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Part I

Introduction



Modern telecommunication has been influenced to a large extend by the innovation
of optical data transmission. The pioneering work in the development of fibre optics
by Charles K. Kao was one of the milestones, ensueing in the award of the 2009
Nobel Prize in Physics [1]. Opto-electronic devices provide the link between electronic
circuits and optical fibres. They are usually based on vertical-cavity-surface-emitting-
lasers (VCSEL) and nowadays operate at 10GB/s [2]. However, the increasing demand
of broadband internet services and cloud computing applications requires a transition
to 100 GB/s [3]. The intermediate approach is to combine several VCSELs, each
operating at a different wavelength [4]. A long-term approach, though, is targeting for
single high-speed lasers, which demands lower lasing thresholds to reduce the current.
One way is to follow the idea of Dingle and Henry [5]: to reduce the dimensionality of
the gain medium for lower lasing thresholds. This concept is already applied in VCSELs
today, which commonly use quantum wells as the gain medium [1D confinement]. A
step further is to use quantum dots [3D confinement], where the singularity in the
density of states may dramatically reduce the lasing threshold [2]. A demanding task
in this regard is to achieve resonance between the electronic transitions involved in
laser operation and the resonator mode. In some cases it may be even impossible by
the fabrication process.

Like for telecommunication, optical data transfer may as well be the future for mi-
croprocessors. The down-scaling of electronic circuits generates a challenge for intra-
chip interconnect technology, because the scaling of electronic interconnects cannot
compete with the exponentially growing transistor count [6]. Structure sizes of a few
10 nm in today’s circuits result in an undesireable increase in wire resistance, which in
turn leads to an increase in the data transmission delay and also increase the cross-talk
between individual interconnects.
An implementation of optical communication technology based on fibre optics, how-
ever, is unfeasible, due to the diffraction limited size on the order of an optical wave-
length [λ ∼ 1 µm]. Surface plasmon polaritons (SPP), bound oscillations of electrons
and light at metal-dielectric interfaces, are suggested to overcome the obstacle of the
diffraction limit [7]. Pioneered by the demonstration of subwavelength waveguiding [8]
and nanofocusing [9] at optical frequencies, a vast effort in research of nanophoton-
ics based on SPPs, termed ”plasmonics”, was raised. Plasmonics offers the capacity
of photonics and the miniaturization of electronics. Numerous concepts for plasmon
waveguiding with confinement to less than a tenth of λ, suitable for intra-chip data
transmission, have been suggested and partly proved [10].
Among waveguides, there are several other elements necessary to realize plasmonic
circuits, such as switches, modulators and couplers. Thus, there is a need for active
elements, able to modulate the transmitted field phase and/or amplitude [10].

In this work, it will be demonstrated that coherent phonons are suitable to address
some of the remaining tasks in realizing efficient high-speed lasers for opto-electronic
devices and ”active plasmonics” in order to realize plasmonic circuits. In particular,
the hybrid nature of photonic/phononic superstructures will be exploited.
Picosecond acoustics, a technique to generate coherent phonon wavepackages with fre-
quencies in the THz range, will be reviewed in chapter 1 of this part I. In chapter
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2, the experimental methods and setups, used to obtain the results presented in this
thesis, will be introduced. Part II of this thesis will feature results gathered for the
application of coherent phonons to a quantum dot microcavity laser. Up to 200 fold
increase of the laser emission intensity due to quantum dot shaking will be demon-
strated, as well as harmonic emission modulation at 17 GHz due to phonon filtering
in the same device. In Part III, it will be shown that coherent phonons are suitable
to modulate a SPP resonance in a gold grating at sub-THz frequencies, exploiting the
hybrid photonic/phononic nature of the periodic gold structure. Furthermore, it will
be demonstrated that coherent phonons are also useful for probing the electromagnetic
far-field inside samples with plasmonic structures built on them, which is challanging
using standard optical techniques.
Further details of part II and III will be given in the respective preambles.
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1
Picosecond acoustics

Many problems in solid state physics can be approximated to a good degree by assuming
that the atomic cores of a crystal lattice are static. One particular example is the
calculation of the electronic band structure in crystals. Using the Born-Oppenheimer
approximation, the dynamics of electrons and the atomic cores are separated due to
their different kinetic energies. Also, a periodic potential associated with the atomic
cores on a static bravais lattice is assumed [e.g. [11]].

This approximation, however, only applies to a certain extent. Ultimately, Heisen-
berg ’s uncertainty relation ∆x∆p ≥ h/2 results in the fact that the average momentum
of the lattice atoms has to be greater than zero, even at a temperature of zero Kelvin.
A number of solid state properties can only be explained, if lattice vibrations are taken
into account, e.g., thermal expansion, or propagation of sound [12].

Even results, which are approximated to a good degree by a static lattice, might
receive perturbative corrections, if the lattice vibrations are strong enough. For exam-
ple, the first order corrections for the separation of electron and atomic core kinetics is

of the order (me/M)
1
4 ∼ 10−1−10−2 [me: electron mass, M : core mass], which implies

that corrections of the electronic bandstructure need to be considered for strong lattice
vibrations [11, 13]. This particular example is subject of a more detailed discussion in
chapter 4 and following.

Lattice vibrations in the quantum mechanical picture are treated as a bosonic quasi-
particle, called ”phonon”. In the context of this work, ultrashort coherent phonon
wavepackages, i.e., picosecond strain pulses, are of particular interest. They will be
utilized to perturb the lattice of semiconductor and metal nanostructures in order to
manipulate their coupled systems on picosecond timescales.

This chapter is structured as follows. It starts with a review of the phonon concept
in section 1.1. In section 1.2, elasticity, the limiting case of long wavelengths, where
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1.1. PHONONS

the lattice-structure can be treated as a continuum, will be discussed. Subsequently,
this concept will be used to explain the excitation process of picosecond strain pulses
by femtosecond laser pulses in sec. 1.3. The propagation of such pulses and the role of
anharmonicity will be covered in section 1.4.

1.1 Phonons

A system of N atoms with mass M on a Bravais lattice in d dimensions, which are
coupled by an effective potential Ueff (R1, . . . ,RN), is investigated. Their individual

location Rj is displaced by ui from their equilibrium position R0
j

Rj = (Rj1, ...Rjd) = R0
j + uj. (1.1)

In this case the lattice Hamiltonian Hlat has the form [11]

Hlat =
N∑
j=1

P 2
j

2M
+ Ueff (R1, ...,RN), (1.2)

where Pj is the momentum of atom j. If only small displacements uj are considered,
one can write Ueff as a Taylor expansion

Ueff = U(R0) +
∑
j,α

∂U

∂Rjα

∣∣∣∣∣
R

0

ujα +
1

2

∑
j,k,α,β

∂U

∂2Rjα∂Rkβ

∣∣∣∣∣
R

0

ujαukβ + . . . (1.3)

The sum over j, k runs over all lattice atoms and α, β over all dimensions. The first term
in Eq. 1.3 is a constant and resembles the inner energy of the crystal in equilibrium.
The second term describes the effective force, which has to be 0 at the equilibrium
position R0, so that in lowest order expansion one has to consider only the quadratic
term. This is the so-called harmonic approximation with the harmonic potential

Uharm =
1

2

∑
j,k,α,β

∂U

∂2Rjα∂Rkβ

∣∣∣∣∣
R

0

ujαukβ =
1

2

∑
j,k,α,β

Φjαkβujαukβ. (1.4)

Φjαkβ is a real, symmetric and positiv definite dN × dN matrix and, thus, can be
diagonalized. This leads to a system of dN uncoupled harmonic oscillators [11]. These
oscillators have discrete energies and are quantum mechanically described by a bosonic
quasi-particle, called ”phonon”. If the view is expanded to a system with r atoms per
unit cell, one has to solve dNr equations of motion. They have the form

Mµ

∂2

∂t2
ujµα =

∑
k,µ
′
,β

Φjµαkµ
′
βukµ′β, (1.5)

where the index µ = (1, . . . , r) refers to the µ-th atom in the unit cell. The solutions
of Eq. 1.5 have the form of travelling waves

u
(l)
jµ =

1√
Mµ

e(l)
µ exp [i(qRj − ω(l)(q)t+ ϕ)], (1.6)
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Figure 1-1: Typical phonon dispersion for a 1D lattice (d=1) with a basis of r=2 atoms.

There are two solutions ω(l)(q): one longitudinal acoustic (LA) and one longitudinal optical
(LO) branch. The LA dispersion is linear for q ≈ 0.

where ϕ is a phase factor [11]. The vectors e(l)
µ in Eq. 1.6 describe the direction of

polarization. The index l runs from 1 to dr, because the translation symmetry of the
Bravais lattice allows only dr different solutions of the angular frequency ω(q) for any
of the N wavevectors q in the first Brillouin zone. There are d solutions ω(q) for
which the atoms in the unit cell are oscillating in phase. They are regarded as acoustic
phonons, and their dispersion decays linearly to zero for small q. The remaining
d(r − 1) solutions are called optical phonons [12]. Those solutions with e(l)

µ ‖q are
called longitudinal phonons, while other solutions are called transverse phonons. An
example of a phonon dispersion for a one-dimensional lattice with r = 2 atoms per
unit cell is plotted in Fig. 1-1.

The total phonon contribution to the lattice energy is given by the sum

Eharm =
∑
l,q

~ω(l)(q)

(
n(l)(q) +

1

2

)
. (1.7)

In thermal equilibrium, the occupation n(l)(q) of each energy state is desribed by
Bose-Einstein statistics and the phonon phases ϕ are distributed randomly [11]. Non-
equilibrium phonons, however, may have a fixed phase relationship and are called
coherent phonons. Their ability to interfere with each other makes them particularly
interesting for achieving strong perturbations.

In the next section, the limit of long phonon wavelengths will be discussed, for
which the lattice transitions into a continuum. They can be described by the theory
of elasticity. The main goal there is to introduce the stress tensor σ and, in particular,
its relation to the strain η.
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1.2. ELASTICITY

1.2 Limit of long wavelengths: elasticity

In the following it is assumed that the phonon wavelength is much larger than the lattice
constants, so that the lattice can be treated as a continuum. Within this continuum,
however, it is considered that a particle at Rj only feels the force of displacements uj′α′

of points Rj
′ in its direct proximity. Moreover, only acoustic phonons shall be taken

into account, hence, the theoretical treatment can be restricted to just one atom per
unit cell.
Over distances of a few lattice constants, there is only a small variation in uj. Therefore,
uj′α′ can be written in a Taylor expansion:

uj′α′ = uα′(Rj
′) =uα′(Rj) +

∑
β

∂uα′(Rj)

∂xβ
(Rj

′
β −Rjβ)

+
∑
β,β
′

∂2uα′(Rj)

∂xβ∂xβ′
(Rj

′
β −Rjβ)(Rj

′
β
′ −Rjβ

′) + . . . .

(1.8)

This expansion is put into Eq. 1.5. When the transition to a continuous displacement
field u(r, t) is made and the mass density ρm = M/VUC is used [VUC : unit cell volume],
the following wave equation can be deduced [11]:

ρm
∂2

∂t2
uα(r, t) =

∑
α
′
,ββ
′

Cαβα′β′
∂2

∂xβ∂xβ′
uα′(r, t). (1.9)

The tensor Cαβα′β′ depends on the sum over the harmonic tensors Φjαj
′
α
′ of the har-

monic potential and is called the elastic tensor.

From a different point of view, the acceleration of an infinitesimal volume ∆V within
the continuous medium is proportional to the resulting force, which can be written as
an integral over this volume [11, 14]:

ρm

∫
∆V

∂2

∂t2
u(r, t)dV =

∫
∆V

F dV . (1.10)

In principle, there are two different types of forces: volume forces like gravity, and
inner body forces, which act on the surface of the infinitesimal volume ∆V through
the surfaces of surrounding volumes. Volume forces shall be neglected in the following
treatment. The surface forces are composed of normal and shear components so that
the components Fα can be written as the divergence of a 2nd order tensor σαβ [14],
which leads to the equations of motion for each dimension α in the form

ρm
∂2

∂t2
uα(r, t) =

∑
β

∂

∂xβ
σαβ. (1.11)
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CHAPTER 1. PICOSECOND ACOUSTICS

Here, σαβ is the stress tensor. Equation 1.11 is equal to Eq. 1.9, if a linear relation
between stress σαβ and strain ηα′β′ is assumed, commonly known as Hook ’s law [11]

ηα′β′ =
1

2

(
∂uα′

∂xβ′
+
∂uβ′

∂xα′

)
, (1.12)

σαβ = Cαβα′β′ · ηα′β′ . (1.13)

From Eq. 1.13 it is obvious that the elastic tensor Cαβα′β′ is a measure for the resis-
tivity of the material to be deformed by applied stress.
The stress-strain relationship 1.13 can be simplified, if an isotropic medium is assumed,
for which the elastic properties do not depend on the material orientation. This as-
sumption is valid, e.g., for metals. In this case the elastic tensor Cαβα′β′ has to be
invariant against rotation [15]. This leads to a more simple stress-strain relationship
[14], given by

σαβ =
∑
α
′

Y

(1 + ν)

(
ηαβ +

ν

1− 2ν
ηα′α′δαβ

)
, (1.14)

where δαβ is the Kronecker -δ. The stress-strain relationship 1.14 now only depends
on two scalar material constants, Y and ν. Here, Y is Young ’s modulus and ν is the
Poisson ratio.
In the next section the excitation mechanism of picosecond strain pulses is introduced,
which is based on the application of optically induced thermal stress.

1.3 Optically induced picosecond strain pulses

In this section, the optically induced excitation mechanism of picosecond strain pulses
is reviewed [16]. A thin metal film of thickness d acts as the opto-acoustic transducer,
which is, in the experiments presented here, deposited on a semiconductor or dielectric
substrate, as sketched in Fig. 1-2. A short light pulse with a duration < 1 ps and with
energy Q illuminates an area A of the metal film and is absorbed within a penetration
depth ζ � d, much smaller than the film thickness.
For simplicity, the normal of the metal film plane lies in the z-direction. The deposited
energy Wa(z) of the light pulse per unit volume has the following distribution

Wa(z) = (1−R)
Q

Aζ
exp

[
−z
ζ

]
, (1.15)

where R is the optical reflectivity of the metal. In the following it is assumed that
the energy is immediately transferred to the lattice and results in a temperature rise
∆T (z) = Wa(z)/cV , where cV is the specific heat per unit volume. In general, this
results in additional thermal stress that has to be added to the expression of the stress
tensor, Eq. 1.13 [15]:

σαβ = Cαβα′β′ · ηα′β′ + aαβ∆T, (1.16)

9



1.3. PICOSECOND STRAIN PULSES

Figure 1-2: Scheme of the picosecond
acoustics technique. A femtosecond laser
pulse is incident on the metal transducer
film, resulting in thermal stress. Thereby,
a picosecond strain pulse is injected into
the substrate, propagating at the speed of
sound.

metal transducer

laser pulse

sample structure

strain
pulse

substrate

where aαβ is a 2nd-order tensor containing the thermoelastic moduli. However, as
stated in the previous section 1.2, metals can be treated as elastically isotropic and
the simplified stress-strain relation Eq. 1.14 may be used. Moreover, since the linear
dimension of A is much bigger than ζ, the only motion is parallel to z, so that the only
non-zero stress [strain] component is σ33 [η33]. In this case, Eq. 1.16 can be reduced to
[16]

σ33 = 3B
(1− ν)

(1 + ν)
η33 − 3Ba∆T (z), (1.17)

where a is the linear expansion coefficient and B = Y/(3 − 3ν) is the bulk modulus.
The equation of motion 1.11, that has to be solved, reads:

ρm
∂2u3

∂t2
=
∂σ33

∂z
. (1.18)

Due to the simple one-dimensional form of Eq. 1.18, the indices of u, η and σ will be
omitted in the following discussion.

When solving Eq. 1.18, the initial condition σ(z, t = 0) = 0 and the boundary
conditions for σ(z = 0, t) need to be obeyed. The solution η(z, t) consists of two parts.
The first part describes a thermal expansion that is localized near the boundary, at
z = 0. It is time independent because, so far, instantaneous energy transfer and
negligible damping or heat flow are assumed. This part is uninteresting for the current
studies. The second part has the form:

η(z, t) = −(1−R)
Qa

AζcV

(1 + ν)

(1− ν)
exp [−|z − vt|/ζ] · sgn[z − vt]

= η0 exp [−|z − vt|/ζ] · sgn[z − vt].
(1.19)

It describes a bipolar strain pulse with amplitude η0 that is propagating in the z-
direction at the longitudinal speed of sound [16]

v =

√
3

(1− ν)

(1 + ν)

B

ρm
. (1.20)

In the quantum mechanical description it corresponds to a coherent phonon wavepack-
age. The pulse width is of the order ∼ 2ζ.

10



CHAPTER 1. PICOSECOND ACOUSTICS

The assumption of an instantaneous energy transfer from the electron to the lattice
system, however, is not necessarily valid. The electron-phonon coupling in metals is not
strong enough to neglect electron diffusion over a distance ze > ζ into the metal, before
the energy is transferred to the lattice. A common way to take this into account is the
two-temperature model, which assumes independent equilibrium temperatures Te and
Tp for the electron and lattice system, respectively. Directly after the optical excitation
Te � Tp, followed by a transfer from the electron to the lattice system [17, 18].
When both systems are in thermal equilibrium, the temperature Tp continues to vary
due to thermal diffusion. If 1� D/zev is not fulfilled [D: thermal diffusion constant],
thermal diffusion plays an important role before the strain pulse leaves the heated area
and cannot be neglected [16, 19]. For most metals D/zev ∼ 1, so that thermal diffusion
has to be considered.
Nevertheless, the applied principles described while developing Eq. 1.19 are sufficiently
accurate to understand the main characteristics. Electron and thermal diffusion mainly
result in lateral smoothing and stretching of the strain pulse shape η(z, t).

Once the strain pulse propagates away from the open surface and reaches the inter-
face between the metal transducer and the substrate, it will be partially reflected due
to the impedance mismatch of the two materials. The acoustic amplitude reflection
coefficient is

ra =
ρsvs − ρmv
ρsvs + ρmv

, (1.21)

where the subscripts s and m refer to the substrate and metal, respectively [19]. The
transmission coefficient is given by ta = 1 − ra. The backtravelling pulse will be
reflected again at the open surface, which leads to a ringing tail of the strain pulse
that is propagating into the substrate. A typical temporal dependence of η(zs, t) at
the interface between metal transducer and substrate [zs=0], which takes into account
all above mentioned effects, is shown in Fig. 1-3(a). Here, the optical excitation energy
density is W = 10 mJ/cm2 [20]. The parameter zs describes a propagation distance
into the substrate.

In the next section, the role of anharmonicity and dispersion for the temporal
evolution of η(zs, t) after propagation distances zs ∼ 10 µm will be discussed. It will
turn out that the harmonic approximation is not valid anymore for strain amplitudes
η0 ∼ 10−3 and higher.

1.4 Strain pulse propagation: the role of anhar-

monicity

In the experiment, it is possible to optically excite strain pulses with amplitudes as high
as η0 ∼ 10−3. For such high amplitudes the harmonic approximation of the effective
potential Ueff in Eq. 1.3 is no longer sufficient and anharmonic terms need to be
included [21]. In the long wavelength limit, this can be taken into acount by expanding
the elastic tensor Cαβα′β′ to include third-order terms in the wave equation 1.9. The

11



1.4. THE ROLE OF ANHARMONICITY

Figure 1-3: Left panel: temporal
evolution of η(zs, t) after a propa-
gation distance zs into GaAs sub-
strate. Right panel: spectral in-
tensity of the corresponding strain
pulse. (a) Strain profile, as it enters
into the substrate, after optical ex-
citation with excitation energy den-
sity W = 10 mJ/cm2. (b)/(c) For-
mation of an N-shaped shockwave
due to non-linear propagation at
zs = 20 µm/40 µm. (d) Acoustic
solitons at the leading edge, due to
balancing between anharmonic and
dispersive effects, at zs = 110 µm.
[20]
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geometrical conditions of the experiments performed in this work permit to consider
only longitudinal waves in high-symmetry directions, e.g., (100) in GaAs. In this case
one can apply the anharmonic expansion to Eq. 1.9 in the form

ρs
∂2

∂t2
u =

(
C2 + C3

∂

∂z
u

)
∂2

∂z2u, (1.22)

where C2 and C3 are combinations of 2nd and 3rd order elastic constants [21].
For phonon frequencies ∼0.1-1.0 THz, one also has to account for a non-linear disper-
sion ω(q) which results in a frequency dependent sound velocity vs [20]. Accordingly,
the following expansion is used:

ω = vsq − γq3 + . . . , (1.23)

where γ is a constant. Equation 1.22 needs to be extended, so that it yields Eq. 1.23
for small amplitudes. If it is written for strain η = ∂

∂z
u instead of the displacement,

the non-linear wave equation of the form

ρs
∂2

∂t2
η = C2

∂2

∂z2η + C3

∂

∂z

(
η
∂

∂z
η

)
+ 2ρsvsγ

∂4

∂z4η (1.24)

can be derived [21]. If Eq. 1.24 is used to describe the evolution of a strain pulse η(z, t)
as shown in Fig. 1-3(a), the original shape will no longer be conserved, as it would for
the linear wave equation. Instead, it will be distorted during its propagation.
Initially, the distortion arises from an amplitude dependence of the sound velocity
vs. The compressive parts will propagate faster and the tensile parts slower, which
leads to the formation of an N-shaped shockwave front [Figs. 1-3(b) and (c)]. The
steepening of the leading edge of the shockwave goes hand in hand with an increase of
high-frequency components, as can be seen from the corresponding spectral intensities
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CHAPTER 1. PICOSECOND ACOUSTICS

in Fig. 1-3. These high-frequency components, however, are slowed down due to
dispersion. This results in the formation of special solutions of the Korteveg de Vries
form, called acoustic solitons [22, 23, 21]. For solitons, anharmonicity and dispersion
are balanced and form a stable wavepackage that travels at a fixed sound velocity > vs
at the leading edge of the strain pulse, see Fig. 1-3(d).
The pulse duration of just ∼ 1 ps and a resulting extension of ∼ 1 nm in typical
semiconductors and dielectrtics makes picosecond strain pulses a very promising tool
for the investigation and manipulation of nanostructures at sub-terahertz frequencies,
as already demonstrated by a number of works, e.g., [24, 25, 26, 27, 28].

In part II of this work, picosecond strain pulses are used to shift the electronic
energy levels in semiconductor quantum dots by about 10 meV, on timescales faster
than their thermal emission dynamics. Hereby, a detuning with respect to a cavity
mode of similar magnitude can be compensated to feed the quantum dot emission into
the cavity mode.

In part III, a coherent phonon wavepackage will be utilized to modulate a surface
plasmon resonance, as well as to probe the electromagnetic far-field inside a sample
with a periodic metal grating on top.
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2
Experimental methods

In this chapter, the experimental methods, used to obtain the results presented in this
thesis, are introduced. Strain induced dynamics of various sample systems is investi-
gated. Picosecond strain pulses correspond to coherent phonon wavepackages, where
the phonon frequencies may reach the THz range. The induced dynamics can contain
similar frequency components, which demands time-resolved detection schemes with
picosecond time resolution.
In part II, the effect of picosecond strain pulses on the emission dynamics of a quan-
tum dot microcavity laser are investigated. Depending on the regime of emission, the
characteristic time scales for emission may vary from ∼ ns down to ∼ 10 ps, which
have to be detected in real time. Such a time-resolution in real-time measurements can
be achieved with a streak camera. The experimental setup, used for the time-resolved
detection of emission is introduced in section 2.1.
In part III, the dynamics of surface plasmon polaritons due to the perturbance by
coherent phonons are studied. The effect is detected by measuring the changes in the
reflected intensity of an optical probe pulse with an energy close to a surface plasmon
or waveguiding mode. To resolve the dynamics, a pump-probe technique is applied. In
section 2.2, the experimental setup for pump-probe measurements of the differential
reflectivity is introduced.
An outline of each experiment is also given in the respective chapters in part II and III,
so that the reader may skip this chapter, if technical details are of minor importance.

2.1 Time-resolved detection of emission

A sketch of the experimental setup is plotted in Fig. 2-1. It is basically build out
of four essential elements: the laser systems [black boxes], a helium bath cryostat
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2.1. TIME-RESOLVED DETECTION OF EMISSION

[blue circle], the optical setup, and synchronisation/detection electronics [gray boxes].
Optical pathways are sketched in color, while electronic wire connections are illustrated
in black.
The excitation of strain pulses by picosecond acoustics requires femtosecond laser pulses
with high energy per pulse to reach excitation energy densities of about 1 mJ/cm2 on
the metal transducer, see chapter 1. To achieve this with moderate focussing to spot
sizes with linear dimensions of 100µm, the energy per pulse has to be ∼ 1µJ. For this
purpose, a regenerative amplifier builds the core of the experimental setup [Coherent,
RegA 9000]. The RegA is seeded by a Ti:Sapphire laser [Coherent, Vitesse], providing
150 fs pulses with a central wavelength of λ = 800 nm at a repetition rate of 80 MHz.
Seed pulses with ∼ nJ energy per pulse are amplified by the regenerative amplifier to
an energy of ∼ µJ per pulse, at the cost of a lower repetition rate of only 100 kHz.
The energy is provided by a 12 W Nd:YVO4 continuous wave (CW) laser [Coherent,
Verdi V12], which pumps a Ti:Sapphire crystal inside the regenerative amplifier.

The main part of the RegA output is used for the strain excitation on the backside
of the sample (S), referred to as pump pulse. Selectively, a part of the RegA output can
be split off by a beam splitter (BS) to be used as the pulsed option (i) for the optical
excitation of quantum dot microcavity laser emission. In this case, the split off pulse is
travelling an extra path length, corresponding to a delay time tS that is needed for the
strain pulse to propagate through the sample substrate and to reach the center of the

bath cryostat

CCD

computer

regenerative
amplifier

Ti:Sapphire

N
d:

Y
V

O
4

Nd:YAG

synchronization 1

synchronization 2

variable delay

fixed delay tS

spectrom
eter

streak
camera

M

S

front emission

side emission

MO

BS

beam dump

100kH
z

st
ra

in
 e

xc
ita

tio
n

(ii)

(i)

80M
H

z

LP

GF

GF

Figure 2-1: Time-resolved emission spectroscopy setup to detect strain induced changes in
the emission intensity of a quantum dot microcavity laser. Two light sources for the optical
excitation of laser emission are available, a pulsed regenerative amplifier system (i) and a
Q-switched, frequency doubled Nd:YAG ”quasi-CW” laser (ii). Side and front emission can
be resolved in energy and time by the combination of a spectrometer and a streak-camera
with a resolution of 0.12 meV and 30 ps, respectively.

16
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microcavity laser. An additional, remote controlled, mechanical delay line [Aerotech,
ATS-125] is positioned in the optical path of the strain excitation, which allows to vary
the time separation t0− tS between the pulsed optical excitation of emission and strain
pulse arrival at the cavity center. To ensure spatial overlap between the strain pulse
and the optically active region of the microcavity laser, the pump pulse is defocused
to a spotsize of about 100 µm, while the optical pulse, that excites the laser emission
is focused to a spot size of about 35 µm.
Option (ii) for the optical excitation of quantum dot microcavity emission, by removing
the mirror M, is a Q-switched, frequency-doubled Nd:YAG laser [SpectraPhysics, BL6S
532Q], emitting pulses at a central wavelength of 532 nm. The nominal pulse duration
is < 10 ns, but it was measured to be 23 ns, using this streak camera setup. In any
case, it is about an order of magnitude longer than all characteristic time constants of
the quantum dot microcavity emission, so that option (ii) may be called ”quasi-CW”.
The Q-switch of the quasi-CW laser can be controlled externally, by a pulse genera-
tor [Quantum Composers, 9520 series], sketched as ”synchronization 1” in Fig. 2-1.
The pulse generator is triggered by the 100kHz clock of the regenerative amplifier and,
thereby, the strain and emission excitations are synchronized.
The excitation intensity can be varied by a gradient grayfilter (GF) and is measured
with a powermeter [Coherent, FieldMax II], using a semiconductor powerhead [Coher-
ent, OP-2-VIS].

To suppress phonon and carrier scattering, the sample (S) is mounted in the variable
temperature insert (VTI) of a helium bath cryostat. Two different cryostats have been
used. When the microcavity laser emission to the front is collected by an achromatic
lens [focus length of 15 cm], a cryostat with active temperature stabilization [Oxford,
Spectromag] is used. The sample is exposed to helium vapor at T = (10 ± 0.1) K.
In another configuration, the quantum dot emission is recorded from the side of the
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Figure 2-2: Operation principle of the streak camera. Incident light is converted into
electrons in a photocathode. A time-dependent voltage, applied to the sweep electrodes in
the streak tube is deflecting the electrons vertically. This generates a time resolution < 50 ps
on the vertical axis of a phosphor screen, which transfers the electrons back into light.
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2.1. TIME-RESOLVED DETECTION OF EMISSION

structure, where there is no optical confinement. Due to the small thickness of the
microcavity structure of just a few µm, the emission to the side is collected by a 10x
microscope objective [MO] with a nominal spatial resolution of 1.1µm [Mitutoyo, Plan
Apo NIR] . The microscope objective has a working distance of 33.5 mm, so that a
cryostat with a smaller VTI is used [CryoVac, Spektro]. This cryostat does not have
an active temperature stabilization, resulting in a temperature stability of ±0.5 K.

The collected emission is focused on the vertical entrance slit of a spetrometer with
0.5m focal length and a 600grooves/mm diffraction grating [Acton, Spectra Pro 2500i].
Using the front exit with a mounted charge-coupled device (CCD) camera [Princeton
Instruments, Pixis], time-integrated emission intensity spectra I(E) with a spectral
resolution of 0.12 meV can be recorded.
Alternatively, using the side exit of the spectrometer, the energy-resolved emission
is focused on the horizontal entrance slit of a streak camera [Hamamatsu, C5680] to
resolve it in time. A scheme with the operating principle of the streak camera is plotted
in Fig. 2-2. The incoming light is imaged on an InGaAs photocathode [Hamamatsu,
S-1], which transforms light into a stream of electrons and is sensitive up into the near
infrared. The train of electrons is sweeped vertically by a sweep electrode, which is
operated by a slow single-sweep unit [Hamamatsu, M5677] with a nominal temporal
resolution of < 50 ps. A microchannel plate (MCP) is multiplying the number of
electrons before they hit a phosphor screen that turns electrons back into light. After
this procedure the emission is vertically resolved in time and horizontally resolved in
space or energy, by use of a spectrometer. The temporally- and spectrally resolved
emission intensity I(t, E) is finally detected by a CCD camera [Hamamatsu, Orca-
ER].
The sweeping unit and, thereby, the monitored time window has to be synchronized
with the laser system [synchronization 2 in Fig. 2-1 and 2-2]. The synchronization
electronics consist of a pulse generator [Stanford Research Systems, DG-535] for the
timing, triggered by the 100 kHz clock of the regenerative amplifier. To minimize the
electronic jitter, the output of the pulse generator is stabilized by the 80 MHz clock
of the Ti:Sapphire oscillator, using the streak trigger unit [Hamamatsu, C4547-02].
Finally, the signal I(t, E) has a time resolution of 25 ps.

To be able to detect also weak emission, when the quantum dot microcavity laser
is operated in the spontaneous emission regime, the spectrometer can be replaced by a
longpass filter (LP), suppressing bulk emission and scattered excitation laser light with
energy > 1.37 eV. The detection sensitivity can, thereby, be improved by an order of
magnitude, at the cost of energy resolution.
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CHAPTER 2. EXPERIMENTAL METHODS

2.2 Pump-probe detection of differential

reflectivity

The effect of picosecond strain pulses on the intensity of a reflected probe pulse with
energy close to a surface plasmon or waveguiding mode shall be investigated. A draft
of the experimental setup is plotted in Fig. 2-3. It contains two alternative light
sources [black boxes, (i) and (ii)], and two alternative detection schemes to measure
either reflectivity spectra R(λ) or time-resolved reflected intensity I(t) [orange boxes].
Optical pathways are sketched in red, while electronic wire connections are shown
by black lines. To resolve the incidence angle θ, the sample (S) is mounted on a
goniometer, with the option to cool it down to T = 10 K in a helium bath cryostat
[Oxford, Spectromag].

To characterize the plasmonic grating sample, angle- and polarization-resolved re-
flectivity spectra R(λ) are measured, using light-source option (i). White light from
a high stability tungsten-halogen light-source [Spectral products, ASB-W-030] is in-
cident on the sample under various angles θ. Before hitting the sample, the light
is linearly polarized by the combination of a waveplate (λ/2) and a Glan-Thompson
prism (GTP), mounted in rotation holders to vary the polarization orientation. The
specularly reflected light is focused on the entrance slit of a spectrometer with 0.5m
focal length and a 600 grooves/mm diffraction grating [Acton, Spectra Pro 2500i]. A
CCD camera [Princeton Instruments, Pixis] is recording reflectivity spectra R(λ) with
a resolution of 0.08 nm.
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Figure 2-3: Experimental setup to characterize and manipulate surface plasmons in a metal
grating sample, by coherent phonons. Two different types of light sources are available for the
detection; a white light source (i), and regenerative amplifier systems (ii),(iii). The sample
is mounted on a goniometer and, optionally, in a cryostat. The specularly reflected probe
light can be analyzed spectrally [scheme R(λ)] or time-resolved [scheme I(t)].
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2.2. PUMP-PROBE DIFFERENTIAL REFLECTIVITY

The light source options (ii) and (iii) are regenerative amplifier systems. The
optical pulses of system (ii) have a spectral width of ∆λ = 15 nm at a repetition rate
of 100 kHz [Coherent, RegA 9000]. The RegA is pumped by the second harmonic of
a 12 W Nd:YVO4 laser [Coherent, Verdi V12] and seeded by a Ti:Sapphire laser that
provides 150fs pulses [Coherent, Vitesse]. The alternative amplifier option (iii) provides
pulses with a spectral width of ∆λ = 50 nm at a repetition rate of 5 kHz [Spectra
Physics, Spitfire-Pro]. It is seeded by a Ti:Sapphire laser with < 100 fs pulses [Spectra
Physics, Tsunami Broadband fs] and pumped by a 4W Nd:YVO4 laser [Spectra Physics,
Millennia]. Both amplifier systems operate at a central wavelength of λ = 800 nm and
provide optical pulses with an energy per pulse of ∼ µJ.

For measurements of the strain-induced dynamics, the main part of the regenerative
amplifier output is used for the strain pulse excitation on the backside of the sample
[pump pulse]. The sample substrate is transparent for λ = 800 nm. To prevent pump
light from entering the detection channel, the pump pulse is frequency doubled in a
beta barium borate crystal (BBO), before it hits the opto-acoustic transducer, so that
it can be filtered. Further, it is linearly polarized by a combination of a waveplate (λ/2)
and Glan-Thompson prism (GTP), with a polarization orientation perpendicular to the
probe light.
A part of the regenerative amplifier output is split off by a beam splitter (BS) and is
used as an optical probe pulse. The optical path length of the probe pulse is longer
than for the pump pulse, corresponding to a delay of tS, the time which the strain
pulse needs to propagate through the sample substrate. To verify the spectral overlap
with a surface plasmon or waveguiding mode, the reflected probe pulse spectrum can
be recorded in the R(λ) detection scheme.
In the other detection scheme, the strain-induced changes in the reflected intensity
I(t) of the probe pulse are detected by a balanced photoreceiver (BR) with two silicon
photodiodes [New Focus, Nirvana Model 2007]. The signal I(t) is resolved in time by
a pump-probe technique. For each measurement the difference in optical path length
between pump and probe pulse is varied, by a remote controlled mechanical delay line
[Aerotech, ATS-125], in steps of δl = 0.5 mm, corresponding to a time resolution of
about 2cδl ≈ 3.3 ps.
Scattered pump light is filtered by a blue filter. The output voltage of the BR is
proportional to the intensity difference in both channels. If one channel is closed,
the output is directly propotional to I(t). For a better signal-to-noise ratio, the pump
pulse is modulated by a mechanical chopper [Stanford Research Systems, Model SR540
Chopper] with a frequency of fchop = 1600 Hz, linked to a lock-in amplifier [Signal
Recovery, Model 7225]. The BR signal is sent to the lock-in amplifier, whose output is
proportional to the differential reflected intensity ∆I(t) = I(t)− I0, with and without
strain pulse perturbation. When measuring ∆I(t)/I0 with a single photodiode, signal
amplitudes of 5.0× 10−6 can be resolved.
Surface plasmons can only be excited by incident light, linearly polarized parallel to the
lattice vector of the gold grating [p-polarization, see chapter 8]. For the perpendicular
polarization [s-polarization], the signal I(t) contains no plasmonic contribution. A
further increase in the signal-to-noise ratio can, therefore, be achieved by choosing
the polarization plane of the incident pulse in such a way that p- and s-polarization
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CHAPTER 2. EXPERIMENTAL METHODS

components are equal in magnitude. A GTP is splitting the reflected probe pulse into
two components with perpendicular polarizations, before they are focused on the two
photodiodes of the BR. The unperturbed intensity in both channels can be balanced by
a λ/2 before the GTP. Thereby, the s- and p-polarization components are separated,
so that the BR measures their difference. By this method, signal amplitudes ∆I(t)/I0

of 1.5× 10−6 can be resolved.
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Part II

Shaking quantum dot lasers



The technological advancements in recent years made it possible to fabricate high
quality optical semiconductor resonators on the micrometer scale, using atomically
precise epitaxy and high-resolution lithographic patterning [29]. The modified light-
matter interaction for a semiconductor light-emitter, placed into such resonators, has
led to a number of spectacular demonstrations. Outstanding examples are the en-
hanced spontaneous emission of quantum dots in micropillars [30], the strong coupling
regime for a quantum well [31] and a quantum dot [32, 33] in a microcavity, the real-
ization of efficient single-photon [34] and entangled-photon [35, 36, 37] sources based
on quantum dot resonators, and the demonstration of condensation phenomena for
polaritons in quantum well cavities [38, 39, 40, 41]. The necessary requirement in all
these demonstrations is that the electronic transition involved in light generation is in
resonance with the optical cavity mode.

Fulfillment of the resonance condition can often be achieved by the fabrication
process, but it may be a demanding task. An example is a single quantum dot inside
a resonator. In other cases it is impossible to achieve resonance by the fabrication
process alone. A particular example is the microlaser under study in this work. Here,
an ensemble of self-assembled quantum dots placed at the center of a planar bragg
microcavity is investigated. The inhomogeneous broadening of the ensemble is much
bigger than the cavity mode linewidth, so that the resonance condition is fulfilled only
for a small dot fraction.

One might tune the electronic transition energy to compensate the detuning with
respect to the cavity mode. This, for example, is possible by applying electric [42] or
magnetic fields [43] and by varying the sample temperature [32, 33]. These methods,
however, suffer from negative side effects. For example, high electric fields may lead to
carrier tunneling out of the nanostructure, magnetic field-induced shifts are typically
small, and a temperature increase leads to advanced carrier scattering.
In this work, an alternative, non-detrimental method is used. It is based on the appli-
cation of picosecond strain pulses, excited by the picosecond acoustics technique [16],
introduced in chapter 1. When hitting the quantum dots, the strain pulse induces
energy shifts in the order of ∼ 10 meV within picoseconds [27].

In the following, a brief recap of the theory describing laser operation in a quan-
tum dot microcavity will be given in chapter 3. In chapter 4, using the deformation
potential formalism, the interaction of the strain pulse with the electronic system will
be described. The quantum dot microcavity laser under study will be characterized
in chapter 5. In chapter 6, laser mode feeding by shaking off-resonant quantum dots
will be demonstrated, by dynamically inducing resonance with the optical mode for a
much larger quantum dot fraction. As a result the lasing threshold can be crossed and
the output intensity is enhanced by more than two orders of magnitude. Finally, in
chapter 7, it will be shown that the microcavity structure itself acts as a phonon filter,
so that individual frequency components of the strain pulse arrive at the quantum dot
layer with a delay. Such delayed phonons are used to harmonically modulate the laser
emission intensity at a frequency of 17 GHz, if the device is operated in the lasing
regime.
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3
Semiconductor quantum dot microcavity

lasers

In this chapter, a theory, able to describe laser operation in semiconductor micro-
cavities, shall be recaped. The chapter starts with an introduction of light-matter
interaction in section 3.1, where the focus will be on the most simple case; a system of
two-level atoms. In section 3.2 the laser rate equations will be derived by expanding
to a four-level system and coupling it to a resonator. In particular, the importance of
popluation inversion to reach positive gain and allow laser operation will be explained.
In the subsequent section 3.3, the gain of semiconductor quantum dots will be examined
and similarities to the previous model system will be highlighted. Finally, in section
3.4, planar Bragg microcavities will be introduced as the resonator of choice, pointing
out their strengths. In the end, a particular limitation will be pointed out, which will
be important in the following chapters, where this limitation shall be overcome, or even
be exploited.
If not explicitely stated otherwise, the information presented in section 3.1 and 3.2
have been exclusively taken from Ref.[44].

3.1 Light-matter interaction

The investigation of light-matter interaction shall be started with the most simple
case of an electron in a two level atom. It can be described by the wavefunction
ψa(t) = a1(t) |1〉+a2(t) |2〉 that has to solve the time dependent Schrödinger equation:

∂

∂t
ψa(t) = Hintψa(t), Hint = H0 + Vext(x, t), (3.1)

25



3.1. LIGHT-MATTER INTERACTION

where H0 is the Hamiltonian of the bound electron, and Vext = −exE(t) describes the
interaction of an external field E(t) with the electronic dipole of the electron. The
electronic dipole approximation, which states that the field amplitude E(t) does not
change over atomic distances, has already been applied. In this case E(t) has the form:

E(t) = εE0(t)e−iωt + c.c., (3.2)

where ω is the photon frequency and ε is the unity vector, which defines the field
polarisation. If ω is close to the frequency ω0, associated with the energy separation
~ω0 between the atomic levels |1〉 and |2〉 [see Fig. 3-1(a)], i.e. if the external field is
close to resonance, one may introduce new probability amplitudes c1(t) = a1(t) and
c2(t) = a2(t)eiωt. Moreover, in case of optical frequencies ω ≈ 1015/s, E0(t) is varying
much slower than e−iωt and one may apply the rotating wave approximation, neglecting
all fast oscillation terms ∝ e2iωt, due to averaging. In this case Eq. 3.1 reduces to the
following coupled equations:

i
∂

∂t
c1(t) = −1

2
χ∗c2(t),

i
∂

∂t
c2(t) = (ω − ω0)c2(t)− 1

2
χc1(t).

(3.3)

Here, χ = e 〈2| x |1〉 εE0(t)/~ is the exchange energy in frequency units.

Up to now, only the interaction of a single two level atom with an external field
has been described. To account for macroscopic effects that involve many atoms and
to include quasi-random relaxation processes like collisions, it is beneficial to use the
density matrix formalism. The density matrix ρ is a 2 × 2 matrix with the following
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Figure 3-1: (a) Two-level system with populations N1,2, Energies E1,2 and energy separation
~ω0. (b) Expansion to a four-level system to reach population inversion for the laser transition
|2〉 → |1〉 , by pumping |0〉 → |3〉 at the rate p. (c) Sketch of the energy level scheme of
a semiconductor quantum dot. The pumping occurs from the valence band (VB) into the
conduction band (CB) of the surrounding material, while the quantum dot ground state
decay is used as the laser transition.
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CHAPTER 3. QUANTUM DOT MICROCAVITY LASERS

entries:

ρ11 = |c1(t)|2 ρ12 = c1(t)c∗2(t)

ρ21 = c2(t)c∗1(t) ρ22 = |c2(t)|2.
(3.4)

The elements ρ11, ρ22 describe the population probabilities, while ρ12, ρ21 describe the
polarisation. Substituting these into Eq. 3.3 leads to the von Neumann equation,
describing the dynamics of the system:

i~
∂

∂t
ρ = [Hint, ρ] . (3.5)

3.2 Rate equations

Quasi-random relaxation processes result in dephasing at a total rate of

β = γc +
1

2
(Γ1 + Γ2 + A21), (3.6)

where γc describes the dephasing rate due to elastic collisions, A21 is the relaxation
rate due to spontaneous emission, and Γ1,Γ2 are scattering rates out of state |1〉 and
|2〉 . In many cases γc is the dominant term, because the chance for collisions is high
and it is not restricted to the energy ~ω0. Furthermore, if one is only interested in
times t � β−1, the adiabatic approximation may be applied. This means: ∂

∂t
ρ12 ≈ 0,

∂
∂t
ρ21 ≈ 0 and one may express ρ12, ρ21 in Eq. 3.5 in terms of ρ11 and ρ22. Combining

these assumptions leads to the following set of coupled equations for the dynamics,
which only depend on the population probabilities:

∂

∂t
ρ11 = −Γ1ρ11 + A21ρ22 +

1

2

|χ|2β
(ω − ω0)2 + β2 (ρ22 − ρ11)

∂

∂t
ρ22 = −(Γ2 + A21)ρ22 −

1

2

|χ|2β
(ω − ω0)2 + β2 (ρ22 − ρ11).

(3.7)

Averaging over all polarisation directions, identifying the Intensity I = cε0|E0|2/2 and
the atomic cross section σ(ω) = BS(ω)~ω/c [B: Einstein-coefficient for stimulated
absorption and emission; S(ω): spectral line profile] leads to the rate equations for the
populations N1 = Nρ11 and N2 = Nρ22 of a system with N two level atoms per unit
volume:

∂

∂t
N1 = −Γ1N1 + A21N2 +

σI

~ω
(N2 −N1)

∂

∂t
N2 = −Γ2N2 − A21N2 −

σI

~ω
(N2 −N1).

(3.8)

The last term in Eqs. 3.8 describes the stimulated processes. The magnitude is identical
for absorption and emission, which means the maximum reachable population inversion
in the two level system due to stimulated processes is N2 = N1.
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The external field has to be described by Maxwell ’s equations. Thus, it has to
satisfy

∇2E − 1

c2

∂2

∂t2
E =

1

ε0c
2

∂2

∂t2
P , (3.9)

where P is the microscopic polarisation. To include the propagation through the
homogeneous medium in z-direction, Eq. 3.2 is expanded to the form:

E(z, t) = εE0(z, t)e−iω(t−z/c). (3.10)

For slowly varying amplitudes, as assumed before, the right hand side of Eq. 3.9 can
be approximated by

∂2

∂t2
P = −2Nω2e 〈1| x |2〉 ρ21e

−iω(t−z/c). (3.11)

Still, only times t� β−1 are considered, where the adiabatic approximation is applied,
to express ρ21 in terms of the population probabilities. Finally, the intensity I is of
interest, so that the field is replaced by I = cε0|E0|2/2. If these assumptions are
combined in Eq. 3.9, the rate equation for the intensity I can be derived:

1

c

∂

∂t
I +

∂

∂z
I = σ(ω)(N2 −N1)I = g(ω)I, (3.12)

where

g(ω) =
~ω
c
BS(ω)(N2 −N1) (3.13)

is the gain coefficient.

For a positive gain coefficient, a positive population inversion (N2−N1) is required.
However, in a two level system, it is impossible to get N2 > N1, because stimulated ab-
sorption and emission are equal in magnitude [Eq. 3.8]. One possible way to overcome
this is to switch to a four-level scheme, as shown in Fig. 3-1(b). One keeps |1〉 → |2〉
as the transition for laser operation, but pumps |0〉 → |3〉 , at a rate p.

In order for this scheme to work, the decay rates Γ32 and Γ10 have to be high. If
Γ32 is considered to be much higher than any other rate, the approximation N3 = 0
may be used. Under these circumstances, Eq. 3.8 may be expanded to:

∂

∂t
N0 = −pN0 + Γ10N1

∂

∂t
N1 = −(Γ1 + Γ10)N1 + A21N2 +

σI

~ω
(N2 −N1)

∂

∂t
N2 = pN0 − Γ2N2 − A21N2 −

σI

~ω
(N2 −N1).

(3.14)

For stationary conditions, the populations fulfill N0 + N1 + N2 = N = const, and in
case of Γ10 � A21, p one can reach N1 ≈ 0.
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Figure 3-2: Characteristic input-output behaviour of the laser emission intensity I(p). At
the threshold pumping rate pTH , the emission is channeled into the laser mode, leading to a
jump in I.

In a laser, the medium is placed inside a resonator with a cavity mode EC =
~ωC , consisting of mirrors with reflectivity r1 and r2 at the two ends, respectively.
Considering the gain cell fills up the whole length L of the resonator, and taking a
look at the stationary solution ( ∂

∂t
I = 0), one obtains the following condition for the

threshold, at which the intensity is increased after one roundtrip:

r1r2 exp [2Lg] = 1. (3.15)

In order to account for the losses through the mirrors, the rate equation for the
intensity has to be modified . Therefore, the loss rate − c

2L
(1− r1r2)I has to be added

on the right side of Eq. 3.12. The stationary solutions for I(p) in dependence of the
pump-rate p show a characteristic jump, when p reaches a value pth, such that the
threshold condition 3.15 is fulfilled [Fig. 3-2]. This jump in intensity is a result of
the fact that the stimulated emission that becomes dominant for p > pth is channeled
into the laser mode, while the spontanous emission that is dominant below threshold
may also emit into other modes. For lasers, where a big fraction of the spontaneous
emission is already emitted into the laser mode, the jump in I(p) is less pronounced
and may even vanish (thresholdless laser) [45, 46]. However, these kinds of lasers are
not the subject of discussion here.

3.3 Semiconductor quantum dot gain

In semiconductors (SCs), one is no longer dealing with transitions between atomic
energy states, but with interband transitions between conduction- and valence-band
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3.3. QUANTUM DOT GAIN MEDIUM

states. In case of indirect bandgap SCs, these transitions additionally involve mo-
mentum transfer, e.g. by phonon scattering [47]. In the following the discussion is
focussing on direct bandgap SCs, such as GaAs and InAs, where the band-extrema of
the conduction- and valence-band appear at the same point in momentum-space.

In SC nanostructures, a SC with a larger bandgap [e.g. GaAs], referred to as the
barrier, is confining a SC with a smaller bandgap [e.g. InAs] in at least one dimension,
within an extension of less than the charge carrier de Broglie wavelength [48]. A
one dimensional sketch is shown in Fig. 3-1 (c). This leads to a quantization of the
electron and hole energies in the confined direction. In SC quantum dots (QDs), the
confinement appears in all three dimensions. Due to the 3D confinement their energy
structure is similar to that of hydrogen, which is why they are sometimes referred to as
artificial atoms [49]. Following this analogy, the energy levels in QDs are categorized
in s-,p-,d-,... shells, according to their angular momentum (l = 0, 1, 2, . . . ). The lowest
allowed electron energy state and the highest allowed hole energy state build the QD
ground state (s-shell).

The four-level scheme is a good approximation for lasers containing QDs as the gain
medium. The off-resonant pumping creates carriers in the barrier material [similar to
the higher energy transition |0〉 → |3〉 ]. Subsequently, the created electrons and holes
relax into the QD ground state with energy EQD [similar to the transition |1〉 → |2〉 ],
which acts as the laser transition. Population inversion now depends on the occupation
probability of the QD ground state by electrons and holes, described by fermi functions
fc,v.
In self-organized QD ensembles, the ground state energy EQD varies between individual
QDs, due to size and shape variations, resulting in an inhomogeneous broadening.
Further, one has to take into account that QDs make up only a limited part of the
total recombination volume, so that the normalized density of states per unit volume
has the form [50]:

D(EQD) =
2

VQD

1

∆EQD
√

2π
exp

[
−

(EQD − EQD,0)2

2∆E2
QD

]
, (3.16)

where VQD is the average QD volume, and ∆EQD, EQD,0 are the width and maximum
of the gaussian QD energy distribution, respectively. Finally, this leads to the QD gain
function [50]

gQD(E) = C
1

E

∫ ∞
∞
|Mb|2|Menv|2D(E ′)

[
fc(E

′, Efc)− fv(E ′, Efv)
]
SQD(E ′, E)dE ′,

(3.17)

wherein

SQD(EQD, E) =
1

π

~β
(EQD − E)2 + (~β)

. (3.18)

Here, E = ~ω is the photon energy, C is a constant, and Mb, Menv are the Bloch-
matrix element and electron-hole wave function overlap, respecively, which are not
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CHAPTER 3. QUANTUM DOT MICROCAVITY LASERS

exactly known. Even though the specific form of gQD(E) is more complex than Eq.
3.13, the main characteristic is the same. It is still proportional to the number of
excited QDs, i.e. the QD ground state population.
The homogeneous broadening SQD is usually spectrally narrow compared to D and,
thus, the gain spectrum is dominated by the inhomogeneous broadening of the density
of states.

3.4 Planar semiconductor Bragg microcavities

Planar Bragg reflector microcavities (MCs) are excellent candidates for laser resonators,
due to their small size and high quality factors. Their mirrors are built out of mul-
tilayers of pairs of semiconductors or dielectrics with alternating refractive indices n1

and n2. Their thickness is such that the optical path in each layer is the quarter of the
target cavity wavelength λC , similar to the Bragg condition in X-ray analysis, which
gives them the name distributed Bragg reflector (DBR).
The periodic structuring of n results in the formation of photonic stop-bands, centered
around λC [51]. Propagating photons with wavelength lying in the stop-band, decay
within the structure, resulting in a reflectivity close to 1, depending on the number of
layer pairs and the refractive index contrast n1/n2. This is analogous to the formation
of energy gaps in the bandstructure of electrons in a periodic crystal lattice. Due to
this analogy such periodic structures are also referred to as 1D photonic crystals. The
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Figure 3-3: (a) Sketch of the layer structure of a planar bragg microcavity with a sheet of
quantum dots in the center (green dotted line), where the cavity mode intensity field (red
line) has a maximum. (b) Reflectivity spectrum R(E) of an AlAs/GaAs microcavity with
27.5 (23) doublelayers in the bottom (top) distributed bragg reflector and dC = 268nm GaAs
cavity-layer thickness. (c) Confined field intensity distribution of the cavity mode EC in the
same structure.
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3.4. PLANAR BRAGG MICROCAVITIES

spectral width of the stop-band depends on the refractive index contrast n1/n2.
In a MC, two DBRs are sandwiching a cavity layer of thickness

dC = j
λC
2nC

, (j = 1, 2, 3, ...) (3.19)

as sketched in Fig. 3-3(a), where nC is the refractive index of the cavity layer mate-
rial. The cavity layer may be interpreted as a defect layer which breaks the periodic
symmetry of a regular DBR structure [51]. This leads to localized photonic modes at
such a defect, resulting in a distinct minimum in the reflectivity of the structure at the
cavity mode energy EC = hc/λC .
The Maxwell equations of multilayered dielectric structures may be conveniently solved
using a transfer matrix formalism [52]. Thereby, it is possible to calculate the reflec-
tivity spectrum R(E) of a MC. An example is shown in Fig. 3-3(b), for a MC with a
GaAs cavity layer of λC/2 optical thickness and 23 (27.5) AlAs/GaAs doublelayers at
the top (bottom), and where the light is normal incident from the top. The stop-band
extends over an energy range of ∼ 150 meV and the cavity mode appears as a dip in
the center at EC = 1.315 eV.
Due to the limited number of doublelayers, the reflectivity of the DBRs is less than
unity and photons may escape after a certain lifetime τ . The limited lifetime leads to
a broadening ∆EC of the cavity mode. A measure for this is the quality factor

Q =
EC

∆EC
. (3.20)

The field distribution of the cavity mode can be calculated, using the same transfer
matrix formalism. It has the form of standing waves, like Fabry-Pérot modes that,
however, penetrate into the DBR structure. The intensity profile I(z, EC) of the above
mentioned structure is plotted in Fig. 3-3(c). To optimize the light-matter coupling,
the gain medium has to be placed at an antinode of the field distribution. For example,
a layer of InAs QDs may be placed at the center of a λC/2 cavity layer, as sketched
in Fig. 3-3(a). The small gain volume in such a QD MC laser is compensated by the
high Q factors >1000, which results in an increased interaction time with photons,
before these escape the structure. On the other hand, small gain volumes require less
pumping to invert the population and, therefore, lead to low lasing thresholds pth.
One limiting factor that remains is the inhomogeneous linewidth ∆EQD of a QD ensem-
ble, which is usually much bigger than the linewidth ∆EC of the MC. Consequently,
only a small fraction of QDs can directly contribute to laser operation. A solution
might be to dynamically shift the QD transition energies EQD, such that a larger frac-
tion of the gain spectrum is temporarily in resonance with the cavity mode. The overall
laser emission intensity should be enhanced, if the modulation occurs faster than the
thermal emission dynamics. A possible tool to shift the QD transition energies EQD is
strain. The underlying physics is explained in the following chapter 4.
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4
Deformation potential

As was mentioned briefly in chapter 1, when calculating the electronic bandstructure in
crystals, usually the Born-Oppenheimer approximation is applied, which allows to sep-
arate the electron and lattice motion, due to their difference in kinetic energy. However,
the lowest order corrections to the complete separation of electron and lattice dynamics
are only of the order (me/M)1/4 ∼ 10−1 to 10−2 [11]. Lattice vibrations, therefore, may
lead to perturbative corrections of the electron energy levels, if they are strong enough.
The Schrödinger equation, which describes the electron dynamics when lattice vibra-
tions are present is given by [13]:(

H0
e +H ′e

)
ψe = i~

∂

∂t
ψe, (4.1)

where H0
e is the unperturbed electron Hamiltonian, and H ′e = V (r)− V0(r) describes

the variation of the unperturbed, periodic potential V0(r) due to a lattice displacement
field u(r, t). Here, the treatment is restricted to sufficiently small phonon wavevectors
q, so that the displacement u(r, t) only varies slowly in space. In this case H ′e can be
expanded with respect to u and its spatial derivative [13]. Only the linear terms shall
be considered:

H ′e =
∑
α

uαV
′
α +

∑
α,β

1

2

∂uα
∂xβ

V ′αβ. (4.2)

Here, V ′α = −∂V0/∂xα. The tensor V ′αβ can be split into a symmetric and anti-
symmetric part. The anti-symmetric part describes the variation of the potential due
to a rotation of the crystal and can be neglected in first order. The symmetric part
Vαβ fulfills Vαβ = Vβα, so that Eq. 4.2 becomes [13]:

H ′e = −
∑
α

uα
∂V0

∂xα
+
∑
α,β

ηαβVαβ, (4.3)
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where ηαβ = 1
2
(∂uα/∂xβ + ∂uβ/∂xα) is the strain tensor, which was introduced earlier

in Eq. 1.13. The Schrödinger equation 4.1 can be solved using H ′e in the form of Eq.
4.3, expanding the wavefunction ψe in a series of unperturbed functions ψn,k0

at an
extremum k0 in momentum space [13, 53]. This way one is able to deduce the effect of
a lattice deformation on the electronic band energies in the linear approximation for k
in the vicinity of k0.
In the context of this work, it is sufficient to examine the effect of uniaxial strain
η33 = η in the (001)-direction of a crystal with zinc blende structure (e.g. GaAs,
InAs). Of particular importance is the effect on the bandgap Eg at k = 0. In the
linear approximation, the involved conduction- and valence-band energies vary linearly
with strain [54]. As a result, the bandgap energy change ∆Eg can be written as

∆Eg = adη. (4.4)

The constant ad is called deformation potential and usually has values ∼ −10 eV for
most semiconductors [55]. Picosecond strain pulses η(z, t), as introduced in section
1.3, usually have amplitudes in the order η0 ∼ 10−3, so that the electronic transition
energies can be shifted by ∼ 10 meV within picoseconds. The potential of this method
has already been demonstrated in earlier works, targeting quantum well excitons (e.g.
[26, 27, 28, 56, 57, 58]).
In this work, the same technique is applied to semiconductor quantum dots in order to
shift the electronic transition energies EQD and compensate initial detunings EC−EQD
in a microcavity laser. In the next chapter, the investigated microcavity laser will be
introduced and characterized.

34



5
Quantum dot microcavity sample

characteristics

The semiconductor (SC) laser under study consists of a planar microcavity (MC) grown
by molecular beam epitaxy on a (001)-oriented GaAs substrate [see section 3.4 for an
introduction to microcavities]. At the center of the cavity layer, where the electro-
magnetic field of the MC has an antinode, a layer of In0.3Ga0.7As quantum dots (QDs)
has been placed as the gain medium [QD density ∼ 1010 cm−2]. The QDs have been
grown using the Stranski-Krastanov method [59]. Inherent to this method is a variation
in size, shape and composition of the individual QDs in the ensemble, which translates
into an inhomogeneous broadening of the electron transition energies EQD. The optical
field inside the MC is confined only perpendicular to the cavity plane, which means
that the QD light emission to the side is unperturbed. The red curve in Fig. 5-1(a)
shows the normalized photoluminescence spectrum, recorded from the cleaved edge of
the sample at a temperature of T = 10K [section 2.1 for experimental details]. The off-
resonant optical excitation was quasi-stationary at an energy of Eexc = 2.33eV, with an
excitation power density of P = 10 kW/cm2, well below the lasing threshold Pth

1. The
spectrum corresponds to the QD ground state emission, centered at EQD,0 = 1.351 eV,
with a spectral width of ∆EQD = 11 meV.

The distributed Bragg reflector (DBR) mirrors, sandwiching the cavity layer, are
composed of alternating layers of AlAs and GaAs, each with λC/4 optical thickness,
where λC is the MC resonance wavelength. In order to have a directional laser emission
towards the surface side of the MC, the top DBR contains slightly less double-layers (23)
than the bottom DBR (27.5), resulting in a slightly lower reflectivity of the top DBR
mirror [51, 60]. The cavity layer is made out of GaAs and has an optical thickness

1Details about the lasing characteristics and particularly the lasing threshold will be provided later
in this section.
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Figure 5-1: (a) Spectrum of the cavity mode emission at EC = 1.367 eV with a full width
at half maximum of ∆EC = 1.2 meV [black]. The quantum dot emission without cavity
confinement was detected from the cleaved edge of the structure at a central energy of EQD,0 =
1.351eV and with a width of ∆EQD = 11meV. (b) The quantum dot emission at E = EQD,0
decays with a time constant of τ0 = 1.580 ns. The cavity emission, when exciting above the
lasing threshold, is dominated by stimulated emission and decays in just τC = 22 ps.

of λC . However, to ensure the tuneability of the fundamental cavity mode energy
EC , the cavity layer has a slight wedge, due to stopping the wafer rotation during
the growth process. By changing the position on the sample, EC can be varied from
EC = 1.32−1.37eV. The light emission to the front is concentrated in the cavity mode.
The black curve in Fig. 5-1(a) shows the emission recorded from the front, in this case
centered at EC = 1.367eV, with a spectral width of ∆EC = 1.2meV, much smaller than
the energy distribution ∆EQD of the QD ensemble. Consequently, even if considering
that QDs detuned by a few meV can couple to the cavity mode[61, 62, 63, 64, 65], it
is only a small fraction of the total number of QDs, limiting the laser efficiency.

The dynamics of the cavity mode [QD] emission have been detected from the front
[side], using a streak-camera with a temporal resolution of 25 ps [see section 2.1 for ex-
perimental details]. For the optical excitation, a pulsed laser with 150 fs pulse duration
at Eexc = 1.55 eV was used. The excitation energy density W = 70 µJ/cm2 was far
above the lasing threshold. Under these conditions, the emission into the cavity mode
is dominated by stimulated emission [chapter 3]. The recorded emission dynamics is
plotted as the black curve in Fig. 5-1(b) and shows the decay with a timeconstant of
just τC = 22 ps [resolution limited]. As shown in Fig. 5-1(b), by the red curve, the
emission of off-resonant QDs to the side decays in τ0 = 1.580ns and does not contribute
to lasing.

As discussed in section 3.2, the threshold excitation power density Pth depends on
the material gain. Due to the high mode volume, the Purcell enhancement of the
spontanous emission can be neglected in planar MCs [29, 66]. Further, the relative
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Figure 5-2: (a) Double-logarithmic input-output plots for stationary excitation with power
density P , recorded for several different cavity mode energies EC . (b) Lasing threshold power
density Pth, associated with the first kink in the input-output plot, against the detuning
EC − EQD,0 between cavity mode and QD central energy.

amount of spontaneous emission that is coupled into the cavity mode is negligible, so
that the threshold Pth can be extracted from the excitation power density dependence of
the cavity mode emission intensity I(P ) [input-output plot] [44, 45, 46]. Figure 5-2(a)
shows this dependence for five different cavity mode energies EC , recorded under quasi-
stationary excitation [see section 2.1]. The threshold Pth is crossed at the first kink of
I(P ), where the emission behaviour becomes non-linear. The dependence of Pth on the
detuning is plotted in Fig. 5-2(b). The main observation here is that Pth is minimal,
when the detuning EC−EQD,0 is zero. This agrees well with the fact that the QD gain
spectrum gQD(E) has a maximum at EQD,0, due to the density of states distribution
D(E) [Eq. 3.16,3.17]. Simply put, the threshold is lower the higher the number of
resonant QDs.

Another remarkable observation is that the slope of I(P ), in the regime of spon-
tanous emission, depends on detuning. For negative and zero detuning, the slope is
identical, but for positive detunings, the slope becomes steeper. A possible interpre-
tation might be based on the energy structure of QDs. As was stated in section 3.3,
due to the electronic confinement, the energy of QDs is quantized [49]. The energy
separation between s-shell and p-shell states is of the order ∼ 20 meV [measured in
samples with similar QDs]. Due to the inhomogeneous broadening, there can be an
overlap of s- and p-states, which are contributing to the positively detuned cavity mode
emission. This might possibly explain the increased slope of I(P ).
There are, however, no p-shell features observerd in the recorded emission spectrum,
even at pumping above the laser threshold. The reason might be that, for pump power
densities P < Pth, the ground state occupation is not yet restricted by Pauli -blocking.
For pumping above the threshold, the decay into the cavity mode might be so efficient,
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due to stimulated emission, that Pauli -blocking remains unimportant.
Multi-exciton complexes may be another reason for the non-linear P dependence of I,
in the spontaneous emission regime [67]. However, multi-exciton binding energies are
small compared to the inhomogenous broadening ∆EQD of the QD ensemble. Con-
sequently, their influence on the spontaneous emission should appear on the negative
energy wing of the distribution as well. Therefore, higher energy shells most likely play
a more important role to describe the detuning dependence of I(P ) in the regime of
spontaneous emission.
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6
Laser mode feeding by shaking off-resonant

quantum dots in a planar microcavity

In the previous section it was shown that the investigated microcavity laser suffers
from an inefficient coupling of the spectrally broad quantum dot ensemble into the
spectrally narrow cavity mode. It is desirable to increase the number of quantum
dots which contribute to the laser emission and, thereby, improve the efficiency of the
microlaser. One way is to achieve this dynamically, by shifting the transition energies of
the QDs on timescales faster than the thermal emission dynamics. Lattice deformations
result in shifts of the electronic transition energys [section 4] and strain pulses η(t),
generated by picosecond acoustics methods, may compensate energy detunings in the
order of ∼ 10 meV within picoseconds (e.g. [26, 27, 28, 56, 57, 58]). In this chapter
it will be shown that picosecond strain pulses are a prospective tool to dynamically
increase the number of resonant QDs. Thereby, the emission output of the investigated
microlaser is increased up to 50 times under stationary optical excitation, and by more
than two orders of magnitude under pulsed excitation, if the cavity mode is detuned
by EC −EQD,0 = 16 meV. An analogy to this effect is the increased flow rate through
a sieve, when giving it a shake.

6.1 Experimental conditions

The strongest effect of such dynamic modulation is expected to appear for a maximum
increase of the gain and strong non-linear emission characteristics around the thresh-
old Pth. The biggest increase of gain for the investigated microlaser is achieved when
changing from a cavity detuning on the wings of the QD energy distribution towards
zero detuning, as shown by the reduction of the lasing threshold Pth in Fig. 5-2(b).
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6.1. EXPERIMENTAL CONDITIONS
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Figure 6-1: (a) Scheme of the shaking experiment. A strain pulse is optically excited at
an Al transducer on the sample backside. The strain pulse propagates through the substrate
and modulates the cavity emission, when it moves through the QD layer at the center of the
cavity. (b)-(d) Calculated temporal dependence of the strain pulse η(t) as it is injected into
the substrate (b), when it hits the QD layer at tS for the first time and once it has been
reflected at the sample top with a π phase-shift and moves through the QD layer a second
time (d).

Furthermore, the strongest increase in the emission intensity when crossing the lasing
threshold is observed when the cavity is positively detuned, as shown in Fig. 5-2(a),
by the black curve. As demonstrated in earlier works, the achievable energy shift by a
strain pulse is in the order ∼ 10 meV [27], for typical semiconductor nanostructures.
For the above mentioned reasons, the position on the sample is chosen such that the
detuning is EC − E0 = 16 meV, for maximum intensity modulation. Subsequently, a
detuning on the opposite side of the QD distribution, with E0 − EC = −20 meV, is
investigated. In that case, only QD ground state emission is involved and an interpre-
tation of the results is easier.

The scheme of the experiment is shown in Fig. 6-1(a), while details of the setup
are explained in section 2.1. All experiments have been carried out at cryogenic tem-
peratures [T = 10 K]. At the backside of the sample, a picosecond strain pulse is
generated, using the established technique of picosecond acoustics [section 1]. For an
excitation energy density of W = 13 mJ/cm2,1 the injected strain pulse η(t) shows a
temporal dependence as plotted in Fig. 6-1(b). The strain amplitudes are so high that
elastic non-linearities become important during the propagation through the substrate

1The excitation energy density W = 13 mJ/cm2 has been kept constant for all experiments in this
chapter
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CHAPTER 6. SHAKING OFF-RESONANT QDS IN A MC

[21]. Furthermore, during the propagation through the layered structure of the MC,
multiple reflections modify the shape of the strain pulse. When it reaches the QD layer
for the first time at tS the temporal dependence η(t) looks like shown in Fig. 6-1(c).
Subsequently, the strain pulse propagates through the top DBR, is reflected at the MC
open surface with a π phase shift and reaches the QD layer for a second time, about
1.3 ns later [see Fig. 6-1(d)].

In the next section, at first the effect of shaking on the emission intensity I(t), when
the cavity mode is positively detuned by EC − EQD,0 = 16 meV, will be investigated.
In section 6.3, the same experiment will be performed, for a detuning on the opposite
side of the QD energy distribution, at EC − EQD,0 = −20 meV.

6.2 Shaking at positive detuning

In this section, the results of the shaking experiment, at a detuning of
EC − EQD,0 = 16 meV, will be presented. The effect of the strain pulse perturbation
on the emission intensity I(t) is studied in the time domain. At first, the microlaser is
optically excited under quasi-stationary conditions, at Eexc = 2.33 eV. Thereafter, the
effect for pulsed optical excitation with Eexc = 1.55 eV will be presented.

Figure 6-2(a) shows the emission intensity I(t)/I0 over a time interval of 1.8 ns for
an excitation power density P = 0.9Pth, normalized to the value I0 of stationary emis-
sion without shaking. Two intensity peaks, separated by 1.3 ns, are clearly observed.
The time separation equals the separation between incident and reflected strain pulse
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Figure 6-2: (a) Normalized change of cavity mode emission intensity I(t)/I0 due to the
incident and reflected strain pulses. Stationary optical excitation conditions just below the
lasing threshold [P = 0.9Pth]. (b) More detailed look at the emission change I(t)/I0 due to
the incident strain pulse [Inset: reflected strain pulse], recorded for different optical excitation
densities P , below and above the threshold Pth.
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6.2. SHAKING AT POSITIVE DETUNING

[Fig. 6-1(c),(d)], which indicates that they are indeed responsible for the modulation.
Each peak has a duration of just a few 10 picoseconds. The first one amounts to an
emission intensity increase by a factor of 20, while the reflected pulse increases the
emission intensity even 50 times.
In the inset of Fig. 6-2(b) a more detailed plot is shown for the incident and reflected
pulse, using various excitation power densities P . The strongest increase is observed
for excitation densities slightly below the lasing threshold, but even for operation well
above the threshold, at P = 3.0Pth, the intensity is still increased several times.
Above the lasing threshold, not only an increase of emission is observed, but also a
decrease up to total quenching in the time interval from t− tS = 50− 100 ps. But still,
when integrating over the duration of each pulse a net intensity increase is observed.
The origin of the quenching will be discussed later.

If the optical excitation of the microlaser is changed to be pulsed, the effects become
even stronger. However, the time separation tS − t0 between microlaser excitation at
t0 and the strain pulse arrival time at the QD layer tS is an additional parameter
that has to be taken into consideration. As can be seen in Fig. 6-3, this separation
has a significant influence on the emission dynamics of the microlaser. The energy
density per pulse W = 1.1Wth, used in this example, is above the lasing threshold of
Wth = 5.2 µJ/cm2 [see Fig. 6-4(a)]. The black curves in Fig. 6-3 show the emission
dynamics without any strain pulse perturbation. The emission intensity I(t) reaches
its maximum I0 around 100 ps after the optical excitation, followed by a rapid decay
with a timeconstant of τc, governed by the lasing kinetics [Fig. 5-1(b)]. The red
curves show the time dependence of I(t)/I0 with applied strain pulse, for two different
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Figure 6-3: Change of cavity mode emission intensity I(t)/I0 after pulsed optical excitation
with an energy density W = 1.1Wth. The black curve shows the unperturbed emission after
excitation at t0. The red curves shows the emission intensity changes for two different arrival
times tS of the incident strain pulse [grey trace] at the quantum dot layer. (a) tS−t0 = 180ps,
(b) tS − t0 = 100 ps.
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CHAPTER 6. SHAKING OFF-RESONANT QDS IN A MC

values of tS − t0 in (a) and (b), respectively. Figure 6-3(a) shows the case where the
strain pulse arrives when the emission is already decaying [tS − t0 = 180 ps]. For this
timing, I(t)/I0 increases again for the time interval when the strain pulse has mainly
compressive components [grey trace in Fig. 6-3]. The maximum increase is achieved
when t0 − tS is chosen in such a way that the compressive strain pulse front is moving
through the QD layer while the unperturbed emission would reach its maximum. This
is the case for tS − t0 = 100 ps, as shown in Fig. 6-3(b).
The latter case shall be investigated further, depending on the excitation energy density
W . As for stationary excitation, the strength of the effect is maximal when exciting
just at the threshold Wth. For excitation above the threshold, at W = 1.1Wth, the
intensity I(t)/I0 is increased already a few times, as seen in Fig. 6-3(b). However,
when exciting at W = 1.0Wth, the intensity is increased by more than two orders
of magnitude [Fig. 6-4(b)]! If the increase is compared with the non-linear jump of
I(W ) in the input-output plot when crossing Wth [see Fig. 6-4(a)], the strain induced
intensity increase has a similar magnitude. This indicates that by shaking the device
during optical excitation at W = Wth, the microlaser can be dynamically switched
from spontaneous to lasing emission.

To give a qualitative explanation for the observed emission modulation I(t)/I0, for
quasi-stationary and also pulsed optical excitation, one has to discuss three different
excitation regimes.
(i) P � Pth: In the regime of spontaneous emission, the cavity emission intensity is
directly proportional to the number of excited QDs [Eq. 3.8]. The compressive part
of the strain pulse η(t) shifts the maximum of the QD energy distribution towards the
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Figure 6-4: (a) Input-output plot I(W ) for pulsed optical excitation. (b) Cavity mode
emission danymics I(t)/I0, with [red] and without strain [black], when excited just at the
lasing threshold W = Wth. The strain pulse moves through the QD layer at the time tS ,
100 ps after the optical excitation at t0. Shaking results in an intensity increase of two orders
of magnitude.
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6.2. SHAKING AT POSITIVE DETUNING

cavity mode, which temporarily increases the number of resonant QDs. The intensity
increase I(t)/I0 should be moderate, proportional to the increase of quasi-resonant
QDs.
(ii) P ≈ Pth: The excitation regime around the lasing threshold shows highly non-linear
emission intensity behaviour. A shift of the quantum dot gain spectrum [Eq. 3.17]
towards the cavity mode EC temporarily results in a higher gain for the microlaser,
which may be enough to dynamically exceed the lasing threshold [Eq. 3.15]. As a
consequence, the emission intensity increases drastically, because quasi-resonant QDs
are now dominantly emitting into the cavity mode due to stimulated emission, as seen
in Figs. 6-2 and 6-4 for stationary and pulsed excitation, respectively.
(iii) P > Pth: In the lasing regime, the decay of resonant QDs is significantly faster
compared to off-resonant QDs [Fig. 5-1(b)]. Consequently, the equilibrium population
of resonant QDs is decreased, due to stimulated emission. In other words, the laser
emission burns a spectral hole into the QD population, within the spectral width for
which the emission can be fed into the cavity mode. The strain pulse η(t) temporarily
increases the number of QDs that can feed the laser mode, which broadens the width
of the spectral hole and results in a higher emission intensity. As for the spontaneous
emission regime, however, the emission increase directly depends on the number of
quasi-resonant QDs and thus is only moderate.

The strain induced shift of the electronic transition energies in the QD ensemble is
the dominant contribution to the emission modulation I(t)/I0. Another contribution
is the shift of the cavity mode energy EC [68]. Interface displacements inside the DBR
structure and a strain induced change of the refractive index n of the individual DBR
layers, due to the photo-elastic effect, result in a change of EC when the strain pulse
propagates through the MC. This change of EC appears even before the strain pulse
reaches the QD layer and is of the order ∼ 0.1 meV, much smaller than the shift of
EQD. The small shift of EC is, however, large enough to have a noticable effect on
I(t)/I0, if the microlaser is operated in the highly non-linear excitation regime around
the lasing threshold. In this case an emission increase is already observed around 50ps,
before the strain pulse reaches the QD layer, as can be seen in Fig. 6-2(b) and Fig.
6-4(b).

A quantitative description of the discussed effects is difficult for a number of reasons.
First of all, solving the coupled set of non-linear differential equations for population
and field intensity, introduced in chapter 3, is a non-trivial task of its own, even for a
simple two-level system. On top of this, it was already mentioned in chapter 5 that for
positive detuning it seems like not only the QD ground state emission is fed into the
cavity mode, but higher states are involved, too.

To get at least a qualitative understanding of the observed effects, in the next
section, results for a cavity detuning of EC −EQD,0 = −20 meV will be shown. In that
case, only QD ground state emission is involved. Calculations based on a simplified
rate-equation approach will be presented to proof the qualitative explanation for the
lasing regime given in this section.
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CHAPTER 6. SHAKING OFF-RESONANT QDS IN A MC

6.3 Shaking at negative detuning

In this section, the shaking experiment, presented in section 6.2, will be repeated for
a negative cavity mode detuning of EC − EQD,0 = −20 meV [Fig. 6-5(a)]. Unlike for
positive detuning, only QD ground state emission is fed into the cavity mode in this
case. This allows the application of a simplified rate-equation model. Comparison of
calculations and experimental results will help to understand the mechanism that is
responsible for the emission intensity modulation I(t)/I0 in greater detail than it was
possible in section 6.2.

The normalized emission intensity I(t)/I0 under quasi-stationary excitation, at
P = 4.0Pth, clearly in the lasing regime, is plotted in Fig. 6-5(b). The strain pulse
was excited with an excitation energy density of W = 13 mJ/cm2, the same as in the
previous experiments in section 6.2. Again, one detects two emission intensity peaks,
separated by 1.3 ns, which correspond to the incident and reflected strain pulse per-
turbation, respectively.
For the incident strain pulse, a decrease of emission intensity is observed, before the
emission is increased by a factor of ∼ 2. Comparing this behaviour with the previous
experiments at positive detuning [Fig. 6-2(b)], increase and decrease of emission appear
in opposite order. This is a result of the opposite detuning. For negative detuning, the
compressive components at the leading edge of the strain pulse η(t) shift the maximum
of the QD distribution, at EQD,0, away from the cavity mode EC , resulting in an initial
emission decrease.
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Figure 6-5: (a) Spectrum of the cavity mode emission at EC = 1.331 eV with a spectral
width of ∆EC = 1.0 meV [black]. Quantum dot emission at EQD,0 = 1.351 eV central energy,
with an inhomogeneous broadening of ∆EQD = 11 meV [red]. The cavity emssion in the
lasing regime decays with a time constant of τC = 40 ps [inset]. (b) Cavity emission intensity
change I(t)/I0, due to the incident and reflected strain pulse, at t−tS = 0 and t−tS = 1.3ns,
respectively. The optical excitation was quasi-stationary with a power density of P = 4.0Pth.
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6.3. SHAKING AT NEGATIVE DETUNING

The emission increase lasts over a time of ∼ 100 ps, much longer than for positive
detuning. Apart from the duration, the results are also less promising for applications,
because the magnitude of the increase is smaller than for positive detuning. However,
the results are still appealing, because the fact that only QD ground state emission is
fed into the laser mode makes it possible to analyse them on a more quantitative level
and one may draw general conclusions.

In the following, a new model is introduced, which is strongly simplified compared
to the theory presented in chapter 3. It is assumed that the microlaser is operated in the
lasing regime. Further, only the population probability N(E, t) of the QD ground state
is taken into acount. The pumping process is included by a phenomenologic generation
rate g(t), so that the time evolution of N(E, t) is described by the differential equation

d

dt
N(E, t) = −[ΓC(E, t) + τ−1

0 ]N(E, t) + g(t). (6.1)

Quantum dots with a ground state energy EQD in the vicinity of the cavity mode EC
decay at an increased rate ΓC(E, t), due to stimulated emission:

ΓC(E, t) =
1

τC

[
1 +

(
E(t)− EC

∆ΓC

)2
]−1

. (6.2)

The strain pulse η(t) shifts the energy EQD of the individual QDs, as described in
chapter 4, resulting in a time dependent electronic transition energy

E(t) = EQD + ad · η(t), (6.3)

where ad is the deformation potential [Eq. 4.4]. Combining Eqs. 6.2 and 6.3 into
Eq. 6.1, the time dependence of the population probability N(E, t) can be calculated.
In the end, the time dependence of the emission intensity I(t) is of interest. For a
set energy E, it is given by the decay rate into the cavity mode times the population
probability N(E, t), weighted by the density of states D(EQD). The total emission
intensity I(t) amounts to the integral over all energies

I(t) =

∫ ∞
−∞

ΓC(E, t) ·N(E, t) ·D(EQD)dEQD. (6.4)

Finally, at each point in time, the calculated intensity I(t) has to be averaged over a
timerange of ∆t = 25 ps, to take into account the experimental time resolution.

The temporal dependence of the strain pulse η(t), used for the calculation, is plotted
once again in Fig. 6-6(a). The black curve in Fig. 6-6(b) shows the calculated emission
intensity I(t)/I0, where the set of parameters was taken from the experiment1.
Experimental results for quasi-stationary excitation at P = 4Pth, already shown in
Fig. 6-5(b), are plotted into the same figure [red curve]. The calculated peak emission
increase is about 2.5 times bigger than in the experiment, but still of the same order

1τ0 = 1.5 ns, τC = 40 ps, ∆ΓC = h/τC = 0.1 meV, EC = 1.331 eV, and ad = −10 eV. For the
density of states D(EQD), the measured spectrum, shown in Fig. 6-5(a) is used
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Figure 6-6: (a) Temporal de-
pendence of the incident strain
pulse η(t) at the QD layer.
(b) Emission intensity change
I(t)/I0 due to the perturbation
of the incident strain pulse. The
red curve shows the experimen-
tal result for quasi-stationary
excitation at P = 4.0Pth. The
black curve shows a calcula-
tion, based on the simplified
rate equation model, introduced
in this section [τ0 = 1.5ns, τC =
40 ps, ∆ΓC = h/τC = 0.1 meV,
EC = 1.331 eV, ad = −10 eV,
and D(EQD) taken from the
spectrum in Fig. 6-5(a)]. The
dashed vertical lines are guides
to the eye, highlighting some
points in time with maximum
tensile strain at the QD layer.

of magnitude. For better comparison, the plots for theory and experiment are scaled
to the same amplitude [left y-axis: theory, right y-axis: experiment].

Despite the missing drop at the leading edge, the calculated temporal evolution of
the cavity emission intensity I(t)/I0 shows remarkable congruency with the experimen-
tal results, even in detail. In particular, local maxima of the intensity appear at the
same points in time. For illustration, the first three local maxima have been highlighted
by dashed vertical lines in Fig. 6-6. Comparing (a) and (b), these maxima correspond
to points in time, where the strain η(t) is dominantly tensile. This agrees well with the
previous assumption that the emission intensity increases when the maximum EQD,0
of the gain spectrum is shifted towards the cavity mode EC [Eq. 6.3].

The good agreement between theory and experiment suggests to have a deeper look
into the mechanism that is responsible for the emission intensity increase. Therefore,
the population N(E, t) ·D(EQD) for the unperturbed equilibrium at t − tS = −50 ps
[black] and at the time of the intensity maximum at t − tS = 70 ps [red] are plotted
in Fig. 6-7. The equilibrium population [t − tS = −50 ps] shows a spectral hole
at EC = 1.331 eV, due to the increased decay rate ΓC , associated with stimulated
emission into the laser mode. The width ∼ 1 meV of the spectral hole agrees well with
the measured linewidth ∆EC of the cavity mode in the emission spectrum, shown in
Fig. 6-5(a).
To understand Fig. 6-7, it has to be stressed that, in the applied model, the energy
modulation is applied to ΓC . This equals a modulation of the cavity mode rather than
the QD transition energies, so that D(EQD) is fix. However, this is just a technical
difference. At t − tS = 70 ps, the dominantly tensile parts of the strain pulse have
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Figure 6-7: Calculated population
N(E, t) ·D(EQD) at two different times.
t− tS = −50 ps [black]: Equilibrium
population, without strain pulse pertur-
bation. t− tS = 70 ps [red]: Population
at the time of maximum emission inten-
sity I(t)/I0. During shaking, the spectral
hole of the equilibrium population is
broadened over the energy modulation
window of ∼ 10 meV.
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shaken the QDs, such that an energy window of ∼ 10 meV, closer to the maximum of
the distribution D(EQD), was temporarily in resonance with the cavity mode. Figure
6-7 shows: the population within the energy modulation window has decreased, due
to the contribution to laser emission with the rate of stimulated emission τ−1

c � τ−1
0 .

This supports the interpretation for the excitation regime (iii) P > Pth, in section 6.2,
where it was assumed that the emission intensity increase is due to the fact that shaking
broadens the spectral hole over the modulation range. The frequency components in
the strain pulse, however, are even higher than τ−1

C , up to several 100 GHz [Fig. 1-3],
so that the dynamic coupling of quasi-resonant QDs is not efficient enough to burn a
spectral hole as deep as the one at EC in the equilibrium population.
After reflection, the solitons at the strain pulse front become tensile, due to a π-phase
shift. Quantum dots shifted into resonance by them probably suffer from an even lower
coupling efficiency, because solitons carry the highest frequency components within
the pulse. This might be an explanation for the lower peak amplitude of I(t)/I0 for
the reflected strain pulse [Fig. 6-5(b)]. The argument is supported by the fact that
the opposite behaviour is observed for positive detuning [Fig. 6-2], where the roles of
compressive and tensile strain are switched. There, the maximum amplitude of I(t)/IC
is observed for the reflected strain pulse.

6.4 Conclusion and perspective

In conclusion of this chapter, using picosecond acoustics, it has been demonstrated
that, by shaking a quantum dot microcavity laser, where a large portion of quantum
dots is originally out of resonance, it is possible to drastically increase the emission
intensity. For a cavity detuning of 16 meV towards the high energy flank of the in-
homogenious quantum dot ensemble, an emission intensity increase by a factor of 50
under stationary optical excitation, or even by two orders of magnitude in case of
pulsed optical excitation has been observed. The responsible mechanism is the strain
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induced modulation of the electronic transition energies, to obtain resonance with the
cavity mode, faster than the spontaneous emission dynamics.

Going a step further, the method may be used to dynamically achieve resonance
between electronic transitions and an optical cavity mode, especially in systems, where
such resonance conditions are challenging or even impossible to achieve by the manu-
facturing process itself. The self-evident application would be to create high-efficiency
quantum dot lasers. Population inversion in such lasers may be achieved efficiently for
off-resonance, e.g. by electrical pumping, and shaking is used to open the stimulated
emission channel.
Another example would be single- or entangled-photon emission in single quantum dot
microcavities. An originally off-resonant quantum dot could be dynamically pushed
into resonance to trigger the emission of single photons on demand.

Especially appealing in the context of prospective applications, is the development
of terahertz sasers1, as a shaker which can be electronically controlled. First promising
results have been reported recently [69], based on GaAs/AlAs superlattices, controlled
by an applied electrical bias. Combined with a microlaser, such sasers could lead to
the realisation of electrically controlled on-chip solutions of above mentioned devices.

In a more traditional approach, the technique may be used to modulate light sources
at ∼ 10GHz, comparable to the current limit for such modulation. The common way to
achieve this in modern devices is by changing the cavity resonance or its quality factor
Q [Eq. 3.20]. To apply such methods to microlasers with dimensions on the order
of the emission wavelength, however, is a challenging task [70, 71], so that external
modulators need to be used. Using picosecond acoustics to modulate the gain medium
instead, is a prospective method to achieve even higher modulation frequencies.
One possible way to achieve higher modulation frequencies is to tailor the system
specifications such that only short parts of the strain pulse have an effective influence.
For example, the detuning could be chosen to be such that only those parts with
the highest strain amplitude are able to create the resonance condition. The high-
amplitude solitons at the strain pulse front have durations of only a few picoseconds,
resulting in sub-terahertz modulation frequencies.
The more versatile method would be to modify the shape of the strain pulse, because it
could be applied to any device. The active approach would be to replace the acousto-
optic transducer, so that the excited strain pulse is shorter, or even monochromatic.
The latter can be achieved, using superlattices as the transducer [72]. Pulse-shaping
may also be done passively, e.g. using acoustic nanocavities [73, 74]. Such structures
may either be used to filter certain frequencies of a broadband strain pulse, or even
to enhance the field-amplitude of frequency components corresponding to the acoustic
cavity mode.

The speed of sound contrast of GaAs and AlAs turns the optical DBR mirror itself
into a phonon filter already. In the next section, it will be shown that the pulse
shaping by the microcavity DBR structure allows for a harmonic GHz modulation of
the microlaser output intensity.

1Sasers are the acoustical analogue of lasers.
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7
Harmonic modulation of laser emission in a

hybrid optical/acoustical microcavity

It happens that the refractive index n and the speed of sound v reciprocally have the
same relative contrast in GaAs/AlAs heterostructures: nAlAs/nGaAs ≈ vGaAs/vAlAs ≈
0.84 [75]. Consequently, the optical Bragg mirror of a planar microcavity, like the one
introduced in chapter 5, at the same time corresponds to an acoustical mirror [76].
As a result, it acts as a filter for an incoming acoustic broadband pulse. Phonons
with certain frequencies have an increased transit time through the structure. In this
chapter it will be shown that after the initial strain pulse perturbance, such delayed
phonons are able to modulate the laser emission intensity at a set frequency of 17GHz.
In the planar quantum dot microcavity laser under investigation, such modulation is
the most effective for zero detuning, EC − EQD,0 = 0.

7.1 Experimental conditions

The microlaser under study is the planar quantum dot (QD) microcavity (MC) intro-
duced in chapter 5. The experimental conditions are identical to those described in
section 6.1. A picosecond strain pulse η(t) is excited on the backside of the sample,
using the established technique of picosecond acoustics, introduced in chapter 1. The
strain pulse shifts the electronic transition energies of an inhomogeneous QD ensemble
and, thereby, perturbes the coupling to the cavity mode at EC . The effect on the
emission intensity I(t) of the microlaser is investigated in the time domain.
This time, the cavity detuning with respect to the maximum of the QD energy distribu-
tion is zero, EC−EQD,0 = 0. All experiments are performed at cryogenic temperatures
[T = 10 K].
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Figure 7-1: (a) Normalized change of cavity mode emission intensity I(t)/I0 due to the
incident and reflected strain pulses. Stationary optical excitation conditions at the lasing
threshold [P = Pth = 5.2 kW/cm2] for zero cavity detuning. (b) More detailed look at
the emission change I(t)/I0 due to the incident strain pulse [inset: reflected strain pulse],
recorded for different optical excitation densities P , below and above the threshold Pth.

Figure 7-1(a) shows the emission intensity I(t)/I0, recorded under quasi-stationary
excitation, at P = 1.2Pth, just above the threshold power density of Pth = 5.2kW/cm2.
The effect of the incident and reflected strain pulse is detected with a separation of
1.3 ns, as already noted in chapter 6, and in agreement with strain pulse calculations
[Fig. 6-1(c),(d)]. A more detailed view is shown in Fig. 7-1(b), for different excitation
power densities P .
The effect of the leading part of the strain pulse has already been subject of detailed
discussion in chapter 6. Remarkable for the zero detuning conditions is the distinct
harmonic modulation of I(t)/I0 with a frequency of 17 GHz, following the initial per-
turbance, at times t − tS > 200 ps. It is, however, superimposed on a slowly varying
background. The strongest effect is achieved for an excitation power density just above
the threshold, at P = 1.2Pth, where the 17GHz oscillation has an amplitude of ∼ 50 %.
But even in the lasing regime the harmonic modulation is still very distinct. In the
excitation regime below the lasing threshold, the modulation is undistinguishable from
noise.

7.2 Harmonic intensity modulation by phonon fil-

tering in acoustic superlattices

Before the observed experimental results are analyzed, it is necessary to understand
a few things about phonon dynamics in an acoustic superlattice (SL), i.e. hetero-
structures with a periodic profile of the acoustic impedance Z. Elastic waves have to
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satisfy continuity conditions for the atomic displacement u and stress σ [section 1.2], in
particular at the interface of two materials A and B. In a superlattice with a periodic
impedance profile in the z-direction, the boundary conditions for an interface at z = z0

read [76]:

u(z0)|A = u(z0)|B ,

CA
∂u(z0)

∂z

∣∣∣∣
A

= CB
∂u(z0)

∂z

∣∣∣∣
B

,
(7.1)

where Cj is the elastic force constant in material j = A,B. Analogous to solving
Maxwell ’s equations in multilayered structures, Eqs. 7.1 can be conveniently solved,
using standard transfer-matrix methods [52, 73]. In particular, the acoustic reflectivity
spectrum Ra(ω) can be calculated for the microcavity structure under investigation
[Fig. 7-2(a)]. In the plotted frequency range, acoustic stop-bands with an acous-
tic reflectivity close to unity appear, extending from ω/2π = 16.6 − 19.0 GHz and
ω/2π = 52.3− 54.7 GHz, where ω is the phonon angular frequency.
The stop-bands correspond to bandgaps in the phonon dispersion. Introducing bound-
ary conditions for the periodicity and using the Bloch theorem, it is possible to derive
an equation that relates the effective phonon wavevector q of a superlattice with period
D = dA + dB to the wavevectors qj = ω/vj in the individual layers [76]:

cos (qD) = cos

(
ωdA
vA

)
cos

(
ωdB
vB

)
− 1 + (ZA/ZB)2

2(ZA/ZB)
sin

(
ωdA
vA

)
sin

(
ωdB
vB

)
. (7.2)

Here, dj and vj are the layer thickness and sound velocity of material j, respectively.
The modulus of the left-hand side is ≤ 1, while the modulus of the right-hand site has
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Figure 7-2: (a) Calculated reflectivity spectrum Ra(ω) of the microcavity structure, intro-
duced in chapter 5. (b) Sketches of the bulk dispersion [red] and the effective dispersion q(ω)
[black] of the the same multilayer structure as in (a), folded into the mini Brillouin zone
(MBZ). The acoustic stop-bands correspond to bandgaps of q(ω) at the MBZ edge.
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7.2. PHONON FILTERING IN ACOUSTIC SUPERLATTICES

values > 1 for some frequencies ω. This leads to bandgaps in the dispersion relation
q(ω) at the extrema of the left-hand side, in agreement with the Bragg condition:
q = mπ/D [m: integer]. In Fig. 7-2(b), a sketch of the bulk dispersion is plotted
together with the effective dispersion q(ω) of the DBR superlattice in the folded mini
Brillouin zone (MBZ), −π/D < q < πD. There is no bandgap for even integers m,
because in the studied structure dA/vA = dB/vB.

The meaning of the group velocity is only well defined, if the dispersion of the
medium is not too large [77]. Its definition has been debated for highly dispersive
media [78], but it has been demonstrated that it remains physically meaningful for
coherent wave propagation even in strongly scattering media [79]. In particular, the
dispersion q(ω) can be used to calculate the group transit time tg(ω) ∼ (dω/dq)−1 for
high frequency coherent phonons in superlattices [80].
As illustrated in Fig. 7-2(b), q(ω) has a small gradient for phonon frequencies ω close
to the stop-band edge. For a broadband strain pulse η(t) propagating through the
microcavity structure under investigation, this means that such frequency components
close to the acoustic stop-band edge arrive at the QD layer with a delay, following the
main part of the pulse.
The calculated temporal profile of the strain pulse, when it initially arrives at the QD
layer, is shown in Fig. 7-3(a). After t − tS = 200 ps the main part has passed the
QD layer and is followed by a ringing. A fast Fourier transform of η(t), showing the
spectral intensity in the time window t− tS = 200− 1200 ps, is plotted in Fig. 7-3(b).
Two distinct peaks are observed at ωs,1/2π = 16.4GHz and ωs,2/2π = 19.2GHz, which,
within the resolution of 1 GHz, fit very well with the frequencies of the first stop-band
edges.
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Figure 7-3: (a) Temporal dependence of the incident strain pulse η(t) [red] and the cor-
responding emission intensity modulation I(t)/I0 [black] for quasi-stationary excitation at
P = 1.5Pth and zero cavity detuning. (b) Spectral intensity of η(t) [red] and I(t)/I0 [black]
over the timerange t− tS = 200− 1200 ps, obtained by a fast Fourier transform. The plots
are offset for clarity.
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For better comparison with the temporal profile of η(t), the emission intensity
I(t)/I0 for an excitation power density P = 1.5Pth is plotted into the same graph in
Fig. 7-3(a). The reason why I(t)/I0 for P = 1.5Pth was chosen over the strongest
signal at P = 1.2Pth is simply that it is less affected by noise, due to the higher total
intensity I0 and the sensivity of the detection scheme.
From the comparison it is obvious that the harmonic modulation of I(t)/I0 starts at
t−tS = 200ps, after the main part of the strain pulse has moved through the QD layer.
The fast Fourier transform (FFT), showing the intensity of the spectral components
of I(t)/I0 over the timerange t− tS = 200− 1200 ps, is plotted into Fig. 7-3(b). Apart
from a low frequency background, a distinct peak appears at ωI,1/2π = 17.0 GHz and
another weak one at ωI,2/2π = 19.9 GHz, which is hardly distinguishable from the
noise. Both are in remarkable agreement with ωs,1/2π, ωs,2/2π from the FFT of η(t),
over the same timerange, and also in agreement with the frequencies of the first acoustic
stop-band edges [Fig. 7-2(a)].
The spectral analysis of I(t)/I0 and η(t), in both cases shows a weaker contribution of
the higher frequency edge of the acoustic stop-band. A possible explanation might be
that this Fourier component is weaker in the spectrum of the injected strain pulse.

The remarkable consistency, when comparing the modulation spectrum with calcu-
lations of the acoustic stop-bands, strongly supports the assumption that the harmonic
modulation of I(t)/I0, at times t − tS > 200 ps, is due to delayed coherent phonons
with frequencies at the edges of the first acoustic stop-band of the DBR superlattice.

At this point, however, it needs to be mentioned that one would expect a modulation
of I(t)/I0 at twice the frequency of such phonons. This is because for EC − EQD,0 = 0,
the distribution of QDs with ground state energy EQD is symmetric around EC . Con-
sequently, a positive energy shift [compressive strain] should have the same effect as a
negative energy shift [tensile strain]. This means, both half-periods of a strain oscilla-
tion should have the same effect, hypothetically leading to a modulation of I(t)/I0 at
twice the frequency of such an oscillation.
In reality, the modulation doesn’t seem to be symmetric with regard to the direction
of the energy shift, resulting in a modulation at ωI = ωs, instead of 2ωs. The observed
modulation of I(t)/I0, by the main part of the strain pulse, is in agreement with
this assumption. Here, the compressive leading edge results in an intensity increase
[t− tS = 0− 50 ps], while the dominantly tensile parts result in an intensity decrease
[t − tS = 50 − 200 ps]. This has already been observed in chapter 6.2 for positive
cavity detuning, in particular for excitation in the lasing regime, P > Pth. The results,
presented in section 6.2 for EC − EQD,0 = 16 meV, shall be reviewed in the following.
When exciting above the lasing threshold, at P = 3.0Pth, a harmonic modulation at
times t− tS > 200 ps is observed also for this detuning. The amplitude is comparable
to the one obtained for zero detuning [compare Fig. 7-4 and Fig. 7-1]. The Fourier
analysis also yields the same frequencies, ωI,1 = 17.0 GHz and ωI,1 = 19.9 GHz. How-
ever, for an excitation power density just below the threshold, at P = 0.9Pth, where
the largest peak intensity increase has been achieved, no harmonic modulation and no
quenching of I(t)/I0 is observed.
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7.2. PHONON FILTERING IN ACOUSTIC SUPERLATTICES

Figure 7-4: Temporal dependence of the
emission intensity modulation I(t)/I0 for
quasi-stationary excitation and a cavity
detuning of EC − EQD,0 = 16 meV, at
P = 0.9Pth [red] and P = 3.0Pth [black].
Inset: Spectral intensity of I(t)/I0, at
P = 3.0Pth, obtained by a fast Fourier
transform over the timerange t − tS =
200− 1200 ps.
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The physical mechanism responsible for the harmonic modulation of I(t)/I0, there-
fore, seems to be different than the one responsible for the peak intensity increase. As
discussed in chapter 6, the peak increase is due to a shaking induced, dynamic increase
of the number of quasi-resonant QDs, to feed the laser mode. The increase is maximal,
when the cavity mode is originally off-resonant [EC > EQD,0] and shaking leads to a
dynamic crossing of the lasing threshold [optical excitation at P ≤ Pth].
If the same mechanism would be responsible for the harmonic modulation, one would
expect the effect to be maximal under identical conditions. The harmonic modulation,
however, is the most distinct when exciting in the lasing regime. Moreover, the os-
cillations seem to be most visible when the cavity mode EC is originally in resonance
with the maximum of the QD energy distribution EQD,0, unlike for the peak intensity
increase [compare Fig. 7-1(b) and Fig. 6-2(b) for P ≤ Pth]. And last but not least, for
zero detuning, the oscillations would be expected at a frequency of 2ωs, but appear at
ωI = ωs in the experiment.
On the other hand, the favourable conditions for the harmonic modulation and the
quenching of I(t)/I0 seem to be identical, which hints towards the same origin. For the
above mentioned conditions, the quenching appears at tensile strain, which results in a
negative shift of the electronic transition energies. As a consequence, the cavity mode
EC is quasi-resonant with the high energy flank of the QD distribution, where higher
energy states may be involved in the emission dynamics [chapter 5]. For negative de-
tuning, where only ground state emission is involved, a harmonic intensity modulation
at t− tS > 200 ps, is much less pronounced [Fig. 6-5(b)] and the simplified rate equa-
tion model is not able to reproduce any quenching of I(t)/I0 either. It is, therefore,
difficult to give an unambiguous explanation for the responsible mechanism because it
is, for example, hard to estimate the influence of excited QD states.
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7.3 Conclusion and perspective

In conclusion, it has been demonstrated that the laser output of a quantum dot micro-
cavity can be harmonically modulated at about 17 GHz, using the microcavity Bragg
reflector as a phonon filter for an incoming broadband strain pulse.
Coherent phonons with frequency at the edges of an acoustic stop-band have a longer
transient time through the structure, which makes it possible to separate them from
a broadband coherent phonon wavepackage. Such phonons arrive at the cavity center
with a delay, when the main part of the broadband pulse has already passed. They
modulate the microlaser emission intensity at their particular frequency, by shifting
the electronic transition energies of the quantum dot ensemble. The modulation is
the most distinct when the microlaser is operated in the lasing regime and the cavity
detuning is zero. An unambiguous explanation why these are the favourable conditions
cannot be given, yet. The modulation frequency of 17GHz is comparable to the current
limit for such modulation.

The wavelength of the filtered phonons and, thereby, their frequency is given by the
period of the superlattice. Even higher modulation frequencies may be reached, using
superlattices with a shorter period. Such superlattices may be sandwiched between
the microlaser and the substrate, to filter the broadband wavepackage before it enters
the laser structure. Alternatively, individual layers of the optical microcavity structure
itself may be substituted by acoustic superlattices with a short period [∼ 10 nm]. The
confined optical field merely is effected by this via an effective refractive index in such
a layer, because the photon wavelength is much bigger.

Instead of just passive filtering, one may even use acoustic superlattices to build
a phonon nanocavity and substitute it into the center cavity layer of the optical mi-
crocavity. Similar structures, but without a gain medium inside the resonator, have
been extensively studied in recent years [e.g. [73, 74, 80, 81]]. The confinement and
enhancement of phonons with frequency corresponding to the acoustic cavity mode
has already been utilized, for example, to enhance Raman signals by many orders of
magnitude [81].
Adding an active medium at the antinode of the acoustic and optic cavity field may
lead to microlasers with an increased interaction between the electronic transition ener-
gies of the active medium and the confined phonon field, enabling enhanced harmonic
modulation.
Ideally , the structure is designed in such a way that the laser photon field is driving
the phonon cavity mode, leading to even stronger modulation amplitudes. In such a
device, the coupling between photon and phonon cavity mode may by itself already
result in a harmonic modulation of the laser output intensity, making the application
of external broadband strain pulses unnecessary.

57





Part III

Acousto-plasmonics



For the realization of photonic circuits based on plasmonic nanostructures elements,
which allow active control over plasmons and their interaction with light are required
[10]. Several concepts, targeting the energy and propagation of plasmons, have been
reported including control by temperature [82], optical excitation [83, 84, 85], electric-
[86] and magnetic fields [87, 88, 89]. In order to explore the properties of plasmons in
plasmonic nanostructures, it is necessary to realize nondestructive control on timescales
far below 1 ns. Ultrafast control in plasmonic nanostructures has been demonstrated
in several works, using femtosecond optical excitation to manipulate the dielectric
function of the material [e.g. [90, 91]]. These methods, however, suffer from a number of
undesireable side effects, such as thermal heating or excitation of high-energy electronic
state.
Instead of modulating the dielectric function, control of plasmonic states may also be
achieved by modulating the geometrical parameters of the structure. In the static case,
this can be realized by the application of uniaxial stress [92, 93]. In the dynamic case,
acoustic waves may be used. Acoustic control of plasmons at frequencies ∼ 1 THz
has already been demonstrated for metallic nanoparticles [94, 95]. The concept was
also applied to periodic nanostructures [96, 97, 98], but until now only modulation
frequencies of up to 10 GHz have been realized.

In this work, the hybrid photonic/phononic nature of a periodic gold grating has
been exploited. It is demonstrated that diffracted coherent phonons are able to modu-
late a surface plasmon polariton resonance in the gold grating, at frequencies of more
than 100 GHz.
In addition to such applications of coherent phonons, which target the electromagnetic
near-field in periodic nanostructures, they may also be used to study the far-field in-
side the sample below the structure. Picosecond acoustic interferometry is shown to
be usuful for such investigations, where standard optical techniques are unfeasable.

The structure of this part III is as follows: In chapter 8 a review of surface plasmon
polaritons and their coupling to free space photons is given. Chapter 9 features the
results of SPP modulation at sub-THz frequencies by diffracted coherent phonons.
Finally, in chapter 10, it will be shown that coherent phonons are suitable to study the
in-sample far-field of a gold grating.
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8
Surface plasmon polaritons

Surface-plasmon-polaritons (SPPs) are coupled oscillations of electrons and light,
bound to the interface of a metal and a dielectric. At the same optical frequency,
their momentum is larger than that of free space photons. In this chapter, the physics
of SPPs will be reviewed to build a foundation for the analysis in later chapters. In
section 8.1 the dielectric function of metals will be derived using Maxwell ’s equations.
The basic properties of SSPs, such as their dispersion, will be discussed in section 8.2.
Finally, in section 8.3, grating coupling will be introduced as a method to bridge the
momentum gap between SPPs and free space photons.

8.1 The dielectric permittivity of metals

The interaction of a metal and an electromagnetic wave may be treated classically by
Maxwell ’s equations, even for structures with a patterning of just a few nm. This
is because of the high density of free carriers in the electron sea, which results in
an energy spacing much smaller than kbT [99, 12]. The optical response of metals
has a strong frequency dependence, which may be described by a complex, frequency
dependent dielectric permittivity ε(ω). ε(ω) shall be derived, using the macroscopic
Maxwell equations, which link the fields D = ε0ε(ω)E and B = µ0µH .

∇ ·D = ρext

∇ ·B = 0

∇×E = −∂B
∂t

∇×H = Jexp +
∂D

∂t

(8.1)
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8.2. SPP DISPERSION

Here, the total charge ρ and current densities J have been separated into internal and
external densities [ρext, Jext]. The metal is approximated by a sea of free electrons with
number density ne, moving against a fixed background of positive ion cores. This is
a valid approximation for optical frequencies, for which interband transitions can be
neglected [99]. The advantage of this phenomenological approach is that microscopic
interactions of charged carriers and their rapidly varying fields are averaged and only
enter the treatment via an effective electron mass me [77].
The equation of motion for a single electron in the electron sea takes the form

me

∂2

∂t2
x(t) +meγ

∂

∂t
x(t) = −eE, (8.2)

where the damping is due to collisions at a rate γ. The driving field E = E0 · exp [−iωt]
shall have a harmonic time dependence. Using the result of Eq. 8.2, one gets the
macroscopic polarization P = neex(t), which is linked to the electric field via D =
ε0E + P . Combining these results yields the dielectric constant as

ε(ω) = 1−
ω2
p

ω2 + iγω
ωp =

nee
2

ε0me

(8.3)

Here, ωp is the bulk plasma frequency, which marks the lower frequency boundary of the
transparency regime, where transverse electromagnetic wave propagation in the metal
is allowed [99]. It is also the frequency of collective longitudinal electron oscillations,
called volume plasmons. For noble metals, the filled d-band close to the fermi surface
results in a strongly polarized ion background. The background polarization is taken
into acount by a constant offset of the permittivity in Eq. 8.3 [99], leading to

ε(ω) = ε∞ −
ω2
p

ω2 + iγω
. (8.4)

Equation 8.4 is used to describe the optical response of metals.

8.2 Surface plasmon polariton dispersion

Electrons at the boundary of a metal/dielectric interface can perform coherent charge
fluctuations, accompanied by an electromagnetic wave in the dielectric, bound to the
same interface [100]. Such a coupled state of charge oscillation and electromagnetic
wave is called surface plasmon polariton (SPP).
In the following, SPPs are characterized in terms of their dispersion and spatial prop-
erties, using Maxwell ’s equations 8.1 in form of the wave equation in non-magnetic
materials [neglecting external charge and current densities, µ = 1]. For a harmonic
time dependence ∼ exp[−iωt], the wave equation reduces to the Helmholtz equation:

∇2E + k2
0ε(ω)E = 0 k0 = ω/c, (8.5)

and analogous for H . The interface is assumed to be perpendicular to the z-direction,
at z = 0, and the wavevector kSPP of the charge oscillation shall lie in the x-direction
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Figure 8-1: (a) Schematic of the field and charge distribution of a surface plasmon polariton
(SSP), bound at a metal/dielectric interface. (b) The electric field component perpendicular
to the interface is evanescent and decays exponentially within a depth of |kz|

−1 in the respec-
tive material. (c) The dispersion curves of a free space photon [black] and a SPP [red] show
that the SPP has a bigger momentum, kSPP > k0, than the photon, prohibiting a direct
coupling. [Schematically taken out of Ref. [101]]

[Fig. 8-1(a)]. For the electric field this means: E = E(z) exp [ikSPPx]. E and H are
related to each other by the curl equations in 8.1. Due to the geometrical considerations,
there is only one set of self-consistent solutions, which gives non-zero components for
E and H [99]. For this set of solutions, only Ex, Ez, Hy 6= 0, which is why it is called
transverse magnetic (p-polarization). Taking into acount the continuity conditions for
Ez at z = 0 yields

Ed = Ed,0 exp [+zkd,z + i(xkSPP − ωt)]
Em = Em,0 exp [−zkm,z + i(xkSPP − ωt)]

(8.6)

and further

kd,z
km,z

= − εd
εm(ω)

. (8.7)

Here, the index m and d indicate the z < 0 and z > 0 half-space, respectively. It
follows from Eqs. 8.6 and 8.7 that for a confinement perpendicular to the interface of
two materials m and d, the real part of their respective dielectric permittivities needs
to have opposite sign. Given that material d is a dielectric with a real permittivity
εd > 0, the other material has to satisfy Re[εm] < 0, like metals do for ω < ωp [Eq.
8.4]. In this case, the z-component of Ez is evanescent and decays within a length of
|km,z|−1, |kd,z|−1 in the respective material [Fig. 8-1(b)].
Combining Eqs. 8.5,8.6 and 8.7 yields the dispersion relation of SPPs [100]

kSPP = k0

√
εdεm(ω)

εd + εm(ω)
. (8.8)
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In Fig. 8-1(c), its real part is plotted together with the dispersion of free space photons,
k0 = ω/c. As can be seen, for a fixed frqeuency ω, the momentum of SPPs is always
larger than that of free space photons. Therefore, the SPP cannot transform into light,
or vice versa, SPPs cannot simply be excited using incident light.
In the next section, grating coupling is introduced as a way to bridge the momentum
gap and, thereby, optically excite SPPs.

8.3 Grating coupling of surface plasmon polaritons

As was pointed out in the previous section, the momentum of SPPs is always larger
than the relevant component kx = k0 sin [θ], parallel to kSPP , of a light beam incident
under the oblique angle θ. Only k − ω points to the left of the light-line ω = k0c are
accessible using different incident angles θ [grey shaded area in Fig. 8-2].

There are several techniques available to bridge the momentum gap of SPPs and
free space photons. Among others, there is evanescent prism coupling [102, 103], or
the coupling via a patterning of the metal surface with a grating structure [104]. In
the following, the latter is discussed, because it is the method of choice in the work
presented here.

Grating coupling of free space photons to SPPs is based on the same principle that
was already applied to periodic superstructures in the previous chapters. The periodic
structuring gives access to multiples of the reziprocal lattice vector and, thereby, results
in a backfolding of the dispersion into a mini Brillouin zone, as shown in Fig. 8-2(a).

kx0 π
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ω
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on

k 0c

θ
k0 sin[θ]

d

hr

(a) (b)

k0

Figure 8-2: (a) Optically accessible k−ω points, k = k0 sin [θ] [grey shaded area]. The SPP
momentum [dashed red] is unaccessible by free space photons. Patterning the metal surface
with a d-perdiodic grating structure (b) results in a backfolding of the SPP dispersion [solid
red] into the mini Brillouin zone with kx ≤ π/d [dashed grey], inside the optically accessible
region.
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If the metal surface is patterned with a period d, the coupling condition is

kSPP ± ν
2π

d
= k0 sin [θ], (8.9)

with kSPP given by Eq. 8.8 and ν being an integer. Due to the backfolding, the k − ω
points of the SPP dispersion are now accessible by free space photons. It is possible to
excite SPPs with incident light, if the E-field has a component parallel to the grating
wavevector, and Eq. 8.9 is fulfilled [100].
On the other hand, the opposite process is also possible. Surface plasmon polaritons
may be converted into light, which, next to the inherent absorption inside the metal,
gives rise to another decay channel. When illuminating the grating structure with
broadband light, the SPP excitation is detected as a minimum in the reflected intensity
spectrum [100].

The coupling condition given by Eq. 8.9, however, is only valid for very shallow
grating structures, where the SPP perturbation is small. For deeper structures, higher
order corrections need to be taken into account and, in particular, band gaps appear at
the mini Brillouin zone borders. This is because for SPPs with wavevector π/d, stand-
ing wave solutions exist with two different charge configurations, differing in energy
[105]. Since the energy stored in the electromagnetic field and the charge distribu-
tion depends on the grating region they are concentrated in, the SPP modes depend
strongly on the structure parameters, such as grating height h and ridge width r [Fig.
8-2] [105, 106, 101].
The dependence of, e.g. , the reflectivity spectrum on the structure parameters can be
calculated numerically, using a rigorous coupled wave analysis [107, 108].

It should, thereby, be possible to modulate a SPP resonance by changing these
structure parameters. In the next chapter, it is demonstrated that acoustic pulses are
a suitable tool to achieve such modulation at sub-terahertz frequencies.
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9
Modulation of a surface plasmon polariton

resonance by sub-terahertz diffracted
coherent phonons

The main obstacle when trying to modulate plasmons in grating structures at frequen-
cies higher than a few GHz using coherent phonons is that the wavelengths Λ ∼ 10 nm
of high frequency phonons are usually smaller than the geometrical parameters of the
structure ∼ 100 nm. Here, it is demonstrated that efficient sub-THz modulation of
surface plasmon polaritons in a metal grating can be achieved using diffracted coher-
ent phonons. In this context, the gold grating plays a hybrid role. On the one hand
it enables the coupling between SPPs and free space photons, as described in section
8.3. On the other hand, the periodic impedance structuring turns it into a diffraction
grating for an incoming coherent phonon wavepackage. The sub-THz SPP modula-
tion is governed by coherent, near-surface, longitudinal acoustic phonon modes due to
high-order diffraction.

9.1 Experimental conditions

A scheme of the experiment is shown in Fig. 9-1. The plasmonic grating with a period
of d = 400 nm is made out of gold stripes with a height of h = 80 nm and a gap
between the individual gold stripes of r = 50 nm. The lattice vector lies in the x-
direction. The gold grating has been fabricated on a 500 µm thick, dielectric ,[111]
oriented gadolinium gallium garnet (GGG) substrate by the following process: After
polishing and cleaning, a gold layer has been deposited on the substrate, by thermal
evaporation, and PMMA 950 e-resist has been spin-coated on top. Subsequently, the
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Figure 9-1: (a) Scheme of the acousto-plasmonic experiment. A gold grating on top of
GGG substrate provides the coupling of SPPs to the photons of p-polarized probe pulses,
incident under an angle θ. A strain pulse, excited by picosecond acoustics, is incident from
the substrate side and perturbes the SPP-photon coupling when it hits the grating. Variable
delay between strain- and probe pulse allows to resolve the dynamics.

grating lines have been drawn on the gold film by electron-beam lithography, using the
fixed beam moving stage technique. After development, the grating pattern has been
etched into the gold layer by reactive ion etching. An atomic force microscope image
of the structure is plotted in Fig. 9-2(a).

Specularly reflected light, incident under an oblique angle θ, shows distinct dips in
the intensity spectrum, if the electronic field lies in the incidence plane (p-polarization).
The reflected intensity spectra R0(λ) for p-polarized light, reflected under several in-
cidence angles θ, ranging from 2 ◦ − 10 ◦, are plotted in Fig. 9-2(b). If the E field
is perpendicular to the lattice vector (s-polarization), no features are observed in the
reflected intensity at any incidence angle, as exemplarily shown for θ = 5 ◦ in the inset
of Fig. 9-2(b). This is in agreement with the boundary conditions, as shown in section
8.2. The dips, observed in the visible range of R0(λ) for p-polarized light, can be asso-
ciated with the SPP resonance at the GGG/gold interface, in agreement with Eq. 8.9
for ν=1.
All spectra in Fig. 9-2(b) are recorded at room temperature, but they do not change
significantly at cryogenic temperatures.

A strain pulse is excited on the backside of the substrate in an aluminum transducer
film, using picosecond acoustics [see chapter 1]. Such a strain pulse corresponds to
a coherent phonon wavepackage propagating at the speed of longitudinal sound in
GGG, vGGG = 6400 m/s [109]. It perturbes the SPP-photon coupling when it hits the
grating structure. The dynamics of the perturbance is monitored by variably delayed
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AFM-Image

(a) (b)

400 nm

750 800 850 900 950
0

1

2

3

4 10°

8°

6°

4°

R
ef

le
ct

ed
 in

te
ns

ity
 R

0

Wavelength  (nm)

 = 2°
d = 400 nm
h = 80 nm
r = 50 nm

p-pol.

800 900
0

1
s-pol.
5°

Figure 9-2: (a) Atomic force microscope image and structure parameters of the investigated
grating structure. (b) Angle resolved intensity spectra R0(λ) of specularly reflected light with
the electric field vector lieing in the incidence plain (p-pol.). The spectra are offset for clarity.
The probe wavelength of λ = 800 nm [dashed red line] is positioned on the low wavelength
wing of a SPP dip for an incidence angle of θ = 5 ◦. No SPP features in R0(λ) are observed
for s-polarized light [inset].

probe pulses incident under an angle of θ = 5 ◦. Under these conditions, the central
wavelength λ = 800 nm of the probe pulse is positioned on the low wavelength wing
of the SPP resonance feature in R0(λ) [Fig. 9-1]. More technical details about the
experimental setup are provided in section 2.2.

Experiments have been performed at cryogenic temperatures [T = 10K] and also at
room temperature. The difference between these two conditions lies in the damping of
high frequency phonons. At room temperature, phonons with frequencies higher than
a few 10 GHz are damped during the propagation due to thermal phonon scattering.

In the following, the results at cryogenic temperatures will be presented and dis-
cussed in section 9.2 and the room temperature results will be discussed in section 9.3.
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9.2. MODULATION BY DIFFRACTED PHONONS

9.2 Modulation by sub-terahertz diffracted coher-

ent phonons

Experiments have been performed for a number of different excitation energy densities
W on the aluminum transducer, resulting in different initial strain amplitudes. De-
pending on the initial strain amplitudes, non-linearities during the propagation process
become important [see section 1.4]. At cryogenic temperatures, damping is negligible
for the propagation distance through the substrate [110]. Consequently, the bandwidth
of the coherent phonon wavepackage, when it hits the grating at the time ts, depends
on W [compare Fig. 1-3 for GaAs].

In Fig. 9-3(a) the temporal dependence of the differential reflected intensity
∆I(t)/I0 = [I(t)− I0]/I0 is plotted for three values of W [I0: reflected intensity with-
out strain]. They have been recorded with p-polarized, λ = 800 nm probe pulses,
incident under the oblique angle θ = 5 ◦, at T = 10 K. The spectral width of the probe
pulse was ∆λ = 15 nm.
The signal appears earlier for higher W , in agreement with non-linear propagation
dynamics for W > 1 mJ/cm2. Furthermore, the changes in ∆I(t)/I0 show complex
temporal behaviour, different for all three values of W . Modulation amplitudes of up
to 2× 10−4, for W = 13 mJ/cm2, are observed, which is in the same range as compa-
rable works [10−6 [97] to 10−3[111]].
For s-polarized probe pulses, where no SPPs are excited, no changes in ∆I(t)/I0 are
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Figure 9-3: (a) Temporal dependence of the differential reflected intensity ∆I(t)/I0, probed
with p-polarized optical pulses, incident under the angle θ = 5 ◦, for three different strain
excitation energy densities. (b) Amplitude spectral density, obtained by a fast Fourier
transform of the corresponding temporal trace shown in (a). The frequencies of high-order
coherent diffracted phonons are marked by vertical dashed lines. T = 10 K. The traces in
(a) and (b) are offset for clarity.
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observed. The same counts for p-polarized probe pulses, incident under the angle
θ = 2 ◦, where the probe pulse spectrum is detuned from any SPP resonance in R0(λ),
as shown in Fig. 9-2(b).
The fact that no changes are observed, when the probe pulse does not excite SPPs,
proofs that the observed changes in ∆I(t)/I0 are indeed due to a strain pulse induced
modulation of the SPP-photon coupling.

The temporal traces ∆I(t)/I0, shown in Fig. 9-3(a), are analysed in the spectral
domain by a fast Fourier transform. The amplitude spectral density of the correspond-
ing ∆I(t)/I0 is plotted in Fig. 9-3(b). For frequencies f > 30 GHz, spectral features
with an equal frequency spacing are observed, up to f = 110GHz, for W = 13mJ/cm2.
The frequency of these features does not depend on W , although the spectral density
of higher frequency features is lower for smaller W . This is in agreement with the
fact that the incident coherent phonon wavepackage has higher frequency components
after non-linear propagation, the higher the excitation density W . The spectrum of
the coherent phonon wavepackage has a maximum around 20 − 80 GHz [16], which is
most likely the reason for the intensity excess of the feature at 49 GHz.

To obtain the origin of the equally spaced high frequency features in the modula-
tion spectrum, the possible excitations of acoustic modes at the gold grating have to be
discussed. In previous works, it has already been shown that broadband strain pulses
are able to excite surface acoustic waves in the grating structure [112, 98, 113]. The
incident bulk waves are able to couple to the zone center waves of the periodic grating,
which in the structure under study are estimated to have frequencies in the range of
5.0 − 7.5 GHz. Therefore, this type of waves cannot be responsible for the spectral
features which appear at up to 110 GHz.
On the other hand, the gold grating acts as a diffraction grating for the incident coher-
ent phonon wavepackage. The Bragg condition for constructive interference between
the diffracted phonons is:

d sin [α] = jΛ, (9.1)

where α is the diffraction angle, j is the diffraction order and Λ is the phonon wave-
length. For a diffraction angle of α = ±90 ◦, counter-propagating waves result in
standing near-surface acoustic waves. Even though these waves are localized very close
to the GGG/grating interface, they have a bulk nature, so that Λ may be expressed
in terms of the phonon frequency and speed of sound in the GGG. Finally, using
Eq. 9.1, the frequency of the diffracted coherent phonons, corresponding to standing
near-surface acoustic waves, is given by

fj = j
vGGG
d

= j ·∆f. (9.2)

A least square fit of the peak positions in Fig. 9-3(b) with f > 30 GHz yields
∆f = 15.95±0.10GHz, corresponding to vGGG = 6380±40m/s, which within the error
margin fits very well with the longitudinal sound velocity in GGG. Spectral components
in ∆I(t)/I0 due to transverse acoustic (TA) phonons are not observed experimentally.
Such features would be easily distinguishable from those originating from longitudi-
nal acoustic (LA) phonons, because of their different sound velocity. The absense of
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9.2. MODULATION BY DIFFRACTED PHONONS

TA features is attributed to the mechanical boundary conditions, responsible for the
conversion of the incident LA phonon wavepackage into diffracted TA waves. The con-
version of bulk into surface acoustic waves has already been demonstrated in the low
frequency case [114, 115].
The spectral width δf of the peaks in Fig. 9-3(b) does not depend on the diffraction
order j. Comparing with optical diffraction gratings, this behaviour is indeed expected.
The width of a spectral line does not depend on the diffraction order, but it depends
only on the number N of coherently interfering grating periods [52].

δf =
v

Nd| sin [α]− sin [α0]|
. (9.3)

Here, v is the phase velocity in the medium, into which the wave is diffracted and α0 is
the incidence angle. The spectral width of about δf = 7 GHz in our experiment leads
to N ≈ 2 [v = vGGG = 6400 m/s, d = 400 nm, α0 = 0 ◦, α = 90 ◦], corresponding to a
mean free path of ∼ 1µm for the diffracted coherent phonons. A possible reason for
such a low value of N may be that near-surface acoustic waves are diffracted by the
gold grating again, in the same way as the incident phonon wavepackage.
The fact that the frequencies of the spectral features in ∆I(t)/I0 can be well described
by Eq. 9.1 and the independence of the spectral width δf on j are strong hints that the
spectral features for f > 30 GHz and, therefore, the perturbance of the SPP-photon
coupling are indeed caused by diffracted coherent phonons. The exact mechanism of
this perturbance is discussed in the following.

To illustrate the interaction of near-surface acoustic waves with the gold grating,
the lateral dependence of the corresponding displacement field ux(x) in the x-direction
is exemplarily sketched together with the grating in Fig. 9-4, for j = 1. From the
elastic boundary conditions it follows that the displacement profile ux(x) is an odd
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Figure 9-4: Sketch of the displacement profile ux(x) of the first order (j = 1) near-surface
acoustic waves and their interaction with the gold grating. The temporal phase is either
ωt = 0 (a) or ωt = π (b). In any case, the grating period d remains the same, but the slit
width r is either increased (a) or decreased (b). The dashed area marks the change from the
equilibrium position.
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function with respect to the middle of the grating stripes, if the grating profile is an
even function of x [116]. As a consequence, the displacement by diffracted coherent
phonons does not change the periodicity d of the grating, but it affects the slit width
r. In Fig. 9-4 (a) and (b), the phase ωt of the temporal oscillation is 0 (a) and π (b),
resulting in either tension or compression of r, respectively.

The effect of the slit width change ∆r is twofold. On the one hand, it affects
the coupling between SPPs, associated with the gold/air and gold/GGG interface.
On the other hand, the coupling of SPPs to free space photons is perturbed. As
mentioned in section 8.3, the consequence of any geometrical change on the reflection
spectrum R0(λ) can be calculated numerically, using a rigorous coupled wave analysis
(RCWA)[107, 108]. The calculated spectrum of the reflected intensity R0(λ) is plotted
in the upper panel of Fig. 9-5(a), for an incidence angle of θ = 5 ◦ 1. In the lower panel,
the spectral dependence of the differential reflectivity change ∆R(λ)/R0 = [R(λ) −
R0]/R0 due to a slit width variation of ∆r = 0.01 nm is plotted. The change of r
mainly leads to a spectral shift of the SPP resonance, resulting in the bipolar profile
of ∆R(λ)/R0. Since the reflected intensity I is an integral of ∆R(λ)/R0 over the
spectral width ∆λ of the probe pulse, the signal amplitude ∆I/I0 depends not only on
λ, but also on ∆λ. The spectrum of the optical probe pulse [dashed red], used for the
measurements presented in Fig. 9-3, is plotted next to the reflected intensity spectrum

1All RCWA calculations have been performed by V. I. Belotelov, Lomonosov Moscow State Uni-
versity, 119991 Moscow, Russia
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in the top panel of Fig. 9-5(a). The wavelength λ = 800 nm is positioned on the short
wavelength wing of the SPP resonance and the spetral width ∆λ = 15 nm overlaps
dominantly with the positive part of ∆R(λ)/R0. The reflected intensity amplitude
∆I/I0 = 10−4 for ∆λ = 15 nm and ∆r = 0.01 nm fits very well with the results
presented in Fig. 9-3(a). The depdence of ∆I/I0 on the spectral width ∆λ of the
probe pulse for ∆r = 0.01 nm is plotted in Fig. 9-5(b). The biggest amplitude appears
for a spectrally narrow pulse, which overlaps with just one wing of the bipolar profile.
On the contrary, for a large probe bandwidth, the contributions of both parts of the
bipolar profile ∆R(λ)/R0 cancel each other, resulting in a small amplitude ∆I/I0.
To proof this dependence, identical experiments with ∆λ = 1 nm and 50 nm have
been performed, plotted in Fig. 9-5(c). The high frequency features have amplitudes
of about 4 · 10−4 and 0.5 · 10−4, respectively, in good agreement with theory, which
predicts about one order of magnitude difference.
The conformity between theory and experiment for the reflectivity spectra and the
predicted ∆λ dependence of the spectrally integrated signals ∆I(t)/I0 confirms the
proposed modulation mechanism, which is based on the grating slit width variation
∆r due to diffracted coherent phonons.

9.3 Modulation by surface acoustic modes

Turning to the lower frequency part [f < 30 GHz] of the spectra shown in Fig. 9-3(b),
the features cannot be described by Eq. 9.2 anymore. In particular, at f = 16 GHz,
where a peak by the first order near-surface acoustic waves would be expected, a dip
in the spectral density is observed. In the frequency range f < 30 GHz, several surface
acoustic modes may be excited [112, 98, 113]. The effect on the measured signal depends
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Figure 9-6: (a) The time evolution of the reflected intensity ∆I(t)/I0 after strain pulse
impact, for two different probe spectral widths ∆λ = 1 nm [red] and 50 nm [black]. (b)
Amplitude spectral density of the time evolution in (a), for ∆λ = 50 nm.
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on their interaction with bulk modes in GGG. The dip at f = 16 GHz, for example,
may be explained by a Fano resonance due to the interaction of a surface acoustic
wave with the near-surface acoustic bulk wave. To investigate the effect of surface
acoustic modes and their interaction with SPPs without the influence of diffracted
coherent phonons, identical measurements as before have been performed, but at room
temperature T = 300 K. At room temperature, higher frequency components in the
incident strain pulse are damped completely during the propagation through the 500µm
thick substrate due to scattering at thermal phonons [110].
The time evolution of the reflected intensity ∆I(t)/I0 after strain pulse impact is
plotted in Fig. 9-6(a), for two different probe spectral widths ∆λ = 1 nm and 50 nm.
Despite a higher noise level for ∆λ = 1 nm, the time evolution is identical for both
∆λ. The fast Fourier transform of the signal, shows at least two spectral components
at f = 4.6 GHz and 6.9 GHz associated with surface acoustic modes. Their interaction
with SPPs is fundamentally different from that of diffracted coherent phonons, proofed
by the fact that ∆I(t)/I0 is independent of δλ. A comprehensive discussion of these
modes is beyond the scope of this work.

9.4 Conclusion and perspective

In conclusion, it has been demonstrated that diffracted coherent phonons are able to ef-
ficiently modulate the intensity of an optical probe pulse, at sub-terahertz frequencies,
which has been specularly reflected by a gold grating, if the probe spectrum is narrow
and overlaps with the wing of a SPP resonance. In this context, the gold grating plays
a hybrid role, because it provides the coupling of SPPs to free space photons and at
the same time acts as a diffraction grating for an incoming broadband coherent phonon
wavepackage. The mechanism responsible for the intensity modulation is a variation
of the grating slit width, resulting in a shift of the SPP resonance in the reflectivity
spectrum. The method has potential for applications in high-frequency plasmonics and
nanophotonics.
The need for cryogenic temperatures in the experiments presented here was due to
damping of higher frequency phonons in the incident wavepackage by scattering at
thermal phonons, during the propagation through the substrate. The influence of
damping can be minimized, by using thinner substrates with thicknesses ∼ 10 nm,
potentially allowing room temperature operation.
A further tailoring of modulation frequencies can be achieved by similar strain pulse
shaping techniques proposed in previous chapters. In particular, phonon filtering by
acoustic superlattices [80] should allow to harmonically modulate the SPP by selec-
tively exciting diffracted coherent phonons of a single diffraction order. Alternatively,
superlattices may be used as the acoustic transducer to create monochromatic strain
waves [72].

In the experiments presented in this chapter, acoustic waves were used to perturb
the plasmonic structure in the near-field region, where the electric field of SPPs is local-
ized. In the next chapter, it will be demonstrated that coherent phonon wavepackages
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are also suitable to probe the electromagnetic field in the far-field region inside the
structure, which is difficult to access by optical techniques.
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10
Studying periodic nanostructures by

probing the in-sample optical far-field using
coherent phonons

Periodic optical nanostructures are interesting for various applications, as mentioned,
for example, in previous chapters. Coherent phonons in the GHz and THz range have
already been utilized to study these structures. In particular, the interaction of excited
vibrational modes with light has been studied by picosecond acoustics techniques in
photonic-phononic crystals [117, 118], hole arrays [86], metallic gratings [112, 113, 119]
and complex periodic plasmonic nanostructures [120]. All these experiments, however,
are targeting the near-field region in the vicinity of less than one optical wavelength
away from the nanostructure. The far-field region, where the electromagnetic field has
a well defined wavevector and a corresponding propagation direction [98], has received
less attention.
In the following, in section 10.1, picosecond acoustic interferometry will be reviewed
as a method to study the elastical, optical and elasto-optical properties of solids. In
section 10.2, it will be shown that it is a particularly useful method to probe the
in-sample optical far-field inside media with periodic optical nanostructurers on top,
which is challenging with all-optical techniques. It will be shown that strong spectral
components, associated with diffracted beams, are detected in the picosecond acoustic
inteferometry signal. A theoretical analysis underlines the observations and provides
a tool for the design of nanostructures, where the interaction of light with coherent
phonons can be deliberately exploited.
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10.1 Picosecond acoustic interferometry

When an electromagnetic wave with vacuum wavevector k is normally incident on the
surface of a transparent medium with refractive index n, a part of it is reflected due to
the refractive index contrast. For this to happen, a momentum transfer of 2nk~ has to
occur. If the momentum is provided by elastic collision with an acoustic phonon, the
frequency of the reflected electromagnetic wave is shifted by ω0 = 2nvk, where v is the
sound velocity inside the medium. Brillouin scattering measurements of the reflected
spectrum to determine ω0, the Brillouin frequency, have been widely used to study the
velocity and attenuation of acoustic waves in solids [e.g. [121]].

In an advanced approach, the electromagnetic wave is reflected at a coherent phonon
wavepackage [e.g. a picosecond strain pulse η(z, t)]. Based on this principle, picosecond
acoustic interferometry is an established technique to study optical, elastic and elasto-
optical properties in crystalline and amorphous bulk materials and thin films [122, 123,
124, 125, 126, 127, 128, 129]. The principle of this technique is sketched in Fig. 10-
1(a). A strain pulse η(z, t), excited by picosecond acoustics [chapter 1], is propagating
at the speed of sound towards the surface of a sample, locally changing the optical
constants of the medium. From the opposite side of the interface, an optical probe
pulse is incident under the oblique angle θ. A part of the probe pulse is reflected at
the interface and another one at the strain pulse. The reflected pulses interfere either
constructively or destructively, depending on the position z of the strain pulse.

The reflection at the strain pulse occures because it changes the dielectric permit-
tivity ε = (n + iκ)2. If a transparent medium is considered [κ = 0], the change of ε is
[16]

∆ε(z, t) = 2n
∂n

∂η
η(z, t). (10.1)

Let the surface be located at z = 0. In this case the complex amplitude reflection
coefficient of the two interfering beams is

r(t) = r0 +
ik

2
t
(+)
0 t

(−)
0

∫ ∞
0

∆ε(z, t) exp [2ikn cos [θ]z] dz

= r0 + ∆r(t).

(10.2)

Here, r0 is the reflection coefficient for the incident beam at the sample surface and

t
(+)
0 , t

(−)
0 are the transmission coefficients of light at the same interface, incident from

z > 0 and z < 0, respectively. It is straight forward to show that for a strain pulse
travelling at the speed of sound v, the phase of ∆r(t) changes with the Brillouin
frequency [127]

ω0 =
4πv

λ

√
ε− sin2 [θ], (10.3)

where λ is the center wavelength of the optical probe pulse in vacuum. In picosecond
acoustic interferometry experiments, the probe pulse is variably delayed with respect
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(a)

θ

strain pulse

(b)

incident

strain pulse

transducer transducer

θ

Figure 10-1: (a) Classic picosecond acoustic interferometry scheme. Parts of a probe pulse,
incident under the angle θ, are reflected at the surface of a transparent medium [black] and at
a strain pulse propagating towards the surface [red]. The interference of both parts is analysed
depending on the position of the strain pulse. (b) Picosecond acoustic interferometry with
a periodic nanostructure on top. Additional components appear[dashed red], due to the
diffraction of light.

to the strain pulse and oscillations with frequency ω0 are detected in the differential
reflectivity signal [16]

∆R(t) = |r0 + ∆r(t)|2 − |r0|2. (10.4)

These features are usually called Brillouin oscillations.

10.2 Probing the in-sample optical far-field of pe-

riodic nanostructures

If the sample surface is not a flat interface, but with a periodic optical nanostructure
positioned on top, the electromagnetic wave inside the sample may no longer be a simple
plain wave, as sketched in Fig. 10-1(b). The periodicity leads to diffraction of light
incident on the sample surface under an angle θ, leading to additional contributions to
the picosecond acoustic interferometry signal. For example, in a diffraction grating with
period d, the first negative diffraction order results in a Brillouin oscillation frequency
of

ω−1 =
4πv

λ

√
ε− (λ/d− sin [θ])2. (10.5)

Coherent phonon wavepackages are, thus, a promising tool to study the in-sample
optical far-field.

The structure under study is a short-period diffraction grating made of gold, fabri-
cated on top of the (111) plane of a 500µm thick gadolinium gallium garnet (GGG) sub-
strate with an intermediate layer of bismuth-substituted rare-earth iron garnet (BIG)
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Figure 10-2: (a) Structure and detection geometry of the studied sample, together with
an atomic force microscope image of the gold grating. (b) Angle dependence of the reflected
intensity spectra R0(λ) in a grayscale plot for p-polarized white light. (b) R0(λ) for θ = 2 ◦

and 7 ◦. The dashed vertical red line marks the probe pulse wavelength for the interferometry
experiments.

of 355 nm thickness [Fig. 10-2(a)]. The geometrical parameters of the gold grating
[period d = 400 nm, height h = 80 nm, slit width r = 115 nm] were optimized to
have distinct dips in the spectrum of the reflected intensity R0(λ) over a wide spectral
range for p-polarized light [Fig. 10-2(b)]. The spectra for the incidence angles θ = 2 ◦

and 7 ◦ are highlighted in Fig. 10-2(c). The features visible in these spectra are due
to Wood anomalies which are governed by SPP resonances of the gold grating and a
waveguiding mode (WGM) in the BIG layer [89, 91].
The experimental scheme for the picosecond acoustic interferometry measurements is
identical to the one presented in Fig. 9-1 of chapter 9 and the details of the setup
are given in section 2.2. A strain pulse is excited in a 50 nm thick aluminum trans-
ducer, using picosecond acoustics. It travels through the GGG substrate at the speed
of longitudinal sound, vGGG = 6400 m/s, within a time of ∼ 80 ns. A probe pulse,
originating from the same femtosecond laser, is incident from the sample front to mea-
sure the differential reflected intensity ∆I(t)/I0. The time resolution is achieved by
a variable delay between probe pulse and strain pulse excitation. All experiments
have been performed at room temperature and the strain pulse excitation density is
W = 10 mJ/cm2.

The interferometry signals ∆Is(t) and ∆Ip(t) measured for probe pulses incident
under θ = 7 ◦ with s- and p-polarization, respectively, are plotted at the top of Fig. 10-
3(a). For these conditions, the reflected intensity spectrum, shown in Fig. 10-2(c), has
a distinct dip at the probe center wavelength of λ = 800 nm. The signal at t− tS > 0
has already been discussed in chapter 9 and earlier works [86, 112, 113, 119] and is
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Figure 10-3:
(a)Interferometry signals
∆I(t)/I0 obtained for probe
pulses at λ = 800 nm, incident
under θ = 7 ◦. The index
indicates the polarization [p− s:
balanced detection ∆Ip − ∆Is].
(b) FFT of ∆Ip−s over the time
interval t − tS = −850 ps to
0 ps [gray shaded area in (a)].
The solid and dashed line mark
the expected frequencies ω0 and
ω−1, respectively. (c) ∆Ip−s for
θ = 2 ◦ and 24 ◦.

related to the acoustic perturbance of the electromagnetic near-field [tS: time when the
strain pulse hits the gold grating]. The main subject of interest here is the non-zero
signal at t − tS < 0 [gray shaded area], when the strain pulse did not yet reach the
grating. It is only observed for p-polarization, which allows to achieve a better signal
to noise ratio, by measuring the difference signal ∆Ip−s(t) = ∆Ip(t) − ∆Is(t), using
incident probe pulses with s- and p-components of equal intensity in combination with
a balanced detector. The difference signal is plotted at the bottom of Fig. 10-3(a).
∆Ip−s(t) = ∆Ip(t) for t− tS < 0, because for these times ∆Is(t) = 0.
Oscillatory behaviour is observed already at t− tS < −400 ps. This part of the signal
∆Ip−s(t) is analysed in the spectral domain by taking a fast Fourier transform (FFT)
for the time interval from t − tS = −850 ps to 0 ps, shown in Fig. 10-3(b). The
amplitude spectrum shows a dominant peak, centered at f = 8.5 GHz with a width of
2.5 GHz.
In Fig. 10-3(c), the difference signal ∆Ip−s(t) is plotted for the incidence angles θ = 2 ◦

and 24 ◦. In both cases, no signal at t − tS < 0 is observed, for θ = 24 ◦ no signal is
observed even at t− ts > 0.

In the following, ∆Ip−s(t) for θ = 7 ◦ and t−tS < 0 shall be analyzed. In particular,
the origin of the spectral components, shown in Fig. 10-3(b), is of interest. The strain
pulse reaches the BIG/GGG interface at t − tS ≈ 50 ps, so that the major part of
the interferometry signal is due to Brillouin scattering in GGG and the analysis can
be restricted to GGG only. The fundamental Brillouin frequency f0 = ω0/2π can be
calculated using Eq. 10.3 and literature values for the parameters ε and v in GGG
[εGGG=3.8 [130], vGGG = 6400 m/s [109]]. It amounts to f0 = 31.1 GHz, illustrated
by the solid vertical line in Fig. 10-3(b). The Brillouin frequency f−1 = ω−1/2π [Eq.
10.5], associated with the first negative diffraction order, yields f−1 = 8.3 GHz [dashed
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10.2. PROBING THE IN-SAMPLE OPTICAL FAR-FIELD

vertical line in Fig. 10-3(b)], close to the dominant feature in the FFT spectrum
of ∆Ip−s(t) at 8.5 GHz. It, therefore, seems likely that the signal for t − tS < 0 is
dominated by the interference of the two reflected components, sketched as black and
dashed red curves in Fig.10-1(b). One is the part of the probe pulse that is specularly
reflected at the sample surface, the other part is associated with diffracted light of the
first negative diffraction order, which is subsequently reflected by the strain pulse and
diffracted back into free space.

In order to underline this assumption and to understand why the component with
frequency f0 is so weak compared to f−1 in the experimentally measured spectrum,
a further theoretical analysis of the relative intensities in the interferometry signal
∆R/R0 is performed.
As pointed out in section 10.1, the strain pulse η(z, t) perturbes the dielectric permit-
tivity tensor ε. More precisely, the strain pulse with η(z, t) = ηzz(z, t) changes only
the diagonal components of ε

∆εxx = ∆εxx = −ε2p12η(z, t)

∆εzz = −ε2p11η(z, t),
(10.6)

where p12 and p11 are photo-elastic constants. Using a similar approach as in section
10.1 together with perturbative solutions of the Maxwell equations, the expression of
∆R/R0 for the present experimental conditions can be derived 1[details in the sup-
plementary material of Ref. [131]]. For θ = 7 ◦, λ = 800 nm and the geometrical
parameters of the structure, only light of the diffraction orders 0 and -1 can propagate
inside GGG, leading to

∆R

R0

= vε
√

2π Re

[
t
(−)
00 t

(+)
00

ik0r
(+)
00

ηω0
(p11k

2
|| − p12k

2
0) exp[−iω0t]

+
t
(−)
−10t

(+)
0−1

ik−1r
(+)
00

ηω−1

(
p11

(
k|| −

2π

d

)2

− p12k
2
−1

)
exp[−iω−1t]

]
.

(10.7)

Here, k|| = k sin [θ], k0 =
√
k2ε− k2

||, k−1 =
√
k2ε−

(
k|| − 2π/d

)2
, and k is the

wavevector in vacuum. r
(+)
00 (t(+,−)

mn ) are the complex coefficients of the reflection (trans-
mission) amplitudes for the magnetic field component of light in the periodic structure

without strain, respectively. The upper index in t(+,−)
mn indicates light incident from

the air (+) or GGG (-) side. The lower indices in t(+,−)
mn indicate the diffraction order

of the incident (m) and transmitted (n) light. The first term in Eq. 10.7 describes
Brillouin oscillations with frequency ω0 due to non-diffracted light scattered by coher-
ent phonons (m = n = 0). The second term in Eq. 10.7 describes oscillations with
frequency ω−1 due to the scattering of diffracted light of the first negative order. More-
over, it is assumed that during the time interval of the interferometry signal, the strain
pulse doesn’t change its shape, e.g., due to anharmonicity [section 1.4]. In this case,
η(z, t) = η(t− z/v) with the Fourier components ηω = 1√

2π

∫∞
−∞ η(τ) exp [iωt]dτ .

1The epression for ∆R/R0 in Eq. 10.7 was derived by B. A. Glavin, Lashkaryov Institute of
Semiconductor Physics, 03028 Kyiv, Ukraine
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inset shows the wavelength depence of
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From Eq. 10.7 it is obvious that a significant contribution to the interferometry sig-

nal at the frequency ω0 [ω−1] is only expected, if the factors t
(−)
00 t

(+)
00 /r

(+)
00

[
t
(−)
−10t

(+)
0−1/r

(+)
00

]
are non-negligible. This can already explain the fact that no signal is observed for probe
light incident under θ = 24 ◦ [Fig. 10-3(c)], because for this angle λ = 800 nm is far

from any optical resonance and thus t
(−)
00 t

(+)
00 /r

(+)
00 = t

(−)
−10t

(+)
0−1/r

(+)
00 ≈ 0.

The transmission and reflection coefficients are calculated by a rigorous coupled wave
analysis (RCWA) [107, 108]. In Fig. 10-4, the calculated transmission coefficients t(+,−)

mm

are plotted in dependence of the probe pulse wavelength λ 1. The maxima of the trans-
mission spectra for the fundamental mode |t(+)00| = |t(−)00|, shown in (a), correspond
well to measured dips in reflection [Fig. 10-2(c)]. For the first negative diffraction or-
der, however, there is a cut-off wavelength above which light cannot propagate inside
GGG. For a fixed wavelength this translates into a cut-off angle θC . For non-negligible

transmission coefficients t
(+)
0−1 and t

(−)
−10, the probe pulse angle of incidence has to fullfill

θ > θC . The dependence of θC on the probe wavelength λ is plotted in the inset of
Fig. 10-4. For λ = 800 nm the cut-off angle is θC = 3 ◦, which explains why there is no
signal measured for t− tS < 0 and θ = 2 ◦, as seen in Fig. 10-3(c).
For θ = 7 ◦, the transmission coefficients for both considered diffraction orders are
non-negligible and Eq. 10.7 can be used to estimate the relative amplitudes of their
contribution to the interferometry signal ∆Ip−s(t). Taking typical strain pulse pa-
rameters [16] and phonon attenuation in GGG [110], it is estimated that the Fourier
components ηω0

and ηω−1
have a comparable magnitude. Furthermore, the ratio of

the photoelastic constants is p11/p12 ≈ 3 [109], so that, finally, the amplitude of the
spectral component at ω−1 is estimated to be 12 times larger than the one at ω0.
This contrast may be even larger, if one considers the efficiency of the acousto optical
coupling. For θ = 7 ◦, the diffracted light component inside GGG is incident on the
strain pulse under a large oblique angle of 76 ◦. Therefore, the length of the path

1All RCWA calculations have been performed by V. I. Belotelov, Lomonosov Moscow State Uni-
versity, 119991 Moscow, Russia
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through the area with coherent phonons is increased compared to the non-diffracted
beam, which is almost normally incident. This may potentially lead to a stronger cou-
pling efficiency.
For the above mentioned reasons, it is reasonable to assume that the spectrum of the
interferometry signal ∆Ip−s(t) in Fig. 10-3(b) is dominated by the component of the
diffracted beam at the frequency ω−1.
It should be mentioned that the BIG layer, which is responsible for the WGM, ex-
pands the spectral region for which light transission into GGG and back into air has
non-negligible values. This may be the main reason why the interferometry signal at
t−tS < 0 has not been observed for the sample without a wave guiding layer, presented
in chapter 9.

The oscillations of ∆Ip−s(t) at t − tS < 0 decay with increasing negative delay
[Fig. 10-3(a)]. This decay can not stem from the absorption of light, because GGG
is transparent for light with λ = 800 nm, but it is rather due to dephasing. The
finite spectral width of the optical probe pulse results in slightly different oscillation
frequencies for each spectral component. The time τ , after which these individual
oscillations run out of phase can be estimated by [132]

τ = c0top

(
dω−1

dk

)−1

, (10.8)

where c0 is the vacuum speed of light and top is the duration of the optical probe pulse.
For top = 150 fs and the experimental parameters, Eq. 10.8 yields a dephasing time of
τ = 455 ps, which agrees well with the experimental observation.

10.3 Conclusion and perspective

In conclusion, Brillouin oscillations have been detected in the picosecond acoustic
interferometry signal in a sample with a periodic gold grating on top. The frequency
of the oscillation could be associated with light of the first negative diffraction order,
interacting with GHz coherent phonons of a propagating strain pulse. In a theoretical
analysis, the relative amplitudes of the contributions associated with diffracted and
non-diffracted light in the spectrum of the interferometry signal have been compared,
in agreement with experimental observations.

It has, therefore, been demonstrated that coherent phonons are a promising tool
to probe the electromagnetic far-field inside samples with periodic structures on top.
Standard optical techniques that are established to probe the far-field outside the
sample, cannot easily be applied for in-sample probing. The interferometric signal
can be analyzed in terms of the Brillouin frequencies, which are governed by the
angle distribution of electromagnetic waves inside the medium and, thereby, reflect the
interaction of light excitations in the periodic structure. The theoretical framework
provides a tool for the design of structures, where the interaction of light with coherent
phonons can be deliberately exploited.
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The results obtained for the one dimensional planar structure investigated here
show the potential of this method for acoustic nanoscopy [133]. In the future, it may
be applied to more complex structures, such as two-dimensional photonic crystals.
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D. R. Yakovlev, N. A. Gippius, K. Lischka, and M. Bayer, Phys. Rev.
B 83, 115302 (2011). 34, 39
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DBR distributed bragg reflector
FFT fast Fourier transform
GF gradient greyfilter
GGG gadolinium gallium garnet
GTP Glan-Thompson prism
LA longitudinal acoustic
LO longitudinal optic
LP long pass
MBZ mini Brillouin zone
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RCWA rigorous coupled wave analysis
S sample
SC semiconductor
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VCSEL vertical cavity surface emitting laser
VTI variable temperature insert
WGM waveguiding mode
λ/2 waveplate

97





Publications

”Studying periodic nanostructures by probing the in-sample optical far-field using
coherent phonons”,
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A. Pawlis, T. Berstermann, C. Brüggemann, M. Bombeck, D. Dunker, D.
R. Yakovlev, N. A. Gippius, K. Lischka, and M. Bayer, Phys. Rev. B 83,
115302 (2011)

”Coherent Magnetization Precession in Ferromagnetic (Ga,Mn)As Induced by Pi-
cosecond Acoustic Pulses”,
A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck,
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