Experimental verification and comparison of analytical and FE models for calculation of a Bitter solenoid

Oleg Zaitov

Koen Faes

07.05.2013

Joining your future.

Table of contents

Analytical calculation of a Bitter solenoid

- 1. Limitations of the approach
- 2. Calculation methodology
- 3. Determination of input data
- 4. Boundary conditions: characteristic current densities and fields
- 5. Calculation of the inductance and active resistance of a coil
- 6. Simulation of an equivalent RLC circuit
- 7. Calculation of the central magnetic field
- 8. Experimental verification of the methodology
- 9. Modeling of the magnetic field in the probe volume of the BWI coil using FEMM
- 10. Field verification using a measuring coil

7/06/2013

1. Limitations of the approach

2. Calculation methodology

Joining your future.

7/06/2013

3. Determination of input data

- 1. Material properties:
- a) Conductivity σ [MS]
- b) Specific heat capacity c [J/kg·K]
- c) Working temperatures: initial T_i and final T_f [K]
- d) Mass density ρ [kg/m³]
- e) Yield strength σ_y [MPa]
- 2. Value assignment for an outer radius r_2 and a number of turns N
- 3. To take into account a symmetry breakdown in a real coil

7/06/2013

3. Determination of input data

Ideal symmetrical disk = 360° Real disk = 360° - l_0 - l_s

Nominal number of turns must be reduced to an effective ideal number of turns having a cylindrical symmetry.

Joining your future.

4. Boundary conditions: characteristic current densities and fields

1. Thermal BC takes into account only heating of the solenoid

Material integral must be as high as possible:

$$\label{eq:fmat} \begin{split} \text{Fmat}(Ti,Tf) &\coloneqq \int_{Ti}^{Tf} \rho m {\cdot} \frac{c(T)}{\rho(T)} \; dT \end{split}$$

Motorial	F _{Mat} (T _i ,T _f) [10 ¹⁶ A ² s/m ⁴]		
Material	77 K – 400 K	77 K – 700 K	
Cu	9,42		
Al	4,58		
C17510	4,45		
C17200	1,30		
AerMet 100	0,27	0,46	
AISI 316	0,15	0,26	

2. Strength BC takes into account only mechanical strength of a material

σmax = σy

 $\alpha = r2/r1 - form - factor of the coil$

research

 $B0 := \min(Bth, B\sigma) \cdot \ln(\alpha)$

5. Calculation of the inductance and active resistance

of the coil $\Lambda(\alpha,\beta)$ A) Inductance $2 \mu 0 \cdot \mathbf{r} \mathbf{1} \cdot \Lambda(\alpha, \beta)$ Lcoil := η 10 $4 \cdot \pi$ $\beta = I_{coil}/2r_1 - form - factor of the coil$ n – effective number of turns 5 10 15 $\Lambda(\alpha;\beta)$ – self – inductance factor α R, E-6 ohm B) Resistance $Rdc := \eta^2 \cdot \frac{\rho \cdot \pi}{\xi \cdot r \mathbf{1} \cdot \beta \cdot \ln(\alpha)}$ Rcontact μ**0** $a \cdot (Rdc + Rcontact) \cdot$ $\omega d \cdot$ $2 \cdot \rho$ Rac := u 10 20 .30 40 F. kN 1 – Cu-Cu contact, oxidized surface 2 – Cu-Cu contact, clean surface 3 – Contact between Cu-Cr-Zn plates, oiled surfaces, a – cross-section of a turn [m²] 4 – Cu-Cu, clean surface, u – circumference of a turn [m]

5 - Contact between Cu-Cr-Zn plates, clean surface,

7/06/2013

8

ß

 ωd – current angular frequency [Hz]

6. Simulation of an equivalent RLC circuit

Differential equation of electromagnetic damped oscillation can be easily solved at initial conditions defined by a pulsed generator:

On this step a verification of the frequencies demanded and calculated takes place

Joining your future.

7/06/2013

7. Calculation of the central magnetic field

After the integration a closed form expression was obtained so a convenient calculation can be made for any sizes and current courses:

$$B0(t) := \sqrt{Wm(t) \cdot \frac{\mu 0}{r1}} \cdot \frac{\ln\left(\frac{1\text{coil}}{r1} + \sqrt{\frac{1\text{coil}^2}{r1^2} + 1}\right)}{1\text{coil} \cdot \ln\left(\frac{r2}{r1}\right)}$$

Joining your future.

8. Verification of the methodology on an example of BWI Bitter solenoid

Parameter	R·10e-3 [Ohm]	L·10e-9 [H]
Experimental	7.441	1504
Calculated	6.588	1838
Relative error	11.5%	22%

τ,t

A comparison of the graphs allows to draw a conclusion of satisfying errors between the experimental and calculated curves.

Joining your future.

9. Modeling of the magnetic field in the probe volume of the BWI coil using FEMM

Joining your future.

research

10. Field verification using a measuring coil

The B-field measured differs from both analytical and numerical calculation:

B-field [T]		
FEMM	1.4	
Analytical model	1.2	
Relative error, %	14.3	
B measured	0.761.9	

Joining your future.

Joining your future.

7/06/2013