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Abstract

In order to probe for new physics beyond the Standard Model of particle physics, we explore decays of
beauty and charm mesons. In the b sector we find ourselves in the realm of precision physics so that we can
improve significantly the bounds on supersymmetric flavor violation from new theoretical and experimental
progress in B̄→ K̄(∗)l+l−. From these bounds we derive several phenomenological implications, as bounds
on Radiative Flavor Violation models that are partly even sharper than the ones from Kaon physics. In
order to improve the bounds on new physics models from B̄→ K̄(∗)l+l− even more in the future, we extract
subsequently B̄ → K̄∗ form factor ratios from data at high invariant lepton pair masses. These are the
current bottleneck for the advancement in precision.
In the charm sector unexpectedly large CP violation was measured recently. Currently, the experimental
situation is unsettled. We work here on the main problem that one cannot reliably calculate the hadronic part
from first principles, i.e., cannot exclude possible enhancements from this source. We perform for the first
time a comprehensive SU(3)F analysis of D → P8P8 decays including linear breaking in full generality.
We find the SU(3)F expansion to be indeed working. Furthermore, the fit shows a large triplet matrix
element enhancement that cannot be excluded for sure without having a dynamical theory at hand. We
show as a proof of principle that with significantly improved data we could disentangle the triplet model
including the Standard Model from other new physics models. Using reasonable theoretical input from
QCD factorization we can eliminate some of the many degrees of freedom of the pure SU(3)F analysis.
This can sharpen partially the correlation between D-decay CP asymmetries and branching ratios.

Zusammenfassung

Auf der Suche nach neuer Physik jenseits des Standardmodells erforschen wir Zerfälle von Beauty- und
Charm-Mesonen. Im b-System befinden wir uns um Bereich der Präzisionsphysik, so dass wir die Schran-
ken an supersymmetrische Flavorverletzung durch theoretischen als auch experimentellen Fortschritt bzgl.
des Zerfalls B̄ → K̄(∗)l+l− signifikant verbessern können. Aus diesen Schranken leiten wir mehrere phäno-
menologische Implikationen ab, z.B. an Modelle mit radiativer Flavorverletzung, die teilweise sogar stärker
sind als diejenigen aus der Kaon-Physik. Um die Schranken an Modelle neuer Physik in der Zukunft noch
weiter zu verbessern, extrahieren wir anschließend B̄→ K̄∗-Formfaktorenverhältnisse aus Daten bei hohen
invarianten Massen des Lepton-Paars. Diese sind momentan der Flaschenhals für Fortschritte in der Präzi-
sion.
Im Charm-System wurde unlängst unerwartet hohe CP-Verletzung gemessen. Gegenwärtig ist die experi-
mentelle Situation nicht endgültig geklärt. Wir arbeiten hier an dem Hauptproblem, dass der hadronische
Part nicht verlässlich aus ersten Prinzipien berechnet werden kann, sodass mögliche Erhöhungen von dieser
Quelle nicht ausgeschlossen werden können. Wir führen das erste Mal eine vollständige SU(3)F-Analyse
von D → P8P8-Zerfällen durch, die lineare SU(3)F-Brechung in voller Allgemeinheit einbezieht. Wir
erhalten das Ergebnis, dass die SU(3)F-Entwicklung in der Tat funktioniert. Weiterhin zeigt der Fit eine
große Erhöhung der Triplett-Matrixelemente, die nicht mit Sicherheit ausgeschlossen werden kann, ohne
eine dynamische Theorie zu besitzen. Wir zeigen, dass grundsätzlich mit signifikant verbesserten Daten
das Triplett-Modell inklusive dem Standardmodell von anderen Modellen neuer Physik unterschieden wer-
den kann. Unter Verwendung von annehmbarem theoretischen Input aus QCD-Faktorisierung können wir
einige der vielen Freiheitsgrade der reinen SU(3)F-Analyse eliminieren. Dies kann die Korrelation von
CP-Asymmetrien und Verzweigungsverhältnissen von D-Zerfällen teilweise verschärfen.





“Three quarks for Muster Mark!”
(James Joyce, Finnegans Wake)
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1. Introduction

From the perspective of theoretical particle physics, in contrast to experimental findings,
in 2013 there is much pointing towards physics beyond what we call the Standard Model
of the strong and electroweak interactions (SM). The most exciting news in 2012 was the
detection of a new scalar boson [1, 2] which is seemingly the last important ingredient of
the SM, predicted back in the 1960s: the Higgs boson [3–8]. In the Higgs mechanism the
gauge symmetry is broken locally, in contrast to the breaking of global symmetries that
has been studied previously [9–11]. The Higgs mass is measured consistently at ATLAS
as mh = 125.5 ± 0.2+0.5

−0.6 GeV [12] and at CMS as 125.8 ± 0.4 ± 0.4 GeV [13]. The
Higgs mass is consistent at 1.3σ with electroweak precision fits [14, 15], which is a great
accomplishment of the SM at the loop level. One of the big programs of the Large Hadron
Collider (LHC), the task to investigate the electroweak symmetry breaking, is thus in the
beginning of its success.
On the other hand, the SM has no explanation for the vast separation of the scales of
electroweak and gravitational physics. The same holds for the phenomena of the baryon
asymmetry, dark matter and dark energy: We have no knowledge of about 95% of the
energy density of the universe, although also in cosmology we have reached the precision
era by the recent results from the Planck satellite [16].

A key puzzle in the SM is furthermore given by the hierarchies in the flavor sector. It is
a deep gap in our knowledge that we do not have knowledge about the mechanism that
determines the masses and mixing matrices of both quarks and leptons. Intrinsically con-
nected to this issue is our ignorance of the mechanism which determines the common area
of the unitarity triangles, i.e., the size of CP violation. Although we know that in the SM
CP violation is linked to three generations of matter being present [17] we do not know
where these replicas come from. In the SM we write down nothing more than a mere
parametrization for the whole flavor sector, with numbers extracted from experiment in-
stead of being explained.
Consequently, every ansatz for an explanation of flavor is going beyond the SM and leads
to the search for new physics (NP). In this thesis we concentrate on the quark sector of
flavor physics. Experimentally, there are two complementary strategies: The direct pro-
duction of new particles at the intensity frontier and the precision measurements at “low”
energies where one carefully inspects the quantum corrections of rare decays. However, at
the LHC, being a hadron machine, the data analysis also of direct searches is so involved
that partly also this method seems quite “indirect” – of course in a different sense.

Historically, the way of exploring flavor physics and the violation of discrete symmetries
led across many milestones. The quantum mechanical mixing of neutral mesons is now
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2 Chapter 1. Introduction

observed for K mesons (first theoretical description by Gell-Mann and Pais 1955 [18],
first observation of KL states by Lande et al. 1956 [19]), Bd mesons (ARGUS 1987 [20]),
Bs mesons (CDF 2006 [21]) and D mesons (BaBar [22–25], Belle [26], CDF [27], 2007-
2009). The first 5σ observation of D mixing in a single experiment was only in 2012
by LHCb [28]. A great success of flavor physics was the prediction of the mass of the
charm quark [29–32] which was possible due to its important contributions in quantum
corrections, i.e., loop diagrams.
A similar track record goes for the investigation of discrete symmetries: In 1957, parity
violation has been observed in the β decay of polarized 60Co [33, 34]. The violation of
CP was for the first time measured 1964 in Kaon decays [35]. A mixture of T and CP
violation has been observed 1998 in Kaon decays [36]. Only very recently, again in 2012,
it was observed for the first time pure T violation in B decays [37] which is expected from
the theory side due to the CPT theorem [38–41]. Right after the first observation of CP
violation it was realized that the breaking of this combination of discrete symmetries is a
necessary condition in order to explain the baryon-antibaryon asymmetry of the universe
[42]. Still, the SM CP violation is far too small in order to explain the observed asymme-
try, for a discussion and further references see the review given in Ref. [43]. It took some
more years after the first observation of CP violation in order to realize in 1973 that three
generations of matter are needed in order to explain its occurrence [17]—before even the
beauty quark was observed. For that Kobayashi and Maskawa got one half of the 2008
noble prize. The beauty quark was observed in 1977 [44], the top quark only in 1995
[45, 46].

In conflict with theoretical expectation, in the beginning of 2013 NP keeps hiding away.
The SM is still working better than anyone would have expected when it was invented
more than 30 years ago. Most recently this has been exemplified again by the evidence for
the very rare decay Bs → µ+µ− with a branching ratio near its SM value at the 10−9 level
[47]. Additionally, in most simple and minimal scenarios of Supersymmetry (SUSY), an
extension of the Poincaré symmetry that links bosonic and fermionic degrees of freedom,
the mass spectrum of SUSY particles is pushed up by direct searches [48–53].

Nevertheless, there are several unresolved tensions of the SM with experiment, however
below a statistical significance of 5σ. Just to name a few: the tt̄ forward backward asym-
metry at Tevatron [54], the different results for Vub from inclusive/exclusive modes, see
e.g. [55], the B→ πK puzzle (for a brief status report see [56]), the enhancement in ratios
of b → cτ−ν̄τ branching ratios [57–59] and the evidence for large CP violation ∆ACP in
charm decays that was found recently [60–63]. Statistically consistent with the precedent
ones, newest results at LHCb presented at Moriond 2013 indicate now a smaller value for
∆ACP with a small tension of 2.2σ between somewhat differing results from two distinct
channels [64, 65]. The current experimental situation in charm CP violation remains to be
settled and we are awaiting future experimental results with eager expectation. Further-
more, at ATLAS there is measured an enhancement of the branching ratio B(H → γγ) at
∼ 2.3σ, including the full 2012 data set at 8 TeV [66]. Explanation for such enhancements
can for example be provided in extensions of minimal forms of SUSY [67]. However, at
CMS no enhancement of B(H → γγ) is visible [68].
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A general problem in the search for NP in flavor physics is the control of the “old” physics,
namely Quantum Chromomagnetics (QCD) at long distances.
It is instructive to compare here with another part of precision quantum correction physics,
besides the already mentioned successful prediction of the Higgs mass. In the part of the
SM where the gauge couplings are small, we can apply perturbative expansions and test
the SM with never-seen precision. Quantum Electrodynamics (QED) is consequently one
of the best tested theories mankind has invented so far. This is exemplified by the incred-
ible precision of both theoretical and experimental results for the anomalous magnetic
moment of the electron ae [69]. The deviation of the QED four loop calculation from the
experimental value has an absolute value of only (10.5 ± 8.1) · 10−13 [70]. However, as
can be seen from this number, the progress in precision is so far, that this corresponds to a
deviation of 1.3σ. The latter can thus be used again as a probe of NP similar to the muon
anomalous magnetic moment that shows a long-known discrepancy of ∼ 3.5σ [70–77].

Now, in meson decays on the other hand, we have a completely different starting point.
Here, at the heart of the calculation appears the strong coupling constant of QCD, being
evaluated at energies not much above ΛQCD, where ΛQCD is the scale of QCD where
the strong interaction becomes nonperturbative. In charm meson decays the situation is
especially complicated because mc is close to ΛQCD. The known methods from b physics
like the systematic treatment of the factorization of long and short distance physics, so-
called QCD factorization (QCDF) and likewise the heavy quark expansion cannot reliably
be applied for charm physics—or only to a certain limited extent, that we analyze further
in this work.

The plan of this thesis is as follows: In Ch. 2 we give an introduction to the SM La-
grangian, flavor physics and CP violation as well as to the minimal supersymmetric ex-
tension of the SM. We study how to parametrize flavor and look at minimal models of
flavor violation. Furthermore, we discuss the approximate SU(3)F symmetry of QCD that
will be used later on.

In Ch. 3 we analyze the implications of semileptonic decays B̄ → K̄(∗)l+l− for SUSY
flavor. From the strong bounds that we extract from the data we derive various phe-
nomenological consequences for b and top physics as well as for SUSY model building.
In order to improve the bounds from B̄ → K̄(∗)l+l− on NP models even further, progress
on B̄→ K̄(∗) form factors is mandatory. Therefore, in Ch. 4 we fit form factor ratios from
data at high invariant lepton masses q2. We make use here of the cancellation of short
distance physics in certain observables in this kinematic region [78]. Additionally, we
study the constraints that follow from the data in connection with theoretical input from
Light Cone Sum Rules (LCSRs) and perturbative Helicity Conservation (HC) at low q2.

In Ch. 5 we continue to extract hadronic physics from data, going from the down to the up
sector of quark flavor physics. We use the approximate SU(3)F symmetry of QCD in order
to describe nonleptonic charm decays. We do so by including for the first time the linear
breaking of SU(3)F in a comprehensive way without any theoretical bias for a global fit
of D → P8P8 observables. We ask for the consequences of the recent measurements
of enhanced CP violation. We furthermore analyze if NP models can be disentangled
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from the SM now and in the future and account briefly for the very new results that were
presented by LHCb at Moriond 2013.

In Ch. 6 we search for traces of QCDF that could be left in D → P8P8 decays. We find
that certain elements of QCDF can be incorporated into the SU(3)F approach in order to
reduce the number of unknown hadronic matrix elements. Including this information in
the SU(3)F fits can considerably sharpen the patterns for some observables.

In Ch. 7 we summarize prospects for future measurements and experiments that are rele-
vant to our predictions.
After concluding, in Appendix A we demonstrate the universality of the SU(3)F approach.
For various decays, we give a tool box of SU(3)F decompositions including linear break-
ing. These decompositions will prove useful for further phenomenological analyses in the
future.



2. Flavor and CP Probes of Physics
Beyond the Standard Model

2.1. The Standard Model of Particle Physics

The Standard Model Lagrangian The Standard Model (SM) of particle physics is a
renormalizable anomaly-free quantum field theory with gauge group SU(3)C × SU(2)L ×

U(1)Y . Its SU(2)L×U(1)Y part is spontaneously broken to U(1)QED, i.e., the SM has a non-
trivial vacuum that does not respect the symmetry of the Lagrangian. The SM describes
our present commonly accepted knowledge of the fundamental structures of nature. The
electroweak part of the SM that is governed by the gauge groups SU(2)L ×U(1)Y is called
the “Glashow-Salam-Weinberg” model, after its noble prize (1979) winning architects
[79–81]. The milestone of the exploration of the electroweak theory at the quantum level
has been achieved by t’Hooft and Veltman [82] (noble prize 1999). In the QCD part of
the SM the most important steps were the realization of the phenomena of confinement
and asymptotic freedom. The greatest achievements were accomplished here by Gross,
Politzer and Wilczeck [83, 84] (noble prize 2004).

Adapting the notation and conventions of [85–88] the SM Lagrangian reads as follows. It
is decomposed as

L = L
SU(3)C
YM +L

SU(2)L⊗UY (1)
YM +LH +LF , (2.1)

with the Yang-Mills parts LSU(3)C
YM and LSU(2)L⊗UY (1)

YM , the Higgs part LH and the Fermion
part LF. The Yang-Mills parts are given as

L
SU(3)C
YM = −

1
4

(
∂µG

A
µ − ∂νG

A
µ − gs f ABCGB

µGC
ν

)2
, (2.2)

L
SU(2)L⊗UY (1)
YM = −

1
4

(
∂µW

a
ν − ∂νW

a
µ + g2ε

abcWb
µWc

ν

)2
−

1
4

(
∂µBν − ∂νBµ

)2
. (2.3)

Here, GA
µ , A, B,C = 1, 2, . . . , 8 are the octet gluon fields, gs is the strong coupling and

f ABC are the structure constants of SU(3). Likewise, Wa
µ with a, b, c = 1, 2, 3 and Bµ are

the fields of the electroweak interaction. For a concise notation one also uses the field
strength tensor, which is for example in the case of QCD given as

GA
µν = ∂µG

A
µ − ∂νG

A
µ − gs f ABCGB

µGC
ν . (2.4)

5



6 Chapter 2. Flavor and CP Probes of Physics Beyond the Standard Model

For brevity, we omit here the gauge-fixing and ghost parts. Furthermore, we omit the part
of the Lagrangian that would induce CP violation in QCD through the non-trivial topology
of the vacuum. This is further discussed briefly at the end of this section. The triplet fields
Wa

µ are the gauge fields of SU(2)L, the singlet Bµ corresponds to the hypercharge U(1)Y .
The Higgs part of the Lagrangian is given as

LH =
(
DµΦ

)† (
DµΦ

)
− V(Φ), V(Φ) =

λ

4

(
Φ†Φ

)2
− µ2Φ†Φ , (2.5)

with a Higgs field Φ(x) =
(
φ+(x), φ0(x)

)T
that has a non-vanishing vacuum expectation

value (vev)

|〈Φ〉| =

√
2µ2

λ
=

v
√

2
, (2.6)

and the quantum numbers Φ(1, 2) 1
2
. For a field φ in φ(nSU(3)C

, nSU(2)L
)nU(1)Y

the numbers
nSU(3)C

, nSU(2)L
and nU(1)Y

indicate the dimension under the groups SU(3)C, SU(2)L and the
U(1)Y charge, respectively. Around its vev, the Higgs field exhibits excitations that can
after SU(2)L transformations without loss of generality be written as

Φ =
1
√

2
(0, v + H(x))T , (2.7)

where H is the physical Higgs particle. Note that the SM assumes ad hoc a minimal Higgs
sector with only one doublet Φ.

The fermionic part of the Lagrangian LF = Lint. + LYuk. is divided into a part Lint. that
gives the interaction of the fermions with the gauge bosons and another part LYuk. which
consists of Yukawa terms and describes the couplings of the fermions to the Higgs boson.
The first one reads

Lint = L̄Li /DLL + Q̄Li /DQL + ēRi /DeR + ūRi /DuR + d̄Ri /DdR , (2.8)

where we used the notation ψR,L =
1±γ5

2 ψ. The covariant derivative is given by

Dµ = ∂µ − igsG
A
µ tA
− ig2T aWa

µ + ig1
YW

2
Bµ , (2.9)

and it is understood that in the singlet terms ψ̄Ri /DψR the interaction term with ig2T aWa
µ

is not there. After the rotation to the mass eigenstates of the gauge bosons the covariant
derivative with physical W±, Z and γ fields reads

Dµ = ∂µ − i
g2
√

2

(
σ+W+

µ + σ−W−
µ

)
− i

g2

cos θW
Zµ(T

3
− sin2 θW Q) − ieAµQ , (2.10)
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with the charge of the electron e = g1g2/

√
g2

1 + g2
2 and the Weinberg angle θW that changes

the basis according to
Z0

A

 =


cos θw − sin θw

sin θw cos θw



W3

B

 . (2.11)

The linear combinations of Pauli matrices are given as σ± = 1
2 (σ1 ± iσ2). In Eq. (2.8) one

can read off the fermionic particle content of the SM. It is given as

QL(3, 2) 1
6

=
(
uL, dL

)
, U(3, 1) 2

3
= uR , D(3, 1) 1

3
= dR , (2.12)

LL(1, 2)− 1
2

= (νL, eL) , E(1, 1)1 = eR. (2.13)

As in this work we are mainly concerned with quark flavor we disregard the presence of
right-handed neutrinos and a neutrino mass term in the particle content of the SM. Note
also that the lepton sector does not interact directly with QCD. The non-vanishing mass
of neutrinos is an experimental fact [89] which leaves however the nature of the mass
term itself as an open question. We do not know if the neutrino has a Majorana and/or
Dirac mass term. A natural explanation for the extreme smallness of the neutrino masses
in comparison to the other elementary particles is provided by different variants of the
seesaw mechanism of category I [90–94], II [94–99] or III [100].

In the SM, matter comes in three generations. All the so far specified terms of the La-
grangian, i.e.,LSU(3)C

YM ,LSU(2)C⊗UY (1)
YM ,LH and theLint part ofLF are invariant under rotations

in generation space:

GF = U(3)5 = U(3)QL
⊗ U(3)U ⊗ U(3)D ⊗ U(3)LL

⊗ U(3)E. (2.14)

This symmetry is only broken by the Yukawa terms. These are given as

−LYuk. = L̄LYllRΦ + Q̄LYuuRΦ̃ + Q̄LYddRΦ + h.c. (2.15)

Here, Φ̃ = iσ2Φ
∗ is the charge conjugated Higgs field and Yi are the Yukawa matrices

that have dimension 3 × 3 in generation space. In the case of n generations these would
be promoted to n × n matrices and GF would be a U(n)5 symmetry. However, already
the simplest extensions of the SM to four generations become more and more improbable
[101].

When the Higgs particle gets its vev during spontaneous symmetry breaking Eq. (2.15)
gives the mass terms for the fermions. This mechanism is necessary, as a mass term mψ̄ψ
would break the SU(2)L gauge invariance (the right-handed fermions transform differently
than the left-handed ones). Therefore, the SM needs and predicts at least one agent of
electroweak symmetry breaking. And indeed recent spectacular results show the existence
of a scalar boson that can be interpreted as the SM Higgs [1, 2]. However, there is no
theoretical reason why there should be only one Higgs boson. Also, the found scalar
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boson could be composite due to new strong forces beyond the SM, see recently [102,
103]. An important prediction of composite models is the alteration of the couplings
of the Higgs particle to the SM fermions by higher dimensional operators [104]. The
measurement of the Yukawa couplings is therefore of extraordinary importance.

The effective coupling measured in gg → H production [105] that probes the Ht̄t vertex
suggests Yt ∼ O(1) [106] as expected in the SM. As is demonstrated in Ref. [106] for
disentangling different flavor models it is especially useful to measure B(H → µ+µ−) and
B(H → τ+τ−). The channel H → τ+τ− is found to exist at ∼ 2.9σ at CMS [107] and so
far its couplings are measured to be consistent with the SM [107, 108].
Using the channel H → γγ, which is observed at 7.4σ [66], one can also show that the
SM-like spin-0 is favored for the found new particle [109]. Although at ATLAS there is
seen an enhancement of the branching ratio of H → γγ in comparison to the SM at 2.3σ
[66], this is nevertheless still consistent with the SM. Furthermore, CMS does not see a
corresponding enhancement of this channel [68].

The Yukawa matrices in Eq. (2.15) have a non-trivial generational structure for that we
currently do not have an experimentally supported explanation. Without loss of generality
we can do unitary rotations and phase transformations ∈ GF in order to diagonalize the
mass matrices Mi = v

√
2
Yi so that we obtain mass eigenstates with diagonal mass matrices

diag(mu,mc,mt) =
v
√

2
Uu

LYuUu†
R , diag(md,ms,mb) =

v
√

2
Ud

LYdUu†
R . (2.16)

These unitary transformations cancel out in all terms of the Lagrangian but the charged-
current W± interactions that are implied in Eq. (2.10). There we get a term proportional to
a unitary matrix VCKM

≡ Uu
LUd†

L called the Cabibbo-Kobayashi-Maskawa (CKM) matrix
[17, 110]:

Q̄Li /DQL ⊃ −i
g
√

2

(
ūL

)
i σ

+ /W+VCKM
i j

(
dL

)
j + h.c. , (2.17)

with generation indices i, j = 1, 2, 3. Due to VCKM , 1 there is flavor violation at the
W± vertex in the SM. The non-trivial generational structure of the SM has important
consequences for the discrete symmetries of the Lagrangian: It is the only source of CP
violation in the perturbative part of the SM. Both flavor and CP violation are further
elucidated in Sec. 2.2.1 and are the main topics of this work. Before we come to that, we
introduce briefly the discrete symmetries of the SM Lagrangian and comment on potential
CP violation through QCD.

Discrete Symmetries of QED and QCD In Eq. (2.2) we gave only the part of the
Yang-Mills QCD-Lagrangian that is relevant for perturbation theory. This part conserves
the following symmetries:

• C : charge symmetry. Invariance under particle–antiparticle transformation.

• P : parity symmetry. Invariance under (t, ~x) 7→ (t,−~x).
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• T : time symmetry. Invariance under (t, ~x) 7→ (−t, ~x).

The same is also true for QED, i.e., the electroweak sector of the SM is the only one
where the discrete symmetries C, P and T, respectively, are broken. Also gravitation re-
spects them. The conservation of CPT, i.e., invariance under the subsequent execution of
all three operations is a fundamental theorem of quantum field theories [38–41]. For an
introduction from the perspective of Axiomatic Quantum Field Theory see [111]. There-
fore, in the SM there is by construction a priori no term that violates CPT. Nevertheless
we can of course test it, e.g. in neutral kaon decays [89].

In addition to the term given in Eq. (2.2) there is in principle also a QCD-term that violates
CP. It reads

L
θ
YM =

θ

64π2ε
µνρσGA

µνG
A
ρσ. (2.18)

A priori it is θ , 0. The corresponding parameter that is invariant under rephasings of the
fields in the Lagrangian is θ̄ = θ − argdetYu − argdetYd. As the term (2.18) can be written
as a total divergence it does only contribute a surface term to the action S = i

∫
L d4x.

Therefore, it is not relevant to perturbation theory. However, the term (2.18) can have
nonperturbative CP violating effects that affect the non-trivial topological structure of the
vacuum of QCD [86, 112]. It is an open problem why this is experimentally not the case:
The strongest reliable bounds on θ̄ stem from the ones on the neutron electric dipole mo-
ment and are given as θ̄ ≤ 2.4 · 10−10 [113–115]. The current bounds on θ̄ from the Schiff
moment of 199Hg are weaker by a factor ∼ 2 [113]. This small value for θ̄ is not explained
in the SM. However, there are theoretical ideas explaining it for example by an additional
global U(1) symmetry, the so called Peccei-Quinn symmetry [116, 117], predicting an
additional particle, the axion. Other ideas use the nonrenormalization theorems in SUSY
[118].

In the following we will not be concerned with the strong CP problem but only with CP
violating phenomena in the electroweak sector. In the SM, the latter have only flavor-
dependent sources.

2.2. Flavor and CP Violation in the Standard Model

We return now to the electroweak sector of the SM. In Sec. 2.2.1 we have a closer look
at the CKM matrix and parametrizations of flavor as well as its connection to CP viola-
tion. Reviews on the latter can be found, e.g., in [119–121]. After that we turn from the
electroweak to the strong sector and look in Sec. 2.2.2 at the role that especially the light
quark flavors take in QCD.
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2.2.1. Parametrizations of Flavor and CP Violation

CP Violation from the Cabibbo-Kobayashi-Maskawa Matrix

In 1956 the violation of parity in the weak interaction was observed [33, 34]. It was then
believed that at least the combination CP would be conserved. But also this symmetry
turned out to be violated as was for the first time observed in neutral Kaon decays in
1964 [35]. Up to now there is a long list of observables in which CP violation has been
measured to ≥ 5σ [89]. It is a huge theoretical achievement that all of these different
CP violating phenomena can be traced back to one single source, a single CP-odd phase
in the CKM matrix which we introduce in the following. This can be taken as a classic
example of theoretical reduction and simplification.

First of all, how many physical parameters does the matrix VCKM of Eq. (2.17) actually
contain? Putting it the other way around, how many of the 2 × 9 complex parameters of
Yu and Yd can be rotated away after subtracting the six quark masses from the parameter
budget? A general way to count the parameters of the Yukawa sector in any gauge theory
is given by [122]

Nphys = NFl − NGF
+ NGunbroken . (2.19)

The numbers Ni in Eq. (2.19) are given as follows, inserting always directly n = 3:

• NFl: Number of initial parameters of the Yukawa matrices, i.e., NFl = 4n2 = 36 real
parameters, taking into account Yu and Yd. These are 2n2 = 18 moduli and 2n2 = 18
phases.

• NGF
: Number of parameters of the flavor symmetry group that apply to the con-

sidered Yukawa matrices. For the quark sector according to Eq. (2.14) it is GF =

U(3)QL
⊗ U(3)U ⊗ U(3)D. The number of parameters of a unitary matrix is given

by 2n2 minus the number of constraints on its phases and moduli coming from
the orthonormality constraints. We have thus n2

− n − n(n−1)
2 =

n(n−1)
2 = 3 moduli

and n2
−

n(n−1)
2 =

n(n+1)
2 = 6 phases for each unitary matrix. In total we have thus

NGF
= 3n2 = 27 parameters of which 3n(n−1)

2 = 9 are moduli and 3n(n+1)
2 = 18 are

phases.

• NGunbroken: Number of parameters of the subgroup Gunbroken
⊂ G that is not broken

by the Yukawa matrices. This subgroup is here given as Gunbroken = U(1)B, i.e., in-
variance under NGunbroken = 1 overall global phase transformation that corresponds to
baryon number conservation.

The number of physical parameters in the quark sector is therefore altogether

Nphys = 4n2
− 3n2 + 1 = 1 + n2 = 10 , (2.20)

of which

Nmoduli = 2n2
−

3n(n − 1)
2

=
n(n + 3)

2
= 9 (2.21)
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are moduli and

Nphases = 2n2
−

3n(n + 1)
2

+ 1 =
2 − 3n + n2

2
= 1 (2.22)

are phases in three generations. Using Eq. (2.22) for n = 1, 2 generations one obtains in
both cases Nphases = 0. In this cases all phases can be rotated away using GF transforma-
tions. On the contrary, for n = 3 this is not possible and one phase remains. Consequently,
there is an important connection between the number of generations and CP violation:
For one and two generations in the SM there is no CP violation. From the observation
of CP violation, as in Kaon decays [35], or due to cosmological reasons, as given by the
Sakharov rules [42], in the SM one could predict the presence of at least three generations
[17]. All in all the 10 parameters of the quark flavor sector are thus decomposed into
the six quark masses, the three mixing angles and the complex phase of VCKM. All CP
phenomena in the SM can be traced back to the latter.

Using these parameters, one can hence write the CKM matrix for example in the following
“standard parametrization” [89, 123]

VCKM ≡


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


=


c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ
−c12s23 − s12c23s13eiδ c23c13


,

(2.23)

with the weak phase δ, ci j = cos θi j, si j = cos θi j and the three mixing angles θ12, θ13 and
θ23. In the experiment, it turns out that the CKM matrix is a hierarchical matrix. This is
easier visible if one writes the CKM matrix as [124–126]

VCKM =


1 − λ2/2 λ Aλ3(ρ − i η)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1


+ O(λ4) , (2.24)

with λ := s12 � 1, A := s23/λ
2
∼ O(1) and (ρ + iη) := s13eiδ/(Aλ3). Eq. (2.24) is the

so called Wolfenstein expansion [124] of the CKM matrix and has the advantage that one
can directly see the hierarchies while staying unitary order by order in the expansion in
the small parameter λ. All other parameters in the Wolfenstein expansion could a priori
be O(1). In actual fact it turns out that also ρ, η are small as well, of O(0.3).

Here, we concentrate on the mixing and CP violation in the quark sector. The mixing of
neutrinos can be described in a way similar to the CKM matrix by the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix VPMNS [127, 128]. A current global fit of neutrino
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masses and mixing parameters of the PMNS matrix is given in [129]. VCKM is strongly
hierarchical and has small mixing angles, i.e., VCKM ≈ 1. In contrast to VCKM, VPMNS
consists of O(1) numbers and incorporates large mixing angles. CP violation in the lepton
sector is not measured at present.
In recent measurements the Daya Bay [130] and RENO [131] experiments obtained the
result θPMNS

13 , 0 at 5σ, therefore excluding the most simple ansätze and models for
neutrino mixing like tribimaximal mixing [132]. However, this does not mean that ap-
proaches using discrete symmetries are not valid anymore. For example, the description
in the framework of A4 is even easier now and predicts large leptonic CP violation [133].
A possible alternative in light of θ13 ∼ O(1) is the anarchical picture of neutrino mixing
[134].

The parametrizations of flavor and CP violation in Eqs. (2.23) and (2.24) have the dis-
advantage that they are not invariant under GF transformations and are therefore more or
less ad hoc. Consequently, we consider next if and how one can parametrize flavor and CP
violation in an invariant way, similar to the use of Mandelstam variables in kinematics,
which are the corresponding invariants under the Lorentz group. In much the same way
it is desirable to not depend on a “flavor coordinate system”—a point especially Jarlskog
emphasizes [135], for example in discussions of the quark-lepton complementarity [136].
Bjorken and Dunietz introduced rephasing invariant “plaquette” invariants [137]. Due to
their intuitive and natural geometric meaning, the plaquette invariants, namely the angles
of the unitarity triangle α, β and γ specified below in Eqs. (2.36)–(2.38) are subject to
extensive fits [126, 138, 139].

Invariant Parametrizations of Flavor and CP Violation

In a series of papers Jarlskog et al. found a flavor projection formalism in which one can
express all masses, mixing angles and the phase of the CKM matrix using trace invariants
of the Yukawa matrices, which works also for n generations [140–144]. The expressions
for the invariant phase of the CKM matrix were identified in [140, 141, 145, 146]. It was
discovered furthermore, that the Jarlskog invariant, the invariant measure of CP violation
in the SM, has a geometric meaning, a fact that can also be generalized to e.g. four gener-
ations using quadrangles [147].
As we review below following [148–150], this program can be pursued by using the struc-
ture of the algebra of traces of all combinations of two three by three matrices C32 [151],
where “3” stands for 3 × 3 matrices and “2” for two different matrices. Here these two
matrices are given by the hermitian products U ≡ YuY†u and D ≡ YdY†d which form the
representations 1 ⊕ 8 under U(3)QL

.

Sets of Generators of Flavor Trace Invariants The key point is that the algebra C32
is generated by a finite number of a few different traces. All other arbitrary traces can
be reduced to algebraic combinations of a basis set using the Cayley-Hamilton theorem
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[149]

X3 = X2 Tr(X) −
1
2

X
[
Tr2(X) − Tr(X2)

]
+

1
6

[
Tr3(X) − 3Tr(X2)Tr(X) + 2Tr3(X)

]
1 ,

(2.25)

which is stated here for an arbitrary 3×3 matrix X. This fact can be used for a description
of flavor in a completely trace invariant way: There are 11 trace invariant generators of
C32, however for one of these the square is not independent of the others but determined
by the so called “defining relation” of the algebra. So for the 11th generator, only its sign
is an independent information. These 10+1 trace invariant generators correspond to the
six masses, three mixing angles c12, c23, c13 as well as cos δ and the sign of δ for three
generations of Dirac fermions [149].
In order to count the independent parameters of the Yukawa sector one can just count the
number of generators of the algebra C32. As we demonstrate in the following by compiling
different sets of generators of C32, also in a description of flavor that is invariant under
the flavor symmetry group GF there are nevertheless several ways to define the basic
parameters. For that reason there is actually no “unique” choice for the parametrization
of flavor. The notion of the “trace invariant” subsumes masses, angles and phases to
just one concept. Note however, that this does not mean at all that the flavor problem is
“solved”. The usage of the trace invariant algebra as discussed in this paragraph is only
an elegant reparametrization of flavor. Phenomenological implications are yet to be seen,
so that in the main part of this work we do not utilize further the formalism outlined here.

• Teranishi set. The generators of the algebra C32 were for the first time given in
1986, however without reference to flavor, as [152]

Tr(U) , Tr(U2) , Tr(U3) , Tr(D) , Tr(D2) , Tr(D3) ,

Tr(UD) , Tr(UD2) , Tr(U2D) , Tr(U2D2) , Tr(UDU2D2). (2.26)

• Aslaksen Drensky Sadikova set. Another two sets of generators of C32 that use
traceless matrices and that have a much simpler defining relation than the Teranishi
set are found in [153]. The first set is

Tr(U) , Tr(D) , Tr(u2) , Tr(ud) , Tr(d2) , Tr(u3) ,

Tr(u2d) , Tr(ud2) , Tr(d3) , Tr(u2d2) , Tr(u2d2ud) , (2.27)

where

U =
1
3

Tr(U)1 + u , D =
1
3

Tr(D)1 + d. (2.28)

The second set is given as

Tr(U) , Tr(D) , Tr(u2) , Tr(ud) , Tr(d2) , Tr(u3) ,

Tr(u2d) , Tr(ud2) , Tr(d3) , v , w , (2.29)

with

v = Tr(u2d2) − Tr(udud) , w = Tr(u2d2ud) − Tr(d2u2du). (2.30)
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• Jenkins Manohar set. In Ref. [149] the connection of the trace invariant generators
to flavor physics is given. The trace invariants are in agreement with the Teranishi
set while replacing Tr(UDU2D2) by the Jarlskog determinant [140, 141]

1
3

Tr
(
[U,D]3

)
= Tr

(
U2D2UD − D2U2DU

)
= det ([U,D]) . (2.31)

The first six trace invariants in Eq. (2.26) specify the masses of the particles, the
next four the mixing. CP violation is characterized by the Jarlskog determinant.
Only the sign of the latter is independent as the absolute value is determined by the
other trace invariant generators due to the defining relation [149].

In the next paragraph, we discuss geometric interpretations of flavor invariants.

Geometric Interpretation I: Unitarity Polygons with Plaquette Invariant Angles Due
to the unitarity of the CKM matrix, its columns and rows are mutually orthonormal: There
are six unitarity conditions. For the rows and columns, respectively, these are given as
(with fixed i , j)∑

k

VikV
∗
jk = 0 ,

∑
k

VkiV
∗
k j = 0. (2.32)

Each of these six relations give one unitarity triangle in the complex plane [147]. This
picture is very useful as both the angles of these triangles as well as the area are invariant
under GF . When one speaks of the unitarity triangle one commonly means the one that is
connected to most of the experimental measurements. This is specified by the relation

VudV∗ub + VcdV∗cb + VtdV∗tb = 0. (2.33)

The area of each unitarity triangle is given by the same value, namely 1/2 times the
absolute value of the Jarlskog invariant J, which is defined by

Im
(
Vi jVklV

∗
ilV
∗
k j

)
= J

∑
m,n

εikmε jln , (2.34)

and relates as follows to the Jarlskog determinant:

det ([U,D]) = 2iJ(m2
c − m2

u)(m2
t − m2

c)(m2
t − m2

u)(m2
s − m2

d)(m2
b − m2

s)(m
2
b − m2

d). (2.35)

The equality of the area of the triangles can be shown from the fact that the square of the
Jarlskog invariant can be written by only four absolute values of CKM matrix elements
using the Källen lambda function [147]. The non-vanishing of these areas is equiva-
lent to CP violation. Instead of the three angles + one phase + its sign in the standard
parametrization one can thus also choose four absolute values of the CKM matrix plus
the sign of the Jarlskog determinant as fundamental parametrization. The relation of the
Jarlskog invariant to the four absolute values of CKM matrix elements corresponds to the
defining relation of the algebra C32. From the latter it can likewise be seen that only the
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sign of the Jarlskog determinant is an independent information. Its absolute value is then
determined by the masses and four independent mixing trace invariants. Thus, we have a
full understanding of the correspondence of the different ways of parameter counting.

The invariant angles of the unitarity triangle are given as

α = Arg
(
−

VtdV∗tb
VudV∗ub

)
= Arg

(
−VtdV∗tbV∗udVub

)
, (2.36)

β = Arg
(
−

VcdV∗cb

VtdV∗tb

)
= Arg

(
−VcdV∗cbV∗tdVtb

)
, (2.37)

γ = Arg
(
−

VudV∗ub

VcdV∗cb

)
= Arg

(
−VudV∗ubV∗cdVcb

)
, (2.38)

where we used the “plaquette” product invariants that were introduced in [137] in analogy
to gauge theory. In global fits to data [126, 138, 139] the invariant triangle construction
by Jarlskog and Bjorken (see [147] and references therein) can be overconstrained. This
gives an important test of the SM.

Having by the area of the unitarity triangle a very intuitive geometrical picture and mea-
sure of CP violation at hand, how big actually is the CP violation in the SM? In order
to answer this question, Jarlskog introduced a normalized version of her determinant that
lies a priori in the range −1 ≤ aCP ≤ 1 [144]

aCP ≡ 3
√

6
detC

Tr3/2(C2)
= −
√

6
Tr

(
[U,D]3

)
Tr3/2 ([U,D])

≈ 3
√

3
m2

c

m2
t

m2
s

m2
b

η

A
∼ 10−8. (2.39)

Here, it is iC = [U,D]. Using the measure Eq. (2.39), CP violation seems to be quite
“small”. At any rate, it is several orders of magnitude too small to explain the observed
matter-antimatter asymmetry, see the review [43]. Nevertheless, in b decays CP violation
can be sizable as it is proportional to the large invariant angles of the unitarity triangle.

Geometric Interpretation II: Abstract angles between Yukawa matrices In this para-
graph we briefly inspect whether normalized measures as the one in Eq. (2.39) do exist
also for the other trace invariant generators besides the Jarlskog determinant. This leads
to yet another invariant geometric picture of flavor.

Already Jarlskog has defined an abstract angle between mass matrices that measures their
misalignment [154]

cos θ =
Tr(UDUD)
Tr(U2D2)

, (2.40)

with θ = 0 if and only if [U,D] = 0. A similar angle has been recently defined in [155–
157]. For the traceless matrices u and d that correspond to U and D as in Eq. (2.28) it is
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given as [155]

cos θud =
Tr(ud)√

Tr(u2)Tr(d2)
. (2.41)

In [155–157] it is shown that analogous angles are especially useful in the analysis and
classification of NP flavor structures. Furthermore, it is found that in two generations
[155]

cos 2θC = cos θud , (2.42)

i.e., the abstract angle between Yukawa matrices and the Cabibbo angle are directly con-
nected. Eq. (2.42) can also be obtained using Jarlskog’s projection formalism which
shows the other way around that all invariant approaches hang together: In [142] the
general formula for expressing the CKM matrix elements by trace invariants is applied to
two generations. Using additionally cos 2θ = −1 + 2 cos2 θ one obtains

cos 2θ = −1 + 2
Tr(UD) − 2(m2

cm2
d + m2

um2
s)

(m2
c − m2

u)(m2
s − m2

d)
. (2.43)

Plugging now U = 1
3Tr(U)1 + u and D = 1

3Tr(D)1 + d into Eq. (2.43) one obtains again
Eq. (2.42).

But now, which and how many independent of such abstract angles between Yukawa
matrices can be defined in three generations? This can be answered easily, knowing the
structure of the algebra C32. From the trace invariant formalism we see that only four such
abstract angles suffice to determine the mixing in the quark sector of the SM:

cos θ1 =
Tr(UD)√

Tr(U2)Tr(D2)
, cos θ2 =

Tr(U2D)√
Tr(U4)Tr(D2)

, (2.44)

cos θ3 =
Tr(UD2)√

Tr(U2)Tr(D4)
, cos θ4 =

Tr(U2D2)√
Tr(U4)Tr(D4)

. (2.45)

Traces of higher powers like Tr(U4) and Tr(D4) can be reduced to traces of lower powers
of U and D [149]. Like the angles of the CKM triangle the four angles of Eqs. (2.44) and
(2.45) specify the abstract geometry of flavor and contain the full information of quark
mixing. From the defining relation in C32 we know that they also determine the square of
the Jarlskog determinant [149].

To summarize, there are several very different but equivalent approaches to parametrize
flavor (beyond the masses) and CP violation. In the SM with three generations we dis-
cussed in this paragraph the following options:

• Three Euler angles and one phase of the CKM matrix, for example in its standard
parametrization.



2.2. Flavor and CP Violation in the Standard Model 17

• Four absolute values of CKM matrix elements plus the sign of the Jarlskog deter-
minant.

• Plaquette invariants, i.e., the angles of the unitarity triangles.

• Trace invariant generators of the algebra C32.

• Abstract angles between flavor matrices.

The trace invariants introduced in this section can be used in model building for the con-
struction of a potential of scalar spurion fields [149, 158–160]. The extremization of such
a potential is supposed to reproduce the measured Yukawa couplings – for example in the
sequential breaking of flavor symmetries [158]. For local flavor symmetries, the latter has
in turn implications for phenomenology in form of additional heavy gauge bosons, the
modification of flavor observables or the solution of the strong CP problem [158, 161].
Furthermore, abstract angles between NP and SM flavor structures can serve as model-
independent covariant measures of misalignment [155–157].

After the overview of possible parametrizations of flavor and CP violation, in the next
section we turn to the CP invariant part of the SM and ask about the flavor structure of
QCD.

2.2.2. Approximative SU(3)-Flavor Symmetry of QCD

From the perspective of the QCD part of the SM, the only place where the flavor of quarks
does appear are their mass terms. The gluon-fermion interaction is flavor-diagonal. For
approximately degenerate quark masses as in the case of u and d quark,

mu − md � ΛQCD , (2.46)

the QCD Lagrangian is approximately invariant under unitary transformations of these
quarks. For u and d this results in the SU(2) isospin symmetry, which is realized very well.
The isospin symmetry can be extended to an approximate SU(3)F symmetry including
also the s quark. However, while mu,d � ΛQCD, the mass of the strange quark ms is
significantly larger and gives a perturbation to the SU(3)F symmetry limit mu = md = ms.
We expect a perturbation of the SU(3)F symmetry by the strange quark mass to a generic
amount of ∼ 30%. One can perform a systematic expansion in this perturbation, see
below. Besides isospin (symmetry between u⇔ d), the SU(3)F group has as its subgroups
the SU(2) groups U-spin (symmetry between d ⇔ s) and V-spin (symmetry between
u⇔ s).

Historically, the SU(3)F symmetry has been found in spectroscopy. In form of the famous
“eightfold way” it provided the great simplification that lies in the realization that each
member of the zoo of hadronic particles is again composed of even smaller particles, the
quarks [162–164]. The latter were in the following regarded elementary. For example,
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the group theoretic foundation of the meson octet is the equation

⊗ = ⊕
SU(3)
= ⊕ 1 , (2.47)

i.e. in SU(3): ⇒ 3 ⊗ 3̄ = 8 + 1 , (2.48)

where we use the language of the Young tableaux.

A key point in order to benefit from the symmetry is a remarkable theorem by Wigner and
Eckart [165–167]. In the notation of de Swart, it reads [168]

(
φ

(µ3)
ν3
,T (µ2)

ν2
φ

(µ1)
ν1

)
=

∑
γ


µ1 µ2 µ3γ

ν1 ν2 ν3


〈
µ3

∣∣∣ T (µ2)
∣∣∣µ1

〉
γ
, (2.49)

with the reduced matrix elements
〈
µ3

∣∣∣ T (µ2)
∣∣∣µ1

〉
γ

that have Clebsch-Gordan coefficients in

front of them. Here, φ(µ1)
ν1

is the initial state, T (µ2)
ν2

is an irreducible tensor operator and φ(µ3)
ν3

is the final state. νi are angular momentum quantum numbers,
{
µi
}

the corresponding irre-
ducible representations and γ additional quantum numbers belonging to physics outside
the considered group. Using Eq. (2.49) one can express amplitudes by reduced matrix
elements that do not depend any more on the quantum numbers from angular momentum
νi, but only on the given representations of initial and final state as well as the tensor op-
erator. In this way the number of parameters compared to using directly the left-hand side
of Eq. (2.49) can be reduced and symmetry correlations can be obtained. For details on
the proof of the Wigner-Eckart theorem see [168] and also [169].

In order to take SU(3)F breaking into account, we apply perturbation theory. Considering
an operator O(x) between full initial and final states

∣∣∣ĩ〉,
∣∣∣ f̃ 〉, respectively, to linear order it

is [170]

〈
f̃
∣∣∣O(0)

∣∣∣ĩ〉 = 〈 f | O(0) |i〉 − i
∫

d4x 〈 f |T
[
O(0)Hbreak(x)

]
|i〉 , (2.50)

with a breaking term which for our purposes is given as Hbreak = ms s̄s. Here, |i〉 and
| f 〉 are SU(3)F symmetric states. In Eq. (2.50) an analysis of the SU(3)F structure has
to be done and subsequently Eq. (2.49) has to be applied. Then one obtains beyond the
reduced SU(3)F limit matrix elements also the additional SU(3)F breaking reduced matrix
elements.

The systematic expansion in SU(3)F breaking will be demonstrated to linear order in Ch. 5
for nonleptonic charm meson decays, where we apply Eqs. (2.49) and (2.50) in practice.
There, we will also test the amount of SU(3)F breaking by fits of the reduced matrix
elements to data.
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2.3. Probing CP Violation in Meson Decays

While in Sec. 2.2.1 we studied the possible parametrizations of flavor and CP violation
from the theory side, in this section we inspect the phenomenology and the types of ob-
servables in order to probe CP violation.

It turns out that though stemming all from one CP-violating phase of the CKM matrix,
three different types of CP violation can be distinguished for the decays of K, D and B
mesons. For the definition of these mesons and their antiparticles we use the convention
[89]

B̄ = (bq̄) B = (b̄q) (2.51)
K̄ = (sq̄) K = (s̄q) (2.52)
D̄ = (c̄q) D = (cq̄). (2.53)

In order to discuss the different types of CP violation we have to introduce some more
notation, following Ref. [89]. For the CP conjugation of a meson |M〉 we write

∣∣∣M〉
, in

the same way we do so for the CP conjugation
∣∣∣ f̄ 〉 of a final state | f 〉. We write then the

amplitudes of meson decays as [89]

A f = A(M → f ), A f = A(M → f ), A f̄ = A(M → f̄ ), A f̄ = A(M → f̄ ). (2.54)

In the case of neutral mesons, the particle and antiparticle have the same quantum num-
bers so that the phenomenon of meson-mixing takes place. Due to the long time scales
of our measurements in collider physics compared to the ones of QCD we can use the
standard non-relativistic quantum mechanics of an approximate two state system, the so-
called “Wigner-Weißkopf” approximation, in order to describe the meson oscillations
[171, 172]. The mass eigenstates of the mesons can be written in form of the flavor
eigenstates as follows:∣∣∣MLight

〉
= p

∣∣∣M0
〉
− q

∣∣∣∣M0
〉
,

∣∣∣MHeavy

〉
= p

∣∣∣M0
〉

+ q
∣∣∣∣M0

〉
. (2.55)

with parameters p and q that fulfill |p|2 + |q|2 = 1. For example, in the Kaon system
it is

∣∣∣KL
〉
≡

∣∣∣MHeavy

〉
and

∣∣∣KS
〉
≡

∣∣∣MLight

〉
. In order to get the time dependence of the

neutral meson decays one has to solve the Schrödinger equation in the Wigner-Weißkopf
approximation:

i
d
dt


∣∣∣M0(t)

〉
∣∣∣∣M0

(t)
〉
 =

(
M −

i
2

Γ

) 
∣∣∣M0(t)

〉
∣∣∣∣M0

(t)
〉
 , (2.56)

with 2 × 2 matrices M and Γ. The result can be found in the literature [89]. For a
more detailed deviation see also [120, 121, 173]. Denoting the eigenvalues of M − i

2Γ as
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x y

K 0.946 ± 0.002 a[89] 0.9965 ± 0.0006 a[89]

D 0.0063+0.0019
−0.0020 [63] 0.0075 ± 0.0012 [63]

Bd 0.770 ± 0.008 b[63] 0.008 ± 0.009 cd[63]

Bs 26.74 ± 0.22 [63] 0.072 ± 0.011 cd[63]

Table 2.1.: Comparison of measured x and y for the different meson systems, see text
for details. aOur calculation from ∆mK , τS and τL, error obtained by Gaussian error
propagation. bAssuming y = 0. cAssuming sign(ReλCP) = +1. dObtained from value for
∆Γ/Γ by Eq. (2.57).

mL,H −
i
2ΓL,H important characteristics of the mixing of K, D, Bd and Bs can be written in

form of the parameters

x =
∆m
Γ

and y =
∆Γ

2Γ
, (2.57)

with

∆m = mH − mL , ∆Γ = ΓH − ΓL , Γ =
ΓH + ΓL

2
. (2.58)

Here, the subscript “H” stands for the heavier and “L” for the lighter eigenstate. It is a
priori −1 ≤ y ≤ 1. We compare the values for x and y that are realized in the different
meson systems in Table 2.1. It turns out that they differ quite substantially. The mass
difference ∆m takes the role of the oscillation frequency of the mixing between

∣∣∣M0
〉

and∣∣∣∣M0
〉
. Consequently, x gives the relative frequency compared to the average decay rate.

In the Bs system x has the largest value, i.e., the mixing takes place very fast. In D mixing
x and also y are very small, i.e., the mixing is barely visible. This was also one of the
reasons why for the D system it took the longest time of all the meson systems shown
in Table 2.1 to observe its mixing. Among the remaining features, in the Bd system the
width difference ∆Γd is negligible with respect to ∆md. For the Bd and Bs system the SM
predicts [174]

∆Γd/Γd = 0.0042 ± 0.0008 ∆Γs/Γs = 0.137 ± 0.027. (2.59)

This is in striking contrast to the Kaon system. Here, y is very near to one, i.e., the
maximum value, as the lifetimes of KS and KL are drastically different, τS = (8.954 ±
0.004) · 10−11s and τL = (5.116 ± 0.021) · 10−8s. Therefore, after a while a kaon beam
only consists of KL states.
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We come now to the discussion of the different forms of CP violation. The three different
types that one can observe in meson decays are the following:

• (Direct) CP violation in decay⇔
∣∣∣A f̄ /A f

∣∣∣ , 1.

• CP violation in mixing⇔ |q/p| , 1.

• CP violation in the interference between decays with/without mixing
⇔ Im

[
(q/p)

(
A f /A f

)]
, 0.

We also use the notation λ f ≡ (q/p)
(
A f /A f

)
. For the direct CP asymmetry of a decay d

we write

adir
CP(d) =

|A(d)|2 − |A(d)|2

|A(d)|2 + |A(d)|2
. (2.60)

In charged meson decays, only direct CP violation is possible. Examples for the oc-
currence of CP violation in mixing can be found in semileptonic decays of the neutral
mesons. The third category comes across in decays of neutral mesons to CP eigenstates.

Additionally, there are time integrated and time dependent measurements of CP violation.
In the latter, time-resolved experiments, one can disentangle direct and indirect CP vio-
lation. For example for Bd, where y � 1, one can write the time dependence of a decay
amplitude as [89]

A f (t) = S f sin(∆mt) −C f cos(∆mt) , (2.61)

with

S f =
2Im(λ f )

1 + |λ f |
2 , C f =

1 − |λ f |
2

1 + |λ f |
2 . (2.62)

Here, S f is the contribution to CP violation from interference between decays with/without
mixing and C f is the one from direct CP violation.
An example for a time-integrated CP observable using a semileptonic decay is given in
the Kaon system by [89]

δL =
Γ(KL → l+νlπ

−) − Γ(KL → l−ν̄lπ
+)

Γ(KL → l+νlπ
−) + Γ(KL → l−ν̄lπ

+)
=

2Reε
1 + |ε|2

= (3.32 ± 0.06) · 10−3. (2.63)

If we want to extract the direct CP violation of a decay with a neutral Kaon in the final
state, we have to subtract the contribution to CP violation from mixing. We do so for
example for the decays D+

→ KS K+ and Ds → KSπ
+, see Ch. 5. It is [175]

adir
CP(D+

→ KS K+) = ACP(D+
→ KS K+) + δL , (2.64)

adir
CP(Ds → KSπ

+) = ACP(Ds → KSπ
+) − δL . (2.65)

The sign in front of δL depends on a K0 or a K̄0 being in the final state of the flavor flow,
as e.g. explained in [176]. The contribution is −δL for a K̄0 and +δL for a K0.
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In the charm system, it holds x, y � 1. Writing the charm decay amplitude as A f =

AT
f eiφT

f
(
1 + r f e

i(δ f +φ f )
)

with a strong phase φ f and a weak phase δ f it holds furthermore
r f � 1 [177]. As a consequence, the total time-integrated CP asymmetry a f of D0 decays
can be written approximately as a sum of a direct (ad

f ), a mixing (am
f ) and an interference

(ai
f ) contribution linear in r f , y and x, respectively, [177]

a f = ad
f + am

f + ai
f . (2.66)

The direct contribution can because of r f � 1 approximately be written as [177]

ad
f = 2r f sin φ f sin δ f . (2.67)

From Eq. (2.67) we learn that for ad
f , 0 both a nonvanishing weak and strong phase

difference is needed. Considering further the features of Eq. (2.66), for example in the
decays D0

→ K+K− and D0
→ π+π− the indirect contributions to CP violation are the

same. Consequently, it is very convenient from the experimental point of view to measure
the difference of the respective CP asymmetries. In this case the indirect contributions
cancel out and we are left (approximately) with the difference of the pure direct CP vio-
lation of these channels:

∆ACP ≡ ACP(D0
→ K+K−) − ACP(D0

→ π+π−) (2.68)

≈∆adir
CP ≡ adir

CP(D0
→ K+K−) − adir

CP(D0
→ π+π−). (2.69)

We will come back to this in Sec. 5.

2.4. Flavor and CP Violation beyond the Standard Model

In view of the vast hierarchy between the electroweak and the Planck scale there are sev-
eral classes of models that try to explain, stabilize or remove this disparity in order to
make the theory more natural. Among the most promising candidates are SUSY, addi-
tional strong dynamics in composite models or extra dimensional models. In order to
calculate the resulting physics in these models an inevitable tool is the effective theory
framework that we will briefly discuss in the next section before we give a short overview
of SUSY in Sec. 2.4.2. In Ch. 3 we will give then a specific phenomenological appli-
cation. For a four-dimensional effective theory of a composite Higgs model see [178].
Implications of extra dimensional models on flavor can be found in [179]. For details and
further references with respect to the effective field theory description of meson decays
see Ref. [180].

2.4.1. Effective Theories

Effective field theories are designed in order to describe physical systems at a certain
(low) energy scale. In b physics this is the scale of the mass of the b quark O(mb) which



2.4. Flavor and CP Violation beyond the Standard Model 23

is much smaller than the electroweak scale O(mW). As a nontrivial consequence one
can “integrate” out heavy particles from the theory and write down the interplay of short
distance physics at the electroweak or a higher energy scale and the long distance physics
at a lower energy scale in factorized form. The ∆B = 1 Hamiltonian that we will use in
Ch. 3 in order to describe the impact of B̄→ K̄(∗)l+l− observables on the SUSY parameter
space is given as

Heff = −
4GF
√

2
VtbV∗ts

∑
i

Ci(µ)Oi(µ) , (2.70)

with the Fermi constant GF . The analogue for ∆C = 1 transitions will be outlined in Ch. 5.
The separation of long and short distance physics is given by the factorization scale µ. The
Oi include only the fields of the particles that are not integrated out. The short distance
Wilson coefficients Ci contain the high energy scale parameters of the particles that have
been integrated out. The concrete operators in Eq. (2.70) can be found in [181]. The most
important ones for B̄ → K̄(∗)l+l− will be given in Ch. 3. In NP theories can appear on
the one hand additional operators Oi and on the other hand additional contributions to the
Wilson coefficients. Seeing it from another point of view one can also use the basis of
operators of the effective framework in order to do model-independent scans and fit the
Wilson coefficients [182–184].

While Eq. (2.70) gives a handle to disentangle short and long distance physics in a fac-
torized form, it is by far not the “solution” to the problem that follows: While the Wilson
coefficients can be calculated mostly perturbatively in a given theory, for the long distance
physics that governs the hadronic matrix elements 〈 f |O j |i〉 between initial and final states
|i〉 and | f 〉, respectively, one needs at any rate nonperturbative means. Depending on the
problem there are solutions given by lattice QCD, QCD sum rules, chiral perturbation
theory, the Heavy Quark Expansion, the Heavy Quark Effective Field Theory (HQET)
and several other types of effective theories, see e.g. [185].

If these methods work for b physics this does not mean on the other hand that they do
likewise for charm physics. The point is that the b quark mass is considerably larger than
the scale of QCD ΛQCD, while the charm quark has an intermediate mass not very far away
from ΛQCD. We will show in Chs. 5 and 6 how we can nevertheless make progress by the
use of the approximate SU(3)F symmetry of QCD that was introduced in Sec. 2.2.2.

An interesting property of B̄ → K̄(∗)l+l− is that in different kinematic regions distinct
theoretical approaches apply. We will come back to this point in Chs. 3 and 4. In the
latter we will also elaborate on how we can benefit from the information we can get from
the lattice and sum rules.

2.4.2. The Minimal Supersymmetric Standard Model

In this section we give a short introduction to SUSY and the Minimal Supersymmetric
Standard Model (MSSM). For more details on the foundations beyond the following syn-
opsis see e.g. the reviews in [89, 186–188].
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Symmetry of Fermions and Bosons from a Unique Extension of the Poincaré Group

According to the general theorems by Coleman-Mandula [189] and Haag-Lopuszanski-
Sohnius [190] SUSY is under some very generic assumptions the unique extension of
the Poincaré symmetry. SUSY relates on a fundamental level the fermionic and bosonic
degrees of freedom of a theory [191–194]. The usual space-time with Poincaré symmetry
is extended by an N-dimensional superspace. The incorporation of SUSY into quantum
field theory has been given in [195, 196]. In minimal versions of SUSY one uses an N = 1
dimensional superspace, as is the case in the MSSM [197, 198].

A direct prediction of SUSY are many additional particles that have the same mass as
the particle content of the SM but differ in spin: Fermionic and bosonic degrees of free-
dom correspond to each other. None of these particles have up to now been observed,
i.e., assuming SUSY exists, it must be broken. An obvious idea to implement this into
a quantum field theory is to construct a mechanism inspired from the Higgs mechanism
for electroweak symmetry breaking in the SM, i.e., the spontaneous breaking of SUSY
[199–201]. In the MSSM one parametrizes the breaking of SUSY as a global symmetry.
In supergravity theories, where SUSY is connected to a theory of gravity, SUSY is broken
as a local symmetry [202–205].

From the theoretical perspective the mathematical uniqueness of SUSY with respect to the
Poincaré group gives already a strong motivation to search for the additional “sparticles”
predicted in SUSY. Unfortunately, the Haag-Lopuszanski-Sohnius theorem does not give
a mass scale for SUSY breaking, being a completely general mathematical result. But
indeed there are also reasons to expect the observation of SUSY particles at the “low”
energy scales available right at the LHC, i.e., at the terascale. The reason lies in important
features, that SUSY has only at the terascale, in addition to the unique group theoretic
and algebraic conjunction with the Poincaré symmetry which is completely general.

Firstly, at the terascale SUSY could solve the gauge hierarchy problem by removing the
fine tuning problem between the Higgs mass and its radiative corrections from Planck
scale physics which leads to quadratic divergencies [206–211]. This hierarchy problem
of the SM viewed as an effective theory is special to scalar particles because the fermion
masses renormalize only logarithmically and are protected by a chiral symmetry. Thus a
small fermion mass is natural, but a small scalar mass is not – hence the special role of
the Higgs which is the only scalar particle in the SM [212–216].
The Higgs mass gets the strongest loop corrections from the heaviest particles that are
contained in the theory and couple to it. As the SM does not contain gravitation, at
the latest at the Planck scale there is physics beyond the SM that will then give huge
corrections to the mass of the Higgs. The solution of SUSY is provided by adding more
(scalar) particles to the theory that have just the right properties, i.e. couplings and masses,
to cancel these divergencies. In unbroken SUSY the scalar partners of the fermions cancel
exactly the divergencies coming from the SM fermions. If SUSY is not broken with too
heavy sparticles, this can still be provided approximately. The correction to the Higgs
mass is then proportional to the size of the splitting between fermion and sfermion masses
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[187]. As long as this result is of the order of the Higgs mass itself, the theory does not get
unnatural again. This is a great motivation that SUSY should be realized at the terascale.
If the SUSY scale is too far beyond the terascale, it will not help to solve the hierarchy
problem any more and to remove the unnaturalness from the SM.

The second feature of TeV-scale SUSY is the unification of the gauge couplings at ∼ 1016

GeV which would indicate the existence of a grand unified theory (GUT), i.e., a gauge
group that contains all the gauge groups of the SM [217–222]. In these theories at the
high scale also a reduction of flavor parameters takes place, as for example in form of the
Georgi-Jarlskog mass relations in an SU(5) model: mb = mτ, mµ = 3ms and me = 1

3md
[223].

Thirdly, an additional motivation for SUSY is that in its framework one can easily provide
a dark matter candidate. This is an argument which is in principle independent of the scale
of the SUSY particles. However, it happens that the mass of weakly interacting massive
particles (WIMPs) should also have a mass of the order of a TeV in order to account
for the observed relic density, which is the so called “WIMP miracle” [224]. So if dark
matter is made of SUSY particles this is an additional motivation that the mass scale of
the SUSY particles should be near the terascale.

In order to account for a dark matter candidate in SUSY one can simply introduce an
additional symmetry, the so called R- or matter parity [198, 209, 225–228]. At the same
time this symmetry is convenient in order to forbid the proton to decay too fast by baryon
and lepton number violating SUSY vertices leading to p → l+π0. The R-parity quantum
number is given as PR = (−1)3(B−L)+2s so that for all SM particles it follows PR = +1
and for all SUSY partner particles PR = −1. If PR is conserved, a direct consequence is
that the lightest SUSY particle (LSP) cannot decay further and is an obvious dark matter
candidate [229, 230]. A typical dark matter candidate in R-parity conserving SUSY is
the lightest neutralino. Alternatively, it is also possible that the gravitino takes this role,
especially in case of gauge-mediated SUSY breaking [186]. One can also construct viable
SUSY models with R-parity violation [231–236]. In this case, the gravitino can also serve
as a dark matter candidate [237, 238]. Other options are then given by the axion [239] or
its SUSY partner particle, the axino [240].

Soft SUSY Breaking and (S)particle Content of the MSSM

In order to break SUSY there are different approaches proposed in the literature. Ex-
amples are minimal supergravity (mSUGRA), gauge mediation and anomaly mediation,
for details and further references see [186]. As the breaking mechanism of SUSY is not
known, it is convenient to parametrize our lack of knowledge in form of explicit SUSY-
breaking terms in the Lagrangian. Modifying SUSY in this way by hand one has to be
careful to still ensure the stability of the quantum corrections to the scalar masses, espe-
cially to the Higgs mass in order to not reintroduce the fine-tuning whose abolishment is
one of the main motivations to introduce low-scale SUSY. Terms fulfilling this criterion
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are called soft in contrast to hard breaking which leads again to too strong divergencies.
The property of soft SUSY breaking can be uniquely determined in a formal way, es-
pecially excluding operators like φψψ with mass dimension ≥ 4. [209, 210, 241, 242].
The explicit soft SUSY-breaking terms form then an effective theory for the spontaneous
breaking of SUSY. Especially due to the soft terms the MSSM ends up with a total of
∼124 parameters [243, 244]. The soft breaking terms constitute many new sources of
flavor violation in SUSY. As SUSY itself does not say anything about the flavor viola-
tion in SUSY breaking, SUSY flavor violation is generically large. On the other hand, the
flavor-changing neutral current (FCNC) data partly drastically constrains the SUSY flavor
violation, so that one needs a non-generic structure [245]. A very interesting example for
such constraints will be given in Ch. 3. FCNC bounds lead to the so-called SUSY flavor
problem.

The matter content of the MSSM is organized in chiral and vector supermultiplets (φ, ψ, F)
and (V, λ,D), respectively. The fields in the multiplets are scalars φ, fermions ψ, vector
gauge bosons V , gauginos λ and auxiliary scalar fields F and D. Following [246] we write
the Lagrangian of the MSSM as

L = LSUSY +Lsoft , (2.71)

with [246]

LSUSY = −
1
4

(
FA

G

)µν (
FA

G

)
µν

+ λA
Gi /DABλ

B
G +

(
Dµφ

)† (Dµφ
)

+ ψ̄i /Dψ

−

[(
dW
dΦi

)∗ ( dW
dΦi

)
+

1
2

(
∂2W

∂Φi∂Φ j
ψT

i Cψ j + h.c
)]

Φ→φ

−
√

2gG

[
φ†T A

G

(
λA

G

)T
Cψ + h.c.

]
−

1
2

g2
G

(
φ†T A

Gφ
) (
φ†T A

Gφ
)
, (2.72)

and the superpotential

W = µH1H2 + YU
i j QiU

c
j H2 + YD

i j QiD
c
jH1 + YE

i j LiE
c
jH1. (2.73)

The additional soft breaking terms are given as [246]

Lsoft = −
1
2

(
mg̃g̃a TCg̃a + mW̃W̃ iTCW̃ i + mB̃B̃TCB̃ + h.c.

)
− m2

1h†1h1 − m2
2h†2h2 − q̃†i

(
M2

q̃

)
i j

q̃ j − ũc†
i

(
M2

ũc

)
i j

ũc
j − d̃c†

i

(
M2

d̃c

)
i j

d̃c
j

− l̃†i
(
M2

l̃

)
i j

l̃ j − ẽc†
i

(
M2

ẽc

)
i j

ẽc
j

+
(
AU

i j q̃iũ
c
jh2 + AD

i jq̃id̃
c
jh1 + AE

i jl̃iẽ
c
jh1 + Bµh1h2 + h.c.

)
. (2.74)

The particle content encoded in Eqs. (2.71)-(2.74) is given as follows below, using the
generation index i.

• Members of chiral superfields Qi,U
c
i ,D

c
i , Li, E

c
i ,H1,H2

(1 chiral superfield for each SM fermion and 2 Higgs chiral superfields)
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– Fermions (spin 1/2)

* Left- and right-handed quarks: qi =
(
ui, di

)T, uc
i , dc

i
with quantum numbers (3, 2, 1/6).

* Left- and right-handed leptons: li =
(
νi, ei

)T, ec
i

with quantum numbers (1, 2,−1/2)

* 2 Higgsino doublets: h̃1 = (h̃0
1, h̃

−
1 ) and h̃2 = (h̃+

2 , h̃
0
2)

with quantum numbers (1, 2, 1/2) and (1, 2,−1/2), respectively.

– Scalars (spin 0)
(with quantum numbers as their corresponding supermultiplet-partners)

* Squarks with left- and right-handed degrees of freedom (dof ):
q̃i =

(
ũi, d̃i

)T
, ũc

i , d̃c
i .

* Sleptons with left- and right-handed dof : l̃i =
(
ν̃i, ẽi

)T, ẽc
i .

* 2 Higgs doublets: h1 = (h0∗
1 ,−h−1 ) and h2 = (h+

2 , h
0
2)

8 dof ⇒ 3 Goldstone bosons G0, G± plus 5 physical Higgs fields:
h0, H0 (neutral, CP-even), A0 (neutral, CP-odd), H± (charged)

• Members of vector gauge superfields Va
g , Vk

W , VB
(1 vector superfield for each SM gauge boson)

– Vector Bosons (spin 1)

* Gluons (8, 1, 0), B0 boson (1, 1, 0) and W±,W0 bosons (1, 3, 0)

– Gauginos (spin 1/2)
(with quantum numbers as their corresponding supermultiplet-partners)

* Gluinos g̃a, bino B̃0 and winos W̃±, W̃0

Among the particles manifold mixing takes place: Similarly to the mixing of the SM
fields B0 and W0 to γ and Z during electroweak symmetry breaking we have also mixing
between gauginos and higgsinos:

• Mixing of charged gauginos W̃± with charged higgsinos h̃−1 , h̃+
2

⇒ 2 charginos χ̃±

• Mixing of neutral gauginos B̃0, W̃0 with neutral higgsinos h̃0
1, h̃0

2
⇒ 4 neutralinos χ̃0

The mass matrix of the charginos can be written as

Mχ̃± =


M2

√
2mW sin β

√
2mW cos β µ

 . (2.75)
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As this matrix is neither symmetric nor hermitian in order to diagonalize it one has to
perform a general singular value decomposition (SVD) with two different unitary matrices
U and V:

U∗Mχ̃±V
† = diag(mχ̃1

,mχ̃2
). (2.76)

We implement the analytic expressions for a SVD of a 2 × 2 matrix according to Ap-
pendix A of [247]. The part of the Lagrangian that is relevant for b → s transitions via
gluino and chargino interactions can be found in the mass eigenstate basis in [246]. For a
complete list of Feynman rules that follow from the MSSM-Lagrangian, see Refs. [248,
249].

For each chirality of a quark there is a scalar partner squark. Consequently there are
six up and six down squarks, which also mix with themselves, respectively. The mass
matrices of the squarks are therefore 6×6 matrices that are in general not diagonal. A
parametrization using the so called “mass insertion parameters” is given in Ch. 3.

The Higgs sector of the MSSM consists of a two Higgs doublet model. The ratio of the
two different vevs is measured by tan β = v2/v1, where 〈h0

1〉 = v1/
√

2 and 〈h0
2〉 = v2/

√
2.

For their sum we have

v2
1 + v2

2 = v2
∼ (246 GeV)2 . (2.77)

At tree level the masses of the lightest physical Higgs is given as [186]

m2
h0,H0 =

1
2

(
m2

A0 + m2
Z ∓

√
(m2

A0 − m2
Z)2 + 4m2

Zm2
A0 sin2(2β)

)
. (2.78)

Note that in the so called “decoupling limit”, i.e., in the case mA0 � mZ , Eq. (2.78)
means that at tree level it is m2

h0 ∼ m2
Z cos2(2β) [186]. Clearly, in view of the measured

Higgs mass, if interpreted within the MSSM, quantum corrections are necessary at any
rate in order to get a realistic Higgs mass. Indeed, it turns out that the one- and two-loop
corrections are so large that the Higgs mass can be lifted into the physical region. In order
to take this effect into account we use the software FeynHiggs [250–254], see Ch. 3.

In mSUGRA or the Constrained Minimal Supersymmetric Standard Model (CMSSM)
the number of parameters is reduced (quite ad hoc) from the mentioned 124 to only five,
specified at the GUT scale. These are given as a unified scalar mass m0, a unified gaugino
mass m1/2, a common trilinear coupling A0 as well as tan β and sgn(µ).

SUSY Problems

Although there are many motivations for SUSY there are also several problems that have
to be addressed in SUSY model building. There are problems that result from the experi-
mental situation, i.e., we have not found any SUSY signal yet, as well as inherent theoret-
ical issues. An example is the SUSY flavor problem. It originates from the bounds from
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FCNCs and additionally also from the requirement of a (meta)stable vacuum [255, 256].
These problems have to be solved by a dedicated model of SUSY breaking.
Furthermore, in simplified models the mass spectrum of SUSY keeps to be pushed up
by the results from the LHC [257–264]. The χ2/dof of global CMSSM fits gets larger
taking into account current data, especially also the measured value of the Higgs mass
[52, 53, 265]. For the latter quite large A terms are needed. The direct searches cannot ex-
clude SUSY as a whole. However, without a signal at some point SUSY will not solve the
hierarchy problem any more. This would remove one of the strongest arguments in favor
of SUSY, besides its mathematical elegance. Of course such a situation has by far not yet
arrived. But there emerges a “little hierarchy problem” [266–268] if SUSY is broken too
much, because one then has to reintroduce some fine tuning in order to get a Higgs mass
at the electroweak scale. In extensions of the MSSM this problem can be alleviated, see
recently e.g. [269, 270].
Another problem is for example to find an explanation for why the higgsino mass pa-
rameter µ is of the same order of magnitude as the in principle physically unrelated soft
masses, the so-called µ-problem [271, 272].
Continuing with possible sources of phenomenological problems, in the MSSM there are
not only many additional new sources of flavor violation but also of both flavor depen-
dent and independent CP violation. All CP phases of the MSSM can be represented in an
invariant way by using trace invariants, similar to the one CP violating phase of the SM
which can be expressed by the Jarlskog determinant. For the (s)quark sector of the MSSM
this is done systematically in Ref. [273], for the (s)leptons in [274]. A generalization of
Jarlskog’s projector formalism to the MSSM and more examples are given in [275].

2.4.3. Minimal Organizing Principles of Flavor Violation

Models of Flavor and Minimal Ansätze In the literature, many attempts were made
for an explanation of the origin of flavor. A promising idea in order to account for the
hierarchies is to introduce an additional interaction with a “flavon” field, e.g. by a U(1)
symmetry. Depending on the charge under the additional symmetry different flavors of
quarks and leptons couple to different numbers of the flavon field. When the flavon gets a
vev during spontaneous breaking of the U(1) symmetry the values of the elements of the
Yukawa matrices can emerge in a natural way [276]. The flavon field itself is usually an
effective theory description of heavy fermions at a higher mass scale, for a nice review see
Ref. [277]. An alternative is the use of discrete horizontal symmetries [278, 279]. Using
the discrete group ∆(27) one can also account for the CP violating phase of the CKM
matrix [280, 281].
A very interesting approach to an organizing principle of flavor is a gauge theory of flavor,
as recently considered in Refs. [282–287]. It is an intriguing idea that the gauge principle
that is so successful in describing the fundamental interactions could also be the key to
flavor.
Regarding models beyond the SM, a minimal ansatz for the flavor structure of NP models
is the general idea that they could be the same or proportional to the flavor structure known
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in the SM. This idea is commonly denoted by Minimal Flavor Violation (MFV) [242, 288–
291]. However, the concrete implementation and meaning of this concept varies in the
literature.
The most intriguing way in order to implement the minimality principle into a theory is
the group theoretic way proposed in Ref. [290]. Here one formally demands invariance
under the flavor symmetry group GF of the SM, see Eq. (2.14). This feature is provided
by postulating that the Yukawa matrices of the SM are spurions with nontrivial represen-
tations under GF . Specifically, one uses the assignments

Yu : (3, 3̄, 1) , Yd : (3, 1, 3̄) (2.79)

under the U(3)QL
⊗ U(3)U ⊗ U(3)D subgroup of GF , so that Yu and Yd transform as

Yu 7→ ULYuU†uR
, Yd 7→ ULYdU†dR

(2.80)

under GF transformations. Similar expressions can be written down also for the leptons.
In this way, the corresponding transformations of the fermion fields are exactly balanced,
so that the Lagrangian becomes formally invariant under GF . The vevs of the Yukawa
spurions are the usual Yukawa matrices whose values remain unexplained in the frame-
work of MFV. In the considered NP theory the Yukawa spurions are then postulated to be
the only ones that may appear as generators of nontrivial flavor structures. Extended spu-
rion sectors beyond MFV are considered in [292]. One can further differentiate between
the case where the expansion in the Yukawa spurions can be truncated after the first orders
or where one has to take higher orders into account, depending on the size of the b and
t Yukawa couplings. Also then a (different) expansion is nevertheless possible, which is
given the name “General” MFV [293]. Furthermore, GF could be replaced by a discrete
symmetry [294].
The MFV-concept is useful in quite different contexts: For example, the group theory of
MFV can be used to construct natural dark matter candidates [295, 296]. Furthermore,
the assumption of MFV can be used in the MSSM instead of R-parity in order to stabilize
the proton [297, 298].
One can also turn the tables and see MFV just as a classification scheme for different
theories. For instance, one can classify the anomaly mediated SUSY model in Ref. [299]
as MFV and the hybrid gauge gravity model in [300, 301] as non-MFV.

In the MSSM with MFV, one can write the soft squared mass matrices and the trilinear
couplings as [290]

M2
qL

= m̃2
(
a11 + b1YuY†u + b2YdY†d + . . .

)
, (2.81)

M2
uR

= m̃2
(
a21 + b5Y†u Yu + . . .

)
, (2.82)

M2
dR

= m̃2
(
a31 + b6Y†d Yd + . . .

)
, (2.83)

Au = A
(
a41 + b7YdY†d + . . .

)
Yu , (2.84)

Ad = A
(
a51 + b8YuY†u + . . .

)
Yd . (2.85)
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But do these expansions actually contain any implications when the coefficients ai, bi are
arbitrary? Or are they just a way of writing the same thing in a different basis? Refor-
mulating this question, are the SM Yukawa spurions able to account for arbitrary flavor
structures? And if this is the case, which unique “if-and-only-if” property does guarantee
this?

Digression into Matrix Algebra The question if two spurions (from the SM or also
NP ones) can account for arbitrary flavor structures can be translated into a mathematical
one: “When do two matrices generate the algebra of 3 × 3 matrices M3(C)?” The latter
question is answered in the mathematical literature: Using Shemesh’s Theorem [302] the
following is found in Ref. [303]:

1. “The two 3 × 3 matrices A and B generate M3 if and only if both∑2
k,l=1

[
Ak, Bl

]∗ [
Ak, Bl

]
and

∑2
k,l=1

[
Ak, Bl

] [
Ak, Bl

]∗
are invertible.”1

2. “Let A, B ∈ M2. A and B generate M2 if and only if [A, B] is invertible.”

3. “Let A, B ∈ M3. If [A, B] is invertible, then A and B generate M3.”

4. “Let A, B ∈ M3. Then

det
(
I, A, A2, B, B2, AB, BA, [A, [A, B]] , [B, [B, A]]

)
= 9det [A, B] H ([A, B]) , (2.86)

so if det [A, B] , 0 and H ([A, B]) , 0, then{
I, A, A2, B, B2, AB, BA, [A, [A, B]] , [B, [B, A]]

}
(2.87)

form a basis for M3.”

Here, it is H(M) = 1
2

(
(TrM)2

− Tr(M2)
)
. For hermitian matrices A and B the first item

means that the necessary and sufficient condition for two hermitian flavor structures in
order to generate arbitrary flavor structures is given as

det
(
[A, B]2 +

[
A2, B

]2
+

[
A, B2

]2
+

[
A2, B2

]2
)
, 0. (2.88)

From such hermitian matrices one can also make up a basis of the 3 × 3 hermitian ma-
trices as a real vector space. Setting A = U = YuY†u and B = D = YdY†d with the SM
Yukawa matrices such a basis can be easily obtained from the basis given in Eq. (2.87).
Firstly, we replace DU by UD + DU which does not change the determinant of the 9 × 9
matrix. Then we replace UD 7→ 2i UD which changes the determinant in Eq. (2.86) to
18i det [U,D] H ([U,D]). Then 2iUD is replaced by

2iUD 7→ 2iUD − i {U,D} = i [U,D] , (2.89)

which again does not change the determinant. We arrive then at the basis{
1,U,U2,D,D2, {U,D} , i [U,D] , [U, [U,D]] , [D, [D,U]]

}
. (2.90)

1The “ ∗ ” here means complex conjugation and transposition.
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Implications of the Matrix Algebra Results for the MFV Expansion What do the
theorems of the previous paragraph mean for the MFV expansion? In our interpretation
the first two theorems are if-and-only-if criteria, while the third is an if-then statement
for the ability to account for arbitrary flavor structures with the SM Yukawa matrices.
The latter also agrees with the observation in [304, 305] that this is possible thanks to the
Jarlskog determinant being nonzero, i.e., that the SM violates CP.
Here, we want to point out that from the general theorems in [303] we learn that the
relation between being able to account for arbitrary flavor structures and CP violation is
not compulsory. One could in principle also account for arbitrary flavor structures without
CP violation as the non-vanishing of the Jarlskog determinant is not contained in the “if-
and-only-if” criterion.

Altogether, the Eqs. (2.81)-(2.85) are nothing more than a mere reparametrization as long
as one does not demand that the ai and bi are natural O(1) parameters [304–307]. The
SM Yukawa matrices can account for arbitrary flavor structures at the price of fine-tuned
coefficients, a feature which one can use in order to classify NP flavor structures in a
geometrical way by projecting given spurions on them [155, 156, 297, 304–307]. As
was shown in Refs. [155, 156, 305] one can construct even a metric of flavor space using
the Yukawa spurions, obtaining an abstract geometry of flavor.2 The coordinate system
given by the Yukawa matrices can in this way be used as an ordering principle for easier
identifying non-SM flavor structures.

2Note that speaking of “flavor geometry” is here only meant in an abstract sense, not in the sense of extra
space dimensions in Minkowski space.



3. Precision Probes of SUSY Flavor
Violation from B̄→ K̄(∗)l+l−

In this chapter we come to the first application of the general ideas that were developed
in Ch. 2. From data on rare exclusive semileptonic decays B̄ → K̄(∗)l+l− we derive con-
straints on SUSY flavor violation. Parts of the results presented here were recently pub-
lished also in Refs. [308, 309]. In the first section we review observables of the angular
analysis of B̄→ K̄(∗)l+l−.

3.1. Observables of the Angular Analysis of B̄→ K̄(∗)l+l−

Being a multi-body decay with a vector meson in the final state, B̄ → K̄∗(→ K̄π)l+l−

possesses a multitude of observables. These depend not only on different angles defined
below after Eq. (3.2) but also especially on the invariant mass squared q2 of the final state
lepton pair. The latter is a key variable for both B̄ → K̄∗l+l− and B̄ → K̄l+l− because
depending on q2 different approaches from the theory side have to be taken in order to
handle the hadronic effects. At small q2 the K̄(∗) has a large hadronic recoil, i.e., the
energy of the K̄(∗) is large in the B̄ rest frame compared to the scale of QCD. In this case
one can apply QCDF [310–314]. For high q2 on the other side of the spectrum the energy
of the K̄(∗), having now only a small recoil, is of the order of the scale of QCD. Here a
technique different from QCDF is needed. As worked out in Refs. [315, 316] one can

make here an operator product expansion (OPE) in 1/Q, with Q = {mb,

√
q2
}.

The fully differential decay width of semileptonic B̄ decays with a K̄∗ in the final state
decaying on-shell to K̄π can be written as [317–320]

d4Γ(B̄→ K̄∗l+l−)
dq2 d cos θl d cos θK dφ

=
3

8π
J(q2, cos θl, cos θK , φ). (3.1)

33
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The function J(q2, cos θl, cos θK , φ) depends in general on 12 observables J(a)
i (q2) that are

functions of the invariant mass q2 of the lepton pair only. It can be written as [321]

J(q2, cos θl, cos θK , φ) =
(
J1s(q

2) + J2s(q
2) cos 2θl + J6s(q

2) cos θl

)
sin2 θK

+
(
J1c(q

2) + J2c(q
2) cos 2θl + J6c(q

2) cos θl

)
cos2 θK

+
(
J3(q2) cos 2φ + J9(q2) sin 2φ

)
sin2 θK sin2 θl

+
(
J4(q2) cos φ + J8(q2) sin φ

)
sin 2θK sin 2θl

+
(
J5(q2) cos φ + J7(q2) sin φ

)
sin 2θK sin θl. (3.2)

The angles in Eq. (3.2) are defined as follows:

• θl = ∠(l−, B̄) in lepton pair rest frame.

• θK = ∠(K̄, B̄) in K̄π rest frame.

• φ = ∠(normal of K̄π plane, normal of l+l− plane).

The angle between the direction of two particles X and Y is here denoted as ∠(X,Y). The
ultimate goal of an experimental analysis of B̄ → K̄∗l+l− is the complete measurement
of all the observables J(a)

i (q2), which is equivalent to a full angular analysis. However, a
drawback of the J(a)

i (q2) is their proportionality to hadronic matrix elements which consti-
tute large theoretical uncertainties. In general, one can write the measured observables as
functions of combinations of several J(a)

i (q2), especially also ratios of them. Exactly here
lies the very chance that is given in exploiting the data on observables from the angular
analysis: In ratios and clever algebraic combinations of the J(a)

i (q2), i.e., in “optimized
observables” [78, 317, 321–328], there is a reduced or even vanishing dependence on the
form factors, which typically dominate the theoretical uncertainty. On the other hand one
can also form combinations where in limited kinematic regions the short distance physics
cancels out and one can vice versa access the ratios of form factors only. The latter will be
further discussed and utilized in Ch. 4. This way one can make much progress in precision
compared for example to observables as dB/ dq2, where the largest error of the theory
prediction comes exactly from the form factors. This is a general problem of exclusive
meson decays.

It turns out that it is very convenient to express the J(a)
i (q2) by transversity amplitudes

AL,R
⊥,‖,0 [317]. This is especially true at high q2 because in this kinematic region the transver-

sity amplitudes show a universal short distance behavior [78] that we will further discuss
in Ch. 4. In the notation “AL,R

⊥,‖,0” the superscript (L,R) indicates the chirality of the lepton
current and the subscript (⊥, ‖, 0) characterizes the final state angular momentum. The lat-
ter can intuitively be constructed by examining the polarization vector of the K∗ and the
intermediate Z boson, as is explicated in Ref. [319]. Additionally, there is a transversity
amplitude At that corresponds to a timelike vector boson and only contributes in case of
taking ml , 0 into account [317]. In the most general case, beyond the SM basis, where
also tensor operators are taken into account, there appear six additional transversity am-
plitudes [321]. Another approach using only helicity amplitudes is given in [329]. The
expression of all the Ji(q

2) in transversity amplitudes can be found in [321].
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Among the observables that are in the center of interest of the current experimental anal-
ysis of B̄→ K̄∗l+l− are the following [78, 321]:

• Differential decay width dΓ(B̄→ K̄∗l+l−)/ dq2.

• Lepton pair forward-backward asymmetry

AFB =
1

dΓ/ dq2

(
J6s +

1
2

J6c

)
=


1∫

0

−

0∫
−1

 d cos θl
d2Γ

dq2 d cos θl

/
dΓ

dq2 . (3.3)

In the SM operator basis AFB is related to the Wilson coefficients of the effective
theory as [78]

AFB ∝ Re
((

Ceff
9 + κ

2mbmB

q2 Ceff
7

)
C∗10

)
, (3.4)

with Ceff
7 and Ceff

9 as defined in [78] and κ = 1−2αs
3π log

(
µ

mb

)
+O(α2

s) [315]. A special
feature of Eq. (3.4) is that depending on the values of Ceff

9 and Ceff
7 , i.e., the short

distance physics, AFB could have a zero at a specific value of q2.

• Fraction of longitudinal polarized K∗ mesons

FL =
1

dΓ/ dq2

(
J1c −

1
3

J2c

)
=

|AL
0 |

2 + |AR
0 |

2

ΣX=L,R

(
|AX

0 |
2 + |AX

⊥|
2 + |A‖|

2
) . (3.5)

• Transverse asymmetry

A(2)
T =

1
2

J3

J2s
=
|AL
⊥|

2 + |AR
⊥|

2
− |AL

‖ |
2
− |AR

‖ |
2

|AL
⊥|

2 + |AR
⊥|

2 + |AL
‖ |

2 + |AR
‖ |

2 . (3.6)

In the literature it is also used the corresponding observable S 3 [319, 330, 331] to
that A(2)

T is related via

S 3 =
1
2

(1 − FL)A(2)
T . (3.7)

Additionally, also the CP asymmetry ACP between decays B̄0
→ K̄∗0µ+µ− and B0

→

K∗0µ+µ− is measured [332].

Note that the measurement of AFB can be defined just by “counting negatively charged
muons”: In the lepton pair rest frame AFB is equal to the difference between the number
of leptons with negative charge that go forward or backward relative to the B̄, respectively,
normalized to their total number.
It turns out that the zero of the forward-backward asymmetry, i.e. the point q2

0 with
AFB(q2

0) = 0 is an especially clean observable in order to test the short distance physics
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encoded in the Wilson coefficients in Eq. (3.4). The zero depends in the large energy
limit almost completely on these Wilson coefficients only, besides mb and mK∗ [313, 333–
335]. Uncertainties due to form factors arise not before next to leading order (NLO).
Consequently, the prediction of q2

0 is quite precise in the SM, it is given as [184, 314, 336](
q2

0

)SM
= (4.0 ± 0.3) GeV. (3.8)

In the angular analysis of B̄ → K̄∗0µ+µ− by the LHCb experiment [330, 331, 337, 338]
the zero point of AFB has been determined as [331](

q2
0

)exp
= (4.9 ± 0.9) GeV2 , (3.9)

which agrees well with the SM value in Eq. (3.8). Especially, as a consequence of
Eq. (3.9) the zero crossing indeed exists, which can already exclude several NP models,
see e.g. Ref. [339].

The fully differential decay width of B̄→ K̄l+l− decays – with a pseudoscalar in the final
state – is simpler than the one of B̄ → K̄∗l+l− in Eq. (3.1). It depends besides q2 on only
one angle and reads [340]

d2Γ(B̄→ K̄l+l−)
dq2 d cos θ

= al(q
2) + bl(q

2) cos θ + cl(q
2) cos2 θ , (3.10)

with the three q2-dependent coefficients al(q
2), bl(q

2), cl(q
2) as given in [340]. The angle

is given as θ = ∠(B̄, l−) in the rest frame of the lepton pair. Integrating over q2, from
Eq. (3.10) one obtains the angular distribution [340]

1
Γ

dΓ

d cos θ
=

3
4

(1 − FH)(1 − cos2 θ) +
1
2

FH + AFB cos θ , (3.11)

with the forward-backward asymmetry AFB of B̄ → K̄l+l− decays and a flat contribution
to the angular distribution, FH. Note that the SM predicts AFB(q2) ≡ 0 for the whole q2

region of B̄ → K̄l+l− up to very small corrections from QED [340]. FH has a nontrivial
dependence on q2 but is also predicted to be quite small, consistent with the experiment
[341].

Model independent analyses of B̄ → K̄(∗)l+l− observables and their impact on the short
distance physics – parametrized by the Wilson coefficients – have been given in [78, 182–
184, 321, 322]. As discussed further in Sec. 3.2, the semileptonic decays of B̄ mesons
constrain especially the Wilson coefficients of 4-Fermi operators C9 and C10. The Wilson
coefficient of the electromagnetic dipole operator C7 is constrained heavily from b→ sγ.
We analyze the consequences of these model independent bounds on a specific model,
namely the MSSM, that was introduced in Sec. 2.4.2. In order to do so, we use the
model independent bounds obtained in [184] taking into account recent data presented in
[337, 342].



3.2. Comparison of SUSY Predictions with Data 37

3.2. Comparison of SUSY Predictions with Data

Firstly, we compare the SUSY predictions with data by studying the spread of SUSY mod-
els in the planes of the effective couplings. Then we present improved bounds on squark
flavor, specifically the scharm-stop left-right mixing. The bounds have then consequences
for SUSY model building and implications for rare top decays.

3.2.1. NP Contributions in the Effective Field Theory Picture

NP Modification of Wilson Coefficients The inevitable tool for the analysis of FCNCs
is the effective field theory mechanism that was introduced in Sec. 2.4.1. In the effective
|∆B| = |∆S | = 1 Hamiltonian

Heff = −
4GF
√

2
VtbV∗ts

∑
i

Ci(µ)Oi(µ) + h.c. , (3.12)

the most important operators for the semileptonic process b→ sl+l− are

O7 =
e

16π2 mb

(
s̄LσµνbR

)
Fµν , O9 =

e2

16π2

(
s̄LγµbL

) (
l̄γµl

)
, (3.13)

O10 =
e2

16π2

(
s̄LγµbL

) (
l̄γµγ5l

)
. (3.14)

In Eq. (3.12) the heavy particles are integrated out and can be found in the expressions
for the couplings of the lighter fields only, i.e., in the Wilson coefficients Ci.

In a NP model like SUSY in general not only the Wilson coefficients Ci are modified but
also additional operators Oi beyond the SM basis appear. We neglect the operators O′7,9,10
which are defined by flipping the chirality in Eqs. (3.13) and (3.14). Their contribution
is relatively to them suppressed by ms/mb in the SM and MFV SUSY. The latter also
holds beyond MFV for the chargino contributions, on that we concentrate here, as will
be explained further below in the discussion of different contributions to squark flavor
violation. Therefore, we only look at operators including bL → sL and bR → sL transitions
here.

Furthermore, we concentrate on low tan β . 15 and can thus neglect the additional scalar
operators that could otherwise play an important role [343]. The latter is especially justi-
fied having in mind the recent measurement of B(Bs → µ+µ−) [47]. If there were indeed
large scalar operators the deviations of its SM value would have been bigger. Conse-
quently, in the part of the parameter space we look at we can confidently stay in the SM
operator basis. Switching on SUSY corresponds then to additional contributions to the
Wilson coefficients only:

Ci ⇒ CSM
i + CNP

i , here: i = 7, 9, 10. (3.15)
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mpole
t 173.3 GeV [344]

mb(mb) 4.19 GeV [345]

mW 80.399 GeV [345]

mZ 91.1876 GeV [345]

αs(mZ) 0.1184 [345]

s2
W 0.23116 [345]

Table 3.1.: Numerical input parameters used for the evaluation of the Wilson coefficients.
Table taken from [308].

The two loop results for the SM contributions are given in Ref. [181]. The one loop
MSSM results are calculated in Ref. [246]. The MSSM contribution to the other Wilson
coefficients C1,...,6 can be safely neglected [246]. The numerical evaluation of the Wilson
coefficients is performed with our MSSM extension of the EOS code [346]. For the nu-
merical analysis we use the input values as given in Table 3.1. For the SM values of the
Wilson coefficients we obtain, after the renormalization group (RG) running, at the scale
µb = 4.2 GeV

CSM
7 (µb) = −0.33 , CSM

9 (µb) = 4.27 , CSM
10 (µb) = −4.15. (3.16)

The MSSM contributions come from different particles in the quantum corrections shown
in Fig. 3.1. According to the beyond-SM particles in the loop the different contributions
fall into the categories:

• Charged Higgs diagrams

• Chargino diagrams

• Neutralino diagrams

• Gluino diagrams

Charged Higgses, charginos and neutralinos appear in box, penguin and self-energy topolo-
gies. Gluinos occur in penguin and self-energy diagrams only because they do not couple
directly to (s)leptons. Of these categories only the charged Higgs contributions do not de-
pend on squark flavor. The contributions from chargino, neutralino and gluino diagrams
all depend on both the sparticle masses as well as on the unitary matrices that diagonalize
the squark mass matrices. The neutralino and gluino contributions both come with off-
diagonal elements of the down squark mass matrix. The neutralino contribution with its
weak coupling is negligible compared to the one from the gluinos which comes with the



3.2. Comparison of SUSY Predictions with Data 39

b s

l l

ν

H−H−

u, c, t

(a) Charged Higgs box diagram

b s

l l

u, c, t

H−

γ, Z

(b) Charged Higgs penguin dia-
gram

b s

l l

ν̃

χ̃−χ̃−

ũ, c̃, t̃

(c) Chargino box diagram

b s

l l

χ̃−

ũ, c̃, t̃

γ, Z

(d) Chargino penguin diagram I

b s

l l

χ̃−

ũ, c̃, t̃

γ, Z

(e) Chargino penguin diagram II

b s

l l

g̃

d̃, s̃, b̃

γ, Z

(f) Gluino penguin diagram

Figure 3.1.: Example Feynman diagrams for b→ sl+l− in the MSSM. For a complete list
including self-energy diagrams see Ref. [246].

strong coupling constant. Therefore, the neutralino contribution is not further considered
here. In Fig. 3.2 we show a general parametrization of the up squark mass matrix using
so-called mass insertions

(
∆u

i j

)
AA′

. Here i, j denote the generation index and A, A′ denote
the chirality (of the corresponding fermionic quark). Note that the squark mass squared
matrices are hermitian, i.e.,

(
∆u, d

i j

)
AA′

=
(
∆u, d

ji

)∗
A′A

. An analogous matrix with the extra

parameters
(
∆d

i j

)
AA′

is also present for the down squarks. The off-diagonal elements of the
squark mass matrices can generically be of the same size as the diagonal ones, which is
partially in conflict with FCNC data, as we will demonstrate also in the following. The
latter constitutes the SUSY flavor problem, see Sec. 2.4.2.

Mass Insertion Approximation The (exact) one-loop contributions given in Ref. [246]
can be expanded in the flavor-off diagonal elements of the squark mass matrices

(
∆u, d

i j

)
AA′

using the so called Mass Insertion Approximation (MIA)

CNP
i ≈ Cdiag

i + CMI
i , (3.17)

where Cdiag
i only depends on the diagonal elements of the squark mass matrix and CMI

i

is at first order MIA linear in the
(
∆u, d

i j

)
AA′

. Of course such an expansion in explicit off-



40 Chapter 3. Precision Probes of SUSY Flavor Violation from B̄→ K̄(∗)l+l−



L R
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Figure 3.2.: Parametrization of the up squark mass matrix M2

ũ in the super-CKM basis
with mass insertions

(
∆u

i j

)
AA′

. In b→ sl+l− we are especially sensitive to
(
∆u

23
)

LR (marked
in red), see text for details.

diagonal elements is a basis dependent statement. As is common practice, we use the
super-CKM basis. In this basis, before the diagonalization of the squark mass matrix the
squarks are rotated using the CKM matrix in the same way as the quarks, see e.g. [245].
Note that in Ref. [246] the contributions to CSUSY

9 and CSUSY
10 are given in form of YSUSY

and ZSUSY functions with

CSUSY
9 =

YSUSY
− 4 sin2 θWZSUSY

sin2 θW

, CSUSY
10 = −

YSUSY

sin2 θW

, (3.18)

and the Weinberg angle θW . For the numerical evaluation we use the exact one-loop ex-
pressions for the Wilson coefficients, diagonalizing the 6×6 squark mass matrix. But as
the MIA expressions are quite instructive for an understanding of the different contribu-
tions, we derive them nevertheless from the general expressions in [246].

For that, we use the general substitution formula [347, 348]

X†ik f (ak)Xk j
MIA
= δi j f (a0

i ) + A1
i j f (a0

i , a
0
j) + . . . , (3.19)

with a loop function

f (x, y, z1, . . . , zn−2) =
f (x, z1, . . . , zn−2) − f (y, z1, . . . , zn−2)

x − y
, (3.20)

and a unitary matrix X that diagonalizes the matrix A = A0+A1. Here, A0 = diag(a0
1, . . . , a

0
n)

contains the diagonal elements of A. Its eigenvalues are given as XAX† = diag(a1, . . . , an).
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Note that by a multiplication ak 7→ αak Eq. (3.19) changes to

X†ik f (αak)Xk j = δi j f (αa0
i ) + αA1

i j f (αa0
i , αa0

j) + . . . (3.21)

In MIA, we apply the general expansion Eq. (3.19) to the up squark mass squared matrix
M2

ũ , i.e., we set A = M2
ũ therein. In the notation of [246] the matrix M2

ũ is diagonalized by
the unitary matrix ΓU as

diag
(
M2

ũ

)
= ΓU M2

ũ ΓU †. (3.22)

Using Eq. (3.19) we have the expansion

Γ
U †
ik f

(
m2

k

)
ΓU

k j = δi j f
(
(m0

k)2
)

+ ∆i j f
(
(m0

i )2, (m0
j)

2
)

+ . . . , (3.23)

with i, j, k = 1, . . . , 6. In Eq. (3.23) ∆i j includes the different chirality combinations,
i.e., its indices combine generation and chirality degrees of freedom. Splitting the unitary
matrix ΓU as usual by chirality we write

ΓU
k( j=1,2,3) = Γ

UL
k(J=1,2,3) , ΓU

k( j=4,5,6) = Γ
UR
k(J=1,2,3) . (3.24)

For instance, in the case i = 2 and j = 6 we have in Eq. (3.23)

Γ
U †
2k f (m2

k)ΓU
k6 = δ26 f

(
(m0

2)2
)

+ ∆u
26 f

(
(m0

2)2, (m0
6)2

)
+ · · · = Γ

UL †

2k f (m2
k)ΓUR

k3 + . . .

=
(
∆u

23
)

LR f
(
m2

c̃L
,m2

t̃R

)
+ . . . , (3.25)

where the same notation of chirality splitting is adopted for the mass insertions. The same
notation was also used in Fig. 3.2. As a measure of flavor violation it is more intuitive to
use a dimensionless quantity instead of

(
∆u,d

i j

)
AA′

which has mass dimension two. In order

to arrive at such a measure one commonly divides
(
∆u,d

i j

)
AA′

by an average mass scale M2
av

of the squark mass matrix. In the literature there are different conventions used for M2
av.

In the forthcoming sections we study a hierarchical squark spectrum including a right-
handed stop that is considerably lighter than the other squarks. Therefore, for M2

av we
choose to take the arithmetic average of the diagonal elements of the squark mass squared
matrix, i.e., we define

(
δu,d

i j

)
AA′
≡

(
∆u,d

i j

)
AA′

1
6Σ6

i=1

(
M2

ũ,d̃

)
ii

. (3.26)

Another option would be to take the geometric average of the two diagonal entries that
correspond to the indices of the considered parameter

(
∆u,d

i j

)
AA′

. In case of the considered
hierarchical spectrum this has the disadvantage that e.g.

(
δu

23
)

LR is biased towards larger
values due to its normalization because the light stop mass enters it multiplicatively in the
denominator.
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bL sL

t̃L c̃L
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)

LR contribution to bL → sL
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LR contribution to bL → sL
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(
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23
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Figure 3.3.: Contributions from different MI parameters to the bL → sL and bR → sL
transition, see text for details.

Relative Importance of MI parameters The different mass insertions have quite a
distinct importance for b → sl+l− transitions. We will see in this paragraph that the
most important parameter is the scharm-stop left-right mixing

(
δu

23
)

LR. Without the new
improved bounds from B̄→ K̄(∗)l+l− it could be

(
δu

23
)

LR ∼ O(1). Besides the flavor bounds
on this parameter there is an interesting cross-link to the bounds from the Higgs sector. In
the following, we go one by one through the different squark-flavor violating parameters
that link the second and third generation in B̄ → K̄(∗)l+l−. We illustrate the role of the
different mass insertions in bL → sL and bR → sL transitions in Fig. 3.3. Chirality
flipped transitions are not shown there due to their suppression by ms/mb in the chargino
contributions, on that we focus in the following, see below.
A notably difference between gluino and chargino diagrams is that in the super-CKM
basis MIA framework a change in flavor and chirality in gluino diagrams comes only from
the MI parameters. In chargino diagrams it also takes place at the vertex from CKM. The
latter situation is illustrated e.g. in Fig. 3.3(b). A corresponding diagram for gluinos does
not exist at first order MIA. We demonstrate this further below.

• Contributions from gluino diagrams to C9 and C10

–
(
δd

23

)
LR

gives only at second order MIA a contribution to bL → sL because in
the MIA picture the gluino vertex is chirality and flavor conserving. As can be
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mH± tan β M2 µ

300 GeV 4 150 GeV −300 GeV

mt̃R
mq̃ At mν̃ mg̃

300 GeV 1000 GeV 1000 GeV 100 GeV 700 GeV

Table 3.2.: Example point in the MSSM parameter space at µ0 = 120 GeV, see text for
details. Diagonalizing the squark and chargino mass matrices, we get from this point the
mass eigenvalues: mt̃1

= 236 GeV, mt̃2
= 1017 GeV, mχ̃±1

= 150 GeV and mχ̃±2
= 321 GeV.

Using FeynHiggs [250–253] we get for the light Higgs mass the value mh0 = 117 GeV.
Table adapted from Ref. [308].

seen in Fig. 3.3(e) in order to insert a
(
δd

23

)
LR

we firstly need a
(
δd

33

)
LR

insertion
for getting a b̃R that can then be converted to a s̃L.
On the other hand, in a bR → sL transition, which is relevant for C7,

(
δd

23

)
LR

appears at first order MIA. Here it gives quite a large contribution due to an
enhancement factor mg̃/mb. This can be seen in Table 3.3 where we evaluate
the coefficients of the different MI parameters at a SUSY example point which
is given in Table 3.2. Due to the enhancement relative to the other MI parame-
ters,

(
δd

23

)
LR

is quite constrained from B(B̄→ Xsγ), whereas it obviously does
not get an additional bound from B̄→ K̄(∗)l+l−.

–
(
δd

32

)
LR

, in that way similar to
(
δd

23

)
LR

, gives only at second oder MIA a con-

tribution to bL → sL, because one needs another insertion of
(
δd

22

)
LR

in order
to get the proper chirality for the strange squark s̃L. Therefore we can neglect
this MI parameter in B̄ → K̄(∗)l+l−. In contrast to

(
δd

23

)
LR

it also enters only
at third order MIA in bR → sL transitions, as one needs additional insertions(
δd

33

)
LR

and
(
δd

22

)
LR

.

–
(
δd

23

)
LL

enters at first order MIA as depicted in Fig. 3.3(d). Generally, for chi-
rality conserving mass insertions, the photon penguin dominates the Z penguin
for the here considered mass spectrum, i.e., not too heavy squarks of the first
and second generation [349]. The photon penguin on the other hand gives
only a contribution to C9. This contribution happens to be numerically small
around our SUSY example point because it is proportional to m2

W/m
2
q̃ , com-

pare Table 3.3. The contribution of the gluino Z penguin to C10 is negligible
as it comes with higher orders of mass insertions only.

• Contributions from chargino diagrams to C9 and C10

–
(
δu

23
)

LR insertions can appear already at first order MIA, as can be seen in
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CMI,χ̃±

7 (µ0) CMI,χ̃±

9 (µ0) CMI,χ̃±

10 (µ0)

0.01(δu
23)LR − 0.38(δu

23)LL 0.21(δu
23)LR − 0.11(δu

23)LL −2.68(δu
23)LR + 0.19(δu

23)LL

CMI,g̃
7 (µ0) CMI,g̃

9 (µ0) CMI,g̃
10 (µ0)

16.35 (δd
23)LR − 0.02(δd

23)LL 0.04 (δd
23)LL –

Table 3.3.: Hierarchy of the first order MIA contributions to the Wilson coefficients C7, C9
and C10 at µ0 = 120 GeV evaluated at the example point specified in Table 3.2. The first
row shows the contributions from chargino diagrams stemming from flavor violation in
the up squark mass matrix. The second row shows the contributions from gluino diagrams
stemming from flavor violation in the down squark mass matrix. Table adapted from
Ref. [308].

Fig. 3.3(b). This is in contrast with the
(
δd

23

)
LR

contribution that is depicted in
Fig. 3.3(e). A large contribution comes especially from the Z penguin whose
contribution comes without a m2

W/m
2
q̃ suppression factor. No such term on

the other hand can be found in the contribution to C7, i.e., the corresponding
coefficient is numerically small and the bound by B(B̄ → Xsγ) not effective.
Furthermore, also the contribution to Bs−B̄s mixing is too small to get a bound
from there [350]. This is the reason why from flavor observable constraints(
δu

23
)

LR ∼ O(1) is not excluded (so far).

–
(
δu

32
)

LR insertions come also at first order MIA, as depicted in Fig. 3.3(c). How-
ever, they are strongly suppressed by mc/mt against the dominating contribu-
tion from

(
δu

23
)

LR and therefore negligible.

–
(
δu

23
)

LL also gives first order MIA contributions to bL → sL as can be seen in
Fig. 3.3(a). In contrast to

(
δu

23
)

LR it always comes with a factor m2
W/m

2
q̃ and

is thus numerically less important than this MI parameter, compare Table 3.3.
The situation is the other way around for C7 and thus the bounds from B(B̄→
Xsγ). The contribution of

(
δu

23
)

LL to C7 is significantly larger than the one of(
δu

23
)

LR. This is caused by a relative enhancement factor mχ̃±/mb in parts of
these contributions.

The most important mass insertion for b → sl+l− transitions on which bounds we can
hope to improve the most is thus the scharm-stop left-right mixing

(
δu

23
)

LR in the chargino
contributions.

Parametrization of the Up Squark Mass Squared Matrix Coming from the perspec-
tive of the MIA but wanting to take into account the correct treatment of flavor-diagonal
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and off-diagonal elements of the up squark mass matrix (as shown in general form in
Fig. 3.2) by an appropriate diagonalization we write the up-squark mass matrix as

M2
ũ =


(
M2

ũ

)
LL

(
M2

ũ

)
LR(

M2
ũ

)†
LR

(
M2

ũ

)
RR

 , (3.27)

with the submatrices

(
M2

ũ

)
LR

= m2
q̃13×3 ,

(
M2

ũ

)
LR

=


0 0 0

0 0
(
∆u
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)

LR

0 0
(
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)

LR


,

(
M2

ũ

)
RR

=


m2

q̃ 0 0

0 m2
q̃ 0

0 0 m2
t̃R


,

(3.28)

and
(
∆u

33
)

LR = mt(At − µ cot β). The right-handed stop mass is given as

m2
t̃R

= m2
t̃R,soft + m2

t +
2
3

s2
Wm2

Z cos 2β , (3.29)

with the soft term m2
t̃R,soft. m2

q̃ is the degenerate diagonal element of the first and second
generation. With the up squark mass matrix as in Eq. (3.27) the eigenvalues, i.e., the
squared masses are given as

m2
t̃1,2

=
1
2

m2
q̃ + m2

t̃R
∓

√(
m2

q̃ − m2
t̃R

)2
+ 4

(
∆u

23
)2

LR + 4
(
∆u

33
)2

LR

 (3.30)

for the third generation and m2
q̃ for the first two generations.

Analytical results for the contribution of
(
δu

23
)

LR to C7, C9 and C10 Our result for the
chargino contribution to the Wilson coefficients in the MI approximation proportional to(
δu

23
)

LR is given as [308]

CMI,χ̃±

7 (µ0) =
V∗cs

V∗ts

λt

g2

m2
W

m2
q̃

× F ×
(
δu

23
)

LR , (3.31)

CMI,χ̃±

9 (µ0) =
V∗cs

V∗ts

1
4s2

W

λt

g2

(4s2
W − 1)FZ−p + 4s2

W
m2

W

m2
q̃

Fγ−p
−

m2
W

m2
q̃

Fbox

 (δu
23
)

LR , (3.32)

CMI,χ̃±

10 (µ0) =
V∗cs

V∗ts

1
4s2

W

λt

g2

FZ−p +
m2

W

m2
q̃

Fbox

 (δu
23
)

LR . (3.33)
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The loop functions are given as follows:

F(x1, x2, xt̃R
) =

1
6

x̂av

∑
i=1,2

Vi1V∗i2x2
i

f1(xi/xt̃R
) − f1(xi)

xi/xt̃R
− xi

, (3.34)

FZ−p(x̂1, x̂2, x̂t̃R
) = x̂av

∑
i, j=1,2

V j1V∗i2

(
U∗j1Ui1

√
x̂i x̂ j

c0(x̂t̃R
, x̂i, x̂ j) − c0(1, x̂i, x̂ j)

x̂t̃R
− 1

−2V∗j1Vi1

c2(x̂t̃R
, x̂i, x̂ j) − c2(1, x̂i, x̂ j)

x̂t̃R
− 1

+ 2δi j

c2(x̂ j, 1, x̂t̃R
) − c2(x̂ j, 1, 1)

x̂t̃R
− 1

)
, (3.35)

Fγ−p(x̂1, x̂2, x̂t̃R
) =

1
9

x̂av

∑
i=1,2

Vi1V∗i2 x̂t̃R

x̂i/x̂t̃R
f7(x̂i/x̂t̃R

) − x̂i f7(x̂i)

x̂i/x̂t̃R
− x̂i

, (3.36)

Fbox(x̂1, x̂2, x̂t̃R
, x̂ν̃1

) = 4x̂av

∑
i, j=1,2

Vi1V∗i2|V j1|
2
d2(x̂i, x̂ j, x̂t̃R

, x̂ν̃1
) − d2(x̂i, x̂ j, 1, x̂ν̃1

)

x̃t̃R
− 1

. (3.37)

Here,

xi =
1
x̂i

=
m2

q̃

m2
χi

, i = 1, 2 , xt̃R
= 1/x̂t̃R

=
m2

q̃

m2
t̃R

, (3.38)

xν̃1
= 1/x̂ν̃1

=
m2

q̃

m2
ν̃1

, x̂av =
1
6

(5 + x̂t̃R
). (3.39)

The loop functions fi, ci, d2 can be seen in [246]. Note that the loop integrals have
numerical singularities at points in the parameter space where it looks like we have to
“divide by zero”. At these points one has to calculate the different limits of the loop
integrals. For the univariate loop functions these limits are

f1(1) = −
5

12
, f7(1) = −

7
4
. (3.40)

Exemplary limits of the multivariate integrals are

c0(1, 1, 1) = −
1
2
, c2(1, 1, 1) = −

1
4

log

m2
q̃

µ2

 , d2(1, 1, 1, 1) = −
1

12
. (3.41)

For the difference quotients of the loop functions it holds for example

lim
x,y→1

f1(y) − f1(x)
y − x

=
1
5

lim
x,y→1

y f7(y) − x f7(x)
y − x

= −
1
5
. (3.42)

In our C++ implementation instead of setting the loop integral discontinuously to the value
at its limit in a small interval around the numerical singularity we use for the univariate
loop integrals the Padé approximant and for multivariate loop integrals a multivariate Tay-
lor expansion. This way we get smooth numerical representations of the loop integrals.
In Eqs. (3.32) and (3.33) we can read off the most important characteristics of the

(
δu

23
)

LR
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contributions to b → sl+l−: CNP
9 and CNP

10 are dominated by the terms that do not come
with factors of m2

W/m
2
q̃ , i.e., the Z penguin contribution. It follows a strong correlation

from the approximate relation

CNP
10

CNP
9

'
1

(4s2
W − 1)

(Z penguin dominance). (3.43)

Eq. (3.43) is clearly visible in the figures we show in the next section and causes stronger
bounds in the plane of the effective couplings than in the model independent case. A
general discussion of NP in Z couplings in b→ sl+l− processes is given in Ref. [351].

3.2.2. The Spread of SUSY Models

9C
0 2 4 6 8 10

10
C

-10

-8

-6

-4

-2

0

95% CL

68% CL

Figure 3.4.: NMFV, including scatter points
with largish

(
δu

23
)

LR without taking Higgs
bounds and electroweak precision tests into
account. Here, |At| is varied up to 5 TeV
(which does not have a significant effect
for the plot compared to 3 TeV). In gray
we show the model independent bounds ex-
tracted from rare decays in Ref. [184]. Red
dot: SM. Red dashed line: Z penguin domi-
nance. Figure taken from Ref. [309].

With the framework developed in Sec. 3.2.1
at hand, we can compare SUSY pre-
dictions including squark flavor violation
in the scharm-stop left-right mixing with
data. We denote the scenario with a sig-
nificant

(
δu

23
)

LR as non-MFV (NMFV). In
the MFV scenario, it holds

(
δu

23
)

LR ∼

y2
bVcbV∗tb

mt
mq̃
� 1 [290, 352], see Sec. 3.4,

which is below the present experimental
precision, i.e., for practical purposes MFV
implies

(
δu

23
)

LR ' 0.

In order to explore the SUSY parameter
space we take here a bottom-up philos-
ophy and vary the SUSY parameters di-
rectly at the electroweak scale. This is
in contrast to the top-down strategy where
one specifies a certain SUSY model at the
GUT scale that is then evolved down to
the electroweak scale using the renormal-
ization group equations. We generate scat-
ter points in the ranges given in Table 3.4.
These are subsequently overlayed over the
improved bounds from B̄ → K̄(∗)l+l− in
the C9–C10 plane that are obtained model-
independently in Refs. [78, 184, 322]. In
order to demonstrate the new input of the
semileptonic bounds we only draw points
in the C9–C10 plane that pass a number of additional constraints. Firstly, the Wilson coef-
ficient C7 is already heavily constrained by the radiative decay B̄d → Xsγ to be within the



48 Chapter 3. Precision Probes of SUSY Flavor Violation from B̄→ K̄(∗)l+l−

(a) NMFV (b) NMFV

Figure 3.5.: Dependence of mh on
∣∣∣(δu

23
)

LR

∣∣∣ (a) and |At| (b), respectively, including the
Higgs mass bound in Eq. (3.46). Horizontal black lines: Higgs mass bound Eq. (3.47).

tan β mH± M2 |µ| mt̃R
At (δu

23)LR

min. 3 300 100 80 170 −3000 −0.85

max. 15 1000 1000 1000 800 3000 0.85

Table 3.4.: SUSY parameters (masses in GeV) and their ranges at µ0 = 120 GeV used to
generate the scatter plots shown in this section. Additionally, we set mν̃ = 100 GeV and
mq̃ = 1000 GeV. Table adapted from [308].

range [184]

0.3 ≤ |C7| ≤ 0.4. (3.44)

The 2012 established zero crossing of the forward-backward asymmetry at low q2, namely
q2

0 = (4.9 ± 0.9) GeV2 [331], has the consequence that only the sign combinations

C7 < 0 , C9 > 0 and C7 > 0 , C9 < 0 , i.e., C7C9 < 0 ,

are allowed [184, 353]. In the MSSM we are bound to C9 > 0 [246] so instead of
Eq. (3.44) we use directly the bound

−0.4 ≤ C7 ≤ −0.3. (3.45)
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In addition to the flavor bounds we furthermore include the electroweak precision bound
−0.0007 ≤ ∆ρ ≤ 0.0017 [345] and bounds from direct searches for (s)particles that we
list below. As we do not specify a certain SUSY model here, we only take bounds into
account that are independent of any model assumptions. For example, the recent bounds
by ATLAS on the light stop mass excluding 320 GeV ≤ mt̃1

≤ 660 GeV at 95% C.L. [354]
using 21 fb−1 depend on such assumptions of simplified models. These are therefore not
applied here. The same goes for the ATLAS bound on the light chargino mass mχ̃± ≥ 350
GeV [355] and the analogous results from CMS using ∼ 9 fb−1 [356] and ∼ 10 fb−1 [357]
of data, respectively. At CMS, searches for light stop quarks with masses in the region
160 GeV ≤ mt̃1

≤ 430 GeV and for charginos with masses up to ∼ 600 GeV have been
reported [356, 357]. All these bounds depend especially on the lightest neutralino mass.

Consequently, we apply the following bounds:

• Constraints on the lightest stop mass, mt̃1
≥ 100 GeV [358, 359].

• Constraints on the lightest chargino mass, mχ̃± ≥ 94 GeV [345].

• Constraints on the lightest Higgs mass1 mh: In order to have an SM-like lightest
SUSY Higgs we demand mA0

≥ 200 GeV. With the latter constraint we are in the
parameter region of the “decoupling limit” of the other neutral and the charged
Higgs bosons, for details see e.g. Ref. [186]. In the following we analyze the con-
sequences of the recent observation of a scalar boson that we interpret as a SUSY
Higgs. For that, we compare the effects of the following two bounds:

(I) mh + 3 GeV ≥ 114.4 GeV [345] (3.46)
(II) 120 GeV ≤ mh ≤ 130 GeV. (3.47)

In both cases we include a theoretical uncertainty of 3 GeV [252] and we are conser-
vative in Eq. (3.47). Recent experimental results for the Higgs mass read, consistent
with each other, mh = 125.5±0.2+0.5

−0.6 GeV [12] at ATLAS and 125.8±0.4±0.4 GeV
[13] at CMS.

In order to calculate ∆ρ and mh we use the FeynHiggs [250–253] code.2 The result of
the parameter scan is shown in Figs. 3.4–3.7.

Obviously, with
(
δu

23
)

LR ∼ O(1) there is a potential of a huge effect in the C9–C10 plane, as
can be seen in Fig. 3.4. We only show solutions with C7 < 0 due to C7 > 0 being disfa-
vored by the zero of AFB, as discussed after Eq. (3.44). The strong correlation of C9 and
C10 due to the Z penguin dominance mentioned at the end of Sec. 3.2.1 is clearly visible.
As one can see in Fig. 3.6(a) and even more so in Fig. 3.6(b) the application of the Higgs
bounds in Eqs. (3.46) and (3.47), respectively, has an effect that is complementary to the

1Research was done in the beginning of 2012. The announcement of the Higgs was in July 2012. Since
the Higgs bound is not the main point here, but instead the flavor bounds from B̄ → K̄(∗)l+l−, the plots
were not updated. No significant changes are expected.

2We thank S. Heinemeyer for trouble-shooting and providing FeynHiggs v2.9.0-beta.
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(a) NMFV, Higgs bound Eq. (3.46). Figure taken
from Ref. [308]
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(b) NMFV, Higgs bound Eq. (3.47).

(c) MFV, Higgs bound Eq. (3.47). (d) MFV, Higgs bound Eq. (3.47), zoom around SM.
Full shown plane allowed at 68% C.L.

Figure 3.6.: Comparison of NMFV and MFV and interplay with Higgs mass bounds in
the C9-C10 plane. In gray we show the model independent bounds obtained in Ref. [184].
Red dot: SM. Red dashed line: Z penguin dominance discussed in the text.
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(a) NMFV, Higgs bound Eq. (3.47). (b) NMFV

(c) MFV, Higgs bound Eq. (3.47). (d) MFV

Figure 3.7.: NMFV and MFV correlation of C10 with mt̃1
and mh, respectively. Vertical

black lines: Higgs mass bound Eq. (3.47).
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bounds from the semileptonic decays B̄ → K̄(∗)l+l−. Due to the substantial correlation of
C9 and C10 by the Z penguin dominance the flavor bounds in SUSY are much stronger
than in the model independent case.

Many of the SUSY model points are excluded by both the flavor bounds and the Higgs
bounds, i.e., both of them cut deeply into the parameter space of the MSSM. The maximal
C10 range of the scatter point sample shown in Fig. 3.6(a) amounts to

max|CNP
10 (µb)/CSM

10 (µb)| ' 47% (wo. B̄→ K̄(∗)l+l− bounds). (3.48)

Applying the semileptonic bounds shown in gray in Fig. 3.6(a) this range reduces at 68%
(95%) C.L. to

max|CNP
10 (µb)/CSM

10 (µb)| ' 16% (28%) (with B̄→ K̄(∗)l+l− bounds). (3.49)

The complementary effect of the Higgs bounds is illustrated in Fig. 3.5 where we plot
the generated scatter points in the

(
δu

23
)

LR–mh and At–mh planes. The correlation and
importance of Higgs and b physics constraints has been highlighted recently in [254],
where it has been concentrated especially on the SPS [360] MSSM benchmark points.
The negative contribution to the Higgs mass at large

(
δu

23
)

LR observed in [254] at the SPS
points is also clearly visible in the generic parameter scan in Fig. 3.5 that shows the same
tendency as the benchmark points. For that reason, basically all points with

(
δu

23
)

LR & 0.3
or At & 2500 GeV are excluded by the Higgs bound Eq. (3.47). In order to get the correct
Higgs mass |At| has to be quite enhanced, as can be read off from Fig. 3.5(b). For mh
fulfilling Eq. (3.47) one needs at least |At| ∼ 1 TeV.

In Figs. 3.6(c) and 3.6(d) (zoom) we show the spread of the flavor-diagonal MSSM (MFV)
with

(
δu

23
)

LR = 0 in the C9–C10 plane. The maximal enhancement of C10 is given as

max|CNP
10 /C

SM
10 | ' 11% (MFV, Higgs bound Eq. (3.46). (3.50)

The asymmetric shape of the scatter points around the SM value in Figs. 3.6(c) and 3.6(d)
agrees with the general form of the corresponding plot shown in Fig. 12 of Ref. [361],
where a plot in the CMSSM has been made.

Obviously, for our scenario the flavor bounds in the C9–C10 plane of B̄ → K̄(∗)l+l− are
currently far away from being sensitive to the difference between the SM and MFV. How-
ever, as was shown in [361], there arises a sensitivity to the CMSSM when one uses an
extended operator basis and takes into account large tan β.

The dependency of the width of the C10 range on mt̃1
and mh is an effect that only arises

when squark flavor violation is switched on. This is illustrated in Fig. 3.7. An enhance-
ment of C10 is especially present for light stop masses. In this part of the parameter space
the semileptonic bounds on squark flavor will be consequently especially strong.
The points of our parameter sample above mt̃1

& 750 GeV in Figs. 3.7(a) and 3.7(c) are
excluded by the Higgs bound Eq. (3.47) as an artifact of our choice for the scan range
of mt̃R

, see Table 3.4. From Eq. (3.30) it follows mt̃1
≤ mt̃R

and relatively smaller mt̃1
for

larger
(
∆u

23
)

LR and/or
(
∆u

33
)

LR. The latter are needed in order to fulfill the Higgs bound,
thus at the boundary of the scan range of mt̃R

no points remain.
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3.3. Bounds on Squark Flavor

In Sec. 3.2.2 we have overlayed model independent flavor bounds from B̄ → K̄(∗)l+l−

with scatter points of SUSY models that violate flavor beyond the SM. We have seen that
the bounds deeply cut into the parameter space of the MSSM. This becomes especially
visible in the comparison of Eqs. (3.48) and (3.49). How does this translate into bounds
on squark flavor violation?

The Higgs bounds give an overall global bound on
(
δu

23
)

LR, see Fig. 3.5(a). The strength
of the flavor bounds depend strongly on the flavor diagonal SUSY parameters. Thus, in
order to exemplify the progress from the semileptonic bounds in parts of the parameter
space we study planes around the SUSY example point given in Table 3.2. In order to
separately inspect the bounds from flavor physics we disregard here the bounds from
electroweak precision and Higgs physics.

In Fig. 3.8 we compare the bounds on the absolute value of the scharm-stop left-right mix-
ing

∣∣∣(δu
23
)

LR

∣∣∣ without (Fig. 3.8(a)) and including (Fig. 3.8(b)) the 68% C.L. semileptonic
bounds in the mt̃R

–At plane around the SUSY example point in Table 3.2. The bounds
shown in Fig. 3.8(a) are mainly given by the light stop mass bound mt̃1

≥ 100 GeV and
B(B̄ → Xsγ). In part of the parameter space we get in Fig. 3.8(b) significantly improved
bounds that go down to

(
δu

23
)

LR . 10% for small mt̃R
. These bounds are stronger than the

Higgs bounds and also stronger than the corresponding vacuum (meta)stability bounds
[255, 256]. The latter give at mq̃ = ml̃ = 1 TeV and a light right-handed stop mass
mt̃R

= 300 GeV a bound of
(
δu

23
)

LR . 30%. As the strong bounds on
(
δu

23
)

LR come mainly
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(a) Without B̄→ K̄(∗)l+l− bounds.
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(b) Including B̄→ K̄(∗)l+l− bounds at 68% C.L.

Figure 3.8.: Improvement of the bound on
∣∣∣(δu

23
)

LR

∣∣∣ in the mt̃R
–At plane around the SUSY

example point given in Table 3.2, disregarding the electroweak precision and Higgs
bounds. Figures taken from [308].
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Figure 3.9.: Bounds on
∣∣∣(δu

23
)

LR

∣∣∣ including the 68% C.L. constraints from B̄ → K̄(∗)l+l−,
disregarding the electroweak precision and Higgs bounds. Figures taken from [308].

from the C10 enhancement from the chargino Z diagram, it is interesting to study their
dependence on µ, M2 and tan β. The latter can be seen in Fig. 3.9. The bounds become
stronger for |µ| � M2 and somewhat weaker for larger tan β, but here the dependence is
not really strong.

3.4. Constraints on SUSY Models: Radiative Flavor
Violation

In Sec. 3.2.2 and Sec. 3.3 we have investigated a general formulation of the MSSM by
varying its parameters at the electroweak scale. We have found in part of the parameter
space strong constraints on the scharm-stop left-right mixing

(
δu

23
)

LR from B̄ → K̄(∗)l+l−.
Now we come to the question about the consequences of the new flavor bounds for specific
SUSY flavor models. After all, what are actually the generic expectations for the size of(
δu

23
)

LR in SUSY model building?
As was discussed in Sec. 2.4.3, for example in MFV models one generically expects for
the trilinear couplings

Au ' A
(
a1 + bYdY†d + . . .

)
Yu , (3.51)

with O(1)-numbers a and b. This results in the approximate relation [290, 352](
δu

23
)

LR ∼ y2
bVcbV∗tb

mt

mq̃
, (3.52)
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with the beauty Yukawa coupling yb =
√

2mb/v. Eq. (3.52) indicates a double suppres-
sion from Vcb and from y2

b. In models with horizontal flavor symmetries the additional
suppression from yb disappears,

(
δu

23
)

LR ∼ Vcb mt/mq̃ [362], but we remain still with the
suppression from Vcb. In both of these model classes the prediction for

(
δu

23
)

LR is conse-
quently order of magnitudes below the current limits and there is no sensitivity.
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Figure 3.10.: The required value for
(
δu

23
)

LR
in the mq̃–mt̃R

plane in order to generate Vcb
purely via the up-sector. The gluino mass is
fixed to mg̃ = 1 TeV.

But there exist also models that make pre-
dictions for large values of

(
δu

23
)

LR. These
are given by models where flavor viola-
tion in the quark sector is generated by fla-
vor violation in the SUSY sector, so called
Radiative Flavor Violation (RFV) models
[363, 364], for previous works see [365–
375]. In order to explain the hierarchy in
the CKM matrix in this model large tri-
linear couplings are needed. If these are
given, the SM flavor puzzle is traced back
to the SUSY flavor puzzle. This is already
a great progress in the reduction of com-
plexity. In RFV models, the “bare” CKM
matrix takes the most natural form, i.e., the
unit matrix [364]. On the contrary, the
trilinear SUSY-breaking couplings are not
diagonal. Due to the latter, by quantum
corrections from SUSY particles of possi-
bly both the down and the up sector the
small off-diagonal elements of the CKM
matrix are induced. Calculating the corresponding loop diagrams in MIA gives the de-
sired relation between the CKM matrix element Vcb = (40.6 ± 1.3) · 10−3 [345] and the
trilinear couplings Au

23, Ad
23. In the mass insertion approximation holds [363, 364]

Vcb =
2αs

3πmg̃


(
∆d

23

)
LR

mb
C̃0(x, x) −

(
∆u

23
)

LR

mt
C̃0(x, y)

 , (3.53)

with the function from the loop calculation

C̃0(x, y) =
(1 − y)x log(x) + (x − 1)y log y

(x − 1)(y − 1)(x − y)
, (3.54)

x = m2
q̃/m

2
g̃ and y = m2

t̃R
/m2

g̃ and
(
δd

23

)
LR

=
(
∆d

23

)
LR
/m2

q̃ . Eq. (3.53), which we evaluate at

the electroweak scale µ0 = 120 GeV, fixes the requisite values for
(
δu

23
)

LR and/or
(
δd

23

)
LR

in order to account for Vcb.

For simplicity, we look firstly at the case where Vcb is purely generated via the up-sector,
i.e., with

(
δd

23

)
LR

= 0. In this situation the requisite
(
δu

23
)

LR is shown in Fig. 3.10 in the mq̃–
mt̃R

plane, assuming generically mg̃ = 1 TeV. We see that indeed relatively large values of
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Figure 3.11.: Interplay of the various constraints on the RFV parameter space around the
SUSY example point in Table 3.2. Red and orange: Constraints from the mass bound on
the light stop mass, in orange a hypothetical future bound on this value. Blue: Bound
from B(B̄→ Xsγ). Black: Including additionally the 95% C.L. bound from B̄→ K̄(∗)l+l−.
Green: Bound from εK .

(
δu

23
)

LR are needed in order to account for the measured Vcb. Still assuming pure up-sector
generation, we translate the value for the scharm-stop left-right mixing into a bound on the
RFV parameter space. This is done in the mq̃–mt̃R

plane around the SUSY example point
given in Table 3.2 with the modifications M2 = 500 GeV and M2 = 800, respectively. We
show the interplay of the different constraints in Fig. 3.11.

For comparison, we show not only the constraints that we obtain from b physics but
also the ones from Kaon physics, namely εK , of which the bound has been highlighted
already in [364]. The latter bound arises due to a double mass insertion contribution(
δu

23
)∗

LR
(
δu

13
)

LR which effectively gives a “left first generation”→ “left second generation”
transition. Within the RFV model, in the same way as

(
δu

23
)

LR by Vcb also
(
δu

13
)

LR is
determined by a CKM element that it has to account for, namely Vub. Consequently,(
δu

13
)

LR acquires a similar sizable phase that can contribute to CP violation in Kaon mixing.
The MSSM contribution to the Wilson coefficient C∆S =2

1 of the operator (s̄Lγ
µdL)(s̄LγµdL)

determining εK can be found in Eq. (3.4) of [348]. The right-hand side of this equation
has to be multiplied with a correction factor 1/4 [376]3, i.e., we have altogether [348, 376]

C∆S =2
1 =

1
4

G2
Fm2

W

π2 Ad
ikĀs

jkAd
jlĀ

s
il

m2
W

m2
ũk

k(xik, x jk, xlk). (3.55)

Here, summation over the indices i, j, k, l is implied. The Ad
ik and Ās

jk are composed of
the matrices that diagonalize the squark and chargino mass matrices. They as well as the

3We thank G. Isidori for pointing this out.
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Figure 3.12.: Constraints on the RFV parameter space from B̄ → K̄(∗)l+l− at 95% C.L.
(including also the weaker bounds by the light stop mass and B̄ → Xsγ, but disregarding
the ones from εK) around the SUSY example point in Table 3.2 with M2 = 800 GeV in the
case of interference of up- and down-sector generation. Blue: Positive

(
δd

23

)
LR

= +10−3.

Red: Negative
(
δd

23

)
LR

= −10−3. For comparison, we show in black the bounds in the
case of pure up-sector generation. The solid/dashed/double-dashed lines correspond to
different gluino masses. Figure taken from Ref. [308].

loop function k(xik, x jk, xlk) can be found in [348]. The arguments of the loop function are
x{i, j}k = mχ̃±{i, j}

/m2
ũk

and xlk = m2
ũl
/m2

ũk
.

Note that in order to use the results given in [348] a basis transformation relative to the
super-CKM basis is needed. The conventions are given in Eq. (2.6) of the latter reference
and in Eqs. (37)-(39) of Ref. [347]. From C∆S =2

1 one obtains, after the RG evolution using
the factor η ' 0.8 [377, 378] and taking the bag factor BMS

K (2 GeV) = 0.52 [379] as input,
εK as described e.g. in Refs. [379, 380].
The εK bound is implemented as εRFV

K < 0.6 εexp
K [381], where εRFV

K is the pure RFV
contribution to εK and εexp

K is the experimental measurement [345].

The relation between Kaon and b physics bounds depends on the flavor-diagonal param-
eters: For M2 = 500 GeV the bound from εK is stronger, i.e., excludes more of the
parameter space in the mq̃–mt̃R

plane than the B̄ → K̄(∗)l+l− constraint. This is visible
in Fig. 3.11(a). For increasing M2 this relation is inverted, compare Fig. 3.11(b), where
the same plot is shown with M2 = 800 GeV. The bounds are wiped out with rising mt̃R

,
which is an effect of the Glashow-Iliopoulos-Maiani (GIM) mechanism. Altogether, the
bottom-line of Fig. 3.11 is that in the case of up-sector generation of the CKM matrix the
SUSY spectrum has to be & 1 TeV and that in parts of the parameter space the bounds
from B̄→ K̄(∗)l+l− are stronger than the ones from Kaon mixing.

Does the conclusion of pushing RFV models beyond the TeV scale also hold when we
switch on

(
δd

23

)
LR
, 0, i.e., consider an interference of up- and down-sector generation of
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the CKM matrix? In order to inspect this question, we compare in Fig. 3.12 the resulting
bounds for

(
δd

23

)
LR

= ±1 · 10−3.

We only use small values of
(
δd

23

)
LR

in order not to violate the bound from B̄→ Xsγ. For
the gluino contributions to C7,9,10 we use consequently safely the MI expressions that we
derive from the formulas given in Ref. [246]. In addition to the dependence on

(
δd

23

)
LR

we
show in Fig. 3.12 also the dependence on the gluino mass.

We observe that for positive
(
δd

23

)
LR

the constraint on the RFV parameter space gets

stronger, while for negative
(
δd

23

)
LR

it gets weaker. This can easily be understood: For the
loop function in Eq. (3.53) it holds C̃0(x, y) < 0. As Vcb > 0, it must also be

(
δu

23
)

LR > 0.
If

(
δd

23

)
LR
> 0, the overall negative contribution of the down sector in Eq. (3.53) has to be

compensated by an even larger
(
δu

23
)

LR, resulting in a stronger bound on the RFV param-
eter space from B̄ → K̄(∗)l+l−. The effect is the other way around for

(
δd

23

)
LR
< 0, then a

smaller
(
δu

23
)

LR suffices and the bound on the RFV parameter space is weakened.

3.5. Predictions for Correlated Rare Bottom and Top
Decays

Correlation with the rare decay B̄s → µ+µ− Because of the underlying SUSY model
we have a link between the constraints on B̄ → K̄(∗)l+l− and further rare decays. Firstly,
there are possible implications for B̄s → µ+µ− decays. In the low tan β regime that we
study here, scalar and pseudoscalar contributions are negligible and the branching ratio
B(B̄s → µ+µ−) only depends on the Wilson coefficient C10, that is,

B(B̄s → µ+µ−) ∝ f 2
Bs
|C10|

2. (3.56)

Here, fBs
is the Bs decay constant which is defined by the matrix element [382]〈

B̄s

∣∣∣ (b̄αsα)V−A(b̄βsβ)V−A

∣∣∣Bs
〉

=
8
3

f 2
Bs

BBs
(µb)m2

Bs
. (3.57)

The “bag parameter” BBs
(µ) = O(1) contains non-perturbative corrections. Using lattice

data for fBs
[382, 383] from the allowed range for C10 that is implied by Fig. 3.6(a) and

accordingly given in Eq. (3.49), we get the allowed range [308]

1 × 10−9 . B(B̄s → µ+µ−) < 6 × 10−9 (from B̄→ K̄(∗)l+l− at 95% C.L.). (3.58)

Here we took the most conservative result that one gets from the different values for fBs

given in [382, 383]. Recently, it has been found evidence for the decay B̄s → µ+µ−. Its
time integrated (untagged) branching ratio is measured to be [47]

B
exp(B̄s → µ+µ−) = 3.2+1.5

−1.2 · 10−9 (time integrated measurement by LHCb) ,
(3.59)
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which is consistent with the range we obtain from B̄ → K̄(∗)l+l− in Eq. (3.58) and also
with the recent SM value [384]

B
SM(B̄s → µ+µ−) = (3.56 ± 0.18) · 10−9 (time integrated result in the SM).

(3.60)

The latter also includes the effects from the width difference of Bs and B̄s, which is mea-
sured as [385]

∆Γs = (0.116 ± 0.018 ± 0.006) ps−1, (3.61)

and gives a correction of up to ∼ 10% [386, 387]. The measurement Eq. (3.59) and its
improvement in the future will vice versa further bound the allowed range of C10 and has
implications for squark flavor and NP models in general. For a recent study of models
with NP at the Z vertex see for example Ref. [388]. As discussed in Sec. 3.2.1, at large
tan β in the MSSM B̄s → µ+µ− depends also on additional scalar operators. Constraints
in this parameter region are studied for MFV-SUSY in [361].

Correlation with Rare Top Decays There is not only an interesting interplay of differ-
ent b physics channels in constraining the SUSY parameter space, there is furthermore
also a link from bottom to top flavor physics: As chargino diagrams of b decays induce
FCNCs by up squark loops, the same MI parameters are found in the gluino diagrams
of rare top FCNCs t → cγ, g,Z. A Feynman diagram showing the gluino loop with the
scharm-stop mass insertion

(
δu

23
)

LR is given in Fig. 3.13. The latter MI parameter is also
the one that gives the largest contribution to rare top decays [389], so consequently, from
the obtained constraints on

(
δu

23
)

LR we can set upper limits on these decays in the MSSM.
Due to GIM suppression the SM contribution is negligible [390, 391], i.e., we only take
the SUSY contribution into account here. The analytic expressions for B(t → cγ, g,Z)
within SUSY are given in Ref. [392]. We obtain upper bounds by calculating the branch-
ing ratios for all generated points shown in Sec. 3.2.2 and applying the therein mentioned
bounds including the 68% C.L. bounds from B̄ → K̄(∗)l+l−. We fix for that the gluino
mass to 700 GeV. For larger gluino masses the bounds on the branching ratios will go
down even more. As discussed in Sec. 3.2.2, the Higgs bounds are especially important
to get a global bound on

(
δu

23
)

LR in addition to the B̄→ K̄(∗)l+l− constraints and the bounds
on the SUSY spectrum. Our results are given in the last row of Table 3.5 where we com-
pare with the outcome of an MSSM study that was done before LHC started to take data

tR cL

t̃R c̃L

(δu23)LR

g̃

Figure 3.13.: Gluino mediated rare top transition tR → cL from the
(
δu

23
)

LR MI parameter.
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[389], the SM prediction [390, 391] and experimental results. The SM prediction is re-
ally tiny. The comparison with the 2007 MSSM bounds in [389] shows the significant
progress one can make by utilizing the LHC data. The bounds for rare top decays in the
MSSM are several orders of magnitude below the prospective sensitivity of both ATLAS
[393, 394] and CMS [395]. This is even valid for a future scenario with 100 fb−1 at AT-
LAS. The same is of course even more so true for the current measurements that are with
one exception at least one order of magnitude away from the projected sensitivity in the
future. In the case of the rare decay t → cg the current bound at 95% C.L. is even stronger
than the requisite branching ratio needed in order to make a 5σ observation.
Altogether, we predict that in foreseeable future we will not observe rare top decays at the
LHC if the MSSM is realized.

t → cγ t → cg t → cZ

SM prediction [390, 391] 4.6 × 10−14 4.6 × 10−12 1 × 10−14

prospectively needed for 5σ obs. at

ATLAS 14 TeV 10 fb−1 [393, 394] ≥ 9.4 × 10−5
≥ 4.3 × 10−3

≥ 4.4 × 10−4

prospectively needed for 5σ obs. at

ATLAS 14 TeV 100 fb−1 [393, 394] ≥ 3.0 × 10−5
≥ 1.4 × 10−3

≥ 1.4 × 10−4

prospectively needed for 5σ obs. at

CMS 14 TeV 10 fb−1 [395] ≥ 4.08 × 10−4
≥ 10.4 × 10−4

current exp. limit ATLAS 7 TeV 2.1 fb−1:

at 95% C.L. < 7.3 × 10−3 [396]

CDF: ATLAS 7 TeV 2.05 fb−1: CMS 7 TeV 5.0 fb−1:

< 3.2 × 10−2 [397] < 2.7 × 10−4 [398] < 2.1 × 10−3 [399]

MSSM bound pre-LHC [389] . 5.2 × 10−7 . 3.2 × 10−5 . 1.8 × 10−6

MSSM bound including

the 68% C.L. B̄→ K(∗)l+l− bounds

and the Higgs bound Eq. (3.46) . 2.1 × 10−8 . 7.2 × 10−7 1.0 × 10−7

Table 3.5.: Branching ratios of rare top decays. 1st row: SM prediction. 2nd and 3rd
row: Prospect for sensitivity of ATLAS at 10 fb−1 and 100 fb−1, respectively. 4th row:
Prospect for sensitivity of CMS at 10 fb−1. 5th row: Current exp. limits. 6th row: Bound
in the MSSM before the LHC started taking data. 7th row: The bound we obtain from our
parameter scan using the bounds from B̄→ K̄(∗)l+l−, B̄→ Xsγ, the EW precision bounds
and the constraints on the SUSY spectrum as specified in Sec. 3.2.2 including the Higgs
bounds Eq. (3.46), fixing mg̃ = 700 GeV. Table adapted and extended from Ref. [308].



4. Improving B̄→ K̄∗ Form Factors
from Data

In order to benefit the most from the forthcoming data on B̄ → K̄∗µ+µ− for future NP
studies it is necessary to improve our knowledge of the form factors that are involved
in this exclusive decay. This is possible using certain observables at high q2 as we will
explain in the following section. We present in this chapter partly the results of Ref. [400].
A previous study showing for the first time the possibility of the extraction of form factor
ratios from data is given in [401].

4.1. Cancellation of Short-distance Physics at Low Recoil

As was mentioned in Sec. 3.1, for the decay B̄→ K̄∗l+l− one can form optimized observ-
ables that are especially sensitive to either long or short distance physics, i.e., on the one
hand to electroweak physics and on the other hand to nonperturbative QCD effects. As
different kind of theories are applicable at high and low invariant dilepton mass q2, these
statements always depend on the region of the considered q2.

Particularly useful is the universal behavior of the transversity amplitudes of B̄→ K̄∗l+l−

at large q2 [78, 322]

AL,R
0 = −CL,R f0 , AL,R

‖
= −CL,R f‖ , AL,R

⊥ = +CL,R f⊥ . (4.1)

These relations are valid at leading order (LO) in the ΛQCD/mb expansion, with universal
coefficients CL,R that depend essentially only on the short distance physics and that we
specify below in Eq. (4.5). The relations in Eq. (4.1) are the key to the method we describe
in the following in order to extract ratios of the form factors at low recoil. The f0,‖,⊥ are
called helicity or transversity form factors, whose relation to the standard heavy-to-light
vector and axial vector form factors we give below in Eqs. (4.7)–(4.9). When we insert
the expressions for the transversity amplitudes as given in Eq. (4.1) into the observables
FL and A(2)

T defined in Eqs. (3.5) and (3.6) the short distance factors CL,R cancel out [78]

FL =
f 2
0

f 2
0 + f 2

⊥ + f 2
‖

, A(2)
T =

f 2
⊥ − f 2

‖

f 2
⊥ + f 2

‖

. (4.2)

The relations Eq. (4.1) and thus the short-distance independence of FL and A(2)
T in Eq. (4.2)

follow from the Operator Product Expansion (OPE) at high q2 [315, 316] and improved

61
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Isgur-Wise relations between the form factors [78, 315, 402]. Corrections to Eqs. (4.1),
(4.2) are at the percent level, as the ones of the OPE start at O(αsΛQCD/mb,m

4
c/q

4) [78,
315] and the ones of the form factor relations at ∼ 2Ceff

7 /C
eff
9 ΛQCD/mb, i.e., the ΛQCD/mb

corrections are parametrically suppressed by the Wilson coefficients [78, 315].

Therefore, at high q2 we can use FL and A(2)
T in order to probe the ratios of the transversity

form factors only, to good approximation without pollution from short distance physics—
at least as long as we stay in the SM operator basis. This means at high q2 it turns out that
FL and A(2)

T are actually optimized observables in order to inspect long distance physics.

Nevertheless, Eq. (4.2) has to be taken with a grain of salt, as NP outside the SM basis of
effective operators could modify them. In case of the presence of right-handed currents
from chirality flipped operators Eq. (4.2) gets correction factors. In this case, it is not pos-
sible to construct optimized observables from where one can extract a ratio that contains
f⊥ without a pollution from short distance physics [321]. As demonstrated in [321], from
current data it can be inferred that the correction factor in front of f⊥/ f‖ can be up to 30%
at 2σ. However, one can still extract f0/ f‖ from FL without such a pollution in this case
[321].

Another complication arises due to the q2 binning of the data. While at each single q2

point the short distance coefficients CL,R cancel out in FL and A(2)
T this is in principle not

the case for the corresponding binned observables. Actually, these are given as

〈FL〉bin =

∫
bin
ρ1(q2) f 2

0 dq2∫
bin
ρ1(q2)

(
f 2
0 + f 2

⊥ + f 2
‖

)
dq2

, (4.3)

〈A(2)
T 〉bin =

∫
bin
ρ1(q2)

(
f 2
⊥ − f 2

‖

)
dq2∫

bin
ρ1(q2)

(
f 2
⊥ + f 2

‖

)
dq2

. (4.4)

Here, ρ1 = 1
2

(
|CL
|
2 + |CR

|
2
)

, with [321]

CL,R = C9 + κ
2mbmB

q2 C7 + Y(q2) ∓C10 , (4.5)

where [315]

κ
O(αs)
= 1 − 2αs/(3π) log

(
µ/mb

)
, (4.6)

and the function Y(q2) is defined in [322]. As can be seen from Eqs. (4.3) and (4.4), the
dependence on the q2-dependent coefficients CL,R does not cancel under the integral. As
was shown in Ref. [401], due to the slowly varying ρ1 per bin, this effect is numerically
small, especially compared to the precision of current data. However, we take it into
account nevertheless.

Altogether, FL and A(2)
T can be used as model-independent probes of form factor ratios as

long as no right-handed currents show up.
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Definition of Transversity Form Factors By definition, the transversity form factors
f⊥,‖,0 are related to the vector and axial vector form factors as follows [78]

f⊥ = N

√
2ŝλ̂

1 + m̂K∗
V , (4.7)

f‖ = N
√

2ŝ(1 + m̂K∗)A1 , (4.8)

f0 = N
(1 − ŝ − m̂2

K∗)(1 + m̂K∗)
2A1 − λ̂A2

2m̂K∗(1 + m̂K∗)
. (4.9)

We used here the following notations and abbreviations:

N = GFαeVtbV∗ts

√
m3

B

√
λ̂

3 · 210 π5 , (4.10)

ŝ =
q2

m2
B

, m̂K∗ =
mK∗

mB
, (4.11)

λ̂ = 1 + ŝ2 + m̂4
K∗ − 2(ŝ + ŝm̂2

K∗ + m̂2
K∗) . (4.12)

The vector and axial vector form factors in Eqs. (4.7)–(4.9) are given as〈
K∗(k, ε)

∣∣∣ s̄γµb |B(p)〉 =
2V(q2)

mB + mK∗
εµρστε

∗ρpσkτ , (4.13)

〈
K∗(k, ε)

∣∣∣ s̄γµγ5b |B(p)〉 = iε∗ρ
[
2A0(q2)mK∗

qµqρ
q2

+ A1(q2)(mB + mK∗)
(
gµρ −

qµqρ
q2

)
− A2(q2)qρ

( (p + k)µ
mB + mK∗

−
mB − mK∗

q2 (p − k)µ

)]
,

(4.14)

with the K∗ polarization vector ερ. Furthermore, the tensor or dipole form factors we write
as 〈

K∗(k, ε)
∣∣∣ s̄iσµνq

νb |B(p)〉 = −2T1(q2) εµρστε
∗ρpσkτ , (4.15)

〈
K∗(k, ε)

∣∣∣ s̄iσµνγ5qνb |B(p)〉 = iT2(q2)
(
ε∗µ(m2

B − m2
K∗) − (ε∗ · q)(p + k)µ

)
+ iT3(q2)(ε∗ · q)

qµ − q2

m2
B − m2

K∗
(p + k)µ

 . (4.16)

A priori properties of FL and A(2)
T Inserting the definitions in Eqs. (4.7)–(4.9) into the

Eq. (4.2) and evaluating them at the endpoint of the spectrum q2
max = (mB−mK∗)

2 we learn
that a priori [400]

FL(q2 = q2
max) =

1
3
, A(2)

T (q2 = q2
max) = −1 , (4.17)

where q2
max is the highest invariant mass the lepton pair can have.



64 Chapter 4. Improving B̄→ K̄∗ Form Factors from Data

4.2. Parametrization of Form Factors by their Series
Expansion

QCD motivated parametrization of q2 shape In order to fit the q2-dependent form
factor ratios f⊥/ f‖ and f0/ f‖ from high q2 data on the observables FL and A(2)

T we use a
certain parametrization. We use the so called “Series Expansion” (SE) [403–409] in the
variable

z(t, t0) =

√
t+ − t −

√
t+ − t0

√
t+ − t +

√
t+ − t0

. (4.18)

In general, z(t, t0) is complex. The variables in Eq. (4.18) are defined as follows:

• t: analytic continuation of q2 to the domain of complex numbers.

• t+ = (mB + mK∗)
2: pair production threshold.

• t0: expansion point of the series expansion, with 0 ≤ t0 ≤ t+. For example, one
can set t0 = 0 or t0 = t+

√
1 − t−/t+ [409, 410] with the semileptonic endpoint

t− = q2
max = (mB − mK∗)

2.

The variable z fulfills z(t0, t0) = 0 and |z(t, t0)| ≤ 1. The series expansion of the transversity
form factors in z is given as

fi(t)/N =
1

B(t) φV−A
T (t)

( √
−z(t, 0)

)m ( √
z(t, t−)

)l ∑
k

αi,k zk(t, t0). (4.19)

In Eq. (4.19) we used the following assignment of l and m to f⊥, f‖ and f0:

• for f⊥: l = 1, m = 1.

• for f‖: l = 0, m = 1.

• for f0: l = 0, m = 0.

The additional functions are the following:

• B(t) = z(t,m2
R): Blaschke factor for the off-shell pole of vector or axial vector

mesons with mass mR .

• φV−A
T (t) =

√
1

24πχ f (2)
t−t+

(t+−t0)
1
4

(
z(t,0)
−t

) 5
2
(

z(t,t0)
t0−t

)− 1
2
(

z(t,t−)
t−−t

)− 3
4 with χ f (2) = 1.2

100m2
b

.

For details on the series expansion, the Blaschke factor and the function φV−A
T (t) see

[409, 410]. The parameters we want to determine by a fit from the data are ratios of
the coefficients αi,k in Eq. (4.19). These will give us the desired information on the q2

shape of the ratios of the form factors.
In the following we consider SE1 (k = 0) and SE2 (including k = 1).
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A priori properties of form factors at LO (SE1) At LO Eq. (4.19) gives the following
expressions for the transversity form factors [401]

f⊥(t) =
N

z(t,m2
1−) φ

V−A
T (t)

√
−z(t, 0)

√
z(t, t−) × α⊥ , (4.20)

f‖(t) =
N

z(t,m2
1+) φV−A

T (t)

√
−z(t, 0) × α‖ , (4.21)

f0(t) =
N

z(t,m2
1+) φV−A

T (t)
× α0 , (4.22)

with m1− = 5.42 GeV and m1+ = 5.83 GeV [89]. In Eqs. (4.20)–(4.22) we have written
for the leading coefficients of the series expansion

α⊥ ≡ α⊥,0 , α‖ ≡ α‖,0 , α0 ≡ α0,0. (4.23)

Consequently, at the first order of the series expansion (SE1) there are only three real
parameters. Here we only use data on FL and A(2)

T (at high q2) and are thus only sensitive
to the ratios of these parameters, e.g. to α⊥/α‖ and α0/α‖. Only the squares of these
ratios appear in the considered observables, see Eq. (4.2). Consequently, we are also not
sensitive to their sign and choose without loss of generality α⊥/α‖ ≥ 0 and α0/α‖ ≥ 0.

In parametrizing the form factors in SE1 the q2-shape is very much constrained. For
example, there is no dependence on t0 and there are strong correlations between low and
high q2. We specify these correlations below:

• Correlation 1: α⊥/α‖ and thus A(2)
T (q2) from V(0)/A1(0)

Firstly, from the ratio f⊥/ f‖ and inserting on the one hand the relation with the
vector and axial vector form factors given in Eqs. (4.7)–(4.9) and on the other hand
the SE1, we get by solving for α⊥/α‖ [400]

α⊥
α‖

=

√
λ̂

(1 + m̂K∗)
2

z(q2,m2
1−)

z(q2,m2
1+)

1√
z(q2, t−)

V(q2)
A1(q2)

q2
=0
= 1.19

V(0)
A1(0)

. (4.24)

The latter expression has been numerically evaluated at q2 = 0. Eq. (4.24) implies
that the full q2-shape of A(2)

T is determined by V/A1 at q2 = 0 (or any other value of
q2) in SE1.

• Correlation 2: α0/α‖ from FL(t−) = 1/3
From the definition of the transversity factors we know that FL(t−) = 1/3, see
Eq. (4.17). This information is however not contained a priori in the series expan-
sion, i.e., it will give a constraint on the parameters of the SE. Inserting the SE1
expressions for the fi into FL in Eq. (4.17) it follows

α0

α‖
=

√
−z(t−, 0)

2
= 0.29. (4.25)
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In SE1, Eq. (4.25) fixes α0/α‖ from high q2 information. From the endpoint relation
for A(2)

T no such constraint arises, as here the same relation follows not only from the
definition of the transversity form factors through the vector and axial form factors,
but is also contained in the SE itself. Consequently, no additional information can
be obtained from the endpoint relation of A(2)

T .

• Correlation 3: α0/α‖ from A2(0)/A1(0)
On the other hand, the ratio α0/α‖ can also be fixed by yet another form factor ratio
at low q2. Forming the ratio A2/A1, inserting the relation to the transversity form
factors and subsequently the SE1, we arrive at [400]

A2(0)
A1(0)

=
(1 + m̂K∗)

2

(1 − m̂K∗)
2

(
1 − m̂2

K∗ − 4
√

2m̂K∗
(
1 + m̂K∗

) (α0

α‖

))
(4.26)

= 1.41 − 1.63
(
α0

α‖

)
(4.27)

= 0.93. (4.28)

In the last row we inserted the value for α0/α‖ that follows from FL at high q2,
Eq. (4.25).

The correlations of the SE1 parameters with the form factor ratios V/A1 and A2/A1 open
up the opportunity for comparisons with LCSR predictions for these ratios at low q2 [400],
that we give at the end of Sec. 4.3. The value of α⊥/α‖ that can be determined by fits to the
data can be used for the extraction of V(0)/A1(0) via Eq. (4.24). Furthermore, before tak-
ing any data into account, from FL(t−) = 1/3 (Eq. (4.25)) the SE1 determines A2(0)/A1(0)
a priori through Eq. (4.28). Possible disagreements in the comparison of these results
with LCSR outcomes could be lead back to several reasons: On the one hand, they can be
due to fluctuations of the data. Further options are the possible underestimation of LCSR
uncertainties, or the presence of right-handed currents from NP. The latter would spoil
our working hypothesis given by the relations Eq. (4.2). On the other hand, a discrepancy
between SE1 fits to the data and LCSR results could just mean that the SE1 parametriza-
tion itself is not appropriate, because it is too simple and introduces too much bias into
the fit. In the case of inconsistencies a combined fit of the data and LCSR input for the
form factor ratios at low q2 will give a large χ2. We test the interplay of SE1 and LCSR
results in Sec. 4.4 and present the outcome of the comparison therein.

Reducing Theoretical Bias by Using the SE at Second Order In the previous para-
graph we have shown that the fit using the SE1 is very much constrained already before
taking data into account. The ratio α0/α‖ is fixed by an a priori relation for the observ-
able FL at the endpoint, i.e., the only real degree of freedom in the fit is given by α⊥/α‖.
We can already overconstrain the fit by taking into account additional theoretical input on
V/A1 and A2/A1 at low q2.

In order to have a parametrization with reduced bias from the theory side, in the follow-
ing we discuss the second order series expansion (SE2). At this order we write for the
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transversity form factors:

f⊥(t) =
N

z(t,m2
1−) φ

V−A
T (t)

√
−z(t, 0)

√
z(t, t−) × α⊥

(
1 + p⊥ z(t, t0)

)
, (4.29)

f‖(t) =
N

z(t,m2
1+) φV−A

T (t)

√
−z(t, 0) × α‖

(
1 + p‖ z(t, t0)

)
, (4.30)

f0(t) =
N

z(t,m2
1+) φV−A

T (t)
× α0

(
1 + p0 z(t, t0)

)
, (4.31)

introducing

p‖ = α‖,1/α‖,0 , p⊥ = α⊥,1/α⊥,0 , p0 = α0,1/α0,0 . (4.32)

In SE2, the fit parameters are extended to five ratios. In addition to α⊥/α‖ and α0/α‖ we
have to take into account the three ratios defined in Eq. (4.32). Still, in the considered
observables only appear the squares of α⊥/α‖ and α0/α‖, i.e., we can choose without loss
of generality α⊥/α‖ ≥ 0 and α0/α‖ ≥ 0. However, for the ratios in Eq. (4.32), it is
−∞ ≤ p‖, p⊥, p0 ≤ +∞. Furthermore, in contrast to SE1, in Eqs. (4.29)-(4.31) it is
introduced an explicit dependence on the expansion point t0.

Altogether, due to the extended number of parameters the fit of the SE2 contains less a
priori constraints than the one of SE1. We will recognize this also in the fits presented in
Sec. 4.4. Before coming to that, in the next section we present relations for the ratios of
form factors at low q2 that will be used as theoretical input to the fit in addition to the data
at high q2. For that, we will utilize among others the heavy-quark symmetry of QCD that
results from mb � ΛQCD. Subsequently, we analyze the interesting interplay of data and
theory input and their effect on the q2-shape of the form factors.

4.3. Theoretical Input for Form Factors at Low q2

Large Energy Limit Relations at Leading Order

In Ref. [411] it was proposed to investigate the symmetries that arise for meson decays in
the kinematic region of the large energy limit (LEL). Therein, the framework of a Large
Energy Effective Theory (LEET) was used. The LEL region of B̄→ K̄∗l+l− is defined as
the combination of both the heavy quark limit mb � ΛQCD and the kinematic assumption
of large hadronic energy EK∗ � ΛQCD , corresponding to low q2. EK∗ is the energy of the
K̄∗ in the B̄ rest frame, i.e.,

EK∗ =
m2

B + m2
K∗ − q2

2mB
. (4.33)

In the LEL by definition the symmetries of the heavy quark limit apply, and possibly
further ones are added. Note that the LEET introduced in [411], which systematically
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treats the expansion in 1/mb and 1/EK∗ , has shown to be inconsistent as an effective theory
of exclusive decays [412–414], see also footnote one in [415]. Nevertheless, the LEL
itself can be physically meaning- and useful. Furthermore, unlike the LEET, the Heavy
Quark Effective Theory (HQET) [185, 416–422], which uses a systematic expansion in
1/mb, indeed gives a consistent effective field theory.

In the heavy quark limit as a consequence of heavy quark spin symmetry the B̄ → K̄∗

form factors V , A0,1,2 are related to T1,2,3, see Eqs. (4)–(6) in [423]. In the LEL, this is of
course still true as the heavy quark limit is incorporated therein. On top of that, the form
factors reveal several relations that are contained in the expressions [423, 424]

V(q2) =

(
1 +

mK∗

mB

)
ξ⊥(mB, EK∗) , (4.34)

A1(q2) =
2EK∗

mB + mK∗
ξ⊥(mB, EK∗) , (4.35)

A2(q2) =

(
1 +

mK∗

mB

) (
ξ⊥(mB, EK∗) −

mK∗

EK∗
ξ‖(mB, EK∗)

)
, (4.36)

A0(q2) =

1 − m2
K∗

mBEK∗

 ξ‖(mB, EK∗) +
mK∗

mB
ξ⊥(mB, EK∗) , (4.37)

T1(q2) = ξ⊥(mB, EK∗) , (4.38)

T2(q2) =

1 − q2

m2
B − m2

K∗

 ξ⊥(mB, EK∗) , (4.39)

T3(q2) = ξ⊥(mB, EK∗) −
mK∗

EK∗

1 − m2
K∗

m2
B

 ξ‖(mB, EK∗) , (4.40)

including only two independent form factors ξ⊥ and ξ‖ that determine the seven form
factors on the left-hand side. On a formal level, in [424] the results Eqs. (4.34)–(4.40)
are obtained from the observation that in the LEET the heavy and light fields become
approximately two-component spinors. Among the relations that can be derived from the
LEL relations Eqs. (4.34)–(4.40) are the following [423, 424]

V(q2)
A1(q2)

=

(
mB + mK∗

)2

2mBEK∗
+ O(ΛQCD/mb) , (4.41)

T1(q2)

T2(q2)
=

mB

2EK∗
+ O(ΛQCD/mb) . (4.42)

As will turn out in the calculation of the ΛQCD/mb-corrections in the next paragraph, it is
interesting to consider also the double ratio of Eq. (4.41) and (4.42) [400]. We obtain at
q2 = 0

R(q2 = 0) ≡
V(0)/A1(0)
T1(0)/T2(0)

=
V(0)
A1(0)

=
mB + mK∗

mB − mK∗
+ O(ΛQCD/mb) . (4.43)
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Note that at q2 = 0 holds T1(0) = T2(0) ≡ T . It can be shown that Eqs. (4.41), (4.42)
and thus also (4.43) follow from helicity conservation (HC) within the perturbative part
of QCD [423]. The validity of Eqs. (4.41)–(4.43) coincides with the vanishing of the
positive transverse helicity amplitudes of B̄ → K̄∗l+l−, whereas the negative transverse
helicity amplitudes are induced by the V − A structure of the SM [423]. In the heavy
quark limit mb → ∞ the K∗ just takes over the spin of the b quark. A spin flip that would
induce corrections to this situation can happen only due to nonperturbative effects. Hence,
corrections of Eqs. (4.41)–(4.43) come firstly at O(ΛQCD/mb) and there are no corrections
to these relations in the αs expansion. Putting this into a formal language, in the expansion

R = R0 + RΛQCD/mb
+ Rαs

+ RαsΛQCD/mb
+ RΛ

2
QCD/m

2
b
+ . . . , (4.44)

where R0 has been given in Eq. (4.43), all terms Rαn
s

vanish [400]. Despite this feature,
without knowing the exact size of the O(ΛQCD/mb) corrections, nevertheless we have to
assume an uncertainty of ±30% concerning the value of R obtained from HC/LEL in
order to be conservative. From Eq. (4.41) we obtain altogether

R(0) =
V(0)
A1(0)

= 1.33 ± 0.4 (HC). (4.45)

We will utilize Eq. (4.45) as theoretical input for the form factor ratio fits in Sec. 4.4.

ΛQCD/mb Corrections to the Large Energy Limit Relations

The LEL/HC estimate in Eq. (4.45) has a rather large uncertainty. In order to contribute
to an improvement on that, we derive in this paragraph the analytic form of the correction
term RΛQCD/mb

in Eq. (4.44). With additional input from LCSRs for the HQET form factors
introduced in Eqs. (4.54) and (4.55) below this will give a better control of the theory error.

In order to calculate RΛQCD/mb
, we proceed as follows: We firstly calculate the improved

Isgur-Wise [425] relations, i.e., relations between tensor, vector and axial vector form
factors including corrections of order ΛQCD/mb. For that we follow the methodology
presented in [315, 402]. From the equations of motion of QCD we obtain

i∂ν(s̄iσµνb) = −(mb + ms)(s̄γµb) + i∂µ(s̄b) − 2s̄i
←

Dµb , (4.46)

i∂ν(s̄iσµνγ5b) = (mb − ms)s̄γµγ5b + i∂µ(s̄γ5b) − 2s̄i
←

Dµγ5b. (4.47)

We take then the hadronic matrix element of the identities Eqs. (4.46) and (4.47) between
the states |B(p)〉 and

∣∣∣K∗(k, ε)〉. After that, we insert the definitions of the form factors

given in Eqs. (4.13)–(4.16). Concerning the dimension-four QCD operators s̄i
←

Dµb and

s̄i
←

Dµγ5b we define as follows the form factors d(q2), d1(q2), d+(q2) and d−(q
2) [315]〈

K∗(k, ε)
∣∣∣ s̄i
←

Dµb |B(p)〉 = dεµρστε
∗ρ(p + k)σ(p − k)τ , (4.48)〈

K∗(k, ε)
∣∣∣ s̄i
←

Dµγ5b |B(p)〉 = id1ε
∗
µ + id+(ε∗ · p)(p + k)µ + id−(ε

∗ · p)(p − k)µ . (4.49)
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Note that our definitions in Eqs. (4.48) and (4.49) differ from the ones in [315] by factors
of i. The form factors on the right-hand side of Eqs. (4.48) and (4.49) have the disadvan-
tage of having no definite scaling with the beauty quark mass. We can handle the situation
nevertheless by matching the dimension-four QCD operators onto HQET [315]

s̄i
←

Dµb = D(v)
0 (µ)mb s̄γµbv + D(v)

1 (µ)mb s̄vµbv + s̄i
←

Dµbv + . . . , (4.50)

s̄i
←

Dµγ5b = −D(v)
0 (µ)mb s̄γµγ5bv + D(v)

1 (µ)mb s̄vµγ5bv + s̄i
←

Dµγ5bv + . . . , (4.51)

with Wilson coefficients D(v)
i (µ) and the HQET beauty field bv that has four-velocity vµ.

The HQET currents s̄γµbv and s̄bv in Eq. (4.50) can be related to the quark currents s̄γµb
and s̄b via [78]

s̄γµb = C(v)
0 (µ)s̄γµbv + C(v)

1 (µ)vµ s̄bv + . . . , (4.52)

s̄b = C(s)
0 s̄bv + . . . , (4.53)

with Wilson coefficients C(x)
i (µ). Similar expressions hold for the currents s̄γµγ5bv and

s̄γ5bv. In analogy to the parametrization of the QCD matrix elements of the operators

s̄i
←

Dµb and s̄i
←

Dµγ5b through the form factors d, d1, d+ and d− in Eqs. (4.48) and (4.49), the

matrix elements of the HQET operators s̄i
←

Dµbv and s̄i
←

Dµγ5bv can be parametrized as〈
K∗(k, ε)

∣∣∣ s̄i
←

Dµbv |B(v)〉 = d(0)εµρστε
∗ρ(p + k)σ(p − k)τ , (4.54)〈

K∗(k, ε)
∣∣∣ s̄i
←

Dµγ5bv |B(v)〉 = id(0)
1 ε∗µ + id(0)

+ (ε∗ · p)(p + k)µ + id(0)
− (ε∗ · p)(p − k)µ , (4.55)

defining the HQET form factors d(0), d(0)
1 , d(0)

+ and d(0)
− . The point of using the HQET

form factors d(0)
(i) for the ΛQCD/mb expansion is that in contrast to the d(i) we know that

they fulfill the characteristic scaling laws [315]

d(0)
∼ m−1/2

b , d(0)
1 ∼ m1/2

b , (4.56)

d(0)
+ − d(0)

− ∼ m−1/2
b , d(0)

+ + d(0)
− ∼ m−3/2

b . (4.57)

The scaling of the corresponding d(i) in Eqs. (4.48)–(4.49) is not known.

Consequently, using the HQET form factors d(0)
(i) we obtain a systematic ΛQCD/mb expan-

sion. As the first step, for the d(i) one obtains the following expansions in terms of the d(0)
(i)

[315]

d(q2) = −mb(µ)
D(v)

0 (µ)

C(v)
0 (µ)

V(q2)
mB + mK∗

+ d(0)(q2) + O
(
αs m−1/2

b ,m−3/2
b

)
, (4.58)

d1(q2) = −mb(µ)
D(v)

0 (µ)

C(v)
0 (µ)

(mB + mK∗)A1(q2) + d(0)
1 (q2) + O

(
αs m−1/2

b ,m−3/2
b

)
, (4.59)

d+(q2) = mb(µ)
D(v)

0 (µ)

C(v)
0 (µ)

A2(q2)
mB + mK∗

+ d(0)
+ (q2) + O

(
αs m−1/2

b ,m−3/2
b

)
, (4.60)
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d−(q
2) = −mb(µ)

D(v)
0 (µ)

C(v)
0 (µ)

(
2mK∗

q2 A0(q2) −
mB + mK∗

q2 A1(q2) +
mB − mK∗

q2 A2(q2)
)

+ d(0)
− (q2) + O

(
αs m−1/2

b ,m−3/2
b

)
. (4.61)

The ratio D(v)
0 (µ)/C(v)

0 (µ) is related to κ(µ) as [315]

κ(µ) =

1 + 2
D(v)

0 (µ)

C(v)
0 (µ)

 mb(µ)
mB

, (4.62)

where κ(µ) has been given in Eq. (4.6).

Taking everything into account and using the expansions in Eqs. (4.58)–(4.61), we have
everything at hand in order to calculate the improved Isgur-Wise relations including the
O(ΛQCD/mb) corrections. From the heavy quark expansion of the hadronic matrix element
of Eq. (4.46) it follows that [400]

T1 = (mBκ + ms)
V

mB + mK∗
− 2d(0), (4.63)

which is the improved Isgur-Wise relation between T1 and V including O(ΛQCD/mb) cor-
rections. From the hadronic matrix element of Eq. (4.47) we get three additional relations.
They are achieved by equating coefficients of different products of the K∗ polarization
vector and the momenta. They read as follows [400]

T2 = (mBκ − ms)
A1

mB − mK∗
−

2d(0)
1

m2
B − m2

K∗
, (4.64)

T2 + T3
q2

m2
B − m2

K∗
= (mBκ − ms)

A2

mB + mK∗
+ 2d(0)

+ , (4.65)

T3 =
2mK∗

q2 A0(mBκ − ms) −
2mK∗

mb + ms
A0 −

mB + mK∗

q2 A1(mBκ − ms)

+
mB − mK∗

q2 A2(κmB − ms) − 2d(0)
− . (4.66)

Inserting Eq. (4.64) and (4.66) into Eq. (4.65) we obtain equivalently to Eq. (4.66) the
relation [400]

mK∗A0

(
mBκ − ms

q2 −
1

mb + ms

)
= d(0)

− +
d(0)

1

q2 + d(0)
+

m2
B − m2

K∗

q2 . (4.67)

The relations Eq. (4.63) and (4.64) can be used to obtain the ratios V/T1 and A1/T2 in-
cluding the desired ΛQCD/mb corrections. From these ratios we can form the double ratio
R as R = (V/T1)/(A1/T2) and finally obtain the result for R including also the ΛQCD/mb-
corrections [400]

R(q2) =
mB + mK∗

mB − mK∗

1 − 2

 d(0)
1 (q2)

(m2
B − m2

K∗)T2(q2)
−

d(0)(q2)
T1(q2)

−
2ms

κmB

 + O

Λ2
QCD

m2
b

 . (4.68)
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Note that for the correct power counting we used here the scaling relations given in
Eqs. (4.56) and (4.57). It follows [400]

R(0) =
V(0)
A1(0)

(4.69)

=
mB + mK∗

mB − mK∗

1 − 2
T

 d(0)
1 (0)

m2
B − m2

K∗
− d(0)(0)

 − 2ms

κmB

 + O

Λ2
QCD

m2
b

, αs

ΛQCD

mb

 . (4.70)

Eq. (4.70) contains our analytic result for the corrections to the simple LEL/HC relation
for V(0)/A1(0) in Eq. (4.45). For a numerical evaluation one needs input for the HQET
form factors d(0) and d(0)

1 , e.g. from LCSRs. In this way one could obtain an improved
theoretical uncertainty of the LEL/HC relation.

The latter task is left for the future. For the numerical studies in Sec. 4.4 we use on the
one hand the HC input Eq. (4.45) and on the other hand the update of the well-known
LCSR results of [426] that are given in Eq. (4.77) [400] in the next paragraph.

LCSR results

As reviewed in more detail for example in [427–430] the LCSR approach is a further
development of the Shifman Vainshtein Zakharov (SVZ) sum rules [431, 432] that uses
distribution amplitudes of light mesons on the light-cone. Both the LCSR ansatz and
the SVZ sum rules rely on a fundamental level on the same physical principle, i.e., the
quark-hadron duality approximation. We briefly sketch here the essentials of the LCSR
approach along the lines of Ref. [426], of which the results are updated as given below
in Eq. (4.77) from [400]. In order to obtain LCSR results for B̄ → K̄∗ form factors one
considers the correlation function [426]

Γ(q2, p2
B) = i

∫
d4xeiqx 〈K∗(p)

∣∣∣ T JW(x) j†b(0) |0〉 , (4.71)

with a weak current JW , a time ordered product T , the off-shell momentum of the B meson
pB and the pseudoscalar current jb = mbd̄iγ5b. Γ can be written in two equivalent ways.
Following the specific example given in [426], we look at the LCSR for the form factor
V . On the one hand, using a dispersion integral over the light-cone expansion, it is [426]

ΓLC
V (p2

B, q
2) =

1
π

∞∫
m2

b

ds
Im

(
ΓLC

V (s, q2)
)

s − p2
B

, (4.72)

where Im(ΓLC
V ) contains the light-cone distribution amplitudes. On the other hand, one can

write the corresponding correlation function using a hadronic dispersion integral [426]

Γhad
V (p2

B, q
2) =

∞∫
m2

B

ρhad
V (s, q2)

s − p2
B

, (4.73)
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where the hadronic spectral density is given as a term containing the form factor V plus
another spectral density containing states with higher mass [426]

ρhad
V (s, q2) = fBd

m2
B

2V(q2)
mB + mK∗

δ(s − m2
B) + ρ

higher-mass states
V (s, q2). (4.74)

Most importantly, the approximate quark-hadron duality implies [426]

ρ
higher-mass states
V (s, q2) ≈

1
π

Im
(
ΓLC

V (s, q2)
)
θ(s − s0) , (4.75)

which together with Γhad
V (p2

B, q
2) = ΓLC

V (p2
B, q

2) gives essentially the sum rule for the form
factor V . After a subsequent mathematical Borel transformation for suppressing correc-
tions, it is arrived at the LCSR relation [426]

e−m2
B/M

2

m2
B fBd

2V(q2)
mB + mK∗

=
1
π

s0∫
m2

b

ds e−s/M2

Im
(
ΓLC

V (s, q2)
)
. (4.76)

The continuum threshold s0 in Eqs. (4.75) and (4.76) as well as the Borel parameter M2

in Eq. (4.76) are inherent parameters of the LCSR approach itself. Eq. (4.76) allows the
calculation of V from the imaginary part of the light-cone expansion of the correlation
function in Eq. (4.71).

The explicit derivation of the numerical LCSR results using Eq. (4.76) and the corre-
sponding analogues for the other form factors lies beyond the scope of this work. Updat-
ing [426], the preliminary LCSR results for V/A1 and A1/A2 at q2 = 0 which we utilize in
Sec. 4.4 read [400]

V(0)
A1(0)

= 1.40 ± 0.07 ,
A1(0)
A2(0)

= 1.19 ± 0.08 (LCSR) . (4.77)

The theoretical uncertainties of V(0)/A1(0) are much smaller in comparison to the naive
power counting estimate by the LEL/HC relation in Eq. (4.45). Note also that the LCSR
result is consistent with LEL.

In the following section we will compare the effects which Eqs. (4.45) and (4.77) have on
the fits of the form factor ratios to the data.

4.4. Fitting the Form Factor Series Expansion to Data

The currently available high-q2 data for the observables FL and A(2)
T is summarized in Ta-

ble 4.1. In order to compare the influence of the different possible theoretical assumptions
on the fit we study the following six configurations:
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BaBar CDF LHCb ATLAS CMS

q2 [GeV2] FL FL A(2)
T FL A(2)

T FL FL

[14.18, 16] 0.43+0.13
−0.16 0.40+0.12

−0.12 0.11+0.65
−0.65 0.33+0.08

−0.08 0.07+0.26
−0.28 0.28+0.16

−0.16 0.53+0.12
−0.12

[16, X] 0.55+0.15
−0.17 0.19+0.14

−0.13 −0.57+0.60
−0.57 0.38+0.09

−0.08 −0.71+0.36
−0.26 0.35+0.08

−0.08 0.44+0.08
−0.08

Table 4.1.: Summary of the high-q2 data from BaBar [433], CDF [434], LHCb [331],
ATLAS [435] and CMS [436] that is used in the fits of the form factor ratios. Statistical
and systematic uncertainties are added in quadrature. The right boundary of the second
bin is X = 19 for LHCb, ATLAS and CMS and X = t− otherwise. Table taken from [400].

(a) Plain SE1.

(b) SE1 with the LCSR input Eq. (4.77).

(c) SE1 with the HC input Eq. (4.45).

(d) Plain SE2.

(e) SE2 with the LCSR input Eq. (4.77).

(f) SE2 with the HC input Eq. (4.45).

The fit results including the χ2 at the best fit points for these configurations are summa-
rized in Table 4.2, except for configuration (b), see below. In Figs. 4.1–4.6 we show the
fit results for the observables FL and A(2)

T as well as for the form factor ratios f0/ f‖, f⊥/ f‖,
V/A1 and A2/A1 as functions of q2. The labels of the configurations (a)–(f) correspond to
the respective subfigure. In the plots of FL and A(2)

T we overlay the fit result with the data
specified in Table 4.1.

The theoretical input from HC and LCSR, respectively, is taken into account using the Rfit
scheme [437], see Appendix B for details. Additionally, for the SE2 we demand without
loss of generality that V, A1, A2 ≥ 0 in the region 0 < q2 < 25 GeV2, i.e., below the first
resonance m2

1− = 29.4 GeV2. For the SE2, we choose t0 = 0. We checked explicitly
that the dependence of the quality of the fit on the latter choice is negligible. Further
technicalities referring to the fits are given in Appendix B.

As was discussed in Sec. 4.2, in case of the SE1 the fit is very much constrained by the
parametrization itself. The only left free fit parameter in SE1 is α⊥/α‖ which is equivalent
to the value that V(0)/A1(0) takes. The corresponding plots in plain SE1 and SE1 includ-
ing HC input shown in Fig. 4.3 do not differ and have no uncertainties. In contrast to this,
in SE2 the ratio f0/ f‖ has nonvanishing uncertainties because the fit has more freedom.
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Fit χ2 α⊥/α‖ α0/α‖ p‖ p⊥ p0 V(0)/A1(0) A2(0)/A1(0)

SE1 11 1.88+0.37
−0.37

a0.29 - - - 1.58+0.31
−0.31

a0.93

SE1HC 11 1.88+0.18
−0.37

a0.29 - - - 1.58+0.15
−0.31

a0.93

SE2 6 8.52+6.83
−6.48 0.87+0.04

−0.40 −5.63+8.30
−13.66 3.84+0.00

−15.91 1.90+1.71
−4.18 7.15+5.72

−5.37 0.00+0.72
−0.00

SE2LCSR 8 1.75+0.00
−0.17 0.38+0.00

−0.04 3.06+0.41
−4.55 2.24+1.06

−5.85 3.67+0.08
−3.52 1.47+0.00

−0.14 0.79+0.07
−0.00

SE2HC 7 2.06+0.00
−0.95 0.86+0.04

−0.49 −7.03+10.13
−17.39 −9.33+12.61

−42.88 1.40+2.28
−5.74 1.73+0.00

−0.80 0.00+0.79
−0.00

Table 4.2.: Fit results for the considered configurations. LCSR and HC input are given in
Eqs. (4.77) and (4.45), respectively. The SE1 LCSR fit does not work due to inconsistent
input for A2(0)/A1(0) and is therefore not shown, see text for details. Table adapted from
[400]. aInput, resulting from FL(t−) = 1/3, Eq. (4.17), therefore no uncertainties are
given.

The best fit value for V(0)/A1(0) in plain SE1 is a bit larger than the central value of the
HC relation Eq. (4.45). Nevertheless, it is well inside the uncertainties of the latter. As the
HC input is taken into account via the Rfit scheme, we obtain thus essentially the same
fit as in plain SE1. The main difference lies in the upper uncertainty of α⊥/α‖, which is
smaller when the HC input is included. As a result of the Rfit treatment of the HC relation
Eq. (4.45) the 68% and 95% C.L. upper uncertainties of α⊥/α‖ coincide. For that reason,
in Fig. 4.4(c) and 4.5(c), which show the SE1 HC fit of f⊥/ f‖ and V/A1, respectively, the
upper limits of the 68% and 95% C.L. regions agree as well.

The fit of the SE1 including the LCSR results Eq. (4.77) does not work at all. Firstly, the
very precise LCSR prediction for V(0)/A1(0) with an uncertainty of only 5% shifts the
value for α⊥/α‖ away from its best fit value. This is due to the LCSR value for V(0)/A1(0)
being smaller than expected from the data—in that way similar to the HC constraint, but
with a higher precision. Secondly, the by the parametrization fixed value for A2(0)/A1(0)
is just outside the 1σ border of the corresponding LCSR value. In the Rfit scheme such an
inconsistent situation with contradicting theoretical regions for the same parameter gives
a huge contribution to the χ2, so that the fit is inconsistent and does not make sense at
all. Numerically, we obtain χ2

min ∼ 870. Therefore, the SE1 LCSR results are not shown
in Table 4.2 and the corresponding plots in Figs. 4.1–4.6 are marked with a gray hatched
background. The principally possible conclusions that can be drawn from the SE1 LCSR
fit were given after Eq. (4.28).

Turning to SE2, we see firstly from Figs. 4.1 and 4.2 that the high q2 data is described
equally well by SE1 and SE2. The 68% and 95% C.L. regions for FL and A(2)

T in SE1
and SE2 do not differ very much from each other, regardless of taking into account addi-
tional input from theory or not. The shape of the fit to the observables at high q2 is only
marginally influenced by the HC and LCSR input Eq. (4.45) and (4.77), respectively,
when we discard the SE1 LCSR fit due to its large χ2.
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On the other hand, for the form factor ratios the predictions of SE1 and SE2 show differ-
ences, especially at low q2. For SE2, the theory input at q2 = 0 has a significant influence
on the shape of the form factor ratios for q2 . 14 GeV2. This is especially visible in
Figs. 4.4 and 4.5 which show f⊥/ f‖ and V/A1 against q2, respectively. In plain SE2, the
respective form factor ratios are essentially unconstrained at low q2. This is because we
only take into account high q2 data, see Table 4.1, in order to be approximately indepen-
dent of short-distance physics up to right-handed currents as was discussed in Sec. 4.1.
Theory input at only one q2-point, i.e., q2 = 0, suffices to considerably narrow the shape
of the bands of f⊥/ f‖ and V/A1 in the region q2 . 14 GeV2. This is visible in Figs. (4.4)
and (4.5). We learn consequently that for a constraint at low q2 within our approach
we need at least some theory input at large recoil. Being approximately independent of
short-distance physics has the advantage that our extraction of form factor ratios does not
rely on the SM. It is valid also in NP scenarios as long as no right-handed currents are
considered.

The results for the form factor ratios can be compared with outcomes from Lattice QCD
at high q2 [438, 439], as was demonstrated in Ref. [401]. Lattice QCD is an approach
to QCD that uses a renormalization method that allows to perform nonperturbative cal-
culations of form factors from first principles. In contrast to the LCSR method, which
performs well at low q2, the lattice approach works best at high q2 for B̄ → K̄(∗)l+l−. As
a matter of fact, these two approaches are thus complementary methods. It was found in
[401] that the data is up to now indeed consistent with the Lattice QCD results given in
[438, 439].

Altogether, we have shown that using features of B̄→ K̄∗l+l− decays at low recoil we can
extract B̄ → K̄∗ form factor ratios in a rather model independent way, i.e., in scenarios
without right-handed currents, and can give benchmarks for Lattice QCD calculations.
Both SE1 and SE2 fits describe the high-q2 data well and do not differ essentially in this
respect. However, SE1 fits introduce a lot of bias into the fit due to the very limited num-
ber of parameters. SE2 fits on the other hand need large recoil LCSR or HC input in order
to be able to predict form factor ratios at low q2. The large recoil form factor ratios in
plain SE2 are essentially unconstrained, as the second order fit has more freedom due to
the larger amount of parameters. Nonetheless, only one anchor point at q2 = 0 already
suffices to considerably constrain the shape of the form factor ratios. In this way, with
improving data in the future, important consistency checks of the data, LCSR results and
Lattice QCD will get feasible.
Future data will not only improve the precision of FL and A(2)

T , important additional in-
formation will also come from the measurement of further observables in that the short-
distance physics cancels out likewise, see [78]. These will extend our knowledge of the
hadronic physics in the different kinematic regions of the B̄→ K̄∗ transition and increase
the precision of the extracted form factor ratios. Subsequently, the knowledge on form
factor ratios obtained in the future by the here demonstrated method [400, 401] will prove
invaluable in order to probe for NP in precision studies of B̄→ K̄∗µ+µ− decays.
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(a) (b) (c)

(d) (e) (f)

Figure 4.1.: Fit results for FL against q2, overlaid with the binned data from BaBar (or-
ange triangles), CDF (blue circles), LHCb (black squares), ATLAS (blue hollow squares)
and CMS (red hollow circles). The SE1 LCSR fit is inconsistent, i.e., does not work and
is marked with a gray hatched background, see text for details. (Dark) green: (68%) 95%
C.L. regions. Blue line: Best fit curve. Plots taken from [400].
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(a) (b) (c)

(d) (e) (f)

Figure 4.2.: Fit results for A(2)
T against q2, overlaid with the binned data from CDF (blue

circles) and LHCb (black squares). The SE1 LCSR fit is inconsistent, i.e., does not work
and is marked with a gray hatched background, see text for details. (Dark) green: (68%)
95% C.L. regions. Blue line: Best fit curve. Plots taken from [400].

(a) (b) (c)

(d) (e) (f)

Figure 4.3.: Fit results for f0/ f‖ against q2. The SE1 LCSR fit is inconsistent, i.e., does
not work and is marked with a gray hatched background, see text for details. (Dark) green:
(68%) 95% C.L. regions. Blue line: Best fit curve. Plots taken from [400].
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(a) (b) (c)

(d) (e) (f)

Figure 4.4.: Fit results for f⊥/ f‖ against q2. The SE1 LCSR fit is inconsistent, i.e., does
not work and is marked with a gray hatched background, see text for details. (Dark) green:
(68%) 95% C.L. regions. Blue line: Best fit curve. Plots taken from [400].

(a) (b) (c)

(d) (e) (f)

Figure 4.5.: Fit results for V/A1 against q2. The SE1 LCSR fit is inconsistent, i.e., does
not work and is marked with a gray hatched background, see text for details. (Dark) green:
(68%) 95% C.L. regions. Blue line: Best fit curve. Plots taken from [400].
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(a) (b) (c)

(e) (f)

Figure 4.6.: Fit results for A2/A1 against q2. The SE1 LCSR fit is inconsistent, i.e., does
not work and is marked with a gray hatched background, see text for details. The plain
SE2 fit (d) of A2/A1 does not converge due to the lack of input at low q2 and is therefore
not shown. (Dark) green: (68%) 95% C.L. regions. Blue line: Best fit curve. Plots taken
from [400].



5. Comprehensive SU(3)F Breaking in
D→ P8P8

5.1. CP Violation in Nonleptonic Charm Decays

Charm Physics and Unexpected Data In 2011/2012 spectacular results on direct CP
violation in charm decays where observed [60–62]: The difference of the CP asymmetries
adir

CP(D0
→ K+K−) and adir

CP(D0
→ π+π−) was found to be sizable [63]

∆adir
CP ≡ adir

CP(D0
→ K+K−) − adir

CP(D0
→ π+π−)

= (−0.678 ± 0.147) · 10−2 , (5.1)

which is nonzero at 4.6σ. We use here the notation for CP asymmetries that was intro-
duced in Sec. 2.3. The significance of each single measurement is of course smaller, the
significance of LHCb alone is 3.5σ [60]. The measurement Eq. (5.1) stimulated much
work on the theory side [440–447]. We present here our results that were partly published
in Ref. [175]. For the definition and generalities about direct and indirect CP asymmetries
of meson decays see Sec. 2.3.

At first glance the number in Eq. (5.1) seems small, however, in comparison to what?
The point is here that the SM contribution to ∆adir

CP is quite suppressed as well. As was
explained in Sec. 2.2.1 CP violation is an effect that only happens with three generations
of matter in the SM [17]. The charm system on the other hand is an effectively two-
generational system. The third generation and thus CP violation only enters through
loops. CP violation is per se suppressed by a factor ∼ 2 Im

(
VubV∗cb
VusV

∗
cs

)
∼ 10−3 from the

CKM matrix elements. In addition there appears a loop factor which in the SM is naively
given as O(αs(mc)/π) ∼ 0.1. Consequently, the naive expectation in the SM is that ∆adir

CP
is below the per mill level.

The problem we are facing here is that we are not able to reliably calculate the loop factor
from first principles. This is because the charm quark mass mc is not much above ΛQCD.
The usual techniques used in b physics, like QCDF [310–312] and HQET [185, 416–422],
cannot reliably be applied here in a quantitative way, or only to a certain limited extent
that we will explore in Ch. 6. As a matter of fact we can thus not tell for sure if the loop
factor gives a suppression or on the contrary an enhancement of ∆adir

CP.

The measurement Eq. (5.1) could be both: a pointer to NP or a nonperturbative QCD
effect. Besides, there are also general interesting features incorporated in charm physics

81
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Observable Measurement References Experiments

∆adir
CP(K+K−, π+π−) −0.00678 ± 0.00147 [60–63, 448, 449] BaBar, Belle, CDF, LHCb

Σadir
CP(K+K−, π+π−) +0.0014 ± 0.0039 †[60–62, 448, 450] BaBar, Belle, CDF, LHCb

ACP(D0
→ KS KS ) −0.23 ± 0.19 [451] CLEO

ACP(D0
→ π0π0) +0.001 ± 0.048 [451] CLEO

ACP(D+
→ π0π+) +0.029 ± 0.029 [452] CLEO

ACP(D+
→ KS K+) −0.0011 ± 0.0025 [452–456] BaBar, Belle, CLEO, FOCUS

ACP(Ds → KS π
+) +0.031 ± 0.015 †[452, 455, 457] BaBar, Belle, CLEO

ACP(Ds → K+π0) +0.266 ± 0.228 [452] CLEO

Table 5.1.: CP violation measurements for the 8 SCS decays. †Our average with system-
atic and statistical error being added quadratically. Table adapted from Ref. [175]. The
quoted value for ∆adir

CP is the one given in [63], online update Sep 2012.

that we should note here. Firstly, it is a complementary tool to the physics of B and K
mesons. In the decays of the latter we probe the down quark flavor sector. In the charm
system we probe the up quark sector. Furthermore, among the features of charm physics
it should be noted that the charm quark is the only up quark with mesons that oscillate
and actually indeed large amounts of D mesons are produced at colliders. A large amount
of data is already accumulated. We summarize the status quo of the measurements in
Tables 5.1, 5.2 and 5.3. In the tables and throughout for the differences and sums of direct
CP asymmetries with final states f1 and f2 we write

∆adir
CP( f1, f2) = adir

CP( f1) − adir
CP( f2) , Σadir

CP( f1, f2) = adir
CP( f1) + adir

CP( f2). (5.2)

Furthermore, we use the common classification scheme of different charm decay channels
which is carried out according to their respective Cabibbo suppression. The latter can be
read off easily from the underlying quark level process. As examples for the different
CKM suppression factors we show in Fig. 5.1 Feynman diagrams with color-favored tree
topology. The Cabibbo-favored (CF) decay channels come along with diagonal entries
of the CKM matrix. In singly-Cabibbo suppressed (SCS) decays at one of the weak
vertices we have a suppression factor ∼ λ. Finally, in doubly-Cabibbo suppressed (DCS)
decay modes at both of the weak vertices there can be found factors of the Cabibbo angle,
leading to an overall suppression ∼ λ2. In Feynman diagrams like the ones in Fig. 5.1
the QCD part is depicted in a rough simplification. Consequently, these are not meant
as a statement from perturbation theory. On the other hand, the diagrams indeed depict
the correct flavor flow of the processes and are useful in this respect. Of course there are
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additional, different topologies: Besides the tree diagrams depicted in Fig. 5.1 the most
important decay topologies are shown in Figs. 5.2 and 5.3. In Fig. 5.2 we show also the
CKM factors.

Observable Measurement References

SCS branching ratios

B(D0
→ K+K−) (3.96 ± 0.08) · 10−3 [89]

B(D0
→ π+π−) (1.401 ± 0.027) · 10−3 [89]

B(D0
→ KS KS ) (0.17 ± 0.04) · 10−3 [89]

B(D0
→ π0π0) (0.80 ± 0.05) · 10−3 [89]

B(D+
→ π0π+) (1.19 ± 0.06) · 10−3 [89]

B(D+
→ KS K+) (2.83 ± 0.16) · 10−3 [89]

B(Ds → KS π
+) (1.21 ± 0.08) · 10−3 [89]

B(Ds → K+π0) (0.62 ± 0.21) · 10−3 [89]

CF∗ branching ratios

B(D0
→ K−π+) (3.88 ± 0.05) · 10−2 [89]

B(D0
→ KS π

0) (1.19 ± 0.04) · 10−2 [89]

B(D0
→ KLπ

0) (1.00 ± 0.07) · 10−2 [89]

B(D+
→ KS π

+) (1.47 ± 0.07) · 10−2 [89]

B(D+
→ KLπ

+) (1.46 ± 0.05) · 10−2 [89]

B(Ds → KS K+) (1.45 ± 0.05) · 10−2 †[89, 458]

DCS branching ratios

B(D0
→ K+π−) (1.47 ± 0.07) · 10−4 [89]

B(D+
→ K+π0) (1.83 ± 0.26) · 10−4 [89]

Table 5.2.: Branching ratio measurements in
the D → PP system. †Our average with
systematic and statistical error being added
quadratically. ∗Decays with a KS ,L in the fi-
nal state, i.e., that have a CF and DCS com-
ponent from K0–K̄0 mixing, are assigned
to the CF channels. Table adapted from
Ref. [175].

SCS decays play a special role as only for
them there exist penguin topologies as for
example the one depicted in Fig. 5.2(b).
Here the third generation enters in a loop
with a factor of V∗cbVub. The interference
of this diagram with the corresponding tree
diagram induces CP violation. Penguin
contractions of tree operators are most im-
portant in this respect [440, 447]. As one
can see in Table 5.1 all CP asymmetries
in the SCS modes are already measured,
although only the measurement of ∆adir

CP
is significant. Additionally, all branching
ratios except for the one of the channel
Ds → KLK+ are measured. We summa-
rize them in Table 5.2. Furthermore, in Ta-
ble 5.3 we list the measured indirect CP vi-
olation in the charm and kaon system and
the relative strong phase of the channels
D0
→ K−π+ and D0

→ K+π−. Note that
the CP asymmetries with a KS in the final
state or a D0 in the initial state get con-
tributions from indirect CP violation that
have to be subtracted in order to extract the
pure direct CP violation. This is further
described in Sec. 2.3. For the theoretical
description of all the different decay chan-
nels the starting point is the low energy ef-
fective field theory of the weak interaction
that was introduced in Sec. 2.4.1 for the B
system. The CF, SCS and DCS decays are
described by different operators and their
respective Wilson coefficients. It is

H
∆C=−1
eff = HCF +HDCS +HSCS, (5.3)

HCF =
4GF
√

2
V∗csVud

∑
i=1,2

CiO
CF
i , (5.4)

HDCS =
4GF
√

2
V∗cdVus

∑
i=1,2

CiO
DCS
i , (5.5)
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and

HSCS =
4GF
√

2

∑
i=1,2

∑
D=d,s

V∗cDVuDCiO
SCS
i,D + V∗cbVub

∑
i=3,...,6

CiOi

 .
(5.6)

On the one hand we have the tree operators OCF, OSCS and ODCS that have Wilson coeffi-
cients Ci ∼ O(1) and on the other hand there are the QCD penguin operators O3,...,6 that
have Wilson coefficients that are suppressed by Ci ∼ αs.

Observable Measurement References

Indirect CP Violation

aind
CP (−0.027 ± 0.163) · 10−2 [63]

δL ≡ 2Re(ε)/(1 + |ε|2) (3.32 ± 0.06) · 10−3 [89]

K+π− strong phase difference

δKπ 21.4◦ ± 10.4◦ ‡[63]

Table 5.3.: Indirect CP violation and strong phase measurements. ‡Uncertainties calcu-
lated by symmetrization of the ones in the literature. Table adapted from Ref. [175].

D0
c

ū

s

ū

K−

u

d̄

π+Vud ∼ 1

V ∗
cs ∼ 1

(a) Cabibbo-favored (CF) decay amplitude:
A(c→ sd̄u) ∝ V∗csVud ∼ 1

D0
c

ū

d

ū

π−

u

d̄

π+Vud ∼ 1

V ∗
cd ∼ −λ

(b) Singly-Cabibbo suppressed (SCS) amplitude:
A(c → dd̄u) or A(c → ss̄u) ∝ V∗csVus ≈

−V∗cdVud ∼ λ

D0
c

ū

d

ū

π−

u

s̄

K+Vus ∼ λ

V ∗
cd ∼ −λ

(c) Doubly-Cabibbo suppressed (DCS) amplitude:
A(c→ ds̄u) ∝ V∗cdVus ∼ −λ

2

Figure 5.1.: Classification of color-favored tree diagrams in D → PP according to the
Cabibbo suppression of the underlying quark level process, see text for details.
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c

d̄

u

ū

u

s̄

V ∗
cd ∼ −λ

Vus ∼ λ

π0

K+

D+

(a) Annihilation diagram for DCS decay with am-
plitudeA(D+

→ π0K+) ∼ λ2

D

c

ū

b

V ∗
cb Vub

u

s̄

s

ū

K+

K−

(b) CP Violation in SCS decay through penguin topol-
ogy contributionAP(D0

→ K+K−) ∝ V∗cbVub

Figure 5.2.: Examples of additional topologies in D→ PP.

(a) Color-favored tree T with ex-
ternal W emission

(b) Color-suppressed tree C with
internal W emission

(c) W-annihilation A

(d) W-exchange E (e) Penguin topology P (f) Penguin annihilation PA

Figure 5.3.: Different examples of most important topological Feynman Diagrams, see
text for details. For a complete list of all possible topologies see Ref. [442].
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Additional operators are omitted in Eqs. (5.3)–(5.6), for an explicit full operator basis see
Ref. [459]. For the SU(3) analysis made here, only the flavor structure of the operators is
relevant. We discuss this in the next section.

Eqs. (5.4)–(5.6) pose a problem when being confronted with data: The hierarchy that is
induced by CKM and the Wilson coefficients is possibly compensated or destroyed by
the hadronic matrix elements 〈 f |O j |i〉 of the operators O j. The point is that we cannot at
present reliably calculate the 〈 f |O j |i〉.

The best way out of such a problematic situation is to extract the hadronic matrix elements
from all the available data using a symmetry that relates several decay amplitudes of
D → PP. In the charm system this seems to be possible because there is indeed much
data available from the experiments LHCb, CDF, Belle, BaBar, CLEO and FOCUS, see
Tables 5.1–5.3.
We fit the degrees of freedom provided by flavor symmetry to the data. We refrain here
from taking input from a priori hierarchies between the topological diagrams in Figs. 5.1–
5.3. In this process correlations between different channels can emerge that possibly lead
to a discrimination of the SM and NP models.

5.2. Exploiting the Approximate SU(3)F Symmetry of
QCD for D→ P8P8

In order to tackle the methodology introduced in the previous paragraph we use the ap-
proximate SU(3)F symmetry of QCD that was introduced in Sec. 2.2.2. This symmetry
gives us a data-driven way out of the problem of not reliably calculable matrix elements.
We start by discussing pure SU(3)F , i.e., the SU(3)F limit, where ms = mu = md. We
examine if one can describe the experimental data using this simplification.

As the charm quark is a singlet from the SU(3)F point of view the initial states (D0, D+, Ds)
of the decays D→ P8P8 form an antitriplet

3̄ =
(
D0 = − |cū〉 ,D+ =

∣∣∣cd̄
〉
,Ds = |cs̄〉

)
. (5.7)

Specifically, the quantum numbers of the states are given as∣∣∣D0
〉

=
∣∣∣3̄〉 1

2 ,−
1
2 ,−

1
3
,

∣∣∣D+〉 =
∣∣∣3̄〉 1

2 ,
1
2 ,−

1
3
,

∣∣∣Ds
〉

=
∣∣∣3̄〉

0,0, 2
3
. (5.8)

Here we use the notation |µ〉I,I3,Y
for an SU(3)F state with the representation µ, isospin I,

third component of the isospin I3 and hypercharge Y . The SU(3)F quantum numbers of
the quarks u, d and s are given in Table 5.4.

In the final state we consider pions and kaons which belong to the octet of pseudoscalars
and have the following quantum numbers:∣∣∣π+〉 = |8〉1,1,0 ,

∣∣∣π0
〉

= |8〉1,0,0 ,
∣∣∣π−〉 = |8〉1,−1,0 , (5.9)∣∣∣K+〉 = |8〉 1

2 ,
1
2 ,1
,

∣∣∣K−〉 = |8〉 1
2 ,−

1
2 ,−1 ,

∣∣∣K0
〉

= |8〉 1
2 ,−

1
2 ,1
,

∣∣∣K̄0
〉

= |8〉 1
2 ,

1
2 ,−1 . (5.10)
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I I3 Y

u 1/2 1/2 1/3

d 1/2 −1/2 1/3

s 0 0 −2/3

Table 5.4.: SU(3)F quantum numbers I, I3 and Y of the quarks u, d and s, see text for
details. Note that the hypercharge of SU(3)F differs from the electroweak hypercharge.

We consider only two-body decays here. From the symmetry point of view two members
of the octet are identical particles. Additionally, they are bosons, i.e., the particles in the
final state obey Bose statistics. In order to account for this property the final state has
to be properly symmetrized. This leads to a reduction of the final representations in the
tensor product

(8) ⊗ (8) = (1) ⊕ (8) ⊕ (8) ⊕ (10) ⊕ (10) ⊕ (27) , (5.11)

where after symmetrization remains

[(8) ⊗ (8)]S = (1) ⊕ (8) ⊕ (27). (5.12)

The Clebsch-Gordan coefficients are calculated with the program [460] or retrieved from
the tables in Refs. [168, 461].

The symmetrized two body final states are in detail given as follows:

• Kaon-Kaon final states:

∣∣∣K−K+〉 =
1
2
|1〉0,0,0 +

1
√

10
|8〉0,0,0 −

√
3

10
|8〉1,0,0 +

1
2

√
3
5
|27〉0,0,0 +

1
√

5
|27〉1,0,0 ,

(5.13)∣∣∣K̄0K0
〉

= −
1
2
|1〉0,0,0 −

1
√

10
|8〉0,0,0 −

√
3

10
|8〉1,0,0 −

1
2

√
3
5
|27〉0,0,0 +

1
√

5
|27〉1,0,0 ,

(5.14)∣∣∣K̄0K+
〉

= −

√
3
5
|8〉1,1,0 +

√
2
5
|27〉1,1,0 , (5.15)∣∣∣K0K+

〉
= |27〉1,0,2 . (5.16)



88 Chapter 5. Comprehensive SU(3)F Breaking in D→ P8P8

• Pion-Pion final states:

∣∣∣π+π−
〉

=
1
2
|1〉0,0,0 −

√
2
5
|8〉0,0,0 −

1

2
√

15
|27〉0,0,0 +

1
√

3
|27〉2,0,0 , (5.17)

∣∣∣π0π0
〉

=

√
2
3
|27〉2,0,0 +

1

2
√

30
|27〉0,0,0 +

1
√

5
|8〉0,0,0 −

1

2
√

2
|1〉0,0,0 , (5.18)∣∣∣π0π+

〉
= |27〉2,1,0 . (5.19)

• Kaon-Pion final states:

∣∣∣K−π+〉 =

√
3
5
|8〉 1

2 ,
1
2 ,−1 +

1
√

15
|27〉 1

2 ,
1
2 ,−1 +

1
√

3
|27〉 3

2 ,
1
2 ,−1 , (5.20)

∣∣∣K̄0π0
〉

= −

√
3

10
|8〉 1

2 ,
1
2 ,−1 −

1
√

30
|27〉 1

2 ,
1
2 ,−1 +

√
2
3
|27〉 3

2 ,
1
2 ,−1 , (5.21)

∣∣∣π−K+〉 =

√
3
5
|8〉 1

2 ,−
1
2 ,1

+
1
√

15
|27〉 1

2 ,−
1
2 ,1

+
1
√

3
|27〉 3

2 ,−
1
2 ,1
, (5.22)

∣∣∣π0K0
〉

= −

√
3

10
|8〉 1

2 ,−
1
2 ,1
−

1
√

30
|27〉 1

2 ,−
1
2 ,1

+

√
2
3
|27〉 3

2 ,−
1
2 ,1
, (5.23)∣∣∣K̄0π+

〉
= |27〉 3

2 ,
3
2 ,−1 , (5.24)∣∣∣π0K+

〉
=

√
3
10
|8〉 1

2 ,
1
2 ,1

+
1
√

30
|27〉 1

2 ,
1
2 ,1

+

√
2
3
|27〉 3

2 ,
1
2 ,1
, (5.25)

∣∣∣π+K0
〉

= −

√
3
5
|8〉 1

2 ,
1
2 ,1
−

1
√

15
|27〉 1

2 ,
1
2 ,1

+
1
√

3
|27〉 3

2 ,
1
2 ,1
, (5.26)

∣∣∣K̄0K+
〉

= −

√
3
5
|8〉1,1,0 +

√
2
5
|27〉1,1,0 , (5.27)

∣∣∣π+K0
〉

= −

√
3
5
|8〉 1

2 ,
1
2 ,1
−

1
√

15
|27〉 1

2 ,
1
2 ,1

+
1
√

3
|27〉 3

2 ,
1
2 ,1
. (5.28)

Note that in the literature different conventions are used for the initial and final states.
The quark triplet is given as (u, d, s). An ambiguity lies in if one writes the minus sign
in front of ū in the antitriplet (−ū, d̄, s̄) explicitly or absorbs it into the states. We follow
the latter approach [462] and use in this way directly the representations of SU(3)F as
states. This implies possible sign differences in the states with an ū in comparison to the
literature. Further differences arise in the treatment of factors of

√
2 that come from the
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symmetrization. For instance, our states relate to the ones in Ref. [463] as follows:∣∣∣D0
〉

= −
∣∣∣D0

〉
previous

,
∣∣∣K−π+〉 = −

∣∣∣K−π+〉
previous

, (5.29)∣∣∣K−K+〉 = −
∣∣∣K−K+〉

previous
,

∣∣∣K̄0π0
〉

= −
∣∣∣K̄0π0

〉
previous

, (5.30)∣∣∣π+π−
〉

= −
∣∣∣π+π−

〉
previous

,
∣∣∣π−K+〉 = −

∣∣∣π−K+〉
previous

, (5.31)∣∣∣π0π0
〉

=
√

2
∣∣∣π0π0

〉
previous

,
∣∣∣π0K0

〉
= −

∣∣∣π0K0
〉

previous
, (5.32)∣∣∣π0π+

〉
= −

∣∣∣π0π+
〉

previous
,

∣∣∣π0K+
〉

= −
∣∣∣π0K+

〉
previous

. (5.33)

By “previous” we indicate here the states as used in Ref. [463]. The interaction that
takes place between initial and final state is governed by the four quark operators of the
Hamiltonian Eq. (5.3). In order to match the Hamiltonian on the SU(3)F ansatz we have
to analyze its flavor structure. Depicting only the flavor structure the different parts of the
Hamiltonian are given as follows:

Heff ∼
4GF
√

2

VudV∗cs(ūd)(s̄c)︸            ︷︷            ︸
CF

+ VusV
∗
cs(ūs)(s̄c) + VudV∗cd(ūd)(d̄c)︸                                    ︷︷                                    ︸

SCS

+ VusV
∗
cd(ūs)(d̄c)︸            ︷︷            ︸

DCS

 .
(5.34)

In order to make the CKM hierarchy of CP violation visible, the SCS part is most conve-
niently written as

H
SCS
eff =

4GF
√

2

(
Σ
(
(ūs)(s̄c) − (ūd)(d̄c)

)
+ ∆

(
(ūs)(s̄c) + (ūd)(d̄c)

))
. (5.35)

Here,

Σ =
V∗csVus − V∗cdVud

2
∼ λ , (5.36)

∆ =
V∗csVus + V∗cdVud

2
= −

V∗cbVub

2
∼ −

A2

2
λ5 (ρ − iη) , (5.37)

where in Eq. (5.37) we used the unitarity of the CKM matrix. The ratio of the CKM-
suppressed over the CKM-leading part is given by

∆̃ = ∆/Σ ∼ λ4
∼ 10−3. (5.38)

Since the charm quark is a singlet under SU(3)F , the structure of all the four quark oper-
ators in Eq. (5.34) is given by the tensor product

3 ⊗ 3̄ ⊗ 3 = 31 ⊕ 32 ⊕ 6̄ ⊕ 15. (5.39)
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Inserting this into Eq. (5.34), we obtain:

H
CF
eff = VudV∗cs

(
−

1
√

2
6̄1,1,− 2

3
+

1
√

2
151,1,− 2

3

)
, (5.40)

H
SCS
eff = Σ

√2
3

15 1
2 ,

1
2 ,

1
3
−

1
√

3
15 3

2 ,
1
2 ,

1
3
− 6̄ 1

2 ,
1
2 ,

1
3


+ ∆

−
√

3
2

3 1
2 ,

1
2 ,

1
3

+
1
√

6
15 1

2 ,
1
2 ,

1
3

+
1
√

3
15 3

2 ,
1
2 ,

1
3

 , (5.41)

H
DCS
eff = VusV

∗
cd

(
1
√

2
6̄0,0, 4

3
+

1
√

2
151,0, 4

3

)
. (5.42)

By examining the CKM hierarchies in Eq. (5.41) one can as of now infer that in the fit,
the matrix elements of the 15 and 6̄ representation will be fixed already by the branching
ratios as the contribution of the 3 is suppressed by ∆̃. The only degree of freedom that
remains in order to explain a sizable CP violation is precisely this 3. This means from
Eq. (5.41) we can already learn that we will need a triplet enhancement.
Furthermore, we see that in our framework there is a priori no CP violation in CF and
DCS decays. If significant CP violation would be measured in one of these decays, we
would have to rethink our model. As this is not the case, the corresponding measured
values of the CP asymmetries give just a (small) overall constant offset in our χ2 that does
not change the fit result. Therefore, we neglect these observables in the fit.

How do the parametrizations of the Hamiltonian, the initial and the final states relate
different decay channels? This is provided by the Wigner-Eckart theorem that was in-
troduced in Sec. 2.2.2. In brief, it tells us that all the matrix elements of different initial
and final states with the operators of the Hamiltonian only depend on the representations.
The matrix elements do not depend on the additional quantum numbers, here I, I3 and Y .
But the “information” contained in these quantum numbers is not lost: It goes into the
Clebsch-Gordan coefficients of the reduced matrix elements.

We apply the Wigner-Eckart theorem to the initial states in Eq. (5.8), the final states
in Eqs. (5.13)-(5.28) and the Hamiltonian in Eqs. (5.40)-(5.42). The result is given in
Table 5.5.

With the Clebsch-Gordan coefficients in Table 5.5, the amplitude of a given decay d is
given as

A0(d) = Σ
∑
i,k

cd;ikAk
i , (SCS) (5.43)

A0(d) = V∗csVud

∑
i,k

cd;ikAk
i , (CF) (5.44)

A0(d) = V∗cdVus

∑
i,k

cd;ikAk
i , (DCS) (5.45)

where the CKM prefactor depends on the amount of Cabibbo suppression that is present
in the considered channel. Our SU(3)F limit expressions agree with Ref. [463]. Note that
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Decay d A15
27 A15

8 A6̄
8 A3

1 A3
8

SCS

D0
→ K+K− 3∆̃+4

10
√

2
∆̃−2
5
√

2
1
√

5
∆̃

2
√

2
∆̃
√

10

D0
→ π+π− 3∆̃−4

10
√

2
∆̃+2
5
√

2
− 1
√

5
∆̃

2
√

2
∆̃
√

10

D0
→ K̄0K0 ∆̃

10
√

2

√
2∆̃

5 0 − ∆̃

2
√

2

√
2
5 ∆̃

D0
→ π0π0 7∆̃−6

20 − ∆̃+2
10

1
√

10
− ∆̃

4 − ∆̃

2
√

5

D+
→ π0π+ ∆̃−1

2 0 0 0 0

D+
→ K̄0K+ ∆̃+3

5
√

2
− ∆̃−2

5
√

2
1
√

5
0 3∆̃

√
10

Ds → K0π+ ∆̃−3
5
√

2
− ∆̃+2

5
√

2
− 1
√

5
0 3∆̃

√
10

Ds → K+π0 2∆̃−1
5

∆̃+2
10

1
√

10
0 − 3∆̃

2
√

5

CF

D0
→ K−π+

√
2

5 −
√

2
5

1
√

5
0 0

D0
→ K̄0π0 3

10
1
5 − 1

√
10

0 0

D+
→ K̄0π+ 1

√
2

0 0 0 0

Ds → K̄0K+
√

2
5 −

√
2

5 − 1
√

5
0 0

DCS

D0
→ K+π−

√
2

5 −
√

2
5

1
√

5
0 0

D0
→ K0π0 3

10
1
5 − 1

√
10

0 0

D+
→ K0π+

√
2

5 −
√

2
5 − 1

√
5

0 0

D+
→ K+π0 3

10
1
5

1
√

10
0 0

Ds → K0K+ 1
√

2
0 0 0 0

Table 5.5.: Result of the application of the Wigner-Eckart theorem to D → P8P8 decays
in the SU(3)F limit. The entries in the table are the Clebsch-Gordan coefficients cd;i j of
the expressions for the amplitudes in Eqs. (5.43)–(5.45). Table adapted from [175].
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the 3 matrix elements in Table 5.5 have only nonvanishing Clebsch-Gordan coefficients
for the SCS decay channels. For instance,

A0(D0
→ K−π+) = V∗csVud

 √2
5

A15
27 −

√
2

5
A15

8 +
1
√

5
A6̄

8

 . (5.46)

The amplitudes are normalized such that for a decay d with amplitudeA(d) the branching
ratio is given as

B(D→ P1P2) = τDP(d) |A(d)|2 , (5.47)

with lifetime τD of the initial D meson and the phase space factor

P(d) =

√
(m2

D − (m1 − m2)2)(m2
D − (m1 + m2)2)

16πm3
D

. (5.48)

mD is the mass of the initial D meson and m1,2 are the masses of the kaon or pion mesons
in the final state. As one can see from Table 5.5 it turns out that the 17 decay channels are
described by only five matrix elements. Obviously, a lot of correlations between channels
arise. For example, strict SU(3)F symmetry predicts that

B(D0
→ K+K−)

B(D0
→ π+π−)

= 1 ,
B(D0

→ K+π−)
λ4
B(D0

→ K−π+)
= 1 (strict SU(3)F-limit). (5.49)

Also, the amplitude

A(D0
→ K̄0K0)SU(3)F -limit ∼ λ

5 (5.50)

is predicted to be strongly CKM suppressed. For the direct CP asymmetries we have
furthermore the following relations:

Γ(D0
→ K+K−)

Γ(D0
→ π+π−)

= −
adir

CP(D0
→ π+π−)

adir
CP(D0

→ K+K−)
, (5.51)

Γ(D+
→ K̄0K+)

Γ(Ds → K0π+)
= −

adir
CP(Ds → K0π+)

adir
CP(D+

→ K0K+)
, (5.52)

adir
CP(D0

→ K0K̄0) = 0 , (5.53)

adir
CP(D+

→ π+π0) = 0. (5.54)

From Eqs. (5.51) and (5.52), which are exact in the SU(3)F limit, follow the approximate
relations

adir
CP(D0

→ K+K−) + adir
CP(D0

→ π+π−) = O(Re∆̃Im∆̃) , (5.55)

adir
CP(D+

→ K̄0K+) + adir
CP(Ds → K0π+) = O(Re∆̃Im∆̃) . (5.56)
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It turns out that most of the predictions in the SU(3)F limit are not fulfilled by the data,
for example,

B(D0
→ K+K−)

B(D0
→ π+π−)

= 2.83 ± 0.08 ,
B(D0

→ K+π−)
λ4
B(D0

→ K−π+)
= 1.47 ± 0.07 , (5.57)

where we used Gaussian error propagation in order to calculate the uncertainties. Ad-
ditionally, B(D0

→ KS KS ) is not as suppressed as expected by SU(3)F . A fit of all
25 observables to the five matrix elements in Table 5.5 in the SU(3)F limit results in
χ2/dof ∼ 100. If one fits the branching ratios of CF and DCS decays only, one still has
χ2/dof ∼ 9.

We conclude that the SU(3)F-limit description of D → P8P8 does not even work for the
branching ratios. It is all the worse for the full set of observables. Consequently, the
SU(3)F ansatz has to be amended by the inclusion of breaking terms. In the next section
we show how to include linear SU(3)F breaking in order to include the corrections from
ms , mu,d.

5.3. Breaking SU(3)F

Taking into account ms , mu,d As explained in Sec. 5.2 we are forced by the data
to include SU(3)F breaking effects. The approximate SU(3)F symmetry of the QCD-
Lagrangian is broken by the non-vanishing mass terms of the quarks, i.e., the bilinear
terms

H ⊃∼ ms s̄s + md d̄d + mu ūu. (5.58)

However, the three SU(2)F subgroups of SU(3)F are broken with different amounts. The
isospin symmetry mu = md is realized with great precision: the mass difference between
mu and md compared to ΛQCD is tiny. Therefore, we assume isospin is not broken. We only
take into account the corrections stemming from ms , mu,d. The size of these corrections
should a priori be of the order ε ∼ ms/ΛQCD ∼ 30% which we take as generic size of
the SU(3)F expansion parameter, and which is absorbed into the SU(3)F-breaking matrix
elements as an overall factor. We quantitatively confirm that the data can be described
with this nominal SU(3)F breaking in Sec. 5.4.1.
Perturbation theory tells us to take into account the corrections of the non-perturbed oper-
ators given in Eqs. (5.40)-(5.42) by the tensor product with the perturbation, i.e., with the
octet stemming from the operator s̄s. Thus, SU(3)F breaking is described by the tensor
products

15 ⊗ 8 = 42 ⊕ 24 ⊕ 151 ⊕ 152 ⊕ 15′ ⊕ 6̄ ⊕ 3 , (5.59)

6̄ ⊗ 8 = 24 ⊕ 15 ⊕ 6̄ ⊕ 3 , (5.60)

3 ⊗ 8 = 15 ⊕ 6̄ ⊕ 3. (5.61)
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Obviously, the result does not only contain small representations like the 3 and 6̄ but
also higher ones as a 24 and a 42. There is however no reason for an a priori hierarchy
between different representations.1 Calculating the Clebsch-Gordan coefficients of the
tensor products in Eqs. (5.59)-(5.61), the Hamiltonian is amended by the following SU(3)-
breaking terms:

H
CF,X
eff

= −
1
√

10
6

1
1,1,− 2

3
−

1

2
√

5
6

2
1,1,− 2

3

+
7

2
√

366
151

1,1,− 2
3

+
1
√

122
152

1,1,− 2
3

+
1
2

153
1,1,− 2

3
−

1

2
√

2
15′1,1,− 2

3

−
1
√

15
241

1,1,− 2
3
−

1
√

5
242

1,1,− 2
3

+
1
√

6
421,1,− 2

3
, (5.62)

H
SCS,X
eff

= −
1
2

√
3
10

31
1
2 ,

1
2 ,

1
3
−

√
3

4
32

1
2 ,

1
2 ,

1
3

−
1

2
√

5
6

1
1
2 ,

1
2 ,

1
3

+
1

2
√

10
6

2
1
2 ,

1
2 ,

1
3

−
2
3

√
2

61
151

1
2 ,

1
2 ,

1
3

+
5

12
√

61
151

3
2 ,

1
2 ,

1
3
−

11

2
√

366
152

1
2 ,

1
2 ,

1
3
−

4
√

183
152

3
2 ,

1
2 ,

1
3

+

√
3

4
153

1
2 ,

1
2 ,

1
3

+
1
4

15′ 3
2 ,

1
2 ,

1
3

−
2

3
√

5
241

1
2 ,

1
2 ,

1
3

+
1
3

24
1

3
2 ,

1
2 ,

1
3
−

√
3
5

24
2

1
2 ,

1
2 ,

1
3

+
4

3
√

5
42 1

2 ,
1
2 ,

1
3
−

1
6

√
5
2

42 3
2 ,

1
2 ,

1
3
,

(5.63)

H
DCS,X
eff

= −
1
√

5
6

2
0,0, 4

3
−

7
√

366
151

1,0, 4
3
−

√
2

61
152

1,0, 4
3

−
1
√

6
24

1
1,0, 4

3
+

√
3
10

24
2

0,0, 4
3

+
1
√

6
421,0, 4

3
. (5.64)

Note that in the SU(3)F breaking we have neglected the contributions from the tensor
product 3 ⊗ 8. These terms only appear with a factor ∆ in front, i.e., they have a double
suppression ∆ × ε and are thus higher order in our power counting. With the present
measurements of CP asymmetries we are not sensitive to these corrections anyway.

In order to obtain the reduced matrix elements we apply the Wigner-Eckart theorem in the
same way as in Sec. 5.2 for the SU(3)F limit. The resulting Clebsch-Gordan coefficients
are given in Table 5.6. The result is in agreement with the result that is obtained by the
authors of Ref. [441].2

1Likewise, the “∆I = 1/2 rule”, while being true for the kaon sector, is found not to be valid for charm in
Ref. [464].

2The slight disagreements with [441] that we note in [175] are due to typos in the former reference [465].



5.3. Breaking SU(3)F 95

Note that in Table 5.6 the 15′ representation does not contribute at all because all its
Clebsch-Gordan coefficients therein vanish. Using the coefficients from Table 5.6 the
SU(3)-breaking part of the amplitudesA(d) = A0(d) +AX(d) can be written as

AX(d) = Σ
∑

i, j

cd;i jB
j
i , (SCS) (5.65)

AX(d) = V∗csVud

∑
i, j

cd;i jB
j
i , (CF) (5.66)

AX(d) = V∗cdVus

∑
i, j

cd;i jB
j
i . (DCS) (5.67)

Counting parameters Not all of the matrix elements in Table 5.6 are physical degrees
of freedom. Altogether, we have at this stage five SU(3)F limit matrix elements, where
two of them come only with a factor of ∆. As we are only sensitive to relative phases
we have thus nine real-valued SU(3)F limit parameters. In addition to these there are 15
complex matrix elements from the breaking in Table 5.6. Altogether, for the 17 decay
channels we have thus 20 matrix elements. But the 17 × 20 matrix of Clebsch-Gordan
coefficients does not have full rank. For calculating the rank of the matrix we have to
consider terms coming only with ∆, i.e., the SU(3)F limit 3 matrix elements separately as
they have a different order in the power counting.

The 17 × 18 matrix of Clebsch-Gordan coefficients of matrix elements without factors of
∆ has rank 11. This means that only 13 out of 20 matrix elements are physical degrees
of freedom. The others can be absorbed by redefinitions. For example, the first and most
obvious redefinition is the absorption of the 32 into the 31. This redefinition could even
be done already on the level of the Hamiltonian. The reason is that the two triplets appear
only together and with the same quantum numbers and are thus indistinguishable.

On the matrix element level we replace

B31
1,8 7→

√
7
2

B31
1,8 −

√
5
2

B32
1,8. (5.68)

By further similar replacements we eliminate the matrix elements B6̄2
8 , B153

8 , B153
27 , B242

27
and B42

27. The redefinitions in order to do so can be found by Gaussian elimination. Dur-
ing this process we absorb also parts of the SU(3)F breaking amplitudes into the SU(3)F
limit ones. However, in order to keep the relative normalization of the SU(3)F limit and
breaking amplitudes A0(d) and AX(d), respectively, for the redefined physical matrix el-

ements we use the normalization
√

Σi|ci|
2Bphys = ΣiciB

SU(3)
i . The normalization of the

SU(3)F limit matrix elements on the other hand is not touched and no SU(3)F limit matrix
element is absorbed into another one. Hence, the Clebsch-Gordan coefficients of the re-
defined matrix elements are in the SU(3)F limit just the same as in Table 5.5. Specifically,
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the applied redefinitions that follow the ones in Eq. (5.68) read as follows:

A15
27 7→ A15

27 −

√
2

3
B153

27 +
1
6

B242
27 , (5.69)

A15
8 7→ A15

8 −

√
2

3
B153

8 +
3
8

B242
27 , (5.70)

A6̄
8 7→ A6̄

8 +

√
2
5

B6̄2
8 −

3

4
√

10
B242

27 , (5.71)

B3
1 7→

√
421
14

B3
1 −

3
2

√
5
14

B242
27 +

3
14

√
15
2

B42
27 , (5.72)

B3
8 7→

√
3937
56

B3
8 +

15

8
√

14
B242

27 +
3
56

√
3
2

B42
27 , (5.73)

B6̄1
8 7→

1
8

√
2869

7
B6̄1

8 −
3
√

2
B6̄2

8 +
9

8
√

2
B242

27 +
9
8

√
3

14
B42

27 , (5.74)

B151
8 7→

1
24

√
1330969

854
B151

8 +
23

3
√

122
B153

8 −
69

16
√

61
B242

27 +
3

16

√
183
7

B42
27 , (5.75)

B152
8 7→

1
2

√
871
61

B152
8 − 4

√
6

61
B153

8 +
9
2

√
3
61

B242
27 , (5.76)

B152
27 7→

1
2

√
5281
854

B151
27 +

23

3
√

122
B153

27 −
23

12
√

61
B242

27 −
3
4

√
3

427
B42

27 , (5.77)

B152
27 7→ 2

√
302
427

B152
27 − 4

√
6

61
B153

27 + 2

√
3
61

B242
27 +

5
√

427
B42

27 , (5.78)

B241
27 7→ 2

√
2
7

B241
27 −

1
√

7
B42

27 . (5.79)

The Clebsch-Gordan coefficients of the redefined matrix elements are given in Table 5.7.
In the following we use Eqs. (5.65)-(5.67) only with the Clebsch-Gordan coefficients
given in Table 5.7. Note that due to the linear combinations in Eqs. (5.68)–(5.79) the
indices of the redefined matrix elements do not correspond anymore to actual representa-
tions.

SU(3)F sum rules Implicitly, the Tables 5.5, 5.6 and 5.7 contain a number of nontrivial
sum rules. A comprehensive list of all sum rules for D → P8P8 (and additionally also
for D → P1P8, D → PV) that are valid even in the presence of linear breaking terms can
be found in [466], see also [447, 467, 468]. As the 17 × 11 matrix of Clebsch-Gordan
coefficients composed of Tables 5.5 and 5.7 has maximal rank (namely 11) we know a
priori that there must be six nontrivial sum rules between the amplitudes. The underlying
mathematical reason for this is the equality of row and column rank.
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Decay d B31
1 B32

1 B31
8 B32

8 B6̄1
8 B6̄2

8 B151
8 B152

8 B153
8 B151

27 B152
27 B153

27 B241
27 B242

27 B42
27

SCS

D0
→ K+K− 1

4
√

10
1
8

1
10
√

2
1

4
√

5
1
10 − 1

10
√

2
− 7

10
√

122

√
3

122
5 − 1

20 − 31
20
√

122
− 17

20
√

366
7
40 − 1

10
√

6
1

10
√

2
− 13

20
√

42

D0
→ π+π− 1

4
√

10
1
8

1
10
√

2
1

4
√

5
− 1

10
1

10
√

2
− 11

10
√

122
−

2
√

2
183

5
3
20 − 23

20
√

122
11

20
√

366
− 1

40
1

10
√

6
− 1

10
√

2

√
7
6

20

D0
→ K̄0K0

− 1
4
√

10
− 1

8
1

5
√

2
1

2
√

5
0 0 − 9

5
√

122
− 1

5
√

366
1
10 − 9

20
√

122
− 1

20
√

366
1
40 − 1

2
√

6
− 1

2
√

2
19

20
√

42

D0
→ π0π0

− 1
8
√

5
− 1

8
√

2
− 1

20 − 1
4
√

10
1

10
√

2
− 1

20
11

20
√

61
2

5
√

183
− 3

20
√

2
− 57

40
√

61
7

20
√

183
1

40
√

2
1

5
√

3
1
20 − 1

20
√

21

D+
→ π0π+ 0 0 0 0 0 0 0 0 0 −

2(1−∆̃)
√

61
5(1−∆̃)
8
√

183
0 1−∆̃

4
√

3
0 1−∆̃

8
√

21

D+
→ K̄0K+ 0 0 3

10
√

2
3

4
√

5
1
10 − 1

10
√

2
7

10
√

122
−

√
3

122
5

1
20 −

3
√

2
61

5 − 23
20
√

366
1
5 − 1

10
√

6
−

√
2

5 − 19
20
√

42

Ds → K0π+ 0 0 3
10
√

2
3

4
√

5
− 1

10
1

10
√

2
11

10
√

122

2
√

2
183

5 − 3
20 − 3

5
√

122
19

20
√

366
− 1

10 −

√
2
3

5 − 1
10
√

2
− 19

20
√

42

Ds → K+π0 0 0 − 3
20 − 3

4
√

10
1

10
√

2
− 1

20 − 11
20
√

61
− 2

5
√

183
3

20
√

2
− 17

10
√

61

√
3
61

20
1

10
√

2
−

√
3

10
1
20 −

√
3
7

20

CF

D0
→ K−π+ 0 0 0 0 1

5
1

5
√

2
−

√
2
61

5 − 7
5
√

366
− 1

5

√
2
61

5
7

5
√

366
1
5

1
20
√

6
1

20
√

2
− 1

2
√

42

D0
→ K̄0π0 0 0 0 0 − 1

5
√

2
− 1

10
1

5
√

61
7

10
√

183
1

5
√

2
3

10
√

61

7
√

3
61

20
3

10
√

2
−

√
3

20 − 3
20 0

D+
→ K̄0π+ 0 0 0 0 0 0 0 0 0 1√

122
7

2
√

366
1
2 − 1

4
√

6
− 1

4
√

2
− 1

2
√

42

Ds → K̄0K+ 0 0 0 0 − 1
5 − 1

5
√

2
−

√
2
61

5 − 7
5
√

366
− 1

5

√
2
61

5
7

5
√

366
1
5

1
5
√

6
1

5
√

2
1√
42

DCS

D0
→ K+π− 0 0 0 0 0 −

√
2

5
2
√

2
61

5
7
√

2
183

5 0 −
2
√

2
61

5 −
7
√

2
183

5 0 − 1
4
√

6
3

20
√

2
− 1

2
√

42

D0
→ K0π0 0 0 0 0 0 1

5 − 2
5
√

61
− 7

5
√

183
0 − 3

5
√

61
−

7
√

3
61

10 0 −

√
3

8 − 3
40 0

D+
→ K0π+ 0 0 0 0 0

√
2

5
2
√

2
61

5
7
√

2
183

5 0 −
2
√

2
61

5 −
7
√

2
183

5 0 − 1
4
√

6
− 3

20
√

2
− 1

2
√

42

D+
→ K+π0 0 0 0 0 0 − 1

5 − 2
5
√

61
− 7

5
√

183
0 − 3

5
√

61
−

7
√

3
61

10 0 −

√
3

8
3
40 0

Ds → K0K+ 0 0 0 0 0 0 0 0 0 −

√
2

61 − 7√
366

0 1
2
√

6
0 1√

42

Table 5.6.: Result of the application of the Wigner-Eckart theorem to D→ P8P8 decays for the SU(3)F breaking part. The entries in
the table are the Clebsch-Gordan coefficients cd;i j of the expressions for the amplitudes in Eqs. (5.65)–(5.67). Here, no reparametriza-
tions are applied yet. Table adapted from [175].
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Decay d B3
1 B3

8 B6̄1
8 B151

8 B152
8 B151

27 B152
27 B241

27

SCS

D0
→ K+K−

√
421
35

16

√
3937

7
160

√
2869

7
80 −

√
9316783
29280

√
2613

2
610 −

31
√

5281
7

4880 −
17
√

151
21

610 − 1
5
√

21

D0
→ π+π−

√
421
35

16

√
3937

7
160 −

√
2869

7
80 −

11
√

1330969
7

29280 −

√
1742

3
305 −

23
√

5281
7

4880
11
√

151
21

610
1

5
√

21

D0
→ K̄0K0

−

√
421
35

16

√
3937

7
80 0 −

3
√

1330969
7

4880 −

√
871
6

610 −
9
√

5281
7

4880 −

√
151
21

610 − 1
√

21

D0
→ π0π0

−

√
421
70

16 −

√
3937
14

160

√
2869
14

80
11
√

1330969
14

29280

√
871
3

305 −
57
√

5281
14

4880

√
1057

6
305

2
√

2
21

5

D+
→ π0π+ 0 0 0 0 0 −

√
5281
14 (1−∆̃)
61

5
√

151
42 (1−∆̃)
122

1−∆̃
√

42

D+
→ K̄0K+ 0

3
√

3937
7

160

√
2869

7
80

√
9316783
29280 −

√
2613

2
610 −

3
√

5281
7

610 −
23
√

151
21

610 − 1
5
√

21

Ds → K0π+ 0
3
√

3937
7

160 −

√
2869

7
80

11
√

1330969
7

29280

√
1742

3
305 −

3
√

5281
7

1220
19
√

151
21

610 − 4
5
√

21

Ds → K+π0 0 −
3
√

3937
14

160

√
2869
14

80 −
11
√

1330969
14

29280 −

√
871
3

305 −
17
√

5281
14

1220

√
453
14

305 −

√
6
7

5

CF

D0
→ K−π+ 0 0

√
2869

7
40 −

√
1330969

7
7320 −

7
√

871
6

610

√
5281

7
610

2
√

1057
3

305
1

10
√

21

D0
→ K̄0π0 0 0 −

√
2869
14

40

√
1330969

14
7320

7
√

871
3

1220
3
√

5281
14

1220

√
3171

2
305 −

√
3
14

5

D+
→ K̄0π+ 0 0 0 0 0

√
5281

7
244

√
1057

3
61 − 1

2
√

21

Ds → K̄0K+ 0 0 −

√
2869

7
40 −

√
1330969

7
7320 −

7
√

871
6

610

√
5281

7
610

2
√

1057
3

305
2

5
√

21

DCS

D0
→ K+π− 0 0 0

√
1330969

7
3660

7
√

871
6

305 −

√
5281

7
305 −

4
√

1057
3

305 − 1
2
√

21

D0
→ K0π0 0 0 0 −

√
1330969

14
3660 −

7
√

871
3

610 −
3
√

5281
14

610 −
√

6342
305 −

√
3
14

2

D+
→ K0π+ 0 0 0

√
1330969

7
3660

7
√

871
6

305 −

√
5281

7
305 −

4
√

1057
3

305 − 1
2
√

21

D+
→ K+π0 0 0 0 −

√
1330969

14
3660 −

7
√

871
3

610 −
3
√

5281
14

610 −
√

6342
305 −

√
3
14

2

Ds → K0K+ 0 0 0 0 0 −

√
5281

7
122 −

2
√

1057
3

61
1
√

21

Table 5.7.: The Clebsch-Gordan coefficients cd;i j of the redefined physical matrix el-
ements which are obtained from Table 5.6 after applying the redefinitions given in
Eqs. (5.68)–(5.79), see text for details. Table adapted from [175].
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The six SU(3)F-breaking sum rules for D → P8P8 given in Ref. [466] translate to our
normalization of states as given below in Eqs. (5.80)–(5.85) [469]. Among the subset of
SCS decays there is only one such sum rule as the corresponding 8 × 11 submatrix has
rank seven. It is given as

• Pure SCS sum rule from isospin

A(D0
→ π0π0) +

1
√

2
A(D0

→ π+π−) −A(D+
→ π0π+) = 0. (5.80)

The other five sum rules are [466]

• Pure CF sum rule from isospin

A(D0
→ K̄0π0) +

1
√

2
A(D0

→ K−π+) −
1
√

2
A(D+

→ K̄0π+) = 0. (5.81)

• Pure DCS sum rule from isospin

√
2A(D0

→ π0K0) +A(D0
→ π−K+)

−
√

2A(D+
→ π0K+) −A(D+

→ π+K0) = 0. (5.82)

• Mixed CF, SCS, DCS sum rule from U-spin

1
Σ
A(D0

→ K−K+) −
1

V∗cdVus
A(D0

→ π−K+)

−
1

V∗csVud
A(D0

→ K−π+) −
1
Σ
A(D0

→ π+π−) = 0. (5.83)

• Mixed CF, SCS, DCS sum rule

1
V∗csVud

A(D+
→ K̄0π+) −

1
V∗csVud

A(Ds → K̄0K+) −
1
Σ
A(D+

→ K̄0K+)

+
1
Σ
A(Ds → π+K0) −

1
V∗cdVus

A(D+
→ π+K0) +

1
V∗cdVus

A(Ds → K0K+) = 0.

(5.84)

• Mixed CF, SCS, DCS sum rule

√
2

1
V∗cdVus

A(D+
→ π0K+) −

1
Σ
A(D+

→ K̄0K+) +
√

2
1
Σ
A(D+

→ π0π+)

+
1

V∗csVud
A(D+

→ K̄0π+) −
√

2
1
Σ
A(Ds → π0K+) −

1
V∗csVud

A(Ds → K̄0K+) = 0.

(5.85)
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Apart from these exact sum rules one could ask also if there are any approximate sum rules
that are broken only by a few matrix elements. Such relations indeed exist, as one can
show by calculating the rank of submatrices omitting the columns corresponding to the
Clebsch-Gordan coefficients of the considered matrix elements. Among the SCS decays
with redefined matrix elements as in Table 5.7 there is only one relation where only one
breaking matrix element appears, namely the (quasi-)triangle relation

A(D+
→ π+π0) −

1
√

2
A(Ds → K0π+) −A(Ds → K+π0) = Σ

√
3

14
B241

27 . (5.86)

It was already found in [468] that Eq. (5.86) gives an exact sum rule when only triplet
matrix elements are considered in the SU(3)F breaking as an however ad hoc assumption.
In the non-redefined system on the right-hand side of Eq. (5.86) there would appear two
matrix elements, see Eq. (5.79). However, in the system of matrix elements before redef-
initions there is no approximate sum rule that involves only one breaking matrix element
in the destruction of the exact rule.

The test of the SU(3)F sum rules with future data will probe on the one hand NP and on
the other hand the validity of the SU(3)F expansion itself. The latter is also provided by
global fits to current data which we present in Sec. 5.4.1. The experimental sum rule test
is an ambitious task, as one needs measurements of the strong phases of all concerned
amplitudes. For this reason, in Ref. [466] there are also constructed decay rate sum rules.
In order to test these, no information on the strong phases is needed.

5.4. Answering Questions in Charm Physics without
Prejudice

After setting up our framework in Secs. 5.2 and 5.3 we can pose questions that we can
answer by fitting the 13 independent complex SU(3)F matrix elements to the data of
25 observables. Firstly, is after all the SU(3)F expansion working? That means, can we
describe all the different charm decay channels with a reasonable size of SU(3)F breaking?
If the SU(3)F-breaking terms are larger than the leading ones the whole series expansion
would not make sense. In this case we would have to stop and have to think about a
different approach to charm decays.

Note that in the description of SU(3)F breaking we are conservative in a maximal way: In
order to avoid all prejudices we only use the SU(3)F symmetry group and do not assume
any further dynamical understanding of QCD. For example we do not assume that certain
diagrams in Figs. 5.1–5.3 are enhanced or suppressed. Consequently, we especially do not
assume that certain matrix elements are more important than others. Also every matrix
element can have a complex (CP-conserving) phase.

In the case that the SU(3)F expansion works we can go on to the next questions: How
large is the enhancement of the hadronic matrix elements of the 3 in the Hamiltonian in
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Eq. (5.41) in order to account for the measured CP violation in charm decays? And finally,
are there any patterns of NP that are distinguishable from the SM, or more generally, SM
extensions with MFV?
We will discuss these questions now one after the other.

5.4.1. How Large is the SU(3)F Breaking?
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0.2

0.3

0.4
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∆ X¢
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.
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Figure 5.4.: Regions in the δX-δ′X plane that
are allowed at 68% (red) and 95% (orange)
C.L. Figure taken from [175].

In order to evaluate the size of SU(3)F
breaking we define two complementary
measures. On the one hand we look at
the ratio of the maximal SU(3)F breaking
matrix element over the maximal SU(3)F
limit matrix element:

δX =
maxi j|B

j
i |

max
(
|A15

27|, |A
6̄
8|, |A

15
8 |

) . (5.87)

On the other hand we study the maximal
ratio of the breaking part of all amplitudes
over the respective complete amplitude:

δ′X = maxd

∣∣∣∣∣AX(d)
A(d)

∣∣∣∣∣ . (5.88)

In Eq. (5.88) we take the maximum over
all decays d without taking the mode
D0
→ KS KS into account. The SU(3)F

limit amplitude of this channel is CKM
suppressed by ∆̃, the CKM leading part
firstly arises at linear SU(3)F breaking. Thus, the contribution of D0

→ KS KS would
give δ′X a bias towards large values. Both of the measures in Eqs. (5.87) and (5.88) have
their advantages and disadvantages. The first one in Eq. (5.87) does not account for pos-
sible hierarchies in the Clebsch-Gordan coefficients that could destroy the hierarchy of
the matrix elements in the amplitudes. The second one in Eq. (5.88) does not contain
information on possible cancellations of large matrix elements. So in order to have a
comprehensive understanding we plot the correlation of both measures δX, δ′X against
each other. The result is shown in Fig. 5.4 where we show the 68% and 95% C.L. contour
lines with respect to the best fit point. The shaded areas are allowed regions. At the best
fit point we have χ2 = 1 because in the SM we cannot account for the 1σ measurement
of a nonvanishing CP asymmetry in D+

→ π0π+ decays, see Sec. 5.4.4 below. Fig. 5.4
contains the important information that the data can be described already by an SU(3)F
breaking of δ(′)

X ∼ 30%. If the shown area had been shifted towards much larger values
that would have meant that the SU(3)F expansion in ε ∼ ms/ΛQCD did not make sense.
But this is not the case, so that we can go on and look at the further phenomenological
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implications of the approximate SU(3)F symmetry of QCD being confronted with the
data.

5.4.2. Can we Exclude Scenarios of SU(3)F Breaking from Data?

Our parametrization of the linear breaking of the SU(3)F symmetry is completely general.
But can we also say something about the detailed anatomy of the SU(3)F breaking? The
answer is yes. The different configurations of SU(3)F breaking can be tested in a system-
atic way by taking into account subsets of matrix elements only, while setting all other to
zero.

Using this procedure, we learn that for a reasonable fit at least two nonzero SU(3)F break-
ing matrix elements are needed. These two are again restricted: It does not suffice to take
the triplet matrix elements B3

1 and B3
8. The corresponding fit gives χ2/dof = 8.6. It is

clear from Table 5.7 that such a fit can not work because the SU(3)F breaking triplet ma-
trix elements appear in the SCS decay modes only. They can thus not explain the SU(3)F
violation in the branching ratios of the CF and DCS channels. As a curiosity, a fit only
with the B3

1 and B3
8 to the SCS charm decays would work, it gives χ2/dof = 1. But this

does not help us here as we want to get a consistent description for all D → P8P8 charm
decays.

If one takes higher representations into account, such as in the configuration B3
1 and B152

27
with all others vanishing, one obtains a nicer fit with χ2/dof = 1.3. Demanding that
the SU(3)F breaking stays below a sensible value, i.e., imposing δ(′)

X ≤ 50% the fit gets
slightly worse to χ2/dof = 1.6. Keeping δ(′)

X ≤ 50% and systematically performing fits
with three nonvanishing matrix elements we find that for example the configurations

• B3
1, B152

8 , B241
27 and

• B3
1, B151

27 , B152
27

give each χ2/dof = 1.0. However, without having a dynamical theory that would argue
in the direction of one such specific configuration, these observations are of little help. In
the following therefore always all matrix elements are taken into account.

5.4.3. How Large is the Triplet Enhancement?

In order to analyze the triplet (penguin) enhancement in charm, we define two comple-
mentary measures in complete analogy to the ones for SU(3)F breaking in Eqs. (5.87) and
(5.88). The first one is a measure on the matrix element level:

δ3 =
max

(
|A3

1|, |A
3
8|
)

max
(
|A15

27|, |A
6̄
8|, |A

15
8 |

) . (5.89)
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Similar to δX, this measure ignores a possible enhancement or suppression from the
Clebsch-Gordan coefficients. In order to account for this we define a second measure
from the fraction that the triplet matrix elements contribute to the amplitudes. As the ratio
is intended to be a measure of the QCD part only, we divide out the CKM matrix elements
from the amplitudes. We define δ′3 = maxd δ

′
3(d) with

δ′3(d) =

∣∣∣∣∣∣∣ Σ× total amplitude by A3
1, A3

8

∆× total amplitude by A15
27, A6̄

8, A15
8

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ cd;1 3A3
1 + cd;8 3A3

8

cd;27 15A15
27 + cd;8 6̄ + cd;8 15A15

8

∣∣∣∣∣∣∣ . (5.90)
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Figure 5.5.: Regions in the δ′3-δ3 plane that
are allowed at 68% (red) and 95% (orange)
C.L. without assumption on δ(′)

X . Figure
taken from [175].

In the last equation we have written the ex-
pression using symbolically the Clebsch-
Gordan coefficients given in Table 5.5. In
taking the maximum over all decays d in
maxd δ

′
3(d) we exclude the decay D0

→

KS KS due to its CKM suppressed SU(3)F
limit amplitude, as was discussed after
Eq. (5.88) for δ′X. The correlation plot of
δ3 and δ′3 from the fit to data is shown in
Fig. 5.5. We see that enhanced triplets
δ3 ∼ 2 and δ′3 ∼ 7 are needed in order
to account for the data at 95% C.L. Also,
the 68% C.L. region is shifted to extremely
large values. The plot in Fig. 5.5 is ex-
tremely unexpected. As was explained in
Sec. 5.1, in the SM we would naively ex-
pect δ(′)

3 ∼ 0.1 and would conceive already
δ(′)

3 ∼ 1 as an enhancement. δ(′)
3 ∼ 5–

10 is therefore quite unlikely, on the other
hand we can also not exclude such a be-
havior without having a dynamical theory
at hand. Besides the enhancement we can also recognize that there are regions where
large cancellations take place, i.e., for fixed δ′3 one can go along the δ3 axis to also very
large values and vice versa.

Which observables drive the triplet matrix elements to such large values? It is not only the
quite precise and thus significant measurement of ∆adir

CP(K+K−, π+π−). There are also other
CP asymmetries that are measured with largish central values, although the uncertainty is
quite large (compare also Table 5.1):

ACP(D0
→ KS KS ) = −0.23 ± 0.19 , (5.91)

ACP(Ds → KSπ
+) = 0.031 ± 0.015 , (5.92)

ACP(Ds → K+π0) = 0.266 ± 0.228 . (5.93)

The statistical significance of each individual one of these CP asymmetries is not large,
between 1 and 2σ. Together they can be however quite powerful. We analyze the effect
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of the observables Eqs. (5.91)–(5.93) quantitatively in Fig. 5.6, where we exclude them
from the fit.
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Figure 5.6.: Regions in the δ′3-δ3 plane
that are allowed at 68% (red) and 95%
(orange) C.L. excluding the observables
ACP(D0

→ KS KS ), ACP(Ds → KSπ
+) and

ACP(Ds → K+π0) from the fit. No assump-
tion on δ(′)

X is made. Figure taken from [175].

In this configuration a penguin enhance-
ment of δ(′)

3 ∼ 3 becomes allowed at 68%
C.L. This is still a very large value but a
bit more sensible from the SM perspective.
Furthermore, it is in agreement with previ-
ous U-spin analyses [444, 447]. In these
works only a smaller subset of observables
is taken into account. In particular the ones
excluded from the fit shown in Fig. 5.6
have not been considered as well. In or-
der to study how the triplet enhancement
depends in detail on the measured value of
∆adir

CP, we show in Fig. 5.7(a) its correla-
tion with δ3 when its measurement is taken
out of the fit. Here, we include also an
overall constraint on the SU(3)F breaking
δ(′)

X ≤ 50%. Even in the hypothetical case
∆adir

CP = 0 the other largish CP asymme-
tries lead to a penguin enhancement. This
points out impressively the need for a more
precise measurement of all CP asymme-
tries.

In Fig. 5.7(b) we also show δ3 if one ad-
ditionally excludes the CP asymmetries
ACP(D0

→ KS KS ), ACP(Ds → KSπ
+) and

ACP(Ds → K+π0) from the fit. Then, only ∆adir
CP determines the needed value of δ3 di-

rectly. This leads to the coincidence of 68% and 95% C.L. regions and as expected, both
triplet matrix elements are allowed to vanish for ∆adir

CP = 0.

One could ask the question if the 68% C.L. triplet enhancement results perhaps from
an intriguing sign combination of the observables in Eqs. (5.91) to (5.93).3 In order to
inspect this issue we show in Fig. 5.8 the correlation of δ3 and δ′3 in a fictitious scenario
where ACP(D0

→ KS KS ) = +0.23 ± 0.19, i.e., where the CP asymmetry has a flipped
sign. As can be seen, such a sign flip does not have a high impact on the requisite penguin
enhancement. The difference between Figs. 5.8 and 5.5 is completely negligible. The
explanation lies in the plenty hadronic matrix elements in the SU(3)F breaking where
much freedom exists for an absorption of phases. Consequently, only the absolute value
of ACP(D0

→ KS KS ) is crucial for the size of δ(′)
3 .

3We thank T. Feldmann and A. Khodjamirian for a useful discussion about this possibility.
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(a) All data.
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(b) Excluding ACP(D0
→ KS KS ), ACP(Ds →

KS π
+) and Ds → K+π0.

Figure 5.7.: Penguin enhancement δ3 against possible values of ∆adir
CP (excluding its mea-

surement from the fit) that are allowed at 68% (red) and 95% (orange) C.L., including an
overall bound of δ(′)

X ≤ 50%.
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Figure 5.8.: Regions in the δ′3-δ3 plane that are allowed at 68% (red) and 95% (orange)
C.L. with hypothetical data ACP(D0

→ KS KS ) = +0.23±0.19 (flipped sign in comparison
with Table 5.1).
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5.4.4. Can we Differentiate the SM from Patterns of NP?

In the literature, there are many different possible NP models to explain the measured
∆adir

CP [177, 459, 470–473]. In order to incorporate NP models into our ansatz, we have to
analyze their SU(3)F structure. In the SU(3)F approach the Dirac structure does not appear
explicitly any more. Its information only goes into the counting of representations as
additional degrees of freedom. For example there may appear representations 15NP from
scalar operators in addition to the SM 15, the matrix elements of which are independent.
The questions is then: Can we recognize traces of the characteristic SU(3)F structures of
specific NP models in correlations and patterns of branching ratios and CP asymmetries
of different channels? This is analyzed in the following paragraphs. In order to stay in the
physical part of the parameter space we constrain the SU(3)F breaking as δ(′)

X ≤ 50%.

Characteristic SU(3)F Structures The flavor structure of the SU(3)F limit SM-Hamil-
tonian has been given in Eqs. (5.40)-(5.42). The SCS part is schematically given as

H
SCS
SM ∼ λ(15 + 6̄)︸     ︷︷     ︸

H
SCS
Σ

+ ∆(15 + 3)︸     ︷︷     ︸
H

SCS
∆,SM

. (5.94)

As discussed in Sec. 5.2, the matrix elements of the operators inHSCS
Σ are fixed in the fit

by the branching ratios whereas the matrix elements of the operators in HSCS
∆ induce CP

violation. We consider three specific NP models which have a different flavor structure in
theHSCS

∆ part of the Hamiltonian, i.e., we replaceHSCS
∆,SM by differentHSCS

∆,NP. We keep the
H

SCS
Σ part as well as the Hamiltonians for the CF and DCS decays and study how different

representations in HSCS
∆,NP for distinct NP models change possible resulting patterns of CP

asymmetries.
Note that the Wilson coefficients of the operators in the Hamiltonian cannot be disentan-
gled from the hadronic matrix elements in the SU(3)F approach as they come in products
of each other only. This is valid both for the SM and NP models. Consequently, we ab-
sorb the Wilson coefficients into the hadronic matrix elements. Furthermore, we are not
sensitive to an absolute NP weak phase ∆NP , ∆ as such can also be absorbed into the un-
known NP matrix elements. We choose therefore to have the same overall normalization
as in the SM and set ∆NP = ∆.

Specifically, we look at the following NP models:

• “Triplet model”
In the triplet model, we replaceHSCS

∆,SM by a pure triplet operator, i.e., by

H
SCS
3 = ∆

√
3
2

3NP
1
2 ,

1
2 ,

1
3
∼ (ūc)

∑
q̄q . (5.95)

Such operators can arise from an enhancement of the chromomagnetic dipole op-
erator or QCD penguin operators in SUSY [177, 470, 471] or models with extra
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dimensions [472]. In contrast to the SM, in the triplet model there is no 15 rep-
resentation in HSCS

∆ . However, as in the SM the matrix elements with the 15 are
already fixed by the branching ratios, their contribution to CP violation is negli-
gible. Therefore, using nonleptonic charm decays we are not able to disentangle
the triplet model from the SM. Nevertheless, this is possible by taking into account
radiative D decays [474].

• “Hochberg-Nir (HN) model”
The HN model is a specific Two-Higgs doublet model (2HDM) that connects charm
and top physics [473]. It gives rise to the operator

H
SCS
3+15 = ∆

15NP
3
2 ,

1
2 ,

1
3

+
1
√

2
15NP

1
2 ,

1
2 ,

1
3

+

√
3
2

3NP
1
2 ,

1
2 ,

1
3

 ∼ (ūc)(ūu). (5.96)

The HN model shares with the SM the feature that HSCS
∆ contains the representa-

tions 3 + 15 only. However, in case of the SM, the same representations are also
contained in HSCS

Σ . This is not true for the HN model, due to the different Dirac
structure of the scalar operator (ūRcL)(ūLuR). Especially, the HN model is the only
model considered here which contains two independent ∆I = 3/2 operators coming
with a relative weak phase: 15 3

2 ,
1
2 ,

1
3

and 15NP
3
2 ,

1
2 ,

1
3
.

• “∆U = 1 model” The ∆U = 1 model breaks the discrete U-spin symmetry of the
Hamiltonian at the operator level by

H
SCS
3+6̄+15 = ∆


√

3
2

15NP
1
2 ,

1
2 ,

1
3
− 6̄NP

1
2 ,

1
2 ,

1
3
−

√
3
2

3NP
1
2 ,

1
2 ,

1
3

 ∼ (s̄c)(ūs) , (5.97)

without a corresponding operator (d̄c)(ūd) being present. It is realized, e.g., in
2HDMs or color octet models, see Ref. [459]. In addition to the 3 and 15 represen-
tations there is also a 6̄ present in Eq. (5.97).

Note that the relative factors of the representations in Eqs. (5.95)–(5.97) come from the
Clebsch-Gordan coefficients of the tensor products. The overall normalization is chosen
such that the prefactor of the 3 matrix element has the same absolute value as in the
SM Hamiltonian in Eq. (5.41). The resulting Clebsch-Gordan coefficients of the matrix
elements of the NP Hamiltonians with the final and initial states of the different decay
channels are given in Table 5.8. From the distinct SU(3)F decompositions of the models
we can already draw several phenomenological conclusions.
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Decay d ∆̃
(
A15

27

)NP
∆̃

(
A15

8

)NP
∆̃

(
A6̄

8

)NP
∆̃

(
A3

1

)NP
∆̃

(
A3

8

)NP

SCS, Triplet model

D0
→ K+K− 0 0 0 − 1

2
√

2
− 1
√

10

D0
→ π+π− 0 0 0 − 1

2
√

2
− 1
√

10

D0
→ K̄0K0 0 0 0 1

2
√

2
−

√
2
5

D0
→ π0π0 0 0 0 1

4
1

2
√

5

D+
→ π0π+ 0 0 0 0 0

D+
→ K̄0K+ 0 0 0 0 − 3

√
10

Ds → K0π+ 0 0 0 0 − 3
√

10

Ds → K+π0 0 0 0 0 3
2
√

5

SCS, HN model

D0
→ K+K−

3
√

3
2

10

√
3
2

5 0 − 1
2
√

2
− 1
√

10

D0
→ π+π−

3
√

3
2

10

√
3
2

5 0 − 1
2
√

2
− 1
√

10

D0
→ K̄0K0

√
3
2

10

√
6

5 0 1
2
√

2
−

√
2
5

D0
→ π0π0 7

√
3

20 −
√

3
10 0 1

4
1

2
√

5

D+
→ π0π+

√
3

2 0 0 0 0

D+
→ K̄0K+

√
3
2

5 −

√
3
2

5 0 0 − 3
√

10

Ds → K0π+

√
3
2

5 −

√
3
2

5 0 0 − 3
√

10

Ds → K+π0 2
√

3
5

√
3

10 0 0 3
2
√

5

SCS, ∆U = 1 model

D0
→ K+K− 7

10
√

2
− 1

5
√

2
1
√

5
1

2
√

2
1
√

10

D0
→ π+π− − 1

10
√

2
3

5
√

2
− 1
√

5
1

2
√

2
1
√

10

D0
→ K̄0K0 1

10
√

2

√
2

5 0 − 1
2
√

2

√
2
5

D0
→ π0π0 1

20 − 3
10

1
√

10
− 1

4 − 1
2
√

5

D+
→ π0π+ 0 0 0 0 0

D+
→ K̄0K+ 2

√
2

5
1

5
√

2
1
√

5
0 3

√
10

Ds → K0π+
−
√

2
5 − 3

5
√

2
− 1
√

5
0 3

√
10

Ds → K+π0 1
5

3
10

1
√

10
0 − 3

2
√

5

Table 5.8.: Clebsch-Gordan coefficients of the considered NP models, see text for details.
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• adir
CP(D+

→ π+π0) , 0 as a smoking gun for the HN model /∆I = 3/2 NP
In the SM, the triplet model and the ∆U = 1 model, all matrix elements in the
∆I = 3/2 transition D+

→ π+π0 come with the same weak phase. In fact, in
these models there is only one SU(3)F limit matrix element which contributes to
A0(D+

→ π+π0), the A15
27. It follows that in these models adir

CP(D+
→ π+π0) = 0

[467, 475]. In the HN model on the other hand, besides the A15
27 there contributes the(

A15
27

)NP
, which comes with a relative weak phase. This induces adir

CP(D+
→ π+π0) , 0

as a smoking gun for the HN model, see also [467]. Currently, the experimental sta-
tus is adir

CP(D+
→ π+π0) , 0 at 1σ, see Table 5.1. In the future it is consequently

very important to measure this observable with greater precision.

• U-spin breaking by the ∆U = 1 model
The breaking of the discrete U-spin symmetry at the operator level by the ∆U = 1
model is reflected by the Clebsch-Gordan coefficients in Table 5.8. In the SM, the
high symmetry of the Clebsch-Gordan coefficients for D0

→ K+K−, D0
→ π+π−

and D+
→ K̄0K+, Ds → K0π+ lead to the SU(3)F limit relations Eqs. (5.51) and

(5.52), respectively. From these follow the approximate relations Eqs. (5.55) and
(5.56). These sum rules are broken already in the SM by the SU(3)F-breaking
contributions. However, in the ∆U = 1 model they are broken even beyond that at
O(1) by the SU(3)F limit matrix elements.

• Enhancement of adir
CP(D0

→ KS KS ) in all considered models
A general prediction of all considered models including the SM is the enhancement
of the CP asymmetry of D0

→ KS KS decays. The reason is that their SU(3)F limit
contribution is CKM suppressed by ∆ and the CKM leading contribution ∝ Σ arises
only with SU(3)F breaking. Consequently, adir

CP(D0
→ KS KS ) ∼ O

(
∆̃/δ(′)

X

)
. The

enhancement of adir
CP(D0

→ KS KS ) agrees with similar findings obtained without
the context of the SU(3)F language [476]. There, also additional decays with vector
final states are listed which have similar properties.

With present data and the current theoretical knowledge of SU(3)F breaking in nonlep-
tonic charm decays no clear separation of the different NP models is possible. The global
minima of all models (including a global bound of δ(′)

X ≤ 50%) have χ2
min ∼ 1, except for

the HN model which has χ2
min ∼ 0 because it is the only one that can fit the mentioned 1σ

measurement of adir
CP(D+

→ π0π+). In the next paragraph we analyze if and how one could
make progress in the future in order to find out which model is realized.

Consequences of future theoretical and experimental progress In the future, there
are in principle two ways in order to make progress. On the one hand, in the future
we could gain new theoretical insights in the strong dynamics, especially in the SU(3)F
breaking where most of the unknown fit parameters stem from. On the other hand, signif-
icantly improved data is definitely desirable. For a proof of principle we have designed
two benchmark scenarios in order to clarify how far one can get with progress in either of
these two directions.
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Firstly, let us assume there is an improvement on the theoretical understanding of SU(3)F
breaking without having better data. This could lead for example to the knowledge that
only three matrix elements dominate the SU(3)F breaking. Let us assume for concreteness
that these matrix elements are B3

1, B152
8 and B241

27 which we know to give a good fit, see
Sec. 5.4.2. Including δ(′)

X ≤ 50% we obtain at the best fit points:

χ2/dof = 10/10 (MFV/SM),

χ2/dof = 10/10 (triplet model),

χ2/dof = 3.2/6 (HN model),

χ2/dof = 5.4/4 (∆U = 1 model).
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Figure 5.9.: Future theoretical improve-
ment: Correlation of observables in NP mod-
els at 95% (solid) and 68% (dashed) C.L.
with current data and SU(3)F breaking only
from B3

1, B152
8 and B241

27 with an upper bound
of δ(′)

X ≤ 50%. Figure taken from [175].

As we show in Fig. 5.9, in the triplet
model we get in this scenario a cor-
relation between adir

CP(D0
→ π0π0) and

Σadir
CP(K+K−, π+π−). The HN and ∆U = 1

model have a quite large number of pa-
rameters so that the observables are es-
sentially uncorrelated. The fit mainly just
fills the experimentally allowed region for
these models.

We can therefore infer that a better under-
standing of the charm hadronic matrix el-
ements would be of great advantage espe-
cially in order to resolve the triplet model
from the other ones. Without such fur-
ther theoretical insights we can only make
progress by improving significantly on the
precision of the measurements of several
direct CP asymmetries. In order to inspect
the chances from such an improvement we
have designed a future data scenario inside
the 2σ region of current data. The assump-
tions of this scenario are listed in the Table
besides Fig. 5.10.

We assume here that the statistical error of ∆adir
CP gets so small that it is negligible com-

pared to the systematic one. In addition, we assume the latter to improve by a factor two
in comparison to the value that is quoted in [60]. The same uncertainty is also assumed
for the CP asymmetries adir

CP(D+
→ KS K+), adir

CP(Ds → KSπ
+) and adir

CP(Ds → K+π0). In
the triplet model (and analogously in the SM), the latter three CP asymmetries play a spe-
cial role, because for them the Clebsch-Gordan coefficient in front of the

(
A3

1

)NP
vanishes.

Therefore, these CP asymmetries are controlled by one common parameter only,
(
B3

8

)NP
,
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see Table 5.8. For the triplet model it is consequently difficult to create hierarchies in
these CP asymmetries. In order to challenge the triplet model we assume for this very
reason that adir

CP(D+
→ KS K+), adir

CP(Ds → KSπ
+) are smallish and that adir

CP(Ds → K+π0)
stays at a large value. The values for ∆adir

CP and Σadir
CP(K+K−, π+π−) are chosen such that

adir
CP(D0

→ K+K−) = −0.0065 and adir
CP(D0

→ π+π−) = 0.0005, indicating NP from the
(s̄c)(ūs) operator of the ∆U = 1 model. For the same reason adir

CP(D+
→ KS K+) is taken to

be larger than currently measured, but not of the same order of magnitude as Ds → K+π0.
Finally, the future error of the strong phase betweenA(D0

→ K−π+) andA(D0
→ K+π−)

is set to the value stated in [477].

On the right-hand side in Fig. 5.10 we show a correlation plot of the observables adir
CP(D0

→

π0π0) and Σadir
CP(K+K−, π+π−) that corresponds to the future data set. No theoretical progress

is assumed so that in our comprehensive picture of SU(3)F breaking all matrix elements
are taken into account. In the future scenario we predict sizable CP violation in the chan-
nel D0

→ π0π0 in the triplet model. adir
CP(D0

→ π0π0) = 0 is disfavored, unlike in the other
models. This shows that with an improvement in data one could potentially disentangle
the triplet model, including the SM, from other NP models.

Observable Future data

SCS CP asymmetries

∆adir
CP(K+K−, π+π−) −0.007 ± 0.0005

Σadir
CP(K+K−, π+π−) −0.006 ± 0.0007

adir
CP(D+

→ KS K+) −0.003 ± 0.0005

adir
CP(Ds → KS π

+) 0.0 ± 0.0005

adir
CP(Ds → K+π0) 0.05 ± 0.0005

K+π− strong phase difference

δKπ 21.4◦ ± 3.8◦
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Figure 5.10.: Future experimental improvement. Left: Future measurements used for the
plot on the right-hand side. All other measurements are taken as in Tables 5.1, 5.2 and
5.3, see text for details. Right: Correlation of observables in NP models at 95% (solid)
and 68% (dashed) C.L. in the future data scenario, taking all SU(3)F-breaking matrix
elements into account with an upper bound of δ(′)

X ≤ 50%. Note that the curves of the
∆U = 1 and HN model lie on top of each other. Table and Figure taken from [175].
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5.5. The Situation after Moriond 2013

At the Moriond conference 2013 new results from LHCb on charm CP violation have been
presented. The difference of CP asymmetries ∆ACP = ACP(D0

→ K+K−) − ACP(D0
→

π+π−) has been measured for the first time in two different decay channels. The analysis
of the D∗ channel has been updated [64] and supersedes the former LHCb result [60].
Furthermore, an analysis of the semileptonic B channel has been presented [65]. The
results of the separate channels are given as

∆ACP = −0.0034 ± 0.0018 (LHCb, D∗ decay channel [64]), (5.98)
∆ACP = 0.0049 ± 0.0033 (LHCb, semileptonic B decay channel [65]), (5.99)

where we added statistical and systematic errors quadratically. Between the two results
Eqs. (5.98) and (5.99) lies a tension of 2.2σ [65]. This comes from the semileptonic B
channel having the opposite sign as the D∗ channel. The negative sign of ∆ACP agrees
with CDF [61] and Belle [62]. The experimental situation has to be settled in the future.
Including Eqs. (5.98) and (5.99) we calculate new world averages for ∆adir

CP and Σ adir
CP.

For the latter, our numerical result is not changed compared to Table 5.1. Our result
∆adir

CP = −0.0032 ± 0.0012 [469] agrees with the new HFAG world average [63]

∆adir
CP = −0.00329 ± 0.00121 (HFAG, online update March 2013). (5.100)

The result is 2.7σ away from zero. The new HFAG world average for the indirect CP
violation aind

CP is given as [63]

aind
CP = −0.00010 ± 0.00162 (HFAG, online update March 2013). (5.101)

The new measurements of LHCb also have consequences for the global fit of D mixing.
This affects the strong phase difference ofA(D0

→ K+π−) andA(D0
→ K−π+) [63]

δKπ = (19.5+8.6
−11.1)◦ (HFAG, online update April 2013). (5.102)

Symmetrizing the uncertainties in Eq. (5.102) we arrive at [469]

δKπ = (18.25 ± 9.85)◦ (our symmetrization of errors in Eq. (5.102)). (5.103)

Besides ∆ACP after Moriond 2013 LHCb has furthermore measured [478]

ACP(Ds → KSπ
+) = 0.0061 ± 0.0084 (LHCb March 2013), (5.104)

where we added again statistical and systematic errors quadratically. We obtain as new
world average the value [469]

ACP(Ds → KSπ
+) = 0.012 ± 0.007 (our world average). (5.105)

We summarize all updates in Table 5.9.
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Observable Measurement References

∆adir
CP(K+K−, π+π−) −0.00329 ± 0.00121 a[63], [60–62, 64, 65, 448, 449]

aind
CP −0.00010 ± 0.00162 a[63]

ACP(Ds → KS π
+) 0.012 ± 0.007 b[452, 455, 457, 478]

δKπ (18.25 ± 9.85)◦ c[63]

Table 5.9.: Updates of charm observable measurements as of May 2013. All other data
as in Tables 5.1, 5.2 and 5.3. Table taken from [469].
aonline update March 2013.
bour average.
conline update April 2013, our symmetrization of uncertainties.

The general dependence of our analysis on the measurement of ∆adir
CP was discussed in

Sec. 5.4.3 and is illustrated in Fig. 5.7. In order to demonstrate the impact of the new
experimental results we show in Fig. 5.11 the fit of the triplet enhancement in the δ′3–δ3
plane including the updates in Table 5.9. In Figs. 5.11(a) and 5.11(b) we use the complete
data set, while in Fig. 5.11(c) we exclude ACP(D0

→ KS KS ), ACP(Ds → KSπ
+) and

ACP(Ds → K+π0) from the fit. Fig. 5.11(b) shows a detail from Fig. 5.11(a) with higher
resolution for smaller δ(′)

3 values. At the best fit points we have for the full data set and
the one without ACP(D0

→ KS KS ), ACP(Ds → KSπ
+) and ACP(Ds → K+π0) still χ2

∼ 1
due to the 1σ contribution from ACP(D+

→ π0π+).

In Figs. 5.11(a) and 5.11(b) we observe that including the updates in Table 5.9 after
Moriond 2013 still a penguin enhancement is needed. At 95% C.L. δ(′)

3 & 1, as opposed
to the naive analysis. At 68% C.L. the triplet matrix elements need to be even larger. Ex-
cluding the CP asymmetries with largish measured central values from the fit, as shown
in Fig. 5.11(c), δ(′)

3 < 1 becomes allowed at 95% C.L., while however at 68% C.L. still
δ(′)

3 & 1 is necessary.

This highlights the importance of the precise measurement of ACP(D0
→ KS KS ), ACP(Ds →

KSπ
+) and ACP(Ds → K+π0) in the future.
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(b) All data, zoom.
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(c) Excluding the observables ACP(D0
→ KS KS ),

ACP(Ds → KS π
+) and ACP(Ds → K+π0) from the

fit.

Figure 5.11.: Regions in the δ′3-δ3 plane that are allowed at 68% (red) and 95% (orange)
C.L. including the updates of charm measurements after Moriond 2013 as given in Ta-
ble 5.9, see text for details. Plots taken from [469].



6. Traces of QCD Factorization in the
SU(3)F Anatomy of D→ P8P8

As we learned in Ch. 5, in the pure SU(3)F symmetry ansatz including linear breaking
the SM cannot be distinguished from NP models with present data. In this chapter we
look for traces of QCDF [310–312] in charm decays, i.e., relics of the limit mc → ∞.
For previous works discussing QCDF and the 1/mc expansion in the context of the U-
spin and SU(3)F symmetry see e.g. [177, 440, 447, 479, 480]. Here, we look for the first
time at QCDF in view of comprehensively broken SU(3)F [469], not relying however on
quantitative aspects of QCDF calculations but using sum rules that we derive in Sec. 6.2.
As a motivation we compare in Sec. 6.1 QCDF results for the branching ratios in the strict
heavy-quark limit to data. The results show that in color-allowed tree dominated channels
the QCDF-description is working reasonably well. This leads us to the hypothesis that
some information from the 1/mc expansion could be used in the framework of SU(3)F to
assist fits to the data.
We augment therefore the pure SU(3)F approach from Ch. 5 by reasonable input taken
from the general structure of the QCDF expressions only. This helps us to eliminate
breaking matrix elements and can sharpen considerably the predictions of the SU(3)F
framework. Parts of the results presented in this chapter are planned to be published in
[469].

6.1. QCDF Approach to nonleptonic Charm Decays

QCDF Parametrizations for D → P8P8 In the QCDF framework we can write the
amplitudes of D→ PP decays as [177, 310, 312]〈

P1P2

∣∣∣Heff |D〉 =
〈
P1P2

∣∣∣TA + TB |D〉 , (6.1)

whereTA contains the contributions where a spectator quark goes into one of the final state
mesons and TB contains additional annihilation contributions. The different contributions
to TA can be written as products of form factors, decay constants and kernels that are
parametrized by coefficients ai. The same structure is valid for the annihilation part with
corresponding coefficients bi. The expressions for these coefficients are given in [310–
312]. The ai are composed as [311]

aM1 M2
i = aM1 M2

i,I + aM1 M2
i,II . (6.2)

115
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The superscript denotes the dependence on the final state mesons M1 and M2. The con-
vention is such that the meson M1 is the meson that contains the spectator quark [311].
The aM1 M2

i,I contain the naive factorization term and additionally the vertex and penguin
corrections. The aM1 M2

i,II comprise in addition to this the hard spectator interaction contri-
butions.

For the physical interpretation, it is instructive to relate the QCDF expressions to topolog-
ical amplitudes [442],

T = i
GF
√

2
aM1 M2

1 fP2
(m2

D − m2
P1

)FDP1
0 (m2

P2
) , (6.3)

C = i
GF
√

2
aM1 M2

2 fP2
(m2

D − m2
P1

)FDP1
0 (m2

P2
) , (6.4)

E = i
GF
√

2
fD fM1

fM2

(
b1

)M1 M2
q , (6.5)

A = i
GF
√

2
fD fM1

fM2

(
b2

)M1 M2
q . (6.6)

Here, T , C, E and A are the color allowed tree, color suppressed tree, W-exchange and
W-annihilation amplitudes, respectively, fP are the decay constants and FDP

0 the form
factors. The index q in

(
bi
)M1 M2

q denotes the quark flavor that arises from the vacuum in
the annihilation contributions. We assume the conservation of isospin, i.e., (bi)

M1M2
u =

(bi)
M1M2
d ≡ (bi)

M1M2. Corresponding symbolic Feynman diagrams were shown in Fig. 5.3.
For the annihilation contributions proportional to (bi)

M1 M2
q the convention for the final state

mesons is such that M1 contains the antiquark from the weak vertex [311]. The QCDF
parameters in the T and C amplitude can be written as

aM1 M2
1,I = C1 +

C2

Nc

(
1 +

CFαs

4π
VM2

)
, aM1 M2

2,I = C2 +
C1

Nc

(
1 +

CFαs

4π
VM1

)
, (6.7)

aM1 M2
1,II =

C2

Nc

CFπαs

Nc
HM2 M1

, aM1 M2
2,II =

C1

Nc

CFπαs

Nc
HM1 M2

, (6.8)

with Wilson coefficients of the tree operators C1, C2, Nc = 3 and hadronic parameters VX,
HX as specified in [311].

Taking only into account the T , C, E and A contributions as given in Eqs. (6.3)–(6.6),
the QCDF expressions for the D → P8P8 system can be written as follows below in
Eqs. (6.9)–(6.25) [469]. Technically, we obtain Eqs. (6.9)–(6.25) by inserting Eqs. (6.3)–
(6.6) into the expressions given in Table I of [481]. We disregard here terms that are
CKM suppressed by ∆ = −V∗cbVub/2, i.e., in the QCDF approach work in the limit ∆ = 0.
Therefore, no penguin terms are present in our QCDF expressions. However, in the fit
to data in Sec. 6.3 penguins are included by means of SU(3)F-matrix elements, see the
discussion at the end of Sec. 6.2 below.

We use the notation bπi ≡ bππi and bK
i ≡ bKK

i . The form factors are approximated as
FDπ

0 (m2
K) = FDπ

0 (0) and FDK
0 (m2

π) = FDK
0 (0).
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Furthermore, we assume that the parameters aM1 M2
1 and aM1 M2

2 are approximately flavor-
universal, i.e. that the vertex-corrections as well as the hard-scattering contributions do
not introduce a significant flavor-dependence. The latter is subject to current investiga-
tion [469]. We express the flavor-universality in the notation by leaving out the super-
scripts of the ai. In the next paragraph, after Eqs. (6.9)–(6.25), we show that the flavor-
nonuniversality induced by the vertex-corrections is numerically negligible.

CF decays

A
factor(D0

→ K−π+) =

(
i
GF
√

2

)
V∗csVud

(
a1 fπ(m

2
D − m2

K)FDK
0 (0) + fD fK fπ(b1)πK

)
, (6.9)

A
factor(D0

→ K̄0π0) =

(
i
GF
√

2

)
V∗csVud

1
√

2

(
a2 fK(m2

D − m2
π)F

Dπ
0 (0) − fD fπ fK(b1)πK

)
,

(6.10)

A
factor(D+

→ K̄0π+) =

(
i
GF
√

2

)
V∗csVud

(
a1 fπ(m

2
D − m2

K)FDK
0 (0) + a2 fK(m2

D − m2
π)F

Dπ
0 (0)

)
,

(6.11)

A
factor(D+

s → K̄0K+) =

(
i
GF
√

2

)
V∗csVud

(
a2 fK(m2

Ds
− m2

K)FDsK
0 (0) + fDs

f 2
K(b2)K

s

)
. (6.12)

SCS decays

A
factor(D0

→ K+K−) =

(
i
GF
√

2

)
Σ
(
a1 fK(m2

D − m2
K)FDK

0 (0) + fD f 2
K(b1)K

)
, (6.13)

A
factor(D0

→ π+π−) = −

(
i
GF
√

2

)
Σ
(
a1 fπ(m

2
D − m2

π)F
Dπ
0 (0) + fD f 2

π (b1)π
)
, (6.14)

A
factor(D0

→ K0K̄0) =

(
i
GF
√

2

)
fD f 2

KΣ
(
(b1)K

− (b1)K
s

)
, (6.15)

A
factor(D0

→ π0π0) = −

(
i
GF
√

2

)
Σ

1
√

2

(
a2 fπ(m

2
D − m2

π)F
Dπ
0 (0) − fD f 2

π (b1)π
)
, (6.16)

A
factor(D+

→ π+π0) = −

(
i
GF
√

2

)
Σ

1
√

2
fπ(m

2
D − m2

π)F
Dπ
0 (0)

(
a1 + a2

)
, (6.17)

A
factor(D+

→ K+K̄0) =

(
i
GF
√

2

)
Σ
(
a1 fK(m2

D − m2
K)FDK

0 (0) − fD f 2
K(b2)K

s

)
, (6.18)

A
factor(D+

s → π+K0) =

(
i
GF
√

2

)
Σ
(

fDs
fK fπ(b2)Kπ

− a1 fπ(m
2
Ds
− m2

K)FDsK
0 (0)

)
, (6.19)

A
factor(D+

s → π0K+) = −

(
i
GF
√

2

)
Σ

1
√

2

(
a2 fπ(m

2
Ds
− m2

K)FDsK
0 (0) + fDs

fK fπ(b2)Kπ
)
.

(6.20)
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DCS decays

A
factor(D0

→ K+π−) =

(
i
GF
√

2

)
V∗cdVus

(
a1 fK(m2

D − m2
π)F

Dπ
0 (0) + fD fπ fK(b1)Kπ

)
, (6.21)

A
factor(D0

→ K0π0) =

(
i
GF
√

2

)
V∗cdVus

1
√

2

(
a2 fK(m2

D − m2
π)F

Dπ
0 (0) − fD fK fπb

Kπ
1

)
, (6.22)

A
factor(D+

→ K0π+) =

(
i
GF
√

2

)
V∗cdVus

(
a2 fK(m2

D − m2
π)F

Dπ
0 (0) + fD fK fπ(b2)Kπ

)
, (6.23)

A
factor(D+

→ K+π0) =

(
i
GF
√

2

)
V∗cdVus

1
√

2

(
a1 fK(m2

D − m2
π)F

Dπ
0 (0) − fD fπ fK(b2)Kπ

)
,

(6.24)

A
factor(D+

s → K0K+) =

(
i
GF
√

2

)
V∗cdVus

((
a1 + a2

)
fK(m2

Ds
− m2

K)FDsK
0 (0)

)
. (6.25)

Performance Test of QCDF for Charm Decay Branching Ratios In this paragraph
we evaluate as a motivation Eqs. (6.9)–(6.25) numerically in the strict heavy quark limit
in order to test the performance of QCDF for the branching ratios. For the ai we take the
vertex corrections into account only and neglect the annihilation contributions (bi)

M1 M2
q .

As we only want to give a motivation, for simplicity, we use the central values of the
numerical input given in Table 6.1. Note that the form factor FDsK

0 (0) is not measured yet.
For the numerical illustrations presented here we use FDsK

0 (0) ∼ 0.74, i.e. the value of
FDK

0 (0). Furthermore, we neglect the scale dependence of the Gegenbauer moments αP
i .

We calculate the Wilson coefficients C1 and C2 in Eq. (6.7) following the Eqs. (V.7) and
(V.9) in [180].1 For calculating the αs running we use the RunDec code [482]. At the
scale µ = 1 GeV we find:

aM1π

1 (1 GeV) = 1.16 + i 0.06 , aM1K
1 (1 GeV) = 1.16 + i 0.07 , (6.26)

aπM2
2 (1 GeV) = −0.32 − i 0.18 , aKM2

2 (1 GeV) = −0.31 − i 0.19 . (6.27)

As the vertex corrections give a numerically negligible flavor-nonuniversality we take the
flavor average of Eqs. (6.26) and (6.27) for a1 and a2, respectively.

We show the results for all measured branching ratios of D→ P8P8 in Fig. 6.1, assuming
ad hoc a parametric uncertainty of 10%–30% around the central value. From the plots we
draw the following conclusions:

• For channels dominated by the color-allowed tree contribution, the QCDF predic-
tion agrees well with the measured values for the branching ratios. Although in
some cases the theory band does not touch the experimental 1σ range, in all decays
that are mainly described by the T amplitudes the correct order of magnitude is
obtained from the QCDF expressions.

1Note that our convention for O1 and O2 is opposite to the one in [180].
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• The branching ratioB(D0
→ KS KS ) can of course not be described at all, as it stems

only from annihilation contributions which we have set to zero for our numerical
study.

• For the decays whose amplitudes are composed of color-suppressed tree and anni-
hilation contributions still the correct order of magnitude is found. However, not
surprisingly, the QCDF predictions deviate significantly from the measurements, as
we neglected the annihilation contributions.

Counting Parameters of the QCDF Expressions The numerical illustration for the
branching ratios in the last paragraph showed that the effect of the annihilation coeffi-
cients (bi)

M1 M2
q can be sizable. In contrast to the ai, for the (bi)

M1 M2
q we do not make any

assumptions in the following and take them into account in full generality, except for the
conservation of isospin.

In the following, we neither use the QCDF expressions for the (bi)
M1 M2
q nor for the ai

and treat them as parameters. Our main assumption is the flavor-universality of the ai.
Altogether, the QCDF coefficients that appear in the Eqs. (6.9)–(6.25), where we have
taken the ∆ = 0 limit, are the following:

a1, a2, b
Kπ
1 , bπK

1 , bK
1 , b

π
1, (b1)K

s , b
Kπ
2 , (b2)K

s .

These are nine complex parameters that we treat as a priori unknown. In the next section,
we analyze the interrelations of the QCDF approach on the one hand and the application
of the SU(3)F symmetry on the other hand.

6.2. The Interplay of QCDF and SU(3)F

Matching QCDF on SU(3)F for Charm Decays In order to benefit from the informa-
tion on the structure of charm decays contained in the QCDF expressions we match the
Eqs. (6.9)–(6.25) onto the SU(3)F ansatz presented in Ch. 5.

In order to do so, we rewrite all SU(3)F-breaking parameters that appear in the QCDF
expressions using a reparametrization around the SU(3)F limit. The latter we define as
the arithmetic average

X =
1
N

N∑
i=1

Xi (6.28)

of a considered group of parameters {Xi} that contains N elements. All parameters in the
group {Xi} can then be written as deviations from the average X using the parameters

δX
i =

Xi − X
X

. (6.29)
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αK
1 0.10 ± 0.04 [483]

αK
2 0.25 ± 0.15 [483]

απ2 0.16 ± 0.01 [483]

αs(mZ) 0.1184 ± 0.0007 [89]

mb(MS) 4.18 ± 0.03 GeV [89]

mc(MS) 1.257 ± 0.025 GeV [89]

mZ 91.1876 ± 0.0021 GeV [89]

mD0 (1864.86 ± 0.13) MeV [89]

mDs
(1968.49 ± 0.32) MeV [89]

mπ0 (134.9766 ± 0.0006) MeV [89]

mK0 (497.614 ± 0.024) MeV [89]

fD (206.7 ± 8.5 ± 2.5) MeV [89]

fDs
(260.0 ± 5.4) MeV [89]

fπ (130.41 ± 0.03 ± 0.2) MeV [89]

fK (156.1 ± 0.2 ± 0.8 ± 0.2) MeV [89]

FDK
0 (0) 0.739(7)(5)(0) [484]

FDπ
0 (0) 0.666(19)(4)(3) [484]

Table 6.1.: Input values for the numerical calculations. Note that for the numerical cal-
culations we take into account the central values only, see text for details. For additional
references with respect to the Gegenbauer moments αK

1 , αK
2 and απ2 see [483]. Table taken

from [469].
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Figure 6.1.: Branching ratio predictions of QCDF with ai,II = bi = 0, see text for details.
Dark (light) color: 10% (30%) uncertainty around the central value. Green: Amplitude
with T dominance . Blue: Amplitude with C dominance. Gray: 1σ range of measure-
ment. Plots of B(D0

→ K+K−) and B(D0
→ π+π−) taken from [469].
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Specifically, with the templates of Eqs. (6.28) and (6.29) we rewrite the parameters in the
QCDF expressions as follows:

m2
D − m2

K = m2
DP

(
1 − δm2

DP
1 − δ

m2
DP

2

)
, (6.30)

m2
D − m2

π = m2
DP

(
1 + δ

m2
DP

2

)
, (6.31)

m2
Ds
− m2

K = m2
DP

(
1 + δ

m2
DP

1

)
, (6.32)

fK = fP

(
1 + δ fP

)
, (6.33)

fπ = fP

(
1 − δ fP

)
, (6.34)

fDs
= fd

(
1 + δ fd

)
, (6.35)

fD = fd

(
1 − δ fd

)
, (6.36)

FDK
0 (0) = FDP

0

(
1 + δ

FDP
0

1

)
, (6.37)

FDπ
0 (0) = FDP

0

(
1 + δ

FDP
0

2

)
, (6.38)

FDsK
0 = FDP

0

(
1 − δFDP

0
1 − δ

FDP
0

2

)
. (6.39)

An analogous reparametrization is used for the QCDF annihilation coefficients:

bKπ
1 = b1

(
1 + δ

b1
1

)
, (6.40)

bK
1 = b1

(
1 + δ

b1
2

)
, (6.41)

bπ1 = b1

(
1 + δ

b1
3

)
, (6.42)

(bs)
K
1 = b1

(
1 − δb1

1 − δ
b1
2 − δ

b1
3

)
, (6.43)

(bs)
K
2 = b2

(
1 + δb2

)
, (6.44)

bKπ
2 = b2

(
1 − δb2

)
. (6.45)

The SU(3)F limit is obtained in the limit δX = 0. With the still exact reparametrization
Eqs. (6.30)–(6.45) we can obtain the linear SU(3)F expansion of the QCDF amplitudes.
We insert the reparametrizations into Eqs. (6.9)–(6.25) and neglect subsequently all pow-
ers of δX larger than one. The amplitudes have then the form

A
factor(d) = Afactor

0 (d) +Afactor
X (d) + O(δ2) , (6.46)

where Afactor
0 (d) denotes the SU(3)F limit amplitude of a decay d and Afactor

X (d) includes
terms linear in δX only. Due to the SU(3)F structure the thus obtained amplitudes must
obey the six SU(3)F sum rules valid to linear SU(3)F breaking [466] given in Eqs. (5.80)–
(5.85). Indeed, they do so, as we explicitly checked, with one important exception where
this is not automatically the case. The U-spin sum rule Eq. (5.83) can only be fulfilled if
the QCDF parameters obey

bπK
1 = bK

1 + bπ1 − bKπ
1 . (6.47)
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This relation is a prediction of the SU(3)F approach to linear order in breaking and con-
sequently in the following assumed to hold. The elimination of bπK

1 by Eq. (6.47) leads to
only eight remaining QCDF parameters in the ∆ = 0 limit, specifically:

a1, a2, b
Kπ
1 , bK

1 , b
π
1, (b1)K

s , b
Kπ
2 , (b2)K

s .

Having only eight parameters describing 17 decay amplitudes, we expect nontrivial rela-
tions. We stress that we treat the ai and (bi)

M1 M2
q as free parameters.

QCDF Sum Rules Beyond SU(3)F Actually, from the number of parameters vs. am-
plitudes we know a priori that there have to be nine sum rule relations between the 17
amplitudes. Six of these we have identified in the previous paragraph as the known SU(3)F
sum rules, Eqs. (5.80)–(5.85). But these do of course not give us further information on
SU(3)F matrix elements. On the contrary, these lead to the prediction Eq. (6.47) to linear
order in SU(3)F breaking. But the three additional sum rules do give further dynamical
information. We derive in the following these sum rules and show how to benefit from
them in order to reduce the degrees of freedom of the plain SU(3)F parametrization.
In order to derive the additional QCDF sum rules beyond SU(3)F we proceed as follows:
We start with the 17 QCDF amplitudes in Eqs. (6.9)–(6.25) which are not yet expanded
to linear order SU(3)F breaking. We know that at linear order in SU(3)F we can eliminate
six amplitudes in favor of the remaining 11 ones. Without loss of generality we therefore
discard the amplitudes

A(D0
→ π0π0),A(D0

→ K−π+),A(D0
→ K+π−),A(D0

→ K0π0),
A(D+

→ K0π+),A(D+
→ K+π0).

Of course the final result for the SU(3)F matrix elements will not depend on this choice.
The only sum rules that can now remain in the reduced system are the desired additional
QCDF sum rules beyond SU(3)F . These can be found by Gaussian elimination of the
QCDF parameters ai and bi. At this step, the resulting sum rules are valid for the full
QCDF expressions in the limit ∆ = 0, as given in Eqs. (6.9)–(6.25). They read as follows
[469]

√
2FDsK

0 fK(m2
Ds
− m2

K)
A(D+

→ π0π+)
Σ

+ FDπ
0 fπ(m

2
D − m2

π)
A(Ds → K0K+)

V∗cdVus
= 0 , (6.48)

√
2FDsK

0 (m2
Ds
− m2

K)A(D+
→ π0π+)

− FDπ
0 (m2

D − m2
π)

(√
2A(Ds → π0K+) +A(Ds → π+K0)

)
= 0 , (6.49)
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FDπ
0 fK fπ(m2

D − m2
π)

(
FDK

0 fDs
(m2

D − m2
K) − FDsK

0 fD(m2
Ds
− m2

K)
) A(D+

→ K̄0π+)
V∗csVud

+ FDπ
0 fπ(m2

D − m2
π)2

−FDK
0 fπ

m2
D − m2

K

m2
D − m2

π

+ FDπ
0 fK

  fD
A(Ds → K̄0K+)

V∗csVud
+ fDs

A(D+
→ K̄0K+)
Σ


+
√

2FDK
0 fK(m2

D − m2
K)

(
−FDsK

0 fD fπ(m2
Ds
− m2

K) + FDπ
0 fDs

fK(m2
D − m2

π)
) A(D+

→ π0π+)
Σ

= 0 .

(6.50)

In order to benefit from these sum rules for the full QCDF amplitudes at linear SU(3)F
breaking, firstly we insert our parametrization Eqs. (6.30)-(6.45). Then we neglect coeffi-
cients of O(δ2) in order to get the linear QCDF sum rule. Inserting the SU(3)F expressions
for the amplitudes that were obtained in Ch. 5 into the expanded QCDF sum rules we ex-
tract the following QCDF relations for the SU(3)F matrix elements [469]

−
3

122

√
5281

7
× B151

27 −
23

122

√
151
21
× B152

27 +
2
√

21
× B241

27

+
1
√

2

(
δ

FDP
0

1 + 2δFDP
0

2 − 2δ fP − δ
m2

DP
1 + δ

m2
DP

2

)
× A15

27 = 0 , (6.51)

√
3
7
× B241

27 +
1
√

2

(
δ

FDP
0

1 + 2δFDP
0

2 − δ
m2

DP
1 + δ

m2
DP

2

)
× A15

27 = 0 , (6.52)

− 976
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2δFDP
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0
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DP
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DP
2
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× B241

27

+ 80
√

151
(
32δFDP

0
1 + 25δFDP
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DP
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FDP
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)
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8
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√

11811
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δ

FDP
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FDP
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DP

1 − 2δm2
DP
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√

8607
(
δ

FDP
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1 − δ
FDP
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2 − 2δ fP − δ

m2
DP

1 − 2δm2
DP

2

)
× B6̄1

8

+
√

3992907
(
−δ

FDP
0

1 + δ
FDP

0
2 + 2δ fP + δ

m2
DP

1 + 2δm2
DP

2

)
× B151

8

− 24
√

15843
(
2δFDP

0
1 + 13δFDP

0
2 + 10δ fd + 16δ fP − 2δm2

DP
1 + 11δm2

DP
2

)
× B151

27 = 0 . (6.53)

Note that, by construction, in these sum rules the QCDF parameters ai and (bi)
M1 M2
q

are not present. Note further that in Eqs. (6.51)–(6.53) we have taken care to retain a
consistent power counting. For example we did not keep terms that would have made
necessary to go also beyond linear order in the SU(3)F symmetry approach for consistency
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reasons. We use in Eqs. (6.51)–(6.53) directly the redefined SU(3)F matrix elements
introduced in Ch. 5.

Eqs. (6.51) and (6.52) give a nontrivial relation between the SU(3)F limit matrix element
A15

27 and several breaking matrix elements, namely B151
27 , B152

27 and B241
27 . They come from

amplitudes or their combinations that depend only on (a1+a2) from the QCDF perspective.
In relation (6.53) all SU(3)F limit matrix elements cancel out and we obtain a relation
between breaking matrix elements only. Altogether we can in this way eliminate three
SU(3)F-breaking matrix elements using the information on the structure of the dynamics
contained in the QCDF sum rules.

We solve Eqs. (6.51)-(6.53) for the matrix elements B151
27 , B152

27 , B241
27 and evaluate the result

for numerical illustration using the central values given in Table 6.1. We obtain [469]

B151
27 = −0.06 A15

27 + 0.03 B151
8 − 0.14 B152

8 + 0.31 B3
8 − 0.18 B6̄1

8 , (6.54)

B152
27 = −0.24 A15

27 − 0.04 B151
8 + 0.19 B152

8 − 0.42 B3
8 + 0.24 B6̄1

8 , (6.55)

B241
27 = 0.16 A15

27 . (6.56)

As in Fig. 6.1, for the not measured form factor FDsK
0 (0) we use here FDsK

0 (0) ∼ 0.74, i.e.
the value of FDK

0 (0). Note that the numbers in Eqs. (6.54)–(6.56) change significantly if
one uses instead FDsK

0 (0) ∼ FDπ
0 (0).

For consistency, in the amplitudes we do not take into account the isospin-breaking effect
from the small mass differences between charged and neutral kaons and pions, respec-
tively, and use everywhere the input values for the masses of the neutral particles. In the
phase space we take the effect of the mass differences into account, however.

Note that the sum rules for SU(3)F matrix elements still remain valid when ∆ , 0 is taken
into account in the QCDF expressions of the amplitudes. As on both sides of the match-
ing equation between SU(3)F and QCDF we can identify the different contributions, the
QCDF sum rules for amplitudes then transform into sum rules for parts of amplitudes.
If we insert into these the corresponding parts of amplitudes in the SU(3)F approach we
arrive at the same sum rules for the SU(3)F matrix elements as in Eqs. (6.51)–(6.53) and
(6.54)–(6.56).
As this argument is quite general, it still holds even in the presence of NP. The ability to
identify corresponding terms of the QCDF and the SU(3)F approach is not touched at all
by the additional terms considered in the models introduced in Sec. 5.4.4.
Therefore, we can use the sum rules Eqs. (6.51)–(6.53) also in the SU(3)F-fit to CP asym-
metries, which we present in the next section.
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6.3. Answering Questions in Charm Physics including
Traces of QCDF

After deriving the QCDF sum rules in Sec. 6.2 we illustrate their possible implications in
this section by fits to the full current data set of charm observables presented in Tables 5.1–
5.3 including the recent updates after Moriond 2013 as summarized in Table 5.9. We
regard Eqs. (6.51)–(6.53) as reasonable input that relies on the general structure of the
QCDF approach only. It does not depend on the details of the calculation of the QCDF
parameters ai and (bi)

M1 M2
q . Taking this “imprint” of QCDF into account we come back

to the questions that we posed in Sec. 5.4. There, we have presented results in plain
SU(3)F . Including the additional traces of QCDF we will see that some predictions can
be considerably sharpened.

Note that for the numerical illustration of the effect of the QCDF sum rules presented here,
in the fit of the remaining 10 SU(3)F matrix elements, i.e. 19 real parameters, we use for
the QCDF input directly Eqs. (6.54)–(6.56). We do not take into account the uncertainties
of the input parameters in Table 6.1. This includes the used value for FDsK

0 (0), as discussed
after Eq. (6.56).

How Large is the SU(3)F Breaking? The first question we have to account for is how
large is the requisite SU(3)F breaking under the inclusion of the QCDF relations? Firstly,
the δX from the matching are numerically given as

δ
m2

DP
1 = 0.06 δ

m2
DP

2 = 0.01 δ fP = 0.09 (6.57)

δ fd = 0.11 δ
FDP

0
1 = 0.03 δ

FDP
0

2 = −0.07. (6.58)

As can be seen from Eqs. (6.57)–(6.58), the δX are reasonable expansion parameters. For
the further investigation of the SU(3)F breaking we show in Fig. 6.2(a) the two measures
of SU(3)F breaking δX and δ′X defined in Sec. 5.4.1. The result can be compared to the
corresponding plot of the plain SU(3)F analysis shown in Fig. 5.4. We learn that the
requisite SU(3)F breaking in order to obtain a reasonable fit is about 10% larger than in
the case of plain SU(3)F . The best fit point has χ2

min = 4.5 with six degrees of freedom.

In addition to the full fit we present in Fig. 6.2(b) also a fit taking branching ratio mea-
surements into account only. On the theory side we take accordingly the limit ∆ = 0. In
this case we have two degrees of freedom and χ2 = 1.3 at the best fit point. The similarity
of Figs. 6.2(a) and 6.2(b) shows that the size of SU(3)F breaking is mainly determined by
the branching ratios.

Altogether, we conclude that the SU(3)F expansion is working fine with or without in-
cluding QCDF structure in the fit, and we can proceed with our analysis.
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(b) Only branching ratios, in the limit ∆ = 0.

Figure 6.2.: Regions in the δX-δ′X plane that are allowed at 68% (red) and 95% (orange)
C.L. including input from QCDF sum rules and the recent updates after Moriond 2013 as
summarized in Table 5.9, see text for details. Plots taken from [469].
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(b) All data, zoom

Figure 6.3.: Regions in the δ′3-δ3 plane that are allowed at 68% (red) and 95% (orange)
C.L. including input from QCDF sum rules and the recent updates after Moriond 2013 as
summarized in Table 5.9, see text for details. Figure taken from [469].
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How Large are the Triplets? After the validation of the symmetry ansatz, we study the
effect of the QCDF input on the size of the triplet matrix elements. In the SM these are
the main reason for nonvanishing CP violation in charm. We use for that the measures δ3
and δ′3 defined in Sec. 5.4.3. The result of the fit to the full data set is shown in Fig. 6.3,
which corresponds to the plot in plain SU(3)F presented in Fig. 5.11(a). No assumption
on δ(′)

X is made.

We observe that the 95% C.L. region including the QCDF input has overall not changed
much in comparison to plain SU(3)F . However, the 68% C.L. region is extended consid-
erably towards the lower region. The point is that due to the correlation of the breaking
matrix elements in Eqs. (6.54)–(6.56) there is significantly less freedom for the arrange-
ment of the strong phases. In this way the fit cannot explain as easily as before the CP
asymmetries with largish measured central values. This is exemplified by the observable
ACP(Ds → K+π0) which gives at the best fit point the largest single contribution to the
χ2, namely χ2

(
ACP(Ds → K+π0)

)
= 1.7. The global minimum is consequently shifted

towards somewhat smaller penguins, and the shape of 68% C.L. region behaves accord-
ingly.

Can we Differentiate the SM from Patterns of NP? We come now to the main point,
the question if the additional insights from QCDF can help in order to disentangle NP
models from the SM. To be specific, we study here the same NP models that were intro-
duced in Sec. 5.4.4. In order to remain in the part of the parameter space where the per-
turbative expansion in the SU(3)F breaking does make sense we assume an upper bound
δ(′)

X ≤ 50%. In plain SU(3)F we obtained χ2
min = 1.0 for the SM and the triplet model,

χ2
min = 1.0 for the ∆U = 1 model and χ2

min = 0 for the HN model.
If we impose additionally the QCDF sum rule relations Eqs. (6.54)–(6.56) we obtain at
the best fit points χ2

min = 4.6 for the SM and the triplet model, χ2
min = 1.1 for the ∆U = 1

model and χ2
min = 0.6 for the HN model. In Sec. 5.4.4 we learned that the SM can not be

disentangled from the triplet model in plain SU(3)F using nonleptonic decays only. This
is still true including the structure of the QCDF sum rules, as exemplified by the best fit
points of the respective models.

In Fig. 6.4 we show the correlation of the CP asymmetry with the branching ratio of
the decay Ds → K+π0 in plain SU(3)F (Fig. 6.4(a)) and using additionally the QCDF
relations Eqs. (6.54)–(6.56) (Fig. 6.4(b)) in fits to the data. In the case of plain SU(3)F ,
the predictions are inconclusive, i.e., refraining from using any dynamical input one can
not disentangle the SM from the other shown NP models with current data. In contrast
to that, including the reasonable input from the structure of QCDF, from our numerical
illustration in Fig. (6.4(b)) we conclude that we can differentiate the SM from the HN
model at 68% C.L. As can be seen, for significant progress it would already suffice to
have a more precise measurement of the branching ratio B(Ds → K+π0). This could
exclude the SM solution with largish adir

CP(Ds → K+π0) > 0. The preference for the other
solution with adir

CP(Ds → K+π0) < 0 would at the same time disfavor the HN model at 68%
C.L.
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(a) Plain SU(3)F with δ(′)
X ≤ 50%. (b) Including QCDF sum rules and δ(′)

X ≤ 50%.

Figure 6.4.: Correlations of the observables adir
CP(Ds → K+π0) and B(Ds → K+π0) at 68%

(dashed) and 95% (solid) C.L. in different models, including recent updates after Moriond
2013 as summarized in Table 5.9, see text for details. Red: SM, Blue: ∆U = 1 model,
Yellow: HN model. (Dark) Light gray: (1σ) 2σ ranges of experimental measurements.

Note that Fig. 6.4(b) has a dependence on the value that one uses for the not measured
form factor FDsK

0 (0), see the note after Eq. (6.56). We checked that using FDsK
0 ∼ FDπ

0

instead of FDsK
0 ∼ FDK

0 does not change our main conclusion, i.e., there remains a 68%
C.L. region that is not shared by both the SM and the HN model so that we are still able
to disentangle the HN model from the SM.

As the HN model is the only model considered here that could induce adir
CP(D+

→ π0π+) , 0,
it is interesting to study also the correlation of adir

CP(D+
→ π0π+) with adir

CP(Ds → K+π0)
and B(Ds → K+π0) in this model. The results are shown in Fig. 6.5, where we confront
fits to current data in plain SU(3)F with the corresponding ones including the input from
QCDF. We observe that although the QCDF sum rules constrain the strong phases con-
siderably, no visible patterns arise between adir

CP(D+
→ π0π+) and these observables with

present data.

Taking everything into account, the new method of using QCDF sum rules, which is inde-
pendent of specific results for QCDF kernels, can considerably sharpen the predictions of
different models for some observables. With future improved data this will bring us into
the position to exclude models, maybe the SM or the HN model. As we showed in this
section, it is especially important to measure adir

CP(Ds → K+π0) and B(Ds → K+π0) with
higher precision in order to achieve this goal.
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(a) (b)

(c) (d)

Figure 6.5.: Correlations of adir
CP(D+

→ π+π0) with adir
CP(Ds → K+π0) and B(Ds → K+π0)

at 68% (dashed) and 95% (solid) C.L. in the HN model, including recent updates after
Moriond 2013 as summarized in Table 5.9. Left (a,c): Plain SU(3)F with δ(′)

X ≤ 50%.
Right (b,d): Including input from QCDF sum rules and δ(′)

X ≤ 50%, see text for details.
Yellow: HN model. (Dark) Light gray: (1σ) 2σ ranges of experimental measurements.



7. Outlook

The decay channels of B and D mesons that were discussed in this work will continue to
play an important role in the future.
In the near future, for one of the roadmap channels of LHCb [485], B̄ → K̄∗µ+µ−, the
achievements of the analysis of the 1 fb−1 gathered until the end of 2011 will be followed
soon by the analysis of the additional data taken in 2012. Prospects for several observables
in the more distant future are summarized in Table 7.1. These include perspectives from
the upgrade of the LHCb detector [486, 487] that will take place in 2018/19 and data from
the future B factory Belle II at the e+e− collider SuperKEKB [488, 489].

Belle II is planned to start data taking in 2016 and to collect 50 ab−1 until 2023—a huge
advance compared to the 1.5 ab−1 collected by the former B factories BaBar and Belle
[490]. Concerning LHCb, a timeline has recently been presented in [491]. In 2013/14 the
long shutdown I takes place, where preparations are made for running at

√
s = 13 TeV in

the period from 2015-2018. Until 2018 10 fb−1 are planned to be collected [491]. During
2018/19 the long shutdown II takes place. During this time LHCb is upgraded in order
to be able to handle an again increased instantaneous luminosity and to run at

√
s = 14

TeV in the years 2019-2022. After that a luminosity upgrade of LHC is planned for 2022-
2024. The upgraded LHCb shall collect a total of 50 fb−1 in 10 years of data taking [492].
These ambitious experimental physics programs will give invaluable information on the
physics at high energy scales and serve as precision probes of NP.

An example par excellence will also in the future be given by the long time goal of a full
angular analysis of B̄→ K̄∗µ+µ− decays. Still only a small fraction of the full information
contained in this decay is unravelled by current data. Future measurements will not only
improve on the statistics of the already known observables, but also measure new ones,
which will give a litmus test of NP models. As a special example, the bounds on squark
flavor presented in Ch. 3 will become increasingly stronger with the improvement of the
data. With additional observables we could also probe CP violation of squark flavor, in
particular in the scharm-stop left-right mixing. Especially useful for that will be the CP
asymmetries AD

7 and a(3)
CP, as these are sensitive to the phase of the Wilson coefficient C10

[183, 308, 318, 322].

In Table 7.1 we summarize the prospects for the future sensitivity in measurements of the
zero of the forward-backward asymmetry AFB of B̄ → K̄∗µ+µ−. While current data on
the zero of AFB is consistent with the SM, the prospects for a future precision test look
promising. This is the more so true, as the theory uncertainty of this observable is small,
the SM prediction has an uncertainty of ∼ 8% [184], see Eq. (3.8). For the Belle II exper-
iment prospects for the sensitivity to the Wilson coefficients C7,9,10 are given, assuming
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Observable LHCb current dataa LHCb LHCb 50 fb−1 Belle II Belle II

2018b 10 yrs data takingb 5 ab−1 50 ab−1 2023

S 3(B̄→ K̄∗µ+µ−) 0.07 [331] 0.025 [486] 0.008 [486]

(1 GeV2 < q2 < 6 GeV2))

zero of AFB(B̄→ K̄∗µ+µ−) 18% [331] 6% [486] 2% [486]

C7/C9 from AFB(B̄→ K̄∗l+l−)c 5% [488]

C9 from AFB(B̄→ K̄∗l+l−)c 11% [488] 4% [488]

C10 from AFB(B̄→ K̄∗l+l−)c 13% [488] 4% [488]

B(Bd → µ+µ−)/B(Bs → µ+µ−) – ∼ 100% [486] ∼ 35% [486]

∆ACP · 102 0.18 (D∗ ch.) [64] 0.065 [486] 0.015 [492]

0.33 (B ch.) [65]

ACP(D0
→ π+π−) · 102 – 0.015 [492] 0.07 [477]

ACP(D0
→ K+K−) · 102 – 0.01 [492] 0.05 [477]

ACP(D+
→ KS K+) – 0.0001 [492] 0.001 [477]

ACP(Ds → KS π
+) 0.008 [478] 0.003 [477]

ACP(D0
→ π0π0) – . 0.01d [493]

K+π− strong phase differencee δKπ 6◦ [488] 3.8◦ [477]

Table 7.1.: Prospects for sensitivity in selected future measurements and experiments.
Numbers given in percent refer to a relative precision, all others to the absolute one.
aStatistical and systematic errors are added in quadrature.
bOnly statistical sensitivity.
cAssuming the SM operator basis for ∆B = 1 transitions.
dValue that we read off the corresponding plot on slide 20 in [493].
eOur symmetrization [469] of the current HFAG average for the strong phase δKπ [63]
(online update April 2013) is δKπ = (18.25 ± 9.85)◦, Eq. (5.103).
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the SM operator basis.
In Ch. 4 the observable A(2)

T has been used to extract the form factor ratio f⊥/ f‖ from data
at high q2. This method relies on the abscence of right-handed currents from NP opera-
tors, as was discussed there. It is justified by the data, as indeed no right-handed currents
have been seen so far. At low q2, A(2)

T can vice versa be used as an actual probe of NP
from chirality flipped operators [494]. As shown in Fig. 2 of [494] in SUSY there could
in principle be large deviations from the SM value A(2)

T ∼ 0 at q2 < 4 GeV2 due to squark
flavor violation in gluino diagrams. In Table 7.1 it is given the future sensitivity to the
observable S 3, which relates to A(2)

T as S 3 = 1
2 (1 − FL)A(2)

T . In the future, at low q2 these
observables will give a null test of the SM and improved probes of squark flavor.
The progress in precision will shrink the allowed region in the plane of effective couplings
C9–C10 that we overlayed in Fig. 3.6 with SUSY scatter points. If the region is compressed
around the SM point, this will give also increasingly strong bounds on squark flavor viola-
tion. In addition to B→ K∗µ+µ−, several further decay channels with partonic b → sl+l−

transitions contribute to this progress, as the recently measured decays Bs → φµ+µ− [495–
497] and Λb → Λµ+µ− [496, 498] and the decays B+

→ K+
1 µ

+µ−, B0
→ K∗2µ

+µ−, which
are planned to be measured by LHCb [487]. Furthermore, in addition to µ± final states,
LHCb takes now also first steps to e± final states in B̄→ K̄∗l+l− [499].

Turning from prospects in the down sector to ones in the up sector, a major task for
the future will be the measurement of all CP asymmetries in SCS decay channels. As
was pointed out in Chs. 5 and 6, besides a clarification of the value of ∆ACP it is espe-
cially important to measure the observables ACP(D0

→ KS KS ), ACP(Ds → KSπ
+) and

ACP(Ds → K+π0) with a higher precision as is the case at present. In this way one can
determine how large the necessary triplet or penguin enhancement in the charm system
really is. As was shown in Ch. 6 also branching ratio measurements can take an important
role in this respect, being exemplified by B(Ds → K+π0).
As demonstrated in Table 7.1, there is much progress to expect for the statistical error of
∆ACP. Also the single contributions ACP(D0

→ K+K−) and ACP(D0
→ π+π−) will be re-

solved. Belle II will help in an essential way to unravel these asymmetries. As can be seen
from Table 7.1, there are also prospects from both LHCb and Belle II for other CP asym-
metries of SCS decay modes, i.e., for the ones with a KS in the final state. Concerning D
decays with a π0 in the final state, these are in general challenging for LHCb. But Belle II
can also measure these, for instance it can even perform well for ACP(D0

→ π0π0) [493].
This measurement will be very interesting in the context of our predictions presented in
Figs. 5.9 and 5.10. Furthermore, in [493] the CP asymmetry of the decay D+

→ π+π0

is enumerated in combination with CP asymmetries of other decay modes for that it is
stated that “Belle II is well situated to make many of these measurements, and can make
uniquely useful contributions to modes with neutral particles in the final state, comple-
mentary to those accessible at LHCb” [493].
By the measurement of ACP(D+

→ π+π0) Belle II would be able to make another impor-
tant null test of the SM, as described in Sec. 5.4.4.

Taking everything into account, in the future we will definitely be able to benefit from the
predictions made in this work.
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8. Conclusion

In this thesis we have explored topics in the up and down sector of quark flavor physics.

In the down sector we have shown that new theoretical and experimental results on
B̄ → K̄(∗)l+l− in particular at high q2 give new constraints on squark flavor violation.
The bounds stem from large chargino contributions that lead to a strong correlation of the
Wilson coefficients C9 and C10 from the Z penguin. Depending on the parameter space,
the bound on the scharm-stop left-right mixing becomes as strong as

(
δu

23
)

LR . 0.1. As-
suming the absence of scalar operators, from B̄ → K̄(∗)l+l− it follows a lower limit on
B(B̄s → µ+µ−) that is consistent with the recent evidence for this decay. Using the SUSY
link from beauty to top physics we could show that the rare top decays t → cV , V = γ, g,Z
are too rare to be observed in foreseeable future. For future studies it would also be inter-
esting to further look at the implications of b physics observables on rare t → cH decays.
Moreover, the squark flavor bounds have consequences for SUSY model building. The
bounds on Radiative Flavor Violation models become partly even stronger than the ones
from εK . Generally, they become stronger for lighter stops.

In order to further improve on the interpretation of B̄ → K̄∗l+l− observables a better
knowledge of the B̄ → K̄∗ form factors is necessary. Therefore we have extracted form
factor ratios from observables which are approximately free of short-distance physics at
high q2. We used further theoretical input at low q2 from Heavy-Quark Symmetry and
Light-Cone Sum Rules. These considerably sharpen the fit of the second order series
expansion of the form factor ratios to data.

In the up sector we have given the first unbiased comprehensive SU(3)F analysis of
D→ P8P8 decays. We have found that the data can be described with reasonable SU(3)F
breaking. High and low representations of the SU(3)F symmetry both play an important
role for that. CP violation indicates strongly enhanced SU(3)F limit triplet representa-
tions or NP beyond MFV. For a further clarification in the charm sector more precise
measurements of all CP asymmetries are desperately needed, besides ∆ACP especially of
ACP(D+

→ π0π+), ACP(D0
→ KS KS ), ACP(Ds → KSπ

+) and ACP(Ds → K+π0).

Current data allows already to exclude various simplified scenarios of SU(3)F breaking
but not to disentangle the SM or triplet model from other models of NP. We showed as
a proof of principle that future theoretical insights into SU(3)F breaking or significantly
improved data could differentiate the triplet model including the SM from other models
with scalar operators.

Improved data not yet being feasible, we improved further from the theory side and ex-
plored traces of QCDF that could be left in charm decays. Actually, the quantitative
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application of QCDF to charm decays is not suited for precision physics of D decays.
The reason lies in the intermediate mass of the charm quark. The latter is problematic
for a sensible expansion in ΛQCD/mc in QCDF, i.e. the power corrections are too large in
order to let the heavy quark expansion converge. Furthermore, for D decays an expansion
in αs is equally doubtful as the strong coupling is evaluated at small energy scales, i.e., it
is not small.

Using consequently only structural input from QCDF and no quantitative calculations of
the QCDF kernels, we found that reasonable theoretical input can considerably reduce the
large number of degrees of freedom that are present in the SU(3)F analysis. We illustrated
that predictions for some D decay observables and their correlations can be sharpened by
QCDF sum rules, especially in case of the correlation between adir

CP(Ds → K+π0) and
B(Ds → K+π0).

In the future, even more precise measurements of the roadmap channel [485] B̄→ K̄∗µ+µ−

are expected at LHCb. New opportunities will show up when we get more statistics and
measurements of additional observables. Then, also the sensitivity to arg(C9) and arg(C10)
will move forwards and one could study SUSY CP violation in

(
δu

23
)

LR which has been
assumed real throughout this work. Furthermore, analogous physics programs could be
carried out in b→ dl+l− transitions. Such a transition has been observed for the first time
only very recently [500]. In charm physics we are awaiting likewise landmark results on
∆ACP as well as the other additional SCS CP asymmetries.

The various b and c observables allow to explore flavor physics in and beyond the SM
and to test the SM itself. For that a joint effort of precision experiments and theoretical
calculations is necessary. Using b physics observables we have reinforced the SUSY fla-
vor problem by limiting further the possible squark flavor violation. We gave additional
bounds on the parameter space of SUSY model building. Both of these tasks can be pur-
sued in the future—or if SUSY is found, the SM could be excluded by flavor observables,
as well as by direct searches.

Benchmarks on this way will be the more precise measurement of the zero of the forward-
backward asymmetry of B̄ → K̄∗µ+µ− and the transverse asymmetry A(2)

T at low q2. The
latter serves as a null test of the SM [494]. In Ch. 7 we have given a concrete outlook
on the sensitivity to these observables with the LHCb upgrade and the future detector
Belle II. Further very clean benchmark tests of the SM are possible at high q2 using the
transversity observables H(1,3,4,5)

T , see Ref. [321].

In c physics we showed how to unravel different NP models in global fits to D → P8P8
data. With precision measurements of nonleptonic D decays in the future we will be able
to answer the question for the SU(3)F anatomy of the Hamiltonian. This will decide if
physics with a different flavor structure than the SM is realized.
A null test of the SM is provided by adir

CP(D+
→ π+π0). It will be an important task

of Belle II to measure this quantity in order to find out if NP is present in the ∆I = 3/2
transition. As we illustrated in Ch. 6, the interplay of the CP asymmetry and the branching
ratio of the channel Ds → K+π0 will be a further important building block for the decision
on the flavor representations in the CP violating part of the Hamiltonian.
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In order to pin down the complete properties of a model, additional information from
confronting it with data from other decay modes will also be needed. For example, in the
plain SU(3)F approach, we are not sensitive to the Dirac structure of a given model. But
this is e.g. the case in radiative D decays where we can probe for NP in the ∆C = 1
dipole operators [474].

In order to establish NP, the direct detection of new particles at ATLAS and CMS is
all-important. In the loop corrections of the flavor observables we are able to measure
precisely their couplings and perhaps to predict their existence beforehand, as history
already has shown. If the mass scale of NP is so high that we are not able to produce
the new particles at all, a possibility to probe for NP nevertheless is given by the indirect
precision observables.
Besides the b and c observables studied in this thesis, there are a variety of additional
examples for such observables. For CP violation, electric dipole moments are important
probes, see recently [501] and references therein. The future measurements or limits on
the branching ratios of the decays µ → eγ, µ → eee, τ → µµµ will reveal invaluable
information on lepton flavor violation, see for a recent SUSY study e.g. [502]. A very
interesting field in the future will also be the precise measurement of the Higgs decays
to fermions, specifically in leptonic H → µµ and H → ττ decays—and possibly also in
flavor violating H → µτ decays, which would point to NP [106, 503].

Exciting times are lying ahead of us.
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A. Tables for SU(3)F Analyses
including Linear Breaking

In this chapter we demonstrate the universal benefit one can obtain from the SU(3)F
ansatz. Not only can one extend the analysis presented in Chs. 5 and 6 by including
η1 and η8 final states. The same symmetry-based approach can also be used in B decays.

In order to demonstrate the effectiveness of the SU(3)F approach we give in the following
sections the decompositions needed for phenomenological studies of D→ PP including
P = η1, η8, B→ DD and B→ J/ψP including P = η1, η8 that we obtain in [504–506].

A.1. Including η1, η8 Final States in the Decomposition of
D→ PP

In the SU(3)F analysis of charm decays in Chs. 5 and 6 we concentrated on kaon and pion
final states only. Here we show how to include also η1 and η8 final states. For details on
the mixing of η1 and η8 to η and η′ see [507–509].

In Tables A.1, A.2 and A.3 we list the Clebsch-Gordan coefficients in the SU(3)F limit
as well as including linear breaking of SU(3)F in full generality. Altogether, including
η(′) leads to 16 additional decay channels, i.e., a total of 33 charm decay channels. In
the parameter budget there are four additional SU(3)F limit matrix elements and nine
additional breaking matrix elements.
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Decay d A15
27 A15

8 A6̄
8 A3

1 A3
8 A15

8̃ A6̄
8̃ A3

1̃ A3
8̃

SCS

D0
→ η1π

0 0 0 0 0 0 2−3∆̃

2
√

15
− 1√

6
0 − 1

2

√
3∆̃

D0
→ η8π

0
− 1

5

√
3
2

(
∆̃ + 1

)
3∆̃−2
5
√

6
1√
15

0
√

3
10 ∆̃ 0 0 0 0

D0
→ η1η1 0 0 0 0 0 0 0 ∆̃√

2
0

D0
→ η1η8 0 0 0 0 0 1√

5
− 1√

2
0 0

D0
→ η8η8

3
20

(
∆̃ + 2

)
1

10

(
∆̃ + 2

)
− 1√

10
− ∆̃

4
∆̃

2
√

5
0 0 0 0

D+
→ η1π

+ 0 0 0 0 0 ∆̃−2√
30

− 1√
3

0 −

√
3
2 ∆̃

D+
→ η8π

+
− 1

10

√
3
(
∆̃ + 3

)
− ∆̃−2

5
√

3

√
2
15 0

√
3
5 ∆̃ 0 0 0 0

Ds → η1K+ 0 0 0 0 0 ∆̃+2√
30

1√
3

0 −

√
3
2 ∆̃

Ds → η8K+
− 1

5

√
3
(
∆̃ + 2

)
∆̃+2

10
√

3
1√
30

0 − 1
2

√
3
5 ∆̃ 0 0 0 0

CF

D0
→ η1K̄0 0 0 0 0 0 −

√
2

15
1√
3

0 0

D0
→ η8K̄0

−

√
3

10 − 1
5
√

3
1√
30

0 0 0 0 0 0

Ds → η1π
+ 0 0 0 0 0

√
2
15

1√
3

0 0

Ds → η8π
+

−

√
3

5 − 2
5
√

3
−

√
2

15 0 0 0 0 0 0

DCS

D0
→ η1K0 0 0 0 0 0 −

√
2

15
1√
3

0 0

D0
→ η8K0

−

√
3

10 − 1
5
√

3
1√
30

0 0 0 0 0 0

D+
→ η1K+ 0 0 0 0 0

√
2
15

1√
3

0 0

D+
→ η8K+

√
3

10
1

5
√

3
1√
30

0 0 0 0 0 0

Table A.1.: Result of the application of the Wigner-Eckart theorem to D decays includ-
ing η1 and η8 in the final state in the SU(3)F limit. The entries in the table are the
Clebsch-Gordan coefficients cd;i j that appear in the expressions for the amplitudes as in
Eqs. (5.43)–(5.45). Table taken from [504].
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Decay d B
31
1 B

32
1 B

31
8 B

32
8 B

6̄1
8 B

6̄2
8 B

151
8 B

152
8 B

153
8 B

151
27 B

152
27 B

153
27 B

241
27 B

242
27 B42

27

SCS

D0
→ η1π

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D0
→ η8π

0 0 0

√
3
2

10

√
3
5

4
1

10
√

3
− 1

10
√

6
− 5

2
√

366

√
2

61
15

1
20
√

3

√
3

122
9

20
√

122
−

√
3

10
3

10
√

2

√
3
2

5 − 3
20
√

14

D0
→ η1η1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D0
→ η1η8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D0
→ η8η8 − 1

8
√

5
− 1

8
√

2
1

20
1

4
√

10
− 1

10
√

2
1

20 − 11
20
√

61
− 2

5
√

183
3

20
√

2
− 33

40
√

61
−

√
3

61
5

9
40
√

2

√
3

10
9
20 −

2
√

3
7

5

D+
→ η1π

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D+
→ η8π

+ 0 0
√

3
10

√
3
10
2

1
5
√

6
− 1

10
√

3
7

10
√

183
− 1

5
√

61
1

10
√

6

3
√

3
61

5
23

40
√

61
−

√
3
2

5
1
20

√
3

5
19

40
√

7

Ds → η1K+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ds → η8K+ 0 0 −

√
3

20 −

√
3
10
4

1
10
√

6
− 1

20
√

3
− 11

20
√

183
− 2

15
√

61

√
3
2

20
11

√
3
61

10
4

5
√

61
−

3
√

3
2

10 − 1
10 −

3
√

3
20 − 4

5
√

7

CF

D0
→ η1 K̄0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D0
→ η8 K̄0 0 0 0 0 1

5
√

6
1

10
√

3
− 1

5
√

183
− 7

30
√

61
− 1

5
√

6
−

√
3
61

10 − 7
20
√

61
−

√
3
2

10 − 1
5 −

√
3

5
1

2
√

7

Ds → η1π
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ds → η8π
+ 0 0 0 0 −

√
2
3

5 − 1
5
√

3
− 2

5
√

183
− 7

15
√

61
−

√
2
3

5 −

√
3
61
5 − 7

10
√

61
−

√
3
2

5 − 1
10 −

√
3

10 − 1
2
√

7

DCS

D0
→ η1K0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D0
→ η8K0 0 0 0 0 0 − 1

5
√

3
2

5
√

183
7

15
√

61
0

√
3

61
5

7
10
√

61
0 − 1

8 −
9
√

3
40

1
2
√

7

D+
→ η1K+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D+
→ η8K+ 0 0 0 0 0 − 1

5
√

3
− 2

5
√

183
− 7

15
√

61
0 −

√
3
61
5 − 7

10
√

61
0 1

8 −
9
√

3
40 − 1

2
√

7

Table A.2.: Result of the application of the Wigner-Eckart theorem to D decays including η1 and η8 in the final state for the SU(3)F-
breaking part with 1, 8 and 27 representations in the final state. The entries in the table are the Clebsch-Gordan coefficients cd;i j that
appear in the expressions for the amplitudes as in Eqs. (5.65)–(5.67). Table taken from [504].
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Decay d B31
1̃

B32
1̃

B31
8̃

B32
8̃

B6̄1
8̃

B6̄2
8̃

B151
8̃

B152
8̃

B153
8̃

SCS

D0
→ η1π

0 0 0 −

√
3
5

4 −

√
3
2

4 − 1
2
√

30
1

4
√

15

5
√

5
183

4 − 1
3
√

305
− 1

4
√

30

D0
→ η8π

0 0 0 0 0 0 0 0 0 0

D0
→ η1η1

1
2
√

10
1
4 0 0 0 0 0 0 0

D0
→ η1η8 0 0 1

4
√

5
1

4
√

2
− 1

2
√

10
1

4
√

5
− 11

4
√

305
− 2√

915
3

4
√

10

D0
→ η8η8 0 0 0 0 0 0 0 0 0

D+
→ η1π

+ 0 0 −

√
3
10

2 −

√
3

4 − 1
2
√

15
1

2
√

30
− 7

2
√

1830
1√
610

− 1
4
√

15

D+
→ η8π

+ 0 0 0 0 0 0 0 0 0

Ds → η1K+ 0 0 −

√
3
10

2 −

√
3

4
1

2
√

15
− 1

2
√

30
− 11

2
√

1830
−

2
√

2
305

3

√
3
5

4

Ds → η8K+ 0 0 0 0 0 0 0 0 0

CF

D0
→ η1K̄0 0 0 0 0 1√

15
1√
30

−

√
2

915 − 7
3
√

610
− 1√

15

D0
→ η8K̄0 0 0 0 0 0 0 0 0 0

Ds → η1π
+ 0 0 0 0 1√

15
1√
30

√
2

915
7

3
√

610
1√
15

Ds → η8π
+ 0 0 0 0 0 0 0 0 0

DCS

D0
→ η1K0 0 0 0 0 0 −

√
2
15 2

√
2

915
7
√

2
305

3 0

D0
→ η8K0 0 0 0 0 0 0 0 0 0

D+
→ η1K+ 0 0 0 0 0 −

√
2
15 −2

√
2

915 −
7
√

2
305

3 0

D+
→ η8K+ 0 0 0 0 0 0 0 0 0

Table A.3.: Result of the application of the Wigner-Eckart theorem to D decays including
η1 and η8 in the final state for the SU(3)F-breaking part with 1̃ and 8̃ representations in the
final state. The entries in the table are the Clebsch-Gordan coefficients cd;i j that appear in
the expressions for the amplitudes as in Eqs. (5.65)–(5.67). Table taken from [504].
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A.2. Decomposition of B→ DD

In this work, the SU(3)F ansatz has so far been applied to charm decays only. The same
formalism applies also to nonleptonic B decays. An SU(3)F analysis of B→ DD includ-
ing also the recent data [510] is desirable. Therefore, we give here the complete SU(3)F
decomposition of these decay channels [505].

Firstly, we write down the initial and final states. In the initial state we have the following
B mesons:∣∣∣B̄0

〉
=

∣∣∣d̄b
〉

=
∣∣∣3̄〉 1

2 ,
1
2 ,−

1
3
,

∣∣∣B̄s

〉
= |s̄b〉 =

∣∣∣3̄〉
0,0, 2

3
,

∣∣∣B−〉 = − |ūb〉 =
∣∣∣3̄〉 1

2 ,−
1
2 ,−

1
3
.

(A.1)

In the final state there are the following D mesons:∣∣∣D0
〉

= − |cū〉 =
∣∣∣3̄〉 1

2 ,−
1
2 ,−

1
3
,

∣∣∣D̄0
〉

= |c̄u〉 = |3〉 1
2 ,

1
2 ,

1
3
, (A.2)∣∣∣D+〉 =

∣∣∣cd̄
〉

=
∣∣∣3̄〉 1

2 ,
1
2 ,−

1
3
,

∣∣∣D−〉 = |c̄d〉 = |3〉 1
2 ,−

1
2 ,

1
3
, (A.3)∣∣∣D+

s
〉

= |cs̄〉 =
∣∣∣3̄〉

0,0, 2
3
,

∣∣∣D−s 〉 = |c̄s〉 = |3〉0,0,− 2
3
. (A.4)

The considered product final states are given as∣∣∣D−D0
〉

= |8〉1,−1,0 ,
∣∣∣D−s D0

〉
= |8〉1/2,−1/2,−1 ,

∣∣∣D−s D+〉 = |8〉1/2,1/2,−1 , (A.5)

∣∣∣D−D+
s
〉

= |8〉1/2,−1/2,1 , (A.6)∣∣∣D−D+〉 = −

√
1
3
|1〉0,0,0 −

√
1
6
|8〉0,0,0 +

√
1
2
|8〉1,0,0 , (A.7)

∣∣∣D−s D+
s
〉

= −

√
1
3
|1〉0,0,0 +

√
2
3
|8〉0,0,0 , (A.8)

∣∣∣D̄0D0
〉

=

√
1
3
|1〉0,0,0 +

√
1
6
|8〉0,0,0 +

√
1
2
|8〉1,0,0 . (A.9)

In Eqs. (A.5)–(A.9) no symmetrization is necessary as the final state of triplet and an-
titriplet does of course not have a Bose symmetry. The flavor structure of the relevant
∆B = 1, ∆C = 0 tree operators is given as [511]

H ∼ VubV∗ud(bū)(ud̄) + VubV∗us(bū)(us̄) + VcbV∗cd(bc̄)(cd̄) + VcbV∗cs(bc̄)(cs̄). (A.10)

Note that the matrix elements of the additional triplet operators from the penguins can be
absorbed into the matrix elements of the tree operators. Furthermore, we absorb global
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prefactors into the SU(3)F matrix elements. The operators in Eq. (A.10) have the follow-
ing SU(3)F structure:

(bū)(ud̄) =
1
2

√
3
2

3 1
2 ,−

1
2 ,

1
3
−

1
2

6̄ 1
2 ,−

1
2 ,

1
3

+
1

2
√

6
15 1

2 ,−
1
2 ,

1
3

+

√
1
3

15 3
2 ,−

1
2 ,

1
3
, (A.11)

(bū)(us̄) =
1
2

√
3
2

30,0,− 2
3

+
1
2

6̄1,0,− 2
3

+
1

2
√

2
150,0,− 2

3
+

1
2

151,0,− 2
3
, (A.12)

(bc̄)(cd̄) = 3 1
2 ,−

1
2 ,

1
3
, (A.13)

(bc̄)(cs̄) = 30,0,− 2
3
. (A.14)

The SU(3)F limit and linear order breaking Clebsch-Gordan coefficients are listed in Ta-
bles A.4, A.5 and A.6. In these tables we write for the CKM factors λcd ≡ VcbV∗cd,
λcs ≡ VcbV∗cs, λud ≡ VubV∗ud and λus ≡ VubV∗us. Note that in the SU(3)F breaking we
differentiate between representations coming from 8 ⊗ 3, 8 ⊗ 6̄ and 8 ⊗ 15, respectively.
We indicate this where necessary e.g. by the notation “B3u3

8 ” for a matrix element with a
3 coming from 8 ⊗ 3 and “B3u6̄

8 ” for a matrix element with a 3 coming from 8 ⊗ 6̄.
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Decay d A3c
8 A3c

1 A15u
8 A6̄u

8 A3u
8 A3u

1

B− → D−D0 λcd 0 −1
2

√
3

10λud −
λud

2
√

3
1
2

√
3
2λud 0

B− → D−s D0 λcs 0 −1
2

√
3
10λus −

λus

2
√

3
1
2

√
3
2λus 0

B̄0
→ D−s D+ λcs 0 λus

2
√

30
λus

2
√

3
1
2

√
3
2λus 0

B̄s → D−D+
s λcd 0 λud

2
√

30
λud

2
√

3
1
2

√
3
2λud 0

B̄0
→ D−D+ 2

3λcd −1
3λcd

λud√
30

0 λud√
6

−
λud

2
√

6

B̄s → D−s D+
s

2
3λcs −1

3λcs
λus√

30
0 λus√

6
−

λus

2
√

6

B̄0
→ D−s D+

s −1
3λcd −1

3λcd
λud

2
√

30
−

λud

2
√

3
−

λud

2
√

6
−

λud

2
√

6

B̄s → D−D+
−1

3λcs −1
3λcs

λus

2
√

30
−

λus

2
√

3
−

λus

2
√

6
−

λus

2
√

6

B̄0
→ D̄0D0 1

3λcd
1
3λcd

1
2

√
3

10λud −
λud

2
√

3
λud

2
√

6
λud

2
√

6

B̄s → D̄0D0 1
3λcs

1
3λcs

1
2

√
3

10λus −
λus

2
√

3
λus

2
√

6
λus

2
√

6

Table A.4.: The Clebsch-Gordan coefficients of the SU(3)F limit decomposition of
B→ DD decays, including explicitly the CKM factors. Table taken from [505].
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Decay d B3c
1 B3c

8 B6̄c
8 B15c

8

B− → D−D0 0 − 1
4λcd −

λcd

2
√

2
−

λcd

4
√

5

B− → D−s D0 0 1
2λcs 0 −

λcs

2
√

5

B̄0
→ D−s D+ 0 1

2λcs 0 −
λcs

2
√

5

B̄s → D−D+
s 0 − 1

4λcd
λcd

2
√

2
3λcd

4
√

5

B̄0
→ D−D+ 1

12λcd − 1
6λcd 0 −

λcd

2
√

5

B̄s → D−s D+
s −1

6λcs
1
3λcs 0 λcs√

5

B̄0
→ D−s D+

s
1

12λcd
1
12λcd −

λcd

2
√

2
3λcd

4
√

5

B̄s → D−D+
−1

6λcs −1
6λcs 0 −

λcs

2
√

5

B̄0
→ D̄0D0

− 1
12λcd − 1

12λcd −
λcd

2
√

2
λcd

4
√

5

B̄s → D̄0D0 1
6λcs

1
6λcs 0 λcs

2
√

5

Table A.5.: The Clebsch-Gordan coefficients of the linear SU(3)F-breaking decomposi-
tion of B → DD decays coming with λcd and λcs, including explicitly the CKM factors.
Table taken from [505].
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Decay d B3u3
1 B3u6̄

1 B3u15
1 B3u3

8 B3u6̄
8 B3u15

8 B6̄u3
8 B6̄u6̄

8 B6̄u15
8 B15u3

8 B15u6̄
8 B151u15

8 B152u15
8

B− → D−D0 0 0 0 − 1
8

√
3
2λud − 1

8

√
3λud − 1

8

√
3
10λud − 1

8

√
3λud

λud
4
√

30
−

λud
8
√

15
− 1

8

√
3
10λud −

λud
8
√

15
1
3

√
2

305λud − 13
8

√
3

610λud

B− → D−s D0 0 0 0 1
4

√
3
2λus 0 − 1

4

√
3
10λus 0 −

λus
2
√

30
λus

2
√

15
− 1

4

√
3
10λus

λus
2
√

15
− 1

3

√
5

122λus
1
4

√
3

610λus

B̄0
→ D−s D+ 0 0 0 1

4

√
3
2λus 0 − 1

4

√
3
10λus 0 λus

2
√

30
−

λus
2
√

15
− 1

4

√
3
10λus −

λus
2
√

15
1
3

√
2

305λus
11λus

4
√

1830

B̄s → D−D+
s 0 0 0 − 1

8

√
3
2λud − 1

8

√
3λud − 1

8

√
3
10λud

1
8

√
3λud −

λud
4
√

30
λud

8
√

15
3
8

√
3

10λud
1
8

√
3
5λud −

λud
3
√

610
−

11λud
8
√

1830

B̄0
→ D−D+ λud

8
√

6
λud
8
√

3
λud

8
√

30
−

λud
4
√

6
−

λud
4
√

3
−

λud
4
√

30
0 0 0 − 1

4

√
3
10λud −

λud
4
√

15
−

λud
3
√

610
5
4

√
5

366λud

B̄s → D−s D+
s −

λus
4
√

6
0 λus

4
√

30
λus
2
√

6
0 −

λus
2
√

30
0 0 0 1

2

√
3
10λus 0 λus√

610
−

7λus
2
√

1830

B̄0
→ D−s D+

s
λud
8
√

6
λud
8
√

3
λud

8
√

30
λud
8
√

6
λud
8
√

3
λud

8
√

30
− 1

8

√
3λud

λud
4
√

30
−

λud
8
√

15
3
8

√
3

10λud
1
8

√
3
5λud −

λud
3
√

610
−

11λud
8
√

1830

B̄s → D−D+
−

λus
4
√

6
0 λus

4
√

30
−

λus
4
√

6
0 λus

4
√

30
0 −

λus
2
√

30
λus

2
√

15
− 1

4

√
3
10λus −

λus
2
√

15
1
3

√
2

305λus
11λus

4
√

1830

B̄0
→ D̄0D0

−
λud
8
√

6
−

λud
8
√

3
−

λud
8
√

30
−

λud
8
√

6
−

λud
8
√

3
−

λud
8
√

30
− 1

8

√
3λud

λud
4
√

30
−

λud
8
√

15
1
8

√
3

10λud
λud

8
√

15
− 1

3

√
2

305λud
13
8

√
3

610λud

B̄s → D̄0D0 λus
4
√

6
0 −

λus
4
√

30
λus
4
√

6
0 −

λus
4
√

30
0 −

λus
2
√

30
λus

2
√

15
1
4

√
3
10λus −

λus
2
√

15
1
3

√
5

122λus − 1
4

√
3

610λus

Table A.6.: The Clebsch-Gordan coefficients of the linear SU(3)F-breaking decomposition of B→ DD decays coming with λud and
λus, including explicitly the CKM factors. Table taken from [505].
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A.3. Including η1, η8 Final States in the Decomposition of
B→ J/ψP

A recent SU(3)F analysis of B→ J/ψP decays with P = kaons and pions has been given
in [512]. Here, we give the SU(3)F decomposition including also P = η1, η8 in the final
state [506]. The initial states of the B→ J/ψP decay channels are

B̄0 =
∣∣∣d̄b

〉
=

∣∣∣3̄〉 1
2 ,

1
2 ,−

1
3
, B̄s = |s̄b〉 =

∣∣∣3̄〉
0,0, 2

3
, B− = − |ūb〉 =

∣∣∣3̄〉 1
2 ,−

1
2 ,−

1
3
. (A.15)

The product final states (with a trivial product) are given as follows:

J/ψK̄0 = |c̄c〉
∣∣∣sd̄

〉
= |8〉 1

2 ,
1
2 ,−1 , (A.16)

J/ψπ0 = |c̄c〉

∣∣∣∣∣∣ 1
√

2
(uū − dd̄)

〉
= |8〉1,0,0 , (A.17)

J/ψK− = − |c̄c〉 |sū〉 = |8〉 1
2 ,−

1
2 ,−1 , (A.18)

J/ψπ− = − |c̄c〉 |dū〉 = |8〉1,−1,0 , (A.19)

J/ψK0 = |c̄c〉 |ds̄〉 = |8〉 1
2 ,−

1
2 ,1
, (A.20)

J/ψη1 = |1〉0,0,0 , (A.21)
J/ψη8 = |8〉0,0,0 . (A.22)

The Hamiltonian is the same as for B→ DD decays in Eq. (A.10). We give the Clebsch-
Gordan coefficients including linear SU(3)F breaking in the Tables A.7, A.8 and A.9.
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Decay d A3c
8 A3c

1 A15u
8 A6̄u

8 A3u
8 A3u

1

B̄0
→ J/ψK̄0 λcs 0 λus

2
√

30
λus

2
√

3
1
2

√
3
2λus 0

B̄0
→ J/ψπ0 λcd√

2
0 1

4

√
5
3λud −

λud

2
√

6
1
4

√
3λud 0

B− → J/ψK− λcs 0 −1
2

√
3
10λus −

λus

2
√

3
1
2

√
3
2λus 0

B− → J/ψπ− λcd 0 −1
2

√
3

10λud −
λud

2
√

3
1
2

√
3
2λud 0

B̄s → J/ψπ0 0 0 λus√
15

−
λus√

6
0 0

B̄s → J/ψK0 λcd 0 λud

2
√

30
λud

2
√

3
1
2

√
3
2λud 0

B̄0
→ J/ψη1 0 λcd√

3
0 0 0 λud

2
√

2

B̄0
→ J/ψη8 −

λcd√
6

0 λud

4
√

5
−

λud

2
√

2
−
λud
4 0

B̄s → J/ψη1 0 λcs√
3

0 0 0 λus

2
√

2

B̄s → J/ψη8

√
2
3λcs 0 λus

2
√

5
0 λus

2 0

Table A.7.: The Clebsch-Gordan coefficients of the SU(3)F limit decomposition of
B → J/ψP decays, including explicitly the CKM factors. The results for kaon and
pion final states agree with [512]. Table taken from [506].
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Decay d B3c
1 B3c

8 B6̄c
8 B15c

8

B̄0
→ J/ψK̄0 0 λcs

2 0 −
λcs

2
√

5

B̄0
→ J/ψπ0 0 −

λcd

4
√

2
−
λcd
4 −

λcd

4
√

10

B− → J/ψK− 0 λcs
2 0 −

λcs

2
√

5

B− → J/ψπ− 0 −
λcd
4 −

λcd

2
√

2
−

λcd

4
√

5

B̄s → J/ψπ0 0 0 0 0

B̄s → J/ψK0 0 −
λcd
4

λcd

2
√

2
3λcd

4
√

5

B̄0
→ J/ψη1 −

λcd

4
√

3
0 0 0

B̄0
→ J/ψη8 0 λcd

4
√

6
−1

4

√
3λcd

3
4

√
3

10λcd

B̄s → J/ψη1
λcs

2
√

3
0 0 0

B̄s → J/ψη8 0 λcs√
6

0
√

3
10λcs

Table A.8.: The Clebsch-Gordan coefficients of the linear SU(3)F-breaking decomposi-
tion of B→ J/ψP decays coming with λcd and λcs, including explicitly the CKM factors.
The results for kaon and pion final states agree with [512]. Table taken from [506].
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Decay d B3u3
1 B3u6̄

1 B3u15
1 B3u3

8 B3u6̄
8 B3u15

8 B6̄u3
8 B6̄u6̄

8 B6̄u15
8 B15u3

8 B15u6̄
8 B151u15

8 B152u15
8

B̄0
→ J/ψK̄0 0 0 0 1

4

√
3
2λus 0 − 1

4

√
3

10λus 0 λus
2
√

30
−

λus
2
√

15
− 1

4

√
3
10λus −

λus
2
√

15
1
3

√
2

305λus
11λus

4
√

1830

B̄0
→ J/ψπ0 0 0 0 − 1

16

√
3λud − 1

8

√
3
2λud − 1

16

√
3
5λud − 1

8

√
3
2λud

λud
8
√

15
−

λud
8
√

30
− 1

16

√
3
5λud −

λud
8
√

30
−

λud
2
√

305
89λud

16
√

915

B− → J/ψK− 0 0 0 1
4

√
3
2λus 0 − 1

4

√
3

10λus 0 −
λus

2
√

30
λus

2
√

15
− 1

4

√
3
10λus

λus
2
√

15
− 1

3

√
5

122λus
1
4

√
3

610λus

B− → J/ψπ− 0 0 0 − 1
8

√
3
2λud − 1

8

√
3λud − 1

8

√
3

10λud − 1
8

√
3λud

λud
4
√

30
−

λud
8
√

15
− 1

8

√
3
10λud −

λud
8
√

15
1
3

√
2

305λud − 13
8

√
3

610λud

B̄s → J/ψπ0 0 0 0 0 0 0 0 −
λus

2
√

15
λus√

30
0 −

λus√
30

7λus
6
√

305
λus√
915

B̄s → J/ψK0 0 0 0 − 1
8

√
3
2λud − 1

8

√
3λud − 1

8

√
3

10λud
1
8

√
3λud −

λud
4
√

30
λud

8
√

15
3
8

√
3
10λud

1
8

√
3
5λud −

λud
3
√

610
−

11λud
8
√

1830

B̄0
→ J/ψη1 −

λud
8
√

2
−
λud
8 −

λud
8
√

10
0 0 0 0 0 0 0 0 0 0

B̄0
→ J/ψη8 0 0 0 λud

16
λud
8
√

2
λud

16
√

5
−

3λud
8
√

2
λud
8
√

5
−

λud
8
√

10
9λud
16
√

5
3λud
8
√

10
−

λud
2
√

915
−

11λud
16
√

305

B̄s → J/ψη1
λus
4
√

2
0 −

λus
4
√

10
0 0 0 0 0 0 0 0 0 0

B̄s → J/ψη8 0 0 0 λus
4 0 −

λus
4
√

5
0 0 0 3λus

4
√

5
0 1

2

√
3

305λus −
7λus

4
√

305

Table A.9.: The Clebsch-Gordan coefficients of the linear SU(3)F-breaking decomposition of B → J/ψP decays coming with λud
and λus, including explicitly the CKM factors. Table taken from [506].
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B. Fits and Technicalities

In order to perform the fits, we use the method of least squares, for a review see e.g. [89].
The χ2 function can schematically be written as

χ2(~p) =

N∑
i=1

(
Ti(~p) − Ei

σi

)2

, (B.1)

with parameters ~p that give the theoretical values Ti(~p) for experimentally measured ob-
servables Ei with uncertainty σi. Assuming Gaussian errors for the measurements the
minimum of the χ2 corresponds to the same point in parameter space as determined by
the method of maximum likelihood. The corresponding likelihood L is then given as
χ2(~p) = −2 log L(~p). In order to include theoretical uncertainties, we use the Rfit (range
fit) scheme [437]. In this scheme, an observable with a pure systematic (or theoretical)
uncertainty σsyst is included by [437]

χ2
pure syst(~p) =

0 , if |T (~p) − E| ≤ ζσsyst(
T (~p)−E
κ σsyst

)2
− (ζ/κ)2 , if |T (~p) − E| > ζσsyst

, (B.2)

where for the Rfit scheme it is ζ = 1 and κ = 0, see Fig. 4 in [437]. The effect of the
contribution χ2

pure syst(~p) for the fit is that T (~p) takes values only in a flat range with length
2σsyst around E. The combination of statistical and systematic uncertainties gives in the
Rfit scheme the contribution [437]

χ2
combined stat, syst(~p) =

0 , if |T (~p) − E| ≤ σsyst(
|T (~p)−E|−σsyst

σexp

)2
, if |T (~p) − E| > σsyst

, (B.3)

where by σexp we denote the Gaussian distributed statistical uncertainty. In Sec. 4.4 we
use Eq. (B.2) in order to describe the theoretical uncertainty of the HC and LCSR input,
respectively.

In order to minimize the χ2 we link the NLopt 2.3 library [513] to our C++ code. Con-
cretely, for the minimization we use the Sbplx/Subplex algorithms [513, 514]. For the fits
presented in Sec. 4.4, we use the Lucy code [515], which automatically creates C++ code
from within Mathematica [516] that is subsequently linked to the NLopt 2.3 library.
For the fits presented in Chs. 5 and 6 we use besides the Sbplx/Subplex algorithm also
the augmented Lagrangian method [517, 518] in order to implement non-linear boundary
conditions.

The Feynman Diagrams in this thesis are drawn using the Java program JaxoDraw [519,
520].
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