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1 Introduction

Do spreads of single-name credit default swaps (CDS) written on bank names reflect a risk
premium for extreme financial disasters? There is increasing empirical evidence that stock market

investors receive compensation for bearing the risk of extreme tail events in the financial market

(see Bollerslev and Todorov, |2011). Consequently, investors agreeing to sell protection via a credit

default swap should just the same receive a premium for bearing the risk of the swap being trig-
gered during periods of financial turmoil. If tail risk is indeed priced in a firm’s credit default

swap premia,! this effect should be particularly pronounced for banks, because banks face the

risk of a bank run by depositors (see [Diamond and Dybvig, 11983) and creditors (see [Duffie, 2010;

Gorton and Metrick, 2012). In this paper, we estimate a bank’s upper tail dependence between the

returns on its CDS and a relevant CDS market index (referred to as the CDStail beta) to investigate
whether the propensity of an individual bank to jointly surge with the banking sector is priced in
the bank’s CDS premia. We find that it is: the propensity of a bank’s CDS to experience extreme
upward comovements with a CDS index for the financial market is a significant determinant of the
bank’s CDS premia. The economic magnitude of this effect is large as a one standard deviation
increase in a bank’s CDS tail beta increases its CDS premium by 35 basis points. This result holds
after controlling for other theoretical determinants of swap premia.

Many analyses in option pricing have emphasized the finding that investors are crash-averse. As
deep out-of-the-money index puts have often been found to have a high implied volatility, investors

appear to insure themselves against extreme downward movements of the market when investin

in equity markets (see Jackwerth and Rubinstein, [1996; |Ait-Sahalia and L g, [2000; |Garleanu et al.,

2009). Empirical support for this hypothesis of investors demanding compensation for bearing

crash risk is given by Ruenzi and Weigert (2013), who find that a stock’s lower tail dependence

with respect to the market portfolio is a priced factor in the cross-section of stock returns. Sur-
prisingly, the literature on credit risk still lacks an investigation into the question whether investors

selling protection in a CDS contract receive a comparable premium for bearing the risk of the

Throughout this paper, we use the terms “CDS premia” and “CDS spreads” synonymously.
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reference firm defaulting when default probabilties experience a market-wide increase.

There now exists a substantial body of literature on the determinants of credit spreads.

Collin-Dufresne et al/ (2001) examine the drivers of corporate bond yield spreads and find that

most drivers proposed in theory have little to none explanatory power in regressions of corpo-

rate credit spreads. Closely related, [Campbell and Taksler (2003) and [Cremers et al. (2008) find
that idiosyncratic volatility is an economically significant determinant of levels of corporate credit

spreads. The analysis of corporate bond yields, however, only offers a distorted picture of a firm’s

credit risk. As noted by Blanco et all (2005) and [Ericsson et al/ (2009), new information is incor-

porated faster and more accurately into credit default swap premia than into corporate bond yields.
Moreover, the latter include further nondefault components (like, e.g., liquidity risk and taxes) and

require the specification of a risk-free yield curve model to calculate spreads from bond yields

Duffie and L.iu, 2001; ILongstaff et al., 2005; [Ericsson and Renault, [2006). Yet, we still know rel-

atively little about the fundamental factors driving CDS premia. While studies on the determinants

of credit spreads question the explanatory power of observable covariates, [Ericsson et al. (2009)

show that equity volatility and firm leverage suffice to explain most of the variation in CDS premia

over time and across firms.2 The theoretical basis for most of these hypothesized determinants

is given in the structural model of IMerton (1974). In his model, a firm’s default probability (and
consequently, the value of a corresponding CDS), are influenced by the firm’s leverage, equity
volatility and the level of the risk-free rate. Especially during times of financial crisis, however,

CDS premia could additionally be driven by risk preferences of protection sellers.®. If investors

were averse to downside risk (see, e.g.[Ray, 11952; Kahneman and Tversky, |1979), CDS protection

sellers should require a premium for bearing the risk of negative externalities spilling over from

other financial institutions to the reference bank.* Anecdotal evidence from the recent financial

2Using a discrete time no-arbitrage model with observable covariates, [Doshi etall (2013) show that four (ob-
servable) covariates extracted from the riskless term structure, the firm’s distance-to-default computed using option-
implied volatility, and the VIX suffice to explain CDS spreads.

3As noted by [Christie (1982) and [Collin-Dufresne et al! (2001), however, market value leverage can also increase
due to negative stock returns. There is thus a direct link between the pricing of CDS contracts via the model of
@) and extreme crash risk in equity prices

“Recent studies in the literature that incorporate (crash) risk averse investors into standard asset pricing models

include, e.g., IShumwayl (1997); /Ang et al/ (2006); [Ruenzi and Weigert (2013).
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crisis strongly supports this notion as banks experienced extreme comovements in their CDS pre-
mia following the collapse of Lehman Brothers. In this paper, after carefully controlling for the
temporal variation in the tail dependence of CDS spreads, we test and confirm the hypothesis that
CDS protection sellers are compensated for the risk of a joint crash in the CDS market.

We measure the aversion of investors to the risk of joint extreme comovements in default prob-
abilities by estimating the upper tail dependence in the CDS spreads of individual banks with
respect to a CDS sector index and refer to this as the bank’s CDStail beta. In essence, the upper
tail dependence between two random variables measures the probability of both variables to expe-
rience comovements in their upper right tail. Traditionally, analyses of systematic risk in portfolio

theory and asset pricing have used linear correlation to capture a security’s sensitivity to comove

with the market (Markowitz, [1959; |Sharpe, 11964; [Lintner, [11965). In a non-gaussian framework,

however, linear correlations cannot fully describe the complete dependence structure in a joint
return distribution. Consequently, a growing body of literature has employed methods from ex-

treme value theory and copula theory to study non-linear dependence in asset returns (see, e.g.,

Longin and Solnik, 2001; |lPoon et all, [2004; IRuenzi and Weigert, 2013). In this paper, we build

on these recent results from the literature and employ the Dynamic Asymmetric Copula (DAC)

model of [Christoffersen et all (2012) to estimate the upper tail dependence between the returns on

an individual bank’s CDS spread and the returns on a CDS bank sector index. We then follow in

the footsteps of I(Collin-Dufresne et al. (2001);/Campbell and Taksler (2003);/Cremers et al. (2008);

Zhang et al/ (2009) and [Ericsson et al. (2009) and estimate panel regressions of CDS premia with

bank fixed effects on known drivers of credit risk as well as on CDS tail beta.

We find that CDS tail beta is a significant determinant of the CDS premia of banks. Banks with
higher CDS tail betas exhibit significantly higher CDS spreads. This effect is economically large
as banks in the upper quintile of CDS tail betas have an average CDS spread that is 140 basis points
higher than the average spread of banks in the lower quintile of CDS tail betas. In our regression
analyses, we show that the risk premium protection sellers receive for bearing the risk of a surge in

CDS spread returns complements the traditional determinants of CDS premia like, e.g., leverage



and equity volatility. In our sub-sample analysis, we show that the correlation between banks’
CDS premia and CDS tail betas that we find is limited to the crisis years of 2007 to 2010.

The correlation between a bank’s CDS tail beta and its CDS premia, however, cannot simply

be explained by the bank’s systemic relevance for the financial sector. |/Acharya et all (2010) show
that a bank’s Marginal Expected Shortfall (MES in short; the MES is defined as the conditional
mean stock return of the bank when the market is plummeting) is a significant determinant of the
CDS premia of financial institutions during the financial crisis.> As a result, it could be argued
that our CDS tail beta measure is simply another proxy for the systemic relevance of a respective
bank for the financial sector. Conceptionally, our measure of CDS tail beta is broadly related to
their MES measure yet both measures differ with respect to several key aspects. First, our CDS tail
beta constitutes the probability of a joint surge of both the market’s and the individual bank’s CDS
premia, thus measuring the respective right tail of the joint distribution, while MES is based on the
left tail of the market’s marginal return distribution. Second, the CDS tail beta measures the tail

risk in the extreme tail of the joint distribution, while MES only measures systemic risk based on

moderately bad days of the market (see |/Acharya et all, [2010). Consequently, we expect our CDS
tail beta to measure the asymptotic probability of an extreme crash in the CDS market that is not

captured by measures like, e.g., MES that are based on only moderately bad tail events.

We test this conjecture by including the MES measure of |Acharya et al! (2010) estimated using

various model specifications as a further explanatory variable in our regressions of CDS premia.
The results indicate that the correlation between CDS tail beta and premia remains significant even
when including MES in our regressions, irrespective of the model specification used for estimating
MES. Our CDS tail beta measure thus complements rather than substitutes this measure of a bank’s
exposure to systemic risk in pricing models for CDS premia.

Our paper is related to several recent investigations into the pricing of equity and credit deriva-

tives. Most notably, our investigation draws inspiration from the study of IRuenzi and Weiger

5There now exists a vast number of studies in the financial economics literature on the measurement of sys-
temic risks. Further examples for such measures apart from those used in this study are due to IDe Jonghe (2010);
Adrian and Brunnermeieri (2011); Huang et al. (2011);/Schwaab et al. (2011); [Hautsch et al. (2012); [Hovakimian et al.
(2012) and \White et al! (2012).




2013) who document a crash risk premium in equity prices. While their study is concerned with
the correlation between lower tail dependence and equity prices, our analysis investigates the de-
terminants of CDS premia.® Moreover, in contrast to their work, we account for time variation

in the dependence structure of individual and sector-wide CDS premia. Our work is also related

to the studies by [Ericsson et al) (2009) and IDoshi et al. (2013), but we additionally consider a

premium for crash risk in the CDS market as an additional explanatory factor in our empirical

analysis of CDS premia. Nevertheless, our results do not refute but rather complement the find-

ings by [Ericsson et al. (2009). Although we show that CDS tail beta is an economically significant

driver of CDS premia in times of financial crisis, the results of [Ericsson et al/ (2009) remain valid

in our sample period before the Subprime crisis. Investors thus seem to demand a risk premium

for CDS tail beta when it is needed the most: during a tail event. Finally, our paper is also related

to the contemporaneous studies by |Oh and Patton (2013) and |Christoffersen et al. (2013). The
former proposes a new class of copula-based dynamic models for high dimensional conditional
distributions to estimate the joint probability of distress from bank CDS premia. Using dynamic
copula models, the latter documents that the dependence in default intensities and CDS spreads
is highly time-varying and persistent. Both studies, however, do not consider the determinants of
CDS premia.

The rest of this paper is organized as follows. Section [2]describes the data and the econometric
models we use for estimating CDS tail betas. In Section [3, we present and discuss the results of

our analysis on the determinants of CDS premia. Section [ concludes.

2 Modeling extreme CDS spread comovements

The purpose of this section is to present the data and outline the econometric framework for
modeling CDS spread returns as well as their dynamic multivariate dependence structure. We start

with a description of the data and a brief study on the stylized facts of CDS spread returns to

8The link between a firm’s stock returns and its credit risk is analyzed in detail by [Friewald et al/ (forthcoming).
Their study, however, is not concerned with the determinants of CDS spreads per se.
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identify the correct model specifications.

2.1 CDSdataand stylized factsof CDS spread returns

To investigate the economic importance of CDS tail beta for the European banking sector,
we construct a sample of more than 54,000 daily CDS mid-quotes between January 2004 and
September 2010. The data on CDS quotes are retrieved from Credit Market Analysis (CMA) via
Thomson Reuters Financial Datastream. For all available major European banks, we also collect
daily bid and ask quotes. The respective bid-ask spreads are then calculated as the difference
between ask and bid quotes. To ensure accuracy and data consistency, we apply several filtering
criteria to our data. The considered CDS series are exclusively written on single-name entities
and are denoted in Euro. We further include only those contracts in our final sample that refer to
senior debt issues and discard the class of subordinated debt. Additionally, we restrict our analysis
solely to contracts exhibiting a five-year term structure, since these are the most frequently traded
terms and therefore unlikely to be distorted from low levels of liquidity. Moreover, for a bank to
be included in the our sample, we require the bank to be listed on a major stock exchange and have
stock price data readily available in Datastream.” Finally, on the individual bank level we exclude
all time series with missing values after observing the first quote. Starting with a universe of all
European bank names covered by CMA, we identify a remaining total of 35 banks matching the
above mentioned filtering criteria.® Note that the overall sample size is solely restricted by data
availability of both CDS and stock market quotes. To estimate the CDS tail betas of the banks in
our sample, we later employ a CDS spread return index that is constructed as the equally-weighted
average of individual spread returns across all sample banks. For increased transparency, Appendix
[ provides an overview of the bank names as well as corresponding ticker symbols.

Table [l reports summary statistics of daily CDS spreads. Whereas the mean sample spread

"Note that the subsequent empirical analysis requires CDS as well as stock market quotations. See Section [3] for
details.
8A comprehensive overview of bank-specific CDS data available in CMA can also be found in

(2013).



is at a comparatively modest level of 91.94 bps, the minimum and maximum premia range from
1 bp (EBKOF) up to 1327.86 bps (BILMI), indicating fundamental changes in investors’ risk
perception during the sample period. In addition, an average standard deviation of more than 100
bps reflects a significant level of volatility in observed CDS spreads. Furthermore, an analysis of
the CDS spreads’ percentiles and skewness indicates that a great portion of daily spread quotations
can be found in the lower tail of the distribution. We find average CDS spreads to be positively
skewed suggesting that the pre-crisis period is characterized by lower credit spreads and hence,
lower CDS-implied default risk. This is confirmed by the evolution of average spreads over time
depicted in Panel (a) of Figure Il As can be seen from Figure [} daily CDS spreads remain on
low levels between January 2004 until mid-2007. With the commencement of the sub-prime crisis
however, a fundamental re-valuation of credit risk took place resulting in highly elevated CDS
levels after mid-2007. Additionally, we report the evolution of daily minimum and maximum
spread quotations illustrated by the shaded gray area. We find the cross-sectional variation to be
rather low in the pre-crisis period but find a substantial widening after mid-2007, suggesting not
only a system-wide increase of CDS-implied default risk but also an asymmetric assessment of
banks’ credit risk during the crisis.

Table [ presents descriptive statistics on CDS spread log returns. The log returns range from
-77.67% to 106.63% on average, reflecting both substantial upward and downward movements
in CDS spreads. As we can see from the results on the moments, the log returns are character-
ized by a negligible mean (0.15% on average) and a significant standard deviation ranging from
4.51% (UNBLF) to 51.25% (EBKOF). Additionally, the log returns are positively skewed (2.75
on average) and exhibit tail risk, as indicated by a pronounced excess kurtosis. The first-order
autocorrelations are negative for most sample banks and -8.02% on average. The time evolution of
CDS spread log returns is illustrated in Panel (b) of Figure[Il The plot shows that in the beginning
of the sample period the average log returns vary between -10% and 15%, whereas the shaded area
between maximum and minimum observations stays relatively tight around the average returns. As

of 2006 (observation 530), the magnitude and volatility of average returns increase and the shaded



area raises gradually indicating growing cross-sectional variation in CDS spread returns. After the
onset of the financial crisis, the shaded area tightens sharply around the average returns in October
2007, whereas the magnitude and volatility of the average returns remain in approximately the
same range.

Complementing the analysis of CDS spreads, we also shortly comment on some descriptive
statistics of the banks’ equity (log) returns presented in Table TAI° Not surprisingly, returns vary
across a wide range of values and, according to the results on percentiles and moments, the stocks
possess the usual stylized characteristics of negligible mean log returns (-0.04% on average) and
non-normally distributed returns with a slight skewness of, on average, -0.43. The evolution of
daily log returns over time is shown in Panel (c) of Figure [l Underlining our previous findings,
the graph exhibits a pattern that is commonly associated with equity return series.

The panels of Figure[2]compare the time evolution of spreads to that of CDS spread log returns
and equity returns. The plot given in Panel (a) of Figure [2] does not show any evidence of an
increase in the volatility of CDS spreads during the crisis at first glance. However, spread return
volatility was extremely high before the crisis with spreads remaining on a very low level. When
excluding the pre-crisis period, key events of the financial crisis (like, e.g., the collapse of Lehman
Brothers) coincided with significant spikes in CDS spreads and increased spread return volatility.
The plot given in Panel (b) further underlines the finding that the average CDS spread and equity
return volatility of banks comoved during the financial crisis with both series increasing steeply
between 2007 and 2009. CDS spreads decreased after 2009 but started to increase again with the
onset of the sovereign debt crisis.

Due to modeling purposes, we will use daily CDS spread log returns to estimate our models
and to calculate joint extreme crash risk. Since the time series properties of CDS spread returns are
a rather unexplored field in the econometric literature, we will conduct a brief study on the stylized

facts of CDS spread (log) returns in the following.*°

9To preserve space, the summary statistics for the equity returns are shown in Table TA]in the Internet Appendix
to this study.
19Cont and Kan (2011) undertake a similar study on CDS spread returns for a different set of CDS spreads.
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The results of the time series analysis of the CDS spread returns are reported in Table [TIl In a
first step, we check for stationarity of the log returns. To this purpose, we employ the augmented
Dickey-Fuller (ADF) test using the general regression equation with a constant and a linear time
trend.!! The corresponding p-values in column 3 of Table [Tl show that the null of a unit root is
rejected and all log return series are stationary. Unreported results on additionally conducted PP
and KPSS tests support these findings. In the next step, we check for linear serial dependence and
employ the Ljung-Box (LB) test with the number of lags equal to 20. The LB test is not rejected
for 40% (31%, 23%) of the sample banks at the 1% (5%, 10%) significance level (see column 5 of

Table[III). Hence, most log return series are characterized by significant linear serial dependence.

Moreover, we perform [Engle’s (1982) lagrange multiplier (LM) test to check for ARCH effects.

To control for linear serial dependence, we firstly estimate an AR model for each return series.*?
Then, we regress the squared AR residuals on their own history and test the null that all coefficients
are equal to zero (no ARCH effects).!® The p-values in column 7 of Table [Tllshow that most return
series exhibit ARCH effects: the null of no ARCH effects is rejected for 60% (66%) of the sample
banks at the 1% (5%, 10%) significance level.

Further, we examine the unconditional distribution of CDS spread log returns and check for
non-normality and heavy tails. Results on Jarque-Bera (JB) tests are listed in columns 8 and 9 of
Table [ and show that the null of normally distributed returns is rejected in all cases. Unreported
results on Kolmogorov-Smirnov and Shapiro-Wilk tests confirm this finding. To check for heavy

tails, we compute tail indices and study quantile plots. We use the well-investigated Hill estimator

for the computation of lower and upper tail indices (see Hill, [1975, for details), and present the

estimates in columns 10 and 11 of Table [TI.** The tail indices vary considerably across the sample

banks, where the mean upper and lower tail indices are respectively given by 2.3 and 3.0, indicating

" The number of lags included in the regression of the test is chosen to be the upper bound on the rate at which the
number of lags grows with the sample size (see [Said and Dickey, 11984, for details).

2The order of the AR model is chosen such that the null of the LB(20) test cannot be rejected at the 10% signifi-
cance level.

13More precisely, we use five lagged values of the squared residuals.

wWhen applying the Hill estimator, one difficulty is given by the appropriate choice of the threshold k. Here,
we follow [Guillou and Hall (2001) and apply their diagnostic procedure with parameters p = 1 and ¢ = 1.25 to
compute k.




that the unconditional distribution of the spread returns is heavy-tailed with heavier left tails on

average. An analysis of unreported quantile plots confirms these findings.

As stated by |Bera and Higging (1993) as well as by Bollerslev et al. (1994), fat tailedness in

unconditional distributions might be caused by ARCH effects. To check for fat tailedness in the
conditional distributions, we compute tail indices for the AR-GARCH residuals of the return series.
The unreported results show that, after accounting for ARCH effects, the tail indices remain in the
same range and fluctuate around approximately the same means. Hence, the average sample bank
exhibits a heavy-tailed conditional spread return distribution with heavier left tails.

Finally, we check for asymmetries in conditional volatility and jointly conduct the Sign Bias

Test, the Negative Size Bias Test as well as the Positive Size Bias Test as proposed by [Engle and N

1993). More precisely, we test the null that the squared AR-GARCH residuals of the return series

cannot be predicted by the sign and the magnitude of return shocks. As can be seen from column
13 of Table [T} the p-values of the test are quite large for all series, indicating that there is no
predictive power in the return shocks with regard to the squared AR-GARCH residuals. Hence,

we find no evidence of asymmetric conditional volatility in any of the return series.

2.2 Univariate modeling of CDS spread returns

We now discuss the marginal models for the CDS spread log returns. According to the previ-
ous section, the return series are stationary, autocorrelated and conditionally heteroskedastic. We
therefore use an AR(m)-GARCH(p,q) model to account for these time series properties, where
m, p,q € N denote the number of lags considered in the AR and GARCH equations. To addition-

ally account for skewness and fat tails in the conditional distribution, we assume the conditional

distributions of the return innovations to follow the skewed ¢ distribution of [Hansen (1994). In

formal terms, our univariate model approach can be described as follows: with C'DS;; denoting

the CDS spread of bank z attimet (: = 1,..., N,t = 1,...,T), the CDS spread log returns are given
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Ri,t = lOg(CDSZ,t) — lOg(CDSi,tfl). (1)

As mentioned above, the CDS spread index, C'DS,, ;, is calculated as an equally-weighted average
of individual spread returns across all sample banks. Hence, the return on the spread index at time

t, R, 1S given by

N
1
Ry =10g(CDSpy) —10g(CDSmy1), CDSpy = > CDS;;. )

i=1

Further, let 7, , denote Hansen’s (1994) skewed ¢ distribution with v degrees of freedom and skew-

ness parameter \, and let 7, , be the information available on the spread return series of bank ¢ up
to and including time ¢. Assuming an AR(m)-GARCH(p,q) model, the CDS spread log return of

bank i at time ¢ follows the dynamic

Rit = pis+€ir = fix + / Pirzie, Zig|Fig—1 ~ gui,)\ia (3)

Hit = Qo + ijl ¢jilii—j, (4)
P q

hip = w; + Zk:l g €3 g + 21:1 Brihige—i, ()

where the parameters in the conditional mean and variance equation are restricted to be positive,
2<y;<ooand -1 < )\, <1foralli=1,... N5
Estimation is conducted in two steps: first, we estimate the AR component using conditional least

squares and then estimate the GARCH model on the basis of the AR residuals straightforwardly

5Note that the distribution of return shocks differs across banks, but is constant over time, whereas the return
distributions have time varying conditional means and variances.
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by maximum likelihood. The log likelihood of the GARCH component for bank i is given by

2

1 i+ 1 1 (b b2 +a
log L(e;;0;) = log(bic;) — ilog(hz‘) v ;‘ log | 1+ — ( €ith; 2 +a ) )

T

t=1

where ¢; := (£;1,...,&;7) " denotes the vector of AR residuals, 6; is the (4 +m + p+q) x 1 vector

containing the model parameters (for bank ¢), and

vitl) -
a; = ANici——, =4/1+3X2 — all di=—L 4+ 2 (7
c — + a? —2)F( ) \/h_¢+ b, (7)

Z

2.3 Joint modeling of CDS spread returns with the DAC model

We now turn to the task of modeling the joint distribution of CDS spread (log) returns and
the (log) returns on the CDS spread index. Since we are especially interested in joint extreme
movements in individual spreads and the spread index as a potential determinant of individual
spreads, we rely on a copula model that allows for tail dependence. Naturally, the multivariate
dependence structure changes through time and might be characterized by strong asymmetries
in the sense of asymmetric threshold correlations.® To flexibly model the dependence between

spreads and our spread index and account for underlying time dynamics as well as multivariate

asymmetries, we follow in the footsteps of IChristoffersen et al. (2012) by applying their so-called

Dynamic Asymmetric Copula (DAC) model to the AR-GARCH filtered spread and index returns.

The DAC model is based on the skewed ¢ copula discussed in |[Demarta and McNeil (2004),

which is parameterized by the correlation matrix of the copula shocks, an asymmetry parameter

and a degree of freedom parameter. The correlation matrix of the copula shocks is then modeled

by means of a modified version of [Engle’s (2002) DCC model, which augments the DCC model by

a time-varying matrix capturing time trends and other explanatory variables. In this way, the DAC

161n a recent study, [Christoffersen et al. (2013) show that the dependence in CDS spreads is highly time-varying,
persistent, and increased significantly in the financial crisis. Multivariate asymmetries in CDS spreads appear to be
less important than asymmetries in equity returns but should nevertheless be accounted for in econometric models of
spreads.
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model accounts for tail dependence, asymmetries and time dynamics in multivariate distributions.

The model takes the following form: let R, ; and R,, . be the CDS spread log return of bank ¢
and the spread index at time ¢, respectively, and let Z; , and 2,,, , denote the AR-GARCH residuals,
With w;; == F;(2;+) and u,,+ == F,, +(Z,,+) being the corresponding ranks. Then, the skewed ¢

copula, C;, is defined by

Ot(ul,u o ung Py, m) = tPt,’Y,T](t';})(ul,t)7 e t;},(UN,t)) 8)

where ~ and 7 denote the asymmetry and degrees of freedom parameters, respectively, and ¢ p, ., ,,

and t,—}7 are the multivariate cdf and the univariate inverse cdf of the skewed ¢ distribution discussed

inDemarta and McNeil (2004).1" P, is the correlation matrix containing the correlations between

the copula shocks zf, := ] (u,,), and follows the dynamic

Po=(1—=v1 =) [(1 = K)Q + &Dy] + o Py + 1% 5 9)

where 11, 1, and « are non-negative parameters, and z; := (Zf,,...,Z5,)" with Z, given by

2§ +/ P (see |Aielli, 2009, for details). Further, () is a constant copula correlation matrix calcu-

lated as

—1 T ~czcT -1 T
= T > 5% — w1 Dy
)

- (10)

and D; is a time trend correlation matrix with trend parameter o, where the off-diagonal elements
are equal to

52t?

m, t:]_,,T (11)

We refer to |Christoffersen et al. (2012) for details on the matrices Q and D;. Note, however, that

17See IDemarta and McNeil (2004) for details on the skewed ¢ distribution and the skewed ¢ copula. Note,
however, that [Hansen’s (1994) skewed ¢ distribution (used for the marginals) is different from that discussed in
Demarta and McNeil (2004) (used for the joint distribution).
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setting x = 0 yields|Engle’s (2002) DCC model as applied to copula correlations.

Finally, to ensure that P, remains in the -1 to 1 interval, we normalize P, and use the matrix P, that

is defined by

P = Bl j=1..N. (12)

P, =
.77t Y
N

The DAC model is estimated straightforwardly by maximum likelihood in our bivariate case. De-

tails of the DAC model can be found in|Christoffersen et al. (2012).

2.4 Estimation results

We first summarize the estimation results for the univariate AR(m)-GARCH(p,q) models. We
individually choose the AR lag m for each spread return series such that the LB(20) test cannot
be rejected at the 10% significance level. According to (unreported) preliminary tests, setting the
GARCH lags p and g to 1 is sufficient to adequately account for ARCH effects in the AR residuals.
The estimation results for the AR-GARCH models are reported in columns 2 to 6 of Table [\V.*8
The parameters governing the conditional volatility are given by w, a and 5. The w parameter is
close to zero (0.0002 for the average sample bank) and not listed in the table. The « parameter
quantifies the effect of lagged return shocks on current volatility and varies from 0.1377 (EFG) to
0.6600 (MDIBF) (0.3142 on average). Interestingly, volatility in CDS spread returns seems to be
affected to a greater extent by news arrival than volatility in stock price returns.'® The autoregres-
sive variance parameter, /3, is however dominating in most cases and varies from 0.3286 (MDIBF)
t0 0.8623 (EFG) (0.6751 for the average sample bank). As indicated by the fourth column, volatil-
ity is highly persistent for all spread return series. The parameter estimates for the conditional
distribution of the return innovations show that the skewed ¢t GARCH model fully accounts for the

evidenced fat tailedness (as indicated by the degrees of freedom parameter being equal to 5.36 on

18Note that the results on the AR processes are fairly standard and, therefore, have been omitted to preserve space.

19T§Eicall . « is between 0.01 and 0.2 for stock price returns (see, e.g., (Christoffersen et al), [2012; [Engle, 2002;
1] )
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average) and picks up much of the skewness found in Table [l
The (unreported) results on the LB(20) tests confirm the good fit of the marginal models and in-
dicate that there is no autocorrelation left in the AR-GARCH residuals (with the p-value being

equal to 0.5816 on average). Further, we conduct LB(20) tests on the absolute residuals as well

as [Engle’s (1982) ARCH LM test to evaluate the performance of the GARCH component. The

average p-values of the two tests are 0.6451 as well as 0.8951, respectively, indicating that the
AR-GARCH models pick up the persistence in absolute spread returns and adequately account for
ARCH effects. Hence, the marginal models generate white-noise residuals so that the theoretical
requirements for the application of the DAC model are met.

The parameter estimates for the DAC model are reported in columns 7 to 12 of Table TV} The first
four columns of the DAC estimates refer to the parameters characterizing the conditional correla-
tion dynamics of the copula shocks. The conditional correlation matrix mean-reverts at time ¢ to a
slowly varying component, (1 — x)@ + ~D,, which is a weighted average of the constant matrix
@ (containing average copula correlations) and the time-varying matrix D, (accommodating for
time trends in copula correlations). The 1, and ¢, parameters capture the impact of lagged copula
correlations as well as the cross-product of lagged copula shocks on current copula correlations, re-
spectively, where v, +1), yields the persistence in dependence and 1 —1); — 5 governs the speed of
mean-reversion. As we can see from the estimates, the autoregressive parameter, 5, ranges from
0.7587 (IKB) to 0.9887 (UNBLF) and is 0.9399 on average, dominating the «); parameter for all
banks in the sample. As indicated by the third column of the DAC estimates, the persistence in the
dependence structure is high in all models, implying slow mean-reversion in copula correlations.
The next column refers to the long-run copula correlations and reports the parameter estimates

characterizing the matrix D;. To identify the portion of the increase in long-run correlations that

is due to the time trend component, we follow (Christoffersen et al. (2012) and report Dy 7.%

The increases are positive for all banks in the sample and are 0.3281 on average, indicating that

our sample period is characterized by a strong upward trend in copula correlations. This is con-

2ONote that the increase due to the time trend component can be calculated as D 12t peqp — KD124t],_y =

kDo = k62T2 /(1 + 62T?), see|Christoffersen et al| (2012).
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firmed by Panels (a) and (b) of Figure[3l Panel (a) plots average daily dynamic copula correlations
(solid line) along with the range between the smoothed series of minimum and maximum corre-
lations (shaded area) as well as the average constant correlations (dashed line). As we can see
from the panels, the dynamic correlations are close to the constant correlations in the beginning of
the sample and have been on a slight downward trend as of mid-2005, falling below the constant
correlations prior to the financial crisis. With the onset of the financial crisis in 2007, however,
the copula correlations have been trending upwards, increasing considerably from 20% in 2007
to 60% in 2010. Hence, the average dynamic correlations are below the constant correlations in
the pre-crisis period, and are higher in the end of our sample period, reflecting the importance of
considering the evolution and time trends of the general dependence level in the DAC framework.
A more detailed analysis of the dynamic copula correlations per country is presented in the Inter-
net Appendix. The light-gray lines and bars in the panels of Figure [A.1] show the country-wise
average daily and cumulative quarterly dynamic copula correlations, respectively, and illustrate the
cross-sectional differences in the time evolution of correlations. Except for the panels of Austria
and Greece, the country-wise panels confirm the above findings and only show slight differences
in the magnitude of the correlations and the evolution of the trend across the countries included in
our sample.

In our empirical study, we investigate whether the propensity of an individual bank to jointly
crash with the banking sector is priced in the bank’s CDS premia. To this purpose, we introduce
the upper tail dependence between individual spread returns and returns on the spread index as a
potential determinant of individual spreads and call this determinant CDS tail beta. In our DAC

model framework, bank’s ; CDS tail beta at time ¢ can be measured via the probability limit

1-2 C, P
TailBeta;; := Um P (u;; > E|upmy > &) = lim §+GUEE t’%m. (13)
' £—1 ' ’ =1 1-¢

Panels (c) and (d) of Figure 3 show the time evolution of the average daily and quarterly tail betas

for our sample period, respectively, where the average is taken across the individual tail betas of
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the 35 sample banks. As we can see from the panels, the time evolution and trend patterns of
tail betas are similar to those of copula correlations. Since the beginning of the sample in 2004,
tail betas have been on a slight downward trend, reaching its minimum of 5% in mid-2007. With
the onset of the financial crisis, the downward trend abruptly turns into a strong upward trend,
and tail betas increase dramatically up to 25%. As can be seen from the quarterly tail betas in
Panel (d), the downward trend comes to a halt in the second quarter of 2007. Further, much of
the following sharp upward trend is captured in the last two quarters in 2007 and the first three
quarters in 2008. In the sequel, the trend corrects and returns to its 2008 levels in the second
quarter of 2010. As for copula correlations, we plot the time evolution of country-wise average
daily as well as cumulative quarterly tail betas to identify cross-country differences in magnitudes
and time trends of tail betas. The results are shown by the dark-gray lines and bars in Figure TA.T]

and lead to the same conclusions as the results for country-wise copula correlations.

3 Empirical analysis

We aim to answer the question to what extent, if any, tail risk is a priced factor in bank-specific
CDS contracts. This section briefly outlines the empirical model and presents our main results.

Robustness checks are given at the end of this section.

3.1 Main dependent and independent variables

We begin our analysis by briefly reviewing the theoretical determinants of default risk and
CDS spreads that are frequently stated in the literature. All variable definitions and data sources

are provided in Appendix [T

In the seminal framework of IMerton (1974), a firm’s default probability is determined by

the firm’s leverage (or its value), its asset volatility and the risk-free rate. An increase in the
firm’s leverage (and conversely, a decrease in firm value) is associated with higher default risk

and thus higher CDS spreads. Due to limited balance sheet data, the leverage ratio cannot be
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measured directly. Moreover, especially off-balance sheet items may not be captured by conven-

tional balance sheet-based proxies of leverage. For this reason, we follow |Christie (1982) and

Collin-Dufresne et al/ (2001) and proxy a bank’s change in firm value by using quarterly arith-

metic stock returns. Data on daily equity prices are obtained from Datastream for all 35 banks in

our sample and we expect our variable Firm value to be negatively correlated with CDS spreads.
Next, we turn to the expected causal relation between asset volatility and CDS spreads. In

theory, higher levels of asset volatility should be associated with higher default probabilities. As a

consequence, we expect asset volatility and CDS spreads to be positively correlated. In line with

lexander and Kaeck (2008), we use the variable Volatility defined as end-of-quarter values of

the VSTOXX implied volatility index to proxy for unobservable asset volatility.?* The VSTOXX
index is inferred from EURO STOXX 50 realtime option prices and mirrors expectations of market
participants with respect to future levels of volatility.

Turning to the risk-free rate, increases in the risk-free rate should theoretically lead to lower

CDS spreads, since the asset value process recedes from the default barrier. We employ a short-

term 1-year Euro swap rate as our variable Risk-free interest rate as, e.g., lLongstaff et al) (2005)

argue that swap rates represent adequate marked-based estimates of the risk-free rate. Nevertheless,
we are aware of the fact that short-term interest rates may also reflect the stance of monetary policy
and may therefore affect bank business models. Accordingly, we expect the sign of the coefficient
on the risk-free rate to be unrestricted. Both the VSTOXX volatility index and short-term swap
rates are retrieved from Datastream.

Complementing the factors proposed in Merton’s model, several further factors have been sug-

gested in the recent literature as potential drivers of default risk and CDS spreads. First, the theoret-

ical and empirical results of IBongaerts et al. (2011) predict and confirm that CDS spreads contain

a premium for the contract’s marketability. Similar to the results of ICampbell and Taksler (2003)

and ILongstaff et al. (2005) for credit spreads, CDS spreads should thus in part be driven by their

illiquidity (see also |Annaert et all, [2013). To measure liquidity, we collect end-of-quarter bid-ask

2iBenkert (2004) provides evidence in favor of option-implied volatilities over historic volatility measures as
option-implied volatilities explain a greater amount of variation in CDS spreads than there empirical counterparts.
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quotes (in basis points) from Datastream and expect our variable Liquidity defined as the bid-ask
spread of a bank’s CDS to be positively correlated with CDS spreads.

Additionally, CDS spreads could also be driven by the business climate of the bank’s home

country. There is ample evidence in the empirical literature (see, e.g., lLongstaff et all, 2005;

Zhang et alJ,[2009) that credit risk premia are sensitive to changes in the business climate in which a

firm operates. We thus include end-of-quarter values of the S&P 500 index as our variable Business
climate in our regressions to account for general stock market momentum. Positive index changes
are associated with declining default probabilities and increasing recovery rates, and should there-
fore be negatively correlated with CDS spreads. Another factor that could affect the pricing of
credit protection is the overall stance of the economy as proxied by the growth of the economy.

In the context of our analysis, GDP growth is a relevant control variable because recent studies

like, e.g., the one by the [Committee on the Global Financial System (CGES) (2011) suggest that
banks are particularly exposed to their home sovereign as well as to domestic credit markets. At
the country level, GDP growth is likely to be accompanied with increasing borrowers’ solvency
and a lower overall risk exposure of financial institutions to their domestic market. Consequently,
we associate increasing growth rates with declining bank-specific default risk premia. Data on
quarterly GDP growth rates are obtained from the OECD.

Finally, we also employ the slope of the yield curve as a further explanatory variable in our
regression analyses. Here, we use the yield curve slope as an indicator for the country-wide future
economic activity of a bank’s home country. Our variable Sopeis defined as a country’s respective
10-year minus 2-year government bond benchmark yields. Data on government bond yields are
taken from Datastream. In theory, spot rates converge to their long-term counterparts, thereby

increasing the risk-neutral drift of the asset value process making default less likely to occur (see

Longstaff et all, 2005). Nevertheless, also monetary policy measures may be reflected in the slope

coefficient. Hence, we expect the direction of the effect of the yield curve slope on CDS spreads
to be unrestricted.

Table [V reports sample summary statistics. Mean CDS spreads and CDS spread returns across
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our full sample are 93.89 bps and -1%, respectively. Estimates for the banks’ CDS tail betas vary
between zero and 0.55 with the mean CDS tail beta being 0.14. Log returns on the banks’ stocks
in our sample exhibit the usual stylized facts. Similar to CDS tail beta, equity tail betas also vary
considerably around the mean of 0.33 with a minimum value of zero and a maximum of 0.96. Our
proxy for the change in a bank’s firm value is zero on average with values ranging from -79% to
230%. Liquidity of CDS contracts also varies considerably with the mean spread between CDS
bid and ask quotes being 9.56 bps. Finally, the estimates for the four variants of MES as our proxy
for a bank’s systemic relevance show that the banks in our sample are rather heterogeneous with
respect to their exposure to system-wide tail events. The 5th percentile of the MES estimates is at
a low 1% (0% for the static MES), yet higher percentiles range up to 5% and 14%. Our sample
of European banks thus seems to include both systemically irrelevant institutions as well as banks
with a high exposure to systemic crashes.

Table TAII in the Internet Appendix divides our sample of banks into the top and bottom
quartiles of CDS spreads. The difference in the mean CDS spread between the two groups is by
construction extremely large. Banks in the top CDS spread quartile had a mean spread of 271.76
bps while in contrast, banks in the lower quartile had an average CDS spread of only 10.41 bps.
The difference in mean CDS spread returns is not significant between the two groups. However,
a simple comparison of mean CDS tail betas in the top and bottom spread quartiles hints at a
systematic positive correlation between CDS spreads and CDS tail betas. Banks in the upper CDS
spread quartile possess a mean CDS tail beta that is more than twice as high (0.18) than in the

lower quartile (0.07).%2

22Further evidence for the explanatory power of CDS tail betas is presented in Figure in the Internet Appendix
in which we show scatter plots of banks’ CDS spreads against the bank stocks” CDS tail betas, CDS bid-ask spreads,
and changes in firm value, respectively. The linear trend lines in these simple scatter plots underline our conjecture
that CDS tail beta, along with the determinants from Merton’s model, could be an economically significant driver of
default risk.
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3.2 Regression results

To analyze the suspected correlation between CDS spreads and CDS tail betas in more detail,
and to account for correlations between our explanatory variables, we next turn to univariate and

multiple regressions of CDS spreads.

3.21 Univariateregressions

We begin our regression analysis by first examining the isolated explanatory power of the main
independent and control variables excluding our new CDS tail beta factor. Panel A of Table V1]
reports the estimated coefficients of these univariate models. All variables are implemented in
levels and the univariate regression results are obtained via pooled ordinary least squares (OLS)
estimations. The results from these univariate regressions are for the most part in line with our
expectations. Most strikingly, however, the coefficient on the risk-free interest rate is negative and
large in magnitude. While the correlation between short term interest rates and CDS spreads could
possibly be driven by two forces working in the opposite direction, the results in column 2 suggest
that interest rates are more likely to reflect a tightened monetary policy stance than an increase
in the risk-neutral drift rate. Considering that our sample comprises banks only, the comparably
large coefficients on the risk-free interest rate and the yield curve slope may indeed reflect the high
sensitivity of banks to measures of monetary policy. Similar evidence emerges from looking at

Panel B of Table VT where the univariate models are estimated in first differences. Among others,

Collin-Dufresne et al/ (2001) and [Ericsson et al. (2009) point out that the dependent variable and

some regressors may be integrated. Except for the coefficient on Sope, all results from the first-
difference regressions remain statistically and economically significant and are also consistent with

the results obtained from the regressions in levels.

3.2.2 Istail risk priced in CDS contracts?

We now turn to a panel regression analysis of all 35 bank names and utilize both the cross-

sectional and the time series characteristics of our data set to analyze the correlation between CDS
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spreads and tail risk. Table VIl reports the results from our baseline bank fixed effect regres-
sions.?® The results presented in column 1 verify that, consistent with our expectations, firm value
and changes in implied volatility are significant drivers of CDS levels and enter the regression sig-
nificant at the 1% level, respectively. The effect of an increase in the interest rate is significant and
negative. In the second specification, we investigate the isolated effect of our variable of interest,
CDS tail beta, on CDS spreads. In column 2 we present evidence that CDS tail beta is indeed a
priced factor in CDS contracts. Sellers of credit protection are concerned about bank names that
are more likely to fail, given an extreme market-wide increase in default probabilities. The esti-
mated coefficient is both economically and statistically highly significant. In the univariate case, a
one standard deviation higher CDS tail beta is associated with an increase in CDS spread levels by
almost 71 bps (5.904 x 0.12).

These results are confirmed by univariate sorts based on CDS tail beta. For each bank in the
sample, we first rank the time series of CDS spread observations into quintiles with respect to
CDS tail beta, and then compute the average CDS spread for each tail beta quintile. Table [TAITI]
in the Internet Appendix reports the results and shows that, for most banks, CDS spreads are
monotonically increasing in CDS tail beta. The last column contains the difference between high
and low tail beta quintile spreads and shows that spreads in high tail beta quintiles are, for the most
part, considerably higher than spreads in low tail beta quintiles. The average difference is equal to
140.05 bps and significantly different from zero at the 1% level.

In column 3 of Table VTl we turn to our baseline model. When additionally controlling for
the variables motivated by Merton’s model (column 1), we obtain similarly convincing results.
Although the coefficient on CDS tail beta decreases slightly, the correlation between tail risk and
CDS spreads is still economically and statistically highly significant. Now, a one standard deviation
higher CDS tail beta accounts for a 48 bps (4.030 x 0.12) increase in spread levels. Compared to
column 1, the adjusted R? increases by more than 6 percentage points after controlling for CDS

tail beta.

Z3Note that the Hausman test favors fixed over random effects.
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To eliminate as many confounding factors as possible, the specifications (4) to (7) include
several controls suggested in the previous section. In column 4, we test the robustness of the found
correlation between CDS tail beta and CDS spreads to the additional inclusions of changes in the
CDS contract’s liquidity. Our variable Liquidity enters regression (4) positively and significantly
at the 5% level with the coefficient on CDS tail beta remaining economically and statistically
significant.

Further controlling for the business climate, the GDP growth rate, and the yield curve slope,
however, we find that all three variables enter the respective regressions with negative coefficients.
More precisely, accounting for changes in the general business climate increases the adjusted R?,
although with the inclusion of business climate, the coefficients on the changes in firm value and
asset volatility are statistically insignificant. Given the reduction in the significance of both vari-
ables Firm value and Volatility, a potential concern here might be that the results are driven by a
certain degree of multicollinearity, i.e., high correlations between our proxy for business climate
and other explanatory variables. To address this concern, we compute variance inflation factors
(VIF) for all explanatory variables included in the regression. Given that the highest factor value
is 2.89 for Business climate, we believe that multicollinearity is not a serious concern throughout
our regression models. Column 6 shows that the coefficient on GDP growth is significant at the
1% level and large in magnitude. Controlling for the growth rate of the GDP increases the adjusted
R? up to 37%. Although the coefficient on CDS tail beta is slightly smaller (2.922) in magnitude
compared to the baseline model in column 3 (4.030), the correlation between tail risk and CDS
spreads remains highly significant. Finally, in the last column of Table [VTI, we report estimates
on all the included control variables and consider this specification to be our benchmark model.
The coefficient on the slope of the yield curve is negative but insignificant. Significance is also
reduced with respect to the control for the general business climate and all variables from Merton’s
model are significant at least at the 10% level. Most importantly, however, CDS tail beta is both
statistically and economically highly significant in this regression specification using the full set

of control variables. Overall, the regression results provide strong support for the hypothesis that

23



CDS investors are indeed crash averse and hence, demand a risk premium-type markup for bank

names with a large exposure to the market during extreme events.

3.2.3 Isthepricing of tail risk crisis-dependent?

The analyses we have conducted so far present strong empirical evidence that CDS tail beta
explains a significant part of the variation in CDS spread levels that is not captured by other previ-
ously identified determinants of CDS spreads. Next, we address the question whether this positive
correlation between CDS tail beta and CDS spreads is constant over time or whether it changes be-
tween economic regimes. To test these conjectures, we re-estimate our benchmark regression from
Table V11 separately for the periods before and during the recent financial crisis. We intuitively
expect the awareness of CDS investors of extreme market-wide distress to be far less pronounced
in the pre-crisis regime. The argument behind this assumption is straightforward. First, Figure
provides visual evidence that after the onset of the subprime crisis, market correlations as well as
extreme dependence in CDS spreads increased significantly. Second, the mid-2007 beginning of

the financial crisis coincided with a significant build-up of systemic risks in the global financial

sector (see |International Monetary Fund, April, 2010) and increased uncertainty among investors

concerning the financial health of global banks. As a result, we expect the sensitivity of sellers of
CDS protection to market-wide surges in CDS spreads to be higher after the onset of the crisis and
particularly pronounced after the failure of Lehman Brothers in September 2008.%4

To test the hypothesis that the perception of CDS tail risk varies throughout the sample period,
we divide our sample into two sub-samples. The first sub-sample covers the pre-crisis period from
January 2004 to June 2007. We consider the crisis to have started in the third quarter of 2007
and to have lasted until September 2010. Results on the regressions for the two sub-samples are
presented in Table (/111

A comparison of the two estimated regressions presented in Table (V11 clearly supports the

hypothesis that CDS tail risk is only a relevant factor during the crisis period. The estimated coef-

24This view is underlined, e.g., by the lInternational Monetary Fund (April, 2009) which argued that the events at

Lehman Brothers and AlG increased system-wide conditional risk.
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ficient on CDS tail beta in column 2 is positive and highly statistically significant at the 1% level.
Compared to the full-sample benchmark model, the coefficient on our main explanatory variable
increases by approximately 1.5 percentage points when using the crisis subsample for estimating
the model. After mid-2007, a 1% point increase in CDS tail beta indicates a 4.4 bps increase in
CDS spreads. The strong correlation between CDS tail beta and CDS premia lends strong support
to the hypothesis that market participants adjust their individual risk assessment with respect to
system-wide risk contemporaneously. Note that the significance of all other coefficients remains
unchanged and in line with theory. Note also that the overall explanatory power increases sharply
when turning from pre-crisis to crisis periods as evidenced by the sharp increase in the adjusted
R2-squared. Perhaps not surprisingly, when turning to the pre-crisis period the empirical results
show that CDS tail beta is only an economically and statistically significant driver of bank-specific
spread levels in times of financial turmoils. Although positive, the coefficient on CDS tail beta is
small in magnitude and statistically insignificant. Interestingly, almost all other explanatory vari-
ables lose their statistical significance as well. This finding may be due to the fact that before the
start of the crisis, the within-variation of almost all variables is extremely low over time and cross-
sectionally. Surprisingly but consistent with theory, the short-term interest rate is a priced factor
and has significant explanatory power at the 1% level. Again, this may indicate that the stance of

monetary policy was a significant driver of bank risk between 2004 and mid-2007.

3.24 AreCDSspreadslinearly increasing in CDStail beta?

So far, our regression models imply that CDS spreads are linearly increasing in a respective
bank’s CDS tail beta. Some commentators of the recent financial crisis, however, have argued
that some banks became too important or too big to fail prior to the crisis. If true, sellers of
credit protection could have relied on government assistance for these banks in times of financial
distress. Consequently, CDS investors insuring debt of banks that qualify for implicit or explicit

government assistance could be less exposed to market crash risk, since the probability of default
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and the associated cost of distress are lower for these banks.?® [Schweikhard and Tsesmelidakis

2011) show that during the recent financial crisis, market participants indeed may have treated

equity and debt differently in the presence of implicit or explicit government guarantees, with
creditors being favoured over equity investors.

Therefore, we verify the hypothesis that CDS investors, similar to the assessment of systemi-
cally important banks, may assign individual risk weights according to the exposure of an individ-
ual bank to the market during extreme events. Put differently, given that the system as a whole is in
distress, banks with high market exposures, i.e., high values for CDStail beta, are more likely to
default but could, on the other hand, also be considered to be more relevant than others. As a result,
more systemically relevant banks could be assigned a higher likelihood of receiving government
assistance. This translates to our measure of tail risk as follows. We have reason to believe that
the relation between CDS tail beta and CDS spreads is not linear, but rather inversely u-shaped.
This functional relation would then imply lower tail risk premiums as government assistance for
systemically important banks is implicitly priced in CDS premia.

In order to formally test this hypothesis, we include the squared term of CDStail beta in our
benchmark regression of CDS spreads and thus allow for non-linear dependence between the two
variables. Column 1 of Table [X] reports estimates for the extended non-linear regression model.
When estimated together with its squared counterpart, the coefficient on CDS tail beta is sig-
nificant at the 1% level and higher as compared to our benchmark specification. The estimated
coefficient on the squared value, however, is negative and also significant at the 1% level. Thus,
the results support our hypothesis that a non-linear model provides a better fit to our data than
the linear model. Note that all remaining controls keep the expected sign on their coefficients.
Consistent with our conjecture, we find evidence that under the assumption of implicit and explicit
government guarantees, CDS investors indeed differentiate with respect to the individual bank’s

exposure to the market, given the market returns are in the extreme right tail of the distribution.

25In support of this view, [Gandhi and Lustig (forthcoming) find bank stocks to exhibit a size effect due to the

pricing of government guarantees for large, systemically relevant banks. They conjecture and empirically confirm that
stocks of large banks have lower risk-adjusted returns than small ones.
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Accordingly, sellers of credit protection demand lower compensation for bearing the risk of ex-
treme market downturns, possibly relying on government assistance during times of market-wide

financial distress.

3.25 AreCDS spreads sensitiveto crashesin equity markets?

Although our findings are consistent with risk aversion of CDS investors, we now consider an
alternative source of joint crash risk. It could be argued that sellers of credit protection do not price
an individual bank’s exposure with respect to the CDS market, but rather consider the exposure
of the bank to stock market crashes as a determinant of default risk.?® Hence, in the following
we repeat our benchmark regression this time using the lower tail dependence (LTD) coefficient
estimated between the respective equity return series and the return on the stock price index.

We define our variable Equity tail beta as the equity LTD coefficient and simply calculate the

stock price index as the daily equally-weighted average stock return over all 35 banks.?” Equity

tail beta is estimated using the DAC model of [Christoffersen et al) (2012). To generate white-noise

residuals, we first apply the NGARCH model of [Engle and Ng (1993) to the univariate return

series assuming that the return innovations follow a skewed ¢ distribution (see IHansen, [1994).2 In

a second step, we then estimate bivariate DAC models on the basis of the NGARCH filtered equity
return series with each estimation employing the filtered returns on the corresponding bank’s equity
prices and the price index. Finally, equity tail betas are estimated from the DAC models using
numerical integration.

As one would expect, for the banks included in our sample the results in column 2 of Table
Xl show that a 1% point increase in a banks’ equity tail beta is associated with a 4 bps increase
in CDS spread levels. The results from column 2 have important implications. Sellers of credit

protection do not only price CDS implied tail risk but also the extent to which a bank’s stock is

%This argument is in spirit of the theoretical model of |Acharya et all (2010). They associate systemic risk with an
undercapitalization of a bank when the market as a whole is undercapitalized.

21Ruenzi and Weigert (2013) refer to stocks with high values of LTD as crash-sensitive stocks.

28More precisely, to account for serial correlation in the return series, we apply the NGARCH model to the residuals
from autoregressive models of order two, see |Christoffersen et alJ (];OQ) for details.
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exposed to the market during times of distress. Summarizing our results so far, we find that both,
CDS- and equity-implied tail risk are priced in CDS contracts. For investors relying on implicit
or explicit government assistance, the effect of CDS tail beta on spread levels is diminishing when
banks’ market exposures increase.

Further, we investigate whether we can also identify diminishing risk premia according to
banks’ equity tail beta. The discussion above suggests that no such effect should be identifiable for
equity tail beta since creditors are favoured over equity investors in case of a bank receiving gov-
ernment assistance. Indeed, the results in column 3 of Table [X]show that, when the squared terms
of the equity tail beta are estimated together with their non-squared counterparts, the coefficient
on the squared values is insignificant. The results show that investors price stock price sensitivities
into CDS premia but, in contrast to CDS markets, do not implicitly rely on government support.

Finally, we investigate the robustness of CDS tail beta to the inclusion of equity tail beta and
estimate panel regressions with CDS and equity tail beta as well as our other controls as explana-
tory variables. The results are reported in column 4 of Table [X] and show that the coefficient on
CDS tail beta remains highly statistically and economically significant when estimated together
with the controls and equity tail beta. The coefficient on the latter is also statistically significant
and implies a considerable economic effect of similar magnitude as above. Hence, sellers of CDS

protection price extreme tail risk in both CDS markets and in equity markets.

3.3 Robustness Checks

In addition to the regressions discussed in Section [3.2] we investigate the robustness of our
results to the inclusion of further control variables in this section. More precisely, we test the
hypothesis that CDS tail beta complements other measures of a bank’s upside, systematic and

systemic risk.
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3.3.1 Istheimpact of CDStail beta driven by upsiderisk aversion?

In the spirit of Ruenzi and Weigert (2013) we distinguish investors’ crash aversion as measured

by CDS tail beta from general upside risk aversion expressed in terms of traditional correlation-
based risk measures. Since the strong relation between CDS spreads and CDS tail beta documented
in the preceding sections could be driven by differences in linear risk measures like, e.g., CAPM-
type beta, upside beta, and coskewness, in the following robustness check we separate the impact
of CDS tail beta on CDS spreads from the impact of linear risk measures. To this purpose, we
perform double-sorts and panel regressions on the basis of the above mentioned correlation-based
risk measures, and show that CDS tail beta is robust with respect to linear effects in CDS spread

comovements.

The correlation-based risk measures include regular beta, upside beta as proposed by

2006), as well as coskewness (see [Kraus and Litzenberger, 11976; Harvey and Siddique, 2000),

and are computed on the basis of daily CDS spread log returns via rolling windows of 100 data
points. Upside beta is defined to be regular beta conditional on the CDS spread index return being
above its median. Since focusing upside beta more on the right tail could potentially account
for effects similar to CDS tail beta, we consider alternative definitions and additionally calculate
upside betas as betas conditional on the CDS spread index return being above its 80%, 90%, and
95% quantile.?®

The time evolution of beta, upside betas, and coskewness is depicted in the panels of Figure
[l The panels on the left-hand side show the time evolution of the linear risk measures, averaged
across all banks in the sample, whereas the panels on the right-hand side compare this time evo-
lution to that of CDS tail betas in terms of risk measure and tail beta indices. As can be seen
from the right-hand side panels, average beta and upside betas range from -5 to 5 and exhibit a
rather stationary behaviour during the sample period. In contrast to, e.g., copula correlations and

CDS tail beta, there are neither observable patterns in the time evolution like upward or downward

29Note that this approach is in line with [Ruenzi and Weigert (2013) who, in contrast, calculate different specifica-
tions of downside beta on the basis of quantiles in the left tail of the market return distribution.
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trends nor significant peaks corresponding to key events during the sample period. Interestingly,
the range between the 10th and the 90th percentile tightens sharply around the beginning of the
financial crisis, whereas the averages remain on normal levels outside the range. Average coskew-
ness, on the other hand, varies between -50 to 50, whereas the range between the 10th and 90th
percentile evolves tightly around the average.

In a first step, we conduct double-sorts based on CDS tail beta and the linear risk measures,
respectively, in which we analyze the impact of CDS tail beta on CDS spreads after controlling for
one of the alternative risk measures at a time. More precisely, we first rank the time series of CDS
spread observations into quintiles with respect to beta, upside betas, and coskewness, respectively,
for each bank in the sample. Then, within each of these quintiles, we sort the corresponding CDS
spreads by CDS tail beta. Finally, we calculate the mean CDS spread for each quintile and average
across all banks in the sample.

The results of the double-sorts are reported in Table [XI Panel A shows average daily spreads
double-sorted on CDS tail beta and regular beta. In all CDS tail beta quintiles, the CDS spreads
associated with high beta risk are considerably higher than the spreads associated with low beta
risk, with the difference between high and low beta CDS spreads being equal to 79.53 bps on av-
erage. More importantly, however, in all beta quintiles, we document a nearly monotonic increase
in CDS spreads from low to high CDS tail beta quintiles, where the difference between high and
low tail beta quintile spreads is economically large and ranges from 26.25 to 135.73 bps. Except
for the first beta quintile, these differences are statistically significant at the 1% and 5% level as
well. Consequently, the risk associated with regular beta is different from the risk associated with
CDS tail beta and cannot account for the premium sellers of credit protection receive for engaging
in CDS contracts on bank names with high CDS tail betas.

Panels B to F of Table [X] report results for the double-sorts based on various specifications
of upside beta. As we can see from the panels, the results are qualitatively similar to those for
regular beta reported in Panel A. In most CDS tail beta quintiles, CDS spreads associated with

lower upside beta tend to be lower than CDS spreads associated with high upside beta, indicating

30



that general upside risk aversion may be reflected in CDS spreads. Turning to the impact of CDS
tail beta, we find that, in all upside beta quintiles, there is a strong positive relatio between CDS
tail beta quintile and CDS spreads, and the difference between high and low tail beta quintile
spreads is of similar magnitude and statistically significant at the 1% and 5% level. Hence, the risk
associated with upside beta has to be distinguished from the risk associated with CDS tail beta and
has a different impact on CDS spreads, irrespective of the particular definition of upside beta.

Finally, we investigate the impact of CDS tail on CDS spreads after explicitly controlling for
the impact of the risk associated with coskewness. The results are reported in Panel G and indicate
that coskewness risk cannot account for the increased CDS spreads associated with high CDS tail
beta. In all coskewness quintiles, the CDS spreads of low tail beta quintiles are significantly lower
than the spreads of high tail beta quintiles. The differences between high and low tail beta quintile
spreads range from 88.57 to 163.84 bps (116.60 bps on average) and are statistically significant at
the 1% level.

In summary, the double-sorts provide strong evidence that the impact of CDS tail beta on
CDS spreads is different from the impact of alternative linear risk measures, i.e., the significant
positive relation between tail beta and spreads cannot be explained by traditional, correlation-
based measures of risk. Consequently, investors’ crash aversion needs to be distinguished from
general upside risk aversion. In double-sorts, however, we can only control for one CDS spread
characteristic at a time. Therefore, in the following we will include the alternative risk measures in
multivariate panel regressions and examine their impact on CDS spreads when considering CDS
tail beta and the control variables introduced at the beginning of the section.

The results of the panel regressions are reported in Table [XI and confirm the above findings
that CDS tail beta is robust to linear comovements and moderately extreme events. In regression
(1), we introduce regular beta as a further explanatory variable, whereas in regressions (2) to
(5) we respectively include the different specifications of upside beta. Finally, in regression (6),
we consider coskewness in addition to CDS tail beta and the control variables. Expectedly, the

coefficient on CDS coskewness enters this regression significantly at the 1% level with a negative
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sign. As we can see from the results on the different regressions, all coefficients of the alternative
risk measures are statistically insignificant when estimated together with CDS tail beta and the
control variables. Further, compared to the outcomes of our benchmark regression (7) in Table /1],
the coefficients on CDS tail beta and the control variables slightly vary in magnitude but remain
constant with respect to their sign and significance. Regarding CDS tail beta, the coefficients in the
alternative regressions (1) to (5) vary from 2.919 (specification (3)) to 3.406 (specification (1)) and
are 3.060 on average, whereas the CDS tail beta coefficient in benchmark regression (7) is equal
to 2.929. The coefficients remain statistically significant at the 1% level, and the economic effect
is of similar magnitude: in regressions (1) to (5) a one standard deviation higher CDS tail beta
increases CDS spread levels by 36.72 bps on average (3.060 x 0.12). According to benchmark
regression (7), on the other hand, the effect is a 35.15 higher CDS spread (2.929 x 0.12) for a one
standard deviation higher CDS tail beta. The results on the coefficients of the control variables
merely differ slightly across the different regression specifications as well.

Overall, including the alternative linear risk measures in multivariate panel regressions shows
that the linear impact of correlation-based risk measures on CDS spreads is not significant. Hence,
the impact of CDS tail beta on CDS spreads is different from the impact of linear risk measures
and cannot be explained by linear comovement in spreads.

Interestingly, the results on our regression analysis are in a slight contrast to the results on the
double-sorts at first glance. As documented above, in all CDS tail beta quintiles, low beta and
upside beta quintile spreads tend to be lower than high beta and upside beta quintile spreads, indi-
cating a positive relation between linear risk measures and CDS spreads after controlling for tail
risk. The regression analysis, on the contrary, comes to the conclusion that there is no significant
impact of linear risk measures on CDS spreads. At this point, we need to consider that our panel
regressions only capture linear impacts of the explanatory variables on the dependent variable.
Double-sorts, however, allow us to control for any potential non-linear impact. Therefore, the re-
sults of our double-sorts and regressions are not contradictory, but indicate that, after controlling

for tail risk, the impact of correlation-based risk measures on CDS spreads is, if at all, of non-linear

32



nature.

3.3.2 Istheimpact of CDStail beta driven by systemic risk exposure?

As stated by |Acharya et al. (2010), a bank’s systemic relevance for the financial sector is re-

flected in CDS spreads during the recent financial crisis. More precisely, they show that a bank’s
Marginal Expected Shortfall (defined as the conditional mean equity return of the bank when the
market is plummeting) is a significant determinant of financial institutions’ crisis spreads. Con-
sequently, CDS tail beta could simply be another proxy for a bank’s exposure to systemic risk
and its impact on CDS spreads could be driven by differences in systemic risk measures like, e.g.,
Marginal Expected Shortfall. Hence, in the following, we distinguish crash aversion from systemic
risk exposure and examine, whether the impact of the former remains significant after controlling
for the impact of the latter. As above, we first conduct double-sorts based on CDS tail beta and
MES, and then run multivariate panel regressions including MES as a further explanatory variable.

MES is estimated on the basis of equity returns from alternative models including the static

MES according to/Acharya et al. (2010) as well as various dynamic model specifications proposed

inBrownlees and Engle (2012). Static MES is computed non-parametrically from rolling windows

of 100 data points, and the dynamic MES models include the VCT model, the Dynamic Condi-

tional Beta model as well as the Dynmaic Conditional Copula model that is based on |Patton’s

2006) dynmaic t-copula.®®

Figure[Bldepicts the time evolution of average MES for each of the above models and compares
it to the time evlolution of CDS tail beta. Panel (a) combines the estimates of the different MES
models and shows that the time series profile of the estimates is rather similar across the models.
The general pattern in the time evolution is the same for all models: starting with fairly moderate
levels of, on average, 1% to 4% in the pre-crisis period, MES experienced sharp increases at the
onset of the financial crisis. From the beginning in mid-2007 up to 2009, MES increased from 2%

to more than 8%, indicating a significant surge in the average exposure of banks to systemic tail

Further details and a formal description of the different MES models can be found in |Acharya et al/ (2010) and

Brownlees and Engle (2012).
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events. The dramatic increase was followed by a strong downward trend, with MES decreasing
significantly to pre-crisis levels. In the first quarter of 2010, however, dynamic MES peaked again
and temporarily returned to levels of more than 7%, whereas static MES was characterized by a
rather constant evolution. As we can see from Panels (b) to (e), both CDS tail beta and MES were
characterized by a sharp increase as of the onset of the crisis in 2007. In contrast to MES, though,
CDS tail beta experienced a strong upward trend rather than a temporary surge.

Table [XTI reports the results on double-sorts based on CDS tail beta and the different MES
specifications. As can be seen from the panels of the table, the results are qualitatively and quan-
titatively rather similar: in all CDS tail beta quintiles, low MES quintile spreads tend to be lower
than high MES quintile spreads, irrespective of the specific MES model. Hence, there is a strong
positive relation between MES and CDS spreads even after controlling for tail risk, indicating that
systemic risk may be a priced factor. More importantly for our purposes, turning to CDS tail beta,
we document a nearly monotonic increase in CDS spreads from low to high CDS tail beta quintiles
for most MES quintiles, where the difference between high and low CDS tail beta quintile spreads
is economically large and statistically significant for the most part. Consequently, systemic risk is
different from the risk associated with CDS tail beta and cannot explain the significantly positive
correlation between CDS tail beta and CDS spreads. Since, in double-sorts, we can only control
for one variable at a time, in the following we include MES in multivariate panel regressions.

The regression results are reported in specification (7) of Table X1l As the time series profile of

MES and the regression outcomes are rather similar across the different MES model specifications,

we merely show results for the static MES as initially proposed by |Acharya et al! (2010). Column

(7) of TableXTllists the estimated coefficients of the panel regression including CDS tail beta, static

MES, and control variables as explanatory variables. Similar to |Acharya et al. (2010), we find

evidence that MES is a significant driver of CDS spreads, with the corresponding coefficient being
highly significant at the 1% level and implying a large economic effect: a one standard deviation
higher MES is associated with a 33 bps (11.000 x 0.03) higher CDS spread. Nevertheless, the

coefficient of CDS tail beta is still significant at the 1% level, although it declines slightly in value.
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The economic effect remains large as well, with a one standard deviation higher CDS tail beta
implying a 22 bps (1.848 x 0.12) higher CDS spread.

Overall, including MES in multivariate panel regressions confirms our findings from the
double-sorts and shows that the impact of CDS tail beta on CDS spreads is different from the
impact of MES. Hence, crash aversion has to be distinguished from systemic risk, and CDS tail

beta is indeed a distinct factor priced in CDS spreads.

4 Conclusion

We find that during the recent financial crisis, credit default swap spreads of European banks
included a premium for the bank’s CDS tail beta as measured by the upper tail dependence between
the returns on default swaps written on individual bank names and an equally-weighted index of
bank CDS. Investors selling protection against the default of a bank receive a premium if the
swap’s reference entity possesses a higher sensitivity to sector-wide increases in average CDS
spreads. This effect is economically large and its direction is in line with our economic intuition.
Banks in the upper quintile of CDS tail beta have spreads that are on average 140 basis points
higher than those of banks in the lower CDS tail beta quintile. The high CDS spreads of banks
possessing high CDS tail betas can neither be explained by traditional factors from Merton’s model
nor by alternative measures of systematic, tail or systemic risk. Consequently, our study contributes
significantly to the open question on which factors can explain the large fraction of variation in
spread differences that is not captured by traditional determinants of credit default. However, the
explanatory power of CDS tail beta is restricted to our sub-sample of bank-quarters during the
financial crisis. Thus, investors appear to be sensitive to crash risk when already facing a sector-
wide crisis.

Our results confirm and extend previous findings from the empirical literature on the determi-

nants of CDS spreads. While we confirm the results of [Ericsson et all (2009) on the explanatory

power of the Merton factors, our new CDS tail beta factor has high explanatory power increasing
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the adjusted R? in our regressions of CDS spreads from 24% to 32%. Furthermore, our results are

also consistent with the findings of |Acharya et al. (2010) that CDS spreads of banks are driven by

measures of systemic risk exposure. However, our new measure of CDS tail beta complements

rather than substitutes other measures of moderate or extreme tail risk. Finally, extending the re-

sults of Ruenzi and Weigert (2013), we also document a strong positive correlation between equity

tail beta and CDS spreads.

This study focuses solely on the pricing of CDS tail beta in the CDS spreads of banks. A
natural extension of our study would include an analysis of non-financial firms before and during
the financial crisis. Theory predicts that the correlation between CDS tail risk and CDS spreads
is particularly strong for banks as they are more vulnerable to runs of creditors and depositors
during financial crises. Yet, non-financial firms should just the same be sensitive to turmoil in the
overall CDS market and we would expect CDS tail beta to be priced in non-financial firms” CDS
spreads as well. Furthermore, a natural extension of our initial question is whether CDS premia
are also correlated with the propensity of the CDS premia to surge together with the CDS spread

of sovereign bonds. We leave this question for future work.
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Appendix

Appendix I: Sample banks.

The appendix lists all sample banks. Shown are the company hame as it appears in the Worldscope data item WC06001.
Ticker symbols are taken from Bloomberg.

Bank Ticker symbol
Allied Irish Banks AIBSF
Alpha Bank ALPHA
Banca Italease BILMI
Banca Monte dei Paschi di Siena BMDPF
Banca Popolare di Milano BPMLF
Banca Popolare Italiana BPI
Banco Bilbao Vizcaya Argentaria BBVA
Banco Comercial Portugués BPCGF
Banco Espirito Santo BKESF
Banco Pastor BCPSF
Banco Popular Espanol BPESF
Banco Portugués de Investimento BBPI
Banco Sabadell SAB
Banco Santander Central Hispano SAN
Bank of Ireland IRLBF
Bankinter BKT
BNP Paribas BNP
Commerzbank CBK
Crédit Agricole ACA
Deutsche Bank DBK
Dexia Group DEXB
EFG Eurobank Ergasias EFG
Erste Group Bank EBKOF
Fortis FSVVF
IKB Deutsche Industriebank IKB
ING Bank ING
Intesa Sanpaolo IITSF
Irish Life and Permanent ILB
KBC Group KBC
Mediobanca MDIBF
Natixis KN
Société Générale GLE
UBI Banca UBI
Unibail Holding UNBLF
Unicredito Italiano CRIH
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Appendix II: Variable definitions and data sources

The appendix presents definitions as well as data sources for all dependent and independent variables that are used in
the empirical study. The bank CDS and equity data are taken from the Thomson Reuters Datastream database. The
country control variables are taken from Datastreamand from the OECD statistics Database.

Variable name Definition Data source

CDS spreads Daily end-of-quarter CDS spreads, denoted in basis points and obtained from Credit Mar- CMA, Datastream.
ket Analysis (CMA).

\olatility End-of-quarter VSTOXX implied volatility index values. Datastream.

Risk-free interest rate

CDS tail beta

Firm value

Liquidity

Business climate

GDP growth

Slope

Beta

Upside beta (median,

80%, 90%, 95%)

Coskewness

MES

Equity tail beta

1-year Euro interest rate swap ISDA mid-market rate, denoted in per cent.

End-of-Quarter upper tail dependence (UTD) coefficients estimated between the banks’
CDS spread return series and the returns on the spread index. UTD coefficients
are computed from the Dynamic Asymmetric Copula (DAC) model as proposed in

(2012). UTD time series are filtered using a simple moving average
including a lag of the past 20 trading days.

Quarterly arithmetic bank stock returns denoted in per cent.

Daily CDS bid-ask spread. The proxy for liquidity is calculated as the difference between
daily CDS ask and bid quotes.

End-of-quarter values of the S&P 500 index.
Country-level GDP growth rates in comparison to previous quarter, denoted in per cent.
A country’s respective 10-year minus 2-year government bond benchmark yields.

Realized regular beta calculated on the basis of daily CDS spread log returns from rolling

windows of 100 data points according to the definition 8 := %

Realized upside beta defined as regular beta conditional on the CDS index return being
above its median (50% quantile) and its 80%, 90%, and 95% quantiles, where the compu-
tation is based on daily CDS spread log returns and implemented via rolling windows of
100 data points. With rfm denoting the respective return quantile, the formal definition
COV(R; ¢, Rm,t|Rm ¢ >R3, )

Var (R ¢ | Rom e > R, )

is given by 8,0, =

Realized coskewness based on daily CDS spread log returns and computed from rolling
E[(R; =i t) (Rt —pm,¢)>]
\/var(Ri.t)var(Rm,,t)3/2

windows of 100 data points according to Coskewness=

Marginal Expected Shortfall calculated from alternative models including the static MES
according tolAcharya et all (2010) as well as various dynamic model specifications pro-
posed in[Brownlees and Englé ). Static MES is computed non-parametrically from
rolling windows of 100 data points, and the dynamic MES models include the VCT
model, the Dynamic Conditional Beta model as well as the Dynamic Conditional Copula
model that is based on[Pattor}’s (2006) dynamic ¢-copula (seelBrownlees and Englé, 2012,
for details).

End-of-Quarter lower tail dependence (LTD) coefficients estimated between the banks’
equity return series and the returns on the stock price index. LTD coefficients
are computed from the Dynamic Asymmetric Copula (DAC) model as proposed in

(2012). LTD time series are filtered using a simple moving average
including a lag of the past 20 trading days.

ISDA, Datastream.

Datastream, own calc.

Datastream, own calc.

Datastream, CMA, own
calc.

Datastream, own calc.
OECD statistics Database.
Datastream.

Datastream, own calc.

Datastream, own calc.

Datastream, own calc.

Datastream, own calc.

Datastream, own calc.
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Figure 1: Time evolution of CDS spreads, CDS spread returns and equity returns.

The panels of this figure show, respectively, the time evolution of CDS spreads, CDS spread (log) returns and equity
(log) returns over the sample period from January 2004 to October 2010. In each of the panels, the black line refers to
the average across all 35 sample banks, whereas the shaded area represents the span between maximum and minimum
spread/return values and shows the range of values that is covered for each day of the sample. To facilitate visual
inspection, we smooth the shaded area by applying moving averages to the maximum and minimum spread/return
series. Equity returns and CDS spread log returns are measured in %, CDS spreads are denominated in basis points

(bps).
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Figure 2: CDS spreads versus CDS spread returns and equity returns.

The panels of this figure compare the time evolution of CDS spreads to the time evolution of CDS spread log returns
and equity log returns, respectively, over the sample period from January 2004 to October 2010. The black line refers
to the average CDS spread across all 35 banks and is scaled according to the right-hand y-axis, whereas the gray lines
show the average equity/CDS spread log returns and are scaled according to the y-axis on the left-hand side. Equity
returns and CDS spread returns are measured in %, CDS spreads are denominated in basis points (bps).
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Figure 3: Copula correlations and CDS tail betas.

The panels of this figure show the time evolution of average daily/quarterly dynamic copula correlations and CDS
tail betas (denominated in %). The sample period contains daily data from January 2004 to October 2010 and the
average is taken across all 35 sample banks. The daily panels show the average daily dynamic (solid line) and constant
(dashed line) copula correlations, the average daily CDS tail betas (solid line) as well as the minimum/maximum
range for correlations and tail betas, smoothed by a moving average (gray area). The quarterly panels show the
average quarterly copula correlations and tail betas, where each quarter in the sample period is represented by a bar.
(Pre-)crisis quarters are colored in (light) gray. Copula correlations and CDS tail betas are estimated from the Dynamic
Asymmetric Copula (DAC) model, where the tail betas are approximated by numerical integration using & = 0.001

(see [Christoffersen et all, 2012, for details).
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Figure 4: Alternative risk measures and CDS tail beta.

The panels of the figure depict the time evolution of average realized alternative risk measures and compare it to the
time evolution of average realized CDS tail beta. The alternative risk measures considered in our study are regular
beta, different specifications of upside beta as well as coskewness. More precisely, upside betas are calculated as
betas conditional on the CDS index return being above its median and its 80%, 90% and 95% quantile. The realized
alternative risk measures are computed from rolling windows of 100 data points using the definitions listed in Appendix
[ where the sample period contains daily data from January 2004 to October 2010 and the average is taken across
all banks in the sample. The panels on the left-hand side show the time evolution of average realized alternative risk
measures (black lines) as well as the range between their 10th and 90th percentiles (shaded areas). The right-hand
side panels compare this time evolution to that of average realized CDS tail betas in terms of risk measure and tail
beta indices calculated by expressing each observation in a specific time series as a percentage of the first observation
in that time series. The black lines refer to the time series of the corresponding risk measure index, where the light-
gray shaded areas refer to upside deviations from the tail beta index, and the dark-gray shaded areas depict downside
deviations. CDS tail betas are simulated from the DAC model, where the tail betas are approximated by numerical

integration using ¢ = 0.001 (see Christoffersen et al!, [2012, for details).
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Figure 5: MES models and CDS tail beta.

The panels of the figure show the time evolution of average Marginal Expected Shortfall (MES) and compare it to the
time evolution of average CDS tail beta. Average MES is calculated from alternative models including the static MES
according to Mm.&h (2010) as well as various dynamic model specifications proposed in |[Brownlees and Engle
. Static MES is computed non-parametrically from rolling windows of 100 data points, and the dynamic MES
models include the VCT model, the Dynamic Conditional Beta model as well as the Dynamic Conditional Copula
model that is based on [Pattori’s (2006) dynamic ¢-copula (see [Brownlees and Engle, 2012, for details). The sample
period contains daily data from January 2004 to October 2010 and the average is taken across all banks in the sample.
The first panel depicts the time evolution of the different MES specifications, whereas the following panels compare
this time evolution to that of CDS tail beta, with the light-gray shaded areas showing the MES range between the
10th and 90th percentile and with the dark-gray coloured lines referring to CDS tail beta. CDS tail betas are sim-
ulated from the DAC model, where the tail betas are approximated by numerical integration using & = 0.001 (see

(Christoffersen et al., 2012, for details).
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Figure 8: MES models and CDS tail beta (continued).
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Table VIII: Crisis vs. pre-crisis period

The table reports results from a sub-sample analysis where we regress quarterly CDS spreads on CDS tail beta and
on further control variables. The proxys for volatility, liquidity, business climate and slope are included in first dif-
ferences. Standard errors corrected for autocorrelation and heteroskedasticity are reported in parentheses. Column
(1) repeats our benchmark regression fom Tabel [V1l for the pre-crisis period lasting from Q1-2004 to Q2-2007. The
commencement of the crisis is fixed to Q3 2007. Column two reports estimation results from the crsisi period, i.e.
Q3-2007 to Q3-2010. All variables and data sources are defined in Appendix [l ***,** * denote coefficients that are
significant at 1%, 5% and 10% level, respectively.

Pre-crisis Crisis
Firm value -0.025 -0.152
(0.024) (0.166)
Interest rate -1.827***  -25.839***
(0.513) (4.000)
\olatility -0.060 2.189
(0.131) (1.550)
CDS tail beta 0.371 4.433***
(0.245) (1.004)
Liquidity 0.484 1.606***
(0.312) (0.496)
Business climate 0.000 -0.011
(0.004) (0.128)
GDP growth 0.411 -49.719%**
(0.350) (16.821)
Slope 0.177 -32.117
(0.411) (21.775)
Constant 18.811***  137.958***

(2.581) (22.662)

Observations 413 453
Adj. R? 0.156 0.305
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Table 1X: Testing for the functional form of the relation between CDS spreads and CDS tail beta

The table reports results from a bank fixed effects regression of quarterly CDS spreads on CDS tail beta and further
control variables. The proxys for volatility, liquidity, business climate and slope are included in first differences.
Standard errors corrected for autocorrelation and heteroskedasticity are reported in parentheses. Column (1) reports
results form our benchmark regression, this time including the squared term of CDStail beta. In column (2) we assess
the isolated explanatory power of the coefficient on Equity tail beta. Finally, Column (3) shows results results when
including Equity tail beta as well as its squared term. All variables and data sources are defined in Appendix [
*xk ** * denote coefficients that are significant at 1%, 5% and 10% level, respectively.

) 2 ©)) 4)

Firm value -0.343* -0.307* -0.300* -0.303*

(0.179) (0.169) (0.168) (0.169)
Interest rate -25.116***  -32.620*** -32.581*** -28.228***

(4.068) (4.296) (4.357) (4.234)
\olatility 2.308* 1.192 1.228 1.367

(1.286) (1.311) (1.305) (1.278)
CDS tail beta 7.956%** 2.065***

(1.933) (0.617)
(CDS tail beta)? -11.165***

(3.463)
Equity tail beta 4,155*** 6.053*** 3.015***

(0.760) (2.052) (0.701)
(Equity tail beta)? -0.024
(0.019)

Liquidity 1.522%** 1.736*** 1.733*** 1.675%**

(0.500) (0.496) (0.493) (0.500)
Business climate -0.032 -0.090 -0.091 -0.056

(0.099) (0.100) (0.100) (0.098)
GDP growth -42.001***  -47533***  -47.464*** -45.005***

(12.196) (11.262) (11.258) (11.838)
Slope -12.969 -21.169 -21.111 -19.189

(19.528) (19.778) (19.705) (20.096)
Constant 102.294***  59.817** 32.877 55.700%

(20511)  (27.627)  (43.898)  (28.557)

Observations 866 866 866 866
Adj. R? 0.387 0.377 0.378 0.390
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Table X: Dependent portfolio sorts: CDS tail beta and alternative risk measures.

This table reports average daily CDS spreads double-sorted on CDS tail beta and realized regular beta (Panel A),
realized upside beta (median, 80%, 90% and 95%, Panels B-F), and realized coskewness (Panel G). In a first step, we
rank the time series of CDS spread observations into quintiles (1-5) with respect to beta, upside beta, and coskewness,
respectively, for each bank in the sample. Then, within each of these quintiles, we sort the corresponding CDS
spreads by CDS tail beta resulting in a total of 875 quintiles. In the last step, we calculate the mean CDS spread
for each quintile and finally average across all banks in the sample. The last row reports the difference between the
average CDS spreads of the fifth and the first tail beta quintile for each beta, upside beta, and coskewness quintile with
corresponding significance levels, where ¢-statistics are in parantheses and ***, **, and * indicate significance at the
1%, 5% and 10% significance level, respectively. CDS tail betas are simulated from the DAC model, realized betas,
upside betas and coskewness are computed from rolling windows of 100 data points according to the definitions listed
in Appendix [[Il To account for daily fluctuations, the double-sorts are based on smoothed versions of the original
variables, obtained by applying a simple moving average filter with a lag of 20 trading days. The sample period
contains daily data from January 2004 to October 2010 for 35 European banks.

Panel A: Beta (3) vs. CDS tail beta.

lLow g 2 3 4 5 High s Average
1 Low tail beta 55.43 44.10 54.39 70.00 109.99 66.78
2 45.45 45.82 79.31 103.57 123.70 79.57
3 44.12 51.79 94.77 150.65 132.42 94.75
4 57.83 61.31 123.44 178.67 146.03 113.45
5 High tail beta 81.69 78.05 137.94 205.72 170.04 134.69
. 26.25 33.96"* 8355 13573 60.04°
High - Low (1.44) (4.21) (6.01) (4.99) 2.21) 67.91
Panel B: Upside beta (50%) vs. CDS tail beta.
1Llow B, 2 3 4 5High 3., | Average
1 Low tail beta 4757 4958 43.99 59.40 81.83 56.47
2 42.12 48.15 63.72 115.56 109.89 75.89
3 46.57 42.07 96.93 130.83 147.37 92.75
4 56.54 65.41 132.87 169.90 173.02 119.55
5 High tail beta 95.55 91.69 148.69 200.21 188.35 144.90
. 47.98% 4211 10470  140.81°* 106.52°*
High - Low 2.72) (2.44) (6.66) (5.66) (4.19) 88.42
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Panel D: Upside beta (80%) vs. CDS tail beta.

1Low Bg 2 3 4 5 High 85, | Average
1 Low tail beta 44.01 62.28 48.99 4781 56.61 51.94
2 57.17 60.83 51.93 67.01 112.02 69.79
3 69.30 82.09 68.97 119.82 145.61 97.16
4 75.81 113.94 99.53 162.99 169.17 124.29
5 High tail beta 110.96 133.52 149.65 203.22 167.26 152.92
. 66.96" 7124 100.66** 15541 110.66"~
High - Low (4.15) (3.11) (5.50) (6.25) (4.45) 100.98
Panel E: Upside beta (90%) vs. CDS tail beta.
1 Low Bgye 2 3 4 5 High B4,,, | Average
1 Low tail beta 42.66 57.80 58.85 38.77 50.70 49.76
2 69.41 67.24 64.11 50.66 91.79 68.64
3 74.23 72.52 90.69 76.78 131.20 89.08
4 130.63 118.90 116.13 115.40 167.24 129.66
5 High tail beta 150.63 145.29 143.88 161.02 184.67 157.10
_ 107.97° 87.48""* 8503  122.25°* 133.97°
High - Low (5.75) (4.13) (3.50) (8.71) (4.56) 107.34
Panel F: Upside beta (95%) vs. CDS tail beta.
1Low By, 2 3 4 5 High B4, | Average
1 Low tail beta 58.87 4357 53.90 38.17 4559 48.02
2 76.42 49.45 59.09 56.07 62.80 60.77
3 89.50 63.48 82.11 91.08 109.95 87.22
4 125.21 96.26 131.52 133.61 176.27 132.58
5 High tail beta 150.81 157.84 151.82 157.50 186.66 160.93
_ 91.947 11427  97.92"*  110.33** 141.07~
High - Low (4.25) (6.43) (6.33) (6.66) (4.85) 112.90
Panel G: Coskewness vs. CDS tail beta.
1 Low coskew 2 3 4 5 High coskew | Average
1 Low tail beta 57.85 51.62 4489 35.56 64.10 50.81
2 97.42 85.64 37.24 44.45 55.26 64.00
3 127.62 129.04 56.33 58.24 81.59 90.56
4 180.40 136.78 102.40 118.68 134.57 134.56
5 High tail beta 221.70 144.38 133.46 156.24 181.25 167.41
_ 163.847~ 92767 88577  120.68"* 117.147~
High - Low (5.19) (3.21) (6.39) (5.33) (5.02) 116.60
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Table XII: Dependent portfolio sorts: CDS tail beta and equity MES.

This table reports average daily CDS spreads double-sorted on CDS tail beta and different specifications of Marginal
Expected Shortfall (MES), respectively. In a first step, we rank the time series of CDS spread observations into
quintiles (1-5) with respect to MES for each bank in the sample. Then, within each of these quintiles, we sort the
corresponing CDS spreads by CDS tail beta resulting in a total of 875 quintiles. In the last step, we calculate the mean
CDS spread for each quintile and finally average across all banks in the sample. The last row reports the difference
between the average CDS spreads of the fifth and the first tail beta quintile for each MES quintile with corresponding
significance levels, where ¢-statistics are in parantheses and ***, **, and * indicate significance at the 1%, 5% and 10%
significance level, respectively. CDS tail betas are simulated from the DAC model, MES is calculated from alternative
models including the static MES according to |Acharya et al. (2010) as well as various dynamic model specifications
proposed in [Brownlees and Engle (2012). Static MES is computed non-parametrically from rolling windows of 100
data points, and the dynamic MES models include the VCT model, the Dynamic Conditional Beta model as well as
the Dynamic Conditional Copula model that is based on [Pattorl’s (2006) dynamic ¢-copula (see [Brownlees and Engle,
2012, for details). To account for daily fluctuations, the double-sorts are based on smoothed versions of the original
variables, obtained by applying a simple moving average filter with a lag of 20 trading days. The sample period
contains daily data from January 2004 to October 2010 for 35 European banks.

Panel A: CDS tail beta vs. static MES (Acharya et al), 2010).

1 Low MES 2 3 4 5 High MES Average
T Low tail beta 23.03 21.16 29.44 93.65 173.03 68.10
2 21.65 25.35 3429 11655 177.15 75.00
3 21.05 36.31 5148 143.23 195.85 89.58
4 22.78 38.27 99.94 16167 244.80 113.49
5 High tail beta 25.78 42.08 10079 17111 225.98 114.95
. 275 20027 803477 77.26° 52.95
High - Low (0.92) (3.47) (6.75) (4.76) (1.68) 46.85

Panel B: CDS tail beta vs. dynamic MES (VCT; [Brownlees and Engld, 2(212).

1 Low MES 2 3 4 5 High MES Average
T Low tail beta 38.28 75.93 37.46 65.87 107.39 54.99
2 35.10 35.69 41.70 76.89 168.59 71.59
3 46.88 44.85 55.80 118.42 181.69 89.53
4 49.89 71.75 11345  154.18 188.50 11555
5 High tail beta 59.05 87.18 13868 169.25 227.19 136.27
) 2077 6125 101227 10336  119.80"
High - Low (2.03) (5.35) (8.23) (4.48) (4.28) 81.28
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Panel C: CDS tail beta vs. dynamic MES (Conditional Beta; IBrownlees and Engld, 2()12).

1 Low MES 2 3 4 5 High MES Average

T Low tail beta 26.15 33.04 37.02 58.03 115.84 54.24
2 33.29 39.57 35.26 72.39 165.09 69.12

3 47.00 51.42 5355  113.34 175.37 88.14

4 63.00 5289 10853  129.68 212,67 113.37

5 High tail beta 75.46 84.81 14615 16214 228.19 139.35

. 19307 5157 10823 104117 112357

High - Low (2.83) (4.62) (8.46) (4.12) (3.70) 8511

Panel D: CDS tail beta vs. dynamic MES (Conditional Copula; Brownlees and Engle, 2012).

1 Low MES 2 3 4 5 High MES Average

1 Low tail beta 19.74 17.33 38.87 83.34 172.20 66.29
2 21.06 21.17 35.13 106.82 185.97 74.03

3 21.26 24.57 55.63 145.43 198.25 89.03

4 20.21 30.14 70.85 161.01 216.93 99.83

5 High tail beta 24.39 38.91 10433 167.42 234.07 113.82

) 1657 1567 65467  84.08°" 6187

High - Low (2.76) (4.63) (3.87) (4.22) (1.71) 47.53
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Internet Appendix to
“IsTail Risk Priced in Credit Default Swap
Premia?’*

This Internet Appendix contains several additional Figures and Tables that present the results of
further analyses and robustness checks.

*Authors: Christian Meine, Ruhr-University Bochum; Hendrik Supper, TU Dortmund University; Gregor N.F.
WeiR, TU Dortmund University.



Figure 1A.1: Cross-country copula correlations and CDS tail betas.

The panels of this figure show the time evolution of average daily copula correlations and CDS tail betas as well as their
quarterly cumulations for each country included in the sample. The sample period contains daily data from January
2004 to October 2010 and the average is taken across all banks in a specific country. The banks included in the sample
cover the following European countries: Austria, Belgium, France, Germany, Greece, Ireland, Italy, Netherlands,
Portugal, Spain. In the panels on the left-hand side, the dark-gray lines refer to average daily CDS tail betas, the light-
gray lines depict average daily copula correlations. Analogously, in the right-hand side panels the dark-gray bars refer
to quarterly cumulative CDS tail betas, whereas the light-gray bars illustrate quarterly cumulative copula correlations.
Copula correlations and CDS tail betas are estimated from the Dynamic Asymmetric Copula (DAC) model, where the
tail betas are approximated by numerical integration using ¢ = 0.001 (see [Christoffersen et al),[2012, for details).
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Figure 1A.1: Cross-country copula correlations and CDS tail betas (continued).
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Figure IA.1: Cross-country copula correlations and CDS tail betas (continued).
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Figure 1A.2: Scatter plots of CDS premia against CDS tail risk/liquidity/firm value.

The figure shows scatter plots of the credit default swap premia of banks against the banks’ CDS tail betas, CDS
liquidity, and changes in firm value. CDS tail betas are estimated from the Dynamic Asymmetric Copula (DAC)
model, where the tail betas are approximated by numerical integration using ¢ = 0.001 (see i .
2012, for details). Liquidity is measured by bid-ask spreads, and changes in firm value are proxied by arithmetic stock
returns. Variable definitions and data sources are provided in Appendix [[Il The sample consists of 902 bank-quarters.
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Table 1A.1I; Univariate sorts.

This table reports average daily CDS spreads sorted by CDS tail beta. For each bank in the sample, we rank the
time series of CDS spread observations into quintiles (1-5) with respect to realized CDS tail beta and compute the
average spread for each tail beta quintile. CDS tail betas are simulated from the DAC model, where the tail betas are
approximated by numerical integration using & = 0.001 (see (Christoffersen et alJ, (2012, for details). To account for
daily fluctuations, the univariate CDS spread sortings are based on a smoothed version of the CDS tail beta estimates,
which is calculated by applying a simple moving average filter with a lag of 20 trading days to the original tail beta
estimates. The last column of the table reports the difference between the average CDS spread of the fifth and the first
tail beta quintile, whereas the last column calculates the average spread for each tail beta quintile across all 35 sample
banks, with the ¢-statistic of the ¢-test on the average high-low difference in parantheses and with significance at the
1%, 5% and 10% being indicated by ***, **, and *, respectively. The sample period contains daily data from January
2004 to October 2010 for 35 European banks. Company names are abbreviated by their corresponding Bloomberg
ticker symbols listed in Appendix [I

Average quintile spreads

1 Low tail beta 2 3 4 5 High tail beta High - Low
ACA 8.10 9.58 29.53 85.54 104.77 96.67
AIBSF 9.29 10.07  41.22 260.54 265.37 256.07
ALPHA 27.11 27.13  26.38 143.27 331.72 304.61
BBPI 50.43 38,50 40.92  44.58 182.23 131.80
BBVA 9.50 1132 4446  93.15 115.70 106.20
BCPSF 78.27 8192 5223 141.96 324.26 245,99
BILMI 312.38 465.43 779.18 256.45 183.39 -128.99
BKESF 11.42 17.79 51.63 137.07 196.52 185.10
BKT 39.17 80.76  69.83  88.37 220.39 181.21
BMDPF 10.66 19.81 4221 91.01 99.49 88.84
BNP 7.21 9.90 28.33 64.36 75.50 68.29
BPCGF 13.45 1496  40.62 107.34 190.44 177.00
BPESF 13.08 21.51 19.54 143.35 240.03 226.95
BPI 24.21 37.34 11085 118.93 135.71 111.50
BPMLF 26.56 27.74 4762  70.22 80.96 54.40
CBK 11.60 20.36 4493 85.18 85.75 74.15
CRIH 12.56 13.85  42.64  93.98 113.26 100.70
DBK 11.72 15.94 42.47 91.77 102.31 90.59
DEXB 7.10 9.82 27.00 241.54 239.64 232.54
EBKOF 17.85 2093 8754 126.76 157.36 139.51
EFG 19.25 17.16  18.38 117.63 459.07 439.82
FSVVF 19.39 2533 5211 78.86 170.01 150.62
GLE 9.49 9.27 2563 87.92 104.33 94.84
IITSF 9.74 17.46 37.13 63.72 92.32 82.58
IKB 293.67 181.26 188.57 232.92 227.83 -65.84
ILB 26.26 24.00 40.71  208.45 289.49 263.23
ING 6.40 1071 28.01 93.79 92.39 85.99
IRLBF 9.81 9.81 75.70  229.95 250.91 241.10
KBC 17.49 17.09  39.60 141.48 166.01 148.53
KN 11.68 10.01 6498 153.82 173.20 161.52
MDIBF 21.24 20.85 40.40 65.71 90.72 69.48
SAB 93.98 188.35 259.49 196.83 271.35 177.37
SAN 10.38 1270  39.62  96.34 107.26 96.88
UBI 26.09 40.88 5555 37.52 105.94 79.85
UNBLF 32.64 40.90 130.13 158.22 165.31 132.67
Average 37.41 4516 79.00 127.10 177.46 140.05 ***
(8.15)
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