

Prof. Dr.-Ing. Matthias Kleiner Prof. Dr.-Ing. A. Erman Tekkaya

Determination of suitable

driver materials for electromagnetic sheet metal forming

Soeren Gies

- Introduction
- Effect of driver sheets
- State of the art
- Experimental setup and procedure
- Results
- Summary and Outlook

Introduction

- Effect of driver sheets
- State of the art
- Experimental setup and procedure
- Results
- Summary and Outlook

- Objective: Electromagnetic forming of stainless steel
 1.4301 and 1.4509
- **Challenge:** Low electrical conductivity of stainless steel

Copper		Aluminum		Steel	Stainless steel
CU-ETP	CU-DHP	EN AW-1050A	EN AW-5083	DC06	1.4301 1.4509
57 MS/m	43 MS/m	34 MS/m	16 MS/m	8 MS/m	1.5 MS/m
100%	75%	60%	28%	14%	2,6%

• Solution:

Use of driver sheets

4 | 27

Introduction

• Working principle of driver sheets:

- Introduction
- Effect of driver sheets
- State of the art
- Experimental setup and procedure
- Results
- Summary and Outlook

Effect of driver sheets

 Use of driver sheets causes two opposing effects in the energy conversion sequence

Energy conversion sequence: Risch, 2009

Effect of driver sheets

 Use of driver sheets causes two opposing effects in the energy conversion sequence

<u>Trade off:</u> higher magnetic pressure vs. additional forming energy

Effect of driver sheets

• Use of driver sheets is beneficial if the following condition is fulfilled:

Additional kinetic energy > Additional forming energy for driver

Self-evident consequences:

- High electrical conductivity $\rightarrow E_{kin}$ - Low yield strength $\rightarrow E_{form}$

Question: Which driver material and which driver thickness t_D maximize the energy ratio?

- Introduction
- Effect of driver sheets
- State of the art
- Experimental setup and procedure
- Results
- Summary and Outlook

State of the art

Scientific investigations using driver sheets:

- Seth et al. (2004)
 - Workpiece: Low-alloy carbon steel, $t_W = 0.1 \text{ mm} 0.38 \text{ mm}$
 - Driver: Aluminium EN AW-6111 T4, $t_D = 1$ mm
- Li et al. (2012)
 - Workpiece: Ti-6AI-4V, $t_{\rm W} = 0.5$ mm
 - Driver: CU-DHP, $t_D = 0.5$ mm
- Andersson and Syk (2008)
 - Workpiece: X5CrNiMo17-12-2, $t_W = 0.25 \text{ mm} / \text{DP600}, t_W = 0.7 \text{ mm}$
 - Driver: Copper, $t_D = 0.6$ mm
- Srinivasan et al. (2010)
 - Workpiece: Titanium, $t_{W} = 0.076$ mm
 - Driver: Copper, $t_D = 0.381$ mm
- Ishibashi et al. (2011)
 - Workpiece: X5CrNi18-10, $t_{W} = 0.15$ mm
 - Driver: EN AW-1050-H24, $t_{\rm D} = 0.3$ mm

 $t_W \cong$ Workpiece thickness $t_D \cong$ Driver thickness

 $\sigma_{s} \cong$ Skin depth

State of the art

Scientific investigations using driver sheets:

- Tillmann et al. (2008)
 - Workpiece: DC04, $t_W = 0.8 \text{ mm}$
 - Driver: Copper (sputtered), $t_D = 0,65$ mm (optimum)
 - Recommendation: $t_{\rm D} = \sigma_{\rm s}$
- Bely et al. (1977)
 - Recommendation: $t_{\rm D} = 0.5 \cdot \sigma_{\rm s}$
- Desai et al. (2011)
 - Workpiece: Stainless steel
 - Driver: Aluminum, Copper
 - Recommendation: Aluminum $\rightarrow t_{\rm D} = 0.8 \cdot \sigma_{\rm s} / \text{Copper} \rightarrow t_{\rm D} = \sigma_{\rm s}$
 - Contradicting recommendations
 - No recommendation regarding optimal driver material
 - No consideration of mechanical workpiece parameters

 $t_W \cong$ Workpiece thickness $t_D \cong$ Driver thickness

 $\sigma_{\rm s} \cong$ Skin depth

- Introduction
- Effect of driver sheets
- State of the art
- Experimental setup and procedure
- Results
- Summary and Outlook

Experimental Setup and Procedure

) Free forming of workpiece and driver

Pulse generator used: Maxwell Magneform 7000

Max. charging energy $E_{\rm C} = 20 \text{ kJ}$ Inner resistance $R_{\rm i} = 4.2 \text{ m}\Omega$ Short circuit frequency $f^* = 25 \text{ kHz}$ Inner inductance $L_{\rm i} = 60 \text{ nH}$ **Experimental Setup and Procedure**

Free forming of workpiece and driver

Summary

<u>È</u>

Experimental Setup and Procedure

- Workpiece material
 - **1.4301**, *t*_W = 0.5 / 0.8 / 1.0 mm
 - **1.4509**, *t*_W = 0.5 / 0.8 / 1.0 mm
 - **DC04**, $t_{\rm W} = 0.5 / 0.8 / 1.0$ mm
 - **EN AW-5083**, *t*_W = 1.0 mm
- Driver material
 - **CU-ETP**, $t_{\rm D} = 0.3 / 0.5 / 0.7 / 0.8 / 1.0 / 2.0$ mm
 - EN AW-1050A, $t_{\rm D} = 0.3 / 0.5 / 0.7 / 0.8 / 1.0 / 2.0$ mm
- Charging Energy $E_{\rm C}$
 - $E_{\rm C} = 1.0 / 1.8 / 2.4 \text{ kJ}$

17 | 27

- Introduction
- Effect of driver sheets
- State of the art
- Experimental setup and procedure
- Results
- Summary and Outlook

 Comparision of optimum driver thicknesses t_{D,opt} (Driver material: AL)

	Workpiece thickness <i>t</i> _w				
Workpiece material	0.5 mm	0.8 mm	1.0 mm		
1.4301	0.95∙σ _s	1.0·σ _s	1.27·σ _s		
1.4509	1.0· <i>σ</i> ₅	1.05∙ <i>σ</i> ₅	1.29∙ <i>σ</i> ₅		

- Conclusions:
 - Increasing workpiece thickness $t_W \rightarrow$ Increasing optimum driver thickness $t_{D,opt}$
 - Rule of thumb: Optimum driver thickness $\approx \sigma_{s}$ (AL)

- Introduction
- Effect of driver sheets
- State of the art
- Experimental setup and procedure
- Results
- Summary and Outlook

• Summary:

- Aluminum should be favoured as driver material
- Positive correlation between workpiece thickness t_W and optimum driver thickness $t_{D,opt}$
- Rule of thumb: Optimum driver thickness $\approx \sigma_{\rm s}$ (AL)

Outlook:

- EMF of stainless steel into a conical die using the optimum driver material und thickness
- Analytical calculation of the optimum driver thickness $t_{D,opt}$

Questions?

