=�(�3) + 0 + min{F (x)� �(�3), 1� 2�(�3)}
= min{F (x), 1� �(�3)} = min{F (x),�(3)},

i.e. ˜F (x) =F (x) .

Case 3: x > µ + 3�

Here, it holds F (x) > F (µ + 3�) = �(3) and it follows

˜F (x) = min{F (x),�(�3)}+ max{F (x)� (1� �(�3)) , 0}+
+ min{max{F (x)� �(�3), 0}, 1� 2�(�3)}

=�(�3) + max{F (x)� �(3), 0}+ min{F (x)� �(�3), 1� 2�(�3)}
=�(�3) + F (x)� �(3) + min{F (x), 1� �(�3)}� �(�3)

=F (x)� �(3) + min{F (x),�(3)} = F (x)� �(3) + �(3),

i.e. ˜F (x) =F (x) .

In conclusion, we obtain 8x 2 R, ˜F (x) = F (x) so that with probability one

8x 2 R, lim

n!1

��� ˜Fn(x)� F (x)

��� = 0 .
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Thus, ˜Fn(x) converges pointwise to F (x) for all x 2 R. Because F is continuous, we can

apply the theorem of Polya (Serfling, 1980, page. 18). This yields the uniform convergence

with probability one:

lim

n!1

��� ˜Fn(x)� F (x)

��� = 0, 8x 2 R .
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1.5.3 Asymptotic distribution of the new robust test statistic

We use the notations introduced in Section 1.5.1. Let us define the Shapiro-Wilk test

statistic (Shapiro & Wilk, 1965) and the robust Shapiro-Wilk test statistic respectively

as follows

Wn =

(

Pn
k=1 ankXnk)

2

Pn
k=1

�
Xnk � ¯X

�2

and

˜Wn =

(

Pn
k=1 ankYnk)

2

Pn
k=1

�
Ynk � ¯Y

�2 ,

where ¯X and ¯Y are the respective arithmetic means of the samples X and Y , X is the

original sample and Y the symmetrically modified sample according to Section 1.4.3.1.

Theorem 2

Under the null hypothesis of the Shapiro-Wilk test that the original data X comes from a

normal distribution, it holds
���Wn � ˜Wn

��� p�! 0 .

To prove Theorem 2, we prove three useful theorems.

Theorem 3

Let {kn} be a sequence of integers so that Xnkn is a sequence of order statistics of central,

intermediate or extreme terms (for definition see 1.5.3.1). Under the null hypothesis of

normality, it holds

Xnkn � Ynkn

p�! 0 .

Theorem 4

Under the null hypothesis of normality, the sample variance of the modified sample Y

converges in probability to the variance of the original sample X, i.e.

1

n

nX

k=1

�
Ynk � ¯Y

�2 p�! �2 .
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Theorem 5

Under the null hypothesis of normality, the mean squared difference of the order statistics

of the modified sample Y and the original sample X converges in probability to 0, i.e.

1

n

nX

k=1

(Ynk �Xnk)
2 p�! 0 .

1.5.3.1 Definition and auxiliary results to prove Theorem 3

Let V = (V1, V2, . . . , Vn)

t and ˜V = (

˜V1, ˜V2, . . . , ˜Vn)

t be two independent samples of length

n from the uniform (0,1) distribution.

Further let Vnk and ˜Vnk be the k-th order statistic of V and ˜V respectively. Let {kn} be

a sequence of positive integers such that 1  kn  n 8n 2 N. The ratio
kn

n
is called the

rank of the order statistic Vnkn . If

p = lim

n!1

kn

n

exists, then p is the limiting rank of the sequence Vnkn .

Let us distinguish three types of sequences of order statistics:

• sequences of central terms, with 0 < p < 1

• sequences of intermediate terms, with p = 0 and kn !1 or p = 1 and n� kn !1

• sequences of extreme terms, if p = 0 and kn is bounded or p = 1 and n � kn is

bounded.

Lemma 6

If (Vnkn) and
⇣

˜Vnkn

⌘
are sequences of order statistics of the uniform distribution (0,1) of

one of the three types, then

n1/2
���Vnkn � ˜Vnkn

��� p�! 0 .

Proof

First we consider order statistics of central terms.
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Applying a corollary of Serfling (1980, page. 94) for sequences of central terms such that

kn satisfies the condition

kn

n
= p +

k

n1/2
+ o(

1

n1/2
), n !1, (1.19)

we have

n1/2
⇣
Vnkn � ˆ⇠pn

⌘
wp1��! k (1.20)

and

n1/2
⇣

˜Vnkn � ˆ

˜⇠pn

⌘
wp1��! k,

where ˆ⇠pn and ˆ

˜⇠pn denote the respective sample p-th quantile of V and ˜V .

Note that ˆ⇠pn � ˆ

˜⇠pn
wp1��! 0 because V and ˜V follow the same distribution. It follows

n1/2
���Vnkn � ˜Vnkn

��� wp1��! 0 ,

so that the result applies for sequences of central terms.

Now we consider sequences of intermediate and extreme terms.

Applying the formula for the probability density function of order statistics given in David

& Nagaraja (2003), we have that the probability density function fnk(x) of Vnk is given

by

fnk(x) =

n!

(k + 1)!(n� k)!

xk�1
(1� x)

n�k.

Thus Vnk is beta distributed with parameters k and n� k + 1.

Hence from Johnson et al. (1995), we have

V ar
⇣
n1/2

⇣
Vnkn � ˜Vnkn

⌘⌘
= 2nV ar (Vnkn) = 2n

kn(n� kn + 1)

(n + 1)

2
(n + 2)

=

✓
2n

n + 2

◆✓
n

n + 1

◆2✓kn

n

◆✓
n� kn + 1

n

◆
! 0 .

Due to the fact that

E
⇣
n1/2

⇣
Vnkn � ˜Vnkn

⌘⌘
= n1/2

⇣
E (Vnkn)� E

⇣
˜Vnkn

⌘⌘
= 0,
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we obtain

E

⇣
n1/2

⇣
Vnkn � ˜Vnkn

⌘⌘2
�

= V ar
⇣
n1/2

⇣
Vnkn � ˜Vnkn

⌘⌘
! 0

, n1/2
⇣
Vnkn � ˜Vnkn

⌘
L2�! 0

) n1/2
⇣
Vnkn � ˜Vnkn

⌘
p�! 0 .

Here the notation L2�! means convergence in 2nd mean.

Lemma 7

If (Vnkn) and
⇣

˜Vnkn

⌘
are two independent sequences of order statistics of the uniform

distribution (0,1) of central, intermediate or upper extreme terms, then

Vnkn

˜Vnkn

p�! 1 . (1.21)

Proof

For sequences of central terms so that p = limn!1
kn
n , we use a corollary of Serfling (1980,

page. 94) and obtain Vnkn

p�! p and ˜Vnkn

p�! p. This implies the result for sequences of

central terms.

For a sequence (Vnkn) of lower intermediate or lower extreme terms, the Markov probability

inequality yields

P (|Vnkn| < ✏) � 1� kn

(n + 1)✏
�! 1 ) Vnkn

p�! 0 .

Now assume (Vnkn) and
⇣

˜Vnkn

⌘
are sequences of upper intermediate or upper extreme

terms, then (1� Vnkn) and
⇣
1� ˜Vnkn

⌘
are sequences of lower intermediate and lower

extreme terms so that Vnkn

p�! 1 and ˜Vnkn

p�! 1. This yields the result for sequences of

upper intermediate and upper extreme terms.

It remains to show the result for (Vnkn) being a sequence of lower intermediate terms. We

have shown in the proof of Lemma 6 that ˜Vnkn is beta distributed with parameters kn and

n� kn + 1. From Johnson et al. (1995), we have

E

✓
1

˜Vnkn

◆
=

n

kn � 1

, kn > 1

V ar

✓
1

˜Vnkn

◆
=

n(n� kn + 1)

(kn � 2)(kn � 1)

2
, kn > 2 .
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Because Vnkn and ˜Vnkn are independent random variables, we have

E

✓
Vnkn

˜Vnkn

◆
= E (Vnkn) E

✓
1

˜Vnkn

◆
=

✓
kn

n + 1

◆✓
n

kn � 1

◆
=

✓
kn

kn � 1

◆✓
n

n + 1

◆
�! 1 .

From Frishman (1975), we have

V ar

✓
Vnkn

˜Vnkn

◆
= [E(Vnkn)]

2 V ar

✓
1

˜Vnkn

◆
+


E

✓
1

˜Vnkn

◆�2

V ar(Vnkn) + V ar(Vnkn)V ar

✓
1

˜Vnkn

◆
.

(1.22)

For the terms on the right hand side of equation (1.22), we obtain

[E(Vnkn)]

2 V ar

✓
1

˜Vnkn

◆
=

✓
kn

n + 1

◆2 n(n� kn + 1)

(kn � 2)(kn � 1)

2
=

✓
kn

kn � 1

◆2✓
1

kn � 2

◆
n(n� kn + 1)

(n + 1)

2
! 0 .


E

✓
1

˜Vnkn

◆�2

V ar(Vnkn) =

✓
n

kn � 1

◆2 kn(n� kn + 1)

(n + 1)

2
(n + 2)

=

✓
n

n + 1

◆2 kn

(kn � 1)

2

✓
n� kn + 1

n + 2

◆
! 0 .

V ar(Vnkn)V ar

✓
1

˜Vnkn

◆
=

✓
n� kn + 1

n + 1

◆2✓ n

n + 2

◆✓
kn

kn � 2

◆
1

(kn � 1)

2
! 0 .

Hence equation (1.22) yields

V ar

✓
Vnkn

˜Vnkn

◆
�! 0

and Chebyshev’s inequality yields

Vnkn

˜Vnkn

p�! 1 .

Lemma 8

If (Vnkn) and
⇣

˜Vnkn

⌘
are independent sequences of order statistics of the uniform distri-

bution (0,1) of lower extreme terms (kn 6= 1), then
Vnkn

˜Vnkn

is bounded in probability, i.e

8✏ > 0 9M✏ 2 R 9N✏ 2 N so that P

✓
Vnkn

˜Vnkn

> M✏

◆
< ✏ 8n > N✏ .

Proof

Markov’s inequality yields for every fixed ✏ > 0

P

✓
Vnkn

˜Vnkn

>
2

✏

◆
 kn

kn � 1

✓
n

n + 1

◆
✏

2

<

✓
kn

kn � 1

◆
✏

2

 ✏ 8kn � 2 .
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Lemma 9

Let ��1 denote the probit function. Then

lim

x!0
xe

1
2(��1(x)

)

2

= 0

and

lim

x!0
x��1

(x)e
1
2(��1(x)

)

2

= � 1p
2⇡

.

Proof

For 0 < x < 1 set u = �

�1
(x), so that

lim

x!0
xe

1
2(��1(x)

)

2

= lim

u!�1
�(u)e

1
2u2

= lim

u!�1

�(u)

e�
1
2u2

.

Applying the L’Hospital’s rule yields

lim

u!�1

�(u)

e�
1
2u2

= lim

u!�1

d
du (�(u))

d
du

⇣
e�

1
2u2
⌘

= lim

u!�1

1p
2⇡

e�
1
2u2

�ue�
1
2u2

= lim

u!�1
� 1

u
p

2⇡
= 0

) lim

x!0
xe

1
2(��1(x)

)

2

= 0 .

In the same manner

lim

x!0
x��1

(x)e
1
2(��1(x)

)

2

= lim

u!�1
u�(u)e

1
2u2

= lim

u!�1

�(u)

1
ue�

1
2u2

= lim

u!�1

d
du (�(u))

d
du

⇣
1
ue�

1
2u2
⌘

= lim

u!�1

1p
2⇡

e�
1
2u2

� 1
u2 e�

1
2u2 � e�

1
2u2

= lim

u!�1

1p
2⇡

1

� 1
u2 � 1

) lim

x!0
x��1

(x)e
1
2(��1(x)

)

2

= � 1p
2⇡

.

Lemma 10

Assume the same conditions as in Lemma 6 and let ��1 be the probit function. Then the

following holds

�

�1
(Vnkn)� ��1

⇣
˜Vnkn

⌘
p�! 0 . (1.23)
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Proof

Serfling (1980, page. 91) asserts

�

�1
(Vn1) + (2logn)

1/2 wp1��! 0 .

Since we can write the same for ˜Vnkn , we obtain

�

�1
(Vn1)� ��1

⇣
˜Vn1

⌘
wp1��! 0 .

This implies the result for kn = 1. For the rest of this proof, we assume kn > 1.

Let h1(x) = �

�1
(x). The first and second derivatives are given by

h01(x) =

p
2⇡e

1
2(��1(x)

)

2

h001(x) = 2⇡��1
(x)e(��1(x)

)

2

.

Further let (x, y) 2 (0, 1)

2. Taylor’s theorem yields the following for the probit function

�

�1
(x)� ��1

(y) =

p
2⇡e

1
2(��1(y)

)

2

(x� y) +

h001(⇠)

2

(x� y)

2, (1.24)

where ⇠ lies between x and y.

For x = Vnkn and y =

˜Vnkn and each fixed n, we thus have

�

�1
(Vnkn)� ��1

⇣
˜Vnkn

⌘
=

p
2⇡e

1
2(��1(Ṽnkn )

)

2 ⇣
Vnkn � ˜Vnkn

⌘
+

h001(⇠n)

2

⇣
Vnkn � ˜Vnkn

⌘2

,

with ⇠n between Vnkn and ˜Vnkn .

For sequences of central terms, equation (1.20) implies that with probability one Vnkn will

neither tend to 0 nor 1. It follows that with probability one ��1
(Vnkn) and h001 (⇠n)

2 will not

tend to infinity, hence using Lemma 6

�

�1
(Vnkn)� ��1

⇣
˜Vnkn

⌘
wp1��! 0,

which implies equation (1.23) for sequences of central terms.

Due to the symmetry of the uniform distribution around its mean and the symmetry of the

probit function around 1/2, we can conduct the proof for sequences of lower intermediate

and extreme terms and the result for the upper intermediate and extreme terms will
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follow by symmetry. Let us consider Vnkn to be a sequence of lower intermediate or

extreme terms. We know that Vnkn

p�! 0.

Define

h2(x) =

8
><

>:

xe
1
2(��1(x)

)

2

, if 0 < x < 1

0, if x = 0

Lemma 9 implies that h2(x) is a continuous function and the continuous mapping theorem

assures

h2(Vnkn)

p�! h2(0) , Vnkne
1
2(��1(Vnkn )

)

2 p�! 0 .

Because of Lemma 7 and Lemma 8, we know that either Ṽnkn
Vnkn

is bounded in probability

or Ṽnkn
Vnkn

p�! 1. In both cases, we obtain

˜Vnkn

Vnkn

Vnkne
1
2(��1(Vnkn )

)

2 p�! 0 ) ˜Vnkne
1
2(��1(Vnkn )

)

2 p�! 0,

Hence

p
2⇡e

1
2(��1(Ṽnkn )

)

2 ⇣
Vnkn � ˜Vnkn

⌘
p�! 0 . (1.25)

To finish the proof, we just need to show that

h001(⇠n)

2

⇣
Vnkn � ˜Vnkn

⌘2 p�! 0 . (1.26)

holds for order statistics of intermediate and extreme terms.

It is only necessary to show

h001(⇠n)

2

(Vnkn)

2 p�! 0,

because due to Lemma 7 and Lemma 8, it will immediately follow

h001(⇠n)

2

⇣
˜Vnkn

⌘2 p�! 0

h001(⇠n)

2

⇣
Vnkn

˜Vnkn

⌘
p�! 0 .
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Define

h3(x) =

8
><

>:

x2
�

�1
(x)e(��1(x)

)

2

, if 0 < x < 1

0, if x = 0

Lemma 9 implies that

lim

x!0
h3(x) = lim

x!0
x2
�

�1
(x)e(��1(x)

)

2

=

⇣
lim

x!0
xe

1
2(��1(x)

)

2⌘⇣
lim

x!0
x��1

(x)e
1
2(��1(x)

)

2⌘
= 0 .

This means that h3(x) is a continuous function and again with the continuous mapping

theorem, we have

Vnkn

p�! 0 ) h3(Vnkn)

p�! h3(0) , h001(Vnkn)

2

(Vnkn)

2 p�! 0 .

Lemma 7 and Lemma 8 yield the equivalent result

h001( ˜Vnkn)

2

(Vnkn)

2 p�! 0 .

Since ⇠n lies between Vnkn and ˜Vnkn and it is easy to show that h001 is a strictly increasing

function, we obtain

h001(⇠n)

2

(Vnkn)

2 p�! 0 .

Lemma 11

Recalling the notations of Section 1.5, we state

Xnkn � ˜Xnkn

p�! 0 . (1.27)

Proof

Let Vi = �

�
Xi�µ

�

�
and ˜Vi = �

⇣
X̃i�µ̂n

�̂n

⌘
. Then V1, . . . , Vn and ˜V1, . . . , ˜Vn both are inde-

pendent uniform(0,1) samples and because of monotonicity

Xnkn = F�1
(Vnkn) = µ + ���1

(Vnkn)

˜Xnkn = G�1
n

⇣
˜Vnkn

⌘
= µ̂n + �̂n�

�1
(

˜Vnkn) .
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Using these equalities, we obtain

Xnkn � ˜Xnkn = µ + ���1
(Vnkn)�

⇣
µ̂n + �̂n�

�1
(

˜Vnkn)

⌘

= [µ� µ̂n] +

h
�
⇣
�

�1
(Vnkn)� ��1

⇣
˜Vnkn

⌘⌘i
+

h
(� � �̂n)�

�1
(

˜Vnkn)

i
.

As a consequence of Lemma 10 we have

�
⇣
�

�1
(Vnkn)� ��1

⇣
˜Vnkn

⌘⌘
p�! 0 .

Serfling & Mazumder (2009) showed that µ�µ̂n
wp1��! 0 and ���̂n

wp1��! 0 at an exponential

rate. We also know from (Serfling, 1980, page. 91) that

�

�1
(Vnn)� (2 log(n))

1/2 wp1��! 0,

so that it follows

(� � �̂n)�

�1
(

˜Vnn)

p�! 0. (1.28)

Given that ��1
(Vnn) and ��1

(Vn1) have the fastest rate of convergence to infinity (the

convergence rate being the same for both quantities due to symmetry), equation (1.28)

implies

(� � �̂n)�

�1
(

˜Vnkn)

p�! 0

and the result follows

Xnkn � ˜Xnkn

p�! 0 .

1.5.3.2 Proof of theorem 3

Proof

The modified sequence Y is composed of three ordered parts

• Part 1: ˜Xn,1  ˜Xn,2  · · ·  ˜Xn,Ln

• Part 2: Xn,Ln+1  · · ·  Xn,n�Un
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• Part 3: ˜Xn,n�Un+1  ˜Xn,n�Un+2  · · ·  ˜Xn,n

Note that the modified sequence is not ordered yet. Also notice that ˜Xn,Ln and Xn,Ln+1

are order statistics of central terms because Lemma 4 states that

Ln

n
wp1��! �(�3) .

Let us focus on ordering the two first parts of the modified sequence.

To do this, we search for an upper bound for ˜Xn,Ln in Part 2 and a lower bound for

Xn,Ln+1 in Part 1.

Let us first consider the case of ˜Xn,Ln .

Let {cn} be a positive sequence of integers such that Ln  cn  n�Un and c be a strictly

positive real number. We show that if limn!1Xn,cn is not larger than limn!1 ˜Xn,Ln with

probability one then

8c > 0 :

cn

n
< �(�3) +

c

n1/2
+ o(

1

n1/2
), n !1

and

n1/2
⇣
Xn,cn � ˜Xn,Ln

⌘
wp1��! 0 .

Suppose {cn} is a positive sequence of integers such that Ln  cn  n� Un and fulfilling

9c > 0 :

cn

n
� �(�3) +

c

n1/2
+ o(

1

n1/2
), n !1 . (1.29)

Let us consider the case of equality in equation (1.29). Then we apply a corollary of

Serfling (1980, page 94) to obtain

n1/2
(Xn,cn � (µ� 3�))

wp1��! c�

�(�3)

and

n1/2
⇣

˜Xn,Ln � (µ� 3�)

⌘
wp1��! 0,

where �(x) is the density function of the standard normal distribution.

) lim

n!1
n1/2

(Xn,cn � (µ� 3�)) > lim

n!1
n1/2

⇣
˜Xn,Ln � (µ� 3�)

⌘
with probability one

, lim

n!1
Xn,cn > lim

n!1
˜Xn,Ln with probability one.
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It is obvious that this result will still hold if strict inequality is fulfilled in equation (1.29).

Thus we have shown the equivalent result that if Xn,cn is not larger than ˜Xn,Ln with

probability one then the constant c must be null and

Ln

n
 cn

n
= �(�3) + o(

1

n1/2
), n !1 (1.30)

and hence

n1/2
⇣
Xn,cn � ˜Xn,Ln

⌘
wp1��! 0 .

By analogy, for the lower bound of Xn,Ln+1, we have that for a sequence of integers

{c0n} such that 1  c0n  Ln, if limn!1 ˜Xn,c0n is not smaller than limn!1Xn,Ln+1 with

probability one, then

Ln

n
� c0n

n
= �(�3) + o(

1

n1/2
), n !1 (1.31)

and it would follow

n1/2
⇣
Xn,Ln+1 � ˜Xn,c0n

⌘
wp1��! 0 .

So that arranging the first two parts of the modified sequence in ascending order as n

grows to infinity can be done in the following manner

• Yn,kn =

˜Xn,kn for 1  kn  c0n � 1, the set of observations of limn!1 ˜X that are

smaller than limn!1Xn,Ln+1 with probability one and it follows from Lemma 11

Yn,kn �Xn,kn =

˜Xn,kn �Xn,kn

p�! 0 .

• Yn,kn = Xn,kn for cn + 1  kn  n � Un, the set of observations of limn!1X that

are larger than limn!1 ˜Xn,Ln with probability one, so that

Yn,kn �Xn,kn = Xn,kn �Xn,kn = 0

p�! 0 .

• Yn,kn 2 { ˜Xn,c0n , . . . , ˜Xn,Ln , Xn,Ln+1, . . . , Xn,cn} such that equations (1.30) and (1.31)

hold and hence, we conclude

n1/2
(Yn,kn �Xn,kn)

wp1��! 0 .
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We can apply the same logic to arrange Part 2 and 3 of the modified sequence to have

that

Yn,kn �Xn,kn

p�! 0

for any sequence of order statistics of one of the three types.

1.5.3.3 Auxiliary results to prove Theorem 4

Lemma 12

Let Tn1, Tn2, . . . , Tnn and ˜Tn1, ˜Tn2, . . . , ˜Tnn be the order statistics of independent samples

of independent and identically standard normal distributed random variables. Define Tnk

and ˜Tnk as the k-th order statistics in independent samples of length n. We have

1

n

nX

k=1

Tnk
˜Tnk

p�! 1 .

Proof

Let us define

 n =

1

n

nX

k=1

Tnk
˜Tnk .

We will apply Chebyshev’s inequality to  n after computing its expectation and showing

that

lim

n!1
V ar( n) = 0 .

We have

E( n) =

1

n

nX

k=1

E (Tnk) E
⇣

˜Tnk

⌘
=

1

n

nX

k=1

[E (Tnk)]
2

=

1

n

nX

k=1

⇥
E
�
T 2

nk

�� V ar(Tnk)
⇤

=

1

n
E

 
nX

k=1

T 2
nk

!
� 1

n

nX

k=1

V ar(Tnk) =

1

n
E

 
nX

k=1

T 2
k

!
� 1

n

nX

k=1

V ar(Tnk)

E( n) = 1� 1

n

nX

k=1

V ar(Tnk) . (1.32)
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Stephens (1975) shows that the asymptotic eigenvalues of the covariance matrix V0 of the

order statistics are values of the sequence { 1
n}n2N so that its trace fulfils

1

n

nX

k=1

V ar(Tnk)� 1

n

nX

k=1

1

k
n!1���! 0 . (1.33)

The second sum in (1.33) is a Cesaro mean (see Cesàro (1888)) and it follows

1

k
k!1���! 0 ) 1

n

nX

k=1

1

k
n!1���! 0

) 1

n

nX

k=1

V ar(Tnk)
n!1���! 0 . (1.34)

Hence from equations (1.32) and (1.34), we can conclude that  n has a finite mean and

it holds

E( n) = 1� 1

n

nX

k=1

V ar(Tnk)
n!1���! 1 .

We know that

V ar( n) =

1

n2

nX

k=1

V ar(Tnk
˜Tnk) +

1

n2

nX

i=1

nX

j=1
j 6=i

Cov
⇣
Tni

˜Tni, Tnj
˜Tnj

⌘
. (1.35)

And from Frishman (1975), we have

V ar(Tnk
˜Tnk) = [E(Tnk)]

2 V ar( ˜Tnk) +

h
E(

˜Tnk)

i2
V ar(Tnk) + V ar(Tnk)V ar( ˜Tnk)

= 2 [E(Tnk)]
2 V ar(Tnk) + (V ar(Tnk))

2

= 2

⇥
E(T 2

nk)� V ar(Tnk)
⇤
V ar(Tnk) + (V ar(Tnk))

2

V ar(Tnk
˜Tnk) = 2E(T 2

nk)V ar(Tnk)� (V ar(Tnk))
2 . (1.36)

We have

1

n2

nX

k=1

(V ar(Tnk))
2

=

2

4 1

n

 
nX

k=1

(V ar(Tnk))
2

!1/2
3

5
2


"

1

n

nX

k=1

V ar(Tnk)

#2

n!1���! 0 (1.37)
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1

n2

nX

k=1

E(T 2
nk)V ar(Tnk)  1

n2

nX

k=1

E(T 2
nk)V ar(Tnk) +

1

n2

nX

k=1

0

BB@E(T 2
nk)

2

664
nX

j=1
j 6=k

V ar(Tnj)

3

775

1

CCA

=

 
1

n

nX

k=1

E(T 2
nk)

! 
1

n

nX

k=1

V ar(Tnk)

!
=

1

n

nX

k=1

V ar(Tnk)

) 1

n2

nX

k=1

E(T 2
nk)V ar(Tnk)  1

n

nX

k=1

V ar(Tnk)

with equation (1.34), we obtain

0  1

n2

nX

k=1

E(T 2
nk)V ar(Tnk)

n!1���! 0 . (1.38)

Equations (1.36), (1.37 ) and (1.38 ) imply

1

n2

nX

k=1

V ar(Tnk
˜Tnk)

n!1���! 0 . (1.39)

We now consider the second term on right hand side of equation (1.35). It holds

Cov
⇣
Tni

˜Tni, Tnj
˜Tnj

⌘
= E

⇣
Tni

˜TniTnj
˜Tnj

⌘
� E

⇣
Tni

˜Tni

⌘
E
⇣
Tnj

˜Tnj

⌘

= [E (TniTnj)]
2 � [E (Tni)]

2
[E (Tnj)]

2

= [Cov (Tni, Tnj) + E(Tni)E(Tnj)]
2 � [E (Tni)]

2
[E (Tnj)]

2

Cov
⇣
Tni

˜Tni, Tnj
˜Tnj

⌘
= [Cov (Tni, Tnj)]

2
+ 2Cov (Tni, Tnj) E(Tni)E(Tnj) . (1.40)

For the first term on the right hand side of equation (1.40) we can write

1

n2

nX

i=1

nX

j=1
j 6=i

[Cov (Tni, Tnj)]
2  1

n2

nX

i=1

nX

j=1

[Cov (Tni, Tnj)]
2

 1

n2

nX

i=1

nX

j=1

V ar(Tni)V ar(Tnj) =

1

n2

nX

i=1

V ar(Tni)

nX

i=1

V ar(Tnj)

=

 
1

n

nX

i=1

V ar(Tni)

!2

n!1���! 0 . (1.41)

Let m denote the vector of expected values of order statistics from a standard normal

distribution and recall that V0 is the corresponding covariance matrix. For the second
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term on the right hand side of equation (1.40) we have
nX

i=1

nX

j=1
j 6=i

Cov (Tni, Tnj) E(Tni)E(Tnj) = mtV0m�
nX

i=1

Cov (Tni, Tni) E(Tni)E(Tni) (1.42)

where

mtV0m =

nX

i=1

nX

j=1

Cov (Tni, Tnj) E(Tni)E(Tnj) .

As shown by Stephens (1975)

kV0m� 1

2

mk n!1���! 0,

where k • k is the Euclidean norm. Due to the fact that

mtm� n
n!1���! 0,

it follows

1

n2
mtV0m =

1

n2
mt

✓
V0m� 1

2

m

◆
+

1

2n2
mtm

n!1���! 0 .

On the other hand , we use equation (1.38) to obtain

1

n2

nX

i=1

Cov (Tni, Tni) E(Tni)E(Tni) =

1

n2

nX

i=1

V ar (Tni) (E(Tni))
2  1

n2

nX

i=1

V ar (Tni) E(T 2
ni)

n!1���! 0 .

Hence equation (1.42) yields

1

n2

nX

i=1

nX

j=1
j 6=i

Cov (Tni, Tnj) E(Tni)E(Tnj)
n!1���! 0 . (1.43)

Equations (1.40), (1.41) and (1.43) lead to

1

n2

nX

i=1

nX

j=1
j 6=i

Cov
⇣
Tni

˜Tni, Tnj
˜Tnj

⌘
n!1���! 0 . (1.44)

Finally it follows from equations (1.35), (1.39) and (1.44) that

V ar( n)

n!1���! 0 . (1.45)
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Applying Chebyshev’s inequality to  n and considering equation (1.45), we have the

following

8✏ > 0 : P (| n � E( n)| > ✏)  V ar( n)

✏2
n!1���! 0

which is equivalent to

 n � 1 +

1

n

nX

k=1

V ar(Xnk)
p�! 0

and due to equation (1.34)

 n
p�! 1 .

Lemma 13

Given the notations of Section 1.5, firstly, the arithmetic means of the observed and the

artificial samples converge weakly to the mean of the observed sample,i.e

1

n

nX

k=1

˜Xnk
p�! µ (1.46)

1

n

nX

k=1

⇣
Xnk � ˜Xnk

⌘
p�! 0 . (1.47)

Secondly, the sample means of squares of the observed and artificial samples converge

weakly to the second order moment of the observed sample computed under the normality

assumption, i.e

1

n

nX

k=1

˜X2
nk

p�! µ2
+ �2 (1.48)

1

n

nX

k=1

⇣
X2

nk � ˜X2
nk

⌘
p�! 0 . (1.49)

Proof

Because conditionally on (µ̂n, �̂2
n) it holds 1

n

Pn
k=1

˜Xk ⇠ N
⇣
µ̂n,

�̂2
n
n

⌘
, we obtain with

Chebyshev’s inequality

1

n

nX

k=1

˜Xnk � µ̂n =

1

n

nX

k=1

˜Xk � µ̂n
p�! 0 .
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Due to the strong convergence µ̂n
wp1��! µ, we obtain

1

n

nX

k=1

˜Xnk
p�! µ

and equation (1.46) is proven.

The same reasoning yields

1

n

nX

k=1

Xnk =

1

n

nX

k=1

Xk
p�! µ .

Hence we have

1

n

nX

k=1

⇣
Xnk � ˜Xnk

⌘
=

1

n

nX

k=1

Xnk � 1

n

nX

k=1

˜Xnk
p�! 0,

so that equation (1.47) is proven.

After straightforward calculations, we obtain

E

 
1

n

nX

k=1

˜X2
nk

!
= E

 
1

n

nX

k=1

˜X2
k

!
= µ̂2

n + �̂2
n < 1

V ar

 
1

n

nX

k=1

˜X2
nk

!
= V ar

 
1

n

nX

k=1

˜X2
k

!
=

1

n2

nX

k=1

V ar( ˜X2
k) =

1

n
V ar( ˜X2

) =

2�̂4
n + 4�̂2

nµ̂
2
n

n
n!1���! 0 .

Then Chebyshev’s inequality yields

1

n

nX

k=1

˜X2
nk �

�
µ̂2

n + �̂2
n

� p�! 0 .

Together with the strong convergence µ̂2
n + �̂2

n
wp1��! µ2

+ �2, equation (1.48) follows.

In the same manner, we show

1

n

nX

k=1

X2
nk

p�! µ2
+ �2

and equation (1.49) also follows.

Lemma 14

The observed data Xn1, Xn2, . . . , Xnn and the artificial data ˜Xn1, ˜Xn2, . . . , ˜Xnn fulfil, as n

goes to infinity,

1

n

nX

k=1

Xnk
˜Xnk

p�! �2
+ µ2 .
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Proof

From Lemma 12, we get

1

n

nX

k=1

✓
Xnk � µ

�

◆ 
˜Xnk � µ̂n

�̂n

!
p�! 1 (1.50)

because ��̂n
p�! �2 , equation (1.50) implies

1

n

nX

k=1

(Xnk � µ)

⇣
˜Xnk � µ̂n

⌘
p�! �2

, 1

n

nX

k=1

Xnk
˜Xnk � µ̂n

1

n

nX

k=1

Xnk � µ
1

n

nX

k=1

⇣
˜Xnk � µ̂n

⌘
p�! �2 . (1.51)

With Lemma 12 and the strong convergence µ̂n
wp1��! µ, we have

µ
1

n

nX

k=1

⇣
˜Xnk � µ̂n

⌘
p�! 0 and

µ̂n
1

n

nX

k=1

Xnk
p�! µ2

and together with equation (1.51), it follows

1

n

nX

k=1

Xnk
˜Xnk

p�! �2
+ µ2 .

Lemma 15

The mean squared differences between the order statistics of the observed and the artificial

sample converge weakly to 0, i.e

1

n

nX

k=1

⇣
Xnk � ˜Xnk

⌘2 p�! 0 .

Proof

With Lemma 14 and Lemma 13 equations (1.48) and (1.49), we can write

1

n

nX

k=1

⇣
X2

nk � ˜X2
nk

⌘
p�! 0

1

n

nX

k=1

˜X2
nk �

1

n

nX

k=1

Xnk
˜Xnk

p�! 0 .

It follows

1

n

nX

k=1

⇣
Xnk � ˜Xnk

⌘2

=

 
1

n

nX

k=1

⇣
X2

nk � ˜X2
nk

⌘!
+ 2

 
1

n

nX

k=1

˜X2
nk �

1

n

nX

k=1

Xnk
˜Xnk

!
p�! 0 .

52



1.5.3.4 Proof of Theorem 4

Proof

First we prove the convergence of the sample mean.

1

n

nX

k=1

Yi =

1

n

LnX

k=1

˜Xnk +

1

n

n�UnX

k=Ln+1

Xnk +

1

n

nX

k=n�Un+1

˜Xnk .

Hence
�����
1

n

nX

k=1

Yk � 1

n

nX

k=1

Xk

����� =

�����
1

n

LnX

k=1

⇣
˜Xnk �Xnk

⌘
+

1

n

nX

k=n�Un+1

⇣
˜Xnk �Xnk

⌘�����

 1

n

LnX

k=1

��� ˜Xnk �Xnk

���+
1

n

nX

k=n�Un+1

��� ˜Xnk �Xnk

���

 1

n

nX

k=1

��� ˜Xnk �Xnk

��� 
 

1

n

nX

k=1

⇣
˜Xnk �Xnk

⌘2
!1/2

and Lemma 15 yields
�����
1

n

nX

k=1

Yi � 1

n

nX

k=1

Xi

�����
p�! 0 .

Joined to the fact that 1
n

Pn
k=1 Xk

wp1��! µ, we have

1

n

nX

k=1

Yk
p�! µ . (1.52)

In the same manner, using Hölder’s inequality we obtain
�����
1

n

nX

k=1

Y 2
k �

1

n

nX

k=1

X2
k

����� 
1

n

LnX

k=1

��� ˜X2
nk �X2

nk

���+
1

n

nX

k=n�Un+1

��� ˜X2
nk �X2

nk

���

 1

n

nX

k=1

��� ˜X2
nk �X2

nk

��� =

1

n

nX

k=1

��� ˜Xnk + Xnk

���
��� ˜Xnk �Xnk

���

�����
1

n

nX

k=1

Y 2
k �

1

n

nX

k=1

X2
k

����� 
 

1

n

nX

k=1

⇣
˜Xnk + Xnk

⌘2
!1/2 

1

n

nX

k=1

⇣
˜Xnk �Xnk

⌘2
!1/2

(1.53)

1

n

nX

k=1

⇣
˜Xnk + Xnk

⌘2

=

1

n

nX

k=1

˜X2
nk +

1

n

nX

k=1

X2
nk +

2

n

nX

k=1

˜XnkXnk . (1.54)
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Using Lemma 14 and Lemma 13 in equation (1.54) leads us to

1

n

nX

k=1

⇣
˜Xnk + Xnk

⌘2 p�! 4

�
µ2

+ �2
�

.

Hence due to Lemma 15 and equation (1.53), we have
�����
1

n

nX

k=1

Y 2
k �

1

n

nX

k=1

X2
k

�����
p�! 0 .

Because 1
n

Pn
k=1 X2

k
wp1��! �2

+ µ2, we obtain

1

n

nX

k=1

Y 2
k

p�! �2
+ µ2 . (1.55)

Using equations (1.52) and (1.55), it is straightforward that

1

n

nX

k=1

�
Ynk � ¯Y

�2
=

 
1

n

nX

k=1

Y 2
k

!
�
 

1

n

nX

k=1

Yk

!2
p�! �2

+ µ2 � µ2
= �2 .

1.5.3.5 Proof of Theorem 5

Proof

Recalling the proof of Theorem 3, we stated that the modified sequence Y is composed of

three ordered parts

• Part 1: ˜Xn,1  ˜Xn,2  · · ·  ˜Xn,Ln

• Part 2: Xn,Ln+1  · · ·  Xn,n�Un

• Part 3: ˜Xn,n�Un+1  ˜Xn,n�Un+2  · · ·  ˜Xn,n

We focused on ordering the first two parts Part 1 and 2 in ascending order and we have

• Yn,k =

˜Xn,k for 1  k  c0n � 1, the set of observations of ˜X that are smaller than

limn!1Xn,Ln+1 with probability one and it follows

1

n

c0n�1X

k=1

(Ynk �Xnk)
2

=

1

n

c0n�1X

k=1

⇣
˜Xn,k �Xn,k

⌘2

 1

n

nX

k=1

⇣
˜Xn,k �Xn,k

⌘2 p�! 0
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• Yn,k = Xn,k for cn + 1  k  n � Un, the set of observations of X that are larger

than limn!1 ˜Xn,Ln with probability one, so that

1

n

n�UnX

k=cn+1

(Ynk �Xnk)
2

=

1

n

n�UnX

k=cn+1

(Xnk �Xnk)
2

= 0

• Yn,k 2 ⌅n = { ˜Xn,c0n , . . . , ˜Xn,Ln , Xn,Ln+1, . . . , Xn,cn} such that

n1/2
(Yn,k �Xn,k)

wp1��! 0

) n (Yn,k �Xn,k)
2 wp1��! 0 (1.56)

Let c00n = Ln +

1
2n

1/2. We have

c00n
n

=

Ln +

1
2n

1/2

n
=

Ln

n
+

1/2

n1/2
= �(�3) +

1/2

n1/2
+ o(n�1/2

) .

Because of a corollary of Serfling (1980, page 94), limn!1Xn,c00n will be larger than

limn!1 ˜Xn,Ln with probability one and this implies that Xn,c00n will not be in ⌅n for

n large enough.

By analogy the same will follow for ˜Xn,Ln� 1
2n1/2 so that the set ⌅n will have at most

n1/2 elements for n sufficiently large. It then follows with equation (1.56) that

1

n

X

Ynk2⌅n

(Ynk �Xnk)
2 wp1��! 0

By analogy, the same can be shown for arranging Part 2 and 3 in ascending order. Hence

we have the result

1

n

nX

k=1

(Ynk �Xnk)
2 p�! 0 .

1.5.3.6 Proof of Theorem 2

Proof

We start by showing that
������

Pn
k=1 ankXnkqPn

k=1

�
Xnk � ¯X

�2 �
Pn

k=1 ankYnkqPn
k=1

�
Ynk � ¯Y

�2

������
=

���W 1/2
n � ˜W 1/2

n

��� p�! 0 .
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For the difference of the numerators, we can write

1

n1/2

�����

nX

k=1

ankXnk �
nX

k=1

ankYnk

�����  n�1/2
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 1
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a2
nk

!1/2 nX
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(Xnk � Ynk)
2

!1/2

. (1.57)

Because the condition
Pn

k=1 a2
nk = 1 is fulfilled and with application of Theorem 5, we

have
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2
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Hence with equation (1.57), we have
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For convenience, let

s2
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.

It is easy to see with some computation that
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It follows with equation (1.59) and Theorem 4 that
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Hence because 0  ˜W 1/2
n  1 holds, we obtain

���W 1/2
n � ˜W 1/2

n

��� p�! 0 .

Consequently

���Wn � ˜Wn

��� =

����2W
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n

⇣
W 1/2

n � ˜W 1/2
n

⌘
�
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W 1/2

n � ˜W 1/2
n

⌘2
����

 2W 1/2
n

���W 1/2
n � ˜W 1/2

n

���+
���W 1/2

n � ˜W 1/2
n

���
2

)
���Wn � ˜Wn

��� p�! 0 .

1.5.4 Simulations

To support the above demonstrations, we conduct some simulations.

We generated 10000 sequences from a standard normal distribution for different sample

sizes ranging from 10 to 50000 observations to assess the convergence of the different

distributions to the normal. We used 161 equidistant points between -8 and 8 and for

each point x in this grid, we computed for every sample the values of Gn(x), ˆGn(x),

Fn(x) and ˜Fn(x). This allows us to estimate the distribution of supx2R |Fn(x)� F (x)|,
supx2R |Gn(x)� F (x)|, supx2R

��� ˆGn(x)� F (x)

��� and supx2R

��� ˜Fn(x)� F (x)

��� from the max-

imum absolute errors over the grid. The asymptotic convergence of the first of these

supremum distances to 0 is guaranteed by the Glivenko-Cantelli theorem. Theorem 1 de-

rived in the previous subsections proves the same convergence for the last of the supremum

distances, while the convergence of the other two terms has been obtained as auxiliary

results, see Lemma 1 and 3. In particular, we use the average maximum errors to esti-

mate the corresponding means. Furthermore we computed the average maximum squared

errors over the grid. Figure 1.2 and 1.3 summarize the results of these simulations.
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Figure 1.2: Average maximum absolute errors as a function of the sample size.
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Figure 1.3: Average maximum squared errors as a function of the sample size.
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Although ˆGn(x) converges slower than the other functions to F(x), this does not seem

to affect the rate of convergence very much. To estimate the rate of convergence, we

regress the logarithm of the average maximum absolute errors on the logarithm of the

sample size. Table 1.1 presents the slopes and intercepts of the different regressions. All

slopes are about �0.5, leading to the approximation

log(en) ⇡ �1

2

log(n) + C , en ⇡ eCn�1/2,

where en is either supx2R |Gn(x)� F (x)|, supx2R

��� ˆGn(x)� F (x)

���, supx2R |Fn(x)� F (x)|
or supx2R

��� ˜Fn(x)� F (x)

���, n denotes the number of observations and eC is a constant

not depending on n. This means that the convergence rate seems to be the same for

all functions because the supremum of the absolute difference between each of these

distribution functions and F (x) decreases at the ordinary rate n�1/2 as the sample size n

increases. The difference seems to be only the constant factor eC . This can also be seen

in Figure 1.4.
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Estimate Std. Error t value p value

Regression of log (supx2R |Gn(x)� F (x)|) on log(n)

Intercept -0.5944 0.0041 -146.6 <2e-16

log(n) -0.5013 0.0006 -875.8 <2e-16

Regression of log
⇣
supx2R

��� ˆGn(x)� F (x)

���
⌘

on log(n)

Intercept -0.0104 0.0031 -3.367 0.0032

log(n) -0.4995 0.0004 -11147.861 <2e-16

Regression of log (supx2R |Fn(x)� F (x)|) on log(n)

Intercept -0.2647 0.0030 -88.32 <2e-16

log(n) -0.5005 0.0004 -1182.75 <2e-16

Regression of log
⇣
supx2R

��� ˜Fn(x)� F (x)

���
⌘

on log(n)

Intercept -0.1389 0.030 -4.6 0.0002

log(n) -0.5162 0.0043 -121.1 <2e-16

Table 1.1: Results of the regressions of the logarithm of supx2R |Gn(x)� F (x)|,
supx2R

��� ˆGn(x)� F (x)

���, supx2R |Fn(x)� F (x)| and supx2R

��� ˜Fn(x)� F (x)

��� on the loga-

rithm of the number of observations.
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1.6 Comparison of the tests for normality

In this Section, we compare the robust tests for normality that we introduced in the

previous sections.

1.6.1 Sizes of the tests

First we check the sizes of the different tests in finite samples. For this purpose, we

simulate 10000 samples of size 100 from the standard normal distribution and compare

the performance of the tests when the samples are clean and when they are contaminated

with one positive and one negative outlier of the same magnitude equal to 7 standard

deviations. We also consider contamination with 5 outliers (3 positive and 2 negative

ones) of the same magnitude 7 standard deviations. The robust tests are compared to

the results of the ordinary Shapiro-Wilk (SW ) test. To avoid excessively long simulation

times for the TRIM↵ test, we only compute 1000 samples for it in the same manner as

for the others. To be specific, all the tests implemented here except TRIM↵ have similar

computation times, while the computation time of the TRIM↵ test is 9 to 1614 times

higher, depending on the sample size, which ranges from 10 to 5000 observations, and on

the procedure. The average computation times for all procedures are given in Table 1.2,

from which one can see that in the case of samples of size 100, the computation time of

TRIM↵ is 55 to 537 time higher than that of the other test procedures.
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sample sizes

10 20 50 100 200 500 1000 2000 5000

SW 3.0 3.1 3.3 3.4 3.4 3.7 2.2 4.2 3.9

RSW 3.5 3.9 4.7 4.5 4.9 6.6 3.9 4.0 5.2

RSWAO 5.5 5.6 5.4 6.0 7.5 11.0 21.4 32.5 65.1

RSWAB 8.2 7.7 8.7 10.1 9.9 13.5 17.3 26.9 68.8

RSWAS 4.8 5.8 5.0 6.4 6.7 6.0 4.9 4.8 10.9

SJ 2.8 2.1 1.8 1.5 2.4 2.1 3.8 2.3 1.9

JB 1.0 0.4 0.7 1.1 0.6 0.4 1.1 1.6 1.0

MC1 4.1 3.1 4.2 2.0 3.0 2.4 5.6 6.1 7.2

MC2 5.3 6.3 6.0 4.9 5.3 5.9 5.5 7.1 8.7

MC3 5.6 6.7 6.1 6.8 7.9 7.3 4.7 7.3 15.3

RJB 2.2 2.0 1.7 2.0 0.7 1.2 1.1 1.5 1.7

TRIM↵ 573.4 540.7 544.1 561.1 557.7 586.0 584.0 599.0 613.6

Table 1.2: Average computation times (in milliseconds) for each procedure for sample

sizes between 10 and 5000.
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Figure 1.5 presents the quantiles of the p values of the different tests as a function of

the significance level in case of clean normal samples. The TRIM↵ test does not appear

in the graphic because it needs a threshold in order to compute p values, and because

the hypothesis that are tested in its case are not the same as for the other tests. More

precisely, for all the other procedures, the null hypothesis tested is that the sample is

normally distributed, as opposed to the TRIM↵ test, which assumes non normality under

the null hypothesis, see Section 1.3.4. Therefore, it is difficult to compare the computed

p values. From this type of graphic, we can see whether the test is conservative or liberal.

A test is said to be conservative, when the probability of a type 1 error is less than the

nominal significance level considered. The test is liberal if the opposite is true. So if p and

↵ are respectively the p value of the observed test statistic and the nominal significance

level, then a test is said to be conservative at level ↵, if

Probability(p  ↵) < ↵.

Hence, if q↵ is the ↵ quantile of the p value of the test and q↵ > ↵, then the test is

conservative.

Figure 1.5 reveals that the majority of the tests is conservative, while the SJ test is

liberal. Note that the JB and the RJB test are liberal for small values of ↵ and become

conservative afterwards. At a significance level of 5%, the percentages of rejection of the

null hypothesis of normality are given in Table 1.3. Note that we have used simulations

for clean data to deduce a threshold for the TRIM↵ test. That is why the percentage of

rejection of normality is exactly 5%. We will use the same threshold �2
0 = 0.014647 for

the rest of the comparisons. Similarly, Figure 1.6 and 1.7 illustrate the p values of the

tests in the presence of 2 and 5 outliers, respectively. We note a complete breakdown of

the SW , the JB, the RJB and the SJ test, since they reject normality in the presence

of a few outliers. This is not surprising because the SW and the JB test are not robust

and the RJB and the SJ tests are not robust against outliers, but are designed to detect

heavy tails. We also notice a breakdown, although not complete, of the RSWAO for

significance levels less than about 0.27 in the presence of 2 outliers and 0.36 in the case of

5 outliers. For this reason it does not appear in the graphics. Because the most commonly
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Test Rejection of normality (in %) Test Rejection of normality (in %)

SW 4.88 JB 4.24

RSW 2.44 RJB 5.68

RSWAO 4.43 MC1 4.53

RSWAB 4.04 MC2 3.82

RSWAS 3.02 MC3 3.87

SJ 5.91 TRIM↵ 5.00

Table 1.3: Percentage of rejection of the null hypothesis of normality at a significance

level of 5% for samples of length 100.

used significance level is typically chosen as 5% and very rarely higher than 10%, we can

consider the RSWAO to break down. The breakdown of the RSWAO is due to the fact that

the adjusted outliers method does not detect outliers efficiently enough for the trimming

to replace them correctly. This leads to a higher rejection rate of the normality hypothesis.

The other tests reveal no significant changes and demonstrate good robustness to the two

outliers. The percentage of rejection of the null hypothesis in presence of two outliers

are summarized in Table 1.4: we note the breakdowns that we have already noticed in

Figures 1.6 and 1.7. But we also notice that the presence of the outliers affects the ability

of the TRIM↵ test to detect normality.
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Figure 1.6: QQ Plot of p values of robust tests for normality for contaminated standard

normal samples of length 100 with two outliers of magnitude 7 standard deviations each.

Test
Rejection of normality (in %)

Test
Rejection of normality (in %)

2 outliers 5 outliers 2 outliers 5 outliers

SW 100 100 JB 100 100

RSW 1.77 2.13 RJB 100 100

RSWAO 28.27 37.52 MC1 4.7 4.6

RSWAB 3.9 3.97 MC2 3.57 3.52

RSWAS 2.07 2.03 MC3 3.84 3.86

SJ 100 100 TRIM↵ 11.40 35.25

Table 1.4: Percentage of rejections of the null hypothesis of normality in presence of

outliers of magnitude 7 standard deviations at a significance level of 5% for samples of

length 100.

67



0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Quantile of the p values of the tests under normality in presence of five outliers

Significance level

Q
ua

nt
ile

s 
of

 th
e 

p 
va

lu
es

asymetric trimming with MAD (RSW_AS)
No trimming (SW)
Standard trimming (RSW)
trimming with AO (RSW_AO)
trimming with AB (RSW_AB)
JB
MC1
MC2
MC3
RJB
SJ

Figure 1.7: QQ Plot of p values of robust tests for normality for contaminated standard

normal samples of length 100 with five outliers of magnitude 7 standard deviations each.
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1.6.2 Power of the robust tests

In this subsection, we compare the power of the robust tests for normality with the SW

test. To investigate different departures from normality, we simulate 10000 samples of

length 100 from each of the following distributions:

• The �2 distribution with 2 or 10 degrees of freedom

• The t distribution with 2, 3, 5 or 10 degrees of freedom

• The inverse Box-Cox with parameter � applied to a normal distribution with mean

7 and variance 1, where � 2 {0, 0.25, 0.5, 0.75}

• The inverse Box-Cox with parameter � applied to a normal distribution with mean 7

and variance 1 with two outliers with the values 1 and 13 (i.e. 6 standard deviations)

before inverse Box-Cox transformation, where � 2 {0, 0.25, 0.5, 0.75}

• The inverse Box-Cox with parameter � applied to a normal distribution with mean

7 and variance 1 in the presence of five outliers (3 positive and 2 negative out-

liers) with the values 1 and 13 before inverse Box-Cox transformation, where � 2
{0, 0.25, 0.5, 0.75}

The results are summarized in Tables 1.5 to 1.8.

From Table 1.5, we can deduce that all tests perform similarly well except the robust tests

based on the medcouple, which have poor power against these alternatives. The RSWAS

is more powerful than its symmetric version RSW in case of a �2 distribution, but has

little power for detecting a t-distribution. In case of a t-distribution the JB, the RJB

and the SJ test show the best results and they outperform the SW and the TRIM↵

test. This is not surprising because their power is directed towards such departures from

normality.

Tables 1.6, 1.7 and 1.8 summarize the results of the power study in case of departures

corresponding to an inverse Box-Cox transformation of a normal distribution. For � = 1,

we have a normal distribution, and as the difference between � and 1 grows the distribution
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Test �2
2 �2

10 t2 t3 t5 t10

RSWAS 100.0 79.8 10.8 7.5 5.5 3.9

SW 100.0 90.4 98.6 87.4 56.8 23.5

RSW 100.0 67.7 8.4 5.6 4.0 2.6

RSWAO 100.0 85.8 83.3 61.8 34.1 14.0

RSWAB 100.0 75.3 26.1 18.8 12.3 7.0

JB 100.0 81.3 98.8 90.4 64.3 31.0

MC1 85.2 24.0 7.6 6.3 5.5 5.5

MC2 47.6 8.9 19.7 9.3 6.0 5.1

MC3 95.7 24.1 18.7 9.1 6.0 5.3

RJB 100.0 74.2 99.3 92.5 67.7 32.9

SJ 87.3 22.2 99.1 90.0 57.7 21.1

TRIM↵ 100.0 80.5 89.5 63.1 23.0 11.2

Table 1.5: Power (in %) of the tests for normality at a significance level of 5%.

departs exponentially fast from normality. Therefore we expect the power of the tests to

decrease as the value of � tends to 1. Note that almost all performances are similar except

the one of the MC2 test. However, in the presence of outliers, the SW , the JB, the RJB

and the SJ test break down.

As an illustration of the behaviour of the tests with a skewed distribution, we represent

the power of the tests for normality applied to a log-normal distribution (� = 0) as a

function of the significance level. The results of 100000 samples are seen in Figures 1.8 to

1.10. In the case of the TRIM↵ test, we used 1000 samples. The robust tests based on

the medcouple have the smallest power, with the MC2 test being the least powerful.
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Test � = 0 � = 0.25 � = 0.5 � = 0.75

RSWAS 100.0 65.0 13.0 4.5

SW 100.0 81.8 21.0 7.3

RSW 100.0 51.2 8.9 3.5

RSWAO 100.0 74.9 18.3 6.6

RSWAB 100.0 61.8 13.1 5.6

JB 100.0 72.9 18.8 6.4

MC1 94.6 20.1 6.9 5.0

MC2 48.1 8.2 5.4 4.8

MC3 99.0 20.1 6.7 4.9

RJB 100.0 66.9 17.5 6.5

SJ 99.6 20.0 7.0 5.3

TRIM↵ 100.0 70.0 18.2 7.9

Table 1.6: Power (in %) of the tests for normality for the normal distribution with mean

7 and variance 1 transformed with the inverse Box-Cox with parameter �.
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Test � = 0 � = 0.25 � = 0.5 � = 0.75

RSWAS 100.0 40.1 6.5 2.9

SW 100.0 100.0 100.0 100.0

RSW 100.0 20.0 2.9 2.2

RSWAO 100.0 58.8 32.5 41.5

RSWAB 100.0 46.8 10.1 6.5

JB 100.0 100.0 100.0 100.0

MC1 95.0 20.4 7.1 5.9

MC2 50.2 7.6 5.5 5.1

MC3 99.1 20.3 7.1 5.6

RJB 100.0 100.0 100.0 100.0

SJ 100.0 100.0 100.0 100.0

TRIM↵ 99.3 64.9 26.8 14.2

Table 1.7: Power (in %) of the tests for normality for the normal distribution with mean

7 and variance 1 transformed with the inverse Box-Cox with parameter � in presence of

two outliers.
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Test � = 0 � = 0.25 � = 0.5 � = 0.75

RSWAS 100.0 33.3 7.5 2.7

SW 100.0 100.0 100.0 100.0

RSW 100.0 14.4 3.8 3.2

RSWAO 100.0 56.0 58.1 55.2

RSWAB 100.0 40.6 13.2 6.8

JB 100.0 100.0 100.0 100.0

MC1 96.1 22.4 7.8 5.6

MC2 51.6 6.5 4.3 3.8

MC3 99.6 20.8 6.9 4.3

RJB 100.0 100.0 100.0 100.0

SJ 100.0 100.0 100.0 100.0

TRIM↵ 100.0 67.6 39.6 33.6

Table 1.8: Power (in %) of the tests for normality for the normal distribution with mean

7 and variance 1 transformed with the inverse Box-Cox with parameter � in presence of

three positive outliers and two negative outliers each of magnitude 6 standard deviations.
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Figure 1.8: Power of the normality tests when the samples follow a log-normal distribution.
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Figures 1.9, 1.10 and 1.11 show the power of the tests for normality as a function of

the transformation parameter � in the case of clean samples or samples contaminated

with 2 and 5 outliers of size 6 standard deviations each, respectively. The RSWAS, the

RSW and the RSWAB show the best performances as they are robust against the outliers

and meet the expectations in terms of power. We also note that the RSWAS seems to

perform slightly better than the other two robust tests. The SW , the JB, the RJB and

the SJ test are not robust and we also notice that in the presence of outliers, the power of

the RSWAO test tends to stabilize at a certain level, mainly because it fails to detect the

outliers efficiently. The TRIM↵ test shows good power, but when we approach normality

(as the value of � increases and gets closer to one), the rejection rate of the normality

assumption for the TRIM↵ test is very high compared to the other tests and it becomes

larger as the number of outliers in the data increases, as we can already note in Table 1.8.

Its curve is not smooth due to the fact that we used only 1000 samples per value of � for

it, instead of 10000 as for the other tests.

1.7 Conclusion

The aim of this chapter is to test whether the majority of a data sequence follows a

normal distribution, in other words approximate normality. This feature is particularly

interesting, when the data is contaminated with a few outliers. We opted to robustify

the Shapiro-Wilk test for normality and hopefully derive a test that outperforms its com-

petitors in this context, because the Shapiro-Wilk test is one of the most powerful test

of normality. The robust test RSWAS that we have constructed actually meets our ex-

pectations in terms of power and we show that under the null hypothesis of normality,

the difference between the new robust test statistic and the Shapiro-Wilk test statistic

converges in probability to 0. This in turn implies that the asymptotic distribution of the

new robust test statistic is the same as that of the Shapiro-Wilk test statistic. Intensive

simulations illustrate not only that our robust test (RSWAS) is not time consuming, but

also that it is more robust than the other robust tests of normality in presence of two
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and five outliers, when the true distribution of the data is Gaussian. Another appealing

feature of the robust Shapiro-Wilk test is its behaviour in presence of outliers when the

inverse Box-Cox transformation family is considered. In this case, it behaves better than

the others robust tests in terms of power. This feature will be very useful for deriving a

suitable robust Box-Cox transformation in the next chapter.
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Chapter 2

Robust Box-Cox transformation

2.1 Introduction

Many statistical methods work under the assumption that an underlying process is nor-

mally distributed. But in practice, this is not always the case. Because of this, there are

some methods to transform non-normal data into normally distributed ones. A popular

method is the Box-Cox transformation T� : y ! y(�) , where y(�) is given by the following

formula:

y(�)
=

8
><

>:

y� � 1

�
, if � 6= 0

log y, if � = 0 .
(2.1)

We will restrict our analysis to this transformation family.

By its definition, the Box-Cox transformation can only be applied to positive data. Bickel

& Doksum (1981) extended the definition to negative data as follows:

y(�)
=

8
><

>:

|y|�sgn(y)� 1

�
, if � 6= 0

log |y|, if � = 0,
(2.2)

where sgn is the function returning the sign of its argument. This definition (2.2) will be

used in the rest of our analysis. Even though the transformation was extended to account

for negative values, there is no reason to think the transformed data will actually follow
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a normal distribution, only approximative normality is achieved.

There has been a variety of proposals on how to estimate the parameter � of the Box-Cox

family. Box & Cox (1964) proposed maximum-likelihood and Bayes estimates of � and

also developed a likelihood ratio test for null hypothesis of the form H0 : � = �0.

Andrews (1971) showed the well known fact that the maximum-likelihood estimate of � is

sensible to outliers and developed the so-called significance method based on the F-test,

which he illustrated to be insensitive to one outlier in his example.

Atkinson (1973) emphasized the fact that Andrews (1971) omitted the Jacobian of the

transformation in his analysis and found in a Monte Carlo simulation that the likelihood

ratio test is uniformly more powerful than Andrew’s F-test. Further, in a Monte Carlo

simulation, Atkinson’s proposal to test H0 : � = �0 is found to be equivalent to the

likelihood ratio test under normality.

Gaudard & Karson (2000) introduced estimates of � based on the optimization of the W

statistic of the Shapiro-Wilk test and two measures of symmetry, the kurtosis and the

skewness. In their simulations the estimate based on the optimization of the Shapiro-Wilk

statistic (ˆ�SW ) outperformed the maximum-likelihood estimate and the estimates based

on the third and fourth moments. They also note that the variance of ˆ�SW is slightly

higher than that of the maximum likelihood estimate ˆ�ML.

Another proposal is the method of percentile introduced in Hinkley (1975) and compared

with the maximum-likelihood estimator by Chung et al. (2007). The method of percentile

outperforms ˆ�ML and is recommended for its simplicity. For a more detailed review on

the Box-Cox transformation see Saskia (1992).

Because data is often contaminated with outliers, our interest is directed towards a robust

estimator of �, which all the above mentioned procedures fail to deliver. In the follow-

ing section, we will present the maximum-likelihood estimate in more details. Section 3

presents an alternative algorithm to compute the maximum-likelihood estimator and a

new estimator is introduced. Section 4 will be devoted to robust estimators of the trans-

formation parameter and we use our new robust test of normality as a robust alternative

to estimate �. In a final section, we will compare the robust estimators in simulations.
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2.2 Maximum-Likelihood estimation

Let Y1, . . . , Yn be continuous non negative i.i.d. random variables. These variables are

assumed to be positive for the Box-Cox transformation to be well defined. Using the

maximum-likelihood approach, we assume that the following relationship holds:

Y (�)
i = µ + ei, i = 1, 2, . . . , n (2.3)

where µ is a constant and ei is a normally distributed error term with mean 0 and variance

�2. The Jacobian of the transformation from yi to y(�)
i is y��1

i , so that the log-likelihood

of the observed sample is given by

L(�) = �(n/2) log 2⇡ � (n/2) log �2 � (2�2
)

�1
nX

i=1

[y(�)
i � µ]

2
+ (�� 1)

nX

i=1

log yi . (2.4)

This log-likelihood function should be maximized with respect to �2, µ and �.

@L(�)

@�2
= �n

2

1

�2
+

1

2�4

nX

i=1

⇣
y(�)

i � µ
⌘2

(2.5)

@L(�)

@µ
=

1

2�2

nX

i=1

⇣
y(�)

i � µ
⌘

(2.6)

@L(�)

@�
=

1

2�2

nX

i=1

✓⇣
y(�)

i � µ
⌘✓✓

y(�)
i +

1

�

◆
log yi � 1

�
y(�)

i

◆◆
+

nX

i=1

log yi . (2.7)

By setting the derivatives in (2.5) and (2.6) equal to zero we get:

�̂2
=

1

n

nX

i=1

⇣
y(�)

i � µ
⌘2

(2.8)

µ̂ =

1

n

nX

i=1

y(�)
i . (2.9)

Setting the derivative (2.7) to zero would be cumbersome. Instead of this, we use the

expressions of �̂2 and µ̂ in (2.8) and (2.9) in the log-likelihood to obtain a profile likelihood

that is much easier to be maximised with respect to the parameter � only.

Chung et al. (2007) propose an alternative algorithm for the computation of the maximum-

likelihood estimator of �. Assuming model (2.3), we obtain the log-likelihood of equation

(2.4).
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If we divide the observed sample by its geometric mean scale g = exp (n�1
P

log yi), the

last term of the likelihood disappears. This implies that we can obtain the scaled version

of the parameter � for the Box-Cox transformation, and then retrieve � for the original

unscaled transformation. Correspondingly, if we denote y⇤i =

yi

g then it follows:

y⇤i
(�)

=

(

yi

g )

� � 1

�
=

y�
i � g�

�g�
=

1

g�

✓
y�

i � 1

�
� g� � 1

�

◆
=

1

g�

⇣
y(�)

i � g(�)
⌘

=

1

g�

�
µ + ei � g(�)

�
=

µ� g(�)

g�
+

ei

g�

y⇤i
(�)

= µ⇤ + e⇤i , (2.10)

where

µ⇤ =

µ� g(�)

g�
and

e⇤i =

ei

g�
.

The likelihood of the scaled sample is now given by:

L⇤(�) = �(n/2) log 2⇡ � (n/2) log �⇤2 � (2�⇤2)�1
nX

i=1

[y⇤i
(�) � µ⇤]2,

where �⇤2 is the variance of e⇤i
2. The maximum-likelihood estimators of the parameters

are derived by maximizing the log-likelihood L⇤(�) with respect to µ, �⇤2 and �. Setting

the corresponding derivatives to zero yields the following equations:

nX

i=1

e⇤i = 0 (2.11)

�⇤2 =

1

n

nX

i=1

e⇤i
2 (2.12)

✓
1

�2�⇤2

◆ nX

i=1

e⇤i [�y
⇤
i
�
log yi � (y⇤i

(�) � 1)] = 0 . (2.13)

We can derive the maximum-likelihood estimator of µ⇤ from (2.11) as:

bµ⇤ =

1

n

nX

i=1

y⇤i
(�) . (2.14)
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Then from (2.12), we can write:

b�⇤2 =

1

n

nX

i=1

⇣
y⇤i

(�) � bµ⇤
⌘2

. (2.15)

After some transformations equation (2.13) becomes:
nX

i=1

be⇤i
⇣
y⇤i

�
log(yi)� be⇤i

⌘
= 0, (2.16)

where be⇤i = y⇤i
(�) � bµ⇤. If we set fi(�) = y⇤i

�
log(yi), we can use a first order Taylor

expansion to approximate fi(�) around a starting value �. This method will provide a

unique solution that is as good as the one obtained with higher order Taylor expansions.

Rewriting equation (2.16) and solving for � yields the following equation

ˆ� =

Pn
i=1
be⇤i

2
+

Pn
i=1
be⇤i [�f 0(�)� f(�)]

Pn
i=1
be⇤i f 0(�)

. (2.17)

The algorithm to compute the maximum-likelihood estimators can thus be conducted as

follows:

1. Choose an initial value �

2. Transform the original sample using the Box-Cox transformation with this parame-

ter �, then compute bµ⇤ and b�⇤2 according to equation (2.14) and (2.15), respectively

3. Compute a new value �c of � using equation (2.17)

4. Check whether the difference between �c and � is less than a predetermined precision

level. If not, replace � by �c and iterate between step 1 and step 3 until the difference

between �c and � is smaller than the precision level before.

2.3 Robust estimators of �

All the methods mentioned previously fail to produce estimates which are robust against

outliers. Due to the fact that we are interested in a transformation to normality in

the presence of outliers, we consider in this section some robust alternatives to estimate

the transformation parameter, and only these procedures will be considered in future

comparisons due to their robustness.
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2.3.1 M-estimates of �

Carroll (1980) proposed a method based on the idea of M-estimation of Huber (1964).

The idea is to replace the normal theory likelihood given by Box and Cox by the density

with normal centre-exponential tails

L (µ,�,�) = ��n
nY

i=1

exp

"
�⇢
 

y(�)
i � µ

�

!
+ (�� 1) ln yi

#
(2.18)

where ⇢ is the Huber function given by

⇢(x) =

8
><

>:

1
2x

2, if |x|  k

k
�|x|� 1

2k
�
, otherwise

and k is chosen by the statistician. Common values are k = 1.5 and k = 2.

For a fixed value of �, the estimation procedure works in the following steps :

1. Take an initial value of � and estimate µ by solving

nX

i=1

 

 
y(�)

i � µ

�

!
= 0 , (2.19)

where  is the first derivative of the Huber-⇢ function ⇢.

2. Then estimate � by solving

(n� 1)

�1
nX

i=1

 2

 
y(�)

i � µ

�

!
= E

�
 2

(Z)

�
, (2.20)

where Z is a standard normal random variable.

For a given � denote the estimates as µ̂(�) and �̂(�). The estimate ˆ�M will be the value

of � which maximizes L (µ̂(�), �̂(�),�). We will refer to this method as the M method in

the following.

The likelihood ratio statistic under model (2.3) for testing an hypothesis of the form

H0 : � = �0 is given by

⇤M = �2 ln

✓
L (µ̂(�0), �̂(�0),�0)

L (µ̂(�M), �̂(�M),�M)

◆
(2.21)
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which Carroll (1980) claims, under appropriate conditions, to be asymptotically �2 dis-

tributed with one degree of freedom if H0 is true.

In an independent paper, Bickel & Doksum (1981) also suggested a similar estimator and

likelihood ratio test statistic. Their theoretical calculations and simulations led to the

same conclusions as in Carroll (1980), namely that his robust likelihood ratio statistic

⇤M is preferable to the method of Atkinson (1973) and the maximum-likelihood method

in the sense that they all have comparable power, but the type I error of the former is

much closer to the nominal level ↵ = 0.05, when testing the null hypothesis H0 : � = �1

with the true transformation parameter � = �1 and considering a normal, two contami-

nated normal and a Student-t distributed error model, respectively. Even though the M

method exhibits a slight increase in level considering distributions with heavy tails, it is

still preferable to the significance method of Andrews (1971) because the M method is

more robust.

Due to a suggestion of Bickel & Doksum (1981), Carroll (1982) modifies his estimation

procedure and replaced equation (2.20) by

nX

i=1

[ri(�) (ri(�))� 1] = 0 , (2.22)

where

ri(�) =

y(�)
i � µ

�
.

Additionally, the test statistic ⇤M is replaced by

⇤

⇤
M = ⇤M

Pn
i=1  

0
(ri(�))Pn

i=1  
2
(ri(�))

. (2.23)

Only this improved version will be considered in the future comparisons.

2.3.2 Robust Shapiro-Wilk estimator of �

Due to the fact that the Shapiro-Wilk test is one of the most powerful tests of normality

and the performances of a non-robust estimator of � based on it (see Gaudard & Karson

(2000)), we use our robust asymmetric Shapiro-Wilk test from Chapter 1 to estimate �
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robustly. This means that we calculate the value of � between 0 and 1 which maximizes

the test statistic of the robust Shapiro-Wilk test, so that our robust Shapiro-Wilk estimate

is given by

�RSW = arg max

�2[0,1]

⇣Pn
i=1 aiy

(�)
i

⌘2

Pn
i=1

⇣
y(�)

i � y(�)
⌘2 .

2.4 Simulations

In this section, we compare the robust and the maximum-likelihood estimators because we

are solely interested in estimation in the presence of outliers. The estimators we consider

are:

• The maximum likelihood estimate of � : ˆ�ML

• The M estimate of � proposed by Carroll (1982): ˆ�M

• The estimate of � based on the robust Shapiro-Wilk statistic : ˆ�RSW

All estimators are computed in the interval [0,1].

We simulate samples of length 100 from a normal distribution with mean 7 and standard-

deviation 1 as follows:

• 1000 samples without outliers

• 1000 samples with one positive outlier

• 1000 samples with one positive and one negative outlier

• 1000 samples with two positive outliers

All outliers are of magnitude 6 standard deviations. Then we transform the data with

the inverse Box-Cox transformation with true parameter � = 0 (lognormal distribution),

� = 0.4 or � = 1 (normal distribution).

To compare the different robust estimators, we compute the bias as the mean of the

deviations from �, the mean squared error (MSE) and the variance of the estimators. Since
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we are mainly interested in how close the transformed data are to the normal distribution,

we additionally consider the p values of the robust Shapiro-Wilk test applied to the

transformed samples with the Box-Cox transformation using the estimated parameter.

Because ˆ�RSW is likely to have an advantage in such a comparison due to its definition,

we also compute the medcouple to assess the symmetry of the transformed data and apply

one of the robust tests based on the medcouple MC1 as robust measure of normality for

the transformed data.

2.4.1 Estimation of the transformation parameter

Figures 2.1, 2.2 and 2.3 show boxplots of the robust estimates of � for clean and contam-

inated samples and � = 0, � = 0.4 and � = 1, respectively. When there are no outliers

the robust methods and the maximum likelihood estimator behave similarly and are al-

most unbiased. In the presence of one or two positive outliers, all estimators are biased

towards zero, but ˆ�RSW is the least affected. Interestingly, in the case of one positive and

one negative outlier all estimators seem to be little affected. This can be explained by the

fact that the Box-Cox transformation is meant to transform to approximate normality

and hence the estimators are not or very little affected by symmetric configurations of the

outliers.

The biases of the estimators are recapitulated in Table 2.1. We observe that all estima-

tors are negatively biased except for the case where the true transformation parameter

is � = 0, because we have restricted the estimators to be positive. We notice that ˆ�RSW

has the smallest bias except for � = 0 and it is more robust in comparison to the M

estimates. Only in the case of clean samples is ˆ�RSW outperformed by ˆ�ML, but it always

behaves rather well. We see that all other estimators are biased towards 0 in the presence

of outliers, except if there is one positive and one negative outlier, as mentioned before.

This can be explained by the fact that in the presence of only positive outliers, a Box-

Cox transformation with a small value of the transformation parameter would attempt

to eliminate the skewness in the data due to the outliers. Our estimator ˆ�RSW takes into

account the skewness in the data and is hence less affected by the outliers.
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Figure 2.1: Boxplot of the estimate of � for the different scenarios when the true trans-

formation parameter is � = 0.

We compute the standard deviations of the estimators, to assess the variability of the

estimators. Table 2.3 reveals that ˆ�RSW is more volatile than the other estimators, while
ˆ�ML has the smallest variance. The M-estimates outperform ˆ�RSW in terms of variability.

Table 2.2 confirms the conclusions that were drawn from Table 2.1. The ˆ�RSW outper-

forms the other estimates in the presence of outliers also in terms of mean squared error,

except for � = 0. Apparently, the MSE is dominated by the bias in the presence of

outliers.
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Figure 2.2: Boxplot of the estimate of � for the different scenarios when the true trans-

formation parameter is � = 0.4.

2.4.2 Comparison of the estimators in terms of best transforma-

tion

Because we are mainly interested in the parameter estimate that yields transformed sam-

ples which are closest to the normal distribution, we compare the estimators according

to criteria based on this idea, applying our robust asymmetric Shapiro-Wilk test and the

MC1 test to the transformed samples. We also compute the medcouple of the transformed

samples as a robust measure of symmetry.

2.4.2.1 Power of our robust Shapiro-Wilk test

As we expected, Figures 2.4, 2.5 and 2.6 show that the p values of the robust Shapiro-

Wilk test applied to the samples transformed with ˆ�RSW are typically larger than those
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Figure 2.3: Boxplot of the estimate of � for the different scenarios when the true trans-

formation parameter is � = 1.

obtained by the other estimators, except when the true parameter is � = 0. Table 2.4

lists the pass rates of the robust Shapiro-Wilk test for the transformed sequences with

the different parameter estimates at a significance level of 5% and confirms our previous

conclusion. We note that all estimators perform quite well in this respect, surprisingly

even the maximum likelihood estimate that yields very large pass rates. This can be

explained by the fact that in the presence of outliers, the maximum likelihood estimate is

biased towards 0 and transforming with � = 0 seems to yield good results independently

of the true value of the transformation parameter.

2.4.2.2 Power of MC1 test

The results in Figures 2.7, 2.8 and 2.9 show the p values of the MC1 test applied to

the samples transformed with the different robust parameter estimates and Table 2.5
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� = 0

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 0.033 0.046 0.032 0.033

one outlier 0.000 0.034 0.000 0.000

one positive and one negative outlier 0.004 0.063 0.008 0.008

two positive outliers 0.000 0.034 0.000 0.000

� = 0.4

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier -0.003 0.008 -0.036 -0.011

one outlier -0.396 -0.109 -0.371 -0.371

one positive and one negative outlier 0.079 0.015 0.069 0.085

two positive outliers -0.400 -0.135 -0.398 -0.399

� = 1

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier -0.225 -0.265 -0.261 -0.237

1 outlier -0.973 -0.439 -0.864 -0.861

two outliers (positive,negative) 0.000 -0.360 -0.009 -0.006

2 postive outliers -0.999 -0.519 -0.991 -0.992

Table 2.1: Biases of the the maximum likelihood and the robust estimators.

contains the pass rates for the MC1 test at a significance level of 5%. All estimators

perform similarly, with slightly better results for ˆ�RSW than for the other estimators,

if the true transformation parameter is different from 0. It is interesting to note that

even though sometimes the estimators of � are biased, the MC1 test asserts that the

transformed samples with the respective estimators are mostly normal and ˆ�RSW yields

slightly better results than the others except in the case � = 0, but the differences are

negligible.
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� = 0

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 0.059 0.076 0.056 0.059

one outlier 0.000 0.060 0.000 0.000

one positive and one negative outlier 0.007 0.098 0.016 0.016

two positive outliers 0.000 0.060 0.000 0.008

� = 0.4

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 0.227 0.252 0.217 0.225

one outlier 0.397 0.293 0.377 0.377

one positive and one negative outlier 0.086 0.313 0.098 0.111

two positive outliers 0.400 0.298 0.399 0.399

� = 1

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 0.369 0.412 0.399 0.379

one outlier 0.977 0.580 0.890 0.889

one positive and one negative outlier 0.000 0.501 0.033 0.026

two positive outliers 0.999 0.636 0.992 0.993

Table 2.2: Root of the mean squared errors of the robust and the maximum likelihood

estimators.

2.4.2.3 Medcouple of the transformed samples

When a sample is exactly symmetric its medcouple is 0, so that departures from symmetry

can be measured by the absolute value of the medcouple. Table 2.6 shows that the

robust estimators yield more symmetric samples after transformation than the maximum-

likelihood estimator and that ˆ�RSW has the best results in all cases even when the true

transformation parameter is � = 0. But again we should stress the fact that the departures

from symmetry of the transformed samples with ˆ�ML are not very large with respect to
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� = 0

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 0.048 0.060 0.046 0.048

one outlier 0.000 0.049 0.000 0.000

one positive and one negative outlier 0.006 0.076 0.013 0.014

two positive outliers 0.000 0.050 0.000 0.008

� = 0.4

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 0.227 0.252 0.214 0.225

one outlier 0.024 0.272 0.066 0.067

one positive and one negative outlier 0.032 0.312 0.069 0.071

two positive outliers 0.005 0.266 0.013 0.013

� = 1

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 0.293 0.316 0.302 0.296

one outlier 0.087 0.379 0.217 0.221

one positive and one negative outlier 0.000 0.349 0.032 0.026

two positive outliers 0.015 0.369 0.044 0.042

Table 2.3: Standard deviations of the robust and the maximum likelihood estimators.

the others.

2.5 Conclusion

Due to the fact that the assumption of normality is very common and that in practice,

data are usually not normally distributed, extensive work has been done to solve this

problem using transformations. Many authors have studied the popular Box-Cox trans-

formation and estimators have been developed over the years. Because of outliers the need
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Figure 2.4: Boxplot of p values of our robust Shapiro-Wilk test applied to the transformed

samples when the true transformation parameter is � = 0.

for robust estimates of the transformation parameter � has increased. Carroll (1982) has

developed an M-estimate of the transformation parameter (ˆ�M) and illustrated its advan-

tages to outperform the maximum-likelihood estimator (ˆ�ML).

We introduce a robust estimator (ˆ�RSW ) of the transformation parameter based on the

maximization of our robust Shapiro-Wilk test statistic. Simulations show that it outper-

forms the M-estimator and the maximum-likelihood estimator in various cases, with the

later not being robust against outliers. Even though ˆ�RSW has a larger variance than ˆ�M

and ˆ�ML, it is less biased in the presence of outliers of the same sign and its mean squared

error is lower than those of the others.

Furthermore, keeping in mind that our main goal is to provide the closest transformation

to normality, we also provide evidence via simulations that transforming with ˆ�RSW yields

more symmetrical samples, which are generally closer to normality in the sense of higher
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Figure 2.5: Boxplot of p values of our robust Shapiro-Wilk test applied to the transformed

samples when the true transformation parameter is � = 0.4.

p values of our robust Shapiro-Wilk test and a robust test based on the medcouple, which

was used as a robust measure of symmetry for the transformed samples.
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Figure 2.6: Boxplot of p values of our robust Shapiro-Wilk test applied to the transformed

samples when the true transformation parameter is � = 1.
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� = 0

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 97.6 98.3 98.3 79.2

one outlier 96.6 97.5 96.4 96.7

one positive and one negative outlier 98.2 98.9 98.7 98.2

two positive outliers 94.1 94.3 94.5 95.0

� = 0.4

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 99.4 99.5 99.3 99.4

one outlier 94.2 98.8 97.6 97.2

one positive and one negative outlier 98.5 99.4 98.5 98.3

two positive outliers 95.8 97.9 96.3 95.9

� = 1

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 98.2 98.1 98.2 97.3

one outlier 93.8 98.8 97.9 97.9

one positive and one negative outlier 97.9 98.3 97.7 97.9

two positive outliers 96.2 98.9 96.6 97.0

Table 2.4: Pass rates for our robust Shapiro-Wilk test at a significance level of 0.05

applied to the transformed samples with the robust and maximum likelihood estimates

of the transformation parameter in percent(%).
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Figure 2.7: Boxplot of p values of the MC1 test applied to the transformed samples when

the true transformation parameter is � = 0.
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Figure 2.8: Boxplot of p values of the MC1 test applied to the transformed samples when

the true transformation parameter is � = 0.4.
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Figure 2.9: Boxplot of p values of the MC1 test applied to the transformed samples when

the true transformation parameter is � = 1.
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� = 0

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 95.6 96.0 96.2 95.9

one outlier 94.7 94.4 94.7 94.7

one positive and one negative outlier 94.7 93.3 94.5 94.6

two positive outliers 94.7 94.2 94.7 94.7

� = 0.4

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 96.3 96.9 97.2 96.5

one outlier 94.3 97.8 94.8 94.8

one positive and one negative outlier 96.4 97.7 96.5 96.5

two positive outliers 95.8 97.0 95.8 95.8

� = 1

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 96.2 96.2 96.1 96.2

one outlier 91.4 93.8 91.9 92.0

one positive and one negative outlier 95.4 94.4 95.4 95.4

two positive outliers 91.2 93.6 91.2 91.2

Table 2.5: Pass rates of the MC1 test at a significance level of 0.05 applied to the trans-

formed samples with the robust and maximum likelihood estimates of the transformation

parameter in percent(%).
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� = 0

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 0.089 0.088 0.087 0.088

one outlier 0.089 0.085 0.089 0.089

one positive and one negative outlier 0.090 0.089 0.090 0.090

two positive outliers 0.094 0.093 0.094 0.094

� = 0.4

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 0.080 0.075 0.077 0.078

one outlier 0.089 0.076 0.087 0.087

one positive and one negative outlier 0.084 0.074 0.082 0.082

two positive outliers 0.093 0.082 0.093 0.093

� = 1

Scenario ˆ�ML
ˆ�RSW

ˆ�M with k=1.5 ˆ�M with k=2

no outlier 0.081 0.079 0.080 0.080

one outlier 0.092 0.080 0.088 0.088

one positive and one negative outlier 0.090 0.085 0.089 0.090

two positive outliers 0.091 0.080 0.090 0.091

Table 2.6: Medcouples of the transformed samples with the robust and maximum likeli-

hood estimates of the transformation parameter.
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Chapter 3

Robust online state change detection in

time series

3.1 Introduction

Monitoring time series has become a very challenging task over the years due to the

increasing amount of complexity introduced in statistical models. State change detection

gives useful insight on the behaviour of a process and allows a deeper understanding and

a better management of the monitored system. A state change, simply put, is a change

of behaviour in a process. One of the most common state changes is the outlier, which

can be defined as an unusual observation lying far from the bulk of the majority of the

data. For example, if we are monitoring the number of cars produced in a factory per day,

an outlier can be caused by a strike of employees for a day, in which case few to no cars

will be produced on that given day. Our aim in this chapter is to build a powerful state

change detection procedure to monitor changes in time series. In Section 2, we present the

Harrison and Stevens method to model state changes by assuming a state space model

with a local linear trend and standard normal errors. The estimation procedure is a

Bayesian method coupled to the Kalman Filter and in Section 3, we rectify an error in

the Kalman Filter used to update the model parameters. Then we extend the corrected

procedure in Section 4. Some improvement to the procedure are presented in Section 5
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and Section 6 deals with an example of application of the enhanced procedure. Section 7

is a short conclusion.

3.2 The Harrison & Stevens method

Harrison & Stevens (1971) developed a Bayesian method for analysing time series with

outliers and sudden changes based on a local linear trend model of the form

yt = µtst + ✏t

µt = µt�1 + �t�1 + �t (3.1)

�t = �t�1 + �t,

where ✏t, �t and �t are independent normally distributed random errors with mean 0 and

variance V✏, V� and V�, respectively, and st is a seasonal factor.

The model are fitted within a Bayesian framework along with the probability of occurrence

of one of several states like outliers, . . . , given all previous observations. For simplification,

we neglect the seasonal factor st and set it to one.

Before going further into details, we present the different states that are to be modelled.

In our case, we consider four states: steady state, step change, slope change and transient

(also known as outlier). If the system is in a state j at time t the random components ✏t,

�t and �t are assumed to be generated by normal distributions with mean 0 and variance

V (j)
✏ , V (j)

� and V (j)
� , j = 1, 2, 3 and 4, respectively, for each of the four states. The four

states are defined as

• steady state, if V (j)
✏ is normal, V (j)

� and V (j)
� are null

• step change, if V (j)
✏ is normal, V (j)

� is large and V (j)
� is null

• slope change, if V (j)
✏ is normal, V (j)

� is null and V (j)
� is large

• outlier, if V (j)
✏ is large, V (j)

� and V (j)
� are null

In Figure 3.1 we can see simulated data of length 200 in which we have incorporated a

state change at time 100.
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Figure 3.1: Four states considered in Harrison & Stevens (1971).

Define  = {m, b, vµµ, vµ�, v��}, where

m = E(µ)

b = E(�)

vµµ = E(µ�m)

2

vµ� = E [(µ�m)(� � b)]

v�� = E(� � b)2 .

Suffices and subscripts on  are to be associated with all its components. To indicate

that any pair of variables (µ, �) is jointly bivariate normally distributed with parameter

 , we write (µ, �) ⇠ N( ).

Harrison & Stevens (1971) show that if the joint distribution of (µ, �) at time t � 1 is

bivariate normal,

(µt�1, �t�1 | yt�1) ⇠ N( t�1) ,
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then the posterior distribution at time t is also bivariate normal:

(µt, �t | yt) ⇠ N( t).

Harrison & Stevens used a Kalman filter to update the components of the parameter  t,

but there are some small mistakes in the update equations that they proposed. In the

following, we will derive the correct expressions.

If we define

↵t =

0

@ µt

�t

1

A and ⌘t =

0

@ �t

�t

1

A ,

then we can redefine the state space model (3.1) as follows

yt = Zt↵t + "t

↵t = Tt↵t�1 + ⌘t

where

Tt =

0

@1 1

0 1

1

A , Zt =

⇣
1 0

⌘
.

Let us define

Qt = V ar(⌘t) and Pt = V ar(↵t) =

0

@ vµµ,t vµ�,t

vµ�,t v��,t

1

A .

By applying the Kalman Filter as in Harvey (1991), we obtain the following expression

for the covariance matrix of the predictions

Pt|t�1 =TtPt�1T
0
t + Qt

=

0

@ 1 1

0 1

1

A

0

@ vµµ,t�1 vµ�,t�1

vµ�,t�1 v��,t�1

1

A

0

@ 1 0

1 1

1

A
+

0

@ V� 0

0 V�

1

A

=

0

@ vµµ,t�1 + 2vµ�,t�1 + v��,t�1 + V� vµ�,t�1 + v��,t�1

vµ�,t�1 + v��,t�1 v��,t�1 + V�

1

A .

Harrison & Stevens (1971) set

Pt|t�1 = R =

0

@ r11 r12

r12 r22

1

A
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so that the following equations given by Harrison & Stevens

r11 = vµµ,t�1 + 2vµ�,t�1 + v��,t�1 + V� + V�

r12 = vµ�,t�1 + v��,t�1 + V�

r22 = v��,t�1 + V�

can be corrected to

r11 = vµµ,t�1 + 2vµ�,t�1 + v��,t�1 + V� (3.2)

r12 = vµ�,t�1 + v��,t�1 (3.3)

r22 = v��,t�1 + V� . (3.4)

Let

et = yt �mt�1 � bt�1

Ve = r11 + V✏

A1 = r11/Ve

A2 = r12/Ve .

Then the parameter vector  t of the posterior distribution at time t is given by:
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

mt = mt�1 + bt�1 + A1et

bt = bt�1 + A2et

vµµ,t = r11 � A2
1Ve

vµ�,t = r12 � A1A2Ve

v��,t = r22 � A2
2Ve

The parameter estimates for time t can thus be obtained from those for time t� 1 by an

update step, which can be summarized as follows:

 t = B( t�1; V✏, V�, V�) .
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Let us now consider the case of our four states and assume that the distribution of (µ, �)

is a mixture of bivariate normal distributions as follows:

(µt�1, �t�1 | yt�1) ⇠
i=4X

i=1

q(i)
t�1N( (i)

t�1),

where y(t� 1) represents all observations before and including yt�1 and

q(i)
t�1 = Pr(St�1 | y(t� 1))

is the probability posterior to y(t�1) that the process was in state i at time t�1. Further,

 (i)
t�1 are the parameters of the distribution arising from state i at time t� 1.

Applying the previous result for each current state j = 1, 2, 3 and 4 we obtain:

(µt, �t | yt, St = j, St�1 = i) ⇠ N( (i,j)
t ),

where  (i,j)
t = B( (i)

t�1; V
(j)
✏ , V (j)

� , V (j)
� ).

The complete posterior distribution can therefore be written as

(µt, �t | yt) ⇠
X

i,j

p(i,j)
t N( (i,j)

t ),

so that it is just necessary to compute p(i,j)
t = P (St = j, St�1 = i | y(t)).

Let kt = 1/P (yt | y(t� 1)), where P (yt | y(t� 1)) denotes the probability of observing yt

at time t given all the observations until time t� 1. It follows:

p(i,j)
t = P (St = j, St�1 = i | y(t))

= ktP (yt | St = j, St�1 = i, y(t� 1))P (St = j | St�1 = i, y(t� 1))P (St�1 = i | y(t� 1))

= kt

s
1

2⇡V (i,j)
e

exp

2

64
�
⇣
yt �m(i)

t�1 � b(i)
t�1

⌘2

2V (i,j)
e

3

75⇡jq
(i)
t�1,

where

V (i,j)
e = r(i,j)

11 + V (j)
✏

r(i,j)
11 = v(i)

µµ,t�1 + 2v(i)
µ�,t�1 + v(i)

��,t�1 + V (j)
� + V (j)

�
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and ⇡j = P (St = j | St�1 = i, y(t� 1)).

Because the number of normal distributions in the mixture normal distribution of (µt, �t |
yt) grows exponentially, they are condensed and the distribution is approximated by a

weighted bivariate normal distribution as follows:

(µt, �t | yt) ⇠
4X

j=1

q(j)
t N( (j)

t ),

where 8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

q(j)
t =

P
i p

(i,j)
t

m(j)
t =

1

q
(j)
t

P
i p

(i,j)
t m(i,j)

t

b(j)
t =

1

q
(j)
t

P
i p

(i,j)
t b(i,j)

t

v(j)
µµ,t =

1

q
(j)
t

P
i p

(i,j)
t


v(i,j)

µµ,t +

h
m(i,j)

t �m(j)
t

i2�

v(j)
µ�,t =

1

q
(j)
t

P
i p

(i,j)
t

h
v(i,j)

µ�,t +

h
m(i,j)

t �m(j)
t

i h
b(i,j)
t � b(j)

t

ii

v(j)
��,t =

1

q
(j)
t

P
i p

(i,j)
t


v(i,j)

��,t +

h
b(i,j)
t � b(j)

t

i2�

In this way, the posterior at time t is in the same form as the posterior at time t � 1 so

that the same procedure can again be applied at time t and so on.

3.3 Extension of the Harrison & Stevens method

In this section, we extend the Harrison & Stevens method using not only the previous

state to infer the next one, but the two previous states. The method can be extended to as

many previous states as one wishes and we have done the necessary computation for this

extension. But for now, we will focus only on the case of two previous states because an

extension to more than two previous states would not only be computationally demanding,

but also the results with this restriction are already convenient as we shall see in the next

sections.

We know that if we assume at time t� 2 a mixture of bivariate normal distributions:

(µt�2, �t�2 | yt�2) ⇠
4X

i=1

q(i)
t�2N( (i)

t�2),
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we can obtain the distribution at time t� 1 as follows:

(µt�1, �t�1 | yt�1) ⇠
X

i,j

p(i,j)
t�1 N( (i,j)

t�1 ),

where the parameters are computed as stated in Section 3.2.

At this point instead of condensing the prior as before, we conduct another step of the

update algorithm to infer the distribution at time t by the same algorithm as previously.

Assuming for each current state h = 1, 2, 3 and 4 that

(µt, �t | yt, St = h, St�1 = j, St�2 = i) ⇠ N( (i,j,h)
t ),

where  (i,j,h)
t = B( (i,j)

t�1 ; V (h)
✏ , V (h)

� , V (h)
� ), the complete posterior is given by

(µt, �t | yt) ⇠
X

i,j,h

p(i,j,h)
t N( (i,j,h)

t ).

We just need to compute the probabilities p(i,j,h)
t = P (St = h, St�1 = j, St�2 = i | y(t)).

Again let kt = 1/P (yt | y(t� 1)) as in the previous section. We can then write

p(i,j,h)
t = P (St = h, St�1 = j, St�2 = i | y(t))

= ktP (yt | St = h, St�1 = j, St�2 = i, y(t� 1))⇥ P (St = h | St�1 = j, St�2 = i, y(t� 1))

⇥ P (St�1 = j, St�2 = i | y(t� 1))

= kt

s
1

2⇡V (i,j,h)
e

exp

2

64
�
⇣
yt �m(i,j)

t�1 � b(i,j)
t�1

⌘2

2V (i,j,h)
e

3

75⇡hp
(i,j)
t�1 ,

where by analogy, we define:

V (i,j,h)
e = r(i,j,h)

11 + V (h)
✏

r(i,j,h)
11 = v(i,j)

µµ,t�1 + 2v(i,j)
µ�,t�1 + v(i,j)

��,t�1 + V (h)
�

and ⇡h = P (St = h | St�1 = j, St�2 = i, y(t� 1)).

At this point, we condense the prior to stop the exponential growth of the number of

values to be stored. We apply the same weighting method as previously, which yields the

following mixture of bivariate normal distributions:

(µt, �t | yt) ⇠
X

j,h

p(j,h)
t N( (j,h)

t ),
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where
8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

p(j,h)
t =

P
i p

(i,j,h)
t

m(j,h)
t =

1

p
(j,h)
t

P
i p

(i,j,h)
t m(i,j,h)

t

b(j,h)
t =

1

p
(j,h)
t

P
i p

(i,j,h)
t b(i,j,h)

t

v(j,h)
µµ,t =

1

p
(j,h)
t

P
i p

(i,j,h)
t


v(i,j,h)

µµ,t +

h
m(i,j,h)

t �m(j,h)
t

i2�

v(j,h)
µ�,t =

1

p
(j,h)
t

P
i p

(i,j,h)
t

h
v(i,j,h)

µ�,t +

h
m(i,j,h)

t �m(j,h)
t

i h
b(i,j,h)
t � b(j,h)

t

ii

v(j,h)
��,t =

1

p
(j,h)
t

P
i p

(i,j,h)
t


v(i,j,h)

��,t +

h
b(i,j,h)
t � b(j,h)

t

i2�

In this way, the posterior at time t is in the same form as the posterior at time t� 1, so

that the same procedure can again be applied at time t and so on.

Applying this method allows us not only to infer the state at time t based on all informa-

tions from time t� 1 and t� 2, but also to compute new probabilities such as

• the probability of being in state i at time t� 2 given all data until time t,

P (St�2 = i | y(t)) =

X

j,h

p(i,j,h)
t .

• the probability of being in state j at time t� 1 given all data until time t,

P (St�1 = j | y(t)) =

X

i,h

p(i,j,h)
t .

3.4 Improvement of the state change detection

3.4.1 Transformation of the data to achieve normality

A common problem in practice is that the observed data are not normally distributed.

For example the data could be right skewed like manufacturing data. This is why we

opt for a Box-Cox transformation of the data before applying the state change detection
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procedure, so that our state space model transforms to

y(�)
t = µt + ✏t

µt = µt�1 + �t�1 + �t

�t = �t�1 + �t .

The estimation of the transformation parameter � will be done from a short starting

sequence of the data, if historical data is not available. Due to the fact that the start-

ing sequence can contain outliers, it is recommended to use a robust estimate of the

transformation parameter. We use the estimator of � based on our robust asymmetric

Shapiro-Wilk test �RSW .

We investigate the minimal length of the starting sequence for suitable estimation to

achieve approximate normality. For this purpose, for each value of � in {0, 0.25, 0.5, 0.75, 1}
and for sample sizes ranging from 10 to 300 observations, we simulate 1000 samples from

the inverse Box-Cox family, where the mean and the variance of the normal distributions

before inverse transformation are 7 and 1, respectively.

Then we perform the robust and the usual Shapiro-Wilk test on the transformed sam-

ple with the estimated transformation parameter (ˆ�RSW ). The results are reported in

Table 3.1. The chosen significance level is 0.05. We also compute the bias and the root

mean square error of the estimate of � and report the results in Table 3.2. We note

that the biases of the estimate of � are not so large for small sample sizes. We remark

that the root mean square error is still large in small samples, this can be due to the fact

that for its computation, larger estimation errors are more heavily weighted than smaller

ones. On the other hand, Table Table 3.1 reports good results for the transformation for

small sample sizes, so that we can choose a short starting sequence without affecting the

transformation to normality too severely. But of course, the larger the starting sequence

the better.
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Sample size Robust Shapiro-Wilk Shapiro-Wilk

10 98.52 93.08

15 98.90 93.32

20 99.06 94.20

25 98.76 93.86

30 99.02 94.10

35 98.94 93.68

40 98.88 93.96

45 99.20 94.56

50 99.06 94.20

75 99.20 95.04

100 99.24 95.38

125 99.06 95.30

150 99.24 96.08

175 99.06 95.48

200 99.22 96.28

300 99.28 96.46

Table 3.1: Pass rates (in %) of the robust and usual Shapiro-Wilk test applied to the

transformed data with ˆ�RSW at a significance level of 0.05.

3.4.2 Classification of observations to a state

Our major goal is to detect state changes in the data. Although Harrison and Stevens

have provided us with a procedure to determine the a posteriori probability of the occur-

rence of a state, they have not actually classified each observation to a given state. In

this section, we provide a classification procedure.

While it is quite obvious that it is difficult to distinguish a level shift from an outlier

instantaneously, we can still distinguish a level shift or an outlier from a slope change.

In this scope, we investigate two main cases. Firstly, instantaneous classification which
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Sample size Bias RMSE

10 -0.05 0.49

15 -0.07 0.46

20 -0.07 0.44

25 -0.08 0.43

30 -0.08 0.42

35 -0.08 0.40

40 -0.10 0.41

45 -0.09 0.39

50 -0.09 0.39

75 -0.08 0.35

100 -0.08 0.33

125 -0.07 0.31

150 -0.07 0.29

175 -0.07 0.27

200 -0.06 0.26

300 -0.04 0.22

Table 3.2: Bias and root mean square error of the estimate of the transformation param-

eter � for different sample sizes and true value of � in {0, 0.25, 0.5, 0.75, 1}.

is done at the same time as the data becomes available, and secondly the one-step-after

classification that is done one time point after a data point is observed. This method can

be extended to as many time lags before classification as one wishes, but we focus only

on the previously mentioned cases.

We opted for the linear discriminant analysis for classification. To determine the classifi-

cation rules, we perform an extensive simulation and find the results to be quite appealing.
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3.4.2.1 Settings for the simulation

To find a classification rule, we conducted intensive simulations. We simulate 100000

time series of length 100 for our classification. Among these, there were 25000 time series

with no change, that is the time series consists only of steady states along all the 100

observations in each time series. The remaining 75000 time series are divided into 3

groups representing the 3 remaining states (step change, slope change and outlier). We

generate for each of these states 25000 time series and build in each of these 25000 time

series at a given time a state change. This means, for example, that 25000 time series

were generated for the step change. In each of the 25000 time series we built one step

change of different magnitudes at a randomly chosen point in time. The other states were

treated in the same manner.

To simulate a time series as close as possible to reality, we chose a set of parameters to

suit our goals. Recall the basic model

yt = µt + ✏t

µt = µt�1 + �t�1 + �t

�t = �t�1 + �t,

where ✏t, �t and �t are independent normally distributed random variables with mean 0

and variance �2
✏ , �2

� and �2
� , respectively. We simulated each time series by setting the

variances �2
✏ , �2

� and �2
� to 1, 10

�4 and 10

�8, respectively. We find these settings of the

variance to give realistic time series. Because we need starting values µ0 and �0, we opted

for a value of µ0 in the interval [25, 50], and �0 was chosen to be either 0 with a probabil-

ity of 0.9 or 0.05 with a probability of 0.1. The lower bound of µ0 is chosen for yt to be

non-negative, and the upper bound so that the process yt stays within a reasonable range,

especially when we will use the Box-Cox parameter to perform a reverse transformation

on it. Most of the times �0 = 0 suits reality well, but to incorporate some time series

with a positive slope at the beginning, we also chose a random positive but not too large

value for this parameter as stated above. The simulated process is in a steady state and

normally distributed.
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To simulate the state changes, we chose randomly a time between 30 and 90 and we

created state changes of different magnitudes at that chosen time. We generated step

changes with a magnitude chosen randomly in between 500�� and 2000��. The slope

changes magnitudes lie between 10000�� and 50000��. Finally the magnitude of an out-

lier is chosen randomly between 4�✏ and 10�✏.

Since the so created process is normally distributed, we made an inverse Box-Cox trans-

formation to obtain a process to which we will apply the state change detection procedure.

We set the transformation parameter � to take one of the four values 0.25, 0.5, 0.75 or 1

randomly.

3.4.2.2 Instantaneous classification

The naive idea would be to classify the observations according to the estimated a posteriori

probabilities of occurrence of a state. In the case of an instantaneous classification, this

would yield a misclassification rate of 5.35%. We will see that the linear discriminant

analysis yields better results.

To deduce an instantaneous classification rule when the data at time t arrives, we used 7

variables:

• The estimated probability of an outlier at time t given all data until time t named

bf04

• The observations yt�2, yt�1 and yt

• The estimated value of �

• The estimated standard deviation of the observation noise ✏, �̂✏

• The ratio between the difference yt � yt�1 and the estimated standard deviation of

the observation noise,
yt � yt�1

�̂✏
named ry0_b.

The estimated probability of a steady state will always be left out because the probabilities

of the states sum to 1, and with 3 of them fixed the last one is known. It should also be

noticed that the estimated probabilities of a step and slope change at time t given all the
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data until time t were left out. The reason is that we found out that when one uses the

ratio of variances suggested by Harrison & Stevens (1971), the a posteriori probabilities

of the step and slope changes are always correlated to the a posteriori probability of

a transient. These variables were omitted to avoid collinearity between variables while

performing linear discriminant analysis. Also note the denomination bf04 for example,

that stands for (b)Bayes (f)Factor (0)instantaneous for an (4)outlier. Instead of using

the Bayes Factor, the posterior probability was used since it is proportional to the Bayes

Factor and it would not change the results of the classification.

We coded the classes so that the steady state and the slope change are in the same class

coded 0, while the step change and the outlier are coded 1. We coded the states in this

manner, since given the information until time t, it is quite impossible to distinguish

between a step change and an outlier. On the other hand, the steady state and the slope

change are in the same class due to the fact that it is very unlikely to detect a slope

change instantaneously, since if a slope change occurs the next observation will not differ

too much from a steady state, unless the magnitude of the slope change is incredibly

large, and in this case the observation will be instantaneously classified as outlier or step

change. We randomly select 90% of the data as training set and the rest as test sample.

A variable selection procedure run with a linear discriminant analysis shows that the model

with the smallest training classification error is the model given in Table 3.3, which also

contains the estimated coefficients of the linear discriminant. This model yields an out-

of-sample classification error of 2.1%. Note that the Intercept in Table 3.3 is computed

so that the training error is minimized as suggested by Hastie et al. (2009, page. 111).
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Variables Coefficients

bf 04 8.45

yt�1 �3.29⇥ 10

�6

ry0_b 9.37⇥ 10

�7

Intercept -2.914

Table 3.3: Coefficients of the linear discriminants for the model for the instantaneous

classification.

A new vector x⇤ = (bf04

⇤, y⇤t�1, ry
⇤
0_b) is classified into class 1 (outlier or step change)

if the following rule applies

8.45 bf04

⇤ � 3.29⇥ 10

�6 y⇤t�1 + 9.37⇥ 10

�7 ry⇤0_b � 2.914 � 0

and to class 0 (steady state or slope change) otherwise.

3.4.2.3 One-step-after classification

In the previous paragraph, we discussed the instantaneous classification of an observation

making no distinction between the step change and the transient. It makes sense after

one further observation to try to dissociate these two states.

If we opt for the naive classification, which classifies an observation to the class with largest

one-step-after a posteriori probability, the misclassification error would be 7.29%. To

improve the classification, we derive a classification rule applying the linear discriminant

analysis to our simulated data.

For this purpose, 4 variables were added to the 7 previous ones:

• The probability of a step change at time t given all the data until time t+1 denoted

by bf12.

• The probability of a slope change at time t given all the data until time t+1 denoted

by bf13.
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• The probability of an outlier at time t given all the data until time t + 1 denoted

by bf14.

• The ratio of the difference yt+1 � yt�1 and the estimated standard deviation of the

observation noise,
yt+1 � yt�1

�̂✏
denoted by rya_b.

Now we have 11 variables to perform the linear discriminant analysis. For the purpose

of this classification, we code the outliers as 2 and the step changes as 1, while the slope

change and the steady states were coded as 0. In the same manner, we used variable

selection and misclassification rate to select the best model for our data. We compute

the intercept in the same manner as for the instantaneous classification. The best model

is given in Table 3.4. The linear discriminant analysis with these variables yields an out-

Variables Coefficients of linear discriminant 1 Coefficients of linear discriminant 2

bf14 -2.87 9.37

bf04 10.59 -5.51

yt�1 �2.55⇥ 10

�5
5.91⇥ 10

�5

yt 3.48⇥ 10

�6
3.02⇥ 10

�5

yt+1 2.06⇥ 10

�5 �8.19⇥ 10

�5

�̂✏ �2.39⇥ 10

�4 �2.02⇥ 10

�4

rya_b �1.21⇥ 10

�6
2.40⇥ 10

�6

Intercept -3.65 -3.57

Table 3.4: Coefficients of the linear discriminants for the model for the one-step-after

classification.

of-sample classification error for discrimination between steady state, slope change, level

shift and transient of 3.11%.

Since there are 3 classes this time, we can state the classification rule in 2 steps. Given a

new observation x⇤ = (bf14

⇤, bf04

⇤, y⇤t�1, y
⇤
t , y

⇤
t+1, �̂

⇤
✏ , ry

⇤
a_b)

t, we have:
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Step one

The second linear discriminant separates the classes 0 (steady state and slope change)

and 1 (step change) from the class 2 (outlier). If we have

9.37 bf14

⇤ � 5.51 bf04

⇤
+ 5.91⇥ 10

�5 y⇤t�1 + 3.02⇥ 10

�5 y⇤t � 8.19⇥ 10

�5 y⇤t+1

� 2.02⇥ 10

�4 �̂⇤✏ + 2.4⇥ 10

�6 ry⇤a_b � 3.57 � 0, (3.5)

then classify the observation to class 2, otherwise the class will be either 1 or 0. This

leads us to the second step.

Step two

The first linear discriminant component distinguishes the class 0 (steady state and slope

change) from 1 (step change). If the following holds

� 2.87 bf14

⇤
+ 10.59 bf04

⇤ � 2.55⇥ 10

�5 y⇤t�1 + 3.48⇥ 10

�6 y⇤t + 2.06⇥ 10

�5 y⇤t+1

� 2.39⇥ 10

�4 �̂⇤✏ � 1.21⇥ 10

�6 ry⇤a_b � 3.65 � 0, (3.6)

then the observation is assigned to class 1, that is step change, and otherwise to class 0.

3.4.2.4 Classification of the slope change

Let y1, . . . , yn be an observed stretch of a time series (yt). We recall the state space model

with a local linear trend (3.1)

yt = µt + ✏t

µt = µt�1 + �t�1 + �t

�t = �t�1 + �t .

Here ✏t, �t and �t are independent normally distributed random variables with mean 0

and variances �2
✏ , �2

� and �2
� , respectively.
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Let us define �0 and µ0 as initial values for the processes �t and µt. Then we can write:

�t = �t�1 + �t ) �t = �0 +

tX

i=1

�i, for t > 1 (3.7)

µt = µt�1 + �t�1 + �t ) µt = µ0 +

t�1X

i=0

�i +

tX

i=1

�i

, µt = µ0 +

t�1X

i=1

 
�0 +

iX

j=1

�j

!
+ �0 +

tX

i=1

�i

, µt = µ0 +

t�1X

i=0

�0 +

t�1X

i=1

iX

j=1

�j +

tX

i=1

�i

, µt = µ0 + t�0 +

t�1X

i=1

(t� i)�i +

tX

i=1

�i, for t > 1 . (3.8)

This yields the following equation for the observed process yt:

yt = µt + ✏t ) yt = µ0 + t�0 +

t�1X

i=1

(t� i)�i +

tX

i=1

�i + ✏t, for t > 1 (3.9)

If we assume that at a given time ⌧ a slope change of magnitude ! occurs, we can replace

the noise �t by

�t =

8
><

>:

�t, if t 6= ⌧

�⌧ + !, if t = ⌧ .

Therefore writing the new model as follows

yt = µt + ✏t

µt = µt�1 + �t�1 + �t

�t = �t�1 +�t ,

we can see that equations (3.7), (3.8) and (3.9) hold until time ⌧ � 1. After time t = ⌧ ,

we have

�t = �0 +

tX

i=1

�i = ! + �0 +

tX

i=1

�i, for t > ⌧ ,
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so that in the process (�t) there is a step change of magnitude !. Incorporating this

into the expression of µt will only affect the process after time t = ⌧ + 1 giving the new

expression

µt = (t� ⌧)! + µ0 + t�0 +

t�1X

i=1

(t� i)�i +

tX

i=1

�i, for t > ⌧ + 1 .

This expression shows a linear increase of magnitude ! after each observation starting at

time t = ⌧ + 1 in the observation mean µt.

A natural consequence is that the detection of a slope change depends on the relationship

between the magnitude of the slope change ! and the standard deviation of the noise of

the observation �✏. Since the observation noise is assumed to be normally distributed,

we can say that until the product (t� ⌧)! falls out of a reasonable range, the slope will

be difficult to detect or the detection will be delayed until a sufficiently large number of

future observations is affected, depending on the values of the noises around the time of

occurrence of the slope change.

3.5 Example

To show how the extended and improved state change detection procedure works, we

simulate a time series of length 500 from state space model (3.1) and build

• 5 outliers at times 120, 121, 350, 380 and 480 of magnitude 9, 8, 6, 5 and 7 standard

deviations of ✏t respectively.

• 2 step changes at times 200 and 250 of magnitude 1000 and -1200 standard devia-

tions of �t, respectively, and corresponding to 10 and -12 standard deviations of ✏t

respectively.

• One slope change at time 450 of magnitude 2000 standard deviations of �t corre-

sponding to 0.2 standard deviation of ✏t.

Then we transform the time series with the inverse Box-Cox transformation with true

transformation parameter � = 0.5 and perform the state change detection with and

without Box-Cox transformation.
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The robust transformation parameter is estimated from a start sequence of length

50. Figure 3.2 illustrates the classification using the previously determined rules with

transformation. While in Figure 3.3, the naive classification is reported, when the Box-Cox

transformation i not performed. We remark that the robust transformation enhances the

performance of the state change classification procedure, since the classification without

transformation puts a lot of steady state observations in the class of outliers instantly

and one step after. Tables 3.5 and 3.6 contain the estimated instantaneous and one-

step-after a posteriori probabilities, respectively, of each state, computed after robust

transformation and without robust transformation. We have just presented the values

around the incorporated state changes. We can see that the results with and without

transformation are quite similar around the state changes. But as we can see for time

481, where we did not create a state change, the procedure without robust transformation

misclassifies this observation as outlier as we have already seen in Figure 3.3 for several

other points. In other words, the robust transformation is a very useful and necessary

improvement of the state change detection procedure.

3.6 Conclusion

The primary objective of this chapter is to detect state changes in time series. We consider

four states : steady state (normal state), step change (level shift), slope change and outlier.

For this purpose, we chose the state change detection procedure of Harrison & Stevens

(1971), which is a Bayesian method using the Kalman Filter to fit a state space model

with a local linear trend. At time t� 1, for each state change, an a priori distribution for

the parameter is specified and the a posteriori probabilities of occurrence of each state

at time t are computed. Firstly, we rectified the update equations used in the procedure.

Secondly, we extended the procedure to compute the probability of a state change at

time t � 2 given all data until time t and used this feature later on in our improvement

process. Because the procedure is based on the assumption of normality, we used our

robust Box-Cox transformation to transform the data to approximate normality, hereby
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widening the scope of application of the procedure to skewed data, for example. A major

improvement is the classification of an observation to a state, because the procedure

only estimates the probability of occurrence of a state at a given time based on all the

information available up to that time, but no classification is specified. By using linear

discriminant analysis, we derive an instantaneous classification, which differentiates the

steady state and slope change from the step change and the outlier at the arrival of

each observation. The one-step-after classification then distinguishes the step change

from the outlier one step after the arrival of an observation. An example shows that the

transformation enhances the classification procedure and that without transformation a

lot of ordinary observations are misclassified as outliers. It is also shown that our method

outperforms the naive classification to the class with the largest computed a posteriori

probabilities of occurrence.
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Estimated a posteriori probabilities

with transformation

Estimated a posteriori probabilities

without transformation

true state time steady step slope outlier steady step slope outlier

steady 119 0.99 0.00 0.00 0.01 0.99 0.00 0.00 0.01

outlier 120 0.00 0.03 0.00 0.97 0.00 0.03 0.00 0.97

outlier 121 0.70 0.01 0.00 0.29 0.67 0.01 0.00 0.32

steady 122 0.96 0.00 0.00 0.04 0.97 0.00 0.00 0.03

steady 199 0.99 0.00 0.00 0.01 0.99 0.00 0.00 0.01

step 200 0.00 0.03 0.00 0.97 0.00 0.03 0.00 0.97

steady 201 0.75 0.01 0.00 0.24 0.86 0.00 0.00 0.13

steady 249 0.99 0.00 0.00 0.01 0.96 0.00 0.00 0.03

step 250 0.00 0.03 0.00 0.97 0.00 0.03 0.00 0.97

steady 251 0.74 0.01 0.00 0.25 0.86 0.00 0.00 0.13

steady 349 0.98 0.00 0.00 0.01 0.99 0.00 0.00 0.01

outlier 350 0.00 0.03 0.00 0.97 0.00 0.03 0.00 0.97

steady 351 0.98 0.00 0.00 0.01 0.99 0.00 0.00 0.01

steady 379 0.97 0.00 0.00 0.03 0.98 0.00 0.00 0.01

outlier 380 0.01 0.03 0.00 0.96 0.00 0.03 0.00 0.96

steady 381 0.98 0.00 0.00 0.01 0.98 0.00 0.00 0.01

steady 449 0.98 0.00 0.00 0.02 0.98 0.00 0.00 0.01

slope 450 0.98 0.00 0.00 0.01 0.99 0.00 0.00 0.01

steady 451 0.98 0.00 0.00 0.01 0.99 0.00 0.00 0.01

steady 479 0.98 0.00 0.00 0.02 0.97 0.00 0.00 0.02

outlier 480 0.02 0.03 0.00 0.95 0.00 0.03 0.00 0.97

steady 481 0.76 0.01 0.01 0.22 0.03 0.03 0.00 0.94

Table 3.5: Instantaneous estimated a posteriori probabilities of state changes with and

without transformation to normality.
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Estimated a posteriori probabilities

with transformation

Estimated a posteriori probabilities

without transformation

true state time steady step slope outlier steady step slope outlier

steady 119 0.99 0.00 0.00 0.01 0.99 0.00 0.00 0.01

outlier 120 0.00 0.71 0.00 0.29 0.00 0.69 0.00 0.31

outlier 121 0.03 0.00 0.00 0.97 0.01 0.00 0.00 0.99

steady 122 0.99 0.00 0.00 0.01 0.99 0.00 0.00 0.01

steady 199 0.99 0.00 0.00 0.01 0.99 0.00 0.00 0.01

step 200 0.00 0.77 0.00 0.23 0.00 0.89 0.00 0.11

steady 201 0.93 0.01 0.00 0.06 0.89 0.00 0.00 0.10

steady 249 0.99 0.00 0.00 0.01 0.96 0.00 0.00 0.03

step 250 0.00 0.76 0.00 0.24 0.00 0.88 0.00 0.12

steady 251 0.97 0.01 0.00 0.02 0.98 0.00 0.00 0.01

steady 349 0.98 0.00 0.00 0.01 0.99 0.00 0.00 0.01

outlier 350 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00

steady 351 0.99 0.00 0.00 0.01 0.99 0.00 0.00 0.01

steady 379 0.97 0.00 0.00 0.03 0.98 0.00 0.00 0.01

outlier 380 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00

steady 381 0.99 0.00 0.00 0.01 0.99 0.00 0.00 0.01

steady 449 0.98 0.00 0.00 0.02 0.98 0.00 0.00 0.01

slope 450 0.99 0.00 0.00 0.01 0.99 0.00 0.00 0.01

steady 451 0.99 0.00 0.00 0.01 0.99 0.00 0.00 0.01

steady 479 0.97 0.00 0.01 0.02 0.98 0.00 0.00 0.02

outlier 480 0.01 0.01 0.00 0.99 0.00 0.01 0.00 0.99

steady 481 0.81 0.00 0.00 0.18 0.05 0.00 0.00 0.95

Table 3.6: One-step-after probabilities of state changes with and without transformation

to normality.
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Summary and outlook

The primary objective of this thesis is the construction of a powerful state change detec-

tion procedure for monitoring time series, which can help decision makers to react faster

to changes in the system and define the proper course of action for each case.

Without losing sight of our primary goal, we first derived a robust test of approximate

normality based on the Shapiro-Wilk test (RSW ), which detects if the majority of the

data follows a normal distribution. The RSW test is based on the idea of trimming

the original sample, and replacing the observations in the tail by artificially generated

normally distributed data, and then performing the Shapiro-Wilk test on the modified

sequence. We show that under the null hypothesis of normality the modified sequence

is asymptotically normally distributed and that the RSW test statistic has the same

asymptotic null distribution as the Shapiro-Wilk test statistic. The RSW test proves to

be resistant to outliers and outperforms the other considered robust test for normality in

the presence of outliers. Intending to use the RSW test to create a robust estimator of

the Box-Cox transformation, we also investigate its behaviour with respect to the inverse

Box-Cox transformation. It proves to be resistant to outliers in this case and also outper-

forms its competitors in presence of a few outliers.

Secondly, we used the RSW test to derive a robust estimator of the Box-Cox transfor-

mation parameter (ˆ�RSW ). This conforms to the fact that the Box-Cox transformation

only achieves approximate normality and the Shapiro-Wilk test of normality is one of

the most powerful tests of normality. Gaudard & Karson (2000) already derived a non

robust estimator of the Box-Cox transformation parameter based on the Shapiro-Wilk

test statistic that outperformed the other estimators considered in their comparison. As
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expected, ˆ�RSW is preferable to the maximum-likelihood and the M-estimators (we con-

sidered), mainly because it yields a better transformation in the sense that not only are

the transformed samples more symmetrical according to the medcouple (a robust measure

of symmetry and tail weight), but they also have a higher pass rate for the RSW test

and the MC1 test at a significance level of 5%.

Finally, returning to the state change detection, we opt for the method of Harrison &

Stevens (1971), which considers four states: the steady state (normal state), the step

change (level shift), the slope change and the outlier. The assumption of normally dis-

tributed data restricts the usage of the procedure, so we transform the data with ˆ�RSW to

achieve approximate normality. We extend the update equations to two observations in

the past, that is to compute the probability of occurrence of a state change at time t� 2

given all available data until time t. This extension is used when we derive classifications

rules for the incoming observations, given that the procedure only computes a posteriori

probabilities for the different states and does not classify them. We use linear discriminant

analysis and intensive simulations to derive the classification rules. We derived an instan-

taneous classification separating the step change and the outlier from the slope change

and the steady state at the arrival of each observations and a one-step-after classification

that separates the three classes outlier, step change and slope change, steady state one

step after each observation is available. The simulations show that the first rule has an

out-of-sample classification error of 2.1% and the second rule 3.11%. Opposed to this,

the naive classification rule, which is to classify according to the estimated a posteriori

probability, yields misclassification errors of 5.35% and 7.29%, respectively.

Unfortunately, a classification rule for the slope change is not derived. One could take

advantage of the fact that information on the past can be extended to as many observa-

tions in the past one wishes, increasing the probability of detecting a slope change. In

addition, we do not consider other classification procedures than the linear discriminant

analysis, although it is possible for other classification procedures to yield better results

than ours.

For all the computations in this work, we used the software package R Core Team (2012).
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