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Abstract

In this work, several strategies are developed to reduce the impact of the two limitations of
most current studies in supervised music classification: the classification rules and music
features have often a low interpretability, and the evaluation of algorithms and feature
subsets is almost always done with respect to only one or a few common evaluation criteria
separately.

Although music classification is in most cases user-centered and it is desired to understand
well the properties of related music categories, many current approaches are based on low-
level characteristics of the audio signal. We have designed a large set of more meaningful
and interpretable high-level features, which may completely replace the baseline low-level
feature set and are even capable to significantly outperform it for the categorisation into
three music styles. These features provide a comprehensible insight into the properties of
music genres and styles: instrumentation, moods, harmony, temporal, and melodic char-
acteristics. A crucial advantage of audio high-level features is that they can be extracted
from any digitally available music piece, independently of its popularity, availability of
the corresponding score, or the Internet connection for the download of the metadata and
community features, which are sometimes erroneous and incomplete. A part of high-level
features, which are particularly successful for classification into genres and styles, has been
developed based on the novel approach called sliding feature selection. Here, high-level
features are estimated from low-level and other high-level ones during a sequence of super-
vised classification steps, and an integrated evolutionary feature selection helps to search
for the most relevant features in each step of this sequence.

Another drawback of many related state-of-the-art studies is that the algorithms and fea-
ture sets are almost always compared using only one or a few evaluation criteria separately.
However, different evaluation criteria are often in conflict: an algorithm optimised only
with respect to classification quality may be slow, have high storage demands, perform
worse on imbalanced data, or require high user efforts for labelling of songs. The simulta-
neous optimisation of multiple conflicting criteria remains until now almost unexplored in
music information retrieval, and it was applied for feature selection in music classification
for the first time in this thesis, except for several preliminary own publications. As an
exemplarily multi-objective approach for optimisation of feature selection, we simultane-
ously minimise the classification error and the number of features used for classification.
The sets with more features lead to a higher classification quality. On the other side,
the sets with fewer features and a lower classification performance may help to strongly
decrease the demands for storage and computing time and to reduce the risk of too com-
plex and overfitted classification models. Further, we describe several groups of evaluation
criteria and discuss other reasonable multi-objective optimisation scenarios for music data
analysis.
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1. Introduction

1.1. Motivation and scope

Supervised music classification is one of the most frequent applications in music informa-
tion retrieval (MIR). It allows the categorisation into genres and personal music prefe-
rences, the recognition of instruments, harmony and temporal characteristics, music rec-
ommendation, management of large music collections, etc. The basic principle of this
approach is to create the classification models from the ground truth: the vectors of nu-
merical music characteristics, or features, and the corresponding labels.

For a fully automatic classification system, it is preferable to start with a large, once
created feature set. Then, the definition of each new category would require only the
assignment of new labels to music data. However, a large number of features, which are
irrelevant for a particular classification task, often overwhelms the classification methods.
Features, which are by chance recognised as significant for the training data, become part
of the classification models. This leads to a suffering of model generalisation performance
on the unseen data. In that case, feature selection allows the effective computation of the
most relevant feature sets, which are free of noisy, irrelevant and redundant characteristics.

In general, feature selection is a very complex optimisation problem. For large feature
sets, evolutionary algorithms (EA) have proven their ability to solve feature selection
tasks within an acceptable number of iterations. Further, EA are even more reasonable,
when feature selection and the subsequent classification should be evaluated by several
conflicting criteria. One of the most straightforward approaches is the simultaneous min-
imisation of the number of features and the maximisation of the classification performance.
Evolutionary multi-objective algorithms (EMOA) estimate feature subsets with different
criterion trade-offs, from large feature sets with high classification performance, to smaller
feature sets, which still provide an acceptable classification quality, but strongly reduce
the computing and storage demands.

Until now, a predominant share of feature selection applications in music classification has
been evaluated by a limited number of criteria, and we are not aware of any further studies
(except for several own preliminary publications), which have systematically integrated a
multi-objective evolutionary approach to optimise the feature selection process for MIR
classification tasks.

Another relevant criterion in music classification is the interpretability of the classification
models. Because music classification is a user-centered application, it is advantageous
to learn comprehensible properties of the music categories. However, the most common
approach is to classify music into genres or other categories from low-level audio signal
characteristics. They are less understandable for music listeners and music scientists, who
may be interested to identify, e.g., the most important harmonic and melodic characteris-
tics, which define a certain genre or style.
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The approach in this work integrates the automatic estimation of high-level features, which
are interpretable and describe several musical characteristics: instrumentation, harmony,
melody, moods, tempo, rhythm, and structure. These features are partly derived from
low-level audio features, and are used themselves as input features for the identification
of music genres and styles. The evolutionary multi-objective feature selection helps to
identify the most relevant characteristics.

The targets of this thesis can be described as follows:

e To check the essentiality of feature selection for different supervised music classifi-
cation tasks.

e To apply multi-objective feature selection, optimising two evaluation criteria at the
same time.

e To examine the ability of evolutionary multi-objective algorithms to solve the feature
selection task for supervised music classification.

e To construct a sufficiently large set of high-level audio features, which are inter-
pretable and can replace baseline low-level features, with no significant decrease of
the classification performance.

e To setup the labelling of ground truth closely to real-world scenario demands, so
that classification training sets are built only from a small number of songs (we use
20 songs as ground truth for genre and style recognition).

e To evaluate the designed methods in an accurate way, comparing classification per-
formance by means of statistical tests on independent holdout song sets, which nei-
ther have been involved into the model training, nor into the optimisation of feature
selection.

Further, we had to limit the choice of methods and their adjustments:

e No common statistical feature processing methods, such as principal component
analysis, were applied. These methods transform the original feature dimensions, so
that the interpretability of high-level features is not kept anymore.

e No deterministic feature selection methods were integrated into the studies. They are
less suitable for our targets than multi-objective, population-based heuristics, which
may overcome local optima through integrated random components and simulated
natural evolution.

e To provide a sufficient amount of experiments with respect to our main preferences,
we omitted any tuning of the hyperparameters of classification methods. However,
we selected four classification methods with different basic operating methods to
examine the performance of feature selection for these methods.

e We restricted both low-level and high-level features to audio features only. Their
major advantage is that they can be extracted from any digitally available song, and
the digital signal typically has enough information to identify a genre or personal
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listener preferences’.

1.2. Main achievements and structure of the thesis

The main achievements of this thesis are:

e To our knowledge, this is the first work, which addresses feature selection for music
classification in a multi-objective way, in particular, by evolutionary multi-objective
algorithms (except for several own preliminary and recent studies [217, 219, 216]).
The simultaneous minimisation of the balanced classification relative error and the
number of selected features leads to significant performance increase with respect to
both criteria.

e We introduce the novel concept called sliding feature selection, where several inter-
mediate classification levels provide a bridge between the audio low-level features
and the music categories to learn. The high-level features are estimated from other
low-level and high-level features, where the optimal feature subsets are found for each
subtask by means of multi-objective feature selection. The high-level features, which
have been derived by the sliding feature selection, are particularly often selected as
relevant for the recognition of genres and styles.

e We designed a set of 566 high-level descriptors. The first part of this set is created
by the integration of already existing up-to-date algorithms and own extensions,
mostly harmonic and temporal characteristics. A further part contains features
estimated after the sliding feature selection: instrumentation, moods, harmony, and
melody characteristics. The last part is built by structural complexity features,
which measure the progress of the temporal distribution of chords, instruments,
harmonic, and time characteristics.

e It is possible to completely replace the baseline low-level feature set by the high-level
feature set. The significant, but relatively slight decrease of the classification perfor-
mance is measured only for the Rap category. For other categories, the performance
is equal or even better. For the three examined music styles, which may be treated
as personal music categories, the high-level feature set leads even to a significant
increase of classification performance in all cases if several classification methods
were used in an experiment.

e We adapted our approach to several restrictions of the real-world situation. The
training sets are limited to 20 music pieces in order to match the typically high
efforts for the definition of ground truth. The features are extracted and processed
from complete recordings: in our opinion, the often applied limitation to, e.g., 30
seconds excerpts from the song middle may reduce the classification performance
for subgenres, which are characterised by many different and relevant segments.
The two-level classification allows us to apply two different evaluation approaches.
The evaluation of the classification performance on shorter classification windows

!Probably, our method is not well suited for some classification tasks, such as ‘West Coast Rap’ versus
‘East Coast Rap’. However, we do not object the integration of metadata and community features in
future studies. We however had to limit the research scope and avoid efforts for the identification of
irrelevant or missing data.
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of several seconds allows an exact evaluation of methods. For the categorisation of
songs into genres and styles, the binary song relationships are estimated by major
voting.

e We provide a formal categorisation of the steps, which are necessary in supervised
music classification. In particular, different feature processing methods are developed
and categorised. Further, we discuss several groups of evaluation metrics, which are
reasonable for multi-objective evaluation and optimisation of music classification in
future.

e Several recommendations for the systematic evaluation of music classification and
feature selection are discussed: the choice of metrics, the choice of the evaluation
method, the data set design, and the significance measurement by means of statistical
tests.

The thesis is organised as follows:

e In the last introductory section, we list our own previously published contributions.

e Chapter 2 describes the backgrounds of music data analysis and introduces the
methods for audio feature extraction, feature processing, and classification in detail.

e In Chapter 3, we discuss the goals of feature selection. The basics of evolutionary
multi-objective optimisation and feature selection are introduced as well as the con-
crete algorithm adjustments for our studies. In the last sections of this chapter, we
list references to studies with evolutionary feature selection and feature selection in
music classification.

e Chapter 4 deals with the four essential components of reliable algorithm evaluation:
evaluation metrics, evaluation methods, data set design, and statistical tests for
significance measurement.

e In Chapter 5, we present the results of our studies, where the evolutionary multi-
objective feature selection has been applied for several music classification tasks.
The description of the studies related to high-level feature recognition (instruments,
moods, harmonic and melodic characteristics) is limited to the experiment setup and
study outcomes (Section 5.1). In the second part of the chapter (Section 5.2), we
address genre and style recognition based on low-level and high-level features. Both
sets are compared with different evaluation criteria, and the study outcomes are
underlined by statistical tests. Finally, we discuss properties of different high-level
feature groups and list the high-level features, which were most often selected for
each combination of a classifier and a classification task.

e In Chapter 6, we summarise the results of our work and discuss several directions
for further research.

1.3. Previous own publications

Some of the investigations, which were preliminary for this thesis and have influenced the
design of the final study, contributed to several publications in recent years. Here, we
provide a list with the corresponding references, sorted by the publication year. If the
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thesis author was not the first publication author, explanations about his contribution to
the joint work are provided.

e 2008: [205] is the first peer-reviewed conference publication. Here, we discussed
our first steps in music classification based on audio features. Three personal music
categories were predicted using the C4.5 decision tree algorithm. The thesis author’s
contribution was mainly the design and the development of the very first version of
the Advanced MUSic Explorer (AMUSE) framework for the simple implementation
of different subtasks in music classification and their evaluation.

In [220], we applied an evolutionary strategy (ES) for the optimisation of feature
selection and the length of classification windows for the first time.

e 2009: The previous work was extended in [223], where enhancements to the evo-
lutionary algorithms were implemented: several variants of local search and a self-
adaptation approach. Since this study, we focused on evolutionary feature selection.

e 2010: The first open source version of AMUSE, available on SourceForge?, was
described in [221].

In [15], we designed several memetic and self-adaptive ES for music classification.
Though these algorithms were later integrated by the thesis author into AMUSE,
the implementation of ES for this study and the experimental analysis was done
by the first author of the reference. This was the first work, where we switched to
the recognition of AllMusicGuide genres and styles, after a thorough redesign of our
song collection.

The following three studies focused on different aspects of the music classification
chain: extension of the feature set and classification methods, analysis of feature
processing methods, and comparison of different evaluation metrics. In all of these
publications no feature selection was applied. However, the outcomes of the studies
lead to the corresponding improvements in AMUSE as a basis for further experi-
ments.

In [157], we extended the experiment scale: new cepstral features contributed by
the first author of the work were integrated, the number of the classifiers was firstly
increased to the four different methods, and 14 genre and style categories were
classified. All experiments were run within AMUSE and analysed by the thesis
author.

The extensive comparison of the feature processing methods, which influenced the
choice of the corresponding method in this thesis, was done in [222].

Different confusion matrix metrics were compared for music genre and style classifi-
cation in [214], and it was shown that some of them were loosely correlated. This was
a first work, where we explained the reasons to integrate not only multi-objective
evaluation, but also multi-objective optimisation into a music classification scenario.

e 2011: The first application of the multi-objective feature selection for genre and
style recognition was done in [217]. Here, we optimised in the first part of the
study accuracy and selected feature rate at the same time. Afterwards, recall and
specificity were maximised.

2http://amuse-framework.sourceforge.net/, date of visit: 15.02.2013.
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In [186], the ground truth was extremely limited to only five positive songs, which
should define a personal music category. The task was not to classify the songs,
but to design a set of high-level characteristics, which should be useful for further
classification. The contribution of the thesis author was to design and run a study,
where these high-level descriptors were predicted from low-level features, and to
measure the impact of high-level features on categories, compared to random feature
distribution.

e 2012: [219] was the first work, in which evolutionary multi-objective feature selection
was applied for instrument recognition in polyphonic mixtures.

In [215], we applied statistical tests for the significance measurement of the results
from [219].

Other peer-reviewed publications with the participation of the thesis author [226, 17, 40,
134, 93, 218, 216] had a rather marginal contribution to this thesis, but led to many
worthwhile insights into other MIR related tasks.



2. Music Data Analysis

2.1. Background

Doubtlessly, music was analysed in all stages of its historical development: the construction
of prehistorical instruments required the knowledge of different materials as sound sources
and resonating bodies. The tuning process was and remains necessary for a large number
of instruments. The composition of music pieces almost always followed rules depending on
the genre. For example, the well-known Mozart’s dice game [34] created music by random
variations of several pre-composed parts, based on the former music rules for waltzes.

However, MUSIC DATA ANALYSIS can be rather understood as an automatic analysis of a
large amount of music-related data, mostly done with the help of computers. The process
of music rule creation or the calculation of music characteristics is not done anymore by
a human, but is produced by an algorithm, which nevertheless may or may not provide
interaction with its creator or a user. Such an analysis can be done in a more efficient way,
compared to the engagement of music experts: modern server farms and grid systems can
analyse thousands of music pieces in a few hours or even minutes. Also, the management
of very large music collections demands new methods, which are capable to deal even with
millions of music tracks [25]. Expert knowledge is still required at the beginning: for the
choice of proper features for learning, for the assignment of the category labels to music
instances, or, as an example for a more specific application, for the analysis of the pitch
distribution profiles for key prediction [90]. After this information has been assembled
into software or hardware, music can be processed in an accurate way without any signs
of tiredness, personal preferences, or disposition.

[164], p. 2, defines music information retrieval (MIR) as a user-driven research field which
is focused on listener needs on “music management, easy access, and enjoyment”. It is
indeed a widespread interdisciplinary research domain based on studies in music science
and psychology, musicology and psychoacoustics, engineering and signal processing, com-
puter science, data mining and statistics, neuroscience, and other fields. The combined
investigations from these very different sciences provide on the first side a strong enrich-
ment and a high potential to solve many related applications in unconventional ways. On
the other side, this diversity leads to many challenges. Downie [44] discusses “a blessing
and a curse” of the rich intellectual diversity of the MIR research, providing examples of
the very different terms and techniques coming from different research communities, e.g.,
an enharmonic equivalence of the tones Gff and Ab for a signal processing expert, but a
clear difference for a musicologist.

[44] refers to [97] as the earliest published MIR work and provides further references
of the related publications. From 2000, an annual society on music information retrieval
conference (ISMIR) facilitated a strong increase of the related studies, and also provided an
international forum for exchange and joint research in the rapidly growing MIR community.
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In recent years, several textbooks were published, which provided a structured introduction
into MIR methods and applications. [120] gives an introduction into data mining in
general, before specific music data analysis problems and applications are discussed in
detail. [154] describes enhanced methods for chroma analysis in music audio data. [101,
181] provide collections of many current research studies, such as harmony recognition,
music classification, source separation, music transcription, etc.

A promising possibility for future interdisciplinary MIR research is to integrate more
results of studies from music theory scientists, which describe music structure or integrate
rule-based music characteristics into automatic computer-guided approaches [204, 35].

In our work, we often use the terms music (data) analysis and music classification. The first
one is intended to be a synonym of MIR. Music classification is one of the most important
subtasks of MIR and is discussed among a wide range of possible MIR applications in
Section 2.1.1. Section 2.1.2 describes different sources for music data analysis. Section
2.1.3 introduces the categorisation of algorithms for supervised music classification.

2.1.1. Application scenarios

Without claiming to present a complete list of all possible applications of music data
analysis, we provide here an overview of the major and important listener-centered tasks
and scenarios.

Probably the largest part of MIR applications is covered by CLASSIFICATION tasks (other
words used as synonyms: detection, discovering, identification, recognition, tagging, etc.).
Here, a given instance of music data (a song, song segment, tone phrase, melody, etc.) is
categorised into one or several classes. The following applications of classification may be
distinguished:

e RECOGNITION OF HIGH-LEVEL MUSIC CATEGORIES for music collections. Maybe the
most studied approach is to recognise music genres [1]; [200] provides an extensive
list with several hundred related publications. However, genre recognition has sev-
eral serious drawbacks: no common genre taxonomy exists [165], genres may evolve
during years, and the role of different subgenres may be of different importance for
users — e.g., a person may organise all classical pieces in a collection as a ‘classi-
cal’ part or prefer to distinguish between baroque, romantic, and modern classic.
Therefore, learning the listener’s personal preferences is a promising approach for
automatic classifier systems, as we discussed in [205].

e RECOMMENDATION SYSTEMS aim at the presentation of new music to a user, which
should satisfy her or his preferences [26].

e SIMILARITY ANALYSIS enables the search for similar music tracks, e.g., for recom-
mendation or cover song detection. Another use case is plagiarism detection through
search of similar melodies [42]. A necessary design step for similarity analysis is the
choice of a distance metric for the corresponding feature space, e.g., Euclidean or
cosine distance. Some related measures were compared in [12].

e (QUERY-BY-HUMMING and fingerprinting systems, such as Shazam [224], help to iden-
tify a song by a hummed melody or a short audio sequence.
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e IDENTIFICATION OF HIGH-LEVEL CHARACTERISTICS (see later Section 2.2.1): in-
struments and vocals, harmonic characteristics (e.g., chords or chord progressions),
tempo and rhythm, lyrics and melodic motifs, induced emotions, artist or composer,
playing style (e.g., staccato for piano or tapping for guitar). A proposal to categorise
these characteristics by seven facets (pitch, temporal, harmonic, timbral, editorial,
textual, and bibliographic) was done in [44]. In [11], high-level features are referred
to as semantic features and are used for music organisation in a so-called anchor
space.

e SEGMENTATION can be treated as a specific case: it is a classification task, where
certain song parts like verse, chorus, or intro are recognised. However, it is possible
to structure audio recordings into different segments based on low- or high-level
characteristics, e.g., harmonic segmentation or instrumental segmentation.

Another essential method in MIR, which is required for classification, is FEATURE EX-
TRACTION. Features are mostly numerical characteristics, which are integrated into the
categorisation models. In some situations, feature extraction can incorporate the clas-
sification itself, if high-level features (e.g., instruments) are extracted by a classification
model based on low-level features (see Section 5.1). Another possibility to extract high-
level characteristics is to learn the rules, which are relevant for a certain genre, for example,
the frequencies of the consecutive fifths and octaves, which are forbidden in musical coun-
terpoint.

Further examples of music analysis tasks are:

e SCORE ALIGNMENT maps the timeline of an audio recording to the corresponding
time events in the score [58].

e MUSIC TRANSCRIPTION creates the score from audio [101]. This very complex appli-
cation is often based on source separation, which outputs single representations of the
sound sources, i.e. different playing instruments, or orchestra and a solo instrument
[79]. Another related task is the correction of misplaced notes.

e GENERATIVE AND SYNTHESIS TASKS create new music based, e.g., on a set of rules
[35] or an evolutionary process [149]. Another method, which is also closely related
to similarity analysis and recommendation, is the generation of playlists [63].

e MUusIC GAMES provide entertainment and fun integrated into music listening, learn-
ing, or music collection organisation. Especially with the growing number of mobile
devices, many new application scenarios became available, e.g., control by gyroscope
or the procedural content generation based on audio music features [93].

e The enhancements of HEARING AIDS concentrate not only on speech understanding,
but also on listening to music [77].

e The studies from MUSICOLOGY AND MUSIC PSYCHOLOGY, such as estimation of the
music influence [32], can be incorporated into algorithm-based music analysis.

e VISUALISATION of music songs can be a great help for the management of music
collections, for example, based on self-organised maps [153] or by the creation of
trajectories with slowly changing style [205]. A specific challenge is given, if music
is accessed by a mobile device with a small screen [17].
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All these tasks have in common that almost always feature extraction is required to rep-
resent music, and it is a part of the algorithm chain. Many further interactions between
these tasks are possible: hearing aids may profit from the modelling of the psychological
aspects of music hearing, music generation can be a part of a game, music transcription
may improve the music alignment, and so on.

2.1.2. Music data sources

The development of music storage and recording over the past decades and centuries
established several sources for different groups of features:

e The oldest possibility to capture played music is to create the SCORE. It is unclear,
when exactly the very first notation systems were developed. However, the alphabet
letters were used in Greece for music notation around 200 BC, and many musical ac-
tivities in ancient Egypt were documented from about 2600 BC [129]. The taxonomy
of symbols and notation systems for polyphonic music in the quite well investigated
western notation evolved and altered strongly over centuries. For example, the
transition from black (solid, filled with black colour) to white (hole notes) notation
around the 15th century was motivated by the invention of thin paper, which was
not well suited for filling with ink compared to earlier parchments [6]. Figure 2.1
gives examples of two older notations. In comparison to modern systems, many ear-
lier notations did not provide very exact information. For example, the specification
of pitch began around 1100 AD. The note lengths of older systems corresponded
to the absolute time length, and the specification of tempo (with relative duration
of note lengths to each other) began around the 16th century [6]. Another obvious
limitation of the score is that it cannot restore a one-to-one copy of the once played
music piece, i.e. the exact timbre of the instruments, tempo and rhythm variations
by a certain interpret, or different playing techniques. On the other side, the score
enables the simple estimation of many high-level features: instrumentation, tempo
(if it is exactly described), harmonic structure and key, number of non-harmonic
notes, melody line characteristics, etc.

e ANALOGUE RECORDING made it possible to replay a musical piece with almost
complete similarity a large number of times. The techniques for analogue recording
can be distinguished into mechanical, magnetic, and optical. The probably first
invented mechanical music instrument, which could reproduce a music piece, was the
hydraulic “Banu Musa” water organ. The interchangeable cylinders stored music by
raised pins [65]. The mechanical possibility to record music was significantly boosted
by two inventions: the phonograph by Thomas Edison in 1877, where the sound
waves were converted to impressions in tinfoil, and later the gramophone by Emil
Berliner in 1888, which used discs instead of cylinders'. This technique is still in use
in LP (long play) recordings, and became even a comeback in popularity in the recent
past. The magnet-based recording started in the late 1920s by the invention of the
magnetic tape recorder, which saves music on tape with the help of the alternating
magnet field. In optical recording devices, the tape has a varying light sensitivity

! As mentioned in [148], the person, who posthumously became the first inventor of mechanical recording,
was Edouard-Léon Scott de Martinville, who built the phonautograph in 1857.
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Figure 2.1.: Examples for earlier notations. Upper subfigure (black notation): Go; Flos
folius est (Florence, plut. 29. I.), Bibliotheca Laurenziana, 13th century.
Source: [6], p. 253. Lower subfigure (white notation): Heinrich Isaac, De
radice (Choralis Constantinus), Formschneyder, Nuremberg, 1550. Source:
[6], p. 188.

and music is played by a conversion of the light ray into electric waves, and then
into sound waves.

e Since the late 1970s DIGITAL RECORDING became more important. Here, music is
transformed to a bit sequence or digital signal. This approach originates from the
Morse code, developed in the 19th century, where short and long signals were distin-
guished for radio transmission [197]. Digital recording enabled previously unimag-
inable possibilities to reproduce once played songs with a quality that sounds com-
pletely identical for a human listener. Because only two coding levels are used, the
danger of different errors is strongly reduced, compared to the situation, where more
different voltage levels are used for coding. On the other side, digital recording has
also several drawbacks, such as the necessity for a larger bandwidth for data trans-
mission and for complex error-detection methods [197]. Philips and Sony invented
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Figure 2.2.: Berliner Gramophone 1888.  Source: http://www.charm.rhul.ac.uk/
history/p20_4_1.html (c). Date of visit: 15.02.2013.

the CD in the early 1980s (the first commercial CD release was 1982), where the
audio signal was stored by a laser beam of light. One of the oldest formats for digital
storage is the pulse-code modulation (PCM), which saves a bit string representation
of the previously sampled and quantised signal (see later Section 2.2.2), and was
originally invented by Alec Harley Reeves in 1937. Later formats compressed the
size of the bit sequence, keeping the quality of the music performance (LOSSLESS
COMPRESSION), or provided stronger compression reducing the quality of the origi-
nal performance (LOSSY COMPRESSION), for example removing the frequencies which
are hardly perceived by human listeners or are masked by other frequencies. The
currently most distributed format, the MP3, was invented by the research group
around Karlheinz Brandenburg in 19922

Digital recording techniques and the integration of computers into music composition
also influenced the music notation by inventions of the digital score formats, such as
the musical instrument digital interface (MIDI)? and MusicXML.

e Another source for music-related features are METADATA: documents, which describe
music in a textual form. In [25], it is distinguished between factual and cultural
metadata: the first ones are objective and describe, e.g., the circumstances of the
music piece creation: composition year, age and experience of the composer, country
of creation, and so on. Cultural metadata are subjective and cannot be defined very
precisely. Examples of such descriptors are genres and subgenres, denoted by music
critics and experts.

With the expanding growth of the INTERNET and especially the SOCIAL EXCHANGE
in the first decade of the 21th century, it became possible to save and analyse a

2MP3s with a bit rate of 192 kbps require approximately a seventh of audio CD storage demands and
could not be significantly distinguished from CD recordings through the blind study in [142]. Further
tests on comparison of the CD recordings and digital lossy formats, investigated by Communications
Research Centre Canada, are discussed in [148].

Shttp://www.midi.org/, date of visit: 15.02.2013.

‘http://www.makemusic.com/musicxml/specification, date of visit: 15.02.2013.
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vast number of music metadata descriptors. The databases which are maintained
by music experts contain a large number of characteristics, like genres, styles, and
moods on the AllMusicGuide® (AMG) web site, or high-level characteristics created
through the Music Genome Project for Pandora web radio® [94]. Another kind of
data are generated by music listeners: the statistics from music playlists measure
the popularity of music pieces or may help to detect similarities related to listener
preferences. Tags of well-established music communities, such as Last.FM”, provide
many descriptors even for less popular songs. These personal tags can also be pre-
dicted from audio signal [13] and used as features for the detection of genre and
personal preferences.

e A less studied data source, which may be promising especially for prediction of
personal preferences, is the listening CONTEXT [56]. Feature estimation can be done
by the analysis of environmental sounds for the identification of personal music
preferences during car driving, shopping, eating, etc. An application example, which
integrates context data into music classification, is the measurement of the runner
step frequency for the selection of music with the appropriate tempo [159].

2.1.3. Algorithm chain

Before we provide a formal categorisation of supervised classification chain methods, the
three terms, which describe the building of time windows in music classification, should
be clarified (the term window is used as synonym to frame in this thesis):

e (FEATURE) EXTRACTION WINDOW is used for the estimation of an audio feature
(see also the discussion of windowing in Section 2.2.2). Short extraction frames are
usually of the length of several tens of milliseconds. Larger frames of several tens of
seconds are necessary for the estimation of tempo and related characteristics. Some
features, such as music piece duration, have extraction frames equal to the complete
song length. We denote the length of the extraction window in samples by W, and
the step size by S..

e (ALGORITHM) ANALYSIS WINDOW is a usually larger time window, incorporated into
the estimation of a feature from many small extraction frames. As an example, low
energy measures the energy of a certain number of short frames before the frame for
which this feature is estimated. Algorithm analysis windows are also built during
the estimation of structural complexity, as described in Section 2.3.3, where a given
number of seconds before and after a short frame is analysed. The algorithm analysis
window length in seconds is denoted by W,, and the step size by S,.

e (FEATURE) AGGREGATION OR CLASSIFICATION WINDOW is a time interval from a
music song, which is used for the training of classification models or classification (in
general data mining terms, it is also called a classification instance). For high-level
categories, such as genres, reasonable sizes of classification windows are typically
between several seconds and a complete song. In [211, 120], the windows used for
classification based on timbre characteristics are also referred to as texture windows.

*http://www.allmusic.com, date of visit: 15.02.2013.
Shttp://www.pandora.com, date of visit: 15.02.2013.
"http://www.last.fm, date of visit: 15.02.2013.
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In some of our previous works, e.g., [222], we describe them as song partitions. The
classification window length in seconds is denoted by W, and the step size by S..

Figure 2.3 provides an overview of the essential tasks and the data flow in any auto-
matic system for supervised classification of music data. In the following, we define the
corresponding methods for song-centered music classification.
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Figure 2.3.: Algorithm chain in music classification, adapted from [221]. Solid lines depict
the data flow, whereas dashed lines indicate nested relationships between the
methods (e.g., classification validation usually starts several model training
and classification cycles for the metric estimation). It is distinguished between
base classification methods (outside the rectangle with a dashed boundary)
and evaluation and optimisation methods (inside the rectangle).

The discrete audio signal (see also Section 2.2.2) is a form of a REAL-VALUED UNIVARIATE
TIME SERIES:

Definition 2.1 7S : NP — (R x R)D, where an index vector of length D is mapped to a
D-tuple of pairs € RxR. The first entry of each pair denotes the real-valued time positions
of equidistant time events and the second entry of each pair contains the corresponding
real-valued characteristic (feature) for these time events.

Usually, many features are extracted from the audio signal, resulting in a MULTIVARIATE
SERIES. Further, the time positions of the extraction frames are not necessarily equidistant,
and complex-valued transforms are possible. Therefore, the feature matrix can be treated
as a product of a more general VALUE SERIES mapping (we adapt the definition from
[146]):

Definition 2.2 VS : NP — (]R X (CF*)D, where an index vector of length D is mapped to
a D-tuple of pairs € R x CF". The first entry of each pair denotes real-valued time posi-
tions, and the second entry of each pair contains a vector with F* corresponding complex
characteristics (features).
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The FEATURE EXTRACTION task F¢& is responsible for the storage of the numerical values,
which characterise the original music data. In all studies within the scope of this thesis we
saved only the real-valued feature matrices after all internal transforms, and we restrict
the feature space to be real-valued. For a detailed discussion of audio feature extraction,
see Section 2.2.

Because each feature may be multi-dimensional and several features may be extracted
from the extraction frames of different lengths, we distinguish between the dimensionality
F**(i) of a single raw feature ¢, the overall number of its extraction frames 77*(¢), the
number of raw features Fy;, and the overall sum F* of feature dimensions after F. £8:

Definition 2.3 The real-valued song-level windowed audio feature extraction
task (referred to later as ‘feature extraction’) FE s — (X*(1),..., X*(F*)), where s € RP
is a discrete song audio signal time series of length D, X*(i) € REOXT™0) s the raw
song feature matrix of F**(i) feature dimensions and T**(i) extraction windows of a
single feature i, i € [1; F{| NN, F* = Zfz’l F**(i), and D > T**(i) ¥ i.

The next step, the FEATURE PROCESSING FP, has two aims. At first, the raw features
should be preprocessed for classification by normalisation, handling of non-defined values
and missing data, elimination of redundant features, etc. The second objective is to
create classification instances from appropriate time intervals (classification windows):
the original feature extraction windows are usually too short, and on the other side it
often does not make sense to classify complete songs, because they contain very different
segments. Section 2.3 provides a categorisation of methods for FP.

Definition 2.4 The real-valued song-level feature processing task (referred to later
as ‘feature processing’) FP : (X*(1),..., X*(F*)) — X', where X' € RF*T" is the song
processed feature matrixz of F feature dimensions and T’ classification windows.

The goal of classification is to estimate class relationships for unlabelled data. The first
part of this procedure, the CLASSIFICATION TRAINING task C7T, creates a classification
model, which maps the preprocessed feature values to one or more class relationships (we
restrict the definition to a single-class scenario, where only one category is predicted by
each CT, see also Section 2.4):

Definition 2.5 The real-valued single-class classification training task (referred to
later as ‘classification training’) CT : (X,y1) — Mc, where X € RF*T s the processed
feature matrixz of F' feature dimensions and T classification windows for one or several
songs, yr, € [0;1]7 is the vector of labelled category relationships of the T classification
windows (ground truth), and M is the classification model, which maps feature values
to a predicted relationship.

Consequently, the CLASSIFICATION task C is defined as follows:

Definition 2.6 The real-valued single-class classification task (referred to later as
‘classification’) C : (X, M¢) = yp, where X € RI*T s the processed feature matrix

8For example, if a 12-dimensional mel frequency cepstral coefficients feature, and the amplitudes of 5
spectral peaks are extracted, Fy = 2, F** (1) =12, F**(2) =5, and F* = 17.
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of I feature dimensions and T classification windows for one or several songs, Mc is
the classification model, and yp € [0;1]7 is the predicted class relationship vector.

Another group of classification chain methods is applied to evaluate and to tune a classi-
fication system.

The VALIDATION task V provides a feedback how well a classification model performs:

Definition 2.7 The real-valued single classification validation task (referred to
later as ‘classification validation’) V : (X,yr, Mc) — m, where X € RF*T s the pro-
cessed feature matrix of F feature dimensions and T classification windows for one
or several songs, y;, € [0;1]7 is the vector of labelled category relationships of the T
classification windows (ground truth), Mc is the classification model to validate, and
m € R is the vector of O evaluation metrics.

It is obvious that the data for training and validation of a model M ¢ should have as small
as possible overlap, at optimal equal to zero.

Usually, several validation tasks are combined, e.g., based on the n-fold cross-validation
principle. Then, V creates n models from the given labelled instances (V : (X,yz) — m)
and starts both tasks C7 and C as marked with the dashed lines in Fig. 2.3, see Section
4.2 for further details.

Finally, the OPTIMISATION task Og tunes the parameters of the related methods of the
classification chain with respect to some evaluation criterion, or metric, for example, clas-
sification quality. For simplicity reasons, we restrict the definition to metric minimisation:
the metrics to be maximised can be easily modified for minimisation®. Further, we do not
explicitly distinguish between evaluation and the optimisation metrics, which are both
denoted by the same symbols m (for a single metric) and m (for several metrics). Usually,
the same metric functions are used for evaluation and optimisation, however with differ-
ent purposes: whereas the evaluation only measures algorithm performance, optimisation
systematically tunes the algorithms for better performance measured by corresponding
metrics. This achievement goes often hand in hand with a diminished performance of
other evaluation metrics, which are less correlated with an optimisation metric.

Definition 2.8 The single-objective algorithm chain optimisation task Os : pT =

argmin m (py), where T C (FE,FP,CT,C,V) are the tasks to optimise, pr the corre-
PT
sponding parameters to tune, m the optimisation metric, and pT s the optimal parameter

vector.

Many different and conflicting aspects of the classification chain can be evaluated, e.g.,
classification accuracy, runtime and storage costs, or performance on highly imbalanced
sets. For example, if an algorithm provides a successful categorisation of music, but has
very high demands for feature storage and works very slowly, it is completely meaning-
less in a real-world application. Therefore, a multi-objective or multi-criteria optimisation

°In general, for a function f(z) it holds: max{f(z)} = —min{—f(z)} = argmax{f(z)} =
argmin {—f(z)}. One of the simplest modifications can be applied as follows: in the first step the
target set of a metric function m; is normalised so that m; € [0;1]. Then, the optimisation goal is set
to the minimisation of 1 —m;.
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(MOO) task Oy becomes reasonable (the formal definitions of multi-objective optimisa-
tion terms are provided in Section 3.2.2):

Definition 2.9 The multi-objective algorithm chain optimisation task Oy : P =

argmin m (p7y), where T C {FE, FP,CT,C,V} are the tasks to optimise, pr the corre-
PT
sponding parameters to tune, m is the vector of optimisation metrics, and P°r is the

matriz of the best non-comparable parameter vectors.

It is obvious that the optimisation of highly correlated criteria does not make sense (min-
imisation of one metric leads directly to smaller values of another one). However, often
two or more relevant and less correlated evaluation criteria can be selected. Then, the
search of trade-off parameter sets helps to decide, which parameters are preferable for a
certain situation.

2.2. Feature extraction

As discussed in the previous section, the feature extraction F& is the very first step for any
classification task. Feature extraction must be carefully planned, since the impact of too
many irrelevant or noisy features can be hardly neglected by any sophisticated classifier.
It is often preferable to design a set of meaningful features, which may provide an (almost)
linear separation of the data instances from different categories, instead of spending too
much time on tuning the classification methods.

Each classification task may require its own features. Therefore, it is reasonable to start
with a large feature set and to apply a feature selection procedure (discussed in Chapter
3) afterwards for the identification of the most representative characteristics.

Section 2.2.1 deals with the interpretability and the musical meaning of features, and the
differences between low-level and high-level descriptors are discussed. Section 2.2.2 pro-
vides a short introduction into the signal processing steps required for FE. The following
sections give an overview of the audio features, which are used in this work, from timbre
and energy to instrumentation and harmony characteristics.

2.2.1. Low-level and high-level descriptors

Interpretable and music theory-related features, which describe instrumentation, rhythmic
structure, chord progression, melodies, etc., significantly improve the understandability
of the classification models. When using these kind of features, the organisation of mu-
sic collections or recommendation of new music becomes intuitive and helpful for music
listeners.

The question is, which characteristics can be referred to as interpretable and understand-
able, and how can we distinguish between low-level and high-level features? In fact, no
common agreement or clear definition exists. Some of the related works describe the
statistics that are generated from other features already as high-level [153, 174], other
limit this definition to the characteristics that may be estimated from the score [138]
or name the features high-level, if a complex method sequence was developed for their
extraction [24, 51, 173].
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The definitions above do not suggest that high-level descriptors should be related to music
theory and be understandable by music scientists and human listeners without a university
degree in sound engineering and acoustics. This statement is however supported by other
publications. In [230], onsets, notes, melodies, and harmonies are referred to as the high-
level objects. Rhythm, melody, and harmony are mentioned in [236]. Music genres are
classified by rhythm and chord characteristics in [7] and by instrument-related features
in [238]. [191] includes also genre, mood, speaker characteristics, and lyrics into a list of
high-level descriptors. In [27], three different abstraction layers based on interaction with
a human listener are distinguished for music characteristics: low-level audio signal features
describe physical and spectral characteristics, such as loudness, duration, or energy. The
mid-level layer consists of descriptors closer to music listener, e.g., key and mode, rhythm,
dynamics, and harmony. The high-level layer comprises the characteristics closely related
to listener: emotions, opinions, memories, etc.

We provide the following definition within the scope of this thesis:

Definition 2.10 The processed feature matriz X' is referred to as being high-level, iff it
contains the values describing either:

e instrumentation (instruments, methods to play them, applied digital effects, etc.),

e harmonic descriptors (key and mode, chords and their progression, characteristics
of harmonic and non-harmonic notes, etc.),

e melody (melodic contours, share of melodic segments, etc.),
e rhythm, tempo and structure characteristics,
e emotional and contextual impact on the listener, as well as listening habits, or

e metadata, which describe the source of a music piece (place of composition, com-
poser’s age, etc.) and lyrics.

Furthermore, we list the preconditions, which are not assumed to hold for all high-level
features:

e DEPENDENCY ON THE DATA SOURCE: High-level features may be estimated either
from the score, audio, or any further sources, sometimes exclusively. For example,
the application of a digital effect, like hall, may be identified only from audio, if it
is not mentioned in the score. On the other side, the tempo is often indicated in the
score, but also can be calculated from audio.

e CHARACTERISATION BY A PRECISE NUMERICAL VALUE: For example, the parallel
keys, e.g., C-major and a-minor, are built from the same halftones, and in some
cases the key relationship is not crisp.

e INVARIANCE FOR DIFFERENT RECORDINGS OF THE SAME PIECE: Even if many
harmonic characteristics are usually kept, the same piece may be played by different
instruments and with different tempi.

e A CLEAR DEFINITION BOUNDARY TO LOW-LEVEL FEATURES is not always possible
and is vague in certain cases: e.g., a chroma vector corresponds to a wrapped semi-
tone spectrum and is rather low-level, whereas the strongest chroma component may
correspond to high-level harmonic characteristics of a piece.
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e A CLEAR ADVANTAGE AGAINST LOW-LEVEL FEATURES W.R.T. CLASSIFICATION
QUALITY: Some recent works stated that very short audio intervals are sufficient
to classify songs into genres. 250 ms were already enough in many cases for the
identification of 10 genres in [70], and segments of 400 ms were used for the identifi-
cation of artist and title in [109]. Many high-level characteristics cannot be properly
extracted from such a short frame. However, it does not change the fact that only
the classification models built from high-level features are really interpretable and
helpful for listeners, if the properties of certain genres should be studied. Also, both
above mentioned studies do not cover all possible enhanced music categorisation
tasks: the identification of specific music subgenres or personal categories was be-
yond their scope, so that further investigations are required'’. Furthermore, several
studies exist, which claim the improvement of classification performance by the com-
bination of different groups of features (including high-level descriptors): low-level
and instrumental features in [238], audio and symbolic features in [121], low-level
and high-level audio features in [7], and a combination of audio, cultural and sym-
bolic features in [138]. Another issue is that if the high-level features are estimated
from low-level features (which holds in many cases), they do not provide additional
knowledge for supervised classification, but aggregate the low-level characteristics
into a less dimensional and comprehensible representation.

e MUSIC COMMUNITY TAGS [47] can be treated as high-level features in many cases,
since they may well describe the characteristics from Def. 2.10. However, this is
not always the case, and such tags may contain false, contradictory, or irrelevant
information.

Table 2.1 provides several examples of low-level and high-level features (for definitions and
discussion of these features see Section 2.2.3).

Table 2.1.: Examples of low-level and high-level features.

Low-level High-level
Group Example Group ‘ Example
Timbre Tristimulus Instruments Piano share
Energy Low energy ratio Playing style Staccato
Chroma Bass chroma vector |Harmony Relative strengths
of fifths
Autocorrelation Strongest Tempo and rhythm |Beats per minute,
autocorrelation peak waltz
Envelope Linear prediction Structure Number of
distribution coefficients different segments

Some publications provide extensive lists of descriptors, which can be referred to as high-

107¢ is easy to define counterexample categories, where the classification from short intervals would achieve
its limit, and the music preferences of a listener depend clearly on long-framed high-level features: con-
sider a categorisation of ‘progressive rock’ versus ‘folk rock’. The identification of progressive rock songs
may perform well only by detection of complex rhythmic patterns and the share of longer instrumental
segments with orchestra. Other progressive rock song segments may be similar to folk rock songs.
Therefore, we propose to interpret with caution the statement that very short intervals are enough to
identify a music category: it may indeed perform well for the recognition of popular and distinctive
genres, but not for the more challenging identification of personal categories.
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level within the scope of Def. 2.10. [201] provides a list of parameters of musical expression
for music analysis, comprising time, melodic, orchestration, tonality, dynamic, acoustical,
and mechanical aspects. [138] contains descriptions of 153 symbolic features (instrumen-
tation, musical texture, rhythm, dynamics, pitch statistics, melody characteristics, and
chords). In our previous study [186], 61 high-level features (instruments, singing and
speech characteristics, melody, harmony, rhythm, dynamics, effects, structure, and level
of activation) were predicted from low-level audio signal features.

2.2.2. Music and signal processing

SOUND is an energy form, which is represented by periodic vibrations of environment
molecules (SOUND WAVES). The waves are created by a vibrating sound source. The
sound is described as MUSsIC, if its sources are musical instruments. Their exhaustive
classification was introduced in [213], and this work is still the most common after almost
100 years (only the last group of electrophones was added lately):

e IDIOPHONES produce sound by their natural vibration and are composed of a hard
body. The examples are xylophone and triangle.

e MEMBRANOPHONES use a vibrating membrane as a sound source and contain differ-
ent groups of drums (kettel drums, cylindrical drums, barrel drums, etc.)

e CHORDOPHONES are the instruments with vibrating strings, such as violins and
pianos.

e AEROPHONES create sound by air vibrations, e.g., in the pipes of organ and wind
instruments.

e ELECTROPHONES build sound waves with the help of loudspeakers and can be dis-
tinguished into the two groups: conventional instruments with electric amplification
(e-guitar) and newer instruments, which often have keys, such as synthesisers.

Each sine wave is characterised by its AMPLITUDE w, and LENGTH, or PERIOD w;. wWq
measures the strength of the wave and relates to the environment pressure and sound
loudness. PRESSURE is a physics term, which is defined as force divided by the area of
its application. LOUDNESS corresponds to perceived pressure, or volume. w; describes
the periodicity, i.e. the time length of a single vibration. Wave FREQUENCY w; = w% is
the inverse of the length and describes how often the wave achieves the same stage of its
period in a second (measured in Hz). wy is closely related to pITCH, which enables the
ordering of sounds from low to high. Pitch can be defined as “the frequency of a sine wave
that is matched to the target sound by human listeners” ([81] in [100], p. 8), or in terms
of music theory as an “attribute of sensation whose variation is associated with musical

melodies” ([172], p. 2).

Another meaning of sound is “an auditory sensation in the ear” [185], p. 3. The way
how we react to music originates from the interaction of several complex systems: from
auditory periphery to intermediate auditory stage and the central nervous system [156].
The sound waves arrive at the outer ear, pass on through the tympanic membrane to
the three bones of the middle ear, and are then transmitted to the cochlea in the inner
ear, which activates the auditory nerve system. During this process, some frequencies are
enhanced and other attenuated. As a consequence, some frequency ranges are perceived



2.2. Feature extraction 25

Figure 2.4.: Discretisation of the function y = sinx + sin (ac2 — 2ac) with the bit range
of 4 bit. The original function is marked with a line, the saved values after
discretisation with thick circles.

louder than other in spite of the same wave amplitudes. The best perceived range is
between 2,000 Hz and 5,000 Hz [62]. An interesting fact is that the range of frequencies
recognisable by a human ear is nine times greater than the range of frequencies perceived
by an eye [185].

The recording techniques discussed in Section 2.1.2 store the sound as a time series (see
Def. 2.1), or AUDIO SIGNAL, which maps equidistant time events to the corresponding
environment pressure. Then, this pressure can be reproduced in almost the same quality
as the original one. For the digital storage of audio two discretisation levels are necessary:

e SAMPLING defines the time points, at which the audio wave amplitudes are measured,
for example each 0.25 points in Fig. 2.4. The sampling frequency fs is measured in
Hz. A standard audio CD uses f; = 44,100 Hz.

e BIT RANGE, or DEPTH b,, is the number of bits required for storing the wave am-
plitude levels. For example, 16 different values {-2,-1.75,...,1.75} in Fig. 2.4 can be
saved using 4 bits. A CD has a bit range of 16 bits, so that 2'6 = 65,536 discrete
values are used for the measurement of amplitudes.

Larger fs and b, provide an exacter reproduction of sound, but have higher storage de-
mands on the other side. Because human sound perception has natural limits between
approximately 20 Hz and 20,000 Hz, it does not make sense to increase both parameters
above a certain value.

Improper sound discretisation may lead to undesirable effects:

e The SHANNON THEOREM [212] claims that if the sound is digitised using a sampling
rate f,, only the waves with wy < % (NYQUIST FREQUENCY) can be recognised. An
example of a wave with the higher frequency (w; = 27), which cannot be properly
identified using fs = 2.57, is illustrated in Fig. 2.5. Here, this wave has the same
discretisation values as a wave with w; = 5. This effect is called ALIASING. Then,
it is necessary to apply an analogue LOW-PASS FILTER before digitalisation, which

keeps only the waves with wy < % and removes the waves with wy > % For an
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Figure 2.5.: The sine wave y = sinx (solid line) is wrongly recognised as y = sin (x/5)

(dotted line), if the sampling is done each 2.57 points.

audio CD with f; = 44,100 Hz, the frequencies up to 22,050 Hz can be saved. Higher

frequencies are barely perceived by human ear'.

e Another problem, the QUANTISATION ERROR, can occur by using of a too small bit
range, such that the discretised signal does not properly represent the original one.
The impact of this effect is particularly high for signals with very small amplitudes,
so that the same discrete values are saved for different amplitudes.

The frequency representation of a sound, its SPECTRUM, can be estimated by the appli-
cation of the Fourier transform, which maps any continuous periodic function to a sum
of sine and cosine waves. The CONTINUOUS FOURIER TRANSFORM (CFT) is defined as
follows:

[e.e] o0

s(t*) - (cos 2w f*t* — jsin 2mw f*t*) dt* = / s(t*) - e 12 g (2.1)

—0o0

crr(r - |

—00

where t* denotes the continuous time, s(¢*) the continuous time signal, f* the continuous
frequency, and j = v/—1 is the imaginary unit.

Because the sound waves are discretised for storage as described above, the DISCRETE
FOURIER TRANSFORM (DFT) is applied in praxis:

Bj—1

DFTy(f) = ) _ s(t)-e ™", (2.2)

t=0

Here, By corresponds to the number of spectrum frequency bins, ¢ is the discrete time,
s(t) is the discrete time signal, and f is the discrete frequency. DFTg(f) is then the
amplitude of a frequency bin ¢ € {0, ..., By — 1}. The Fourier transform can be estimated

1 According to [87], p. 3, the sampling rate of 44,100 Hz was selected “simply for the reason that it was
easier to remember” instead of 44,056 Hz — which was an alternative required for the compatibility
with NTSC and PAL standards at that time.
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significantly faster if By is a power of 2, for example using the Cooley-Tukey algorithm
[33].

In modern western music, the sounds generated by musical instruments are organised in
halftones. Each halftone has a certain perceived pitch. However, the halftone spectrum
is more complex than a single wave: it is built from HARMONIC and NON-HARMONIC
frequency components. The first group consists of a FUNDAMENTAL FREQUENCY, which is
closely related to the pitch, and several nearly whole number multiples of the fundamental
frequency, or OVERTONES. The non-harmonic frequencies are formed by the interaction of
an instrument with its environment, e.g., strikes of violin bow or piano key. FORMANTS
are the frequencies, which are especially amplified through an instrument body.

An OCTAVE is represented by 12 subsequent halftones (C, Ct or Db, D, Dt or Eb, E, F, Ft or
Gb, G, Gt or Ab, A, Af or Bb, and B), whose fundamental frequencies have a logarithmic
distribution in the frequency domain. For simplicity reasons, we refer to the halftone
fundamental frequencies as halftone pitches, or tone pitches. The whole number multiples
of the original pitch are perceived as similar, and the same symbols are assigned to similar
halftones of different octaves in the notation system. Most of modern pianos have the
lowest halftone A0 and the highest C8. Whereas the tone pitches can be directly obtained
from the score, they cannot be directly identified in a digitally saved audio signal. For this
purpose, a frequency f can be mapped to the corresponding halftone in the SEMITONE
SPECTRUM, where p denotes the bins [171]:

o(f) = [1210g2 41601 +69. (2.3)

Many different algorithms exist for the estimation of semitone spectrum amplitudes, or
CHROMA. One of the common established is the pitch class profile (PCP) [68]:

PCP(pw)= Y |IXiI]?, where (2.4)
Vi:M(l)=p

pw € {0,1,..,11} is a halftone pitch class (for building the wrapped semitone spectrum),
and || X;|| are the amplitudes of the spectrum bins, which correspond to the halftones of
the class and are defined by:

iy -1 for [ =0 05
O [1210g2 ((fs : Bif)/fref)—‘ mod 12, forl=1,2,..,B/2 -1 ’ (25)
(frey is the reference frequency for PCP(0)).
The CEPSTRUM domain is defined by an inversed FFT (ICFT) logarithm [101]:
[CFTog(crry(sn(T) = / log (ICFT(f*)]) - ™/ 7df*. (2.6)

The cepstrum domain is used for the estimation of mel frequency cepstral coefficients
(MFCCs), which were successfully applied for speech recognition [178], and are also used
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in many music classification tasks.

The PHASE TRANSFORM for audio classification was proposed in [146], where the phase
domain features provided a successful discrimination between music with a higher share
of percussive impulses (rock and pop) and music with a lower share of percussive impulses
(classical). A phase domain representation of the signal d with length D is defined as:

PD(ePP mPP d) = {de\z' =1,...,D— (m"P - 1)ePD} , where (2.7)

dfP = (d(i),d(i + €"P), d(i +2¢"P), .., d(i + (m"P = 1)ePP)) , and  (2.8)

eP’P is the delay in the phase space, m

ie{l,..,D}.

PD is the dimensionality of the phase space, and

A common way to estimate audio features for a music piece is to apply WINDOWING
in the corresponding domain, where each feature value is calculated from a window of
a certain length, e.g., 512 samples. Some features (such as time structure and tempo
characteristics) require large extraction frames. On the other side, many timbre and
harmonic characteristics are calculated from small extraction frames not longer than the
shortest note. The lowest frame size boundary for spectrum-related features is restricted
by the Shannon theorem: for example, a frame of 512 samples from the signal with f
= 44,100 Hz permits after DFT the estimation of amplitudes of 512 equally distributed
frequency bins between 0 Hz and 22,050 Hz, so that the distance between the bins is equal
to 43.07 Hz. This bin resolution produces larger errors especially for halftones of the lower
octaves: e.g., C1 corresponds to 32.70 Hz and the next halftone C#1 to 34.65 Hz).

The extraction frame sizes often correspond to the powers of 2, for reasons of efficient
computation. For chroma and harmonic analysis, a frame size of 4,096 provides a good
compromise [71].

Figure 2.6 provides examples of different feature domains. The upper subfigure shows
the score of the first bars of Beethoven’s “Fiir Elise”. The second subfigure from the
top depicts the corresponding time signal. The subfigure below illustrates the spectrum
with frequency amplitudes up to 1,000 Hz. The bottom left subfigure shows the chroma
discrete cosine transform-reduced log pitch for the first 9 notes, where the melody line
E-Df-E-D§-E-B-D-C-A is indicated with the squares with darker red colours (high chroma
amplitude) and the low chroma amplitudes are marked with darker blue colours. The
bottom right subfigure plots the phase domain representation of the first bars.

2.2.3. Audio features

This section describes the features used for experimental studies of this thesis. Because
of the major advantage of audio features that they can be always extracted from the
corresponding MP3 song, we restricted the feature set used in this work to audio features
only. The score is not always available for popular music pieces, and metadata are often
incomplete or subjective. The exact feature lists with literature references are provided
in Appendix A. In the following sections we briefly discuss characteristics of the feature
groups and provide definitions for several features, which were implemented for this thesis.
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Figure 2.6.: Several representations and audio feature domains for Beethoven’s - “Fur
Elise”: (a) the score; (b) time domain; (c) spectrum domain; (d) chroma
discrete cosine transform-reduced log pitch (CRP) [155]; (e) phase domain
[146].
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The Sections 2.2.3.1 to 2.2.3.3 adapt the categorisation of feature groups from [211], where
three types of audio features were described: timbral, rhythmic, and pitch characteristics.
We extend these groups to ‘timbre and energy’ (features estimated mostly from time, spec-
tral, and cepstrum domains), ‘chroma and harmony’ (pitch-related, short-frame, and low-
level characteristics, as well as high-level descriptors, e.g., a number of different chords),
and ‘tempo, rhythm, and structure’ (long-frame, mostly high-level features, which de-
scribe the time structure of music). In Chapter 2.2.3.4 three high-level feature groups are
mentioned, which are derived from the audio signal by application of the sliding feature
selection (which is introduced in Section 3.3). The experimental studies for the creation
of these high-level features are described in detail in Section 5.1.

Table 2.2 lists the software tools used for FE. All of them are integrated as libraries
or plugins into the Advanced MUSic Explorer (AMUSE) [221]. We developed this Java
framework with the target to provide interfaces for various music classification tasks, as
categorised in Section 2.1.3.

Table 2.2.: Software tools for F€E.

Name Reference
AMUSE [221]
Chroma Toolbox [155]
jAudio [138]
MIR Toolbox [117]
NNLS Chroma and Chordino Vamp plugins | [135]
Yale [147]

2.2.3.1. Timbre and energy

Timbre and energy features can be considered as low-level (see Section 2.2.1), and most of
them are estimated from short extraction frames. TIMBRE is a characteristic, which makes
the halftones of the same pitch and loudness sound differently, depending on the source
instrument and the playing style. ENERGY features relate to the noisiness and loudness
of an audio signal.

Table A.1 in Appendix A lists the feature names, literature references, extraction frame
sizes in samples W, (for mono signals with fs = 22,050 Hz), numbers of feature dimensions,
the software used for feature estimation, and the unique AMUSE feature IDs. Most of
these features are described in our technical report [206] and the manual of the MIR
Toolbox [115], in which references to further works are given.

It is possible to group these features by their extraction domain:

e TIME DOMAIN characteristics describe the audio signal time series, e.g., by its ap-
proximation with linear prediction coefficients or energy distribution. For example,
‘low energy’ compares the energy of a frame to the energy of the previous larger
analysis window. Another commonly used and simple feature is the zero-crossing
rate. It correlates with the noisiness of the signal, which in turn describes the timbre
[211].
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e SPECTRAL DOMAIN features correspond to the numerous statistics of the distribution
of the frequency bin amplitudes: spectral centroid, crest factor, slope, kurtosis, flux,
skewness, distances between spectral peaks, etc.

e CEPSTRAL DOMAIN descriptors consist of the several implementations of the mel
frequency cepstral coefficients (MFCCs) and the cepstral modulation ratio regression
(CMRARE) features [133], which describe the temporal cepstrum progress using a
polynomial approximation.

e PHASE DOMAIN features are the average distance and the average angle in the phase
domain. These features are well suited for the separation of classical music and
popular genres with a higher percussion share [146].

e Finally, ERB AND BARK SCALE DOMAINS are motivated by the characteristics of
human perception, where different frequency bands are sensed differently [151].

2.2.3.2. Chroma and harmony

HARMONY describes the relationship between simultaneously played tones (and is often
described as the ‘vertical’ music component). If exactly two tones are played at the same
time, they build an INTERVAL; three and more tones are characterised as CHORD. One of
the central terms in music harmony is the CONSONANCE: consonant intervals are perceived
as more complete and pleasing, whereas dissonant intervals are perceived as rough. The
differences between consonant and dissonant sounds can be measured by mathematical,
physical, physiological, and psychoacoustical aspects. However, it is difficult to provide
an exact definition, in particular, because the comprehension of consonance altered over
centuries. References to older and newer theories are provided in [144, 185].

Because the exact notes cannot be perfectly extracted from audio, the first step in the
estimation of almost all audio harmonic characteristics is the transformation into the
chroma domain. One of the simplest possibilities is to estimate the PCP, as defined
in Equ. 2.4. The chroma-related harmonic characteristics are often not so precise as the
score features. However, they build a bridge between signal processing methods and music
theory and are essential when no score is available.

Chroma and harmony features listed in Table A.2, Appendix A, comprise low-level spectral
characteristics as well as high-level music theory related harmonic descriptors. It can be
roughly distinguished between chroma-based features, harmonic characteristics, and chord
statistics. A semitone spectrum, which is estimated from the frequency bin amplitudes
aggregated around the corresponding pitches, can be considered as low-level. On the other
side, the characteristics of chords and musical keys can be referred to as high-level.

Several features were implemented for this study directly in AMUSE and are defined as
follows:

e INTERVAL STRENGTHS FROM THE 10 HIGHEST SEMITONE VALUES: First, a semitone
spectrum is estimated with NNLS Chroma [135], saving the amplitudes SC(p) for
the 85 different pitch levels. Then, the indices of the 10 highest values are sorted
and saved in pjg. The interval strengths IS(k) (k € {1,2,...,12}) are calculated as
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follows:

IS(k)= > min(SC(i),SC(5)). (2.9)

iA,J'EAPm
li—jl=Fk

INTERVAL STRENGTHS FROM THE SEMITONE SPECTRUM ABOVE 3/4 OF ITS MAX-
IMUM VALUE: If a part of simultaneously played tones is significantly louder than
another part, the 10 strongest SC values may describe the fundamental frequencies,
overtones and noisy components only from the louder tones. Therefore, another
possibility to measure the interval strengths is to allow all values above a certain
threshold to contribute to the interval estimation. Here, all semitone spectrum values
above 3/4 of the maximum are used:

IST (k) = > min (SC(i), SC(j)) . (2.10)

5C(1),5C(j)>%-SC(P19(1))
li—jl=k

STRENGTHS OF THE CRP COOCCURRENCES: Chroma discrete cosine transform-
reduced log pitch (CRP) [155] is an enhanced chroma variation. It was developed
especially for filtering out timbre sound characteristics, which are mostly captured
by lower MFCCs. The strength of two cooccurrent values CRP(i) and CRP(j),
i,7 €{1,2,...,12} is defined as:

CRP(i) + CRP(j)

(2.11)

The estimation of all strengths between CRP values provides a raw description of
interval strengths, and the overall number of dimensions is equal to % = 66.

NUMBER OF DIFFERENT CHORDS AND CHORD CHANGES IN 10 s: This feature is
estimated from the chords, which were previously extracted by the Chordino Vamp
plugin [135]. A frequent chord change does not necessarily correspond to a rich
harmonic progression, since only a few different chords may be a part of the chord
sequence.

SHARES OF THE MOST FREQUENT 20, 40, AND 60 PER CENT OF CHORDS WITH
REGARD TO THEIR DURATION: Initially, the durations of each chord are summed
up for each chord type, and the most frequent chords for the complete music piece
are estimated. coq, c40 and cgg save the indices of the most frequent chords, which
cover more than 20%, 40% and 60% of the song. Afterwards, the time shares of
these most frequent chords are estimated for each extraction window:

osky =3 <M (2.12)

e

1ECy

where k € {20;40;60}, and Ch; is the overall duration of the chord ¢ in the extraction
frame.
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2.2.3.3. Tempo, rhythm, and structure

Table A.3 lists mostly high-level features, which describe the temporal music structure:
tempo, rhythmic patterns, and segmentation characteristics. The extraction frame size
W, = —1 means that the feature was estimated from the complete song.

e TEMPO features consist of signal autocorrelation statistics, as well as perceived pe-
riodicities in music: the tatum is the shortest, and the beat is the strongest entity
of the perceived repetitions [193]. The onset events mark the beginnings of the new
notes and are often detected by changes in the energy distribution.

e RHYTHM describes groups of periodic entities, e.g., the repetitions of strong and
weak accents in subsequent measures. Songs with the same tempo may have different
rhythmic patterns, and the same rhythmic pattern may occur for music pieces with
different tempi. An extended discussion of tempo and rhythmic properties is given
in [190]. One possibility to measure rhythmic properties of the audio signal is to
calculate the progress of loudness for different subbands (fluctuation patterns) [167].
Rhythmic clarity describes how easily music listeners may perceive the periodic
impulses [116].

e The 3-dimensional SEGMENTATION characteristics feature is based on the method
from [169], which outputs a segment sequence with start and end times of each
segment. The segment descriptions (such as ‘bridge’ or ‘chorus’) are predicted by
hidden Markov models from the training set. The number of segment changes, the
number of different segments, and the relative share of different segments are stored.

2.2.3.4. High-level descriptors from classification models

A large part of the high-level audio features (Tables A.4, A.5 and A.6) was built by the
application of classification models trained from other, mostly low-level, characteristics,
where the target label was equal to the high-level descriptor. Multi-objective feature
selection was applied for model optimisation (see Section 3.2.2), and some of the high-level
features were used as input features for the prediction of other high-level characteristics,
as proposed in the concept of the sliding feature selection (see Section 3.3). These features
describe instrumentation, vocal characteristics, harmony and melody, moods, etc. For the
details about these features, please see below (Sections 5.1.1 to 5.1.3).

2.3. Feature processing

The feature processing task FP is defined in Def. 2.4. Its target is to convert origi-
nal feature matrices to classification instances for training or classification. It should be
mentioned that in many actual music data analysis studies more attention is paid to the
development of new features or classification methods, rather than to feature processing.
However, this intermediate step also plays a relevant role. Improper feature aggregation
may lead to a significant decrease of the classification quality. Furthermore, a strong re-
duction of the feature matrix provides faster training and categorisation, and also saves
vast amounts of disc space and reduces memory demands.
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Let (X*(1),...,X*(F*)) be the original feature matrices for all audio features 1,..., F*.
Different features are extracted from frames of different sizes: e.g., the spectral centroid
can be estimated from the non-overlapping frames of 23 ms, tempo from frames of 10 s
and the song duration from the complete audio recording. In that case it is not possible
to create a proper feature matrix for a complete song: for example, if the song duration is
equal to 45 s, the tempo is not estimated for the last 5 s. A more serious problem is that
many JP methods cannot be applied directly on vectors of different dimensions.

Before any further processing methods are started, we apply the following simple method
for matrix harmonisation, which is illustrated in Figure 2.7 for four example features. First
of all, the smallest extraction frame size W, is estimated across all raw features (feature
X1). The time dimension of the harmonised matrix X# is set to the whole number of
the extraction windows of this length, which fit into the complete song'?. For an example
from the last paragraph, it would be equal to Lzé‘;’nssJ = 1,956. For all features with larger
extraction windows, their values are assigned to several frames of length W,,;,, which are

contained in the original larger extraction window. For each larger extraction window j

Wmin
the last small frames do not correspond to any large frame (it holds for X3 in Fig. 2.7),
the values are set to NaN (not a number).

of the feature 7, the latest corresponding new small frame is calculated as {j . M—‘ If

| «<—Song length— | «<—Song length—

| |

I |

X | 02/03 /04 [Bf] |
37 I ' I
x | [oz[ozlozlozw] |
L |
X I

I

Figure 2.7.: Creation of the harmonised raw feature matrix X*.

After X is created, several possibilities to operate on the matrix dimensions exist, as
sketched in Fig. 2.8:

e PREPROCESSING methods, such as normalisation, prepare the data for further al-
gorithms and do not change the matrix dimensionality (a). We describe the most
relevant methods in Section 2.3.1.

e Methods for PROCESSING OF FEATURE DIMENSION mainly operate on rows in the
feature matrix. STATISTICAL PROCESSING OF FEATURES does not change the num-
ber of features and transforms the feature domains, e.g., by principal component
analysis (PCA) (a). FEATURE CONSTRUCTION techniques create new features from
existing ones and increase the feature dimensionality, for example by an estimation of
a linear combination of several features (b). FEATURE SELECTION, e.g., by retaining
the most relevant principal components after PCA or the least correlated features in

12Because the first step of our experiments is always the harmonisation of the feature matrix, we denote
the output matrix as X*. For simplicity reasons, we denote as X' all matrices, which are output by
any further FP step.
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X', reduces the feature dimensionality without feature domain transforms (c). Sev-
eral algorithms for processing of feature dimension are briefly mentioned in Section
2.3.2. Since multi-objective feature selection was an essential part of this thesis, it
is described in detail in Chapter 3.

e Methods for PROCESSING OF TIME DIMENSION focus on columns in the feature ma-
trix. STATISTICAL AGGREGATION OF FEATURES handles music as time series and
calculates, e.g., the autoregression coefficients or estimates Gaussian models of the
feature distribution (d). TIME REDUCTION BASED ON MUSICAL EVENTS selects fea-
tures from certain frames based on music temporal and structural characteristics, for
example, saving only features from extraction frames between beat events or from
representative music segments, such as the chorus (e)'3. One focus of our work was
to integrate the knowledge of musical events into FP; the corresponding methods
for processing of time dimension are discussed in Section 2.3.3.

Although it is possible to significantly increase the dimensionality of X' (for example
by estimating several derivations for each feature and keeping all extraction frames), it
is indeed desirable to keep the matrix dimensions as small as possible. This holds not
only for the number of features (too many noisy and irrelevant features may overwhelm
the classification algorithms, as discussed later), but also for the time dimension: music

33ome of the methods correspond to a combination of (e) and (b): e.g., if the feature values related to
different time events are used to build several new feature dimensions.
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pieces usually consist of several similar repetitive parts, so that it is not required to train
categorisation models from the complete songs.

Finally, the last FP task, BUILDING OF CLASSIFICATION FRAMES, is to identify concrete
classification instances, which should be categorised or used for training — for example
by averaging the feature values for time intervals of 5 s. This procedure is addressed in
Section 2.3.4.

2.3.1. Preprocessing

The target of preprocessing is to prepare the numerical characteristics for successful clas-
sification, which may be limited by some constraints: for example, a classifier may not
handle missing feature values or only process categorical features. Some works also refer
to the more complex data reduction methods as preprocessing [22]. According to the cate-
gorisation of /P methods in the previous section, we limit the definition of preprocessing
within the scope of this thesis to those methods, which do not change the dimensionality
of the feature matrix and have one or several of the following objectives:

e STANDARDISATION is necessary, if the related features are extracted from the same
domain, but are differently scaled. For example, time intervals can be measured in
minutes, seconds, milliseconds, but also in samples.

e HANDLING OF MISSING AND NON-DEFINED VALUES: For data mining in general,
handling of the missing features, which could not be properly extracted by an ex-
periment or are simply not available, is a well-known problem. It is addressed in
the corresponding literature, see, e.g., [131]. In our work, we use only audio fea-
tures, which are previously extracted from each music piece. Therefore, there are no
missing values (this situation may change quickly, when metadata features are inte-
grated). However, there are several characteristics, which are not defined for certain
extraction frames. As an example, the feature ‘low energy’ estimates the share of the
root mean square (RMS) energy amplitudes, which are below the average RMS from
a larger analysis window before the extraction frame. The jAudio default implemen-
tation uses an analysis frame of 100 windows, so that it is not possible to extract the
low energy for the first 100 frames. Other examples are the amplitudes of the 2nd to
5th spectral peaks, which cannot be estimated, if only a single spectral peak exists.
Further, some extraction frames with ‘not a number’ values are artificially created
through the raw feature matrix harmonisation, as discussed in the previous section
and illustrated in Fig. 2.7. Many methods are available to handle the missing values
— for example, elimination of all instances with such characteristics or substitution
by another value, e.g., zero, the mean, or the median across all values of this feature.
In this work, the median is used. We use an abbreviation ‘NaN’ (not a number) for
both missing and non-defined values.

e NORMALISATION makes compatible the differences between features, if they have
very different definition areas. It is necessary especially for classification methods,
which handle all feature dimensions in a similar way, e.g., by estimating the Euclidean
distance between feature vectors. For example, zero crossing rate values are limited
to [0; 1] by their definition, whereas spectral peak positions belong to [0;22,050] for
fs = 44,100 Hz. In our work, we apply a so-called 0-1 normalisation [120]. Here, the
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experimental minimum X" and maximum X% are estimated for each feature
X; from a large number of songs. Then, each value X;(¢;) (j is the extraction frame
number) is replaced by X/(t;):

Xi(t;) — Xmin
X[(t;) = - l—t (2.13)
Xima:L‘ _ X@mm
e DOMAIN TRANSFORMS change the feature domains according to the requirements
of classification algorithms, for example by a mapping of nominal characteristics to
real values. If a classifier processes only nominal characteristics, the features with
continuous real values have to be DISCRETISED and mapped to nominal values.

2.3.2. Processing of feature dimension

As introduced in Section 2.3, a method operating on the feature dimension may either
reduce, increase, or leave the number of features unchanged.

STATISTICAL PROCESSING OF FEATURES transforms the feature dimensions with the aim
to enhance the classification quality or to reduce the number of features in the next step,
retaining the most relevant characteristics. PRINCIPAL COMPONENT ANALYSIS (PCA) [92]
is one of the well-established algorithms. It creates new orthogonal feature dimensions,
which maximise the variance of the feature values, so that some of the new dimensions with
smaller variances can be later discarded. Another method is the LINEAR DISCRIMINANT
ANALYSIS (LDA) [4], which also takes into account classification labels and transforms
feature dimensions in a way that the separability between different classes is maximised.

FEATURE SELECTION aims at the decrease of the number of features by a feature subset
evaluation according to one or several criteria. Feature selection is discussed in detail
in Chapter 3. It can be applied together with other methods — for example generating
new features as derivations of others and then selecting a small part of the old and new
characteristics, which are less correlated. Another commonly used approach is the selection
of a certain number of principal components after PCA.

FEATURE CONSTRUCTION, or generation, adds new feature dimensions. One of the com-
mon methods is the estimation of one or several derivations of a single feature, for example
for delta MFCCs. This algorithm describes the feature time series and also belongs to the
methods for processing of time dimension. A rather generic approach is to create new
features by the application of some mathematical operators on the feature vectors, e.g., a
product or a sum of the two feature vectors. This approach was applied in [146, 127].

The choice of the processing methods has a strong influence on the classification perfor-
mance. Many statistical methods have the following disadvantages [57], so that we did
not integrate them into our processing chain:

e The interpretability of feature sets (see Section 4.1.2) is completely lost, if the original
high-level feature domains are transformed through statistical feature processing.
Feature selection does not change the feature interpretability.

e The FE& efforts are not decreased in many cases: even if a limited number of feature
dimensions after PCA is selected, it is still necessary to extract all original features
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for each new song added to the music collection.

2.3.3. Processing of time dimension

We can distinguish between general time or value series analysis methods, and methods,
which incorporate knowledge about the temporal structure of music.

TIME SERIES MINING comprises many different statistical algorithms, which describe and
predict the time series. Because an exhaustive method overview is beyond the scope of this
thesis (please refer to [20, 152]), we provide only several examples of these methods, which
were already applied for music classification. See also [227] for a summary of literature
related to long-term features and [1], section ‘Temporal feature aggregation’.

e The simplest possibilities are to SAMPLE the data or to process the features from

a certain INTERVAL: for example, the selection of 30 s from each song is applied
in many related publications (often from the beginning or the middle of a song)
[211, 2, 231, 141].

Simple feature vector statistics can be described by the estimation of the first four
MOMENTS (mean, standard deviation, skewness, and curtosis, applied in [112, 153]),
or QUANTILES [41].

GAUSSIAN MIXTURE MODELS (GMMs) estimate several Gaussian distributions for
time series characterisation, and also can be treated as a classification method [16].
They were applied for music classification in [21, 8, 211, 128].

AUTOREGRESSIVE MOVING AVERAGE MODELS (ARMA models) describe the time
series by the parameters of the linear model, in which each signal observation is esti-
mated from its predecessors and successors [126]. Enhanced autoregressive statistics
performed well for genre recognition in [141, 188].

The specific characteristic of music time series is that they are highly structured on sev-
eral levels, and this knowledge can be explicitly integrated into temporal aggregation of
features. Recalling the terms shortly introduced in Section 2.2.3.3, we may distinguish
between the following levels of musical structure:

e TATUM is the shortest perceived entity of periodicity in a song (i.e. a shortest note).

e BEAT is the strongest perceived entity of periodicity in a song. The distance between

the beat events corresponds to the approximately whole number multiples of the
distances between the tatum events.

ONSET marks the beginning of a new note. Onsets must not be coincident with
beat and tatum events for several reasons: breaks in melodies, varying shares of fast
notes, or because the beat and tatum grids are estimated from time windows, which
are significantly larger than the bar length.

BAR corresponds to the shortest grouping of notes with some similar periodic char-
acteristics, in particular, the number of beats and the distribution of accents. The
latter describes the rhythm, e.g., a 3/4 bar is typical for waltz and consists of three
beats with the strongest accent at the first beat.
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e SEGMENT is a larger music interval, which contains the bars grouped by some com-
prehensible high-level characteristic(s): the same tempo, rhythm, key and mode,
instrumentation, etc. Especially for popular music, vocals and lyrics play a signif-
icant role in segment detection: verse and chorus are both segments with vocals,
which are repeated several times. Whereas the verse text often varies, the cho-
rus text remains the same and represents a highlight of a song, usually by a well
memorable melody.
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Figure 2.9.: Examples for beat, tatum and onset events, and attack and release intervals,
which are extracted from Beethoven’s - “Fiir Elise”. Upper subfigure: ampli-
tudes of the lowest 50 frequency bins. Subfigure below: the time signal RMS,
which measures its energy.

Figure 2.9 provides examples for time events, which are extracted from the beginning
of Beethoven’s “Fiir Elise”. The upper subfigure shows the amplitudes of the first 50
frequency bins, and the beginning melody line (E-Df-E-Df-E-B-D-C-A) is clearly seen
(cf. also the discussion of Fig. 2.6). The plot below illustrates the RMS energy of the
corresponding time signal, where the peaks in most cases correspond to the beginnings of
the notes. The beat and tatum events are extracted with the algorithm from [56], and the
onsets with the MIR Toolbox [117]. The slanted lines below the onset grid are the attack
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and release intervals. They build a simplified model of the ATTACK-DECAY-SUSTAIN-
RELEASE ENVELOPE (ADSR envelope), which describes the timbral characteristics of a
musical tone [168]:

e ATTACK interval starts with the first occurrence of any tone-related frequencies. It
is characterised by a strong energy increase and a high share of the non-harmonic
frequency components, which are produced by the interaction between a music in-
strument and a musician, or another corpus (the strike of piano key, the noise of
violin bow, etc.).

e DECAY is the subsequent short phase with decreasing energy.

e SUSTAIN is typically the longest interval with constant energy and a high share of
the harmonic frequencies.

e RELEASE is characterised by decreasing energy of the vanishing sound.

Related to the simplified model of the ADSR envelope, the ATTACK-ONSET-RELEASE
(AOR) envelope, the following short frames can be estimated as illustrated in Fig. 2.9:

e ONSET FRAMES: Feature extraction frames which contain an onset event.

e INTERONSET FRAMES: Feature extraction frames which are positioned exactly be-
tween two succeeding onsets).

e Frames which are positioned at the BEGINNINGS AND THE MIDDLES OF ATTACK
INTERVALS.

e Frames which are positioned at the MIDDLES AND THE ENDS OF RELEASE INTERVALS.

The following methods for processing of time dimension were implemented and investigated
in our studies, and most of these methods are compared in [222]. AOR-related features
were integrated in the studies [219, 216], and structural complexity characteristics were
used for the recognition of high-level features and genres (Sections 5.1.2 to 5.2):

e INTERVAL SELECTION with the length set to 30 s as in related publications (men-
tioned at the beginning of this section)'*. Because popular songs usually consist of
many different segments, which may be all important for genre and category predic-
tion, the interval selection was not only done from the first 30 s of a song, but also
from the middle and after the 1st minute, in the hope to capture at least the chorus
as the most representative section.

e BEAT AND TATUM RELATED SELECTION: These short-frame features are saved only
from the extraction windows positioned either at beat and tatum events, or in be-
tween these events. Aggregation around beats was proposed in [55].

o AOR-RELATED SELECTION works similarly, selecting the extraction frames from
AOR-related events: for our studies we implemented the frame selection from the
beginnings of attack intervals, the middles of attack intervals, onset events, the
middles of release intervals, and the ends of release intervals.

VWe are not aware of any study, which confirms the choice of 30 s by statistical means. In 2008, there
was a discussion about “30 seconds” on the MUSIC-IR list. One opinion was that in some countries it
was legal to distribute 30 s song excerpts. In another one it was suggested that the selection of 30 s
from the middle was a good compromise to skip less representative segments, such as the intro.
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e SAMPLING RELATED TO THE NUMBER OF EVENTS: The number of selected equidis-
tant extraction frames is set as a factor of the corresponding number of time events
in a song.

e STRUCTURE-RELATED SELECTION: At the beginning, the automatic song segmenta-
tion detects song segments with different low-level or high-level characteristics. In
our studies, we use the method from [169]; for a general overview of automatic music
structuring methods see [170]. Then, a limited number of larger classification frames
(see the next section) is selected from each segment.

e STRUCTURAL COMPLEXITY is a temporal feature aggregation method, which is in-
troduced in [136]. First, a set of features is selected, which describe some high-level
characteristic, such as harmony or instrumentation. Let F™* be the number of all con-
sidered features, and X (t;) denote the value of feature k in frame j. For each feature
extraction frame i, a number of NV }90 preceding and N ]*?C succeeding frames is taken
into account to measure the differences between the summary feature vector before
(wp) and after (ws) the frame 7 by the Jenson-Shannon divergence djs(wp, ws):

drcr,(Wp, PRI + djep (ws, WRIWS)

dJS(Wpa WS) = 2 ) (214)
where the Kullback-Leibler divergence is defined as follows:
d 1 nd 2.15
KL(WP, Ws) Z WPy - 108 (wsk > (2.15)
i +NFC
1 1 .
WPg = NSC Z Xy (tj), wsg, = NSC Z Xi(tj) ke {l,...,F"}.  (2.16)
j=i—NSC I j=it1

f

In [136], the structural complexity was calculated for chroma, rhythm, and timbre
features. We applied it for the 7 feature groups (chords, chroma, chroma related,
harmony, instrumentation, tempo/rhythm, and timbre). Table A.7 provides the
exact lists of the features, which are involved in the structural complexity estimation
for each group. W, and S, describe the large extraction frames for the estimation of
complexity (length and step size). The frame size in seconds was set to an integral
multiple of 4, because we use classification frames with length W, = 4 s for genre
and style recognition. Several W, values describe the lengths of the music interval,
which are summarised before and after each structural complexity short extraction
frame.

We compared a set of different time processing methods in [222]. Figure 2.10 presents
the results, which are averaged for 28 music categories, 2 feature sets and two different
classification frame sizes. The horizontal axis corresponds to a logarithm of the pruning
rate (share of the extraction frames remained after the time processing, related to the
original extraction frame number). A smaller pruning rate means a stronger data reduc-
tion. The vertical axis plots the average accuracy ranks across all categories. Smaller
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ranks correspond to higher classification performance.
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Figure 2.10.: Comparison of different time processing methods, adapted from [222]. N:
baseline method without any time processing; T, B, O: selection of extrac-
tion frames only with tatum, beat and onset events; T, B/, O’: selection of
extraction frames exactly in between tatum, beat and onset events; I1: inter-
val from the first 30 s of the song; Is: interval from the middle of the song;
I3: 30 s interval after the 1st minute; S1-S3: selection of 1, 2 and 4 clas-
sification frames from previously extracted segments after [169]; SO1-SOs:
combination of S7-S3 methods with interonset selection.

An interesting outcome of this study is that a rather simple interval selection method
was the best one, namely the selection of 30 s after the 1st minute of a song. The two
related methods, the selection of 30 s from the middle and from the beginning of the songs
led to a strong decrease of the classification quality. The second best method was the
selection of interonset frames. In general, methods, which selected frames between time
events (1", B',0’), performed better than methods, which selected frames positioned at
the corresponding events (T, B, O).

However, the results of the study must be treated with caution. Only the C4.5 classi-
fication method was tested, and the variance of the accuracy ranks was rather strong
(the best rank was close to 16). No preceding feature selection was applied, so that the
classification with other feature sets could provide other accuracies. Since the interonset
frame selection performed second best and this method is motivated by music theory (the
sound between the two notes tends to be stable and free of the noisy non-harmonic attack
components), we integrated this method in the most following studies [15, 217, 218]. For
instrument recognition, the ADSR envelope characteristics, among others also the non-
harmonic components, are also relevant [123]. Therefore, we used a method, which selects
the extraction frames from the middle of the attack intervals, onset frames and the middle
of the release intervals [219, 216].
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2.3.4. Building of classification frames

The final FP step is to prepare classification inputs by feature aggregation. For the
recognition of high-level categories, the simplest possibility is to save some feature statistics
for complete songs. This method may indeed perform well for very easily discriminable
genres, such as classical music and pop music. In other cases, it is more promising to
classify the feature vectors from shorter audio signal intervals. These intervals should
be large enough to characterise the relevant musical events, and on the other side small
enough not to mix the characteristics of different larger song segments, e.g., an intro, verse,
or bridge.

The method to aggregate features for a classification frame W, with a step size S, can be
selected from the algorithms discussed in Section 2.3.3. In our experiments, we calculate
the mean and the standard deviation of each feature vector in the classification frame.

W, could be itself a subject for optimisation: in one of our previous studies [223], we ap-
plied an evolutionary strategy for the simultaneous optimisation of feature selection and
the length of classification frames. For the easiest of the three personal music categories to
recognise, large frames around 24 s provided the smallest classification errors. For the two
more complex tasks, the optimal frame size was below 5 s, and the classification perfor-
mance decreased (approximately linearly) with an increasing frame size. The classification
frames with W, < 4 s also led to a rapid decrease of performance.

Another interesting related experimental result was outlined in studies [109, 70], as already
mentioned in Section 2.2.1. Here, classification frames of only 400 ms and 250 ms were
enough to provide reliable categorisations into artists and genres. However, it is not clear,
if these small frames are indeed the best. Especially for more complex genres and styles,
which depend on long-term high-level musical characteristics, such small frames may not
perform well anymore. Further investigations in the future may help to provide clearer
recommendations.

Based on the observations from above, it is hard to decide, which size of classification
windows is optimal, when no extended knowledge about the categorisation task is available.
Because

e we aimed at the aggregation of feature statistics from a large enough number of short
feature extraction frames,

e too large classification frames had a tendency to increase the classification error'®,

and

e we decided to concentrate rather on the optimisation of feature selection, and not
on the optimisation of classification frame size and other parameters,

W, was set by default to 4 s for the experiments of this thesis and in [217, 218]. 5 s frames
were used in [15].

15 Although the error for the easiest category in [223] was indeed slightly larger for frames around 4-6
s rather than for the optimal frames of approximately 24 s, the difference was not very high. Also,
this category had strong similarities with the ‘classic vs. pop’ scenario, and in that case even feature
aggregation over complete songs may provide acceptable results.
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2.4. Classification

The main purpose of automatic classification is to organise data instances into classes
(or categories) and to do it with an acceptable quality using an acceptable amount of
resources. Most of classification scenarios can be handled by methods based on the three
following concepts:

e SUPERVISED CLASSIFICATION learns from GROUND TRUTH: previously labelled data,
i.e. feature vectors mapped to categories. During the training of models, the char-
acteristics of features are analysed to predict the categories, for example, by a linear
separation in the high-dimensional feature domain. The definitions of supervised
classification training tasks C7 and the classification C were introduced in Section
2.1.3.

e UNSUPERVISED CLASSIFICATION does not start with any labelled data. The cate-
gories are created from scratch. The desired number of categories can be set before
the classification or be identified by an algorithm itself.

e SEMI-SUPERVISED CLASSIFICATION builds models from both labelled and unlabelled
data: this situation is closest to real-world scenarios, where a large amount of data
is available, but only a small part of them are labelled. Especially, if new categories
are defined over and over again (consider the prediction of personal music prefer-
ences), data labelling is a very cost-intensive procedure. However, the benefit of
the integration of unlabelled data into the building of classification models depends
strongly on the classification task. The labelled ground truth is still required, if the
target categories should match the preferences of a music listener.

Regarding theoretical and practical issues of classification in data mining, exhaustive
overviews with a focus at supervised and unsupervised approaches are provided, e.g.,
in [150, 45, 16, 4]. An overview of semi-supervised methods is given in [29]. A study,
which examined the impact of the balance between labelled and unlabelled data, was
investigated in [37].

In many music classification tasks, the target categories are well defined: genres, emo-
tions, instrumentation, harmonic characteristics, etc. (see the discussion in Section 2.1.1).
Therefore, supervised methods gained a widely accepted support. Many references to re-
lated studies (also considering unsupervised and semi-supervised methods) are provided
for example in [1, 227, 120]. Unsupervised classification is suitable for the organisation
of large music collections by self-organised maps [153, 102], but can be also successfully
integrated into the recognition of high-level features, which were discussed in Section 2.2.1.
For example, unsupervised methods were integrated into the recognition of the temporal
structure [228] and the harmonic-related structure [95]. Semi-supervised music classifi-
cation remains less investigated. However, some promising approaches were described in
[119, 202], and it can be expected that the number of corresponding works will grow in
future.

Another approach worth to mention, which is very closely related to classification, is
SIMILARITY ANALYSIS. Here, no ground truth with several categories is given in the
beginning. The goal is to measure the similarities of some songs with a given music piece.
Different measures in the feature space can be taken into account for similarity estimation
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[12]. One of the challenges is that the evaluation of algorithms is not so straightforward
as for the direct classification with assigned labels [229)].

The experiments in this thesis were restricted to supervised music classification scenarios.
If we use the term classification within the scope of this thesis, we mean supervised clas-
sification. However, feature selection also makes sense for other situations, since too large
feature sets with noisy, redundant, and irrelevant characteristics may diminish the quality
of unsupervised approaches and similarity analysis.

A characterisation of classification methods can be done according to their inputs (clas-
sification instances) and outputs (labels). It can be distinguished between the following
outputs:

e BINARY classification algorithms predict exactly two labels: an instance may com-
pletely belong to one class (positive instance) or not (negative instance), so that the
classification target for an instance ¢ can be mapped to zero or one: yp(i) € {0;1},
recall Def. 2.6. The results of binary classifications for the individual song parts may
be averaged for a complete song j, providing continuous class indicators as a result:

yp(j) € [0;1].

e MULTI-CLASS methods classify instances into more than the two categories, where
each classification instance belongs exclusively to exactly one of the C' categories.
The classification target can be then mapped to a discrete value between zero and

one: yp(i) € {%,%,...,1}.

e MULTI-LABEL classification enables the assignment of several different labels to the
same instance: yp(i) € {0;1}°. This method is reasonable, if the data can be
described by several independent categories, such as moods [208].

e STATISTICAL APPROACHES do not only output the labels directly, but also estimate
the probabilities that an instance belongs to a category: yp(i) € [0;1].

These ways to produce different outputs can be transformed into each other: a multi-
label problem may be converted into several single-label tasks by “problem transformation
methods” [209]. Another example is the combination of several classifiers by AdaBoost
for the probabilistic prediction of instance categories [82].

The satisfactory share of correctly classified instances depends on the classification ap-
proach: for example, a classification error of 45% means a very low performance for a
binary classifier, if the instances are distributed equally across both classes. A random
guess would have an expected error of 50%. For a multi-class task with 10 different cat-
egories, a random guess will have an expected error of 90% (under the assumption of an
equal category distribution), so that an error of 45% corresponds to a higher classification
performance.

Some classification algorithms do not accept all possible inputs. These restrictions should
be addressed by proper feature (pre)processing (see Section 2.3). The most common issues
are:

e HANDLING OF MISSING OR NON-DEFINED VALUES: Some classifiers expect only nu-
merical feature values, so that ‘not a number’ entries must be substituted.
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e NORMALISATION is necessary, if a distance measure, such as the Euclidean distance,
is estimated for class separation, and all feature dimensions are similarly treated.
This holds for example for the k-nearest neighbours classifier.

e Some methods process only features from categorical, discrete or continuous do-
mains.

e LEARNING ONLY BY POSITIVES is a challenging task, if the ground truth only en-
lists examples, which belong to a given category [203]. Negative examples must be
detected by the algorithm itself.

Sections 2.4.1 to 2.4.3 briefly describe classification methods, which have been used in
our studies. The question may arise, why we have decided to select just these four al-
gorithms (decision tree C4.5, random forest, naive Bayes and support vector machines).
Our initial studies in music classification [205, 220] were done using C4.5, since it provided
interpretable classification models and integrated feature pruning. The main focus of the
subsequent studies was to investigate different evolutionary feature selection paradigms,
starting with large initial sets of up-to-date audio features. We decided to omit any clas-
sifier tuning, avoiding large experiment computing times for this task, and to concentrate
on feature design and feature selection. However, it was important to test the impact of
feature selection on several classification methods with different underlying concepts and
individual advantages and disadvantages. Starting with [157, 214, 217], we extended our
set of classification methods!®:

e Random forest (RF) is an ensemble method which creates a large number of un-
pruned decision trees from different random subsets of features. Classification is
faster and often better compared to C4.5, but the classification models are not
interpretable anymore. The operating methods of C4.5 and RF are discussed in
Sect. 2.4.1.

e Naive Bayes (NB) is a probabilistic algorithm which estimates the conditional prob-
abilities for predicted categories based on independent distributions of features. This
algorithm is simple and very fast, the models have a high interpretability, but the
classification quality is sometimes inferior to more complex methods. It is described
in Sect. 2.4.2.

e Support vector machines (SVM) are state-of-the art methods in many classification
tasks, and often achieve very good classification results combining original feature
dimensions for a better class separation. On the other side, they are slow, are
sensitive to parameter settings, and the models are less comprehensible. The basic
SVM concepts are introduced in Sect. 2.4.3.

It should be kept in mind that a high complexity of a classification method does not help,
if the features are poor and do not capture the characteristics of music categories — and on
the other side well-designed features may lead to the high performance even with simple
classifiers, as stated in [146].

Y6 A further note is that according to the No Free Lunch Theorem [233, 45], no ‘perfect’ classifier exists.
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2.4.1. Decision trees and random forest

A classification method, which generates perhaps the most interpretable models, is the
DECISION TREE. Figure 2.11 illustrates an example from the study described later in Sec-
tion 5.1.1. Two features, or attributes, are used here for the categorisation into chords with
guitar (category ‘Guitar’) or chords without guitar (category ‘NOT Guitar’). The start-
ing tree node is called the root, and in each node a decision is made, if the corresponding
feature value is above or below a certain threshold. In general, each node may have more
than two successors, and also more complex queries are possible, e.g., ‘if (feature 1 < 0.5)
AND (feature 2 = 0.4), go to the left child node’. The tree leaves contain the instances,
which are identified by the attribute queries on the path from the root to a leaf. The tree
from Fig. 2.11 uses only two features and enables some misclassifications as a strategy
against overfitting (see Def. 4.1 in Section 4.2). For example, a leaf on the left side of the
tree contains 614 chords without guitar, which have ‘envelope 1’ values less than 0.057,
but also 141 chords with guitar.
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Figure 2.11.: A decision tree example.

One of the most critical decisions during tree construction is the choice of the attributes for
the queries. The well-established algorithms ID3 and C4.5 [177] derive the concepts from
information theory, investigated by Claude E. Shannon in [194]. In this theory, the value
of a message is measured by the minimal number of trials, which are required to guess
it. As an example, if a 4-letter word consists of exactly two ‘A’ and two ‘B’ symbols, the
number of possible words is % = 6: AABB, ABAB, ABBA, BABA, BAAB and BBAA.
For guessing a word, at least three binary questions with a yes/no answer are required: for
example, a first question could be: ‘does a word belong to the left subgroup of the three
words AABB, ABAB and ABBA?'. If a 4-letter word consists of exactly three ‘C’ and
one ‘D’ symbol, we have only 4 possible words (CCCD, CCDC, CDCC and DCCC), and
it is possible to guess any word by only two yes/no questions. The number of necessary
questions is equal to logy |W/|, where |W| is the number of different words.

Consider now that the symbols correspond to the categories of the T classification in-
stances, which are organised by a subtree below a node. The node information content
(the number of trials necessary for guessing a category of an instance below this node)
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can then be measured by its ENTROPY H(X):

o}
_ Z fre;(ci) -log, (fre;(ci)) where (2.17)
i=1

C'is the number of categories and fregq(c;) is the number of instances from X which belong
to category ¢;,i € {1,...,C}.

The efficiency of candidate nodes can be measured by the INFORMATION GAIN
gain(X, QPT), with the target to reduce the information content which is carried by
a node with a query opT,

, DT) : X
gain (X, Q Z T - H(X;), where (2.18)

X; are the instances of k£ outcomes after the query QpT,

Several further enhancements led to the development of the decision tree algorithm C4.5
(for details see [177]): handling of missing feature values, grouping of feature values, tree
pruning, etc. Especially the last technique is very important, since too large trees increase
the danger of overfitting: if a model describes the data perfectly, from which it has been
trained, but is not suitable anymore for reasonable classification of other instances.

A forerunner of C4.5, the ID3 decision tree algorithm, incorporates REDUCED ERROR
PRUNING, where a node is replaced by a leaf with the most frequent category of the
succeeding instances. The performance of the original node and a leaf is measured by the
classification error on a validation set. Because some of the classification instances must be
reserved for this independent set, this restriction was removed by the RULE POST-PRUNING
during the development of the C4.5. Here, a large and overfitted tree is built from the
training data. Afterwards this tree is converted to a set of rules, which are partly pruned
by sorting out rules with respect to their performance and its deviation on the training
set.

A modification of the decision trees, the RANDOM FOREST (RF'), builds an ensemble of un-
pruned trees and estimates the label output by majority voting [19]. During tree construc-
tion, for each tree node a number mf¥ < F of the random candidate features is selected
and the best split is taken into account. The default RF algorithm uses m®¥ = v/F. The
advantage of the RF is that it usually performs very well by averaging the tree outcomes.
It is also fast, since no pruning is applied. However, the performance of the random forest
suffers from a large number of noisy features because of the increasing share of irrelevant
RE selected ones [82]. As we can see in the discussion of the experiments
(Chapter 5), the RF method tends to increase its performance (as other classifiers), when
the feature selection is previously applied. Another drawback is that the classification
models are not interpretable anymore, compared to a single tree.

features from m
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2.4.2. Naive Bayes

Na1vE BAves (NB) is a classification method, which estimates the output label by its
highest probability based on the feature distribution:

yp = argmax P (y;|X1,..., Xr), where (2.19)
jefl,..C}

P (A|B) is the conditional probability of the event A on the evidence of event B.

For the calculation of yp, the BAYES THEOREM is applied:

P(X1,.... XFly;) - P(y;)
P(X1, ... Xp)

P (y;|X1,..., XF) = , Where (2.20)

P (yj| X1, ..., XF) is the POSTERIOR PROBABILITY of category y; on the evidence of
the feature distribution X1, ..., Xp,

P (Xy,...,XFly;) is the CATEGORY LIKELIHOOD that the instance with the label y;
has a feature distribution X1, ..., Xp,

P(y;) is the PRIOR PROBABILITY to get an instance of the category y; and

P(X1,...,XF) is the EVIDENCE of the corresponding feature distribution.

Thus, we get:

P(Xi,....Xrly;) - Py,
yp = argmax (X1, Xrlys) - P(y;) = argmax P (X1,...,Xp|y;) - P(y;), (2.21)
je{l,..C} P(X1,...., XF) je{l,..C}

since P(X1,..., XF) is not dependent on j.

P(y;) can be simply estimated as a fraction of the classification windows, which belong to
the category j:

P(yj):% 3 yL(z’)-(; (2.22)

(we assume here, as introduced in Section 2.4, that the label of the classification instance
i is set to a discrete value %, j € {1,...,C}, if it belongs to category j).

The estimation of P (Xy,..., Xr|y;) is not so straightforward. However, NB makes the
assumption that all features Xy, ..., X are independent and equally relevant for the clas-
sification. Then:

ﬁ H (ijyk(j))Q
P(X1,..,Xrly;) = | | P(Xkly;) = X% (2.23)
k=1 V2 X’f
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The last term is estimated as a PROBABILITY DENSITY FUNCTION of the Gaussian distri-
bution of feature Xj, for all instances of category j, characterised by its mean value Xi(5)
and the standard deviation X(j).

Although the assumption that the features are independent and equally relevant does not
hold in reality, the performance of NB is often only slightly worse or even comparable to
the performance of more complex classification methods, and the algorithm is very fast.
It is obvious that NB may well benefit from feature selection, which removes irrelevant
features. This is also confirmed by the studies described in Chapter 5.

2.4.3. Support vector machines

SUPPORT VECTOR MACHINES (SVM) belong to the group of kernel methods, which trans-
form the original feature domain (referred to as input space) to a high-dimensional feature
space, with the target to enable a linear discrimination between categories. We provide
here only a short overview of the algorithm operation principle. A more comprehensive
introduction with further references is provided for example in [237].

The original SVM assigns classification instances to the two classes: yp,yr € {—1;1}. For
multi-class prediction, several binary SVM can be combined.

Let us assume that both categories are linearly separable as in the example in Fig. 2.12 (left
subfigure), i.e. it is possible to draw a hyperplane, which separates the positive examples
from the negative ones. This hyperplane can be in general defined by:

y(x) = w - x + wy. (2.24)

The distance between y(x) and the closest instances on both sides is called margin. The
basic principle of the SVM is MARGIN MAXIMISATION, so that the distance between the
instances of different classes separated by y(x) is as large as possible. The target is now
to find such weights w and a bias wg, so that:

y(x;) (w-x(7) +wp) > 1, where (2.25)

i €{1,...,T} are the indices of the classification instances.
ly()]

[Twll
the maximisation of the margin can be solved by the minimisation of ||w||, and we can

formulate this as a quadratic optimisation problem:

Because the distance between the hyperplane and the feature vector x; is equal to

1
min 5\|w\|2 subject to Inequ. 2.25. (2.26)

This problem can be solved by a minimum search for the corresponding LAGRANGE FUNC-
TION (a?VM > 0 are the Lagrange multipliers):
T

L(w, wg, o5V M) = %w cw = S aSVM [y(x) (wox(i) +wo) — 1], (227)
=1



2.4. Classification 51

’ e

Figure 2.12.: Hard-margin (left subfigure) and soft-margin (right subfigure) maximisation.
Positive instances are marked with circles with plus signs, negative instances
with circles with minus signs. Instances, which are penalised by soft-margin
maximisation, are marked with squares.

or the solution of the dual problem:

T T T
1 .
L(w,wo, a®VM) = §W'W—Z a7V My(xi)wex (i) +wo Y af My (xi)+ Y af VM. (2.28)
=1 =1 =1

Because the data are not usually linearly separable, SVM apply the two following tech-
niques:

e SOFT-MARGIN MAXIMISATION allows misclassifications, which are penalised by so-
called slack variables £5VM(x;). The right subfigure of Fig. 2.12 illustrates several
additional classification instances, marked with squares. In case (a), an instance lies
on the margin line. It is classified correctly, and &5VM(x;) := 0. If the instance
is classified correctly, but is positioned within the margin, as it holds for instance
(b), 0 < &5V M(x;) < 1. If an instance is not classified correctly, e.g., instance (c),
fS VM (Xl) > 1.

e If the instances are not linearly separable in the original input space, it might be
possible to transform them into a higher dimensional domain, where they can be
linearly separated by a hyperplane. Equ. 2.24 can be then rewritten as:

y(x) = w- VM (x) + wp, where (2.29)
©°VM (x) is a (nonlinear) mapping to the higher dimensional domain. Solving the
dual problem in the feature space becomes more complex, because of the required
estimation of the inner vector products. The KERNEL TRICK enables the efficient
calculation of this inner product by the kernel function in the input space. The most
often used kernels are linear, polynomial, radial basis and sigmoid.



52 2: Music Data Analysis

The advantages of SVM are that no probability density estimation or complex pruning
techniques are required, and the estimation of the new feature space can be done very
efficiently using a kernel trick. On the other side, the performance depends on the tuning
of hyperparameters, the method is often rather slow compared to other classifiers, and the
models are less interpretable.



3. Feature Selection

3.1. Targets and methodology

FEATURE SELECTION (FS) is a method for processing of the feature dimension (see the
categorisation in Section 2.3), which removes irrelevant, noisy, and redundant features
from the classification instances. In formal terms, the task of FS is to find an optimal
subset of features by minimisation of a relevance function, or evaluation metric m, e.g.,
the classification error!:

f* = arg min [m (yL,yp, @(X’,H))] , wWhere (3.1)
(%

®(X’,0) is the selected feature subset described by feature indices 6, yr, are the labelled
category relationships, and yp are the predicted category relationships. We denote here
the feature matrix with the complete feature set by X’, according to the note 12 in Section
2.3.

In case of multi-objective F'S (multi-objective optimisation is introduced below in Section
3.2.2), O evaluation metrics are taken into account:

0 = argemin [ml (yL,yp, @(X',@)) s ey O (yL,yp, @(X’,Q))] ) (3.2)

The features can be rated individually in terms of relevance and redundancy. Let X’ be
a feature set from the feature matrix X’. One possible definition of strong relevance was
proposed in [104], see also [240].

Definition 3.1 A feature X; is RELEVANT, iff its removal will decrease the performance
of a Bayesian classifier:

P(yplyr = yp, X') < P(yplyr = yp, X' \ {Xi}) and
P(yplyr # yp, X') > P(yplyr # yp, X'\ {X;}), so that in general (3.3)

P(yp|X') # P(yp|X"\ {Xi}). (3-4)

1We adapt the definition from [207] and assume that m should be minimised. If m should be maximised,
it can be easily redefined for minimisation, see the note 9 in Section 2.1.3.
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Definition 3.2 A REDUNDANT feature X; can be replaced without decrease of a Bayesian
classifier’s performance by at least one subset S7, which does not contain X;:

357 C X' (X} ¢ 87 P(yp|X') = P(yp|97). (3.5)

The reasons for automatic F'S are:

e The classification quality is often improved after F'S, since too large feature sets with
many irrelevant and noisy characteristics typically overwhelm existing classification
methods. It is confirmed by our previous and current experiments, described in
[220, 223, 217, 219] and Sections 5.1 to 5.2, but follows also theoretical observations:
with an increasing number of features the probability increases that features, which
are indeed irrelevant, but have a certain degree of relevance for the training data
set, become a part of a classification model. This leads to a decreased performance
on other data sets. Also, for decision trees it is not advantageous to start with a too
large feature set, which contains many irrelevant features?.

e The manual design of features for a certain classification task may lead to the optimal
performance, but is often far too expensive. The automatic selection of relevant
features from a large original feature set, applied for each new category, does not
require such high expert costs. Only the creation of ground truth (labelled instances)
for new classification categories remains to be done.

e The classification becomes faster, if prediction models are trained with small feature
sets of the most relevant features. In many classification scenarios and also in music
classification it is a common situation that the training is done once per classification
task (for example a categorisation of a private music collection into a genre), but
the classification can be repeated over and over again (if new songs are added later
to this collection).

e Storage demands are also usually reduced after F'S. This holds for classification
models (in particular, for classifiers with large models, such as k-nearest neighbours),
but also for preprocessed features. It is also possible to create generic feature sets,
which perform comparably well for several related classification tasks, as we could
show in [216]. In that study, feature sets were evaluated and optimised w.r.t. their
average performance on four different instrument categories.

e Feature selection may decrease the probability of highly overfitted models, where
some of the features are identified as relevant by chance. However, this cannot be
achieved by the application of F'S only. It is essential to apply a proper organisation
of data using independent holdout set(s) (see Section 4.2).

e The understanding of the dependency between relevant features and the correspond-
ing categories can be significantly improved. This is especially reasonable for high-
level features, as applied in this work: for example, it can be derived, which instru-
ment or mood characteristics are strongly represented in the (sub)optimal feature
subsets for the recognition of a genre or personal preferences.

2See [232] for a more detailed description. It is argued that the addition of a random attribute during the
C4.5 classification caused typically a decrease of the classification performance between 5% and 10%.
The impact of noisy features on the performance of random forest classification is discussed in [82].
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[114] refers to F'S as a search problem and provides a list with the “four basic issues that
determine the nature of the heuristic search process”:

e STARTING POINT defines an initial set of features. The three typical possibilities are
to start with either an empty feature set, the full set, or a part of the full set, for
example using half of all features. In our experiments we use an initial feature rate
parameter i f,., as introduced in Section 3.2.4.

e SEARCH ORGANISATION describes the algorithm for feature selection. A list of several
established strategies is provided below.

e F'VALUATION STRATEGY defines one or several criteria for the evaluation of feature
subsets. We discuss different groups of evaluation metrics in Section 4.1.

e STOPPING CRITERION describes a condition, which should be fulfilled to stop the
search, for example if the addition of new features does not bring any significant
improvement of performance. In our experiments, we use a limited number of evo-
lutionary algorithm generations as stopping criterion, see Section 3.2.4.

Some of the most common search strategies are (a categorisation is provided in [184]):

e EXHAUSTIVE EVALUATION of all possible feature combinations is a straightforward
approach, which is very expensive with an increasing number of features, since 2" —1
different sets should be evaluated for F' features.

e SEQUENTIAL SELECTION methods either start with an empty feature set, adding
features one-by-one according to some criterion, for example correlation with the
label (forward selection), or removing features one-by-one, starting with the full
feature set (backward selection). The first application of sequential selection was
introduced in [130].

e FLOATING SEARCH, which was proposed in [175], enables the change of the feature
subset size in both directions, where it is switched between the stages of forward and
backward selection.

e HEURISTIC SEARCH works in a non-deterministic way with some integrated random
component, so that the results are not the same for different repetitions of an ex-
periment with the same starting conditions. We discuss a variant of heuristic search
by evolutionary multi-objective algorithms in detail in Section 3.2.

The FS approaches can be in general categorised into three classes [75]:

e FILTERS are the oldest and fastest methods, which rate the features without any
training of the classification models. Sequential selection by means of correlation is
an example for a filter method.

e WRAPPERS evaluate feature subsets based on model training and classification, such
as evolutionary feature selection, described in Section 3.2.

e EMBEDDED METHODS integrate feature selection into a certain classification algo-
rithm. The discussion of embedded methods is provided in [111].

For further reading about theoretical and practical issues of F'S, we refer to [75].
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3.2. Evolutionary feature selection

In the following sections, we describe in detail how multi-objective evolutionary algorithms
can be applied for feature selection. Section 3.2.1 gives a short introduction into the basics
and the history of evolutionary computation. The succeeding Section 3.2.2 introduces a
formal definition of the multi-objective optimisation problem and describes how the solu-
tions in a multi-objective space can be compared. In Section 3.2.3, we list the advantages
of evolutionary F'S, but also refer to several limitations of this approach. In Section 3.2.4,
the working principle and the parameters of the multi-objective evolutionary algorithm
SMS-EMOA, which has been applied for the multi-objective F'S, are discussed.

3.2.1. Basics of evolutionary algorithms

EVOLUTIONARY ALGORITHMS (EA) are metaheuristics which simulate natural evolution
processes in their operating method. An EA evolves a group of optimisation task solu-
tions. They are together called POPULATION, whereas a single solution is referred to as
INDIVIDUAL (we use the words solutions and individuals as synonyms). Each individual
describes the parameters of the corresponding optimisation problem solution in the DECI-
SION SPACE. The concrete numerical representations of individuals are also often referred
to as belonging to the SEARCH SPACE, which is the basis for evolutionary operators de-
scribed below. The evaluation of individuals is done with respect to one or more objectives
(also called fitness functions), which build the OBJECTIVE SPACE. If exactly one objective
is used for the evaluation of solutions, the EA is described as SINGLE-OBJECTIVE. If at
least two objectives are optimised at the same time, the EA is MULTI-OBJECTIVE.

The basic principle of the evolutionary loop is illustrated in Fig. 3.1. It consists of the
following steps:

e POPULATION INITIALISATION: The first optimisation task solutions are created, of-
ten in a random way.

e FITNESS ESTIMATION: The population fitness value(s) in the objective space are
calculated.

e PARENT SELECTION for breeding: One or more individuals are selected for the gen-
eration of offspring.

e Application of RECOMBINATION, or the crossover operator: (a) new offspring is/are
generated by some strategy, which derives the offspring position in the search space
from the parent positions.

e The target of the MUTATION operator is to overcome local optima in the objective
space and to enable a stochastic exploration by some strategy, which changes the
offspring representation(s).

e OFFSPRING FITNESS ESTIMATION: The offspring population fitness value(s) in the
objective space are calculated.

e SELECTION of the next population: Based on the fitness values, some of the individ-
uals are discarded.
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e Check of the EXIT CONDITION: If some stopping criterion becomes true (a certain
number of evolutionary loop iterations is achieved, the search progress slows down,
etc.), the loop is finished and the final solutions are reported.
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Figure 3.1.: The evolutionary loop for two-dimensional decision and objective spaces.

The population size is denoted by p and the number of offspring by A\. A (u+\)-EA selects
the new population from both parents and offspring, after the offspring fitness evaluation
step. A (u, A)-EA always replaces the parent population by the selected offspring, and in
that case A > p.

The first three groups of EA were developed independently of each other from the 1960s
for more than a decade:

e EVOLUTIONARY STRATEGIES (ES) were designed in Germany by Ingo Rechenberg
and Hans-Paul Schwefel [192].

e In USA, Lawrence Fogel, Al Owens, and Michael Walsh developed the concept of
EVOLUTIONARY PROGRAMMING (EP) [64], and

e John Holland introduced GENETIC ALGORITHMS (GA) [83].
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The roots of these methods go back to the proposal by Alan Turing for “the genetical
or evolutionary search by which a combination of genes is looked for, the criterion being
the survival value” in his essay “Intelligent Machines” from 1948 [88]. Though GA, EP
and ES followed the same concepts, there were some differences especially in the earlier
development stages, such as deterministic selection in ES or the emphasised application
of crossover in GA.

Later, further evolution-inspired methods were developed. To name a few of the most
prominent algorithms, genetic programming (GP) extends the GA concepts to the evo-
lution of computer programs [105]. Particle swarm optimisation (PSO) integrates the
characteristics of flocking behaviour, such as social interaction, movement velocity, and
inertia, into an evolutionary algorithm [46]. Ant colony optimisation (ACO) simulates
path creation in ant colonies, where the shortest paths have the strongest pheromone dis-
tribution [43]. From the 1990s, all these nature-inspired concepts are seen as a part of the
evolutionary computation (EC) research field, and the algorithms are in general referred
to as evolutionary algorithms (EA) [9].

Because of a strong increase in the number of studies which combine different approaches
or introduce new enhancements and adaptations it is often not possible anymore to pro-
vide a clear boundary between the EA method groups. One of the already well-established
concepts, the self-adaptation, enables the adjustment and control of algorithm parame-
ters during the iteration progress [143]. The memetic algorithms integrate a deterministic
local search procedure into metaheuristics for the systematic scan of the solution neigh-
bourhoods [107]. The predator-prey approach simulates another nature phenomenon, the
population of predators, which force the individuals (prey population) to explore new
areas for survival [118].

Even if many improved algorithms outperformed the older concepts in extensive experi-
mental studies, it should be kept in mind that according to the No Free Lunch Theorem
(which has been also formulated for optimisation methods [234]), all algorithms have the
same performance, if they are evaluated across all possible fitness functions. For further
reading on EC, we recommend [187, 50].

3.2.2. Multi-objective optimisation

In many real world applications, among other classification scenarios, almost always se-
veral conflicting objectives play a role: algorithms with low classification errors require
large computing times, the best models have a larger tendency to overfit against some
data sets, or the achievement of an acceptable classification performance requires very
high user efforts for ground truth creation (see also later the discussion in Section 4.1).
In particular, if the objectives are not highly correlated with each other in all regions
of the objective space, it is reasonable to search for the best compromise solutions. A
multi-objective optimisation problem can be defined as provided in [241], p. 875%:

Definition 3.3 A MULTI-OBJECTIVE OPTIMISATION PROBLEM (MOP) is a 5-tuple
(X, 2, m,g, <), where:

e X is the decision space,

3 As for feature selection definition, we assume that the objectives should be minimised.
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o Z € RO is the objective space,
e m = (my,....,mo) is a vector-valued function of O objective functions m; : X — R,

e g = (g1,...,9v) is a vector-valued function of U constraint functions g; : X — R,
and

o < C Zx Zis a binary relation on the objective space.
The target is to find a decision vector a € X, so that:
o Vje{l,...,U}:g;(a) <0, and

e Vbe X:m(b) <m(a) = m(a) < m(b)

The comparison of solutions is based on the relation <. Several of such relations were
proposed, and one of the most conventional introduces the term Pareto dominance:

Definition 3.4 A solution a € X WEAKLY PARETO DOMINATES the solution b € X
(denoted by a < b), iff:

o Vic{l,..,0}:mi(a) <m;b).

Definition 3.5 A solution a € X (STRONGLY) PARETO DOMINATES the solution b € X
(denoted by a < b), iff:

o Vic{l,...0}:m;(a) <m;(b) and

e ke {l,...,0}: my(a) < my(b).

The Pareto front is built by the objective functions of those solutions, which are not
dominated by any other solution:

Definition 3.6 A solution a € X belongs to the PARETO-OPTIMAL SET, and m(a) belongs
to the PARETO FRONT Py, iff

e Jbc X :b<a.

Because it is not always possible to find the Pareto front during a single algorithm run for
complex optimisation problems, we speak of a NON-DOMINATED FRONT of solutions after
the finished optimisation run.

Different criteria were proposed to evaluate the population of solutions (or the subset of
the non-dominated solutions) which are output by a multi-objective optimisation algo-
rithm. In [38], it is mentioned that multi-objective optimisation itself has the two targets:
to find the solutions which are, firstly, as close as possible to the Pareto-optimal solutions
and, secondly, as diverse as possible (the final number of solutions is limited to the pop-
ulation size, if an EA is applied for the solving of MOP). Therefore, it is distinguished
between metrics which evaluate the closeness to the Pareto-optimal front and metrics
which evaluate the diversity among the non-dominated solutions.
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A metric introduced in [242], the HYPERVOLUME, or S-metric, belongs to both groups
and measures the united volume vol(-) of all hyperareas in the objective space, which are
weakly dominated by the non-dominated set of solutions to be evaluated:

Pyp
S(ay,...,apy,) = vol ( U [ai,r]> , where (3.6)

i=1

Pynp is the number of solutions in the non-dominated front, and [a;,r]| is a hypercube
spanned between solution a; and a reference point r, which is often positioned at the
worst possible values of the respective objective functions (Vi : a; < r), cf. Fig. 3.3.

For lists with further evaluation criteria, see [38, 31].

3.2.3. Reasons for evolutionary multi-objective feature selection

Why are the evolutionary multi-objective algorithms (EMOA) well suited for feature se-
lection?

e Except for very small feature sets, feature selection by an exhaustive search or by
sequential strategies becomes very expensive. In [110], several approaches were com-
pared, and a GA was recommended for LARGE FEATURE SETS with more than 100
variables. In general, the selection of optimal feature subsets is NP hard, as it
was shown for related problems [104, 5]. EA were designed to solve such complex
problems without any prior knowledge of the structure of the search space.

e It makes definitely sense to evaluate and optimise music classification in a multi-
objective way, as discussed below in Section 4.1. In that case, it is not searched
for a single solution, but for a front of non-dominated feature subsets. Therefore,
POPULATION-BASED METAHEURISTICS, which evaluate a set of solutions in a single
step, match these requirements very well, making EA unique for the MOP solving
[38].

e The STOCHASTIC NATURE of EA helps to overcome local optima, and the shape or
continuity of the Pareto front does not restrict the EMOA performance [31].

e Many common feature selection approaches estimate the INDIVIDUAL FEATURE
RANKING, for example on the basis of the correlation with the label. However, it is
possible that two or more features, which are irrelevant by themselves, are relevant
in their combination [75], as illustrated in Fig. 3.2 (a,b). Furthermore, in [104] it was
shown, that relevance does not imply optimality, and, on the other side, optimality
does not imply relevance. The exploration of the feature space by EA operators is
not biased towards any individual feature rankings.

e The search for REDUNDANT FEATURES (see Def. 3.2), which should be removed dur-
ing FS, may be also dangerous, if this is done according to correlation. Fig. 3.2
(c,d) presents examples with two correlated features, which are differently relevant
for a linear class separation. In subfigure (c), both features are not redundant and
required for the linear separation. In subfigure (d), the combination of both features
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does not increase the relevance, and they are more redundant. The individual di-
mensions of these features show the same separability, as shown by the projections
near the axes.

In case of multi-objective evaluation, it may be even arguable only to concentrate
on the removal of redundant features, because a part of the redundant features
may be cheaper to extract (evaluation by costs) or more interpretable for a better
understanding of the classification models (evaluation by interpretability).

e Compared to embedded FS methods, the evolutionary F'S wrapper method is INDE-
PENDENT OF A CLASSIFIER, so that it is not required to redesign the FS method,
if a new classification method should be used. This is useful when different classi-
fication methods are combined, as in our studies discussed in Chapter 5. Here, the
combination of several different classification methods led to higher hypervolumes of
non-dominated fronts.

Figure 3.2.: Upper subfigures (a), (b): examples for features, which are individually irrel-
evant and relevant in combination. Lower subfigures (c), (d): examples for
correlated features with different relevancies. Source: [75], p. 10.

It is also worth to mention the possible drawbacks of evolutionary-based FS, which are
common for wrapper methods [104]:

e As all methods, which create and evaluate training models during the optimisation,
EA require significantly larger runtimes than filters.

e Another limitation of wrapper methods is that the extensive training and validation
of models may lead to overfitting. However, if enough labelled data instances are
available, this can be avoided in most cases by the choice of an appropriate validation
method, see Section 4.2.
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e The last advantage from the list above (independency of a classifier) can also be
interpreted as a drawback, depending on the classification scenario: the wrapper-
based F'S should be rerun for each classification method separately.

3.2.4. SMS-EMOA customisation for feature selection

The S-metric selection evolutionary multi-objective algorithm (SMS-EMOA) was intro-
duced in [54]. It is a (u + 1)-EA, which estimates hypervolume related metric for the
individual selection, so that both the quality and the distribution of the solutions are
evaluated. The original contribution of solution a; to S of the complete population is
measured as follows:

AS(a;) = S(ay,...,apy,) —S(@t, ., ai—1,Qi41, ..., Apyp )- (3.7)

Figure 3.3 illustrates the difference between S and AS(a;). The filled area in the left sub-
figure corresponds to the hyperarea covered by the population of solutions. The solutions
are marked with small squares. In the right subfigure, the AS(a;) areas correspond to the
large filled rectangles.

* *
. A

g g 7
- \

] . )

= -\ \l—
=
\-
m1 mi

Figure 3.3.: Examples for the estimation of hypervolume (left) and AS(a;) (right). The
solutions in the objective space are marked with squares. The reference point
is marked with an asterisk. The first two non-dominated fronts Fi, Fy are
marked with thin lines in the right subfigure.

SMS-EMOA applies the FAST NON-DOMINATED SORTING [39] before selection. The solu-
tion fronts are built according to the Pareto dominance relation. At the beginning, the
individuals, which are not Pareto dominated by any other solution, are assigned to the
first front. Then, the same procedure is applied on the remaining individuals, and it is
repeated until the complete population is assigned to fronts. The right subfigure of Fig. 3.3
shows two fronts Fi, F2, marked with thin lines.

The SMS-EMOA selection operator removes the individual j with the smallest AS(a;)
from the worst front. The advantage of this method is that with an increasing number of
objectives the number of the non-comparable solutions according to the Pareto dominance
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relation increases strongly, but it is still possible to estimate AS(a;) for the comparison
of solutions and to do it in an efficient way [10]*.

For a solution representation, it was self-evident to use an F-dimensional bit vector q,
where ¢; = 1, if the feature X; has to be selected, and ¢; = 0 otherwise (j € {1,..., F'}).

As a mutation operator, we integrated the ASYMMETRIC BIT FLIP, where the probability
of switching a bit is equal to:

pqe(j) = % “(lgj = pol), (3.8)

where v controls the general mutation probability and is equal to the expected number of
flips during an offspring generation for the symmetric variant of the bit flip mutation. In
the asymmetric mutation, the probability for a bit flip is reduced by |g; —po1/, as proposed
in [91]. po1 controls the probability of a zero-to-one switch. The probability of a one-to-
zero switch is set to p1g = 1 —pg1. Because we try to discard as many irrelevant, noisy, and
redundant features as possible, it is reasonable to set pp1 < p1g. In our previous studies,
po1 € {0.01;0.1} performed quite well [217, 219].

As the first crossover operator, we implemented a uniform crossover (UC), which selects
each bit value either from the first or from the second parent with equal probability. The
second operator was a commonality-based crossover (CBC), which was proposed for FS in
[53]. Here, the non-shared bits of both parents are inherited from the parent k with the
probability

NE —Ne

pe(k) = (3.9)

Ty

(ng is the number of ones for parent k, n. is the number of the shared ones for both
parents, and n,, is the number of non-shared ones for both parents).

However, in [219] we could not observe any significant advantages of both UC and CBC
operators. Therefore, in the further studies, which are described in Sections 5.1.2 to 5.2,
we left out the crossover.

Besides, we have experimented with different settings of the other SMS-EMOA parameters:

e INITIAL FEATURE RATE if, controls the expected number of features in the first
population after the initialisation. Here, each bit is set to one with the probability
ifr, and we used if, € {0.05;0.2;0.5}. In [219], we observed that this parameter
played a role together with a classifier: SVM performed worse for lower if, values,
and this behaviour was not observed for other classifiers. In general, it is hard to
provide an exact recommendation for this parameter. Small if, values correspond
to solutions with larger hypervolumes at the beginning. This situation may be
sometimes advantageous but may also lead to a fast convergence to a local optima.
Therefore, we used two or three different i f, values in further studies.

“4In case of four and more objectives, the related optimisation problems are referred to as many-objective
[89]. Such scenarios are currently unexplored for music classification. They can be reasonable, if several
conflicting metrics listed in Sections 4.1.1 and 4.1.2 are considered.
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e POPULATION SI1ZE i should be large enough to provide a good distribution of solu-
tions, and it was set to 30 for instrument recognition described in Section 5.1.1 and
increased to 50 for other experiments which are described in Sections 5.1.2 to 5.2.

e As a STOPPING CONDITION we have chosen the number of SMS-EMOA generations,
which was set after the preliminary experiments to 2,000 for the studies described in
Section 5.1 and to 3,000 for the recognition of genres and styles which are discussed
in Section 5.2. Setting this number to higher values may lead to a further increase
of the classification performance, but on the other side to larger computing time
requirements.

It is important to mention that a more exhaustive search for the optimal parameter settings
was beyond the scope of our study. It is indeed reasonable to make more investigations in
that direction in future.

3.3. Sliding feature selection

Until now, the predominant share of music classification studies is based on low-level
characteristics close to the audio signal and spectrum, which are described in Section 2.2
and in the corresponding tables. The disadvantage of this approach is that many of these
descriptors do not contain meaningful information for music listeners or music scientists,
and it is very hard to understand the created classification models. However, user-centered
music classification requires more comprehensible classification rules, so that the following
questions can be answered (we provide only a few examples for a music recommendation
scenario):

e Which instruments are important for a category?

e Which instruments are irrelevant for a category?

e Which instruments are undesired for a category?

e [s the tempo of the songs rather fast or slow for a category?
e How large is a share of songs with a major key in a category?

e Is a high vocal share acceptable for a category?

Some of these high-level characteristics can be derived from metadata or community tags,
as investigated for example in [138]. However, the metadata are often imprecise, subjective,
erroneous, or not available. Also, we are able to recognise a genre within a few seconds
by hearing to music [70] (see also the discussion in Section 2.2.1), so that it should be
theoretically possible to derive some important high-level characteristics from the audio
signal alone. A related proposal to create so-called ‘anchors’ as high-level music descriptors
was suggested in [11].

In our work we propose a novel SLIDING FEATURE SELECTION framework, which aims at
the estimation of mid-level characteristics. They may be positioned in between the less
interpretable low-level audio features and high-level categories such as genres and personal
preferences. These characteristics should be comprehensible and related to music theory.
Therefore, we refer to them as high-level features. The sliding feature selection, as applied
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in our study, is sketched in Fig. 3.4, where several multi-objective evolutionary feature
selection steps are applied after each other.

low-level Timbre Energy Chroma Correlation
features
A4
Tempo &
Instruments Harmon

. Rhythm L
high-level

features v v ¥ ¥

Moods GFKL-2011
h h 4 h Y h h

categories Genres & Styles

Figure 3.4.: Sliding feature selection for the studies described in Chapter 5. The arrows
mark the applied evolutionary multi-objective feature selection.

As an example, in the first step low-level features are integrated into the training of
classification models for instrument identification (see Section 5.1.1). Then, these binary
models are used for the extraction of new features, which measure the number of positive
instrument detections in a selected time interval (for example, ‘share of recognised piano
onsets in 10 s”). These high-level features are used together with low-level characteristics
for the subsequent recognition of moods. In the final step, features built from the mood
models (e.g., ‘share of 4 s classification windows with energetic mood label in a larger frame
of 24 8’) contribute to the recognition of genres and styles, together with the instrument
features and the original low-level features. This approach has similarities to the concept,
which is proposed in [182], where binary classifiers are applied after each other, and the
predicted categories are integrated as features for the next step in the categorisation
sequence for multi-label classification.

If high-level features are created from low-level ones by application of the classification
models, which have been previously optimised with the help of feature selection, a set
of high-level characteristics does not contain more source information than the original
low-level feature set. Therefore, we cannot implicitly expect that the genre classification
based on such high-level features would perform better than the classification based on
low-level features.

However, the combination of individual features may increase the classification perfor-
mance: it is illustrated in Fig. 3.2, and it is a basic concept of the SVM, where a linear
combination of original feature dimensions allows the linear separation of the previously
linearly non-separable categories. For example, if a music listener wishes to distinguish
pop songs with percussion from classical piano pieces, and the ‘drum share’ high-level fea-
ture is estimated from several low-level timbre characteristics, it is indeed more preferable
to run categorisation only with this single drum feature.

Even if such performance increase cannot be expected for every category, the unique
advantage of this method is that it helps to determine interpretable features. In Section
5.2.3, we compare the classification results based on low-level and high-level feature sets.
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3.4. Related works

Considering related publications for evolutionary feature selection (EA-FS) in classification
and, in particular, music classification, the following tendency can be observed:

e The first EA designed for F'S was introduced by Wojciech Siedlecki and Jack Sklansky
more than 20 years ago, in 1989 [195]. Since that time, many further works were
published for different research domains, in which evolutionary feature selection has
proven its suitability. Evolutionary multi-objective feature selection (EMO-FS) was
originally proposed around ten years later, by Christos Emmanouilidis in 2000 [53].
Until now, the number of the corresponding studies remains rather low, we refer
to several works in the succeeding section. A possible explanation is that in many
research domains it is still established to solve the problems using only one single
evaluation/optimisation criterion. We provide some references to EA-FS and EMO-
FS in Section 3.4.1.

e Single-objective EA-FS was proposed for the first time for music classification (in-
strument recognition) by Ichiro Fujinaga in 1996 [66]. Introduced in our previous
work [217], EMO-FS became a part of a music classification task in 2011. A discus-
sion of related studies, in particular with EA-FS, is provided in Section 3.4.2.

Figure 3.5 illustrates the intersections of the research fields related to feature selection and
music classification.

wrappers music classification
feature
selection
methods
evolutionary evolutionary
wrappers multi-objective
wrappers

Figure 3.5.: Intersections of several research areas related to F'S and music classification.

3.4.1. Evolutionary feature selection

The first studies using EA for F'S were characterised by rather small feature sets, compared
to the actual situation, where datasets with hundreds and thousands of features are not
UNCOmMIMoON anymore:

e The first application of genetic algorithms for feature selection is reported in [195],
where the k-nearest neighbours (kNN) classifier was used for tasks with 24 and 30
features. The GA outperformed other methods (exhaustive and sequential selection),
and it was recommended to use it in general for “large-scale” feature selection with
more than 20 variables.
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e The next two works, which were investigated independently of each other, extended
GA with an optimisation of the feature weights. Each feature was represented with
different values instead of only one bit [98, 176]. This method outperformed the orig-
inal GA. However, it should be mentioned that the weighting scheme was integrated
into the kNN distance estimation, so that this method belongs to the category of
embedded F'S methods and is not completely independent of the underlying classifier.

e A more extensive study by Kudo and Sklansky compared more than 15 FS algo-
rithms, among others a GA, for different classification tasks with up to 65 features
[110]. For the tasks with larger feature sets, the GA outperformed other methods,
and was explicitly recommended. Two main advantages over the other methods were
outlined: it was easy to control the execution time, compared to the sequential F'S,
and the repetition of experiments and adjustment of GA parameter settings led to
further classification quality improvements.

e An interesting modification related to the fitness evaluation, early stopping, was
proposed in [124] to avoid overfitting. Inner cross-validation was implemented for
the identification of a GA iteration step, where its generalisation ability became
deteriorated. Outer cross-validation was used for the evaluation on the holdout set
(for a description of common validation methods see Section 4.2).

Later, the memetic paradigms were introduced, where a local search procedure was com-
bined with stochastic exploration:

e Probably the first work which presented a hybrid GA was [74], where random hill
climbing was applied as a local search. Classification was done with Euclidean de-
cision tables, and several data sets of up to 204 features were used as classification
problems.

e In [160], local search operators were designed either to remove the least significant
feature or to add the most significant feature. On two datasets with up to 80 features,
the hybrid GA outperformed a non-hybrid variant and three other baseline methods.
Classification was done by kNN. Later, the advantage of the hybrid GA was also
confirmed for 11 data sets with up to 100 features [161].

e The problem of local search costs was addressed in [239] by several improvements,
where different local search operators were proposed. Memetic algorithms outper-
formed a simple GA and two baseline methods.

Multi-objective evolutionary feature selection became a part of many applications in recent
years:

e In [53], FS was for the first time formulated as a multi-objective problem, which
was solved with the help of evolutionary techniques, optimising the misclassification
rate and the number of selected features. The categorisation tasks contained up
to 60 features, and the classification was done with neural networks (NN). Related
studies are discussed in more detail in [52], where also a list of older EA-FS works
is provided and a multi-objective optimisation of the true positives and the true
negatives is described.

e Several succeeding studies applied EMO-FS for handwritten digit recognition (with
132 features and NN as classifier) [163], bankruptcy prediction (30 features, classi-
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fication by SVM) [69], and five classification tasks from the UCI repository (up to
180 features, classification by ENN) [78].

e The first extension to the unsupervised classification, where metrics for cluster qual-
ity evaluation were considered, is introduced in [99]. Unsupervised EMO-FS was
investigated in more detail later in [80].

e The simultaneous optimisation of generic feature sets, which were relevant for several
classification tasks, compared to specific feature sets, which were relevant for the
individual tasks, was applied in [240].

Concluding our literature study, it is important to mention that the number of tested
classification methods and categorisation tasks was rather low in almost all studies. Also,
many earlier and some of the recent applications applied only simple classifiers, such as
kNN, and the classification tasks contained at most up to several hundreds of features. In
future, it might be promising to provide an exhaustive testing framework for the reliable
comparison of enhancements and algorithm parameters for different application scenarios.

3.4.2. Feature selection in music classification

With a growing number of available audio features and also features from other domains,
FS also became a relevant part in music classification. Table 3.1 provides several examples
of the feature selection methods applied in music classification, except for EA-FS (the
related works are listed below in Table 3.2).

Table 3.1.: Selected works with FS applied in music classification tasks, sorted by year
(except for EA-FS). Abbreviations for F'S methods (for details see the publica-
tions): CFS: correlation-based, FCBF: fast correlation-based filter, IRMFSP:
inertia ratio maximisation using feature space projection, PCA: principal com-
ponent analysis, SBE: sequential backward elimination, SFF: sequential feed
forward, SFS: sequential forward selection, SFS-IG: sequential forward selec-
tion with information gain ranking, SF'S-GR: sequential forward selection with
gain ratio ranking.

Author(s) Ref. | Year |Feat. No.|FS method

BURRED & LERCH [23] |2003 |58 SFF

GRIMALDI ET AL. [73] 2003 |143 SFS-IG, SFS-GR, PCA
ESSID ET AL. [57] 2006 |160 IRMFSP

FIEBRINK & FUJINAGA [60] |2006 |74 SFS

LivsHIN & RODET [123] 2006 [513 CFS

BLUME ET AL. [18] 2008 |19 Mann-Whitney test
KRISHNAMOORTHY & KUMAR|[108] (2010 |>22 Kolmogorov-Smirnov test
MAYER ET AL. [137]]2010 |60-1140 FCBF

SAARI ET AL. [189]|2011 |66 SFS, SBE

E1cHHOFF & WEIHS [51] 2012 |6-276 SFS

Several limitations can be observed:

e Often rather simple methods, like sequential forward selection, are integrated. This
method was outperformed by floating search as reported in [110]. Other individual
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feature ranking methods are also often used (their drawbacks are mentioned in the
discussion of Fig. 3.2, Section 3.2.3).

e The number of features is usually relatively low compared to the EA-FS studies
discussed in Section 3.4.1.

e Integration of a correct validation scheme is not always guaranteed, although this
problem was mentioned in several publications: the necessity of an independent test
set for the validation of feature selection is discussed in [60], and [189] points to the
lack of reliable validation in MIR related F'S applications.

Table 3.2 lists the works, where EA were applied for FS in music classification tasks (we
excluded our own publications, they are listed below in Table 3.3).

Table 3.2.: Studies (except for own works) with evolutionary FS applied in music clas-
sification tasks, sorted by year. Abbreviations for EA methods (for details
see the publications): GA: genetic algorithm, GAw: GA with feature weight-
ing, GAr: GA with restricted number of features, ES: evolutionary strategy,
MGAw: memetic GA with feature weighting, PSO: particle swarm optimisa-
tion, PSO-OPF: PSO with optimal path forest classifier.

Author(s) Ref. | Year | Feat. No. EA method
FUJINAGA [66] 1996 |- GAw
FUJINAGA [67] {1998 |352 GAw
FIEBRINK ET AL. [61] |2005 |8-57 GAw
MIERSWA & MORIK [146] {2005 |variable (14+1)-ES
ESSID ET AL. [57] 2006 |160 GA
ALEXANDRE ET AL. [3] |2007 |76 GA,GAr
OLAJEC ET AL. [162]|2007 |63 GA
KRAMER & HEIN [106] {2009 |100 (5+25)-ES
SILLA ET AL. [196] | 2009 |30-168 GA
NAYak & BUTANI [158]|2010 |74 GA
KARKAVITSAS & TSIHRINTZIS | [96] |2011 |81 MGAw
MARQUES ET AL. [132]|2011 |74 and 33,618% | PSO-OPF
CHMULIK ET AL. [30] |2012 |137 GA, PSO
KNIGHT [103]]2012 |168 GA

“The reason for a very high number of features is explained as follows: for one task, 26 cepstral coefficients
were extracted for 1,293 extraction frames and treated as independent features. This approach has a
high danger of overfitting, since only 999 classification instances were analysed.

Several historical tendencies can be observed:

e The first work, which directly mentions EA in a music classification scenario, is
[66], where only a method description was provided. The related study results were
published in [67]. Here, GA were used to optimise the feature weights for the kNN
classifier, similar to the approach in [176]. This method also was later applied in
[61] for snare drum classification. In [96], a GA with feature weighting was extended
with local search for genre recognition. Another embedded FS algorithm combining
a classifier (optimum-path forest) with an EA (particle swarm optimisation) was
originally proposed in [179] and applied for genre recognition in [132].
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e Later investigations applied GA with a bit string representation for a broader range
of music classification scenarios: class pairwise selection in instrument recognition
using GMM and SVM [57], applause detection with GMM [162], genre classification
(5 classifiers and 3 different classification approaches) [196], or multi-class recognition
of trumpet tone quality by SVM [103]. In [3], a GA with a restricted number
of selected features outperformed a simple GA for the classification of speech and
noise. However, the challenge of this modification is that it is necessary to select a
proper boundary for the number of features.

e Apart of genetic algorithms, ES are rather underrepresented in the application of F'S
for music classification. In [146], a (141)-ES was applied for the recognition of genres
and user preferences, and in [106], a (5425)-ES was applied for drum categorisation.
PSO was used together with a GA in [30] for sound classification.

e In [158], the fitness function was adapted to favour smaller feature sets. This could be
theoretically described as a multi-objective approach, reduced to a single-objective
by the objective weighting. However, to our knowledge, no study included an explicit
multi-objective optimisation.

e Only a few studies involve classification tasks with more than 200 features. Because
EA-FS performs especially well for large feature sets (in [110], GA was preferable
for all problems with 100 and more variables), the advantage of the evolutionary
methods over other methods cannot be fully exploited.

It is also worth to mention the studies with evolutionary-based feature construction, or
generation, where the ways to estimate features were designed by EA. In the first related
studies [166, 146], the features were estimated with method trees evolved by genetic pro-
gramming. This approach was also applied in [153]. Later, a multi-dimensional PSO was
applied for feature construction, classifying 16 different audio categories [127].

Table 3.3 lists some statistics of our own publications on evolutionary F'S in music classi-
fication (for more details see Section 1.3).

Table 3.3.: Own studies with evolutionary F'S applied in music classification tasks, sorted
by year. The column marked with ‘Asym. mut.” indicates the application of
an asymmetric mutation.

Ref. | Year | Tasks Feat. | Classifier |EA method Asym.
No. Mut.
[220]|2008 |3 personal categories |33 C4.5 (1+1)-ES no
[223]]2009 |3 personal categories |33 C4.5 memetic (1+1)-ES  |no
[15] |2010 |7 AMG genres 572 |C4.5 several (141)-ES yes
and styles (memetic /
self-adaptive)
[217]|2011 |6 AMG genres 572 | C4.5, RF, |(30+1) SMS-EMOA |yes
and styles NB, SVM
[218]|2012 |3 AMG genres 674 |RF (30+1) SMS-EMOA |yes
[219]]2012 |8 instruments 1,148 |C4.5, RF, |(304+1) SMS-EMOA |yes
NB, SVM
[216]]2013 |4 instruments 1,250 |RF (304+1) SMS-EMOA |yes




4. Evaluation Methods

A key question when designing an algorithm is how it performs compared to other methods.
A reasonable evaluation takes into account several different criteria (the terms evaluation
criterion, measure, metric, and objective are used as synonyms within the scope of this
thesis). Any improvement of an algorithm does not mean that it would lead to an increase
of performance with regard to all relevant metrics. For example, it may be possible to
achieve smaller classification errors, paying this price by higher computing demands for
the tuning of parameters, classification training, and classification. Or, the performance of
the binary classification may differ on positive and negative instances, which means that
the algorithm is not suitable for highly imbalanced data sets. Several groups of evaluation
metrics are presented in Section 4.1.

The data themselves are also a very sensitive part of the evaluation process. If the valida-
tion data are too similar to the training data, an algorithm will perform almost perfect,
but we would not learn anything about the generalisation ability of the method to clas-
sify new data. On the other side, it is obvious that a model which has been trained to
distinguish between classical recordings of piano and symphonic orchestra will perform
completely unexpected, if it would be applied on electronic music. The validation data
should not be completely different from the training data. Several recommendations how
the instances for classification and evaluation should be organised are discussed in Section
4.2.

Finally, any comparison of significance of study outcomes should be assessed by statistical
tests. In that case, the confidence of the statements, such as ‘algorithm A significantly
outperforms algorithm B’ or ‘tuning of parameter P does not bring any significant im-
provements’, can be estimated by means of assumed statistical distributions. The ideas
behind the statistical tests and the descriptions of tests applied in this work are shortly
outlined in Section 4.3.

4.1. Evaluation metrics

In Section 2.1.1, we discussed several applications of music data analysis. It is obvious that
the criteria for algorithm evaluation should be carefully chosen, depending on the situation
and the goals of the current task. In many related publications, often only one or a couple
of well-known evaluation metrics, such as accuracy, number of misclassifications, precision,
recall, etc. is estimated.

For an extensive comparison of classifiers, it can be indeed reasonable to estimate a larger
number of metrics: even for the closely related confusion matrix metrics some of them may
be hardly correlated, as affirmed by our study on music genre and style recognition [214].
Furthermore, a better performance w.r.t. one measure may correspond to a decreased
performance according to another metric. Several examples are:
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e A smaller classification error on positive instances in binary classification may cor-
respond to larger errors on negative instances. We observed this tendency in [217].
The models with the highest recall rates had the lowest specificity rates, and vice
versa; the non-dominated fronts were built from a large number of different trade-off
solutions for the examined classification tasks. For some applications, it may be
indeed preferable to achieve higher classification performance on the positive exam-
ples. It is not a problem, if an acceptable share of the negative examples is identified
as positive (a surprise effect in music recommendation). For other situations, such
as the generation of a party playlist, it is preferable to guarantee that no negative
songs are categorised as belonging to the dance genre.

e A very common situation is that the algorithms with the lowest errors are slower
than the less complex classifiers. In our experiments from the previous studies and
the studies discussed in Chapter 5, the NB classifier was the fastest, but often had
rather large error rates.

e Not only the runtime demands, but also other costs of music classification can be
estimated for the evaluation of algorithms. For example, if some features require long
extraction time and should be stored for very large music collections, it is thinkable
to substitute them by less expensive and less powerful features (related to their
ability for class separation) or to extract them only from very short song intervals,
applying one of the methods for the processing of the time dimension of the feature
matrix, which are discussed in Section 2.3.3.

e A trade-off between highly complex models, which provide very small classification
errors, but are less suitable for unseen data, and smaller and more generalisable
models, can be taken into account. As described above in Section 2.4.1, a part of the
C4.5 algorithm is designed to search for a balance between too complex and overfitted
trees and smaller pruned trees, which admit an acceptable rate of misclassifications.

The next step beyond multi-objective evaluation of algorithms is multi-objective optimi-
sation, as introduced in detail in Section 3.2 for evolutionary feature selection. Though
we have applied only a couple of metric combinations for EMO-FS, we believe that many
further combinations up to the many-objective scenarios will be investigated in future.
Therefore, we provide an extensive list of evaluation measures in the following two sec-
tions.

The classification performance metrics (Section 4.1.1) are often calculated in different
supervised classification applications, however they are rather seldom combined for multi-
objective evaluation — and even less used as a target for multi-objective optimisation.
All these metrics are available in AMUSE. We compared many confusion matrix-related
measures for music classification in [214].

Section 4.1.2 provides a discussion of some promising metric groups for future research.
They are not so often applied in music classification studies or are designed only for specific
classification tasks.

4.1.1. Confusion matrix and classification performance measures

Because our current research is focused on binary classification tasks, we provide below
the formulas for metric estimation mostly for binary classification. They can be easily
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extended for multi-class tasks.

The most commonly used evaluation metrics are estimated from the CONFUSION MATRIX,
which is a quadratic (C' x C')-matrix, where the rows correspond to the labelled categories
YL, columns to the predicted categories yp, and the entry in row j and column k is equal
to the number of classification instances labelled as belonging to category yr,, which were
predicted as belonging to category yp.

Let T be the overall number of classification instances, or windows, and x; denote the
feature vector for a classification window i € {1,...,T} from the processed feature matrix
X. For the binary classification yr,,yp € {0;1}, and the confusion matrix consists of the
four following entries:

e The number of TRUE POSITIVES corresponds to the number of positive instances

predicted as positive:
T

TP =Y yu(x) - yp(x:). (4.1)
=1

e The number of TRUE NEGATIVES corresponds to the number of negative instances

predicted as negative:

T

TN =3 (1—yu(x) - (1 - yp(x). (4.2)

1=1

e The number of FALSE POSITIVES corresponds to the number of negative instances
predicted as positive:

T
FP =) (1-yL(x:)) - yp(xi). (4.3)
i=1

e The number of FALSE NEGATIVES corresponds to the number of positive instances
predicted as negative:

T
FN =3 yr(x)- (1 - yp(x)). (4.4)
=1

Several metrics are derived from TP, TN, FP and FN (we provide here again the defi-
nitions for binary classification, which can be extended for a multi-class case):

e ACCURACY corresponds to the average rate of correctly predicted instances:

TP+ TN _TP+TN

= 4.5
TP+TN+ FP+ FN T (4.5)

macc =

If a data set is highly imbalanced, and a classifier performs well on the stronger rep-
resented class (in worst case classifying every instance as belonging to the strongest
category), the accuracy may be indeed high. Therefore, the calculation of other
metrics is reasonable. On the other side, it depends on the classification scenario,
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if the classification performances on the stronger and weaker classes have an equal
relevance.

e PRECISION describes the fraction of the correctly identified positive instances to the
number of instances identified as belonging to this category:

TP

TP+ FP’ (46)

MPpREC =

e RECALL, or SENSITIVITY, is the fraction of the correctly identified positive instances
to the number of positive instances:

TP

TP+ FN (47)

MREC =

e SPECIFICITY measures the percentage of the negative instances, which were predicted
as negative:

TN

=——. 4.8
MSPEC = Fp Y TN (4.8)
Numeric prediction errors measure the number of misclassifications, and can also be ap-
plied for binary classification (the corresponding formulas are marked with cbin )
e ABSOLUTE ERROR is equal to the number of misclassifications:
T .
mAE:Z’yL(XZ)_yP(XZ)’ 2IFWP—l-F’]\[ (49)
i=1

e RELATIVE ERROR corresponds to the average number of misclassifications:

T
’I?”LRE—T';WL(X@)—?JP(XZ” - TP+TN+FP+FN'

(4.10)

e MEAN SQUARED ERROR can be estimated, if the ground truth is not always binary
as defined in our earlier studies [205, 223] (we used a slightly modified mpy;gp version

there):
T

1 2

MMSE = Z; (yr —yp)” . (4.11)
1=

Some metrics are designed especially for the measurement of classifier performance on

imbalanced sets:

e BALANCED RELATIVE ERROR is the mean of the relative errors estimated separately
for the instances of both classes:

1 FN . FP 1)
MBRE =5 \Tp X FN "TN+FP )" ‘
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e F-MEASURE is the weighted harmonic mean of precision and recall:

1) - .
mrp — (OéF + ) MPREC mREC, Where (413)
afF - MpREC + MREC

ar adjusts the balance between mprrpc and mrgpc and is often set to 1.

The following three metrics are combinations of recall (sensitivity) and specificity, which
are also helpful for classifier evaluation on imbalanced sets. Their application for the
evaluation of classification is motivated in [198].

e YOUDEN’S INDEX is a simple combination of mrgc and mspgc:

my = mgrpc +mspec — 1. (4.14)

e POSITIVE AND NEGATIVE LIKELIHOODS measure the performance on positive and
negative instances separately, however with respect both to sensitivity and specificity

values: .
m -m
mL+:¢C;m _ — - "MREC (4.15)
1 —mgpEc MSPEC
e (GEOMETRIC MEAN is the squared product of mrgc and mgpgrc:
MGEOM = /MREC - MSPEC- (4.16)

Another possibility to evaluate the classification quality is to measure the correlation
between the sequence of labels for all classification windows yr, and the sequence of
predicted categories for all classification windows yp:

e STANDARD CORRELATION COEFFICIENT is equal to 1 in case of the strongest depen-
dency between the input variables, -1 in presence of the strongest anticorrelation (an
increase of the first variable leads to a decrease of the second one) and is equal to 0,
if the variables are not dependent on each other. It is defined as follows:

_ Cov(yp,yL)
VVar(yp) - Var(yr)

¢ , where the COVARIANCE is: (4.17)

S (yp—5p) (YL —¥1)
T-—-1

Cov(yp,yL) = and the VARIANCES are: (4.18)

ZZT:1 (yp —¥p)

T _
Zizl (yr — YL)2
T-1 ’

T-1

Var(yp) = Var(yr) = (4.19)

e SPEARMAN’S RHO RANK COEFFICIENT is a special case of the Pearson product-
moment correlation coefficient, where R(-) measures a rank of the input variable,
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based on the preceeding sorting:

6= =L (Rlyr(x) - Rlyr () ~ T(55)? (420)

\/ (S5 (B re)) ~T(5)*) - (SL (R x) - T(55)°)

Because we build many classification windows from a single song for genre and style
prediction (see Section 2.3.4), we distinguish between SONG-LEVEL and CLASSIFICATION
WINDOW-LEVEL evaluation metric estimation. The classification window-level evaluation
calculates the performance for all classification windows. For binary song-level evaluation,
which is based on a binary partition-level classification with yp(x;) € {0;1}, we estimate
the predicted song category by majority voting across all predicted labels for classification
window feature vectors:

!/

T .
Yp(X1, ooy X ) = {W - 0.5} , where (4.21)

T" is the number of classification windows in a song. The yp(x;) and yr(x;) values in
Equations 4.1 to 4.20 can then be replaced by the corresponding labels for songs. If a
metric m; was estimated on the song level, we denote it by mj.

The metrics estimated on window level evaluate a classifier more precisely. On the other
side, for user-driven scenarios it is almost always acceptable or even desired that complete
songs are assigned to categories. In the last case, the classification performance is usually
better than the classification window-level performance: for example a ‘classic’ song is
identified correctly for the share of ‘classic’ classification windows between 50% and 100%.
Therefore, we applied partition-level FS optimisation for the recognition of the high-level
features, and song-level F'S optimisation for the recognition of genres and styles.

Figure 4.1 illustrates this effect. Both subfigures plot the balanced relative error and
the selected feature rate (defined later in Equ. 4.24) on the holdout set from the feature
subsets, which have been generated during 2,000 evaluations of the 10 experiments for the
recognition of the Classic category with RF. The runs in the left subfigure were evaluated
and optimised using mprp (partition-level) and mgppr. For the right subfigure, the metrics
were mppp (song-level) and mgrgr. Song-level classification has significantly lower errors
than window-level classification: even with larger feature sets almost always mypp < 0.04,
and for window-level classification in most cases 0.04 < mprg < 0.1.

4.1.2. Further metrics

In [217], we discussed five categories of metrics, which can be estimated for the evaluation of
music classification: common quality-based, resource, model complexity, user interaction,
and specific metrics. The measures from the first group are listed in Section 4.1.1, and
most of them were used in our studies. The metrics from the last four groups are not
so commonly used in music classification, but are, in our opinion, very promising for the
multi-objective evaluation of music classification in future.
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Figure 4.1.: All solutions found during the 10 statistical repetitions of FS optimisation
by SMS-EMOA and classification by RF, category Classic. Left subfigure:
partition-level optimisation. Right subfigure: song-level optimisation.

RESOURCE METRICS estimate algorithm runtime and storage demands. One of the few
works which provide a general categorisation of these metric group is [210]. They can be
calculated for each stage of the music classification chain discussed in Section 2.1.3, for
example:

e The C7 runtime is relevant, if new music categories are frequently created.

e The C runtime becomes crucial, if the same categorisation models are applied for
different music collections, for example, if a music online shop applies automatic
classification of new songs each day.

e The same holds for the 7€ runtime: although feature extraction is usually done only
once for each new music track, it can be very costly. For example, it was observed
in [18] that the estimation of autocorrelation, fundamental frequency, and power
spectrum required more than 65% of the overall extraction time for the set of 25
common audio features. Therefore, too long extraction times may lead to problems
for often updated music collections as well as for devices with limited resources.

e The FP reduction rate measures the number of entries in the processed feature ma-
trix X’ divided by the number of all feature dimension values before any processing:

F-T
S (1) - P (i)
For each feature i, the number of extracted values is equal to the product of the
number of dimensions F** (i) and the number of extraction windows 77*(i), see also

note 8 in Section 2.1.3. mppgrr provides a rough estimation for the storage demands
which are required to index the music files.

MFPRR = (4.22)

e A modified version of mpprr was used in [222] for the comparison of different
time dimension processing methods (see the discussion of Fig. 2.10 in Section 2.3.3).
The time windows reduction rate corresponds to a relative number of the selected
time windows, compared to the number of the smallest extraction frames, which are
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required for the harmonisation of the feature matrix X (see Section 2.3):

!
TH’
TH is the time dimensionality of the harmonised feature matrix X before further
processing.

MTWRR — where (4.23)

MODEL COMPLEXITY METRICS estimate the complexities of the classification models. The
more complex models often have a higher tendency to be overfitted towards certain data
sets, in particular, the training data, so that the classification performance on other data
sets is deteriorated. This metric group is sometimes closely related to the resource metrics:
a more complex model is often built from a larger amount of features and has higher storage
demands.

e A crude measure for model complexity is the SELECTED FEATURE RATE:

F

T (4.24)

MSFR =

A larger number of input variables often leads to more complex models, and the dan-
ger increases that some noisy features are coincidently recognised as relevant. This
especially holds, if the number of features is larger than the number of classification
instances.

e The generalisation performance of classification models can also be evaluated ac-
cording to stability criteria, such as the deviation of the classification performance
on different validation sets. An example for such a measure is proposed in [113].

e The classifier-specific model complexity metrics compare models, which are created
by the same classifier, but with different parameters. An SVM-specific complexity
measure is discussed in [145]. For C4.5, the number of tree nodes measures the tree
complexity.

A group of USER RELATED METRICS makes sense for any classification scenario, where the
users are either involved in ground truth labelling, or the categorisation itself aims at user
satisfaction. Examples for these metrics are:

e Listener satisfaction with the music classification results.
e Feedback efforts, if the user plays a role in active learning [36].

e Efforts to create the ground truth are usually in conflict with the classification per-
formance: the smallest number of misclassifications can be achieved, when a large
number of the labelled songs from different genres exists. However, high manual
efforts for labelling are necessary for that case.

e High interpretability of the classification models and the involved features helps to
understand the category properties, for example, if a decision tree model is built
with high-level features. Each step of the algorithm chain (Fig. 2.3), which aims at
the increase of the classification performance, may on the other side reduce the inter-
pretability: e.g., if the F& outputs a large number of complex and less comprehensi-
ble audio signal characteristics, F'P applies statistical feature dimension processing,
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or the CT transforms the original feature dimensions into the higher-dimensional
SVM models.

The main disadvantage of the user related metrics is that many of them are rather subjec-
tive, and/or cannot be calculated automatically, so that high manual efforts are required.
Some of the MIR related user-centered metrics are discussed in [26, 122].

SPECIFIC PERFORMANCE EVALUATION METRICS are designed with the primary goal to
evaluate the music classification for a concrete application, and not music classification in
general, e.g.:

e For playlist generation based on genres and other preferences, it is reasonable to
measure the playlist diversity or novelty effect. These metrics also play a role for
other music recommendation scenarios, where the user would not be satisfied, if the
music from the same artist will be recommended over and over again.

e For some of the music classification applications, the structure and the order of the
classification instances plays a role. The standard evaluation measures introduced in
Section 4.1.1 are then not optimal anymore, since they are invariant to the order of
instances. One of such tasks is hierarchical music segmentation, which detects several
structure levels: from larger segments, characterised by their instrumentation, to
shorter harmony-related sequences and rhythm-related note groups in the bar. For
music segmentation in general, specific evaluation metrics are proposed in [125].
For hierarchical segmentation, it is possible to adapt the measures from the image
processing domain, which take structural information into account [225].

e For tempo recognition, sometimes an octave error occurs, so that the tempo is es-
timated as the double of the original one. This is often a consequence of several
autocorrelation peaks with an (almost) similar amplitude or of several tempo levels
from different instruments. Slow music pieces would be then identified as fast [40].
Here, it is possible to define specific measures, which consider these different ground
truth peaks. The doubling tempo error may be less penalised than other deviations
from the original tempo. Another possibility is to allow some acceptable deviation
from the labelled tempo [140)].

4.2. Organisation of data for evaluation

Another essential part of algorithm evaluation is the careful choice of the data for classi-
fication and evaluation. First, we should clarify the differences between data sets, which
are used in the evaluation process. The following definitions hold within the scope of
this thesis and may differ from the same terms in other literature, in particular, if it is
distinguished only between training and validation:

e TRAINING SET is a subset of labelled classification windows for the training of clas-
sification models.

e VALIDATION SET is used for the evaluation of the models, which have been previously
created from the training set. Because the estimated metrics can be used as an
optimisation criterion, as it is done in this work for the optimisation of feature
selection (see Chapter 3), we also refer to this set as OPTIMISATION SET.
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e EXPERIMENT SET contains both the training and the validation sets.

e HOLDOUT SET is kept for the independent evaluation of the models, which have been
trained from the training set, and have been optimised using the optimisation set.
The experiment and holdout sets should be disjunct for all experimental studies, to
avoid overfitting (see below Def. 4.1).

The organisation of the experiment set into training and validation sets can be done with
the help of many strategies. The most popular are the following (see [14] for pseudocode
examples):

e 1-FOLD CROSS-VALIDATION (n-fold CV) is one of the most common techniques. Here,
the experiment set is divided into n disjoint partitions of equal size. Based on the
rotation principle, each partition with % instances is exactly once reserved for the
validation set, and the remaining n — 1 partitions with T - (”T_l) instances are used
to train the classification models. If n = T, this method is called leave-one-out
cross-validation, since each validation set always consists of exactly one instance.

e In BOOTSTRAP, the partitions are not disjoint. In the beginning, T instances are
drawn for the training set with equal probability and independently from each other.
Each instance has a chance of % of being selected in each draw. The probability
of not being selected is approximately equal to e~! = 0.368, so that approximately
36.8% of the instances are not selected at all, and these instances are used for the
validation set. The whole process is repeated n times and n is usually set to much
higher numbers than for n-fold CV. Several enhancements of bootstrap led to the
development of the more complex .632 and .632+ bootstrap validation techniques
[49].

e NESTED CROSS-VALIDATION contains several levels of CV. For example, the algo-
rithm parameters can be first tuned within an inner CV loop, and the results of this
process can be evaluated within an outer CV loop. An illustrative example is pro-
vided in [14]. This method was proposed for EA-FS in [124]. Although this validation
method supports the most reliable estimation of the generalisation performance of
algorithms (compared to other methods discussed above), its main drawback is that
the runtime increases exponentially by the insertion of the additional levels.

For an explanation, why an independent holdout set is necessary for algorithm evaluation,
we provide the following explicit definition of OVERFITTING from [150], p. 67:

Definition 4.1 Given a hypothesis space H, a hypothesis h € H is said to OVERFIT the
training data if there exists some alternative hypothesis h' € H, such that h has smaller
error than h' over the training instances, but h' has a smaller error than h over the entire
distribution of instances.

For the calculation of the risk to create overfitted models or, in other words, for the
measurement of the GENERALISATION ABILITY to perform well on the unseen data, it is
essential to keep a certain proportion of the available labelled instances untouched during
the tuning and optimisation of algorithms. Omne of the most common mistakes in the
evaluation of classification is that the training and the validation sets are rotated based
on n-fold CV, and the algorithm performance is measured as the mean error across all
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validation sets. This error (or any other estimated metric) is not completely independent
from the training data involved into the classification models.

To name a couple of references for further reading, in [183] it is discussed how the danger
of overfitting can be minimised for the evaluation of feature selection. [180] provides sev-
eral experimental suggestions that the overfitting risk increases, when many classification
methods are compared, and large data sets are used for model creation during n-fold CV.
[60] gives an interesting insight into the re-evaluation of the previous study on snare drum
classification where no independent holdout set was used originally.

simple validation n-fold cross-validation
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Figure 4.2.: The two validation methods used in our studies. T: training set, O: optimi-
sation set, E: experiment set, H: holdout set.

Figure 4.2 illustrates the organisation of data sets, as applied in our studies. Because of
the long experiment runtimes, we had to choose a compromise between the number of
experiment parameters, number of categories to predict, and the number of evaluations.
Therefore, we did not integrate a nested CV, but reserved an independent holdout set
before each experiment for the reliable evaluation of the optimised feature sets. For the
studies described in Sections 5.1.1 and 5.1.3, we used n-fold CV on the experiment set
(right subfigure). Even without a nested strategy, the optimisation of feature selection
and independent validation required high computing efforts, see the numbers of model
evaluations in Tables 5.1 and 5.3, and the corresponding explanation of the optimisation
parameters in Section 5.1.1. The simple validation (left subfigure) was applied for mood
and genre and style recognition (Sections 5.1.2 and 5.2). For moods, the number of
the albums with positive song examples was not sufficient to provide a reasonably large
experiment set with enough positive instances for model creation based on n-fold CV. For
genres and styles, we have integrated training sets of only 10 and 20 songs, as motivated
in our first studies [205, 220] — the reason was to create a classification scenario close to
the real world situation, where a listener defines a music category with a limited number
of songs.

Another relevant issue is the assignment of instances (classification windows) to the sets,
which are defined above. As we have already briefly mentioned in the beginning of this
chapter, it does not make sense to validate an algorithm on the test data which are
too similar or too different from the training data. Therefore, it is reasonable to create
experiment and holdout sets which

e are completely disjunct, i.e. none of the instances appear in both sets, and which

e have an approximately equal category distribution.
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The sets should not be too small: too many features and too few instances increase the
danger of overfitting, so that the noisy and irrelevant features would be misleadingly
recognised as relevant. Although we use training sets of only 10 and 20 songs, we benefit
from a large number of classification windows per song. Even if 10 songs are chosen for the
training set, the number of classification instances is more than thousand, assuming that
a typical song of 4 min length consists of 119 classification windows with W, = 4 s and
S. = 2 s. It is important to mention that classification windows of the same song might
be very different because of the varying instrumentation, note distribution, harmonic and
energy characteristics, etc.

Finally, according to the No Free Lunch theorem [233], no algorithm can be treated as
considerably better than any other, if the algorithms would be evaluated across all possible
classification tasks. For each classification method, parameter setting, or the selected
feature set, there exist some data sets for which a particular method performs very well —
and there exist other data sets, which are especially hard to classify with this algorithm.
This does not mean that it is not possible to give some recommendations — but it makes
sense:

e to precisely set up and describe the classification task,

e to find out, which algorithms are preferable within the scope of this and similar
scenarios, and

e to choose proper evaluation metrics.

For further recommendations concerning the organisation of data for evaluation, see, e.g.,
[45, 4, 14].

4.3. Statistical hypothesis testing

The task of INFERENTIAL STATISTICS is to measure how probable is the fact that a study
outcome was not achieved by chance. On the other side, it should be kept in mind
that a significant difference between two distributions does not necessarily measure the
dimension of this difference: for example, method A may outperform B with regard to
the misclassification error, but the advantage could be so marginal that it does not make
sense to replace B by A. Therefore, it is also reasonable to describe the differences and
trends by means of DESCRIPTIVE STATISTICS.

The choice of a proper test should be done very carefully. It depends on the data char-
acteristics: the number of observations and their mathematical distributions, the value
domain, the relation between the observations (paired and not paired), etc.

First, the test objectives should be considered. Usually, the following disjoint hypotheses
are formulated (cf. [84], p. 2 and [36], p. 4):

Definition 4.2 NuLL HYPOTHESIS (HO) postulates that there is no difference between
the probability distributions of some study outcomes, i.e. they belong to the same sample
probability distribution with unknown parameters.

Definition 4.3 ALTERNATIVE HYPOTHESIS (H1) assumes that the distributions of the
study outcomes are not equal. If the distribution difference is proposed to have a direction
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(a sample set, which describes a study outcome, contains either only significantly larger
values, or only significantly smaller values than another sample set), H1 is ONE-TAILED.
If the direction does not play a role, H1 is TWO-TAILED.

Because it is usually desired to show that a certain algorithm modification or improvement
leads to a higher, and not equal performance, the principle of the contradiction is applied: it
is assumed that HO is true. If this suggestion can be rejected for the estimated test statistic
with a certain significance level, the alternative hypothesis H1 is accepted, otherwise HO
is kept.

Table 4.1.: Errors in hypothesis testing.

HO is actually true| HO is actually false
HO is rejected TYPE I ERROR correct decision
p=a p=1-p5
HO is not rejected | correct decision TypE II ERROR
p=1-a p=15

Table 4.1 illustrates the probabilities of the two possible errors, which may occur in this
approach. By the choice of the significance level «, we can reduce the danger of a type I
error. The most common value is a = 0.05. If HO is then not rejected, it means that this
was done correctly, and not by chance, with the probability of 95%.

The type II error occurs, if HO is not rejected, but it does not actually hold. The probability
of the correct rejection of HO, where H1 is indeed true, is 1 — 8. This value is also called
the TEST POWER, since it usually corresponds to the acceptance of the desired suggestion
that the two distributions of the study outcomes are unequal (see above).

The test plan should contain the following steps, according to [199, 36]:

e As exact as possible description of the problem and the corresponding data.
e Formulation of the hypotheses HO and H1 with respect to Definitions 4.2 to 4.3.
e Choice of « as a test risk level.

e Selection of the test statistic U, which should have different distributions for HO and
HI.

e Estimation of U distribution on the evidence of HO (Fy(U)), which depends on the
number of observations (DEGREES OF FREEDOM). Usually, these distributions are
listed in the corresponding tables or are calculated by statistical software.

e Selection of the CRITICAL AREA A¢ under Fy(U), which will lead to rejection of HO,
if the test statistic would be in this area.

e Estimation of the test statistic value TY.
e Rejection of HO, if T € A¢, and acceptance of HO, if Tg ¢ Ac.

e Interpretation and reporting of results.

The P-VALUE corresponds to the probability that the same or a more extreme test statistic
value would be achieved by chance for a repetition of the experiment. In case of HO
rejection, p < a.
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NONPARAMETRIC STATISTICAL TESTS have several advantages over parametric statistical
tests [84]:

e No assumptions about the probability distributions of the observations are required.
Many parametric tests assume a Gaussian or other distribution.

e The application procedure is simple and easy to understand.

e These tests can be applied, when the sample sizes are relatively low. In our studies,
we used 10 statistical repetitions for each experiment. Several references, which are
mentioned in [36], suggest that the application of parametric tests requires more
than 10 repetitions as the absolute minimum.

e The nonparametric tests are hardly influenced by outliers.
We apply the two following tests in this work:

e WILCOXON SIGNED RANK TEST is used for paired observations, which are dependent
on each other. The test statistic TgV is estimated, as follows:

TY = Z RY (Ju; — v;|), where (4.25)
Vie{l,...,A}:u¢>vi

u and v are sample vectors of the same length A, and R (-) is a rank function, which
estimates the rank of its argument from all sorted values {|u; — v1], ..., |[ua —val}.

After the calculation of TY , it can be decided, if TgV € Ac. The two-tailed Wilcoxon
signed rank test rejects HO, if:

A(A+1)

Tg/ > Ta/2 O T,SI{V < 9

— Taj2, Where (4.26)

T 18 the critical value from the corresponding table for the Wilcoxon signed rank
test.

e MANN-WHITNEY U-TEST, which is also referred to as Wilcoxon, Mann and Whitney
test, compares two not paired observations. The sample vectors may have different
dimensionalities. Let A be the length of u, and B the length of v. The test statistic
TY is:

S

B
TY = ZRU(vi), where (4.27)
i=1

RY(.) is the rank function, which estimates the rank of its argument from all sorted
values {uq,...,u4,v1,...,UB}.

The two-tailed Mann-Whitney U-test rejects HO, if:

7Y > Ta/2 OF TY <B(A+B+1)— To/2, Where (4.28)

Te 18 the critical value from the corresponding table for the Mann-Whitney U-test.
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The application of statistical tests for classification tasks is discussed in [150, 4].






5. Application of Feature Selection

5.1. Recognition of high-level features

One of the major targets of this work is to approach music genre and style classification
with high-level features. As introduced in Section 3.3, sliding feature selection allows both
the optimisation of F'S and the categorisation on several levels:

e 1st level: prediction of high-level features from low-level features.

e Intermediate levels: prediction of high-level features from low-level features and
high-level features from the lower levels.

e Last level: prediction of high-level categories from low-level features and high-level
features.

The models for the identification of three high-level feature groups were optimised by the
multi-objective evolutionary feature selection, as described in Section 3.2.4. The setups
and outcomes of the related studies are briefly discussed in the next sections:

e INSTRUMENTS: The recognition of four instrument groups in polyphonic audio mix-
tures is described in Section 5.1.1.

e MooDS: The recognition of 8 AMG moods is outlined in Section 5.1.2.

e GFKL 2011 rEATURES: The recognition of 16 high-level features related to music
theory, which were proposed in [186], is described in Section 5.1.3.

5.1.1. Instruments

The instrument recognition study was originally conducted for the work reported in [219],
where the instruments were identified from intervals (2 tones played at the same time) and
chords (3 and 4 tones played simultaneously). For the genre and style recognition task in
Section 5.2, we selected only the chord-based models. The study overview is summarised
in Table 5.1.

In the following, we explain the relevant study details:

e CLASSIFICATION TASKS: Binary recognition of four different instrument groups (gui-
tar, piano, wind, and strings) from polyphonic mixtures of 3 and 4 instrument sam-
ples from McGill University MUMS collection [48], the RWC database [72], and the
University of Iowa instrument samples'. First, 3,000 chords were randomly gener-
ated. 2,000 chords were reserved for the experiment set and 1,000 for the holdout

"Mttp://theremin.music.uiowa.edu, date of visit: 15.02.2013.
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Table 5.1.: Parameters of the instrument recognition study.

Parameter name ‘Values No.

CLASSIFICATION TASKS

Classification tasks Guitar, Piano, Wind, Strings 4

Experiment set 2,000 chords 1

Holdout set 1,000 chords 1

FEATURES AND PROCESSING

Initial features 1,148 audio features 1

Feature processing NaN elimination, frame selection from attack and release 1
interval middles and onset events for 795 features; larger
building blocks for 353 features from [51]

Classification frames We.=—1and S, = —1 1

Feature aggregation - 1

CLASSIFICATION METHODS

Algorithms |C4.5, RF, NB, SVM with a linear kernel 4

OPTIMISATION PARAMETERS

Optimisation metrics |mgrg and mspgr 1

Optimisation algorithm | (30+1) SMS-EMOA 1

Mutation Asymmetric bit flip with pg; = 0.01 and v = 32 1

Crossover No crossover, uniform or commonality-based 3

Initial feature rate ifr € {0.5;0.2;0.05} 3

Number of evaluations |2,000 1

Evaluation method Optimisation by 10-fold CV on the experiment set; 1
independent validation on the holdout set

Statistical repetitions |- 10

Number of experiments 1,440

Number of model train. 29,232,000

Number of model eval. 32,155,200

set, for the independent validation of the models after FS (see Section 4.2 for the
data set descriptions).

FEATURES AND PROCESSING: 265 mostly low-level audio descriptors were estimated
from the middle frames of the attack intervals, the middle frames of the release
intervals, and the interonset frames, resulting in a 795-dimensional feature vector.
Another 353 characteristics were extracted from larger blocks, as described in [51].
The onset events were identified by the MIR Toolbox. If none or more than one
onset was estimated, we selected the frame with the highest RMS energy as an onset
frame. Therefore, each chord provided exactly one onset event. The classification
window size W, and the step size S. were set to -1 (this setting corresponds to the
building of the classification frames from complete audio recordings). Because only
one feature value could be extracted from each chord through the aforementioned
procedure, no further feature aggregation was required.

e CLASSIFICATION METHODS: Four classifiers were used for model training: decision
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tree C4.5, random forest, naive Bayes and support vector machines with a linear
kernel (see Section 2.4 for the description of algorithms). The default parameters
of these methods were used as provided in RapidMiner [147]. For the explanation,
why we selected these algorithms, see the last paragraphs of Section 2.4.

e OPTIMISATION PARAMETERS: The relative error mpp (Equ. 4.10)? from the 10-
fold cross-validation on the experiment set® and the selected features rate mgrgr
(Equ. 4.24) were optimised.

SMS-EMOA with asymmetric bit flip mutation (pp; = 0.01 and v = 32), as described
in Section 3.2.4, was used as optimisation method. These parameters were selected
after a preliminary study and experiments from [217]. Three different crossover
possibilities (no crossover, uniform, and commonality-based) and three different val-
ues for the initial feature rate if, € {0.5;0.2;0.05} were tested. The number of
evaluations was set to 2,000 after the preliminary experiments.

The overall number of the statistical repetitions was set to 10. This limitation
was necessary because of the long experiment runtimes between several hours and
several days. The last lines in Table 5.1 illustrate the high computational load.
The number of model trainings was equal to: 10 - 30 (training of models based
on 10-fold CV on the experiment set for the initial population of 30 individuals) +
10-2,000 (the same procedure for each offspring solution during 2,000 EA loop steps)
= 20,300 for each experiment. Since 10 statistical repetitions for 144 combinations of
parameter settings were run, the overall number of model trainings is 20, 300-10-144
= 29,232,000. Similarly, the number of model validations for each experiment was
equal to: 10-30 + 30 (independent validation of the initial solutions on the holdout
set) + 102,000 + 2,000 (validation of the offspring solutions on the holdout set)
= 22,330.

It should be mentioned that the number of model trainings and evaluations provides
a very rough effort measurement for many reasons: NB experiments were more
than 10 times faster as SVM, and training and classification with fewer features for
ifr = 0.05 was significantly faster at the beginning of the corresponding experiments
than for if, = 0.5. Also, the number of classification instances in the data sets is
different for this study and the studies described in Sections 5.1.2 to 5.2, so that it
is not possible to exactly compare the computing efforts across all studies.

Figure 5.1 shows the best non-dominated fronts of the final solutions after the experiments.
The holdout mpgg is plotted on the horizontal axis and mgprgr on the vertical axis. C4.5
solutions are marked with blue circles, RF with red squares, NB with green diamonds,
and SVM with yellow triangles.

The trade-off solution fronts can be observed: the smallest mgg is achieved by the models
with the largest numbers of features, and on the other side there exist models, which are
built by a very limited numbers of features. These boundary solutions may be sometimes
less promising for a decision maker. However, several models closer to the upper left side

’In [219], we refer to the mean squared error - the implemented metric was indeed MSE, but for this
study setup it is equal to mgrE.

3For simplicity reasons, we denote the metrics which were estimated as an average from the n CV folds by
the same symbols as the metrics estimated by a single model building and evaluation (both approaches
are illustrated in Fig. 4.2, Section 4.2).
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Figure 5.1.: The best ND fronts after all instrument recognition experiments. Circles:
C4.5, squares: RF, diamonds: NB, triangles: SVM. The ND fronts for each
classifier are indicated with thin lines. The ND fronts across all classifiers are
indicated with thick lines, and the markers of the corresponding models are
enlarged.

of the ND front can be indeed relevant. Consider, for example, the upper right subfigure
(Strings category), the two SVM solutions in the upper left corner of the subplot (marked
with triangles): it is possible to reduce the amount of features from 44.34% to 23.26%,
keeping almost the same m g, which increases from 0.139 to 0.14. This situation illustrates
very well that the number of features can be strongly decreased, where the classification
quality remains almost the same. Models with less features and a slightly diminished
classification performance can be even more preferable: we already discussed in Section
3.1 that the models built from smaller feature sets allow faster training and classification,
save storage demands, and have a reduced tendency to be overfitted.

The classification models built by RF and SVM have the largest share of the overall
ND solutions across all classifiers (this front is marked with the thick line). But there
also exist some NB and C4.5 solutions, which belong to the best ND front, and are not
dominated by any RF or SVM solution. This means that it is reasonable to combine
different classification methods. This observation was measured in terms of hypervolume
contributions of different classification methods in [215].
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It is also important to mention that the solutions, which are plotted in Fig. 5.1, may
not correspond to the very best trade-off solutions, because the validation was done on
the independent holdout set. However, we measured the generalisation performance of
the models in [219], and it was very similar for the optimisation and the holdout sets.
Another derived suggestion is that some solutions from earlier generations provide better
classification results on the holdout set than the final solutions after 2,000 evaluations.
This effect may be reduced by early stopping, as discussed in [124] and mentioned in
Section 3.4.1. However, it is then required to provide an additional outer validation loop,
and to further increase the already very high number of model training and validation steps
(see above the explaination of the last three lines from Table 5.1). These experiments were
not possible within the scope of this thesis, but are reasonable in future.

5.1.2. Moods

The parameters of the mood study are listed in Table 5.2.

In the following, we describe only the parameters of the mood recognition study, which
differ from the setup of the instrument recognition study already discussed in Section
5.1.1.

e CLASSIFICATION TASKS: For our music database of 120 albums, listed in Appendix
B, Table B.1, we labelled the songs with the corresponding AMG mood categories®.
These moods are defined by music experts and can be treated as personal prefer-
ences. Because some categories had very small numbers of the labelled songs in our
collection, we selected the following eight moods after the preliminary analysis: Ag-
gressive, Confident, Earnest, Energetic, PartyCelebratory, Reflective, Sentimental,
and Stylish.

A problematic issue of this ground truth is that only the positive labels are available
from the AMG web site. If an album is not labelled with a certain mood, it could
mean that it is either a negative example or that it has not been analysed by the
experts. On the other side, subjective descriptors such as moods almost always
cannot guarantee a precise ground truth.

The training sets were generated as follows: we selected all available albums with a
certain mood tag and drew randomly one song per album. Then, the same number
of songs was drawn randomly from the remaining albums, which were not labelled
with this mood. The classification models were trained on these balanced sets. The
solutions generated by SMS-EMOA were evaluated on the song set OS120, and
validated independently on the song set TS120 (both sets are listed in Appendix
B, Table B.3), as also done in previous studies [15, 217, 218]. During the random
generation of the training sets, the songs from OS120 and TS120 were excluded, so
that the number of the shared songs for all sets (training, optimisation and holdout)
was equal to zero.

e FEATURES AND PROCESSING: For 439 low-level and high-level descriptors, which
have been originally extracted from short frames with length < 4 s, mean and stan-
dard deviation were estimated for classification frames with W, = 4 s and S, = 2 s.

‘http://www.allmusic.com/moods, date of visit: 15.02.2013.


http://www.allmusic.com/moods

92

5: Application of Feature Selection

Table 5.2.: Parameters of the mood recognition study.
Parameter name ‘Values No.
CLASSIFICATION TASKS
Classification tasks Aggressive, Confident, Earnest, Energetic, 8
PartyCelebratory, Reflective, Sentimental, Stylish
Training sets 30-52 songs 1
Optimisation set 120 songs 1
Holdout set 120 songs 1
FEATURES AND PROCESSING
Initial features 1,318 audio features 1
Feature processing NaN elimination, normalisation, 1
interonset frame selection
Classification frames W.,=4and S, =2 1
Feature aggregation Mean and std. deviation for low-level features and 1
high-level features with extraction windows < 4 s
CLASSIFICATION METHODS
Algorithms \C4.5, RF, NB, SVM with a linear kernel 4
OPTIMISATION PARAMETERS
Optimisation metrics |mprg and msrgr 1
Optimisation algorithm | (50+1) SMS-EMOA 1
Mutation Asymmetric bit flip with pg; = 0.01 and v = 32 1
Initial feature rate ifr € {0.5;0.2;0.05} 3
Number of evaluations |2,000 1
Evaluation method Optimisation on the optimisation set; 1
independent validation on the holdout set
Statistical repetitions |- 10
Number of experiments 960
Number of model train. 1,968,000
Number of model eval. 3,936,000

Therefore, the number of feature dimensions was increased by the factor 2 leading
to 878 features.

Another set of 70 low-level and high-level features with extraction frames larger than
4 s was processed directly without aggregation.

A next group of features was integrated according to the concept of sliding feature
selection, as introduced in Section 3.3. Different instrument categorisation mod-
els described in Section 5.1.1 were applied on extraction windows around the onset
events. Then, the relative share of the positive outcomes (an instrument was de-
tected) was calculated for larger high-level feature extraction frames of 10 s. For
example, a piano share of 0.8 in a frame means that 80% of the binary classification
models identified a piano around the onsets in the analysed 10 s frame. Because all
non-dominated instrument models for different classifiers were taken into account
(see Fig. 5.1), the number of these instrument-related features was equal to 237.
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Finally, the 133 structural complexity high-level characteristics listed in Table A.7
were also integrated into the complete feature set.

All features were normalised and the missing values were replaced by the medians.
For features with short extraction frames, only the interonset frames were taken into
account.

e CLASSIFICATION METHODS: For the mood recognition study and the following ex-
periments described in Sections 5.1.3 to 5.2, we used the same 4 classifiers as for
instrument recognition. The only change was the increased number of trees for the
RF classifier — we replaced the default value of 10 trees by 100 according to the
observations from [218].

e OPTIMISATION PARAMETERS: Because the optimisation (and holdout) sets were
not balanced, we used the balanced relative error mprr (Equ. 4.12) and mgpgr
as optimisation criteria. The parameters of SMS-EMOA were the same as for the
instrument recognition study, except for the population size (it was increased to 50)
and crossover: because this operator did not provide any significant improvement
for all instrument recognition tasks, we removed it from the algorithm.

For mood recognition, we did not use a 10-fold CV process for model training and
validation, because of two reasons. First, 10-fold CV requires approximately 10
times longer runtimes than the single validation, and we had to select a compromise
between the number of classification tasks and other parameter settings. This load
could be in principle partly reduced by using, e.g., only a 3-fold CV procedure, as
it was done for the GFKL2011 set recognition (Section 5.1.3). However, the second
restriction was the limited number of positive mood albums (between 15 and 26),
so that the balanced training sets consisted of 30-52 songs. Using only 2/3 of these
sets for the model training would further decrease the number of positive songs used
for the model creation.

Figure 5.2 illustrates the ND fronts of the final solutions after the experiments. It can be
clearly observed that mood recognition tasks are more complex than instrument identifi-
cation in polyphonic mixtures. It depends on the ground truth, which is not so precise, as
for instrument recognition task: as discussed above, it cannot be guaranteed that negative
examples are always really negative.

The share of each classification method in the overall-classifier ND front varies from cat-
egory to category. NB provides the smallest mpgrp for the categories Aggressive and
Sentimental, RF for the five other categories, and SVM only for Reflective. C4.5 con-
tributes only seldom to the overall ND front.

It is important to explain why we did not use any established song database for the better
comparison with other studies. Unfortunately, at least at the time point, when we started
our studies, these databases had (and still have) several limitations:

e Several databases do not contain complete songs. For examples, GTZAN® consists
of 30 s song excerpts, and the Music Audio Benchmark Data Set [85] of 10 s excerpts.
However, a part of our studies was to examine different processing methods, starting
with features from complete songs (see [221]). Another motivation for the FE from
complete songs is that it is not straightforward to decide, which part of a song should

*http://marsyasweb.appspot.com/download/data_sets/, date of visit: 15.02.2013.
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be ‘representative’. For example, in a study of Chinese pop songs, the representative
segments marked by the listeners which understood Chinese were different from the
representative sections marked by the remaining listeners [28]. Some genres, like
progressive rock, contain parts with varying properties (orchestra, longer segments
with distorted guitars without any vocals, vocal segments, etc.), and it would not
be advantageous to restrict the feature extraction interval to, e.g., 30 seconds from
the song middle.

e Free music data sets, such as RWC MagnatuneS, are often biased toward several
genres and do not represent the popular commercial music well.

e Databases with large lists of commercial pop songs, such as USPOP? or SLAC
dataset®, contain only a limited number of features. It is not possible to extract self-
implemented characteristics, and it is expensive to buy a large collection of songs.

5.1.3. GFKL 2011 features

The parameters of the GFKL 2011 study are summarised in Table 5.3.

The recognition of the GFKL 2011 high-level characteristics was done with the same input
features as for the mood recognition study. However, there were some differences:

e CLASSIFICATION TASKS: The task of our study presented at the Annual Conference
of the German Classification Society (GFKL) [186] was to identify relevant high-
level musical characteristics, if a personal music category was defined with a very
limited number of positive song examples, in that case 5. This was motivated by
the real-world situation, where a music listener does not want to select too many
training songs for each new category and, in particular, to choose negative examples.
A set of 61 binary high-level features with music theory background was designed, as
illustrated in Fig. 5.3: instrumentation, singing, speech, melody, harmony, rhythm,
dynamics, effects, structure, and level of activation. The experiments underlined
that many of these high-level descriptors were indeed relevant for the user-defined
categories, since the feature distribution differed strongly from a random binary
distribution. In the second part of the study, these features were predicted with
different success from a large set of mostly low-level audio characteristics, without
feature selection.

Because of the high number of GFKL 2011 characteristics, it was not possible to
apply EMO-FS for all categories. Another limitation was that many of the high-level
features had too imbalanced distributions. Therefore, we selected 16 characteristics
with the most balanced distributions of the positive and negative songs (so that the
share of the positive songs was between approximately 30% and 70%): Activation
level high, Effects distortion, Harmony major, Harmony minor, Instrumentation
drums, Melodic range < octave, Melodic range > octave, Melodic range linearly,
Melodic range volatile, Singing solo clear, Singing solo man, Singing solo polyphonic,
Singing solo, Singing solo unison, Singing solo woman, and Singing voice medium.

Shttp://www.music-ir.org/mirex/wiki/2005:Audio_Genre_Classification, date of visit: 15.02.2013.
"http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html, date of visit: 15.02.2013.
8http://jmir.sourceforge.net/Codaich.html, date of visit: 15.02.2013.
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Table 5.3.: Parameters of the GFKL2011 recognition study.
Parameter name ‘Values No.
CLASSIFICATION TASKS
Classification tasks Activation level high, Effects distortion, 16
Harmony major, Harmony minor,
Instrumentation drums,
Melodic range < octave, Melodic range > octave,
Melodic range linearly, Melodic range volatile,
Singing solo clear, Sing. sol. man, Sing. sol. polyphonic,
Sing. sol. rough, Sing. sol. unison,
Sing. sol. woman, Singing voice medium
Experiment set 57 songs 1
Holdout set 31 songs 1
FEATURES AND PROCESSING
Initial features 1,318 audio features 1
Feature processing NaN elimination, normalisation, 1
interonset frame selection
Classification frames W.=4and S, =2 1
Feature aggregation Mean and std. deviation for low-level features and 1
high-level features with extraction windows < 4 s
CLASSIFICATION METHODS
Algorithms |C4.5, RF, NB, SVM with a linear kernel 4
OPTIMISATION PARAMETERS
Optimisation metrics |mpgrg and mgrgr 1
Optimisation algorithm | (50+1) SMS-EMOA 1
Mutation Asymmetric bit flip with pg; = 0.01 and v = 32 1
Initial feature rate ifr € {0.2;0.05} 2
Number of evaluations |2,000 1
Evaluation method Optimisation by 3-fold CV on the experiment set; 1
independent validation on the holdout set
Statistical repetitions |- 10
Experiment number 1,280
Number of model train. 7,872,000
Number of model eval. 10,496,000

The main problematic issue of this approach is that some of the features described
only parts of songs — for example, the singing characteristics — but the classification
windows were automatically created from the complete songs. The optimal solution
would be to analyse the songs by experts and to exactly denote the first and the
last occurrences of each instrument, effect, etc. This was not possible because of too
high efforts. However, these features can be indeed understood (similar to moods)
as subjective personal preferences or tags, e.g., ‘songs with a large melodic range’
or ‘songs with several singers’. Also, a part of these characteristics was relevant for
almost the complete recordings, such as activation level or drums.
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Figure 5.3.: List of GFKL2011 features from [186].

e OPTIMISATION PARAMETERS: To run enough experiments for the large number of 16
classification categories, we had to limit i f, € {0.05;0.2}. It was acceptable because
of the high overall number of input features: the initialisation with only 5% of the
complete feature set corresponds to approximately 66 features.

Since the number of positive examples in the training sets was larger than for the
mood training sets, we decided to create an experiment set with 57 songs, and to
apply 3-fold CV for model training and evaluation. 31 songs were kept out for the
holdout set.

Figures 5.4 to 5.5 plot the ND fronts of the final solutions after optimisation. As it could
be expected, some of the GFKL 2011 high-level categories are hard to predict — one reason
discussed above is that classification windows are built from the complete music pieces.
The precise ground truth, which marks the start and end positions of the related intervals,
could improve the performance, but requires very high efforts by music experts, which have
to label this information for each high-level feature and each song. Another challenge of
this setup is that the holdout and optimisation sets contain not only different songs, but
also songs from different albums. However, the classification errors are significantly smaller
than errors, which would be provided by a random classifier, and are below 0.3 for three

categories.

5.2. Recognition of genres and styles

The overview of the genre and style recognition study is provided in Table 5.4.

The recognition of genres and styles was our last EMO-FS study, and corresponded to the
last step of sliding feature selection. The goal was, in particular, to evaluate the ability of
the classification based on high-level features to achieve the results which are comparable
to the classification based on low-level feature sets. In general, we cannot expect that
audio-based high-level characteristics would allow a better class separability because of

several reasons:
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Table 5.4.: Parameters of the genre and style recognition study.

Parameter name ‘Values No.

CLASSIFICATION TASKS

Classification tasks Genres: Classic, Pop, Rap 6
Styles: ClubDance, HeavyMetal, ProgRock

Training sets 20 songs, listed in Table B.2, Appendix B 1

Optimisation set 120 songs, listed in Table B.3, Appendix B 1

Holdout set 120 songs, listed in Table B.3, Appendix B 1

FEATURES AND PROCESSING

Initial features the LL set (636 features) and the HL set (566 features) 2

Feature processing NaN elimination, normalisation, 1
interonset frame selection

Classification frames W.,=4and S, =2 1

Feature aggregation Mean and std. deviation for low-level features and 1
high-level features with extraction windows < 4 s

CLASSIFICATION METHODS

Algorithms \C4.5, RF, NB, SVM with a linear kernel 4
OPTIMISATION PARAMETERS

Optimisation metrics |m%py and mgrr 1
Optimisation algorithm | (50+1) SMS-EMOA 1
Mutation Asymmetric bit flip with pg; = 0.10 and v = 32 1
Initial feature rate ifr € {0.5;0.2} 2
Number of evaluations |3,000 1
Evaluation method Optimisation on the optimisation set; 1

independent validation on the holdout set

Statistical repetitions |- 10
Number of experiments 960
Number of model train. 2,928,000
Number of model eval. 5,856,000

As already discussed in Section 2.2.1, in some studies it is argued that a very short
audio time interval is enough to recognise a genre or artist, so that this recognition
task could be solved well with short-frame characteristics which are usually low-level.

The performance of the classification based on up-to-date high-level audio features
is in many cases still lower than the classification based on score-based high-level
features: for example, the recognition of instruments in polyphonic recordings is a
very hard task, especially, if the songs to classify contain many instruments which
have not been used for training.

High-level features derived from low-level using sliding feature selection do not con-
tain new information.

The boundary between low-level and high-level features is not always very clear (see
Section 2.2.1).

Many high-level features are strongly correlated with certain low-level features: for



5.2. Recognition of genres and styles 101

example, the tempo with the statistics of autocorrelation or the share of percussions
with characteristics of the phase domain [146]. Therefore, redundant feature groups
of low-level and high-level characteristics are theoretically possible.

However, one of the major goals of our work was to provide a better interpretability of the
selected feature subsets. Only the characteristics which are understandable by humans
and are related to music theory may provide a deeper insight into the description of genres,
styles, and personal preferences. For listeners which are experienced with music theory it
is not hard to name a few most important high-level features, which represent a certain
category. A very simple example is that a large share of vocals, distorted guitars, and a
small variation of harmonics would well distinguish punk rock from jazz. Or, the presence
of a bag pipe may be helpful for the identification of a folk rock subgenre.

A composer does not bear any low-level signal-based features in mind during the creation
of a new music piece. These features even could not be extracted until the recent past, if
we think about many centuries of the music notation (cf. Section 2.1.2), before analogue
and digital recording became possible. Composing a music piece means to follow many
rules, which vary from genre to genre: ‘avoid parallels of the fifths’, ‘do not use too many
non-harmonic notes’, ‘cadence as a final highlight of a piece’, ‘electric amplification of the
guitar sound’, etc. A skilled composer is aware of these rules, but they are often not so
evident for a common music listener, and are not by default integrated into automatic
recommendation systems. However, it is very promising to recommend music with a more
comprehensible background.

In that case, FS may provide a solid way to sort out a large amount of irrelevant and
less relevant characteristics, limiting the feature set to a small number of interpretable
features, which are very well suitable for the separation of a certain genre or a category.
The distribution of songs in a music collection plays an important role: the separation
of punk rock in a collection of only punk rock and jazz songs may work perfectly using
only a couple of features. The separation of punk rock in the collection of pop rock, folk
rock, alternative rock, and crossover songs would require more features and more complex
models.

The following details of the study on genre and style recognition differ from the aforemen-
tioned experiments:

e CLASSIFICATION TASKS: Similar to the mood recognition task, which is described in
Section 5.1.2, we use our music collection of 120 albums. However, the training sets
are defined by only 10 positive and 10 negative examples, as proposed in our very
first experiments in music classification [205]: a listener would be tired of selecting
tens and hundreds of songs to learn of a single category.

Three AMG genres (Classic, Pop, Rap), and three styles (ClubDance, HeavyMetal,
ProgRock) are used as classification categories.

e FEATURES AND PROCESSING: Two feature sets are compared for genre and style
recognition. LL set (636 features) is a baseline set with only low-level features (see
Tables in Appendix A), and HL set (566 features) is a set with only high-level char-
acteristics. 258 of them are the short-framed harmony features. A further part con-
tains 239 long-framed features, where 224 of them have been derived with the help
of sliding feature selection and the subsequent identification of instruments, moods,
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and GFKL 2011 features. For each classifier, we applied the two classification mod-
els with the smallest classification errors from the non-dominated fronts. The last
part comprises 70 structure complexity features. Compared to the mood and GFKL
2011 feature recognition studies, we removed timbre, chroma, and chroma related
complexities (structural complexity feature groups are listed in Table A.7), because
they cannot be clearly described as high-level features. Other structural complex-
ity groups (chord, instruments, harmony, tempo and rhythm) indeed describe the
variation of several high-level characteristics for large song analysis frames.

e OPTIMISATION PARAMETERS: We increased the number of SMS-EMOA evaluations
to 3,000 for a more extensive search of relevant features and set if, € {0.5;0.2}.
ifr = 0.05, as done in other studies, was omitted: the complete number of fea-
tures in the LL and HL sets was lower than for other studies, so that the start
with a higher number of random features, together with the asymmetric mutation,
was preferable to increase the explorative ability of FS. The classification quality
optimisation criterion mf%, was estimated on the song level (see Equ. 4.21).

C4.5 SVM

0.1 0.2 R 0.3 0.1 0.2 0.3 0.4 0.1 0.2 0.3
s
MBRE MErE MBRE

Figure 5.6.: All feature subset solutions found during 10 statistical repetitions of F'S opti-
misation, category ProgRock, i f, = 0.5, the LL set. Top subfigures: m¥%p on
the optimisation set. Bottom subfigures: m%p; on the holdout set. Subfigure
columns from left to right correspond to classification methods: C4.5, RF, NB
and SVM.

Figure 5.6 illustrates the objective space and plots all solutions, which were found during
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10 statistical repetitions, optimising F'S for category ProgRock and using the LL feature
set with if, = 0.5. The subfigure columns correspond to the classification methods, from
left to right: C4.5, RF, NB and SVM. The upper row shows the m% 5 on the optimisation
set, and the lower row mf%p on the holdout set. The older solutions are denoted by the
darker colour markers, and the newer solutions by the brighter colour markers.

Though we show here only the figure for the ProgRock solutions, several observations can
be also stated for the other categories:

e The optimised solutions do not have the same performance on the optimisation and
holdout sets. But this difference is not very strong, and the regions with the newer
solutions, marked with the brighter markers, are close to the non-dominated fronts
for both the optimisation and holdout sets, so that an acceptable generalisation
ability is provided. This tendency is also visible in Fig. 5.7, where the progress of
the hypervolumes for the optimisation set (left subfigure), and the holdout set (right
subfigure) is plotted. For all classifiers, the mean dominated hypervolumes increase
for the holdout set, and the final mean holdout hypervolumes are only slightly lower
than for the optimisation set.

e An increase of the number of features leads to a smaller m%,, for the solutions
around the non-dominated fronts. After a certain number of features is achieved,
the classification performance suffers from a further increasing number of features.
This means that the classification methods have their limitations when dealing with
a high number of irrelevant or redundant features, and F'S becomes essential for large
feature sets.

e A very large proportion of solutions is dominated by a rather small number of solu-
tions in the non-dominated fronts. This holds for all classifiers and categories.

ProgRock, optimisation set ProgRock, holdout set
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Figure 5.7.: Increase of the mean hypervolume on the optimisation set (left subfigure), and
on the holdout set (right subfigure), during 3,000 SMS-EMOA evaluations for
ProgRock, if, = 0.5, the LL set. 95% confidence intervals are marked with
lines of different colours. C4.5: blue, RF: red, NB: green, SVM: yellow.

In the next sections, we discuss several aspects of the study outcomes in more detail:
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e In Section 5.2.1, the results of FS with the LL set are discussed. The increase of
hypervolume is measured and confirmed by statistical tests. The classification based
on feature subsets with the smallest m%,y is compared to the classification based
on the complete feature sets.

e Section 5.2.2 describes the same investigations for F'S with the HL set.

e In Section 5.2.3, we compare the classification performance of the LL set and the
HL set w.r.t. hypervolume and the solutions with the smallest m%p 5.

e Finally, Section 5.2.4 presents an analysis of the often selected high-level feature
groups and high-level features for different classification categories.

5.2.1. Low-level feature selection

Figure 5.8 plots the non-dominated fronts of the final solutions after 3,000 SMS-EMOA
generations. The identification of the classical music pieces is the simplest categorisation
task: the lowest mppp is 0.0113 (classified with RF), and all solutions of the overall ND
front, except for one C4.5 model, have m%p, < 0.05. The most challenging categories
are ClubDance (the smallest m%p, = 0.1442) and Pop (the smallest m%,, = 0.1236).
However, in our opinion, these results are also promising for these hard to classify styles.

As it was stated in the other studies, the all-classifier ND front contains solutions of several
classification methods, and for all categories at least three of four different classifiers con-
tribute to this front. Also, non-dominated solutions with lowest m%p,, values are created
by different classifiers across the tested categories. This strengthens the suggestion that it
is reasonable to include several classification algorithms into genre and style classification.

For a general evaluation of EMO-FS, it is necessary to measure the INCREASE OF THE
MULTI-OBJECTIVE PERFORMANCE between the first and last generations of SMS-EMOA.
This can be done by the estimation of the mean hypervolume S on the holdout set across
10 statistical repetitions before and after optimisation. The increase of hypervolume on
the holdout set means that the models built with the optimised feature subsets are better
generalisable and also perform well on data which have been neither involved in model
training nor their validation during the optimisation process.

As plotted in Fig. 5.9, it can be clearly observed that the dominated hypervolume increases.
Here, its progress is measured in per cent, related to the initial dominated hypervolume
on the holdout set. We denote the mean initial dominated hypervolume on the holdout
set by Sﬁit , and the mean final dominated hypervolume on the holdout set by g?m. The
larger markers correspond to the experiments with i f, = 0.5, and the smaller markers to
the runs with i f, = 0.2. C4.5 is marked with blue circles, RF with red squares, NB with
green diamonds, and SVM with yellow triangles. The categorisation tasks are separated
by thick vertical lines. Because the experiments with i f, = 0.2 already start with smaller
feature sets than the experiments with if. = 0.5, the increase of hypervolume is not so
high. The increase of the mean dominated holdout hypervolume during the optimisation
is approximately the same for all categories in spite of their different complexity.

The increase of the hypervolume on the holdout set after the optimisation is confirmed as
being significant in all cases by the Wilcoxon signed rank test for the following test setup:
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Figure 5.8.: The best ND fronts after genre and style recognition with the LL set. Circles:
C4.5, squares: RF, diamonds: NB, triangles: SVM. The ND fronts for each
classifier are indicated with thin lines. The ND fronts across all classifiers are
indicated with thick lines, and the markers of the corresponding models are
enlarged.
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Figure 5.9.: Increase of the relative mean holdout dominated hypervolume after the opti-
misation. Circles: C4.5, squares: RF, diamonds: NB, triangles: SVM. Large
markers: ¢f, = 0.5, small markers: if, = 0.2.

e For a fixed classifier and if, setting, denoted by the index i € {1, ...,8}, and a fixed
classification task, denoted by its index j € {1,...,6}, let u(i, j, LL) be the vector of
the initial dominated hypervolumes estimated on the holdout set for the experiments
with the LL feature set, so that u(i,7,LL) = SZ.,(i, j, k, LL) corresponds to the
hypervolume value from the k-th statistical repetition, k£ € {1,...,10}. Similarly,
let v(i,7,LL) be the vector of the final dominated hypervolumes estimated on the

holdout set, so that vy (i, j, LL) = S& (i, j, k,LL).
e HO: u and v belong to the same probability distribution.

e H1: The distributions are not equal.

The p-value of the tests applied for each combination of a classification method and a
categorisation problem is equal to 0.002, and HO is always rejected.

It also makes sense to evaluate the INCREASE OF THE SINGLE-OBJECTIVE PERFORMANCE
w.r.t. mypp, because the classification quality is usually more relevant than the number of
features. For this goal, we estimated m%p using complete feature sets for each combina-
tion of a classification task and a classification method as a baseline method without FS.
Then, the boundary solutions with the smallest m%p after the optimisation were saved
for comparison. Figure 5.10 shows the mean m¥p decrease over 10 statistical repetitions
for the ND solution with the smallest m%p, (and the largest mgrgr), denoted by mppp,
related to m% pp produced by the complete feature set, denoted by m%pp(Pan)-

For C4.5, the m%py decrease is between 22.66% and 51.94%. For RF, it is between
20.95% and 54.28%, for NB between 21.38% and 77.39%, and for SVM between 10.08%
and 47.95%. This means that the optimised models are not only better with respect to
the dominated hypervolume, but they achieve smaller error rates. In general, it cannot
be expected that the full feature sets always perform worse with regard to a quality per-
formance measure. But it is indeed often the case, because too many irrelevant features
overwhelm classification methods, as discussed in Section 3.1. The benefit varies, depend-
ing on the classifier and the task: for example, all error decrease rates are below 40%
for the ClubDance category, and above 40% for Classic. NB and RF profit stronger for
Classic, Rap, HeavyMetal, and ProgRock, however achieve only smaller improvements for
Pop and ClubDance.

The m¥%pp decrease is also confirmed as being significant by the application of the
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Figure 5.10.: Decrease of m§p for the best-m% . solution after the optimisation, com-
pared to the error using the complete feature set. Circles: C4.5, squares: RF,
diamonds: NB, triangles: SVM. Large markers: if, = 0.5, small markers:
ifr =0.2.

Wilcoxon signed rank test. For each combination of a classifier and a categorisation task,
HO is rejected, using the following test setup:

e For a fixed classifier and if, setting, denoted by the index i € {1,...,8}, and a fixed
classification task, denoted by its index j € {1,...,6}, let u(¢,j, LL, ®pest) be the
vector of the smallest m% . estimated on the holdout set for the experiments with
the LL feature set, so that uy(i, j, LL, ®pest) = mypp(i, j, k, LL, ®pest) corresponds
to the m% pp-best value from the k-th statistical repetition, k € {1, ...,10}. Similarly,
let v(i,7,LL, ®4y) be the vector of m¥pp estimated on the holdout set, if all features
are switched on, so that v (4, j, LL, ®qu) = mppp(i, J, k, LL, ®4y) (in this case, v; =
v = ... = Uk).

e HO: u and v belong to the same probability distribution.

e H1: The distributions are not equal.

The p-value of the tests is in all cases 0.002, except for SVM with i f, = 0.2 for the Rap
category, where p = 0.049 is only slightly below the 0.05 boundary.

Figures 5.9 and 5.10 can be compared. Starting with a smaller number of features (if, =
0.2) obviously leads to a lower relative increase of hypervolume, but we cannot observe
any significant impact of the choice of if, on the solutions with the smallest m%pp. A
similar tendency was also observed in [223]: the initial population of feature sets with
larger errors did not lead to a significantly different performance than an initialisation
with feature sets, which produced smaller errors. Because the classification categories are
very different, and the feature selection problem is also very complex, starting with ‘better’
feature subsets may lead to two very different outcomes: the probability may increase to
get stuck in the local minima, or it could be indeed possible to benefit from the initial
advantage of smaller feature sets and overcome the local optima, if the mutation strength
is high enough.



108 5: Application of Feature Selection

5.2.2. High-level feature selection

Since the detailed comparison of the LI and HL feature sets is discussed in Section 5.2.3,
we here only describe the study results for the classification based on high-level descriptors,
as it was done for the LL feature set in the previous section.

Figure 5.11 plots the final ND solutions after EMO-FS, when only high-level features were
used for classification. Two SVM ND solutions, one for Classic and one for HeavyMetal,
are not plotted, because the corresponding models had both m%p, = 0.5 in those cases,
classifying all instances to one category.

The main tendencies are similar to the outcomes from the other studies:

e The large non-dominated fronts provide different trade-off solutions. However, the
characteristics of these fronts are not the same: for example, for the category Classic
relatively large feature sets using up to 13.07% of the features lead to the classifi-
cation with the smallest m% . For ProgRock, the situation is similar (maximal
msrr = 0.106). On the other side, for HeavyMetal it does not make sense to
increase the number of features above approximately 4% of the complete feature
amount, and the number of solutions in the overall ND front across all classification
methods is rather low. Similar trend can be observed for Rap.

e For all categories except one (ProgRock), at least three different classifiers contribute
to the overall ND front.

e The complexities of the categories are very different: Classic is the easiest category,
where at least one solution with m§p, < 0.02 is provided by each classifier. The
most complex categories are Pop (smallest m% 5, = 0.1186) and ClubDance (small-
est mppp = 0.1252). A possible explanation is that Pop is a rather general genre:
e.g., negative Pop examples songs, which belong to the categories Rap and R'n’B,
can be in principle described also as popular, and may have several similar distri-
butions of high-level characteristics as Pop songs. ClubDance is on the other side a
very specific subgenre, which is more complex to distinguish from other music with
strong beat impulses, e.g., dance pop or alternative rock.

As in the previous section, we first measure the INCREASE OF THE MULTI-OBJECTIVE PER-
FORMANCE after the optimisation. Figure 5.12 plots the increase of the mean dominated
hypervolume on the holdout set. For all combinations of a classifier and a categorisation
task, EMO-FS proves its general ability to create fronts with solutions which perform
better w.r.t. both metrics on the independent holdout set. The increase of hypervolume is
higher for if,. = 0.5, because the initial populations start with a significantly larger num-
ber of features. The large increase of hypervolume for SVM with ¢f, = 0.5 comes from
the poor performance of the linear kernel with default parameters on larger feature sets:
here, all instances are assigned to the same category. It also means that the implemented
multi-objective feature selection helps to strongly reduce this disadvantage of the linear
kernel.

The increase of hypervolume is again confirmed as being significant by the Wilcoxon signed
rank test for the following test setup (we repeat it from Section 5.2.1), and the p-values
are equal to 0.002 in all cases:
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Figure 5.11.: The best ND fronts after genre and style recognition with the HL set. Circles:
C4.5, squares: RF, diamonds: NB, triangles: SVM. The ND fronts for each

classifier are indicated with thin lines.

The ND fronts across all classifiers

are indicated with thick lines, and the markers of the corresponding models

are enlarged.
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Figure 5.12.: Increase of the relative mean holdout dominated hypervolume after the opti-
misation. Circles: C4.5, squares: RF, diamonds: NB, triangles: SVM. Large
markers: if, = 0.5, small markers: if, = 0.2.

e For a fixed classifier and if, setting, denoted by the index i € {1,...,8}, and a fixed
classification task, denoted by its index j € {1,...,6}, let u(i, j, HL) be the vector of
the initial dominated hypervolumes estimated on the holdout set for the experiments
with the HL feature set, so that u(i,j, HL) = S (i, j, k, HL) corresponds to the
hypervolume value from the k-th statistical repetition, & € {1,...,10}. Similarly,
let v(i, 7, HL) be the vector of the final dominated hypervolumes estimated on the

holdout set, so that vy (i, j, HL) = Sﬁn(i,j, k,HL).
e HO: u and v belong to the same probability distribution.

e H1: The distributions are not equal.

The goal of the next investigation is to measure the INCREASE OF THE SINGLE-OBJECTIVE
PERFORMANCE. Figure 5.13 plots the mean m%p; decrease of the best-m%  ; solutions for
each statistical repetition, compared to the full feature sets. For almost all combinations
of a category and a classifier, it is possible to achieve more than 20% reduction of the
error. The first exception is the Classic category, which is characterised by smaller error
decreases for C4.5 and RF. For Rap and C4.5, it even seems to be slightly preferable to use
the complete feature set for classification. The design and integration of further high-level
features, which have highly distinctive characteristics for Rap, might help to overcome
this problem. And it should not be forgotten that classification with the complete feature
set is significantly slower, requires higher storage demands for features and models, and
the models have a higher tendency to be overfitted.

For the estimation of the significance of the error decrease, we repeat the application of
the Wilcoxon signed rank test with the following setup:

e For a fixed classifier and if, setting, denoted by the index i € {1,...,8}, and a fixed
classification task, denoted by its index j € {1,...,6}, let u(¢, 7, HL, ®pes¢) be the
vector of the smallest m% . estimated on the holdout set for the experiments with
the HL feature set, so that uy (i, j, HL, ®pest) = mppp(i, j, k, HL, ®peq) corresponds
to the m% pp-best value from the A-th statistical repetition, k € {1, ...,10}. Similarly,
let v (i, j, HL, ®4;) be the vector of m} 5, estimated on the holdout set, if all features
are switched on, so that vy (i, j, HL, ®oy) = mppp(i,J,k HL, ®qy) (in this case,
V1 =0V = ... = vk).
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Figure 5.13.: Decrease of mypp for the best-m%py solution after the optimisation, com-
pared to the error using the complete feature set. Circles: C4.5, squares: RF,
diamonds: NB, triangles: SVM. Large markers: if, = 0.5, small markers:
ifr =0.2.

e HO: u and v belong to the same probability distribution.

e H1: The distributions are not equal.

Since the error decrease rates were low or negative for several cases, it should not be
expected that HO will be rejected for all combinations of a classifier and a task. This is
illustrated by Fig. 5.14, which plots the corresponding p-values. HO is not rejected for
4 Rap experiments, and 3 Classic experiments. However, the overall HO rejection rate is

83%.
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Figure 5.14.: p-values after the Wilcoxon signed rank test, comparing the best m%yp
solutions to solutions with the complete feature set (the exact test description
is provided in text). HO is rejected, if p < 0.05. p = 0.05 is marked with the
thick horizontal line. Circles: C4.5, squares: RF, diamonds: NB, triangles:
SVM. Large markers: ¢f, = 0.5, small markers: ¢f, = 0.2.

5.2.3. Comparison of low-level and high-level feature sets

In the previous sections, we discussed the performance of EMO-FS for the LL and HL sets
separately. Another question is, if the designed high-level features can replace the baseline
LL set. Then, only the interpretable musical characteristics would be integrated into the
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classification models. As we have already discussed in Section 5.2, in general we cannot
expect that the models based on high-level features would have a higher classification
performance.

However, Fig. 5.15 illustrates that the HL set is in many cases comparable to the LL
set according to the COMPARISON OF THE MULTI-OBJECTIVE PERFORMANCE. The mean

holdout dominated hypervolumes gfm from the experiments with the LL set are indicated

with markers with the white background. The gzn values for the same combination of a
classifier and a task from the HL experiments are positioned slightly shifted to the right,
and are indicated with the markers with different background colours: blue circles for C4.5,
red squares for RF, green diamonds for NB, and yellow triangles for SVM (we explain the
meaning of asterisks below). Higher ?fm corresponds to higher performance w.r.t. mgpp
and mgpg.
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Figure 5.15.: Mean holdout dominated hypervolumes using the LL and HL feature sets.
Markers with the white background: the LL set, markers with the coloured
backgrounds: the HL set. Circles: C4.5, squares: RF, diamonds: NB, tri-
angles: SVM, asterisks: combined experiments with all classifiers. Large
markers: if, = 0.5, small markers: i f. = 0.2.

The HL performance depends on the combination of a classifier and a task:

e For ClubDance, all classifiers benefit from the switch to HL features.
e For HeavyMetal, RF and SVM provide higher hypervolumes with HL features.
e For ProgRock, only NB has a stronger increase of hypervolumes for the HL set.

e For Rap, all classifiers perform better with LL features.

As we discussed for all EMO-FS studies, the non-dominated fronts built from all classifier
solutions always contained solutions from several different classification methods. The
integration of only one classifier would reduce the dominated hypervolume of these fronts.
This was confirmed by statistical tests for instrument recognition in [215]. We may combine
the solutions of the four classification methods and the two i f,. settings to a ‘multi-classifier’
experiment. Then, we still have 10 statistical repetitions, and can estimate gﬁn across
them. These values are marked with asterisks in Fig. 5.15. In that case, it can be observed
that the mean hypervolume performance of the classification based on the HL set is higher
than the performance of the classification based on the LL set for all categories but Rap.
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Another relevant observation for these ‘multi-classifier’ runs is the varying performance
of high-level features for genres and styles. For the three genres, the HL set only slightly
outperforms the LL set on average for Classic and Pop, and has a poorer performance

for Rap. For the more specific style categories, the HL set always has a higher ?ﬁn

than the LL set: the switch from LL to HL leads to a relative ?fm increase to 102.33%
for ClubDance, to 101.15% for HeavyMetal, and to 101.55% for ProgRock. Even if these
improvements are relatively small, it means that the hardly interpretable low-level features
can be completely replaced by high-level ones, even with a slight increase of performance.
This supports well our theoretical suggestion that high-level features may be especially
valuable for specific genres and personal preferences (see the discussion in Section 2.2.1,
and note 10).

In the next step, we examine by means of statistical tests, if the performance difference
for the classification based on the LL and HL sets is significant. Because the LL and HL
experiments are independent from each other, the corresponding gin are not paired, and
we apply the Mann-Whitney U-test for the following hypotheses:

e For a fixed classifier and if, setting, denoted by the index i € {1, ...,8}, and a fixed
classification task, denoted by its index j € {1,...,6}, let u(i, j, LL) be the vector of
the final dominated hypervolumes estimated on the holdout set for the experiments
with the LL feature set, so that ug(i, 7, LL) = Sﬁn(z’,j, k,LL) corresponds to the
hypervolume value from the k-th statistical repetition, & € {1,...,10}. Similarly,
let v(i, 7, HL) be the vector of the final dominated hypervolumes estimated on the
holdout set for the experiments with the HL feature set, so that vg(i,j, HL) =
SH (i, j, k,HL).

e In case of the multi-classifier run comparison, u(j, LL) = SE (4, k, LL) corresponds
to the dominated hypervolume from the non-dominated fronts, which are created
by the combination of solutions from all classifiers and all if, settings from the k-
th runs of these combinations, and the experiments with the LL set. v(j, HL) =
S (j,k,HL) is estimated similarly for the experiments with the HL set.

e HO: u and v belong to the same probability distribution.

e H1: The distributions are not equal.
We distinguish between four cases:

e If HO is rejected and 1 < v, it means that the HL set performance is significantly
higher than the LL set performance.

e If HO is rejected and u > Vv, the HL set performance is significantly lower than the
LL set performance.

e If HO is not rejected and u < Vv, the HL and the LL set performances are not
significantly different, but the HL set slightly outperforms the LL set on average.

e If HO is not rejected and w > Vv, the HL and the LL set performances are not
significantly different, but the LL set slightly outperforms the HL set on average.

Table 5.5 provides the statistics about the accepted hypothesis and the comparison of @
and V. Several observations can be made:
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Table 5.5.: Statistical comparison of Sﬁn(LL) and Sﬁn(HL). For the test outcomes in the
column heads (accepted hypothesis and mean comparison), the number of the
corresponding experiments is provided. The hypotheses setup and the detailed
test explanation are provided in text.

Category | Hl and u < v |HO and u < V‘HO andu>v| Hlandu >V
U 4 I U

HL preferable| Both sets comparable |LL preferable
CLASSIFIERS AND 4 f, SETTINGS ARE TREATED SEPARATELY
Classic 2 0 4 2
Pop 1 2 4 1
Rap 0 0 5 3
ClubDance 6 2 0 0
HeavyMetal 0 4 4 0
ProgRock 2 1 2 3
> 11 9 19 9
EACH RUN IS BUILT FROM ALL CLASSIFIERS AND Z'fr SETTINGS
Classic 1 0 0 0
Pop 1 0 0 0
Rap 0 0 0 1
ClubDance 1 0 0 0
HeavyMetal 1 0 0 0
ProgRock 1 0 0 0
> 5 0 0 1

o If we apply the tests separately for classifiers and if, settings, the HL feature set
performs better than or comparable to the LL set in 11 + 9 + 19 = 39 of 48
combinations (81.25%). In 22.92% of all combinations, using the HL set leads to
even significantly higher hypervolumes.

e If we combine the solutions from all classifiers and the two different i f, settings to
a single experiment, the HL feature set performs better than the LL set, for five
of six categories (83.33%). Only the category Rap seems to be problematic for HL
features. However, this does not mean that it is not possible to integrate further
HL characteristics which are better suited for the recognition of Rap and related
subgenres.

e We can compare the performances for genres and styles separately. For the tested
genres, classification based on the HL set is comparable to classification based on the
LL set in 62.5% of the combinations. Classification based on the HL set significantly
outperforms classification based on the LL set in 12.5% if the combinations, and
is outperformed by classification based on the LL set in 25% of the combinations.
For the three styles, classification based on the HL set is preferable to classification
based on the LL set in 33.33%, comparable to classification based on the LL set in
54.17%, and is outperformed by classification based on the LL set only in 12.5% of
the combinations.
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e For the multi-classifier runs, the HL set leads to significantly higher performance

than the LL set for all three styles and the two of three genres. It is outperformed
by the LL set only for the Rap genre.

Another interesting statistic can be estimated from both Figures 5.8 and 5.11. For
style categories, we can measure the number of classifier participations in the over-
all ND fronts across all classifiers, if we switch from the LL (Fig. 5.8) to the HL
(Fig. 5.11) feature set. The number of corresponding C4.5 models increases from
0 to 7. For RF, this number decreases from 12 to 0. For NB, it slightly increases
from 16 to 17. For SVM, it decreases from 14 to 7. These numbers cannot precisely
describe the classifier performance, since the number of solutions does not measure
the distribution of solutions in a front. However, the tendency is observed that the
classifiers with simpler and more interpretable models (C4.5 and NB), contribute
more often to the non-dominated fronts than the more complex classifiers. The
latter either average the performance of many underlying trees, in our experiments
100 (RF), or estimate linear combinations of original features (SVM with a linear
kernel). This suggestion comes hand in hand with the goal of interpretability. The
high-level features seem to aggregate enough knowledge, so that they allow the style
separability with simpler classification algorithms. More exhaustive investigations
with other genres and styles are required in future. The HL set can be also extended,
especially with instrumentation features, because many subgenres are characterised
by the played instruments.

The COMPARISON OF THE SINGLE-OBJECTIVE PERFORMANCE of the LL and HL sets
w.r.t. the best-m¥%pp solutions across 10 statistical repetitions is shown in Fig. 5.16. The
results are closely related to the results in Fig. 5.15. Here, higher classification performance
corresponds to lower values. In almost all cases, if the performance of a classifier and a
task combination w.r.t. hypervolume increases, the smallest m%p,, decreases. Sometimes,
this does not hold, e.g., for SVM with ¢ f, = 0.5 and HeavyMetal. Also, for Classic and the
multi-classifier run comparison (marked with asterisks), Mm%y has a marginal increase,
in spite of the higher hypervolume.
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Figure 5.16.: Mean best m%pp using the LL and HL feature sets. Markers with the white

background: the LL set, markers with the coloured backgrounds: the HL
set. Circles: C4.5, squares: RF, diamonds: NB, triangles: SVM, asterisks:
combined experiments with all classifiers. Large markers: ¢f, = 0.5, small
markers: if, = 0.2.

Again, we apply the Mann-Whitney U-test to test if the observed differences between the
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LL and HL sets are significant. The following hypotheses setup is applied:

e For a fixed classifier and if, setting, denoted by the index i € {1, ...,8}, and a fixed
classification task, denoted by its index j € {1,...,6}, let u(i, j, LL, ®pest) be the
vector of the best mypp, estimated on the holdout set for the experiments with the
LL feature set, so that uy (i, j, LL, ®pest) = mppp(i, j, k, LL, ®peqt) corresponds to the
smallest m%pp value from the A-th statistical repetition, k& € {1,...,10}. Similarly,
let v (i, j, HL, ®pcst) be the vector of the smallest mppy, values, estimated on the
holdout set for the experiments with the HL feature set, so that vy (i, j, HL, ®pest) =
M3, (i, ki HL, Bpegy ).

In case of multi-classifier run comparison, uy(j, LL, ®pest) = mppp(J, & LL, Ppest)
corresponds to the smallest m%p from the non-dominated fronts, which are created
by the combination of solutions from all classifiers and all i f, settings from the k-th
runs of these combinations, and the experiments with the LL set. v (j, HL, ®pest) =
mypp(J, k) is estimated similarly for the experiments with the HL set.

e HO: u and v belong to the same probability distribution.

e H1: The distributions are not equal.

Table 5.6.: Statistical comparison of the smallest m%p,(LL) and m% 5, (HL). For the test

outcomes in the column heads (accepted hypothesis and mean comparison), the
number of the corresponding experiments is provided. The hypotheses setup
and the detailed test explanation are provided in text.

Category | Hl and u > v |HO and u > V‘HO andu<v| Hlandu<v
. 4 4 \

HL preferable| Both sets comparable |LL preferable
CLASSIFIERS AND i f, SETTINGS ARE TREATED SEPARATELY
Classic 0 2 0 6
Pop 0 2 3 3
Rap 0 0 1 7
ClubDance 4 3 1 0
HeavyMetal 0 2 6 0
ProgRock 0 2 2 4
> 4 11 13 20
EACH RUN IS BUILT FROM ALL CLASSIFIERS AND ¢f, SETTINGS
Classic 0 0 1 0
Pop 0 1 0 0
Rap 0 0 0 1
ClubDance 1 0 0 0
HeavyMetal 1 0 0 0
ProgRock 1 0 0 0
> 3 1 1 1

The results are in most cases similar to the hypervolume comparison and are listed in

Table 5.6. The relevant observations are briefly outlined below.
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e For the tests which are applied for each combination of a classifier and a task sepa-
rately the classification based on the HL feature set produces comparably smallest
mypp values as the classification based on the LL set in 50% of the combinations.
The classification based on the HL set outperforms the classification based on the
LL set in 8.33% and is outperformed by the classification based on the LL set in
41.67% of the combinations.

e The combination of all classification methods to a single experiment leads in 50%
of the cases to a better performance on the HL set. For 33.3% of the categories,
the performance on both sets is similar, and only for Rap the LL set leads to non-
dominated solutions with significantly lower m¥%pp.

e As for hypervolumes, the HL set leads to significantly smaller m%p, of the non-
dominated solutions with the lowest m%py, of each run than the LL set for all
style categories and multi-classifier experiments. If the performance is measured
independently for each combination of a classifier and a task, the LL set leads to a
significantly higher performance only in 16.67% of all style combinations: it holds
for ProgRock, when classified by RF and SVM.

e The last observations support the statement that C4.5 and NB have a tendency to
perform better with high-level features, in particular, for style recognition. We refer
again to Figures 5.8 and 5.11. For the HL set, a NB solution has the smallest mzpp
for four of six categories (two styles and two genres), a C4.5 solution has the smallest
mppp for ClubDance, and SVM has the smallest m3pp; for Classic. For the LL set,
the situation is almost opposite. Here, the more complex classifiers RF and SVM
produce more solutions with the smallest m% e RE for Classic, and SVM for the
three categories. NB has the smallest m%p for Rap and ProgRock, and C4.5 for
none.

Summarising our exhaustive comparison of the classification based on the LL and HL
feature sets w.r.t. both two-objective performance (dominated hypervolume), and single-
objective performance (smallest balanced relative error), we can state the following:

e The replacement of low-level features with high-level ones, which were directly imple-
mented, estimated after the application of the sliding feature selection, or calculated
as structural complexity characteristics, leads to similar or even better classifica-
tion performances in most cases. Only for the category Rap, the HL set leads to a
significant decrease of performance.

e In Sections 5.2.1 and 5.2.2, it was observed that the classification errors were reduced
by EMO-FS in a predominant number of experiments, compared to the complete
feature set (only for Rap with classifier C4.5 and the HL feature set, the complete
feature set provided a slightly smaller m% ). Therefore, we may state: it is possible,
with an appropriate design of high-level audio features, to successfully approach the
following three different objectives at the same time: the reduction of the cardinality
of the feature set, the maximisation of the classification quality, and the enhancement
of the interpretability of features and models.

e It is underlined by statistical tests that the classification based on the HL set per-
forms especially well for the three style categories. This matches real-world situa-
tions, where it is more promising to recognise specific user-centered preferences and



118 5: Application of Feature Selection

not the rather general genres. Two further drawbacks of genre classification are
that genres may evolve over time and, furthermore, in [165] it was argued that no
common genre taxonomy exists.

e A tendency is observed that the more interpretable classification models created
by C4.5 and NB outperform the less interpretable RF and SVM models, if the
classification is done with high-level features.

e It is obvious that the results of this study have some limitations. In future, it
would be promising to compare low-level and high-level feature sets for a signifi-
cantly larger number of different genres, subgenres, and personal music preferences.
Also, many high-level features are not always robust. For example, we cannot expect
that an instrument identification model would identify the instruments correctly, if a
polyphonic recording contains many instruments, which have not been used for the
training of this model. The joint cooperation efforts of all involved interdisciplinary
MIR research domains may help to deal with this challenge in future. Then, auto-
matic music classification will provide a robust and fast possibility to learn personal
music preferences not only with high classification quality, but also with interpretable
outputs of all related methods.

5.2.4. Analysis of high-level features

High-level features allow a better interpretability of the classification models and help
to understand, which characteristics are especially important for the identification of a
certain genre or style. In this section, we compare different high-level feature groups.
From 566 characteristics of the HL set, the following five partly overlapping subgroups are
distinguished.

The 1st group of 346 HARMONY AND MELODY CHARACTERISTICS consists of the following
features:

e 258 features are extracted from frames which are shorter than the classification
frames (W, < W, =4 s). They are listed in Table A.2 and are indicated with an ‘H’
in the last column. For the original 129 feature dimensions, the estimation of the
mean and the standard deviation for each classification window leads to 258 features.

e 5 features which describe the characteristics of chords are estimated from extraction
frames with W, > W, = 4 s. They are listed in the last section of Table A.2 (‘Chord
analysis’ features).

e 48 features are derived from the GFKL 2011 descriptors. For six categories (Harmony
major, Harmony minor, Melodic range < octave, Melodic range > octave, Melodic
range linearly, and Melodic range volatile) and four classifiers, two models with
smallest mpgrg were selected from the non-dominated fronts.

e 35 structural complexity characteristics describe the chord and the harmony com-
plexities and are listed in Table A.7.

The 2nd group is related to INSTRUMENTS and consists of 118 features.

e 32 features are derived from the instrument recognition study described in Section
5.1.1. Two models with the smallest mggrg of each classifier for the four classification
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tasks (Guitar, Piano, Wind, and Strings) have been previously applied to extract
the proportion of the positive instrument identifications in 10 s extraction frames.

e 72 features are built in the same way from the GFKL 2011 set, see Section 5.1.3.
The categories are: Effects distortion, Instrumentation drums, Singing solo clear,
Singing solo man, Singing solo polyphonic, Singing solo rough, Singing solo unison,
Singing solo woman, and Singing voice medium.

e 14 structural complexity characteristics are listed as ‘Instruments complexity’ in
Table A.7.

The 3rd group comprises 72 MOOD features. Here, two models with the smallest mprg
from each classifier are applied for all eight mood categories (Aggressive, Confident,
Earnest, Energetic, PartyCelebratory, Reflective, Sentimental, Stylish), and for the ‘Acti-
vation level high’ category from the GFKL 2011 set.

The 4th, rather small group, contains 30 TIME-RELATED features: 9 features which are
marked as high-level in the last column of Table A.3 and 21 ‘Tempo and rhythm complex-
ity’ features from Table A.7.

The 5th and last group is built from 70 STRUCTURAL COMPLEXITY characteristics which
are constructed from high-level features (‘Chord complexity’, ‘Harmony complexity’, ‘In-
struments complexity’, and ‘Tempo and rhythm complexity’ from Table A.7).

It is possible to measure how often the features of these groups have been selected after
the optimisation, compared to a random feature distribution with the same proportion
of the selected features. This can be estimated as follows. Let I, be the set with the
indices of the features, which belong to the high-level feature group k, k € {1,...,5} (the
indices mark the positions in the complete set of F features). Then, for a solution ¢
with mgpgr(7) - F selected features, the number of the expected Iy selections is equal to
msrr(i) - % The number of the actually selected Iy, features is equal to } ..y ¢; (q is
the bit vector, which represents the feature selections). Now, we can estimate the amount

of the actually selected features to the expected features for solution ¢ and group k:

> g F

J€Ik
mspr() - [1i|

(i k) = (5.1)

If we analyse L different solutions, the mean HIGH-LEVEL FEATURE GROUP SHARE FACTOR
can be estimated as:

_ 1 &
Bi k)= =D (i, k). (5.2)
=1

|

We distinguish between the two following ways to estimate ¢(i, k, 1) for a fixed classification
category:

e Estimate ¢(i, k,1) for all final non-dominated solutions 7, all high-level groups k, and
all statistical repetitions [. In that case, 4 classifiers, 2 different i f, settings, and 50
solutions from each run are taken into account: i € {1,...,400}. If ¢(i, k,1) > 1, it
means that the features of high-level group k are selected for the final non-dominated
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solutions after the optimisation more often than by chance. If ¢(i,k,1) < 1, it
means that the features of high-level group k are selected for the final non-dominated
solutions after the optimisation less often than by chance.

e Estimate ¢(i, k, 1) for solutions i with the smallest mprE, all high-level groups k, and
all statistical repetitions [. In that case, 4 classifiers and 2 different i f, settings from
each run are taken into account, and i € {1,...,8}. If ¢(i, k,1) > 1, it means that
the features of high-level group k are selected for the final non-dominated solutions
with the smallest m$; 5 more often than by chance. If ¢(i, k,1) < 1, it means that
the features of high-level group k are selected for the final non-dominated solutions
with the smallest m%p,p less often than by chance.

We denote the mean share factors for the five high-level feature groups by ¢ ARM  HINSTR

?MOOD , QTIME " and ¢pSTRCOMP 1f the features of the group k are selected by chance,
#(i, k,1) =~ 1. We apply the Wilcoxon signed rank test with the following hypotheses®.

e For a fixed classification task, ¢ € {1,...,400} final solutions of each classifier and
each if, setting after the optimisation, and k € {1,...,5} high-level feature groups
introduced above, let u(, k) be the vector of the mean high-level feature group share
factors, so that w;(i, k) = ¢(4, k, 1) corresponds to the mean high-level feature group
share factor from the [-th statistical repetition, [ € {1,...,10}. Let v be the vector
of ones, so that vy = v9 = ... = v; = 1. This artificially created vector corresponds
to the situation, where the expected number of features from any group is equal to

the actually selected number of features.

e For the analysis of solutions with the smallest m%,y, the only difference is that
i € {1,...,8} mppp-best solutions of each classifier and each if, setting after the

optimisation are used for the estimation of u;(i, k) = ¢(i, k,1).
e HO: u and v belong to the same probability distribution.

e H1: The distributions are not equal.

Table 5.7 lists the mean high-level feature group share factors. The upper half of the table
contains the values, which have been estimated from the complete final non-dominated
populations, and the lower half for the m%pp-best solutions. If HO was rejected (the
distribution of the mean factors has a significant difference to the 1-distribution), the
corresponding value is marked with bold font.

If the share factor is above one and HO is rejected, it means that a disproportionately
high amount of the features from the corresponding group has been selected. If the share
factor is above one and HO is not rejected, it still means that on average more features of
this group were selected than by chance.

If the share factor is below one and even if HO is rejected, it does not mean that the features
of this group are irrelevant and can be omitted. As an example, for the Classic category
¢TIME — (0.6416, if the group share factor is averaged across all solutions. ¢ ME —
0.5921, if this factor is averaged across the solutions with smallest m% ., and in that case
HO is rejected. However, ‘Song duration’ was most frequently selected by C4.5, RF and
NB for Classic (the most frequently selected features are discussed later in this section).

9Because we compare the share factors and not concrete numbers of features, the second observation
vector is constant and it is also possible to apply one sample tests, see [84].
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Table 5.7.: High-level feature group share factors. The values are marked with bold font,
if HO is rejected. The hypotheses setup and detailed explanations are provided

in the text.
Category ‘ ¢HARM ‘ ¢INSTR ‘ ¢MOOD ‘ ¢TIME ‘ ¢)STRCOMP
MEAN PERFORMANCE
Classic 0.8942|1.2337|1.2745 | 0.6416 0.6573
Pop 0.9469 |1.1162| 1.1753 |0.7350| 0.6211
Rap 1.0121 | 0.8142 | 1.2349 | 1.0280 0.6840

ClubDance | 0.9930 | 0.7415 | 1.3948 | 1.1496 | 0.9111
HeavyMetal | 0.9353 | 1.1752 | 1.0567 | 0.9212 | 0.9094
ProgRock ]0.9018 | 1.0518 |1.4004 | 0.9678 | 0.7638
PERFORMANCE OF FEATURE SETS WITH SMALLEST Mpzpp

Classic 0.8662 | 1.2879 | 1.3413 [0.5921| 0.4475
Pop 0.9464 | 1.2247 | 1.0100 | 0.7101 0.5883
Rap 0.9323 | 0.9695 | 1.3261 | 1.1180 0.8799

ClubDance | 0.9698 | 0.8049 | 1.3414 | 1.2968 0.7626
HeavyMetal | 0.8751 | 1.2360 | 1.1579 | 1.1331 0.9180
ProgRock |0.8952| 1.1847 |1.2366| 0.9140 | 0.6063

In other words, a single feature or a few features of some group may be very relevant for
a certain category, and the remaining features of this group may be completely irrelevant.

The group share factors of the high-level feature groups differ strongly from each other,
as listed in Table 5.7:

e HARMONY AND MELODY CHARACTERISTICS contain more than half of all high-level
features. It can be expected that many of these characteristics would be irrelevant
for a certain task. For most categories, the share of these features is lower than the
expected random share: ¢fARM < 1 for 5 of 6 categories, if all final solutions are
analysed, and ¢TARM < 1 for all categories, if only the solutions with the smallest
balanced relative errors are analysed. For the three categories Classic, HeavyMetal,
and ProgRock, HO is rejected. These categories have indeed a more varying distribu-
tion of harmonic characteristics in our database than Rap and ClubDance, so that
the harmonic characteristics may be less suited for the separation of, e.g., Classic
versus other songs.

e For the INSTRUMENT feature group, the situation is almost opposite. For four genres
and styles, ¢!VSTE > 1. This means that the features of this group were selected
more often than by chance. The disproportionately high rate of instrument feature
selections is underlined by an HO rejection in several cases.

e For MOOD features, $M99P > 1 in all cases. This group seems to be especially
relevant for the categories ClubDance and ProgRock, where HO is always rejected.

e The features of the TIME-RELATED group are in general less frequently selected. HO
is rejected only twice and the share factor has a relatively strong variation. As
discussed above, the time-related features sometimes contain individually relevant
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features, such as ‘Song duration’ for the Classic category.

e STRUCTURAL COMPLEXITY features are selected in general less often than by chance.
For half of all corresponding values, HO is rejected. This group seems to contain the
largest share of irrelevant or redundant characteristics.

A possibility to measure the relevance of concrete features was proposed in [219]: the
EXPERIMENTAL FEATURE RELEVANCE {(7),7 € {1,...,F'} counts the occurrences of the
feature ¢ across all final solutions.

Figure 5.17 illustrates £(7) estimated separately for a classifier and a task. Because of the
two different ¢ f,. values, 10 statistical repetitions, and a population size of 50 individuals,
€(i) € [0;1,000]. 15% of the lower £(i) values are sorted out, so that only the more
often selected individual features are plotted with small vertical dashes. The horizontal
axis corresponds to the indices of features, and the vertical axis to the combinations of a
classifier and a task. Deep red colour corresponds to higher £(7) values, and blue colour
to lower £(i) values. The five high-level feature groups are separated by vertical dotted
lines, and are marked with their abbreviations above the figure.
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Figure 5.17.: Often-selected features for all combinations of a classifier and a category. The
five high-level feature groups are separated by thin vertical dotted lines, and
are marked with abbreviations above the figure: H: harmony and melody,
I: instruments, M: moods, T: time-related, S: structural complexity. For a
better comprehensibility, each feature is assigned to exactly one group (e.g.,
harmonic structural complexity features to ‘S’ and not ‘H’). The feature
which have been often selected are marked with vertical dashes. The deeper
dark colour corresponds to the highest & values, the blue colour to lower &
values.

We can observe a correlation between the results of Table 5.7 and Fig. 5.17. The harmony
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and melody group has a small amount of the features, which have been often selected.
The same holds for the structural complexity features. Instruments and moods provide
a relatively high number of relevant features. Tempo is a rather controversial group: the
number of selected tempo features is not high, but it sometimes contributes very relevant
characteristics: ‘Song duration’ for Classic (with C4.5, RF and NB) and ProgRock (with
RF, NB and SVM), or ‘Estimated beat number’ for Rap (with C4.5, RF and NB).

Another tendency was already reported in [217, 219]: some of the features are specific for a
combination of a classifier and a task. As an example, the ‘Song duration’ feature was less
often selected for Classic by SVM than by other classifiers. This means that F'S must be
applied separately for each classifier. If interpretability plays an important role, especially
the features selected by C4.5 and NB may be more valuable, since these classifiers create
simpler and more comprehensible models.

Finally, we list in Table 5.8 the three most often selected features for each category. It
should be mentioned that these features sometimes may be only relevant, when they are
combined with other features, as discussed in Section 3.2.3.

Several observations can be made:

e In most cases the meanings of the high-level features describe the corresponding
categories well. For example, the most often selected feature for Classic and C4.5,
‘Song duration’, has a high interpretability: songs in the Classic category were indeed
longer in our collection than popular songs. Or, for HeavyMetal and C4.5, the most
often selected features are ‘Singing vocals rough’, ‘Instrument complexity high’, and
‘Aggressive’. Whereas the first and the last characteristics are self-explanatory, the
high rate of instrument complexity corresponds to a high instrumentation change for
the large analysis windows. Indeed, some albums of our collections contained pro-
gressive and symphonic metal songs, where segments close to classical music are often
alternated with segments with a high share of the distorted guitars. ProgRock songs
are also often longer (‘Song duration’ is the most frequently selected feature for clas-
sification with SVM), have a large number of different segments (‘Instr. complexity’
for C4.5), and are not labelled with the PartyCelebratory mood (‘PartyCeleb. C4.5’
for RF).

It is important to mention again that the individual performances of high-level fea-
tures are still not perfect at the current research stage. The models trained to
recognise guitar in the mixtures of guitar, piano, strings, and wind can be ineffective
for other recordings. Or, the tempo estimation algorithms produce in certain cases
an octave error, estimating the tempo as the double of the original. Then, slow
pieces are recognised as fast [40]. Consider the following example: slow dance pop
songs have to be identified in a music collection which contains mid-tempo alter-
native rock songs. The tempo is wrongly estimated as being twice as fast as the
true tempo for the dance pop songs, and correct for all other songs. This high-level
feature may indeed provide a perfect separation between misleadingly recognised
‘fast’ songs from the dance pop category and correctly identified ‘mid-tempo’ songs
from the alternative rock category. But the tempo is not always correctly estimated.
However, this feature indicates that the tempo plays an important role for this task,
and this knowledge is indeed relevant for the description of the category.

e The high-level feature groups, which have a significantly lower high-level group fea-
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Table 5.8.: The most frequently selected features, measured by £(i). Feature names are ab-
breviated. Classifier names behind the features mean that they were estimated
after the sliding feature selection.

Category |[1st [£(7)[2nd HOIES! HO)
C4.5

Classic Song duration 444 | Guitar SVM 341 | Stylish NB 285
Pop PartyCeleb. NB 240 | Sing. polyph. NB 226 | Max. chroma. ampl. |223
Rap Mel. ran.<oct. SVM [496 | Tatum no. per min. |309 | Beat no. per min. 262
ClubDance |Sing. rough SVM 448 | Energetic C4.5 387 | Tempo 322
HeavyMetal | Sing. rough NB 266 |Instr. complexity 261 | Aggressive C4.5 246
ProgRock |Instr. complexity 231 | Diff. segment share |210 | PartyCeleb. RF 202
RF

Classic Song duration 819 |Earnest RF 375 | Local tuning 357
Pop Sing. medium C4.5 |463 |Sing. rough RF 427 | PartyCeleb. NB 358
Rap Beat no. per min. 652 | Harmony major RF 409 | Confident NB 289
ClubDance |PartyCeleb. SVM 327 | Energetic C4.5 321 | No. diff. chords in 10s | 294
HeavyMetal | Energetic SVM 502 | Aggressive C4.5 475 | Strings C4.5 362
ProgRock | PartyCeleb. C4.5 400 | Sing. rough RF 370 | Confident RF 351
NB

Classic Song duration 370 | Guitar SVM 328 | Harmony major C4.5 | 288
Pop Guitar NB 489 | Sing. polyph. NB 335 | Sing. medium SVM | 309
Rap Sing. medium NB 583 | 7. major key strength | 353 | Instr. complexity 317
ClubDance |Sing. rough SVM 823 |Sing. medium RF 263 | Energetic C4.5 220
HeavyMetal | Reflective RF 616 |Sing. rough SVM 439 | Aggressive C4.5 347
ProgRock | Confident RF 557 | Piano C4.5 312 | Local tuning 280
SVM

Classic Guitar SVM 467 | Earnest RF 235 | Wind NB 230
Pop PartyCeleb. NB 347 | Guitar NB 303 | Sing. medium SVM | 217
Rap Mel. ran. volat. C4.5|338 | Mel. ran.<oct. SVM |224 | Instr. complexity 223
ClubDance |Stylish SVM 329 |Sing. rough SVM 316 | Mel. ran. volat. NB {290
HeavyMetal | Sing. rough SVM 555 | Aggressive C4.5 417 | Reflective SVM 222
ProgRock |Song duration 404 | Sing. rough RF 312 | Effects distort. SVM | 271

ture share factor than 1 (selection by chance), may contain individual features, which
are very relevant for a certain category. E.g., the structural complexity of instrumen-
tation is among the first three most selected features for Rap (with NB and SVM),
HeavyMetal (with C4.5), and ProgRock (C4.5).

e Some features are among the three most selected ones for the same category, and
also across several classifiers. On the other side, this is does not hold always, and
we definitely recommend to apply EMO-FS for each classifier separately because
of different operating principles of classification methods. SVM may profit from a
transform of several original feature dimensions into the higher dimensional space,
so that some of the less relevant features may become relevant in combination. This
does not hold for NB, because it treats the features independently.

e The clear outcome of the study is that different categories require different high-
level features. For an efficient automatic classification with less human efforts, it is
reasonable to start with a large feature set. Then, feature selection, in particular,
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EMO-FS, becomes essential, because the classification quality often decreases, when
there are too many features. This is supported by both theoretical explanations and
practical observations, as discussed before.

e The concept of sliding feature selection seems to provide a quite acceptable pro-
portion of relevant features. These features correspond to 39.58% of the complete
feature set of 566 features, and are among the three most often selected in 75% of
all combinations of a classifier and a task. If we treat the 14 instrument structural
complexity features as related to sliding F'S, the original share of these features in-
creases to 42.05%, and they contribute to the three most selected features in 80.56%
of all cases.






6. Conclusions

6.1. Summary of results

In this work we have developed a multi-objective evolutionary feature selection frame-
work for the optimisation of several supervised music classification tasks: recognition of
instruments, moods, harmonic and melodic characteristics, genres and styles.

The first major goal is to address feature selection in a MULTI-OBJECTIVE way, optimising
at least two different evaluation criteria at the same time. This approach leads to the
following enhancements:

e Multi-objective feature selection helps to find a set of trade-off solutions. Then, one
or several relevant feature subsets can be selected, depending on current preferences.
A feature subset with a high number of features and a lower classification error
provides better classification performance. A feature subset with a lower number
of features and a higher classification error allows a significant decrease of storage
and computing time demands. But such solutions also may be preferable because
of the lower tendency to be overfitted against the training set. The comparison of
the dominated hypervolumes of the initial and final feature subsets by means of
statistical tests confirmed the increase of performance after the optimisation for all
combinations of a classification method and a classification task.

e In another evaluation approach, we compared non-dominated set solutions with the
lowest balanced relative error myp, to complete feature sets. The evolutionary
multi-objective feature selection resulted in feature subsets with a significantly lower
mppp than the classification with complete feature sets for almost all combinations
of a classifier and a task.

e The two-objective evaluation of the optimised feature subsets (with hypervolume)
and the single-objective evaluation (with the smallest balanced classification error)
were both estimated on a holdout set. This means that the optimised models have
proven their generalisation ability to perform well on data which neither have been
used for model training nor into the optimisation of the feature selection.

e mEpp and mgrg (selected feature rate) are anticorrelated for non-dominated trade-
off solutions: larger feature sets produce smaller errors and vice versa. However,
this does not hold in general. As we could observe for different music classification
tasks, the increase of a number of features above a certain threshold leads in many
cases to higher errors (cf. Fig. 5.6). This threshold depends on the combination of a
classification task and a classification method. Therefore, the best trade-off solutions
can be efficiently found only by multi-objective optimisation. If the metrics would be
anticorrelated for all feature subsets, it could be enough to apply a single-objective
optimisation for one of the metrics.
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e Because this work is the first, which to our knowledge applies an evolutionary multi-
objective feature selection approach for music data analysis (except for several own
preliminary contributions), we believe that in future many other promising combina-
tions of less correlated evaluation criteria could be optimised. We discussed several
metric groups and application scenarios, which are reasonable for the multi-objective
optimisation in music classification. Classification quality, quality for different and
less balanced data subsets, model stability, runtime and storage demands, feature
extraction costs, interpretability, user efforts, etc. are often in conflict and are loosely
correlated. The optimisation according to only one common criterion, e.g., accuracy,
often leads to the diminished performance w.r.t. other relevant evaluation metrics.

The second major goal of this work is to enable genre and style classification based on HIGH-
LEVEL AUDIO FEATURES. The advantage of these features is that the derived properties
of genres and styles become comprehensible and interpretable. The general advantage of
audio features is that they can be extracted from any digitally stored song, independently
of its popularity or availability in digital music stores. Features from other domains are
often hard to extract (the score is not always available), are subjective, incomplete, or
erroneous (genre taxonomies, community tags). The main outcomes of our studies are
listed as follows.

e A large set of audio high-level features is designed. A part of the features is directly
extracted from existing algorithms, software tools, or implemented by ourselves.
Another part is created after sliding feature selection, as discussed in Section 3.3.
Here, the results of the classification models are averaged for larger extraction frames,
so that, e.g., the share of guitar identifications in a 10 s frame or the share of
the energetic mood identifications in a 24 s frame is estimated. The last part of
the features consists of structural complexity characteristics, which are calculated
as outlined in Section 2.3.3. These features describe structural changes in chord
distribution, harmony, instrumentation, and temporal characteristics.

e [t is possible to completely replace the baseline 636-dimensional low-level feature set
by the 566-dimensional high-level feature set in most cases without any significant
decrease of the classification quality. The subsequent feature selection helps to find
the most relevant high-level features for each category. The three most often se-
lected features for each tested category are listed in Table 5.8. With these features,
comprehensible descriptions of the corresponding genres and styles are possible.

e If a single experiment integrates models built by all four classifiers, feature selection
and classification with high-level features may even lead to a slight increase of hy-
pervolume for all categories, except for Rap. This increase is confirmed by means of
statistical tests to be significant and not achieved by chance.

e Classification based on high-level features performs especially well for the three style
categories, when the models of the four classification methods are combined. The
application of statistical tests confirms that for all styles the final hypervolumes
are significantly higher, when the high-level feature set is used. The increase of
performance also holds for the comparison of the solutions with the smallest balanced
relative error. Hence, high-level features seem to be especially valuable, if more
specific categories, such as personal preferences, should be learned.
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e The designed approach is well suited to automatically derive the current user prefer-
ences, which may change over time depending on the situation. The same high-level
features can be used as the initial feature set, where feature selection would detect
the most relevant high-level descriptors for a certain category. The music expert ef-
forts, which are necessary for the labelling of large music collections, can be strongly
reduced. It is possible to provide the ground truth for a limited number of songs
and to automatically categorise the remaining music pieces.

e For a better understanding of genre and style properties, not only the features, but
also the classification models are relevant. Highly complex models, for example
built by SVM with nonlinear kernels, transform the original feature dimensions into
higher spaces and separate the classes in feature domains, which are not interpretable
anymore. However, as we could see in our experiments, C4.5 and NB perform often
comparably or even better than the RF and linear SVM, when they operate on
high-level features.

e For the extraction of high-level features and music categories, we introduced the
concept of sliding feature selection. First, a set of high-level features is learned from
low-level characteristics, where the most relevant are identified with evolutionary
multi-objective feature selection. These high-level features can be then used for the
estimation of further high-level characteristics, and so on. Although the features,
which are estimated using sliding feature selection, contribute to only approximately
42% of all high-level descriptors, they contain above 80% of the three most often
selected features for genre and style recognition listed in Table 5.8.

Besides, we provide FORMAL DESCRIPTIONS OF THE STEPS OF THE MUSIC CLASSIFICATION
CHAIN. This work has been already started in our previous publications:

e The algorithm chain for music classification was implemented step by step during
the development of the Advanced MUSic Explorer (AMUSE) [221]. In Section 2.1.3,
we define the inputs and the outputs of the corresponding tasks.

e Feature processing plays often an underrepresented role in music information re-
trieval studies. However, improper preprocessing and aggregation of features may
lead to a decrease of the classification performance. A categorisation of the different
feature processing methods is provided in Section 2.3. In particular, a part of the
time dimension processing methods was developed and compared in our previous
study [222].

e For different multi-objective evaluation and optimisation scenarios in music clas-
sification, we provide a categorisation of related evaluation metrics in Section 4.1.
These metric groups have been already briefly described in [217]. Further, we discuss
the preconditions for the evaluation of algorithms, which are still not always fulfilled
in many current MIR investigations. This evaluation is based on four essential com-
ponents: the choice of evaluation metrics, the choice of the evaluation method, the
proper assignment of classification instances to training, optimisation and holdout
data sets, and the measurement of significance with the help of statistical tests.

Finally, the DEVELOPMENT OF AMUSE allowed a large number of the related studies
[205, 220, 223, 15, 157, 222, 214, 186, 217, 219, 215, 218, 216]. AMUSE makes it possible
to concentrate on the development of concrete methods and to run large-scale evaluations
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of the experiments. The node-based architecture allows job scheduling on grid farms —
AMUSE experiments were successfully run on the four different grid systems (LiDOng!,
LSF?, SLURM? and Sun Grid Engine?). Because of the already integrated algorithms and
plugins, it is, e.g., possible to

e concentrate only on feature extraction and implement new features. They can be
simply integrated into the classification experiments, and the impact of these features
on the classification quality can be measured.

e Another possibility is to develop new feature aggregation methods, using the already
available features (Chroma Toolbox [155], MIR Toolbox [117], jAudio [138], NNLS
Chroma [135], and Yale [147] are available either as AMUSE plugins or integrated
libraries).

e The integration of further classification algorithms from WEKA [76] and RapidMiner
[147] is very straightforward, because these Java libraries are directly integrated into
AMUSE. If it is desired to implement other classification methods, they only have to
support the AMUSE input/output formats and are not limited to any programming
language.

e The XML configuration of the evolutionary feature selection allows an intuitive setup
of many different evolutionary algorithms for the optimisation of feature selection
and classification window size. For example, it can be switched between different
selection methods, self-adaptation parameters, and local search settings.

e The high-level feature set, which is designed in this work, is completely available
for extraction with AMUSE. Unfortunately, the extraction of the high-level char-
acteristics with a current AMUSE version is not very simple, and the extractors
of several underlying low-level features cannot be distributed freely because of the
licence restrictions. However, we plan to improve the tool support in future and also
to provide more documentation.

6.2. Directions for future research

We could show in our studies that music classification based on high-level descriptors is
comparable or even preferable to the classification based on low-level audio features. Also,
evolutionary multi-objective feature selection has proven its ability to select many feature
subsets with different trade-off characteristics. However, to increase the robustness and
the efficiency of our approach, further developments and studies are still required. In this
section, we discuss several ideas for future research.

In our opinion, one of the most relevant directions is to develop MORE ROBUST AUDIO
HIGH-LEVEL FEATURES, and to describe their relevance to a category in a more NATURAL
WAY':

"Mttp://1lidong.hrz.tu-dortmund.de/1dw/index.php/Main_Page, date of visit: 15.02.2013.
*nttp://en.wikipedia.org/wiki/Load_Sharing_Facility, date of visit: 15.02.2013.
*https://computing.1lnl.gov/linux/slurm, date of visit: 15.02.2013.
‘http://en.wikipedia.org/wiki/Oracle_Grid_Engine, date of visit: 15.02.2013.


http://lidong.hrz.tu-dortmund.de/ldw/index.php/Main_Page
http://en.wikipedia.org/wiki/Load_Sharing_Facility
https://computing.llnl.gov/linux/slurm
http://en.wikipedia.org/wiki/Oracle_Grid_Engine
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e Robustness of features suffers from a strong data variance between the training set
and other sets. We have already mentioned that the automatic guitar identification
trained on mixtures of guitar, piano, wind, and strings may perform unexpectedly,
if it is applied on other mixtures, for example, of guitar, gong, and harp. The same
holds for other high-level features: if only popular music pieces are labelled with
the Energetic mood, some of the powerful orchestral arrangements would be always
categorised as ‘non-energetic’. A possible solution is to integrate an interactive
semi-supervised approach: first, some unlabelled data clusters are identified, which
strongly differ from the available labelled data. Then, an expert opinion is required
to estimate the relevance of these data: it is still possible that it corresponds to
less relevant outliers. Finally, the ground truth for the extended training set can be
provided.

e Many high-level features should or could only be learned from real-world polyphonic
recordings. In that case, a high amount of expert labelling efforts is unavoidable. For
example, the onsets and occurrences of each instrument must be precisely notated.
This holds not only for the instruments: a ‘melancholic’ music piece can contain a
short harmonic variation in major. This task can be addressed in a more artificial,
generative way: if enough rules are provided by the music experts, such as ‘melan-
cholic music corresponds to minor key and low loudness’, it is possible to randomly
generate a sufficient number of corresponding audio recordings.

e Another goal is to integrate more natural language descriptions for music categorisa-
tion with the help of fuzzy approaches. Even the interpretable decision tree models
are often large and confusing for a non-expert. More comprehensible rules would
describe the music in a natural way, e.g., ‘the personal preferences for car driving:
non-vocal segments with a large piano share, a large vocal share in general, a bal-
anced distribution between male and female vocals, from time to time intermediate
segments dominated by strings or organ’. Another example of a fuzzy application
is automatic playlist adjustment: ‘slightly increase the share of dance pop songs at
the beginning of the party, change to house at the later hours, and switch rapidly to
classical music at the very end of the event’. Fuzzy logic for music classification was
explicitly recommended in [139] as approach, which “would significantly improve the
quality of ground truth, and would make the evaluation of systems more realistic”.
Even if it has been already investigated in some works [235, 59], it still remains a
less explored domain.

e Robust high-level features may allow new user-centered recommendation applica-
tions, which combine high-level features of several personal categories: e.g., if a
music listener has created a classical music category and a hard rock category, it
is possible to recommend her or him ‘simphonic metal’ songs, which combine some
high-level characteristics from both genres.

EVALUATION can be done more thoroughly for the reliable proof of the generalisation
ability of classification models:

e A simple approach, which on the other side is very time intensive, is to increase the
number of the statistical repetitions for each experiment.

e Nested validation can be integrated. Then, the optimisation can be stopped, after
its generalisation performance begins to decrease. We mentioned the early stopping
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approach from [124] in Section 3.4.1. Again, this extension is time consuming.

e More different songs from different genres can be distributed across the data sets.
Though our experiment and holdout sets do not contain the same songs, the songs
for these sets were drawn from the same albums. This dependency can be reduced
in future.

The SCALE OF THE EXPERIMENT STUDIES can be enlarged:

e The number of the classification categories can be increased.

e Many further high-level features can be derived by means of sliding feature selection
or other approaches. The recognition of instruments and digital effects may provide
a significant increase of the classification quality, in particular, for the categorisation
into subgenres and user-specific preferences.

e Further classification methods can be selected based on their relevant properties.
For example, the k-nearest neighbour classifier has higher model storage demands,
but can be valuable because of the high model interpretability in the high-level
feature domain. Since we have observed that the combination of several classifiers
led to a classification performance increase, it is reasonable to integrate also ensemble
methods or meta-classifiers, such as AdaBoost [82].

Multi-objective feature selection and optimisation by many COMBINATIONS OF METRICS
from our lists in Section 4.1 depends on concrete preferences of the application scenario:

e First, the evaluation can be extended to different confusion matrix metrics, as done
for recall and specificity in [217].

e A further step is to simultaneously optimise the metrics of different groups. Es-
pecially, resource metrics and user related metrics are often in conflict with the
classification quality.

e If the evaluation is done using four or more conflicting, but also loosely correlated
metrics, the many-objective optimisation can be applied (as mentioned in note 4,
Section 3.2.4). Then, specific challenges of this application domain should be ad-
dressed: for example, it becomes harder to compare the solutions, and exponentially
larger populations are required to provide enough trade-off solutions.

Several further METHOD ENHANCEMENTS are possible:

e One of the very challenging tasks is to enable faster classification, which is required to
satisfy listener expectations on an automatic classifier or a recommendation system.
But it is also motivated by the limited resources of mobile devices and the large
growth of personal music collections.

e Multi-class and, in particular, multi-label classification, are well suited for music
categorisation. A single song may belong exclusively to one genre, but may appear
in several user preference categories or contribute to different moods.

e Semi-supervised learning is reasonable for real-world situations, where the ground
truth is not always available, or its definition requires high efforts. It is again well
suited to learn individual listener preferences.
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e Another group of classification methods, which may further reduce the efforts for
the labelling of ground truth, is the classification only by positives.

e The application of evolutionary algorithms for multi-objective feature selection or
any other optimisation in music classification can be extended by further tuning of
the optimisation methods. For example, memetic algorithms performed quite well in
our single-objective studies [223, 15] and can be integrated into the multi-objective
approach. Self-adaptation or predator-prey extensions, which are mentioned in Sec-
tion 3.2.1, may be also applicable.

Summarising this discussion, we believe that music classification, but also MIR in general,
would strongly benefit from a further integration of COMPUTATIONAL INTELLIGENCE (CI)
techniques. The focus of the major CI research fields in that content could be as follows:

e FUzzY LOGIC may help to handle classification scenarios in a natural way and to
increase the comprehensibility of the dependencies between high-level features and
the categories.

e EVOLUTIONARY ALGORITHMS, in particular, multi- and many-objective evolution-
ary algorithms, may facilitate the evaluation and optimisation of the classification
performance from different perspectives.

e NEURAL NETWORKS AND SUPPORT VECTOR MACHINES are probably less preferable
for the classification of music categories from high-level features, because of their
less interpretable models. But they may be essential for the robust recognition of
the high-level features themselves.






A. Feature Lists

The following tables list all low-level and high-level features used in this thesis.
column values and variables have the following meaning:

e Name: feature name.

e Ref.: reference to feature definition.

e W,: extraction frame size in samples.

e S.: extraction frame step size in samples.
e [™*: number of feature dimensions.

e ID: unique AMUSE feature ID.

The

e HL: in the tables with both high-level and low-level features, high-level features are

marked with ‘H” and low-level with ‘L’.

e W,: structural complexity algorithm frame size in seconds.

° Wesc: structural complexity extraction frame size in samples.

° Sescz structural complexity extraction frame step size in samples.

A.1. Timbre and energy features (low-level)

Name [Ref.[W. = S.[F* [ Tool ID

TIME DOMAIN

Linear prediction coefficients [206] | 512 10 |jAudio 1

Low energy [206] | 512 1 jAudio 6

Root mean square [206] | 512 1 |jAudio 4

RMS peak number in 3 seconds [115]166,150 |1 |Matlab 11

RMS peak number above half of maximum [115] 166,150 |1 Matlab 12

peak in 3 seconds

Zero-crossing rate [206] | 512 1 |jAudio 0

SPECTRAL DOMAIN

Average distance between extremal spectral values [206] | 512 2 Yale 2

and its variance

Average distance between zero-crossings of the [206] | 512 2 Yale 3

time-domain signal and its variance

Normalised energy of harmonic components [206] | 512 1 |Yale 7

Onset envelope LPCs for blocks [51] 152,920 [125 | Matlab 51

Onset envelope [51] 152,920 [132 | Matlab 52

Spectral bandwidth [206] | 512 1 | Yale 16

Spectral brightness [115] 512 1 | MIR Toolbox |23
continued on next page
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continued from previous page

Name Ref. | W, = S. | F** | Tool ID
Spectral centroid [206] | 512 1 |Yale 14
Spectral crest factor [206] | 512 4 |Yale 19
Spectral discrepancy [206] | 512 1 |Yale 31
Spectral extent [206] | 512 1 |Yale 21
Spectral flatness measure [206] | 512 4 |Yale 20
Spectral flux [206] | 512 1 |jAudio 22
Spectral irregularity [115]]512 1 | MIR Toolbox |15
Spectral kurtosis [206] | 512 1 | Yale 18
Spectral skewness [206] | 512 1 | Yale 17
Spectral slope [206] | 512 1 |Yale 29
Sensory roughness [115]] 1,024 1 MIR Toolbox | 24
Sub-band energy ratio [206] | 512 4 | Yale 25
Tristimulus [206] | 512 2 |Matlab 10
y-axis intercept [206] | 512 1 | Yale 30
CEPSTRAL DOMAIN

CMRARE cepstral modulation features with [133] 110,250 |8 | Matlab 45
polynomial order 3

CMRARE cepstral modulation features with [133]1110,250 |12 |Matlab 46
polynomial order 5

CMRARE cepstral modulation features with [133]]110,250 |22 |Matlab 47
polynomial order 10

Delta MFCCs [115] | 512 13 | MIR Toolbox | 48
Mel frequency cepstral coefficients [206] | 512 13 |jAudio 28
Mel frequency cepstral coefficients [206] | 512 20 | Matlab 38
Mel frequency cepstral coefficients [206] | 512 13 | MIR Toolbox | 39
Onset envelope MFCCs [51] 152,920 |16 |Matlab 49
Onset envelope MFCCs for blocks [51] 152,920 |80 |Matlab 50
PHASE DOMAIN

Angles in phase domain [206] | 512 1 Yale 32
Distances in phase domain [206] | 512 1 |Yale 33
ERB AND BARK DOMAINS

Bark scale magnitudes [115]]512 23 | MIR Toolbox |40
Root mean square for ERB bands [115]] 512 10 | MIR Toolbox |61
Spectral centroid for ERB bands [115] | 512 10 | MIR Toolbox |62
Zero-crossing rate for ERB bands [115]]512 10 | MIR Toolbox | 60

A.2. Chroma and harmony features (low-level and high-level)

Name [Ref. [W. = 5. [F*[Tool |ID [HL

CHROMA AND RELATED CHARACTERISTICS

Amplitude, position and width of the [206] | 512 3 |Yale 211|L

1st spectral peak

Amplitude, position and width of the [206] | 512 3 Yale 212 |L

2nd spectral peak

Amplitude, position and width of the [206] | 512 3 Yale 213 | L

3rd spectral peak

Amplitude, position and width of the [206] | 512 3 |Yale 214|L

4th spectral peak

Amplitude, position and width of the [206] | 512 3 Yale 215|L

5th spectral peak

Bass chroma [135]]2,048 12 |NNLS Chroma | 251 |L

Chroma [115]]512/4,096 |12 | MIR Toolbox |206 |L
continued on next page
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continued from previous page
Name Ref. We =S8, |F**|Tool ID |HL
Chroma [135] 2,048 12 |NNLS Chroma | 250 | L
Chroma and normalised chroma [206] 512 24 |Yale 204 |L
Chroma DCT-reduced log pitch [155] 4,410 12 | Chroma Toolb. | 219 |L
Chroma energy normalised statistics [154] 4,410 12 | Chroma Toolb. | 218 | L
Chroma maximum [206] 512 1 |Yale 205 |H
Chroma tone with the maximum strength [206] 512 1 |Yale 207 |H
Fundamental frequency [206] 512 1 | Matlab 200 | L
Inharmonicity [115] 512 1 |MIR Toolbox |201|L
Semitone spectrum [135] 2,048 85 |NNLS Chroma |252|L
HARMONY
Consonance [135] 2,048 1 |NNLS Chroma | 255 |H
Harmonic change [135] 2,048 1 |NNLS Chroma | 254 |H
Harmonic change detection function [115] 512/4,096 | 1 MIR Toolbox |217|H
Interval strengths from the 10 highest Sect. 2.2.3.2 12,048 12 |AMUSE 260 | H
semitone values
Interval strengths from the semitone spectrum | Sect. 2.2.3.2 | 2,048 12 |AMUSE 261 | H
above 3/4 of its maximum value
Key and its clarity [115] 512/4,096 |2 | MIR Toolbox |[202|H
Local tuning [135] 8,192 1 |NNLS Chroma | 253 |H
Major/minor alignment [115] 512/4,096 |1 | MIR Toolbox |[203|H
Strengths of CRP cooccurrences Sect. 2.2.3.2 4,410 66 |Matlab 220 | H
Strengths of major keys [115] 512/4,096 |12 | MIR Toolbox |209|H
Strengths of minor keys [115] 512/4,096 | 12 | MIR Toolbox |[210|H
Tonal centroid vector [115] 512/4,096 |6 | MIR Toolbox |[216|H
CHORD ANALYSIS
Number of different chords in 10 s Sect. 2.2.3.2/220,500 |1 AMUSE 257 |H
Number of chord changes in 10 s Sect. 2.2.3.2(220,500 |1 AMUSE 258 |H
Shares of the most frequent 20, 40, and 60 per | Sect. 2.2.3.2 {220,500 |3 AMUSE 259 |H
cent of chords with regard to their duration
A.3. Temporal characteristics (low-level and high-level)
Name | Ref. [We = S.[F** [ Tool [ID [HL
TEMPORAL AND CORRELATION CHARACTERISTICS
Duration of music piece [206] -1 1 | Matlab 400 | H
Estimated beat number per minute [206] 229,376 |1 | Matlab 421 |H
Estimated tatum number per minute [206] 229,376 |1 | Matlab 422 |H
Estimated onset number per minute [206] 229,376 |1 Matlab 420 |H
Tempo based on onset times [115] 66,150 |1 |MIR Toolbox|425 |H
First periodicity peak [206] 131,072 |1 | Yale 405 | L
First relative periodicity amplitude peak [206] 131,072% | 1 jAudio 402 |L
Sum of correlated components [206] 131,072 |1 jAudio 407 |L
RHYTHM
Five peaks of fluctuation curves [115] 229,376 |5 | MIR Toolbox | 427 |L
summed across all bands
Characteristics of fluctuation patterns [206] 32,768 |7 |Matlab 410|L
Rhythmic clarity [115] 66,150 |1 MIR Toolbox | 418 | H
STRUCTURE
Segmentation characteristics [ Sect. 2.2.3.3|-1 [ 3 [ AMUSE [ 602 [ H

“256 short RMS frames are estimated for beat histogram.
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A.4. Instruments (high-level)

Name Ref. We =2S. | F** | Tool ID
Guitar C4.5 best model (mgrg) Sect. 5.1.1 220,500 |1 AMUSE | 2,000
Guitar C4.5 2nd best model (mrg) Sect. 5.1.1/220,500 |1 |AMUSE |2,009
Guitar C4.5 all non-dominated solutions Sect. 5.1.1{220,500 |7 AMUSE | 2,004
Guitar RF best model (mrg) Sect. 5.1.1/220,500 |1 |AMUSE|2,001
Guitar RF 2nd best model (mrEg) Sect. 5.1.1/220,500 |1 |AMUSE |2,010
Guitar RF all non-dominated solutions Sect. 5.1.1 220,500 |8 AMUSE | 2,005
Guitar NB best model (mrg) Sect. 5.1.1|220,500 |1 |AMUSE |2,002
Guitar NB 2nd best model (mgg) Sect. 5.1.1|220,500 |1 |AMUSE|2,011
Guitar NB all non-dominated solutions Sect. 5.1.1{220,500 |5 AMUSE | 2,006
Guitar SVM best model (mgrg) Sect. 5.1.1 (220,500 |1 AMUSE | 2,003
Guitar SVM 2nd best model (mrEg) Sect. 5.1.1/220,500 |1 |AMUSE|2,012
Guitar SVM all non-dominated solutions Sect. 5.1.1]220,500 |25 |AMUSE|2,007
Guitar all non-dominated solutions Sect. 5.1.1(220,500 15 | AMUSE | 2,008
Piano C4.5 best model (mgrg) Sect. 5.1.1 | 220,500 1 AMUSE | 2,020
Piano C4.5 2nd best model (mgEg) Sect. 5.1.1|220,500 |1 |AMUSE |2,029
Piano C4.5 all non-dominated solutions Sect. 5.1.1 220,500 |6 AMUSE | 2,024
Piano RF best model (mrg) Sect. 5.1.1 | 220,500 1 AMUSE | 2,021
Piano RF 2nd best model (mrg) Sect. 5.1.1 220,500 |1 AMUSE | 2,030
Piano RF all non-dominated solutions Sect. 5.1.1 (220,500 |7 AMUSE | 2,025
Piano NB best model (mrE) Sect. 5.1.1 | 220,500 1 AMUSE | 2,022
Piano NB 2nd best model (mgrg) Sect. 5.1.1 220,500 |1 AMUSE | 2,031
Piano NB all non-dominated solutions Sect. 5.1.1 220,500 |8 AMUSE | 2,026
Piano SVM best model (mgrg) Sect. 5.1.1 | 220,500 1 AMUSE | 2,023
Piano SVM 2nd best model (mgg) Sect. 5.1.1|220,500 |1 |AMUSE |2,032
Piano SVM all non-dominated solutions Sect. 5.1.1 220,500 |24 |AMUSE|2,027
Piano all non-dominated solutions Sect. 5.1.1]220,500 |8 AMUSE | 2,028
Wind C4.5 best model (mrg) Sect. 5.1.1/220,500 |1 |AMUSE |2,040
Wind C4.5 2nd best model (mgrEg) Sect. 5.1.1 | 220,500 1 AMUSE | 2,049
Wind C4.5 all non-dominated solutions Sect. 5.1.11220,500 |7 AMUSE | 2,044
Wind RF best model (mrg) Sect. 5.1.1|220,500 |1 |AMUSE|2,041
Wind RF 2nd best model (mrg) Sect. 5.1.1 | 220,500 1 AMUSE | 2,050
Wind RF all non-dominated solutions Sect. 5.1.1]220,500 |11 |AMUSE | 2,045
Wind NB best model (mgg) Sect. 5.1.1/220,500 |1 |AMUSE|2,042
Wind NB 2nd best model (mrEg) Sect. 5.1.1 (220,500 |1 AMUSE | 2,051
Wind NB all non-dominated solutions Sect. 5.1.1]220,500 |4 AMUSE | 2,046
Wind SVM best model (mrEg) Sect. 5.1.1/220,500 |1 |AMUSE |2,043
Wind SVM 2nd best model (mgg) Sect. 5.1.1 {220,500 |1 AMUSE | 2,052
Wind SVM all non-dominated solutions Sect. 5.1.1 220,500 |15 |AMUSE|2,047
Wind all non-dominated solutions Sect. 5.1.1 {220,500 |14 |AMUSE|2,048
Strings C4.5 best model (mgEg) Sect. 5.1.1/220,500 |1 |AMUSE |2,060
Strings C4.5 2nd best model (mrE) Sect. 5.1.1/220,500 |1 |AMUSE |2,069
Strings C4.5 all non-dominated solutions Sect. 5.1.1 220,500 |4 AMUSE | 2,064
Strings RF best model (mgrg) Sect. 5.1.1|220,500 |1 |AMUSE|2,061
Strings RF 2nd best model (mgrg) Sect. 5.1.1/220,500 |1 |AMUSE |2,070
Strings RF all non-dominated solutions Sect. 5.1.1(220,500 11 |AMUSE | 2,065
Strings NB best model (mrg) Sect. 5.1.1/220,500 |1 |AMUSE|2,062
Strings NB 2nd best model (mrg) Sect. 5.1.1|220,500 |1 |AMUSE|2,071
Strings NB all non-dominated solutions Sect. 5.1.1(220,500 11 | AMUSE | 2,066
Strings SVM best model (mgg) Sect. 5.1.1/220,500 |1 |AMUSE |2,063
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Name Ref. We = 2S. | F** | Tool 1D
Strings SVM 2nd best model (mgg) Sect. 5.1.1/220,500 |1 |AMUSE|2,072
Strings SVM all non-dominated solutions Sect. 5.1.1{220,500 |20 |AMUSE|2,067
Strings all non-dominated solutions Sect. 5.1.1(220,500 11 | AMUSE | 2,068

A.5. Moods (high-level)

Name Ref. We = 2S. | F** | Tool 1D
Aggressive C4.5 best model (mprE) Sect. 5.1.21529,200 |1 |AMUSE |4,000
Aggressive C4.5 2nd best model (mBrEg) Sect. 5.1.2 529,200 |1 AMUSE | 4,001
Aggressive RF best model (mprg) Sect. 5.1.2/529,200 |1 |AMUSE |4,002
Aggressive RF 2nd best model (mprE) Sect. 5.1.21529,200 |1 |AMUSE |4,003
Aggressive NB best model (mprE) Sect. 5.1.2 529,200 |1 AMUSE | 4,004
Aggressive NB 2nd best model (mprg) Sect. 5.1.2/529,200 |1 |AMUSE |4,005
Aggressive SVM best model (mprE) Sect. 5.1.21529,200 |1 |AMUSE |4,006
Aggressive SVM 2nd best model (mprE) Sect. 5.1.2 529,200 |1 AMUSE | 4,007
Confident C4.5 best model (mprE) Sect. 5.1.21529,200 |1 |AMUSE |4,020
Confident C4.5 2nd best model (mprEg) Sect. 5.1.2 {529,200 1 AMUSE | 4,021
Confident RF best model (mprE) Sect. 5.1.2/529,200 |1 |AMUSE |4,022
Confident RF 2nd best model (mpBrE) Sect. 5.1.21529,200 |1 |AMUSE |4,023
Confident NB best model (mprEg) Sect. 5.1.2 [ 529,200 1 AMUSE | 4,024
Confident NB 2nd best model (mprEg) Sect. 5.1.2 529,200 |1 AMUSE | 4,025
Confident SVM best model (mprE) Sect. 5.1.21529,200 |1 |AMUSE |4,026
Confident SVM 2nd best model (mprEg) Sect. 5.1.2 {529,200 1 AMUSE | 4,027
Earnest C4.5 best model (mprE) Sect. 5.1.21529,200 |1 |AMUSE |4,040
Earnest C4.5 2nd best model (mprg) Sect. 5.1.2 529,200 1 AMUSE | 4,041
Earnest RF best model (mprg) Sect. 5.1.2/529,200 |1 |AMUSE |4,042
Earnest RF 2nd best model (mprEg) Sect. 5.1.21529,200 |1 |AMUSE |4,043
Earnest NB best model (mprEg) Sect. 5.1.2 {529,200 1 AMUSE | 4,044
Earnest NB 2nd best model (mprE) Sect. 5.1.2 529,200 |1 AMUSE | 4,045
Earnest SVM best model (mprE) Sect. 5.1.21529,200 |1 |AMUSE |4,046
Earnest SVM 2nd best model (mprg) Sect. 5.1.2 529,200 1 AMUSE | 4,047
Energetic C4.5 best model (mprEg) Sect. 5.1.21529,200 |1 |AMUSE |4,060
Energetic C4.5 2nd best model (mprEg) Sect. 5.1.2 {529,200 1 AMUSE | 4,061
Energetic RF best model (mprg) Sect. 5.1.2529,200 |1 |AMUSE |4,062
Energetic RF 2nd best model (mprE) Sect. 5.1.21529,200 |1 |AMUSE |4,063
Energetic NB best model (mprE) Sect. 5.1.2 529,200 1 AMUSE | 4,064
Energetic NB 2nd best model (mprEg) Sect. 5.1.21529,200 |1 |AMUSE |4,065
Energetic SVM best model (mprE) Sect. 5.1.21529,200 |1 |AMUSE |4,066
Energetic SVM 2nd best model (mprEg) Sect. 5.1.2 {529,200 1 AMUSE | 4,067
PartyCelebratory C4.5 best model (mprEg) Sect. 5.1.21529,200 |1 |AMUSE |4,080
PartyCelebratory C4.5 2nd best model (mpre) |Sect. 5.1.2 529,200 1 AMUSE | 4,081
PartyCelebratory RF best model (mprg) Sect. 5.1.2 529,200 |1 AMUSE | 4,082
PartyCelebratory RF 2nd best model (mprEg) Sect. 5.1.21529,200 |1 |AMUSE |4,083
PartyCelebratory NB best model (mprEg) Sect. 5.1.2 {529,200 1 AMUSE | 4,084
PartyCelebratory NB 2nd best model (mprE) Sect. 5.1.2/529,200 |1 |AMUSE |4,085
PartyCelebratory SVM best model (mprEg) Sect. 5.1.21529,200 |1 |AMUSE |4,086
PartyCelebratory SVM 2nd best model (mpre) |Sect. 5.1.2 529,200 1 AMUSE | 4,087
Reflective C4.5 best model (mprE) Sect. 5.1.21529,200 |1 |AMUSE |4,100
Reflective C4.5 2nd best model (mprE) Sect. 5.1.2 (529,200 1 AMUSE | 4,101
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Reflective RF best model (mprE) Sect. 5.1.2/529,200 |1 |AMUSE |4,102
Reflective RF 2nd best model (mprE) Sect. 5.1.2 {529,200 1 AMUSE | 4,103
Reflective NB best model (mprEg) Sect. 5.1.2 529,200 |1 AMUSE | 4,104
Reflective NB 2nd best model (mprg) Sect. 5.1.2/529,200 |1 |AMUSE |4,105
Reflective SVM best model (mprEg) Sect. 5.1.2 {529,200 1 AMUSE | 4,106
Reflective SVM 2nd best model (mprE) Sect. 5.1.2 529,200 |1 AMUSE | 4,107
Sentimental C4.5 best model (mprE) Sect. 5.1.2 529,200 1 AMUSE | 4,120
Sentimental C4.5 2nd best model (mprEg) Sect. 5.1.2|529,200 |1 |AMUSE|4,121
Sentimental RF best model (mprE) Sect. 5.1.21529,200 |1 |AMUSE |4,122
Sentimental RF 2nd best model (mprE) Sect. 5.1.2 529,200 1 AMUSE | 4,123
Sentimental NB best model (mprEg) Sect. 5.1.21529,200 |1 |AMUSE |4,124
Sentimental NB 2nd best model (mprE) Sect. 5.1.21529,200 |1 |AMUSE |4,125
Sentimental SVM best model (mprE) Sect. 5.1.2 529,200 1 AMUSE | 4,126
Sentimental SVM 2nd best model (mprE) Sect. 5.1.2|529,200 |1 |AMUSE|4,127
Stylish C4.5 best model (mprE) Sect. 5.1.2 529,200 1 AMUSE | 4,140
Stylish C4.5 2nd best model (mprz) Sect. 5.1.2/529,200 |1 |AMUSE|4,141
Stylish RF best model (mprEg) Sect. 5.1.21529,200 |1 |AMUSE |4,142
Stylish RF 2nd best model (mprEg) Sect. 5.1.2 {529,200 1 AMUSE | 4,143
Stylish NB best model (mprr) Sect. 5.1.2[529,200 |1 |AMUSE 4,144
Stylish NB 2nd best model (mprE) Sect. 5.1.2/529,200 |1 |AMUSE |4,145
Stylish SVM best model (mprz) Sect. 5.1.2 529,200 1 AMUSE | 4,146
Stylish SVM 2nd best model (mprE) Sect. 5.1.2 529,200 |1 AMUSE | 4,147
A.6. GFKL-2011 (high-level)
Name Ref. We = 2S. | F** | Tool 1D
Effects distortion C4.5 best model (mprE) Sect. 5.1.3 /529,200 |1 |AMUSE |6,020
Effects distortion C4.5 2nd best model (mprE) Sect. 5.1.3 529,200 1 AMUSE | 6,021
Effects distortion RF best model (mprEe) Sect. 5.1.3/529,200 |1 |AMUSE 6,022
Effects distortion RF 2nd best model (mprE) Sect. 5.1.3/529,200 |1 |AMUSE 6,023
Effects distortion NB best model (mprEg) Sect. 5.1.3 529,200 1 AMUSE | 6,024
Effects distortion NB 2nd best model (mprE) Sect. 5.1.3|529,200 |1 |AMUSE 6,025
Effects distortion SVM best model (mprEg) Sect. 5.1.3 /529,200 |1 |AMUSE |6,026
Effects distortion SVM 2nd best model (mprE) Sect. 5.1.3 529,200 1 AMUSE | 6,027
Harmony major C4.5 best model (mprE) Sect. 5.1.3/529,200 |1 |AMUSE 6,180
Harmony major C4.5 2nd best model (mprE) Sect. 5.1.3 529,200 1 AMUSE | 6,181
Harmony major RF best model (mprE) Sect. 5.1.3529,200 |1 |AMUSE |6,182
Harmony major RF 2nd best model (mprEg) Sect. 5.1.3 /529,200 |1 |AMUSE 6,183
Harmony major NB best model (mprg) Sect. 5.1.3 529,200 1 AMUSE | 6,184
Harmony major NB 2nd best model (mprz) Sect. 5.1.3/529,200 |1 |AMUSE 6,185
Harmony major SVM best model (mprE) Sect. 5.1.3 /529,200 |1 |AMUSE |6,186
Harmony major SVM 2nd best model (mprg) Sect. 5.1.3 529,200 1 AMUSE | 6,187
Harmony minor C4.5 best model (mprE) Sect. 5.1.3/529,200 |1 |AMUSE |6,200
Harmony minor C4.5 2nd best model (mprEe) Sect. 5.1.3 529,200 1 AMUSE | 6,201
Harmony minor RF best model (mprg) Sect. 5.1.3 /529,200 |1 |AMUSE|6,202
Harmony minor RF 2nd best model (mprE) Sect. 5.1.3/529,200 |1 |AMUSE |6,203
Harmony minor NB best model (mgprE) Sect. 5.1.3 529,200 1 AMUSE | 6,204
Harmony minor NB 2nd best model (mprg) Sect. 5.1.3 /529,200 |1 |AMUSE|6,205
Harmony minor SVM best model (mprg) Sect. 5.1.3 /529,200 |1 |AMUSE |6,206
Harmony minor SVM 2nd best model (mprg) Sect. 5.1.3 529,200 1 AMUSE | 6,207
Instrumentation drums C4.5 best model (mprE) Sect. 5.1.3 /529,200 |1 |AMUSE |6,220
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Instrumentation drums C4.5 2nd best model (mprEg) Sect. 5.1.3 529,200 1 AMUSE | 6,221
Instrumentation drums RF best model (mprEg) Sect. 5.1.3 529,200 1 AMUSE | 6,222
Instrumentation drums RF 2nd best model (mprE) Sect. 5.1.31529,200 |1 |AMUSE |6,223
Instrumentation drums NB best model (mprE) Sect. 5.1.3 529,200 1 AMUSE | 6,224
Instrumentation drums NB 2nd best model (mprg) Sect. 5.1.3 529,200 1 AMUSE | 6,225
Instrumentation drums SVM best model (mprE) Sect. 5.1.3529,200 |1 AMUSE | 6,226
Instrumentation drums SVM 2nd best model (mprg) |Sect. 5.1.3(529,200 |1 |AMUSE|6,227
Level of activation high C4.5 best model (mprEg) Sect. 5.1.3/529,200 |1 |AMUSE | 6,000
Level of activation high C4.5 2nd best model (mpre) |Sect. 5.1.3|529,200 |1 |AMUSE |6,001
Level of activation high RF best model (mprz) Sect. 5.1.3 529,200 1 AMUSE | 6,002
Level of activation high RF 2nd best model (mprE) Sect. 5.1.31529,200 |1 |AMUSE |6,003
Level of activation high NB best model (mprE) Sect. 5.1.3/529,200 |1 |AMUSE |6,004
Level of activation high NB 2nd best model (mprEg) Sect. 5.1.3 529,200 1 AMUSE | 6,005
Level of activation high SVM best model (mprEg) Sect. 5.1.31529,200 |1 |AMUSE |6,006
Level of activation high SVM 2nd best model (mprg) |Sect. 5.1.3(529,200 |1 |AMUSE|6,007
Melodic range < octave C4.5 best model (mprE) Sect. 5.1.3/529,200 |1 |AMUSE |6,260
Melodic range < octave C4.5 2nd best model (mpre) |Sect. 5.1.3|529,200 |1 |AMUSE |6,261
Melodic range < octave RF best model (mprE) Sect. 5.1.3 529,200 1 AMUSE | 6,262
Melodic range < octave RF 2nd best model (mprEg) Sect. 5.1.31529,200 |1 |AMUSE |6,263
Melodic range < octave NB best model (mprE) Sect. 5.1.3/529,200 |1 |AMUSE |6,264
Melodic range < octave NB 2nd best model (mprEg) Sect. 5.1.3 529,200 1 AMUSE | 6,265
Melodic range < octave SVM best model (mprEe) Sect. 5.1.31529,200 |1 |AMUSE |6,266
Melodic range < octave SVM 2nd best model (mprr) |Sect. 5.1.3]529,200 |1 AMUSE | 6,267
Melodic range > octave C4.5 best model (mprE) Sect. 5.1.31529,200 |1 |AMUSE |6,240
Melodic range > octave C4.5 2nd best model (mpre) |Sect. 5.1.3|529,200 |1 |AMUSE |6,241
Melodic range > octave RF best model (mprg) Sect. 5.1.3 529,200 1 AMUSE | 6,242
Melodic range > octave RF 2nd best model (mprEg) Sect. 5.1.3/529,200 |1 |AMUSE |6,243
Melodic range > octave NB best model (mprE) Sect. 5.1.3 /529,200 |1 |AMUSE |6,244
Melodic range > octave NB 2nd best model (mprEg) Sect. 5.1.3 529,200 1 AMUSE | 6,245
Melodic range > octave SVM best model (mprEg) Sect. 5.1.3/529,200 |1 |AMUSE |6,246
Melodic range > octave SVM 2nd best model (mpre) |Sect. 5.1.3|529,200 |1 |AMUSE |6,247
Melodic range linearly C4.5 best model (mprE) Sect. 5.1.3 /529,200 |1 |AMUSE |6,280
Melodic range linearly C4.5 2nd best model (mprEg) Sect. 5.1.3|529,200 |1 |AMUSE|6,281
Melodic range linearly RF best model (mprg) Sect. 5.1.3 529,200 1 AMUSE | 6,282
Melodic range linearly RF 2nd best model (mprEg) Sect. 5.1.3/529,200 |1 |AMUSE |6,283
Melodic range linearly NB best model (mprg) Sect. 5.1.3 /529,200 |1 |AMUSE |6,284
Melodic range linearly NB 2nd best model (mprE) Sect. 5.1.3 529,200 1 AMUSE | 6,285
Melodic range linearly SVM best model (msrEg) Sect. 5.1.3/529,200 |1 |AMUSE |6,286
Melodic range linearly SVM 2nd best model (mprEg) Sect. 5.1.3|529,200 |1 |AMUSE|6,287
Melodic range volatile C4.5 best model (mprE) Sect. 5.1.3 /529,200 |1 |AMUSE |6,300
Melodic range volatile C4.5 2nd best model (mprE) Sect. 5.1.3|529,200 |1 |AMUSE|6,301
Melodic range volatile RF best model (mprg) Sect. 5.1.3 (529,200 1 AMUSE | 6,302
Melodic range volatile RF 2nd best model (mprEg) Sect. 5.1.3 /529,200 |1 |AMUSE |6,303
Melodic range volatile NB best model (mprEg) Sect. 5.1.3 /529,200 |1 |AMUSE |6,304
Melodic range volatile NB 2nd best model (mprE) Sect. 5.1.3 529,200 1 AMUSE | 6,305
Melodic range volatile SVM best model (mprEg) Sect. 5.1.3 /529,200 |1 |AMUSE |6,306
Melodic range volatile SVM 2nd best model (mprr) Sect. 5.1.3|529,200 |1 |AMUSE|6,307
Singing solo clear C4.5 best model (mprE) Sect. 5.1.3/529,200 |1 |AMUSE |6,040
Singing solo clear C4.5 2nd best model (mprE) Sect. 5.1.3529,200 |1 AMUSE | 6,041
Singing solo clear RF best model (mprEg) Sect. 5.1.3 (529,200 |1 AMUSE | 6,042
Singing solo clear RF 2nd best model (mprE) Sect. 5.1.3 /529,200 |1 |AMUSE |6,043
Singing solo clear NB best model (mprz) Sect. 5.1.3(529,200 |1 AMUSE | 6,044
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Singing solo clear NB 2nd best model (mprE) Sect. 5.1.3/529,200 |1 |AMUSE 6,045
Singing solo clear SVM best model (mprE) Sect. 5.1.3[529,200 |1 AMUSE | 6,046
Singing solo clear SVM 2nd best model (mprE) Sect. 5.1.3|529,200 |1 |AMUSE|6,047
Singing solo man C4.5 best model (mprE) Sect. 5.1.3(529,200 |1 AMUSE | 6,140
Singing solo man C4.5 2nd best model (mprE) Sect. 5.1.3|529,200 |1 |AMUSE|6,141
Singing solo man RF best model (mprE) Sect. 5.1.3 /529,200 |1 |AMUSE|6,142
Singing solo man RF 2nd best model (mprEg) Sect. 5.1.3(529,200 |1 AMUSE | 6,143
Singing solo man NB best model (mprEg) Sect. 5.1.31529,200 |1 |AMUSE |6,144
Singing solo man NB 2nd best model (mprE) Sect. 5.1.3 /529,200 |1 |AMUSE|6,145
Singing solo man SVM best model (mprE) Sect. 5.1.3(529,200 |1 AMUSE | 6,146
Singing solo man SVM 2nd best model (mprEg) Sect. 5.1.3|529,200 |1 |AMUSE|6,147
Singing solo polyphonic C4.5 best model (mprEg) Sect. 5.1.3(529,200 |1 AMUSE | 6,160
Singing solo polyphonic C4.5 2nd best model (mpre) |Sect. 5.1.3(529,200 |1 |AMUSE 6,161
Singing solo polyphonic RF best model (mprEg) Sect. 5.1.3529,200 |1 AMUSE | 6,162
Singing solo polyphonic RF 2nd best model (mprEg) Sect. 5.1.3(529,200 |1 AMUSE | 6,163
Singing solo polyphonic NB best model (mprE) Sect. 5.1.31529,200 |1 |AMUSE |6,164
Singing solo polyphonic NB 2nd best model (mprE) Sect. 5.1.3529,200 |1 AMUSE | 6,165
Singing solo polyphonic SVM best model (mprE) Sect. 5.1.3[529,200 |1 AMUSE | 6,166
Singing solo polyphonic SVM 2nd best model (mprge) |Sect. 5.1.3(529,200 |1 |AMUSE |6,167
Singing solo rough C4.5 best model (mprEe) Sect. 5.1.3 529,200 1 AMUSE | 6,080
Singing solo rough C4.5 2nd best model (mprEg) Sect. 5.1.3|529,200 |1 |AMUSE|6,081
Singing solo rough RF best model (mprE) Sect. 5.1.3 529,200 |1 AMUSE | 6,082
Singing solo rough RF 2nd best model (mprE) Sect. 5.1.3 529,200 1 AMUSE | 6,083
Singing solo rough NB best model (mprE) Sect. 5.1.31529,200 |1 |AMUSE |6,084
Singing solo rough NB 2nd best model (mprE) Sect. 5.1.3 529,200 |1 AMUSE | 6,085
Singing solo rough SVM best model (mprEg) Sect. 5.1.3 529,200 1 AMUSE | 6,086
Singing solo rough SVM 2nd best model (mprEg) Sect. 5.1.3|529,200 |1 |AMUSE|6,087
Singing solo unison C4.5 best model (mprE) Sect. 5.1.3 529,200 1 AMUSE | 6,100
Singing solo unison C4.5 2nd best model (mprE) Sect. 5.1.3|529,200 |1 |AMUSE|6,101
Singing solo unison RF best model (mprEg) Sect. 5.1.3 /529,200 |1 |AMUSE|6,102
Singing solo unison RF 2nd best model (mprg) Sect. 5.1.3 529,200 1 AMUSE | 6,103
Singing solo unison NB best model (mprE) Sect. 5.1.31529,200 |1 |AMUSE |6,104
Singing solo unison NB 2nd best model (mprEg) Sect. 5.1.3 /529,200 |1 |AMUSE|6,105
Singing solo unison SVM best model (mprg) Sect. 5.1.3 529,200 1 AMUSE | 6,106
Singing solo unison SVM 2nd best model (mgrEg) Sect. 5.1.3|529,200 |1 |AMUSE|6,107
Singing solo woman C4.5 best model (mprE) Sect. 5.1.3 529,200 1 AMUSE | 6,120
Singing solo woman C4.5 2nd best model (mgrE) Sect. 5.1.3|529,200 |1 |AMUSE|6,121
Singing solo woman RF best model (mprE) Sect. 5.1.3 /529,200 |1 |AMUSE|6,122
Singing solo woman RF 2nd best model (mprE) Sect. 5.1.3 (529,200 1 AMUSE | 6,123
Singing solo woman NB best model (msrE) Sect. 5.1.3/529,200 |1 |AMUSE 6,124
Singing solo woman NB 2nd best model (mprE) Sect. 5.1.3 /529,200 |1 |AMUSE|6,125
Singing solo woman SVM best model (mprE) Sect. 5.1.3 (529,200 1 AMUSE | 6,126
Singing solo woman SVM 2nd best model (mprg) Sect. 5.1.3|529,200 |1 |AMUSE|6,127
Singing voice medium C4.5 best model (mprE) Sect. 5.1.3 (529,200 1 AMUSE | 6,060
Singing voice medium C4.5 2nd best model (mprE) Sect. 5.1.3 529,200 |1 |AMUSE|6,061
Singing voice medium RF best model (mprr) Sect. 5.1.3 /529,200 |1 |AMUSE 6,062
Singing voice medium RF 2nd best model (mprE) Sect. 5.1.3 529,200 1 AMUSE | 6,063
Singing voice medium NB best model (mprg) Sect. 5.1.3/529,200 |1 |AMUSE |6,064
Singing voice medium NB 2nd best model (mprE) Sect. 5.1.3529,200 |1 AMUSE | 6,065
Singing voice medium SVM best model (mprE) Sect. 5.1.3 (529,200 1 AMUSE | 6,066
Singing voice medium SVM 2nd best model (mprg) Sect. 5.1.3|529,200 |1 |AMUSE|6,067
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A.7. Structural complexity characteristics and features for their

estimation

Name | Ref. [We | F**| Tool D

CHORD COMPLEXITY (W, € {10;20}, W% =25 = 2,116,800 (96 s))

Number of different chords in 10 s Sect. 2.2.3.2220,500 |1 AMUSE 257

Number of chord changes in 10 s Sect. 2.2.3.2(220,500 |1 AMUSE 258

Shares of the most frequent 20, 40, and 60 per | Sect. 2.2.3.2 {220,500 |3 AMUSE 259

cent of chords with regard to their duration

CHROMA COMPLEXITY (W, € {2;4;8}, W% =285% = 529,200 (24 s))

Bass chroma [135] 2,048 12 | NNLS Chroma | 251

Chroma [135] 2,048 12 | NNLS Chroma | 250

CHROMA RELATED COMPLEXITY (W, € {2;4;8},W5C = 255 = 529,200 (24 s))

Amplitude, position and width of the [206] 512 3 Yale 211

1st spectral peak

Amplitude, position and width of the [206] 512 3 | Yale 212

2nd spectral peak

Amplitude, position and width of the [206] 512 3 Yale 213

3rd spectral peak

Amplitude, position and width of the [206] 512 3 Yale 214

4th spectral peak

Amplitude, position and width of the [206] 512 3 |Yale 215

5th spectral peak

Chroma maximum [206] 512 1 | Yale 205

Chroma tone with the maximum strength [206] 512 1 |Yale 207

Fundamental frequency [206] 512 1 | Matlab 200

Inharmonicity [115] 512 1 | MIR Toolbox |201

Harmonic change detection function [115] 512/4,096|1 | MIR Toolbox |217

HARMONY COMPLEXITY (W, € {2;4;8},WoC = 285 = 529,200 (24 s))

Chroma maximum [206] 512 1 |Yale 205

Chroma tone with the maximum strength [206] 512 1 | Yale 207

Consonance [135] 2,048 1 | NNLS Chroma | 255

Harmonic change [135] 2,048 1 |NNLS Chroma | 254

Harmonic change detection function [115] 512/4,096|1 | MIR Toolbox |217

Interval strengths estimated from 10 highest |Sect. 2.2.3.2|2,048 12 | AMUSE 260

semitone values

Interval strengths estimated from the semitone | Sect. 2.2.3.2 | 2,048 12 | AMUSE 261

spectrum above 3/4 of the maximum value

Key and its clarity [115] 512/4,096 |2 | MIR Toolbox |202

Local tuning [135] 8,192 1 |NNLS Chroma | 253

Major/minor alignment [115] 512/4,096 | 1 MIR Toolbox |203

Number of different chords in 10 s Sect. 2.2.3.2(220,500 |1 AMUSE 257

Number of chord changes in 10 s Sect. 2.2.3.2220,500 |1 AMUSE 258

Shares of the most frequent 20, 40, and 60 per | Sect. 2.2.3.2 (220,500 |3 AMUSE 259

cent of chords with regard to their duration

Strengths of major keys [115] 512/4,096 |12 | MIR Toolbox |209

Strengths of minor keys [115] 512/4,096 |12 | MIR Toolbox |210

Tonal centroid vector [115] 512/4,096 |6 | MIR Toolbox |216

INSTRUMENTS COMPLEXITY (W, € {10;20}, WS¢ = 25°% = 2,116,800 (96 s))

Guitar RF best model (mgrg) Sect. 5.1.1 |220,500 1 AMUSE 2,001

Guitar SVM best model (mgg) Sect. 5.1.1 220,500 |1 |AMUSE 2,003

Piano RF best model (mgrg) Sect. 5.1.1 220,500 |1 |AMUSE 2,021
continued on next page
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continued from previous page

Name Ref. We F** | Tool 1D
Piano SVM best model (mrEg) Sect. 5.1.1{220,500|1 |AMUSE 2,023
Wind RF best model (mgrg) Sect. 5.1.1 220,500 | 1 AMUSE 2,041
Wind SVM best model (mrEg) Sect. 5.1.1 220,500 | 1 AMUSE 2,043
Strings RF best model (mrg) Sect. 5.1.1{220,500|1 |AMUSE 2,061
Strings SVM best model (mrg) Sect. 5.1.1 220,500 | 1 AMUSE 2,063
TEMPO AND RHYTHM COMPLEXITY (W, € {2;4;8},WZ>° = 255% = 529,200 (24 s))
Duration of music piece [206] -1 1 |[Matlab 400
Estimated beat number per minute [206] 229,376 |1 | Matlab 421
Estimated tatum number per minute [206] 2293761 | Matlab 422
Estimated onset number per minute [206] 229,376|1 | Matlab 420
Tempo based on onset times [115] 66,150 |1 | MIR Toolbox | 425
Five peaks of fluctuation curves [115] 229,376 |5 | MIR Toolbox | 427
summed across all bands

Characteristics of fluctuation patterns [206] 32,768 |7 |Matlab 410
Rhythmic clarity [115] 66,150 |1 MIR Toolbox | 418
TIMBRE COMPLEXITY (W, € {2;4;8}, W2 = 285 = 529,200 (24 s))

Low energy [206] 512 1 |jAudio 6
Root mean square [206] 512 1 |jAudio 4
RMS peak number in 3 seconds [115] 66,150 |1 | Matlab 11
RMS peak number above half of maximum |[115] 66,150 |1 | Matlab 12
peak in 3 seconds

Zero-crossing rate [206] 512 1 |jAudio 0
Average distance between extremal spectral |[206] 512 2 Yale 2
values and its variance

Average distance between zero-crossings of the | [206] 512 2 Yale 3
time-domain signal and its variance

Normalised energy of harmonic components | [206] 512 1 Yale 7
Spectral bandwidth [206] 512 1 |Yale 16
Spectral brightness [115] 512 1 |MIR Toolbox |23
Spectral centroid [206] 512 1 |Yale 14
Spectral crest factor [206] 512 4 |Yale 19
Spectral discrepancy [206] 512 1 |Yale 31
Spectral extent [206] 512 1 |Yale 21
Spectral flatness measure [206] 512 4 |Yale 20
Spectral flux [206] 512 1 |jAudio 22
Spectral irregularity [115] 512 1 MIR Toolbox | 15
Spectral kurtosis [206] 512 1 |Yale 18
Spectral skewness [206] 512 1 |Yale 17
Spectral slope [206] 512 1 |Yale 29
Sensory roughness [115] 1,024 |1 MIR Toolbox | 24
Sub-band energy ratio [206] 512 4 |Yale 25
Tristimulus [206] 512 2 | Matlab 10
y-axis intercept [206] 512 1 |Yale 30
Delta MFCCs [115] 512 13 | MIR Toolbox |48
Mel frequency cepstral coefficients [206] 512 13 | MIR Toolbox | 39
Angles in phase domain [206] 512 1 | Yale 32
Distances in phase domain [206] 512 1 |Yale 33




B. Song Lists

The following tables describe our song database, where the column names correspond to:

e Interpret: artist, band, or composer (for classic).
e Album: album name.

e Genre: genre (exclusive). 120 albums are distributed across the six genres: 45
Pop/Rock, 15 Classic, 15 Electronic, 15 Jazz, 15 R'n’B, 15 Rap.

e Styles: albums, which were marked by AMG experts as belonging to one or several
styles used in our experiments.

e N: album track number.

e Song: song name.

B.1. Genre and style album distribution

Interpret Album Genre Styles
2Pac Me Against The World Rap
2raumwohnung In Wirklich Electronic
AC/DC Back In Black Pop/Rock | HeavyMetal
ATB Dedicated Electronic | ClubDance
Abba Gold Pop/Rock
Aim Cold Water Music Electronic
Alan Parsons Project, The Tales Of Mystery And Imagination- | Pop/Rock | ProgRock
Edgar Allan Poe
Amos, Tori The Beekeeper Pop/Rock
Anastacia Anastacia Pop/Rock
Armstrong, Louis All-Time Greatest Hits Jazz
Arrested Development 3 Years 5 Months And 2 Days Rap
In The Life Of
Ashanti Ashanti R'n’B
BAP Fiir Usszeschnigge Pop/Rock
Bach, Johann Sebastian Italienisches Konzert etc - Classic
Alfred Brendel
Bach, Johann Sebastian Organ Works Classic
Baker, Chet Jazz Masters 32 Jazz
Barclay James Harvest Best Of Barclay James Harvest Pop/Rock | ProgRock
Basie, Count Portrait Jazz
Beastie Boys Licensed To 11l Rap
Beethoven, Ludwig van Piano Sonatas-Maria-Joao Pires Classic
Benoit, David Urban Daydreams Jazz
Berlioz, Hector Symphonie Fantastique - Classic
Orchester de RTL
continued on next page
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continued from previous page

Interpret Album Genre Styles
Boney M The Magic Of Boney M R'n’B ClubDance
Braxton, Toni Toni Braxton R’'n'B
Brecker Brothers The Out Of The Loop R'n’B
Brecker, Michael Tales From The Hudson Jazz
Burgh, Chris de Spanish Train And Other Stories Pop/Rock | ProgRock
Busta Rhymes When Disaster Strikes Rap
Carey, Mariah Daydream R'n’B ClubDance
Charles, Ray Ray Soundtrack R’n’B
Chemical Brothers, The We Are The Night Electronic | ClubDance
Chicago 17 Pop/Rock
Chopin, Frederic Horowitz Plays Chopin Classic
Chopin, Frederic Waltzes-Vladimir Ashkenazy Classic
Coldplay X And Y Pop/Rock
Collins, Phil Both Sides Pop/Rock
Coltrane, John The Very Best Of John Coltrane Jazz
Cooke, Sam Sam Cooke R'n’'B
Coolio The Return Of The Gangsta Rap
Corrs, The In Blue Pop/Rock
Cosmic Gate Rhythm And Drums Electronic
Cypress Hill Skull And Bones Rap
Davis, Miles Kind Of Blue Jazz
Depeche Mode The Singles Pop/Rock | ClubDance
Destiny’s Child Destiny’s Child R’n’B ClubDance
Diamond, Neil Serenade Pop/Rock
Dire Straits Love Over Gold Pop/Rock
Disturbed Ten Thousand Fists Pop/Rock
Dr. Dre 2001 Rap
Dream Theater Images And Words Pop/Rock | ProgRock,
HeavyMetal
Ellington, Duke With Money Jungle Jazz
Charles Mingus And Max Roach
Eminem The Eminem Show Rap
Eurythmics Peace Pop/Rock
Faithless Sunday 8pm Special Edition Electronic | ClubDance
Fatboy Slim Palookaville Electronic | ClubDance
Foo Fighters One By One Pop/Rock
Foxy Brown Chyna Doll Rap
Franklin, Aretha Collections R'n’'B
Furtado, Nelly Loose Pop/Rock
Gaye, Marvin Midnight Love R’n’B
Genesis We Can’t Dance Pop/Rock | ProgRock
Glen, Marla This Is Marla Glen R’n’B
Gnarls Barkley St. Elsewhere Rap
Grandmaster Mele-Mel And Scorpio Right Now Rap
Gronemeyer, Herbert 4630 Bochum Pop/Rock
Groove Armada LoveBox Electronic | ClubDance
Haendel, Georg Friedrich Organ Concertos Op. 4 - Classic
Rudolph Ewerhart
Hancock, Herbie - Brecker, Michael - |Directions In Music Jazz
Hargrove, Roy
Haydn, Joseph Piano Sonatas - Carmen Piazzini Classic
In Flames Clayman Pop/Rock | HeavyMetal

continued on next page
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continued from previous page
Interpret Album Genre Styles
Irish Music Green Green Grass Pop/Rock
Jacques Loussier Trio Vivaldi - The Four Seasons Jazz
Jarre, Jean-Michel Images Electronic
Joel, Billy 2000 Years The Millennium Concert | Pop/Rock
John, Elton Made In England Pop/Rock
Jones, Norah Feels Like Home Pop/Rock
Kruder And Dorfmeister The K And D Sessions Electronic
Madonna Confessions On A Dance Floor Pop/Rock | ClubDance
Madsen Goodbye Logik Pop/Rock
Mann, Herbie Just Wailin’ Jazz
Massive Attack Blue Lines Electronic | ClubDance
Mendelssohn And Schubert Symph No 4 Italian-Symph No 8| Classic
Unfinished-Giuseppe Sinopoli
Miller, Glenn Portrait Jazz
Mozart, Wolfgang Amadeus Frithe Salzburger Meistersinfonien- | Classic
Kolner Kammerorchester
Muse Showbiz Pop/Rock
Mussorgsky And Ravel Bilder einer Ausstellung - Classic
Bolero - Berliner Philarmoniker
Nightwish Century Child Pop/Rock | HeavyMetal
Nils Landgren Funk Unit Fonk Da World Pop/Rock
Nirvana Nevermind Pop/Rock
Orff, Carl Carmina Burana Classic
Outkast Stankonia Rap
Parker, Charlie Portrait Jazz
Prodigy The Fat Of The Land Electronic | ClubDance
Queen Greatest Hits Pop/Rock | HeavyMetal
Rihanna Music Of The Sun R’n’B
Rollins, Sonny Portrait Jazz,
Ross, Diana Blue R'n’'B
Roxette Room Service Pop/Rock
Schumann, Robert Concert Pieces With Orchestra - Classic
Sinfonieorchester des Siidwestfunks
Scooter Back To The Heavyweight Jam Electronic
Sex Pistols Never Mind The Bollocks Pop/Rock
Sibelius, Jean Symphonien Nos. 5 And 6 Classic
Smetana, Bedrich The Moldau-Wiener Philarmoniker | Classic
Smolski, Victor Majesty And Passion Pop/Rock
Snoop Doggy Dogg Doggystyle Rap
Snow Patrol Eyes Open Pop/Rock
Soulfly Conquer Pop/Rock | HeavyMetal
Steely Dan Pretzel Logic Pop/Rock
Stern, Leni Like One Jazz
Stewart, Al Year Of The Cat Pop/Rock | ProgRock
Sylver Chances Electronic
Therion Secret Of The Runes Pop/Rock | HeavyMetal
Timbaland Presents Shock Value R'n’B
Toto The Seventh One Pop/Rock
Usher Confessions R’n’B
Van Dyk, Paul Zurdo Electronic
Wayne, Jeft War Of The Worlds Pop/Rock | ProgRock
Wir sind Helden Von hier an blind Pop/Rock
continued on next page
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Interpret Album Genre | Styles
X-Cutioners X-Pressions Rap
Xzibit Weapons Of Mass Destruction Rap

B.2. Genre and

style training sets

Interpret

[Album

[N [Song

CLASSIC - POSITIVE SONGS

Chopin, Frederic
Haydn, Joseph

Mussorgsky And Ravel

Orff, Carl
Sibelius, Jean

Beethoven, Ludwig van

Haendel,

Georg Friedrich
Mendelssohn

And Schubert
Schumann, Robert

Smetana, Bedrich

Waltzes-Vladimir Ashkenazy
Piano Sonatas - Carmen Piazzini

Bilder einer Ausstellung -
Bolero - Berliner Philarmoniker
Carmina Burana

Symphonien Nos. 5 And 6

Piano Sonatas-Maria-Joao Pires

Organ Concertos Op. 4 -

Rudolph Ewerhart

Symph No 4 Italian-Symph No 8
Unfinished-Giuseppe Sinopoli
Concert Pieces With Orchestra -
Sinfonieorchester des Stidwestfunks
The Moldau-Wiener Philarmoniker

08
12

04

07

01

10

01

02

05

06

As-dur op. 64 No.3

Sonata No.4 in E major Hob.XVI13-
II. Menuet. Trio

Ravel Rapsodie Espagnole-3.
banera

Floret silva

Symphonie No.5 Es-dur op.82 -
1. Tempo molto moderato -
Largamente

Sonata No.23 in F minor op. 57
Appassionata-Allegro assai
Opus 4 No.l-Larghetto e staccato

Ha-

Schubert Symphony No. 8
Unfinished-II. Andante con moto
Konzertstiick for Four Horns op.86-
Romanze

The Bartered Bride-Furiant

CLASSIC - NEGATIVE SON

GS

Charles, Ray

Foxy, Brown
Franklin, Aretha
Grénemeyer, Herbert
Madonna

ATB

Amos, Tori

Brecker Brothers The
Jarre, Jean-Michel
Rollins, Sonny

Ray Soundtrack

Chyna Doll

Collections

4630 Bochum

Confessions On A Dance Floor
Dedicated

The Beekeeper

Out Of The Loop

Images

Portrait

04
09
04
10
04
01
16
03
17
07

Drown In My Own Tears
Bonnie And Clyde Part 11
Mockingbird

Mambo

Future Lovers

Dedicated

Hoochie Woman

Scrunch

Rendez-Vous 2

No Moe

POP - POSITIVE SONGS

Alan Parsons Project,
The

Diamond, Neil
Disturbed

Furtado, Nelly

Joel, Billy

Dream Theater
Eurythmics
Snow Patrol
Stewart, Al
Wayne, Jeff

Tales of Mystery And Imagination-
Edgar Allan Poe

Serenade

Ten Thousand Fists

Loose

2000 Years The Millennium
Concert

Images And Words

Peace

Eyes Open

Year Of The Cat

War Of The Worlds

06

07
14
08
14

01
03
01
08
10

The Fall Of The House Of Usher-
I Prelude

Reggae Strut

Avarice

Glow

Goodnight Saigon

Pull Me Under
Power To The Meek
You're All I Have
One Stage Before
Brave New World

POP - NEGATIVE SONGS

continued on next page
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continued from previous page

Interpret Album N [Song

Aim Cold Water Music 14 | Underground Crown Holders Bonus
Track

Arrested Development |3 Years 5 Months And 2 Days 10U

In The Life Of

Coltrane, John The Very Best Of John Coltrane |08 | Summertime

Jarre, Jean-Michel Images 05 | Computer Week-End

Van Dyk, Paul Zurdo 05 | Escape

Bach, Johann Sebastian | Organ Works 01| Toccata And Fuge BWV 565
d-moll-1. Toccata

Chemical Brothers The | We Are The Night 07 | The Salmon Dance feat. Fatlip

Gnarls Barkley St. Elsewhere 04 | Gone Daddy Gone

Prodigy The Fat Of The Land 10 | Fuel My Fire

Usher Confessions 10 | Truth Hurts

RAP - POSITIVE SONGS

2Pac Me Against The World 13 | Fuck The World

Dr. Dre 2001 15| Murder Ink

Eminem The Eminem Show 03 | Business

Grandmaster Mele-Mel | Right Now 08 | Right Now

And Scorpio

X-Cutioners X-Pressions 12 | Solve For X

Busta Rhymes When Disaster Strikes 12 | Rhymes Galore

Coolio The Return Of The Gangsta 05 | Drop Something feat. Brasa

Foxy Brown Chyna Doll 10 | 456

Outkast Stankonia 22 | Slum Beautiful

Snoop Doggy Dogg Doggystyle 07| Lodi Dodi

RAP - NEGATIVE SONGS

Boney M The Magic Of Boney M 15 | Baby Do You Wanna B

Burgh, Chris de Spanish Train And Other Stories |04 | Patricia The Stripper

Chicago 17 05 | Remember The Feeling

Franklin, Aretha Collections 02 | What A Difference A Day Makes

Wayne, Jeff War Of The Worlds 06 | The Red Weed Part 1

AC/DC Back In Black 04 | Given The Dog A Bone

Charles, Ray Ray Soundtrack 11 | Unchain My Heart

Chopin, Frederic Horowitz Plays Chopin 13 | Mazurka in f~-Moll Op.59 No. 3

Ellington, Duke With Money Jungle 11 | Backward Country Boy Blues

Charles Mingus And

Max Roach

Queen Greatest Hits 21 |1 Want It All

CLUBDANCE - POSITIVE SONGS

Boney M The Magic Of Boney M 05| No Woman No Cry

Chemical Brothers, The | We Are The Night 06 | Das Spiegel

Faithless Sunday 8pm Special Edition 11 | Killers Lullaby

Groove Armada LoveBox 03 | Remember

Massive Attack Blue Lines 02 | One Love

Boney M The Magic Of Boney M 14 | Mary’s Boy Child-Oh My Lord

Chemical Brothers, The | We Are The Night 12 | The Pills Won’t Help You Now
feat. Midlake

Faithless Sunday 8pm Special Edition 07| She’s My Baby

Groove Armada LoveBox 09 | Easy

Massive Attack Blue Lines 05 | Five Man Army

CLUBDANCE - NEGATIVE SONGS

Coldplay [X And Y [04]Fix You

continued on next page
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5 page

Interpret Album N [Song

Sex Pistols Never Mind The Bollocks 04 | Liar

Sibelius, Jean Symphonien Nos. 5 And 6 08 | Symphonie No.6 d-moll
op.104-3. Poco vivace

Smetana, Bedrich The Moldau-Wiener Philarmoniker | 07 | The Bartered Bride-Skocné

Stewart, Al Year Of The Cat 07 | Broadway Hotel

Armstrong, Louis All-Time Greatest Hits 03| Sittin’ In The Sun

Haendel, Georg Organ Concertos Op. 4 - 16 | Opus 4 No.5-Larghetto

Friedrich Rudolph Ewerhart

Haydn, Joseph Piano Sonatas - Carmen Piazzini |16 | Sonata No.38 in D major
Hob.XVI33-1II. Tempo di Minuet

Jones, Norah Feels Like Home 12 | The Prettiest Thing

X-Cutioners X-Pressions 15 | Beat Treats

HEAVYMETAL - POSITIVE SONGS

AC/DC Back In Black 08 |Have A Drink On Me

In Flames Clayman 02 | Pinball Map

Queen Greatest Hits 13 | Play The Game

Soulfly Conquer 13 | Sailing On

Therion Secret Of The Runes 05 | Schwarzalbenheim

AC/DC Back In Black 06 | Back In Black

In Flames Clayman 06 | Clayman

Queen Greatest Hits 24 | Its A Hard Life

Soulfly Conquer 01 | Blood Fire War Hate

Therion Secret Of The Runes 10 | Helheim

HEAVYMETAL - NEGATIVE SONGS

ATB Dedicated 01 | Dedicated

Corrs, The In Blue 07 | Irresistible

Cypress Hill Skull And Bones 15| A Man

Mozart, Frithe Salzburger Meistersinfonien- | 10 | Sinfonie D-Dur KV2022 Andantino

Wolfgang Amadeus Kolner Kammerorchester con moto

Sibelius, Jean Symphonien Nos. 5 And 6 08 | Symphonie No.6 d-moll op.104 -
3. Poco vivace

Beastie Boys Licensed To Il 01 | Rhymin’ And Stealin’

Coolio The Return Of The Gangsta 05 | Drop Something feat. Brasa

Dire Straits Love Over Gold 01 | Telegraph Road

Eminem The Eminem Show 09 | Drips

Irish Music Green Green Grass 12 | Galway Town

PROGROCK - POSITIVE SONGS

Alan Parsons Project, Tales Of Mystery And Imagination- | 06 | The Fall Of The House Of Usher-I

The Edgar Allan Poe Prelude

Barclay James Harvest |Best Of Barclay James Harvest 03 | Berlin

Burgh, Chris de Spanish Train And Other Stories |08 | Old Friend

Genesis We Can’t Dance 08 | Living Forever

Wayne, Jeff War Of The Worlds 01| The Eve Of The War

Alan Parsons Project, Tales Of Mystery And Imagination- | 05 | The System Of Doctor Tarr And

The Edgar Allan Poe Professor Fether

Barclay James Harvest |Best Of Barclay James Harvest 13 | John Lennon’s Guitar

Burgh, Chris de Spanish Train And Other Stories |04 | Patricia The Stripper

Genesis We Can’t Dance 11| Since I Lost You

Wayne, Jeff War Of The Worlds 02 | Horsell Common And The Heat Ray

PROGROCK - NEGATIVE SONGS

Chicago 17 06 | Along Comes A Woman

Cooke, Sam Sam Cooke 05 | Having A Party

continued on next page
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continued from previous page

Interpret Album N [Song

Franklin, Aretha Collections 04 | Mockingbird

Jarre, Jean-Michel Images 14 | Moon Machine

Sibelius, Jean Symphonien Nos. 5 And 6 04 | Symphonie No.5 Es-dur op.82-3.
Allegretto molto-Misterioso -
Un pochettino largamente -
Largamente assai

2Pac Me Against The World 12| 0Old School

Bach, Johann Sebastian | Italienisches Konzert etc - 04 | Chorale Prelude Ich ruf zu dir Herr

Alfred Brendel Jesu Christ BWV 639 Arr. Busoni

Busta Rhymes When Disaster Strikes 07| Turn It Up

Eurythmics Peace 06 | Peace Is Just A Word

John, Elton Made In England 03 | House

B.3. Genre and style optimisation and holdout sets

Beethoven, Ludwig van

Benoit, David
Berlioz, Hector

Boney M

Braxton, Toni
Brecker Brothers The
Brecker, Michael

Piano Sonatas-Maria-Joao Pires

Urban Daydreams
Symphonie Fantastique -
Orchester de RTL

The Magic Of Boney M
Toni Braxton

Out Of The Loop

Tales From The Hudson

Interpret [ Album [ N [ Song
OPTIMISATION SET OS120
2Pac Me Against The World 07 | Heavy In The Game
2raumwohnung In Wirklich 05 | Freie Liebe
AC/DC Back In Black 05 | Let Me Put My Love Into You
ATB Dedicated 04 | You're Not Alone
Abba Gold 04 | Mamma Mia
Aim Cold Water Music 13 | Another Summer Bonus Track
Alan Parsons Project, Tales Of Mystery And Imagination- | 09 | The Fall Of The House Of Usher -
The Edgar Allan Poe IV Pavane
Amos, Tori The Beekeeper 18 | Marys Of The Sea
Anastacia Anastacia 12 | Maybe Today
Armstrong, Louis All-Time Greatest Hits 06 | It Takes Two To Tango
Arrested Development |3 Years 5 Months And 2 Days In |07 | Raining Revolution
The Life Of
Ashanti Ashanti 09 | Baby
BAP Fiir Usszeschnigge 16 | Waschsalon
Bach, Johann Sebastian | Italienisches Konzert etc - 06 | Chromatic Fantasia And Fugue in D
Alfred Brendel minor BWV 903
Bach, Johann Sebastian | Organ Works 07 | Praeludium And Fuge BWV552
es-dur-1. Praeludium
Baker, Chet Jazz Masters 32 10| Mean To Me
Barclay James Harvest | Best Of Barclay James Harvest 04 | Child Of The Universe
Basie, Count Portrait 09 [ One O’Clock Jump
Beastie Boys Licensed To 11l 13| Time To Get 111

04

10
08

19
02
05
02

Sonata No.8 in C minor Op. 13
Pathetique-Grave-Allegro di molto e
con brio

As If I Could Reach Rainbows
Damnation de Faust 3. Menuet des
Follets

Sunny Remix By Mousse T

Breathe Again

African Skies

Midnight Voyage

continued on next page
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Interpret Album N [Song

Burgh, Chris de Spanish Train And Other Stories |03 | This Song For You

Busta Rhymes When Disaster Strikes 11 | We Could Take It Outside

Carey, Mariah Daydream 08 | Long Ago

Charles, Ray Ray Soundtrack 06 | Mary Ann

Chemical Brothers The | We Are The Night 11 | Harpoons

Chicago 17 01| Stay The Night

Chopin, Frederic Horowitz Plays Chopin 14 | Mazurka in f-Moll Op.7 No. 3

Chopin, Frederic Waltzes-Vladimir Ashkenazy 09 | As-dur op. 69 No.1

Coldplay X And Y 07| Speed Of Sound

Collins, Phil Both Sides 03 | Everyday

Coltrane, John The Very Best Of John Coltrane 11 | Body And Soul

Cooke, Sam Sam Cooke 11 | Touch The Hem Of His Garment

Coolio The Return Of The Gangsta 10 | One More Night

Corrs, The In Blue 06 | Radio

Cosmic Gate Rhythm And Drums 04 | The Drums Video Mix

Cypress Hill Skull And Bones 03 | Rap Superstar

Davis, Miles Kind Of Blue 03 | Blue In Green

Depeche Mode The Singles 29 | Walking In My Shoes

Destiny’s Child Destiny’s Child 02| No No No Part 2 feat. Wyclef Jean

Diamond, Neil Serenade 02 | Rosemary’s Wine

Dire Straits Love Over Gold 05| It Never Rains

Disturbed Ten Thousand Fists 05 | Stricken

Dr. Dre 2001 13 | Bitch Niggaz

Dream Theater Images And Words 05 | Metropolis Part I The Miracle And
The Sleeper

Ellington, Duke With Money Jungle 13 | Switch Blade Alternate Take

Charles Mingus And

Max Roach

Eminem The Eminem Show 14 | Hailies Song

Eurythmics Peace 04 | Beautiful Child

Faithless Sunday 8pm Special Edition 10 | Sunday 8pm

Fatboy Slim Palookaville 05| Put It Back Together

Foo Fighters One By One 06 | Tired Of You

Foxy Brown Chyna Doll 14 | BWA

Franklin, Aretha Collections 06 | God Bless The Child

Furtado, Nelly Loose 05 | Showtime

Gaye, Marvin Midnight Love 02 | Sexual Healing

Genesis We Can’t Dance 02 | Jesus He Knows Me

Glen Marla This Is Marla Glen 08 | Feet On The Ground

Gnarls Barkley St. Elsewhere 01| Go-Go Gadget Gospel

Grandmaster Mele-Mel | Right Now 04 | Mama

And Scorpio

Grénemeyer, Herbert 4630 Bochum 03 | Flugzeuge im Bauch

Groove Armada LoveBox 11 | But I Feel Good

Haendel, Organ Concertos Op. 4 - 21| Opus 4 No.6-Larghetto

Georg Friedrich Rudolph Ewerhart

Hancock, Herbie - Directions In Music 04 | Misstery

Brecker, Michael -

Hargrove, Roy

Haydn, Joseph Piano Sonatas - Carmen Piazzini |17 |Sonata No.32 in C-sharp minor
Hob.XVI36-1. Moderato

In Flames Clayman 09 | Swim

continued on next page
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continued from previous page

Interpret Album N [Song
Irish Music Green Green Grass 11| Red Is The Rose
Jacques Loussier Trio Vivaldi - The Four Seasons 06 | Summer-Concerto No. 2 in G Minor-
Presto
Jarre, Jean-Michel Images 07| Ethnicolor 1
Joel, Billy 2000 Years The Millennium 15| We Didn’t Start The Fire
Concert
John, Elton Made In England 05 | Pain
Jones, Norah Feels Like Home 05| In The Morning
Kruder And Dorfmeister | The K And D Sessions 15 | Kruder And Dorfmeister
Boogie Woogie
Madonna Confessions On A Dance Floor 02 | Get Together
Madsen Goodbye Logik 02 | Ein Sturm
Mann, Herbie Just Wailin’ 05 | Jumpin With Symphony Sid
Massive Attack Blue Lines 03 | Blue Lines
Mendelssohn Symph No 4 Italian-Symph No 8|04 | Mendelssohn Symphony No. 4
And Schubert Unfinished-Giuseppe Sinopoli Italian-II. Andante con moto
Miller, Glenn Portrait 03 | Chattanooga Choo Choo
Mozart, Friithe Salzburger Meistersinfonien- | 05 | Sinfonie A-Dur KV2011Allegro mod-
Wolfgang Amadeus Kolner Kammerorchester erato
Muse Showbiz 02 | Muscle Museum
Mussorgsky And Ravel | Bilder einer Ausstellung - 15 | Mussorgsky Pictures At An Exhibi-
Bolero - Berliner Philarmoniker tion - 10. Samuel Goldenberg und
Schmuyle
Nightwish Century Child 05 | Slaying The Dreamer
Nils Landgren Funk Unit | Fonk Da World 05| Anytime Anywhere
Nirvana Nevermind 09 | Lounge Act
Orff, Carl Carmina Burana 20 | Circa mea pectora
Outkast Stankonia 10 | 'l Call Before I Come
Parker, Charlie Portrait 07| Victory Ball
Prodigy The Fat Of The Land 05 | Serial Thrilla
Queen Greatest Hits 25 | Breakthru
Rihanna Music Of The Sun 12 | Now I Know
Rollins, Sonny Portrait 12 | Newks Fadeaway
Ross, Diana Blue 16 | T’aint’ Nobodys’ Bizness If T Do
Roxette Room Service 07 | Bringing Me Down To My Knees
Schumann, Robert Concert Pieces With Orchestra - |07 | Symphony No.1 op 38 Spring -
Sinfonieorchester des Siidwestfunks II. Larghetto
Scooter Back To The Heavyweight Jam 05 | Fuck The Millenium
Sex Pistols Never Mind The Bollocks 06 | Problems
Sibelius, Jean Symphonien Nos. 5 And 6 06 | Symphonie No.6 d-moll op.104-1. Al-
legro molto moderato
Smetana, Bedrich The Moldau-Wiener Philarmoniker | 02 | M4 vlast-Vltava-Die Moldau
Smolski, Victor Majesty And Passion 12 | Concert for 2 Violins With Orchestra
Chapter 3
Snoop Doggy Dogg Doggystyle 10| Who Am I
Snow Patrol Eyes Open 04 | Shut Your Eyes
Soulfly Conquer 08 | Doom
Steely Dan Pretzel Logic 03 | Any Major Dude Will Tell You
Stern, Leni Like One 01 | Bubbles
Stewart, Al Year Of The Cat 01 | Lord Grenville
Sylver Chances 02 | Skin
Therion Secret Of The Runes 03| Asgard
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Timbaland Presents Shock Value 08 | Boardmeeting

Toto The Seventh One 06 | Stay Away

Usher Confessions 07 | Caught Up

Van Dyk, Paul Zurdo 11 | Otro Dia

Wayne, Jeff War Of The Worlds 04 | Forever Autumn

Wir sind Helden Von hier an blind 04 | Zuhélter

X-Cutioners X-Pressions 19 | Poetry In Motion

Xzibit Weapons Of Mass Destruction 07 | Judgement Day

TEST SET TS120

2Pac Me Against The World 02| If I Die 2Nite

2raumwohnung In Wirklich 01| Da Sind Wir

ACDC Back In Black 03 | What Do You Do For Money Honey

ATB Dedicated 09 |1 See It

Abba Gold 11 | Chiquitita

Aim Cold Water Music 04 | Sail

Alan Parsons Project, Tales Of Mystery And Imagination- | 11 | To One In Paradise

The Edgar Allan Poe

Amos, Tori The Beekeeper 17 | Goodbye Pisces

Anastacia Anastacia 08 | Pretty Little Dum Dum

Armstrong, Louis All-Time Greatest Hits 12 | La Vie En Rose

Arrested Development |3 Years 5 Months And 2 Days In |13 | Dawn Of The Dreads
The Life Of

Ashanti Ashanti 16 | Dreams

BAP Fiir Usszeschnigge 06 | Frau ich freu mich

Bach, Johann Sebastian | Italienisches Konzert etc - 08 | Fantasia And Fugue in A minor
Alfred Brendel BWYV 904

Bach, Johann Sebastian | Organ Works 14 | Kommst du nun Jesu vom

Himmel herunter BWV 650

Baker, Chet Jazz Masters 32 05| How Deep Is The Ocean

Barclay James Harvest |Best Of Barclay James Harvest 11 | Welcome To The Show

Basie, Count Portrait 13 | Wild Bill Boogie

Beastie Boys Licensed To Ill 09 | Paul Revere

Beethoven, Ludwig van | Piano Sonatas - Maria-Joao Pires |08 |Sonata No.17 in D minor Op. 31

No.2 The Tempest-Adagio

Benoit, David Urban Daydreams 05 | Snow Dancing

Berlioz, Hector Symphonie Fantastique - 03 | Symphonie Fantastique 3. Scene
Orchester de RTL aux champs

Boney M The Magic Of Boney M 08 | Painter Man

Braxton, Toni Toni Braxton 01 | Another Sad Love Song

Brecker Brothers, The Out Of The Loop 04 | Secret Heart

Brecker, Michael Tales From The Hudson 04 | Beau Rivage

Burgh, Chris de Spanish Train And Other Stories |09 | The Tower

Busta Rhymes When Disaster Strikes 05| So Hardcore

Carey, Mariah Daydream 01 | Fantasy

Charles, Ray Ray Soundtrack 08 | What’d I Say Live

Chemical Brothers, The | We Are The Night 08 | Burst Generator

Chicago 17 03 | Hard Habit To Break

Chopin, Frederic Horowitz Plays Chopin 10 | Mazurka in e-Moll Op.41 No. 2

Chopin, Frederic Waltzes-Vladimir Ashkenazy 19 | Es-Dur Op. Posth

Coldplay X AndY 01| Square One

Collins, Phil Both Sides 09 | There’s A Place For Us

Coltrane, John The Very Best Of John Coltrane |06 | My Favorite Things

continued on next page
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Interpret Album N [Song

Cooke, Sam Sam Cooke 14 | Nothing Can Change This Love

Coolio The Return Of The Gangsta 07 | Make Money feat. Gangsta-Lu

Corrs, The In Blue 15| Rebel Heart Instrumental

Cosmic Gate Rhythm And Drums 09 | Wicked

Cypress Hill Skull And Bones 07 | Highlife

Dayvis, Miles Kind Of Blue 06 | Flamenco Sketches Alternate Take

Depeche Mode The Singles 18 | Stripped

Destiny’s Child Destiny’s Child 08 | Show Me The Way

Diamond, Neil Serenade 06 | Yes I Will

Dire Straits Love Over Gold 04 | Love Over Gold

Disturbed Ten Thousand Fists 06 | 'm Alive

Dr. Dre 2001 22 | The Message

Dream Theater Images And Words 02 | Another Day

Ellington, Duke With Money Jungle 02 | Fleurette Africaine

Charles Mingus And

Max Roach

Eminem The Eminem Show 12| Sing For The Moment

FEurythmics Peace 08 |1 Want It All

Faithless Sunday 8pm Special Edition 05 | Take The Long Way Home

Fatboy Slim Palookaville 07 | Push And Shove

Foo Fighters One By One 13 | Sister Europe Bonus Track

Foxy Brown Chyna Doll 15| Tramp

Franklin, Aretha Collections 03 | Misty

Furtado, Nelly Loose 03| Do It

Gaye, Marvin Midnight Love 05| Turn On Some Music

Genesis We Can’t Dance 03 | Driving The Last Spike

Glen, Marla This Is Marla Glen 06 | Control

Gnarls Barkley St. Elsewhere 03| St. Elsewhere

Grandmaster Mele-Mel | Right Now 10| When You Lose A Child

And Scorpio

Grénemeyer, Herbert 4630 Bochum 02 | Maenner

Groove Armada LoveBox 08 | Tuning In Rewritten

Haendel, Organ Concertos Op. 4 - 12 | Opus 4 No.3-Allegro Gavotte

Georg Friedrich Rudolph Ewerhart

Hancock, Herbie - Directions In Music 01| The Sorcerer

Brecker, Michael -

Hargrove, Roy

Haydn, Joseph Piano Sonatas - Carmen Piazzini |07 | Sonata No.9 in C major Hob.
XVI7-III. Finale. Allegro

In Flames Clayman 08 | Brush The Dust Away

Irish Music Green Green Grass 03 | The Foggy Dew

Jacques Loussier Trio Vivaldi - The Four Seasons 05 | Summer-Concerto No. 2 in
G Minor-Adagio

Jarre, Jean-Michel Images 08 | London Kid

Joel, Billy 2000 Years The Millennium 02 | Big Shot

Concert

John, Elton Made In England 08 | Please

Jones, Norah Feels Like Home 03 | Those Sweet Words

Kruder And Dorfmeister | The K And D Sessions 09 | Rainer Trueby Trio Donaueschingen

Peter Kruders Donaudampfschiff-
fahrtsgesellschaftskapitédnskajiitenre-
mix

continued on next page




156

B: Song Lists

continued from previous page

Interpret Album N [Song

Madonna Confessions On A Dance Floor 11| Push

Madsen Goodbye Logik 01 | Du Schreibst Geschichte

Mann, Herbie Just Wailin’ 04 | Gospel Truth

Massive Attack Blue Lines 08 | Lately

Mendelssohn Symph No 4 Italian-Symph No 8|06 | Mendelssohn Symphony No. 4

And Schubert Unfinished-Giuseppe Sinopoli Italian-IV. Saltarello Presto

Miller, Glenn Portrait 07 | In The Mood

Mozart, Friithe Salzburger Meistersinfonien - | 06 | Sinfonie A-Dur KV2012 Andante

Wolfgang Amadeus Kolner Kammerorchester

Muse Showbiz 05 | Cave

Mussorgsky And Ravel | Bilder einer Ausstellung - 03 | Ravel Rapsodie Espagnole -
Bolero - Berliner Philarmoniker 2. Malaguena

Nightwish Century Child 08 | Feel For You

Nils Landgren Funk Unit | Fonk Da World 13| Calvados

Nirvana Nevermind 08 | Drain You

Orff, Carl Carmina Burana 17 | Amor volat undique

Outkast Stankonia 02 | Gasoline Dreams

Parker, Charlie Portrait 11 | An Oscar For Treadwell

Prodigy The Fat Of The Land 02 | Breathe

Queen Greatest Hits 10 | Somebody To Love

Rihanna Music Of The Sun 04| You Don’t Love Me No No No

Rollins, Sonny Portrait 16 | On A Slow Boat To China

Ross, Diana Blue 05 | Smile

Roxette Room Service 08 | Make My Head Go Pop

Schumann, Robert Concert Pieces With Orchestra - 08 | Symphony No.1 op 38
Sinfonieorchester des Siidwestfunks Spring-III. Scherzo

Scooter Back To The Heavyweight Jam 11 | Kashmir

Sex Pistols Never Mind The Bollocks 02 | Bodies

Sibelius, Jean Symphonien Nos. 5 And 6 07 | Symphonie No.6 d-moll op.104-2.

Allegretto moderato

Smetana, Bedrich The Moldau-Wiener Philarmoniker | 04 | The Bartered Bride-Ouvertuere

Smolski, Victor Majesty And Passion 16 | Longing Dedicated to My Family

Snoop Doggy Dogg Doggystyle 11 | For All My Niggaz And Bitches

Snow Patrol Eyes Open 09 | Headlights On Dark Roads

Soulfly Conquer 06 | Rough

Steely Dan Pretzel Logic 10 | Charlie Freak

Stern, Leni Like One 05 | Lights Out

Stewart, Al Year Of The Cat 10| On The Border Live Bonus Track

Sylver Chances 05| In Your Eyes

Therion Secret Of The Runes 13 | Summernight City Bonus Track

Timbaland Presents Shock Value 14 | Time

Toto The Seventh One 03 | Anna

Usher Confessions 15| Do It To Me

Van, Dyk Paul Zurdo 10 | Animacion

Wayne, Jeft War Of The Worlds 05 | Thunder Child

Wir sind Helden Von hier an blind 10 | Gekommen um zu bleiben

X-Cutioners X-Pressions 05 | Raidas Theme

Xzibit Weapons Of Mass Destruction 13 | Tough Guy
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