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Introduction

In the past decades mathematical thinking has been intensively applied on natural life sciences,
especially in the field of ecology, physical processes in nature and many biological phenomena in
general. The common goal is to map observable features of the real physical and biological pro-
cesses to an abstract mathematical model and a corresponding discrete numerical formulation in
order to gain new insights in the underlying real world objectives by means of reasonable simula-
tions. Moreover, in several cases the mathematical description of the real world system is the only
possibility to provide reliable predictive analysis for the underlying process of nature, which re-
sults in templates for, e.g., industrial or medical purposes. Many of those mathematical models are
described by a (system of) partial differential equation(s) (PDEs). Well established laws of nature
and their mathematical counterparts have led to most of the development of suitable PDEs, e.g.,
heat conduction, fluid dynamics or deformation of solids. However, sometimes the development
and understanding of a particular mathematical model can only be tackled by a ‘trial-and-error’
approach, which is a two-step procedure. In a first step, the simulated results are compared to
experimental data and in a second step, these comparisons are used to modify the mathematical
model, i.e., the underlying PDE. Hence, simulations of PDEs are of tremendous importance when
trying to understand real world processes.

With the recent advances in experimental biology, e.g., in live imaging, scientist are now in a
promising position to examine biological processes in unprecedented detail. Although the quality
of measurements in experimental biology is unfortunately still not as well developed compared to
the precision of measuring tools in the field of (mechanical) engineering, the experimental inves-
tigation of biological processes lately experiences a huge wealth of breaking assets. In the course
of these biological accomplishments, the advent and development of Mathematical Biology as a
novel interdisciplinary research branch emerged and provides a new perspective on biological phe-
nomena. The mathematical formulation of biological processes and their precise analysis allows
biological experimentalists to verify results retrospectively and develop prospective conjectures.
However, a pure theoretical analysis of mathematical models is crucially limited. Particularly for
recent models that describe multi-dimensional signaling pathways incorporating several entities,
their complexity cannot be fully captured and analyzed with tools provided by theoretical analysts.
The urgent need of a detailed study of complex models drove numerical analysts to consider bio-
logically motivated systems, the foundation of Computational Biology as a particular discipline of




CHAPTER 1. Introduction

Mathematical Biology. The tremendous potential of these interdisciplinary research branches in
today’s science is nicely formulated in Cohen’s essay Mathematics is biology’s next microscope,
only better; biology is mathematics’ next physics, only better [19].

This is the field of research in which the present thesis can be understood. In essence, we con-
sider the numerical aspects, in terms of a finite element (FE) discretization, of simulating PDEs
that were introduced to model a certain biochemical process, which can be observed in many living
organisms, termed chemotaxis. What is chemotaxis and what is the motivation behind studying
the numerical properties of this phenomenon?

1.1. The biochemical concept of chemotaxis

Let us begin with the literal translation and the description of the underlying biochemical process.
The word chemotaxis is originally deduced from the Greek. Loosely speaking the suffix ‘taxis’
can be understood as motion or migration and ‘chemo’ classifies the reason for the taxis. Thus
chemotaxis describes the phenomenon of directing the migration according to a gradient of some
chemical substance. The literature differentiates positive and negative chemotaxis, which simply
refers to the direction upward or downward the chemical gradient. In these cases, the chemical
itself is called chemoattractant or chemorepellent, respectively. The character of the reaction on
the chemical gradient is called chemosensitivity, namely a large or small chemosensitivity allows
a rapid or slow reaction in terms of migration. The ability of organisms to sense and direct their
motion towards (or away from) a chemical gradient is an essential property.

Exemplary let us provide three paradigms in which chemotaxis plays a vitally important role.
First of all, in the stage of early development of higher organisms, e.g., mammals, chemotaxis
allows the mobilization and organization of stem cells that eventually leads to differentiation into,
e.g., highly specialized bone, neuronal or blood cells [18, 132} [7/2]. A second common example
is the detection and localization of food sources or prey recognition. For instance, nutrients or
prey serve as a source of chemical signals (either directly or indirectly via production/secretion of
chemoattractants) for simplex life forms like, e.g., bacteria, slime molds or nematodes [1,156,[111].
The last example of how chemotaxis provides a necessary ability for organisms to react in their
environment is the immune system [[68, [76]]. Let us focus on the human immune system. Once
an inflammation arises, our immune system counters this invasion of toxic substances or harming
bacteria by releasing leukocytes. The path that leukocytes take to localize the site of infection is
determined by traces of chemokines that have been released by resident cells at the affected tissue.
These chemokines act as attractive chemicals, hence guiding the leukocytes to the origin of the
inflammation.

Biologically, chemotaxis is a process which involves a complex network of intracellular chem-
ical signaling pathways that is activated by chemical-receptor bindings. We recommend the corre-
sponding chapter in the book of Alberts et al. 3, Chapter 15] for a detailed reference for chemical
signaling pathways. Here, we will only briefly recapitulate the main concept of chemotaxis.

The sensory chemical (ligand) receptors that activate the complex signaling cascade mainly
happen to be located at the cell’s membrane (due to hydrophilic chemical molecules). If these
receptors are active and bind a corresponding (extracellular) ligand, they allow an intracellular
signaling cascade to be activated, see Figure [[.I] The detailed mechanism of which regulative
entities are exactly involved and how they interact with each other are highly depending on the
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1.2. The motivation for treating chemotaxis models

underlying organism. Even for bacterial chemotaxis this has only marginally been explored up to
the present. In [99] we read

“Of the estimated many millions of bacterial species which are assumed to exist in
nature, less than 100 have been studied in detail.”

The common resulting effect of these different signaling pathways is the simple (re-)mobilization
of a motor for the motility, e.g., adjustment of the flagella rotation in bacteria. It was observed that
a clockwise (CW) rotation of the flagella motor causes the flagella to fly apart, whereas a counter-
clockwise (CCW) rotation results in a bundling of the flagella. Afterwards, the receptors adapt
to the new extracellular concentration of ligands (e.g., by temporal methylation of the receptor)
in order to allow further gradient detections. Figure [I.1] depicts this process very roughly. The

Intracellular chemica O
signaling pathway ‘

Figure 1.1: A rough sketch of a chemotaxis-induced signaling pathway of bacteria. The chemical
ligands on the right activate the receptor, which initiates an intracellular signaling cascade. The
result of this signaling pathway is the control of the flagella motor switching (from CW to CCW),
which is depicted on the left.

switching in the flagella motor rotation characterizes the bacterial motion. We can consider the
bacterial chemotaxis-biased random walk to be split into two states. In one state the bacteria
tumbles due to CW rotation of its flagella. In this state the bacteria re-orientates by selecting
a random new walking direction. In a second state a counter-clockwise rotation of the flagella
drives the bacteria to run in the previously selected direction. The result is a so-called run-and-
tumble walk, where the time between two turns (two tumbling phases) depends on the detected
gradient of the chemical. A schematic sketch of this mechanism is depicted in Figure [T.2]

A short remark regarding the detection of chemical gradients seems indicated. There is a
notable differentiation how chemical gradients can be identified during the processing of the sig-
naling pathways. Because of the simple fact of their extremely small size, bacteria sense chemical
gradients in a different manner than larger organisms, e.g., the experimentally well investigated
slime mold Dictyostelium discoideum. While slime molds (some mm in size) can measure the
gradient directly by sensing the non-uniformly distributed active ligand-receptor bindings along
the membrane, bacteria (of only a few um in size) calculate the gradient by comparing the concen-
tration along a walking path, since a non-uniform chemical concentration on the bacterial scale is
already perturbed by the noise of the ubiquitous Brownian motion and hence cannot be detected
directly.

1.2. The motivation for treating chemotaxis models

Now that we have classified the biochemical process on which the PDEs under consideration are
based on, let us consider the motivation behind the numerical investigation of such models. The
first PDE system that described a chemotaxis-driven population development goes back in time to
the early 1970’s. It was introduced by Keller and Segel [52] and was motivated by experiments

3
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(a) Tumbling bacteria
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(b) Running bacteria (c) Chemotaxis-biased random walk

Figure 1.2: Schematic illustration of (bacterial) chemotaxis. (a) state of tumbling (CW flagella
rotation), (b) state of running (CCW flagella rotation), In (c¢) we sketched an exemplary chemotaxis
path of a bacteria, where the upper right corner is the location of an attracting chemical. Note that
the runs upwards the gradient are longer than the downwards runs.

of Bonner [[11]] with the slime mold Dictyostelium discoideum, or in short ‘dicty’, as it is often
tenderly called by researchers. Moreover, encouraged by the research of Adler [[1], Keller and
Segel extended their model to chemotaxis in bacteria. Both models consist of one PDE for the
cell density, commonly denoted by u, complemented by a second PDE for the chemoattractant,
usually referred to as v.

Since the publishing date of the chemotaxis model is not as long ago as the publishing of
the Navier-Stokes (1827/1845) or even Euler (1755) equations, it provides us a numerical field
where so much can be discovered, investigated and postulated. Indeed, since the theoretical as-
pects of many chemotaxis models are not fully understood yet, an extensive numerical treatment
of those models is highly demanded in order to gain new insights in both theory, e.g., in terms of
uniqueness or boundedness of solutions, and practical applications, e.g., prediction of cell/chemi-
cal distribution for experimental assays or even clinical studies. Already for the biologically well
studied mechanism of bacterial chemotaxis (cf. the brief introduction given before), Alberts et al.
remarked the huge potential of further numerical investigations of a corresponding model for the
chemical signaling pathways involved. In their book, we read [3, Chapter 15, p. 944]:

“Even in this relatively simple signaling network, however, computer-based simula-
tions are required to comprehend how the system works as an integrated network.
Cell signaling will provide an especially rich area of investigation for a new genera-
tion of computational biologists, as the network properties of these pathways are not
understandable without powerful computational tools.”

We will not postulate possible applications for numerical frameworks of chemotaxis PDE models
in more detail since they highly depend on the governing model. Instead, let us mention the reason
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1.3. Thesis outline

why chemotaxis models cannot be treated via some standard numerical scheme in the sense of a
‘black-box’ solver, rendering the present investigation redundant.

The character of chemotaxis-driven PDEs is the agglomeration of cell concentrations in limited
space with possibly sharp interfaces. Moreover, the speed of agglomeration can vary in different
time-scales. Standard numerical schemes are not able to cover these characteristics within suitable
CPU and memory bounds. In this context, we can confer to the treatment of Navier-Stokes equa-
tions at large Reynolds numbers. After discretization, it is well known that the temporal resolution
highly depends on the spatial mesh-size (rf. CFL condition). When choosing a bad resolution, e.g.,
to save memory and/or CPU expenses, the numerical simulation provides very poor results, if at
all. A similar behavior, although arising from a different subject, can be observed for chemotaxis-
dominated PDEs. A large Reynolds number corresponds to a large chemosensitivity. Moreover,
because of the composition of the chemosensitivity as a function which usually depends on the
chemical substance, a positive feedback, in terms of

agglomerationof u  — increaseof v —  even stronger agglomeration of u,

enhances the agglomeration and possibly even leads to a locally unbounded increase of cell con-
centration. These properties already necessitate highly specialized numerical solvers that allow an
efficient computation at a highly accurate resolution.

1.3. Thesis outline

Let us close this introductory part by sketching the outline of this thesis. To begin with, we will
provide some notations and preliminaries for understanding the analytical results of certain PDE
models and their numerical treatment via the finite element methods (FEM) that we will encounter
throughout this thesis, Chapter [2] Subsequently, we will summarize the derivation of a classical
model of chemotaxis and discuss the key-players of such models, so that the reader has a con-
venient introduction to this youthful topic of chemotaxis models, Chapter 3] The next chapter is
devoted to different discretization strategies for a more general model of chemotaxis, Chapter [4]
Moreover, this chapter will deal with a stabilization technique that promises to remedy common
drawbacks of standard discretization schemes. The reader is kindly advised to carefully examine
this chapter, since therein we provide the discretization framework for all of the numerical stud-
ies that will be subject of Chapter [5] From the practical point of view Chapter 4 and Chapter [3]
represent the main parts of this thesis, since it will provide all the numerical results that are ob-
tained during the numerical analysis. We will compare the different discretization schemes, try
to quantify their results and seek for the most reliable, flexible and efficient solver for models of
chemotaxis. After validating and identifying robust solvers, we will apply them on chemotaxis
models that are recently discussed in the literature. The last chapter closes this thesis by providing
a brief summary, encouraging some further discussions and proposing fields of further investiga-
tions, Chapter [6]
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Preliminaries

This chapter deals with the general notation and symbols employed throughout this thesis and the
main theoretical background of chemotaxis PDEs which will be the focus in this work. While the
first section will provide the reader with an overview of a consistent nomenclature, the second part
will give a brief summary of the state of the art from the analytical point of view and will offer
explanations of terms and definitions which will be used throughout this thesis.

2.1. General notation

Table 2.1 provides an overview of most common symbols for the remainder of this thesis. Up-
coming new terms and symbols will be introduced in the corresponding context in order to keep
the sections self-contained and ease the understanding of particular symbols for the reader.

2.1.1. Notations for the continuous space

Let us denote by Q C RY™ (dim = 1,2,3) the computational spatial bounded domain with bound-
ary 0Q and spatial variables denoted by X = (x1,x2,...) € Q. Furthermore let / = [0,7,,4] C R with
t.ng > 0 be a time interval we are looking at with temporal variable ¢ € /. Hence, the time-space
cylinder 7 x Q > (¢,x) describes the entire domain which has to be discretized via a suitable FEM
ansatz.

Let u,v : I x Q — R be certain ‘sufficiently smooth’ scalar functions. We will use standard
notations for the gradient and the Laplacian working on the spatial variables, i.e.,

Vu = (Oq ..., 0 u)’

9 Y Xdim

and

Au = V-Vu = ax|x1u+'”+axdimxdimu'




CHAPTER 2. Preliminaries

Greek letters (a., 3,7, ..

)
Greek letters (@, )
bold-faced letters (u,v,w,...)

)

calligraphic upper case letters (A, B, ...
dim
X
t
de

1 (: [Qtend])
ot

V.V,

(i

h-subscripted letters (up, vy, wp,...)

scalar valued variables, e.g., o € R
FE-test/-trial functions

(FE-coefficient) vectors

block matrices

underlying spatial dimension

spatial variable, i.e., X = (x1,x,...) € R™
temporal variable

common abbreviation for partial derivatives, e.g.,

0; = du/ot

underlying temporal interval

time step width

index for the time level, i.e., u" = u(n )

original underlying open spatial domain and its
discrete counterpart

spatial (uniform) mesh size
number of spatial degrees of freedom

original space of the continuous solutions and its
conforming discrete counterpart

nodal basis functions, ¢; € Vj, fori=1,... N

FE function, i.e., up, =Y ;u; 9; € V;,

Table 2.1: Overview of the general notation.

Moreover, throughout this thesis we will write

Oy, U0y, v

V. (qu) -

0

Xdim

that is, the product of a function and a gradient u Vv is meant component-wise. Since our work
does not focus on the functional analysis aspects of the chemotaxis-driven PDEs, we will not go
into detail about the functional spaces in which the solutions u and v of our governing PDEs are
to be found. Hence, for the remainder of this thesis, let us assume our solutions to be in some

reasonable space V.

2.1.2. Notations for the discretized space

Maxdimv

B (10 v) + gy (491

The (full) discretization of the underlying PDE is subject of Chapter @ Before turning to this

task, let us introduce some basic notations in this paragraph. We emphasize that this thesis does

8



2.2. General notation

not focus on elaborate mesh discretization techniques, such as adaptive time stepping and /-, p-
or r-refinement of the spatial discretization. Although the author is aware that these techniques
have great potential to enhance the numerical algorithms — a point which will be discussed in cor-
responding chapters later on — the author skipped their implementations in order no to overload
the scope of this present work. Keeping that in mind we can define the discretization in a more
convenient manner. We will follow the ideas of the method of lines where we first apply a spatial
discretization of the governing PDE with FEM, resulting in a system of ordinary differential equa-
tions, also termed the semi-discretized formulation. In a second step we employ the discretization
in time with simple finite differences, leading to the so-called fully-discretized formulation. This
final system of (possibly nonlinear) equations can then be processed further by a suitable numeri-
cal scheme providing approximate solutions.

Let Q;, C RY™ be a conforming triangulation of the domain Q with quadrilateral/hexahedral
cellsand p; € Rdim i —1, ... N denote the corresponding vertices of this triangulation, where N is
the number of spatial degrees of freedom throughout this thesis. Furthermore, let i < diam(<y,)
denote the uniform spatial mesh size. Precisely speaking, the uniformity of the spatial mesh size
highly depends on the underlying computational domain €. In this work, we restrict ourselves
to have the same discretization for the test- and trial-space and use bilinear/trilinear conforming
quadrilateral/hexahedral finite elements. The corresponding element is commonly denoted by Q;.
The advantage of such an element is its convenient property that the degrees of freedom can be
prescribed as being the function values at the corner vertices.

With this setup a simple quadrilateral/hexahedral domain, e.g., the unit square/cube
Q= (0, l)dim, dim = 2,3, can be uniformly discretized. On the other hand, discretizing a cir-
cular domain cannot be accomplished by a uniform &4. In this situation we might only focus on
the maximal size 8hpy,x or we might adjust the coarse grid to be almost uniformly discretized.

Let us denote the resulting conforming discrete space as Vj;, C V and its finite dimensional set
of basis functions as {@;,...,@n}. As it is very convenient for Q; elements, we will use nodal
basis functions. These functions are defined as follows

(Pi(l?j) = 81']', fOI‘aHlSi,jSN,

where 0; ;j denotes the Kronecker-delta.

The FE-representation uy(f,X) of a continuous in time and space function u(¢,x) is now pro-
vided by

up(t,x) = Zui(t)(Pi(X)a

where u(t) = (u1(t),...,un(t))? is the FE coefficient vector. For the remainder of this work, we
will use this coefficient vector u(r) when referring to the FE-representation of the solution.

In the course of the discretization in time, we introduce a uniform time stepping with 7,x
time steps and 8 = 7,4 /nmax that provides a discrete time interval. The FE solution u(z,x), or
in convenient formulation u(z), will be tracked at these distinct time instances and we will write
u" =u(ndt).




CHAPTER 2. Preliminaries

2.2. Historical notes of chemotaxis PDEs

Before we focus on definitions and theorems on which we will rely in subsequent chapters, let
us briefly recapitulate the historical accomplishments and researches in the context of chemotaxis
PDE:s.

As a leading remark we like to note that the following historical background was mainly ex-
tracted from the survey paper of Horstmann [46]. If missing some detailed information the reader
is kindly advised to be referred to this literature and its references therein.

In 1970’s Keller and Segel [52] were the first who developed a mathematical PDE model in or-
der to describe the development of a chemotaxis-driven population, the slime mold Dictyostelium
discoideum. Their idea was it to establish a model that fits well to the experimental data observed
by, e.g., Bonner [[L1]]. In its simplest formulation their model reads

Jdu(t,x) = V- (Vu(t,x) — u(t,x)va(t,x)) , for (t,x) € I x Q,
(x) = V() Fultx) —v(i.), forerxe. O

Herein u(t,x),v(t,x) denote the concentration of the cell population and chemoactive substance,
respectively. Unless we define anything to the contrary, the coefficient % is a certain positive scalar
constants. In the first equation we face a diffusive and a chemotactical flux, which can also be
considered as being of antidiffusive character (note the minus sign in front of the second term on
the right-hand side). The second equation consists of (standard) diffusion-reaction terms. The re-
action term represents a natural depletion of the chemoactive substance and its production by the
cells. We defer a detailed description of the equation and its derivation to the upcoming Chapter

The model is commonly complemented by initial conditions of kind
u(0,x) = up(x), v(0,x)=vp(x), forallxeQ (2.2.2)
and Neumann boundary conditions of kind
n-Vu(t,x) =0, n-Vy(t,x)=0, forall (z,x) €lx0Q, (2.2.3)
where n denotes the unit outward normal to 0 .

Keller and Segel also obtained first analytic results concerning the (linear) stability of uniform
solutions which can be summarized in the following

Theorem 2.1 ([52]) A stationary uniform solution (u*,v*) (in case of we even have
u* =v*) is unstable if yu* > 1.

Loosely speaking, here and hereafter we understand stability of a solution as

Definition 2.1 (following [52]]) An arbitrary (possibly nonstationary) solution (u*,v*) is consid-
ered stable if any small initial perturbation (fluctuation) does not grow in time and eventually
pollutes the solution. A solution is considered unstable if there is at least one perturbation that
finally pollutes the solution.

10



2.2. Historical notes of chemotaxis PDEs

For example, if, despite the initial fluctuations, the solution is exactly recovered as time evolves,
we end up with asymptotic stability. In this case the fluctuations diminish in time. If the pollution,
however, only not grows in time, say the perturbed solution’s orbit remains in a neighborhood of
the exact solution’s orbit, then we obtain Lyapunov stability. We note that Lyapunov stability is
indeed strictly weaker than asymptotic stability. For a brief recapitulation of an exemplary linear
stability analysis we refer to the appendix [A]

Returning to the result of Keller and Segel, their interpretation of their findings is that there is
a critical mass (dependent on ) that drives the cell population to overcome the diffusive character
of the model. Together with the mass conservation (in terms of the L! norm) of the cell population
and more elaborated nonlinear analysis Nanjundiah [83]] conjectured that

“[...] the end-result of the instability is aggregation of the cells at one or more points.”

Moreover, because of the accelerating-typed instability, caused by the positive feedback of cell ag-
glomeration and chemical production, he concluded that these aggregates eventually form
d-singularities. About seven years later, Childress and Percus [17] reconsidered the (space-independent)
conjecture of Nanjundiah and came to the conclusion that 3-singularities, in fact, cannot occur in

the one-dimensional (1D) space but may emerge in higher dimensions. In the following we refer

to the formation of singularities as blow-up.

Definition 2.2 (following [46]) The solution (u,v) for a chemotaxis PDE blows up (is a blowing-
up solution) if ||u(t,-)||~ becomes unbounded in finite or infinite time,

|lu(t,)||L= — o0 as t— teuq or t — oo, respectively.

The interesting question whether or not there exists (stable) non-homogeneous solutions which do
not blow up are left open up to this point. The literature distinguishes between the stationary, i.e.,
0;u = 0 = d,v, and the time dependent problem formulation.

The stationary variant was further studied by Schaaf [91] via bifurcation methods. She considered
a more general system of (2.2.1)—(2.2.3) and examined bifurcation points also for inhomogeneous
solutions.

It took more than ten years to establish the next landmarks in this subject. It was Biler [9]
who proved the existence of radial stationary non-homogeneous solutions — the reason to study
the radial case, besides its greater simplicity, can be found in Diaz and Nagai [23]], who proposed
the control of arbitrary domains via symmetrization. Moreover, Biler continued considerations,
e.g., about global existence and blow-up depending on parameters, based on a parabolic-elliptic
variant of (2.2.1)) with different boundary conditions. At this time many groups of researchers were
attracted to study all kinds of variants of (2.2.1)—(2.2.3). Subsequently the non-radial case was
then examined among other independent researchers by Horstmann [45]] for the 2D case. Further
on, increasingly more researchers revealed particular aspects of Keller-Segel’s equations and it
became very tedious to keep track of them in order. Instead of quoting every single contribution
we rather like to sketch the main interesting results that will be of particular concern in this work.
Several authors studied the asymptotic behavior with the support of a certain Lyapunov functional,
e.g., as introduced in [33]],

1
E(u,v) = /2x(|Vv|2+v2> +ulogu—uv dx.
Q

For a short introduction of basic concepts of Lyapunov functionals, we defer the interested reader
to the appendix
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CHAPTER 2. Preliminaries

Dimension Reference Result

dim=1 [84]] The 1D-system (2.2.1)—(2.2.3)) admits (possibly stationary) glob-
ally bounded solutions for reasonable initial data.

dim =2 [82] For 4m > y||lug||;r the 2D-system (2.2.1)—(2.2.3) admits a
bounded Lyapunov functional and hence has a global solution.

[33] If, for t — oo, the 2D-solution admits E(u,v) — —oo, then it fol-
lows ||u|| — e. In other words, if the Lyapunov functional can
not be bounded globally in time, then the solution blows up.

[33], [45] For 4m >y ||uo||;1 the global solution of the 2D-system (2.2.1)—
@ converges to a (possible non-homogeneous) steady state.

[49] For 41 < ||uo||;1 (necessary condition) there exist (possibly
non-symmetric) solutions of the 2D-system (2.2.1)-(2.2.3) that
blow up.

31 Every (bounded) global solution of the nonstationary 2D-problem
eventually converges to a stationary solution.

[48] For 4m > x||luo||pn the 2D-system (2.2.1)—(2.2.3) ad-

mits only the unique trivial stationary solution (u*,v*) =
(uollL1 /192, o1 /192])-

dim =3 [106] For g > 3/2 and p > 3 there exists € such that if ||ug||« < € and
l|vo||Lr < € then the solution exists globally and converges to the
homogeneous equilibrium (||ugl||z1 /|, ||vol|ri1 /|R])-

[106] For arbitrary initial mass ||ug||;1 there exist blowing-up solutions
if we consider Q C R? being a ball.

Table 2.2: Overview of valuable theoretical results for the chemotaxis model (2.2.1)). Note that for
dim = 2 we list in chronological order and some results became obsolete.

Now the major results can be captured in the following Table[2.2]

We observe that many results are due to very recent work. Moreover, beside the lack of com-
prehensive steady state and stability investigations, up to our current knowledge, we recognize
that the three-dimensional (3D) case is not yet covered in detail, compared to the one-dimensional
(1D) and 2D counterparts. This stresses the mathematical challenge even for a ‘rather simple’
chemotaxis model (2.2.1)—(2.2.3), particularly from the theoretical point of view.

In order to motivate the investigation of simple-looking chemotaxis models from the theoreti-
cal point of view, we provide some open questions, contributed by personal communications with
Horstmann and Winkler:

Blow-up condition (2D) From [49] we know a necessary condition for a blow-up in two dimen-
sions, is there also additionally a sufficient condition on the initial data?

Blow-up condition (3D) Concerning the 3D case, is there a critical mass that may lead to a blow-
up, such as in the case of lower dimensions? In other words is there a K > 0, such that
[luo||;32 < K leads to globally bounded or blowing-up solutions, respectively?

12
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Blow-up points There are many results for radial symmetric blow-ups. How does the situation
change for a non-symmetric blowing-up solution? Are there initial conditions that drive the
solution to multiple blow-up points (at the boundary or inside the domain)?

Blow-up asymptotics In the case of a blowing-up solution. How can we characterize whether or
not the blow-up time is finite or infinite? Is there a way to classify the blowing-up behavior
near the blowing-up time? Can we anticipate the number (and localization) of blow-up
points in the case of disjointed initial data? What happens after the blow-up time?

Patterns (3D) What is the possible set of steady states in the 3D case? Yet we only know (cf.
Table [2.2)) that sufficiently small initial data lead to homogeneous steady states. There is no
statement about possible non-homogeneous steady states.

Kinetic model (3D) When complementing the minimal model with a kinetic term for the u equa-
tion, say ku(l —u), cf. in Section the 2D model provides reasonable and
bounded solutions [85]. However, the boundedness in 3D can yet only be proven for suf-
ficiently large x [107]. What is the solution’s behavior for very small x? Does there even
exist a blow-up in such situations?

Obviously for more complex models — we will introduce interesting extensions to model
in the upcoming Chapter |3| — this given pool of theoretical questions will certainly be
enriched. However, for the sake of clarity and in order not to blur the scope of this work, we
restricted our historical notes to the minimal model (2.2.1).
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Modeling chemotaxis

This chapter strives to recapitulate the derivation for the minimal model of chemotaxis. More-
over we will present some biologically motivated extensions to the model which allow for a better
description of in-vitro and in-vivo observed features of chemotactic signal processing. The first
section of this chapter will encourage some stochastic and physical thoughts in order to understand
the main principles of the derivations. The second part will introduce some practical scalings that
simplify the underlying equations. The third section, namely the biological motivated extensions
of the basic model, will apply some basic knowledge of chemical reactions.

3.1. Derivation of the minimal model of chemotaxis

Basically there are two methods at hand to derive a suitable model which represents chemotactical
movement of cells # induced by a certain chemical v (cf. [46, [78] 88]). On the one hand there
is the microscopic approach, which basically models an entity-entity system, which can also be
understood as discretizing single cells and chemical molecules, that can be derived via the limit
case of a stochastic ansatz. On the other hand, the macroscopic view derives the system via Fick’s
law applied to the well known mass conservation law. This alternative considers the cell-chemical
system in a more continuous fashion, i.e., the distribution/density of cells and chemical substances
(and the corresponding fluxes) are taken into account.

To date, these two points of views or scales, which they are also commonly termed, are in-
tensively discussed in the community. In certain cases, the modeling of cells on the macroscopic
scale is inconvenient, since the total number of modeled cells are rather low, say in the range of
10,00(ﬂ In this scenario, the contribution of single cell dynamics will have a significant influence
on the development of the entire cell compound, rendering an approach which cannot identify sin-
gle cells impractical. However, for modeling the chemicals, the situation changes, simply because
of the huge amount of chemical molecules under consideration. In the current belief of the com-
munity, a multi-scale approach will be the best fitting modeling framework that can capture the

'In contrast, the experimental assays conducted by Adler [I]] that initiated the development of the Keller—Segel
model involved millions of cells of E. coli.
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CHAPTER 3. Modeling chemotaxis

interactions across cell-chemical scales. The interplay of such multi-scale processes is well known
experimentally. But only recently, with the advent of promising experimental biology techniques
and computational technologies, the development and the numerical consideration of such models
can now be fully addressed.

3.1.1. Microscopic derivation

As mentioned above the microscopic scale shines a light on the derivation in a stochastic manner.
To this end, let us first introduce the scenario which we want to model. Following Othmer and
Stevens in [86], we introduce an equidistant one-dimensional continuous-time, discrete space bias
random-walk approach. We consider a scenario where the orientation of an entity u (here cells)
is influenced by the attractive characteristic (of the gradient) of a particular chemical substance v
binding on certain cell receptors at the membrane and resulting in a biased random-walk. Let the
one-dimensional domain Q = [0, /] be discretized with the uniform step size & = [ /iyax, resulting
in the discrete variables i = i&h for i =0, ..., imax. Furthermore, u;(¢) denotes the probability that
an entity (here a single cell) is situated at the (¢,i8h) coordinate, where ¢ € I = [0, f,,,4|. Initially,
say att = 0, the cell starts at i = 0. Now a quasi-Markovian process leads to

Oui(t) = THvimt)uimi () +T~ (i) uisa (1) = [T (vi) + T~ (vi) (), (3.1.1)

where 7% (v;) reflects the probability (controlled by v) of the u-transition from the discrete location
J to the right (4) or left (—). Note that, strictly speaking, the process described here cannot be
considered Markovian if the transition probabilities 7= (v;) depend on u, which will be the case as
we see later on, cf. (3.1.16). A remedy would be to consider the extended state space (u,v), which
we skip for brevity reasons. Now, in order to take into account chemotaxis, we have to define
suitable transition probabilities 7% (v;). Othmer and Stevens proposed some choices among which
we stress two simplifications.

First of all it might already be clear from that the choice 7% (v;) =T (v;) = T~ (v;) results
in a random walk. This is clear by identifying the right-hand side of by the corresponding
second-order Taylor expansion

ux (T(v,-) ui(t)> = [T (6) = 2T wi(t) + T(vi 1) ui 1 (£)] /8> + O(8K?),
which transforms (3.1.1) into
duui(1) = Sh? BM(T(VI-) u,-(t)) . (3.1.2)

Now, after passing to the limit 2 — 0 and some scaling assumption on 7' (-), we arrive at the
limiting problem

ou(t,x) = daxx<T(v)u(t,x)> , for (t,x) eI xQ,

where d is a constant stemming from the limiting assumption, see Remark [3.1f The multi-
dimensional counterpart of this limiting problem, e.g., for Q C R?, reads

dult,x) = dA(T(v)u(t,x)), for (1,x) €I x Q. (3.1.3)

Particularly for a constant transition probability 7'(-) we end up with the common heat equation.
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3.1. Derivation of the minimal model of chemotaxis

The second example for T*(-) will be of more importance for our considerations of modeling
chemotaxis phenomena. Let us assume that the cells are able to sense a local gradient of the
chemical substance v. Then, we define the transition probabilities as

T =T%(v;) = p+n[t(vier) —t(m)] (.1.4)

where u,m are positive constants and t(-) represents the ability of cells to sense the chemical, e.g.,
via receptors. Hence the constant u scales the strength of the (unbiased) random walk, whereas
7 scales the strength of the chemotaxis-driven walk. Note that n(t(v;+;) —t(v;)) can be viewed
as a first-order approximation of the local gradient of T when setting 1 = n*/8h. The most sim-
plest non-trivial receptor sensing T can be described by a linear relation, e.g., we set T(v) = v. In
order to keep the non-negativity of the transitions, here and hereafter we assume that u &< 1 and
|T(vie1) —t(v;)] is sufficiently small.

When using the transition probability (3.1.4), the transition process (3.1.1)) reads
Qu(r) = p(ui—1(t) = 2ui(r) +uir1(1)) (3.1.5)
0 ([ () + w5(0)] [2(0i1) = 200)] = [w:(0) 201 (1)) [5(0) = ¥(vi-1)] )

After using Taylor expansions, passing the equation (3.1.5)) to the limit 82 — 0 and assuming limit-
ing properties for 7'(+) in a similar fashion as done before, we finally obtain the multi-dimensional
equation

du(t,x) = s[yAu(t,x)—znv.(u(t,x)avrvv(t,x))}, for (,x) €Ix Q. (3.1.6)

Now we identify 3 = % (v) := 2md,7 as a chemosensitivity function and hence arrive at a more
simple equation for the chemotaxis-driven evolution of the underlying organisms, e.g., cells,

dult,x) = s[yAu(z,x)—v.(u(z,x)x(v)vv(z,x))}, for (1,x) €I1x Q. (3.1.7)

Note that for a linear receptor sensing as mentioned before, i.e., T(v) = v, we end up with a con-
stant chemosensitivity, i.e., x(v) = ¥ = const.

When focusing on the evolution-equation for the chemical substance we can initially restrict our-
selves to a rather simple diffusion model and basically exert a corresponding derivation as con-
ducted for (3.1.3). For clarity reasons, this equation reads

ov(t,x) = d,Av(t,x), for(t,x)€lxQ. (3.1.8)

Herein, d, > 0 is a constant, scaling the chemical diffusion. We defer a brief introduction to chem-
ical reaction processes for implementing reaction terms in the chemical equation to a subsequent
paragraph, see Section[3.3]

We have seen how we can transform a microscopic description of a chemotaxis-driven mo-
tion (of cells) to a macroscopic scale, here a PDE model. However, as we already pointed out
at the beginning of this chapter, a macroscopic perspective is sometimes inaccurate or even mis-
leading. The crucial step in the above derivations is the limiting assumptions, 8k — 0, applied
on the equations (3.1.2) and (3.1.3). Therein, we implicitly required that cells have an infinitesi-
mal/neglectable size, which is a delicate assumption when considering chemicals being modeled
at the same scale. In this work, we will nevertheless only consider PDE models for chemotaxis
phenomena since they are both mathematically interesting and numerically challenging. Moreover
a successful development of multi-scale models requires a deep understanding and accurate and
efficient numerically handling of the chemotaxis process in general. This comprises a numerical
PDE approach that provides data for examining chemotaxis in further detail.
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3.1.2. Macroscopic derivation

Now we turn to the macroscopic derivation of the PDE model. To this end, we treat the functions u
and v as sufficiently smooth and integrable density functions, rather than discrete entities as in the
microscopic derivation. The following derivations are mainly extracted from Murray [78]]. Cor-
respondingly to this literature, we assume that the cells « yield the mass conservation law. Here,
we explicitly model neither growth nor decay of the cells in the bounded domain Q. Note that this
assumption corresponds to the original pure aggregation stage in the life cycle of Dictyostelium
discoideum, that Keller and Segel described in [52]. For an arbitrary bounded subset Q' C Q with
boundary denoted by €', the mass (or energy) conservation law (for u) reads

at/u(t,x) dx = —/F(t,x)nds, fortel, (3.1.9)
(04 oY

where F(z,x) denotes the flux of u and n is the unit outward normal to 0Q’. Verbally, equation
(3.1.9) states that the rate of change of the density can fully be described by the rate of flow (flux)
through the boundary of the underlying domain. If we now apply the divergence theorem and
remind us of the smoothness assumption on u (d;u must be continuous), equation (3.1.9) can be
rewritten in terms of

/B,M(I,X)—l—V-F(t,x)dx = 0, forrel, (3.1.10)
Q/

and because Q' was chosen arbitrarily, we have
ou(t,x) = —V-F(t,x), for(t,x)€IxQ. (3.1.11)

The final modeling task is now to choose a suitable flux term F(z,x). As already sorted out in the
microscopic approach, we want to model two physically fluxes, a purely diffusive Fgisusion (Z,X)
and a rather chemotaxis-driven flux Fchemotaxis(f,X). The diffusive flux can be defined by Fick’s
law,

Faiffusion (1,X) = —d,Vu(t,x),
where d,, > 0 scales the diffusivity.

The chemotaxis flux offers some modeling purposes. On the one hand this flux should be
proportional to the cell density, since this renders the increase of chemotaxis when cells aggregate.
On the other hand, the receiving and processing of the (signal of the) chemical substance might be
desired to be modeled by a function, say x = y(v). Taking these considerations into account, we
define the chemotaxis flux as

Fchemotaxis (ty X) = u(t7 X) X(V) VV([, X) . (3.1.12)

Altogether we consider the total flux to be given, simply, by the sum of the aforementioned partial
fluxes, i.e.,

F(Z‘,X) = Fliffusion <Z7X) + Fehemotaxis (Z,X) . (3.1.13)

Note the possible antagonistic roles (i.e., the + signs) of the partial fluxes. That is, for positive ()
we assign the chemotaxis flux a attractive character, sometimes called chemoattraction, while for
negative (-) we describe a repulsive effect, also called chemorepellence. Hence chemoattraction
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3.1. Derivation of the minimal model of chemotaxis

can be understood as an antagonist of diffusion.

We substitute the flux (3.1.13) into equation (3.I.TI) and obtain under rearrangements the
following equation for the cell density u(z,x)

du(t,x) = duAu(t,X)—V-(u(t,x)x(v)Vv(t,x)), for (1,x) €Ix Q. (3.1.14)

For the evolution equation of the chemical substance we restrict ourselves (for the moment) to a
purely diffusion model as in the microscopic approach, cf. (3.1.8).

After rearrangement/renaming, both approaches eventually lead to the semi-coupled system

du(t,x) = duAu(t,x)—V- (u(t,x)x(v) Vv(t,x)) . for(1,x) €IxQ,
3.1.15
ov(t,x) = d,Av(t,Xx), for (1,x) € I x Q. ( )

Up to here, the target cell equation has been fully developed, while the chemical equation misses
essential reaction terms. We remind us that we wanted to model a self-enhancing chemotaxis
scenario, that is cells are attracted by chemical signals which they in turn secrete by themselves.
This positive feedback has to be modeled in the latter equation, e.g., by a production/source term.
As a cross-reference note: this feedback leads to a coupled system, hence when returning to the
microscopic approach, we recognize the (indirect) relation between the probability of the cur-
rent transitions and the preceding states, i.e., the stand-alone process for # cannot be understood
Markovian. Beside the source term, moreover the evolution of chemical signals are often subject
to an abstract depletion term. The particular origin of this term (enzymatic degradation, consump-
tion by alien processes/organisms, loss of effect) is perfunctorily for our current modeling. The
easiest way of implementing these terms into our model is by a simple linear relation,
e.g., depletion by —ov and production/source by +fu. Alternative reaction terms are discussed
in the next subsection. By virtue of a general term, say r(v,u), we can write

ou(t,x) = dyAu(t,x)—V- (u(t,x)va(t,x)) , for (1,x) € I x Q,
3.1.16
ov(t,x) = dyAv(t,x)+r(vu), for (t,x) eI x Q. ( )

These equations provide a good starting point for studying chemotaxis-driven processes. Never-
theless it should be noted that the original Keller-Segel model was introduced in a more general
setting where possible nonlinear coefficients model the partial processes in more elaborate fash-
ion. Besides different coefficients, Keller and Segel also consider a total of four equations, instead
of only two. For a more differentiated approach they included additional equations for an en-
zyme, which corresponds to the chemical substance v, and a complex that is formed by chemical
reactions of v and the latter enzyme. Basically this models a more sophisticated depletion of the
chemical.

Remark 3.1 Concerning the limiting assumptions in the microscopic derivation of the chemotaxis
equation (3.1.3) some supplementary notes are advisable.

First of all we remark that the transitions T*(-) implicitly depend on the (discretized) time step-
ping, therefore we better refer to T*(-) as transitions per time unit and hence assume

() = o).
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The rather technical appealing limiting assumption for the so called ‘Diffusion limit’ to hold reads

In other words, the limiting process is not homogeneous in space and time, namely the time steps
shrink significantly faster than the spatial mesh size. This inhomogeneous scaling can be regarded
as one reason why the well known heat equation admits an infinite speed of propagation, which
is not what we might expect from the real physical process of diffusion. The infinite speed of
propagation refers to the fact that an initial heat distribution, say 9(0,x) > 0, with small support
immediately propagates to the entire domain in terms of

9(0,x) =0, forxeQ\supp(dy) — O(t,x)>0, foranyt>0andxecQ.

There is an approach that tackles this paradoxon. In the context of thermodynamics, it was Cat-
taneo [15|] who modified the well-established Fourier’s law in order to solve the ‘paradox of heat
conduction’ already in 1948. Fourier’s law postulates that the heat flux, say Fpoq(,X), is propor-
tional to the negative temperature gradient

Frea(t,x) = —dVO(t,x),

where O denotes the temperature of a homogeneous medium. The main idea of Cattaneo was
to add a small delay term to this equation, accounting to the fact that the heat flux needs (at
least a small amount of) time adapting to be proportional to the negative temperature gradient.
Another interpretation of Cattaneo’s modification is that the heat flux depends not only on the
current temperature gradient but also on its past. Both perspectives drove Cattaneo to introduce
his version of the heat flux,

Fheat(tvx) +TaIFheat(t7X) = —d Vﬂ(l‘,X) .

Herein © > 0 determines the adaptation time referred to above. Note that for T = 0 we reobtain
Fourier’s law. Together with the equation for energy conservation (cf. (3.1.10)) we obtain the
so-called ‘Cattaneo system’

0(t,X) + V- Fpepe(t,x) = 0, for (t,x) € IxQ,

(3.1.17)
T Fhear(t,X) + Frear(t,X) = —dVO(t,x), for (t,x) € I x Q.

This hyperbolic system has indeed the property of providing a finite speed of propagation, hence
rendering this system physically more appropriate.

Cattaneo’s system can also be reformulated for chemotaxis-driven motion of cells. A straightfor-
ward substitution of the chemotaxis flux (3.1.13)) in (3.1.17) leads to the following ‘Cattaneo model

for chemosensitive movement’, which was presented by Dolak and Hillen [24],

ou(t,x)+V-F = 0, for (1,x) € IxQ,
3.1.18
10, F(t,x)+F(t,x) = —d,Vu(t,x)+u(t,x)y(v) Vv(t,x), for (t,x) EIXQ.( )
Hereby, the evolution equation for the chemical concentration v(t,X) is usually modeled as in the

previous chemotaxis systems, e.g., (3.1.16). Numerical simulations of systems of kind (3.1.18) re-
vealed that the qualitative difference between classical chemotaxis models and the Cattaneo model
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3.2. Dimensionless formulation

for chemosensitive movement is only recognizable for short time ranges. The asymptotic behavior
of both modeling attempts seem to be very similar, see [24)].

Let us remark that the derivation of the Cattaneo system can also be achieved from a microscopic
perspective. In the context of chemotaxis-driven motion, the interested reader is kindly referred to
Hadeler [41] and Hillen [43)].

3.2. Dimensionless formulation

The most common representative of a chemotaxis model of kind (3.1.16) deals with linear reaction
terms as already mentioned above, i.e., we consider

ou = d,Au—V-(uyVv), for (1,x) € I x Q,
atV

dyAv—av+Bu, for (1,x) € I x Q.

Herein, the five model parameters, d,,,d,, o and B calibrate the model more or less significantly.
In order to run a proper simulation, these parameters are usually determined by experimental data
sets which can be found in various experimental assays, e.g., Adler [1]], Budrene and Berg [[14] or
Greenberg and Canale-Parola [36]]. However, if we are interested in the dynamics of model (3.2.1)
for a more general setting, that is if we are looking for the relation between solutions and a cer-
tain parameter, ), say, then the task would be easier for a minimal set of parameters. Furthermore
for experimental unknown parameters the proper choice for simulation purposes might be very
tedious. In this scenario it is more convenient to consider only certain relations between those pa-
rameters. Moreover, it is obvious that less parameters simplify the derivations of analytical results
such as existence, uniqueness or stability. Hence, from the theoretical and practical point of view
the elimination of redundant model parameters are highly recommended. These considerations
lead to a so-called dimensionless formulation of the governing model (3.2.1).

There are indeed basic guidelines to non-dimensionalize a model of kind (3.2.1). The first step
will be to scale the underlying coordinate system (including the time). For appropriately chosen
parameters X, t,, U, v« € R we define

X = XX,
f = tt,
and substitute the solutions correspondingly
a(x,7) = wueu(t,x),
P(R,1) = wev(t,X).

To simplify the calculations, we restrict our derivations from now on to one spatial dimension.
When substituting the above scalings in the partial derivatives of the solutions, we end up with

1 o t .
u(t,x) = —om(t,%) = (%),

U Us

| Lo ain o
ov(t,x) = —ov(f,8) = —09(,%),

Vi Vi

1 PN X AR A
ov(t,x) = —o (/%) = —0z0(f,%),

Vi Vs
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deutt(t,x) = ;*ax(x*aﬁﬁ(f,;e)) _ f eeid(7, %)
dev(t,x) = vl*ax<x*a);ﬁ(f,)?)) _ xiaxxﬁ(f,f),
o (utr o) = 20, (w0200 0) = iax(biﬁ(f,)e)a,eﬁ(f,@)
- )Vi (3 A7, %) 391, ) + i A7, %) axxv(t,)?)>
- in ax(ﬁ(f,ﬁ)a,eﬁ(f,ﬁ))

Together with straightforward substitutions for the reactions terms in (3.2.1) the (one dimensional)
model is reformulated as

e o nin 2 . 2 . .
B a(t,8) = dudga(ff) — X5 af(ﬁ(t,)?)af\?(t,)?)), for (1,x) €I x Q,
Uy Uy Vi Use
3.2.1)
te . X2 . B .. o, .
—00(t,%) = d,—=00(t,X) +—i(f,%) — —é(7,%), for (1,x) € I x Q.
Vi Vi Uy Vi

After ‘normalizing’ the time derivatives on the left-hand side and demanding the coefficients in
the v equation to be normalized as well, we end up with the system

da(f,3) = dL);—*Bxfﬁ(f,ﬁ)—Xx* ax<A(f,£)ava(f,)e)), for (£,x) € I x Q,
* *v*
2 By o (3.2.2)
9018 = 4 bR+ R = - 9(E),  for (1x) €1xQ.
% x U %
—— —~—
4 4 4

We set the scaling coefficients for the dimensionless parameters correspondingly to the last equa-
tion and introduce two new model parameters 9, ¥ € R, which leads to

L = «,
Xe = o/d,,
ve = 1,

e = B/,
d = d,/d,,
X o= x/dv.

After dropping the hat notation (%) these definitions finally lead to the dimensionless system of

model (3.2.1)

dult,x) = daxxu(t,x)—ax(u(t,x)xaxv(t,x)), for (£,x) € I x Q,

(3.2.3)
ov(t,x) = Oyv(t,x)+u(t,x)—v(t,x), for (£,x) € I x Q.

It is straightforward to deduce the counterpart of system (3.2.3) for multiple dimensions, e.g.,
Q C R?. For the remainder of this work, we will refer to the following model as the minimal
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model of chemotaxis in its dimensionless form,

duu(t,x) = V- (qu(t,x) —u(t,x)va(t,x)) , for (t,x) €I x Q,
ov(t,x) = Av(t,x)+u(t,x)—v(t,x), for (,x) € 1 Q. (3.24)

Note that we encountered this model already in Section [2.2]

We observe that our system only incorporates two model parameters, namely d and .
As already mentioned above, these parameters can be interpreted as certain relations of the orig-
inal parameters in . In detail, we refer to d = d,,/d, as the diffusion rate, which obviously
determines the ratio of the diffusion rates of # and v. Furthermore, ¥ now indicates the ratio of the
original chemosensitivity and the diffusion rate of the chemicals.

For the remainder of this work we will ease the reading of upcoming model equations by omit-
ting the time and space variables if they are not particularly part of the main focus.

3.3. Some model extensions

As mentioned earlier, extensions to the minimal model of chemotaxis were in fact already consid-
ered in the original paper of the ‘founding fathers’ of chemotaxis models. Not surprisingly that
some of them have lately been revived by recent scientists. Therefore, in this section we will have
a look on some particular interesting extensions that are subject of very recent works and this cur-
rent investigation. In the context of more elaborate modeling of certain processes, e.g., in terms
of non-trivial coefficients, let us already now refer to the short survey about the Michaelis-Menten
theory and Monod kinetics in the appendix [C|

3.3.1. About Growth Kinetics

Referring to the cell equation in (3.1.16)), we did not take into account some proliferation terms,
namely we always assumed mass conservation in a simple modeled aggregation phase of the un-
derlying organism such as Dictyostelium discoideum. However the explicit modeling of growth
terms is of paramount interest when it comes to model highly invasive processes like angiogenesis
and bacteria proliferation, or if we model more than one generation time of the life cycle of the
organism. For example, in the latter case it was nicely demonstrated by Budrene and Berg [14]
that bacteria form astonishing patterns when they were exposed to certain stresses, cf. Figure[3.1]

In the context of a PDE model, a very common approach for modeling growth is derived by
introducing a Fisher-type term. It is well known that the Fisher equation admits traveling wave
solutions which describe a logistic growth. In terms of the cell concentration u, Fisher’s equation
can be written in the following form

ou = Au+xu(l—u/K).

Herein, k¥ > 0 denotes a constant growth rate and K > 0 is the carrying capacity, namely, the maxi-
mum cell concentration admitted by the environment (caused by certain resource limits). A careful
look on the growth term reveals that the cell accumulation now yields an increase by +xu in the
early stage and a decrease by —ku? /K in a later stage, modeling the competition for the critical
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I

Figure 3.1: Patterns formed by Escherichia coli in semi-solid agar. Original experimental obser-
vations of Budrene and Berg [14], used with permission from Howard C. Berg, Department of
Molecular and Cellular Biology, Harvard University.

resource.

By simply adding the Fisher-term to our cell equation in (3.1.16), we end up with a corre-
sponding chemotaxis model incorporating cell-growth,

ou = dyAu—V-(uy(v)Vv)+xu(l—u/K),
(3.3.1)
v = dyAv+r(vu).

Let us remark that this logistic growth can be related to a more comprehensive theory of (bacterial)
growth, the Monod model, see appendix [C| Here, we like to focus on this relation in a simplified
setting. To this end, let K = 1 = K, hence the Fisher-term reads (1 — u) u, subject to 0 < u < 1. We
introduce a variable s > 0 for the limiting resource/substrate concentration, e.g., a nutrient. We
will now relate the limiting resource to the present cell concentration. If we set s = K(1/u—1),
where K; > 0 denotes a constant, a simple calculus reveals

S
s+ K,

= 1—u.

The left-hand side of this equation is comparable to what Monod formulated as a growth rate u for
bacteria cultures, given that um,x = 1. Such kind of relations for certain coefficients also lead to
further extensions of (3.1.16) which we will see in the subsequent paragraphs. Before turning to
other extensions, let us briefly discuss a justification for the definition of the limiting resource s. If
u — 0 (however never vanishing completely), we note s — oo and if u — 1, the limiting resource
yields s — 0. In view of a limiting resource, this is reasonable: it describes the increase or decline
of the limiting resource as the cells cease or reach their carrying capacity (here K = 1), respectively.
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3.3. Some model extensions

3.3.2. About chemosensitivities

We introduced the chemotaxis flux as Fehemotaxis = —#X(v) Vv, cf. . To define y(v), early-
stage experiments already motivated Keller and Segel [52] and later Lapidus and Schiller [65]
to propose chemosensitivities that promote fluxes due to (non-trivial) rational functions of type
x(v) = 1/v (cf. the Weber-Fechner law) and 3(v) = 1/(1 +v)?, respectively. The latter is based on
observations that the chemotactic response declines at low chemical concentrations and saturates
at high concentrations, in contrast to the derivative of the logarithm of the concentration as in the
former case — note that Vlogv = Vv/v. In fact the phenomenon that is modeled by these terms
is also called signal-dependent (chemo-)sensitivity in the literature, e.g., [44], and corresponds to
a simple model for a receptor-signal binding (we already assumed beforehand that the chemicals
bind to certain receptors located on the cell membrane, rf. Chapter [I]).

Consider the following reaction

R F+ \% % Ry,
—1
where Ry, R;, denote free and bounded receptors, respectively, and V is a molecule of the chemical
active substance. Assuming a constant amount of receptors, the potential of chemotaxis can be
described by the current number of bounded receptors R;,. Therefore, if v exceeds a threshold,
a saturation of bounded receptors emerges and hence, the chemotaxis flux cannot be considered
solely proportional to the (negative) gradient of v anymore. After employing a steady-state hy-
pothesis about the bounded receptors in the above reaction, we end up with a concentration of Ry,
that is highly related to a Michaelis-Menten-type relation, cf. [44].

Another notable chemosensitivity can be obtained by a volume-filling approach. Its funda-
mental idea is that cells carry a certain volume (nonzero and finite). By assuming that cells do not
penetrate/overlap, the occupation of a certain area limits the chemotaxis-driven attraction. In fact,
also the general motility (including diffusion) is limited by these volume-filling effects. An illus-
tration of volume filling is given in Figure[3.2] Therein, the circles represent cells moving to the

Increasing chemoattractant concentration

Figure 3.2: Illustration of volume-filling, modified from [88]].

right, along the chemical gradient. Cells A, B and C are located in regions of increasingly packed
cell compounds. Cell A can freely move, whereas the movement of Cell B is already moderately
limited, Cell C can finally hardly move since surrounding cells block individual movement. A
detailed derivation of this type of chemosensitivity can be found in [88]. Since we consider indi-
vidual cell volumes the derivation is conveniently carried out from the microscopic point of view.
We modify the transition (3.1.4) in terms of

TijE = Tii(v) = q(ujz1) [,U+T](Viil - Vi)] . (3.3.2)
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Note that for notational simplicity we set T(v;) = v;. The newly introduced function ¢(u;) de-
scribes the probability of unoccupied space. When considering a maximum of accumulated cells
in a region Uy, We assume the function to yield

q(umax) =0 and  gq(u) >0, for0 <u < upyy.

After passing to the continuous limit as before we end up with the following equation for ,
ou = V(du [q(u) —ug'(u)] VM—MXq(u)Vv) . (3.3.3)

A reasonable and convenient choice of a linear occupation function reads q(u) = 1 — u/upm,y. This
choice has the nice property of a vanishing diffusive contribution g(u) — uq'(u) = 0 and therefore
is very commonly used. We remark that when up,,x — oo we arrive at the classical chemosensitiv-
ity, which also appeals to common sense.

In the course of further experimental results, several authors proposed alternative chemosensi-
tivities, the interested reader is referred to the given literature for further studies. A selected listing
is sketched in Table 3.1

Exemplary reference Chemosensitivity Background

Keller and Segel [52]  x(v) =% = const constant sensitivity
Keller and Segel [52]  x(v) =% logarithmic law (Weber-Fechner)

Hillen and Painter [44] x(v) = 25 (x)  receptor kinetic law

Table 3.1: Overview of particular chemosensitivities discussed in the preceding paragraph. (%)
The constant K is sometimes called the dissociation constant for the receptor-attractant interaction,
in our formulation we set K = 1.

3.3.3. About chemical reaction rates

Up to now we did not define a particular reaction term (v, u) for the chemical substance in (3.1.16).
For reasons of comprehensibility we split the reaction term into the explicit contributions of pro-
duction, say r (v,u), and degradation, say r_(v,u), of the chemical, i.e.,

rviu) = ry(vu)—r_(vu).

We begin with a discussion of a proper production term. The most common definition, which also
appears in the minimal model , isry(vyu) =Pu, P> 0. This approach however fails when
reconsidering the signal pathway of the chemical-receptor binding more carefully. Reasonable ar-
guments promote a fall-off in the production rate at high cell/chemical concentrations. Indeed,
in many cases the chemical-receptor binding induces an internal signal pathway for a saturating
chemical production, viz., the cells’ chemical-production rate decreases at sufficiently high chem-
ical concentrations. In fact, this kind of saturating effect is observed in various pathways besides
chemotaxis, e.g., hormone secretion. Referring to this perspective, a suitable production rate is
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3.3. Some model extensions

given by a Michaelis-Menten-like relation. Exemplary, Tyson et al. [101] employed a production
rate given by

B
ri(vu) = k+ru2’
where K is a constant. Note that in this case the chemical production saturates with increasing cell
concentration and not directly by the concentration of bounded/active chemical-receptor bindings.
A similar relation, although originally established in a different context, was proposed by Moser
[77]]. The following table, Table[3.2] provides three production rates that are commonly studied in
the context of evolution equations for bacteria or simple cells.

Exemplary reference Production rate  Background

Nanjundiah [83] ry(vyu) =Pu  proportional to cell concentration

Hillen and Painter [44] ry(v,u) = Pu_ Michaelis-Menten like

Tyson et al. [101] ri(vu) = B Moser-like

Table 3.2: Overview of particular production rates.

The dilution or consumption rates are assumed to be proportional to the chemical concentra-
tion itself, i.e., r_(v,u) = v, o > 0. This is a common and plausible setting in many cases.
However if the chemical is neither consumed nor degraded, e.g., under the assumption of suffi-
cient nutrients for the cells [101], we can also consider explicit zero-degradation, i.e., ¢ = 0. A
classical alternative of pure consumption by the cells is also modeled by r_(v,u) = owv. This re-
lation is also used in the context of predator-prey systems introduced by Lotka and Volterra, in the
presence of chemotaxis motivated equations it was employed by, e.g., [88]]. A fourth example of
chemical degradation can be again derived by the Michaelis-Menten kinetics in a similar fashion
as before, [52]. For reasons of clarity let us list the above degradation terms in a table , Table[3.3]

Exemplary reference Degradation rate  Background

Tyson et al. [101] r—(vu) =0 no uptake/consumption
Nanjundiah [83] r—(vyu) =awv proportional to chemical concentration

Painter and Hillen [88] r_(v,u) =ouv  consumption by cells, cf. predator-prey
systems

Keller and Segel [52]  r_(v,u) = 2% following Michaelis-Menten Kinetics

Table 3.3: Overview of particular degradation terms.
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CHAPTER 3. Modeling chemotaxis

3.3.4. About the parabolic-elliptic simplification

All of the models considered so far comprise unsteady equations for # and v, wherein the temporal
scale is similar. However, sometimes it is more appropriate to consider different temporal scales.
In particular, this occurs if the run-and-tumble-walk of bacteria is considerably slow compared to
the diffusion of simple chemoactive molecules. This plausible scenario is found in the literature
by explicitly scaling the diffusion, e.g., [73], or even by a stationary equation for the chemical v,
which was the basis for first detailed fundamental theoretical analysis of chemotaxis models, cf.
[42] 150, [81]]. Note that a different scaling of the diffusion processes can cause Turing instabilities
and hence, scaling approaches that are similar to those in [[73[] can also lead to chemotaxis models
that generate such instabilities.
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Discretization of a general chemotaxis
model

Because of the variety of the chemotaxis model introduced in the preceding chapter, it seems
convenient to formulate the discretization for a rather general model of chemotaxis. This section
is therefore dedicated to the formulation of a suitable general model and its FE discretization.
We like to stress that the well-posedness of this following general model in terms of existence
and uniqueness of solutions is not among the topics of this work and the curious reader is kindly
referred to the corresponding literature provided in Chapter 2] Indeed we promote the general
formulation mostly with respect to the application point of view, at the well known cost of mathe-
matical incompleteness, strictly speaking.

In this work, the actual numerical treatment of such a continuous model formulation via PDEs
will be tackled by FEM, those basic notations have already been depicted in the preliminaries,
Chapter 2.1} After a straightforward calculation of the weak formulation of the underlying PDE
we will obtain the standard Galerkin discretization in space. The discretization in time will then
be established by the common theta-scheme, which includes a first-order fully explicit scheme
(forward Euler) for 8 = 0 and a first-order fully implicit scheme (backward Euler) for 6 = 1 as
well as the second-order so called Crank-Nicolson scheme for 6 = 0.5.

4.1. Formulation of a general model

The governing general model is taken from [97]] and reads as follows,

ou = V- (d,Vu—uy(v)Vv)+gu)u,
ov = dAv—owv+s(u)u.

4.1.1)

Another more general formulation can be found in [44]. In the subsequent section we will derive
the FE formulation for our general model (4.1.1), whereas it is more convenient to formulate parts
of the discretization schemes only for particular models. The contributions of the single terms are
referred to the physical processes and the relations to the variants in Section [3] can be associated
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CHAPTER 4. Discretization of a general chemotaxis model

very easily. For reasons of clarity we depict the relations for three designated models explicitly.

Minimal model
The minimal model of chemotaxis as it was studied by, e.g., Nanjundiah in [83]] reads

oou = V- (Vu—uyVvv),
! ( xXVY) 4.1.2)
v = d,Av—v+u.

This system can easily be obtained from the general model (@.1.1) by choosing the following
coefficients
d,=1, x)=x(=const), gu)=0, oa=1, su) =1.

We already discussed this model in Chapter [2]and hence the reader may recall this chapter as ref-
erence.

Aggregation model

The following model mimics the ability of the population u to form multiple aggregates that finally
merge while a blowing up solution is prevented. The modifications of the corresponding terms
have already been considered by, e.g., Tyson et al. [101] and Hillen together with Painter [44]], cf.
Section[3.3] The model reads

oru = V-(duVu—XLVv),
,(1+v)? (4.1.3)

v = d,Av+

14 u?

We note the absence of a depletion term in the v equation which models a constant saturated
nutrients level for u. We arrive at this model by considering the coefficients

X =1/ gW)=0, a=0, s(u)=u/(1+).

By this particular choice of s(u) we obtain a nonlinearity also for the v equation which influences
the overall nonlinear convergence of the underlying solvers. We will spotlight this remark in the
corresponding chapter of numerical observations later on.

Kinetic model

The third exemplary model is originally based on the experimental observations of certain bacterial
populations, e.g., by Budrene and Berg [14]. Modifying the Fisher-term introduced in Chapter [3]
we will provide a higher-order proliferation term (motivated by the work of Mimura et al. [73]]).
A typical model that admits evolving patterns can be stated as

oou = V-(d,Vu—yuVce)+u(l—u)(u—a),
: (V= gu¥e) +u (1~ w)(u~a) e
v = Av—oav+tu.

This model arises by selecting

xv)=x, gw)=1-u)(u—a), dy=1, su)=1,
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4.2. Finite element formulation

where 0 < a < 1 is a constant. Remark that a Fisher-like term with a carrying capacity of K =1 is
recovered by choosing a = 0. A choice of 0 < a < 1 however is a more convenient parameter since
it can be viewed as modeling a threshold that the species must overcome (in terms of a < u) in or-
der to proliferate (until the population reaches the prescribed carrying capacity, u = 1). Figure 1]
plots a sequence of the proliferation term with increasing values of a. The value of a determines
the threshold for a positive growth contribution. Furthermore, let us note that some proliferation

045"

0.1

0.05

growth rate

-0.05

Figure 4.1: Plots of the growth rate for (4.1.4) for four values a = 0,0.1,0.3,0.5.

models explicitly require different scales for the involving physical processes. For example, when
we solely model a particular stage in the growth phase of, e.g., bacteria (cf. the last paragraph
in the appendix [C)), we can safely assume that the scales of bacteria diffusion and chemotaxis,
dy,, X, respectively, are remarkably lower than the scales of the proliferation and the dynamics of
the chemical. Following Mimura et al. [[73]] we can choose a order of e? and € (e < 1) for d, and
X, respectively.

For the numerical treatment of the general model (4.1.1), it can be complemented by usual
prescribed initial values (2.2.2)) and certain boundary conditions, e.g., homogeneous Neumann
boundary conditions (2.2.3) or total flux boundary conditions of the form

n- (duVu—ux(v) Vv) =0, n-Vv=0 on dQ, (4.1.5)

where n denotes the unit outward normal to the boundary dQ.

4.2. Finite element formulation

In order to derive proper fully discretized FE schemes for our general chemotaxis PDE model
at hand together with and or (4.1.3), we will start to introduce the corre-
sponding FE formulations for the spatial discretization step-by-step. As already mentioned in the
beginning of this chapter, we will consider the conventional Galerkin method in this work.

Let us begin our derivations by stating the weak formulation of (4.1.1). We assume that the
solutions u and v exist in some (sufficiently smooth) space V. We multiply both sides of the equa-
tions by a suitable test function, say y € V;, C V, and integrate over the underlying computational
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domain Q

Joyoudx = fQW[V- (du Vu—uy(v) Vv) —|—g(u)u} dx

(4.2.1)
Jowovdx = fgw[dvAv — o+ s(u) u} dx.
After integrating by parts (of certain terms) we reformulate the weak form as
/ youdx = —/ V- (dy Vu—uy(v) Vv) —yg(u) udX—i—/a V(dy Vu—uy(v)Vv) -vds
Q Q Q

/watvdx = —/de\y-Vv—I—W((xv—s(u)u)—i-/ d,yVv-vds,
Q Q 2Q

where the boundary integrals cancel out by making use of the prescribed boundary conditions
(2.2.3) or @.1.5). Hence, the final weak form reads

JoWoudx = — [ VY- (d,Vu—uy(v)Vv) —yg(u)udx
Jowovdx = — [od,Vy-Vv+y(oy—s(u)u)dx.

(4.2.2)

The next step towards a fully discretization concerns the spatial discretization of the weak form.
With the spatial discretization of the approximate solutions uj, = u;(t) and v, = v;(r) which has
been introduced in Chapter[2] i.e.,
(1) = Ljuj(1)9,
vi(t) =X,;vi(t)e;,

(4.2.3)

we can cast (4.2.2) into a semi-discretized form. Since we employ the conventional Galerkin
method, we assume that the test function-space and the space spanned by the basis functions of
u and vy, sometimes termed the trial function-space, are the same. This allows for testing the
semi-discretized weak formulation with the basis functions, i.e., we set Yy = @;, and therefore,
we can present the semi-discretized weak formulation by substituting several occurrences of the
approximative solutions by their linear combinations (4.2.3)),

dllj
9, —2d
;fQ(P(PJ ar X

de
i@;j—d
;IQ(P(‘)J ar X

—Z JoVoi- (duVo; —@;x(vi) Vvn)u; — @; g(uy) @ju;dx,
J 4.2.4)

—ZdeVV(pi -V(pjvj+(p,-(oc(pjvj —s(uh) (pjllj) dx.
J

Note that certain approximative solutions are not substituted, because they give rise to nonlineari-
ties. Indeed, when we consider a matrix-vector form of (4.2.4)) the non-substituted terms require a
matrix formulation with non-constant (nonlinear) coefficients. With the following matrices which
correspond to the continuous counterparts of the corresponding physical processes in the underly-
ing model (4.1.1), e.g., diffusion, chemotaxis, proliferation and reaction terms,

M;; = [o9i9;dx,

Lij = JoVei-Ve,dx,
[KI(WI)L,. = Jox(vn) (Vvi- V) @;dx, (4.2.5)
[G(Mh)}ij = Jo&(un) ¢:i0;dx,
S| = Jos(u) gigjdx.
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the following matrix formulation of (#.2.4) can be derived

MY LK) - Guw)|u
g (4.2.6)
M- = —[dyL+aM] v+S(uy)u.

Sometimes it is more convenient to rewrite the above matrix form of the weak formulation in a
block matrix form

dw
— = B 4.2.7
> (w)w, (42.7)
where w = (u,v)” denotes the block solution vector, and the left-hand side block mass matrix and
right-hand side block matrix are defined as

M 0
M = ,
0 M
4, L+K,(v)+Gu 0
sy )+ 6w
S(u) —d,L— oM

Let us remark that above and for the remainder of this work it is often more convenient to use
the FE coefficient vectors of the discrete solutions, u,v, as arguments for the matrices with non-
constant coefficients (if clear from the context, we omit the arguments).

Remark 4.1 In (4.2.4) we have chosen a particular linearization of the chemotaxis term
Jo V@i - (upx(vn) Vi) dx. We linearized this term in u and obtained a discrete chemotaxis opera-
tor dependent on vy, namely K, (vy), cf. . However, if we face a constant chemosensitivity,
x(v) =%, we basically have two options to cast the above integral into a proper matrix-vector
formulation. Besides the one adopted above, we can also think about linearizing the integral in v
which leads to a discrete chemotaxis operator that depends on uy,, namely

[ﬁl (uh)} ij - /QX (Vo;-Vo;) updx.

These two alternatives can be sketched as follows,

~ alternative current

K1 (uh)v <— QV(pi-(u;levh)dX _— K](Vh)ll.
Is there a difference between those two approaches? If so, what is the most reasonable choice?

The answer to these questions is provided in the work of DeBlois [20]. Therein he studied this
assignment in the context of Navier-Stokes equations, i.e., how to linearize the convection given by
(u-V)u, where u € R s a dim-dimensional velocity field. When following his argumentations,
we clearly favor the linearization via K| (v)w. In fact, DeBlois even provided particular examples
where an alternative linearization leads to wrong solutions.
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4.3. Temporal discretization

Given the fact that our model is nonstationary we need to discretize in time to
obtain the final resulting discretization scheme. As we already pointed out in the beginning of
this chapter, the treatment of the temporal discretization of the time derivative in will be
accomplished by the theta-scheme, whose application to (4.1.1) reads

n+1 _ n
M% — GB(WH—H)WH—H—F(I—G)B(W’l)wn.

After re-sorting the terms by their temporal index we end up with the (block) system
(M—08B(w H]w'! = [(1-0)8B(W")+M]w", (4.3.1)
which can be easily cast into the more general (and convenient) form
AW hw 't = bp(w") (4.3.2)
with the notations

AW = M—-08B(w'!),
b(w") = [(1-0)8B(W")+M|w".

The semi-discretized system (@.2.7)) and the fully-discretized system (.3.2)) will be of special in-
terest in the next sections. While the latter will often be referred to in order to derive particular
iteration schemes (see the following up section), the semi-discretized system will be the focus in
the introduction of the stabilization technique in Section §.5]

4.4. Formulation of the iteration schemes

In the following, we will present the detailed iteration schemes that are subject in this work. There-
fore, let us briefly give a little roadmap for the different upcoming methods. The particular choice
of the iteration scheme depends on the users interests, e.g., in accuracy, computational resources,
robustness, and the underlying model, e.g., complexity, coupling and order of nonlinearity. Partic-
ularly for chemotaxis models, Strehl et al. [97] initiated some preliminary comparative numerical
analysis for certain schemes. Mainly, we can distinguish nonlinear and linear schemes. The latter
require an encompassing nonlinear iteration, whereas the former linearize the given system a pri-
ori, i.e., these schemes work without an explicit nonlinear loop. In this current work we will only
focus on one representative linearization scheme, the so called Linearization via Extrapolation,
which will be presented in the following. Three particular nonlinear schemes will be introduced
afterwards.

4.4.1. Linearization via extrapolation in time

Given a nonlinear system in the general form of we mainly have two options to cope with
the nonlinearity introduced by the argument of the system matrix A. Either we tackle it by some
kind of nonlinear iteration methods, which will be the focus of the proceeding section, or we ap-
proximate A(w"*!) by some linear counterpart. In the course of a linearization via extrapolation
(in time) the basic idea is to consider Taylor expansions of the nonlinear time-continuous terms
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contained in the system matrix, e.g., in our case these are the chemotaxis, growth and chemical
production terms of the general PDE model . Let 9: Ry — R, +— 0(¢) be a twice differ-
entiable function (in time) and let {7,#;,,... } with an uniform step width 6t =1, —,_; > 0be a
discrete subset of R . We will now approximate 9(f,+1) in terms of Taylor expansions. In order
to do so, we expand ¥ centered at ¢, and evaluate it at z, | and #,,_:

Tt:?(tnnLl) = ﬁ(tn)_‘_ﬁ/(tn)(tnn% _tn)+o(5t2)
Tt,?(tnfl) = O(ty) + 0 (ta) (141 _tn)+o(8t2)
= T(ta) + T2 (ta1) = 29(t,) +O(81%)

Since T,%(fy+1) and T,(t,—) are second-order approximations of (t,+) and (t,_), respec-
tively, we can deduce

Ytar1) = 29(ty) —O(tn_1) +O(82). (4.4.1)

Thus, we obtain a second-order linearization (note that the right hand side of (4.4.1) is independent
of t,,1) if the time stepping ot is sufficiently small (to ensure the convergence of the Taylor series
expansion T,,‘?).

We can now easily adopt this technique to the governing nonlinear system given above by
substituting all occurrences of terms depending on w"*! by the corresponding linear extrapolation
WZ-:] = 2w" —w""!. Together with the matrices defined in |i the linearized system matrix for
the general model can be formulated as

n+1 n+1
AR = M+68t {d,L—Ky(wj;/') —G(w;")} 0 @42)
—08:S(w);ih) M+ 68t {d,L+ oM}

Let us remark that this technique eliminates the strong implicit coupling between the two com-
ponents of the solution vector. Hence, it can also be interpreted and implemented as a two-step
solution method. Furthermore, we acknowledge that for the initial time step, i.e., n = 0, we can
safely define w"~! := w" = w'. This way, the initial step of the linearization via extrapolation is
equivalent to one step of the first-order Picard linearization, where the nonlinear iteration is only
exerted once, cf. the upcoming Picard’s linearization (4.4.9) in Section[4.4.3]

As a summary, the linearization via extrapolation is accompanied by two main advantages.
First of all, it does not require a costly nonlinear iteration, it only needs to additionally store one
solution vector. Secondary, this linearization is of second order, in contrast to a pure Picard lin-
earization. However the overall numerical benefits, in terms of efficiency, have to be carefully
revised, particularly for large time steps or in the case of dominating nonlinearities. This will be
particularly addressed in the chapter of the numerical results, Chapter[5] To comply with our aim
of being a first comprehensive guideline of numerical treatment for chemotaxis models, Algorithm
M.T|sketches the scheme of linearization via extrapolation. For the remainder of this work we will
to this scheme as “LIN”.

4.4.2. Nonlinear Richardson scheme

Before stating the nonlinear schemes in detail, Figure[4.2]already depicts a short overview of these
schemes. The Newton-like scheme will not be discussed in full detail in this current work. This
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CHAPTER 4. Discretization of a general chemotaxis model

Algorithm 4.1 Linearization via extrapolation in time (LIN)
1: Initialization: w~! := w?

2: for time step 1 < npx do

3 Build RHS: b(w")

4: Compute linearization: W?;lrl =2w'—w

5 n+1)

6

7:

n—1
Build system matrix: A(w},
Solve the linear system A (W) wit! = b(x")

end for

method naturally arises when the exact Jacobian should not or simply cannot be calculated. In the
case of a resulting lack of a matrix-vector formulation of the underlying Jacobian-vector product,
this was already considered in [97]. Let us remark that the strong decoupled Picard linearization
method was already introduced in [96].

In order to linearize the governing nonlinear system (4.3.2), we employ most commonly either
a Picard linearization or Newton’s method. A general nonlinear Richardson scheme for system
(#.3.2)) can be formulated in the usual way (the superscript m denotes the nonlinear iterate)

Xnil = Xp+PU(xp) 'res(x,), (4.4.3)
where we define the so-called (nonlinear) residual as
res"(x,,) = b(Xx")—AXn)Xn, 4.4.4)

and P"(w,,) represents the iteration matrix evaluated in the nonlinear iterate w,,, corresponding
to either the Picard linearization, i.e., P"(w,,) = A(W,,), or Newton’s method, i.e., P"(w,,) being
(at least close to) the exact Jacobian of A(W,,), say P"(W,,) = J(Wy,) ~ jac(A(W,,)). Sometimes
we drop the explicit arguments in the terms and simply write b” = b(w") or res]}, = res”(w,,) as
abbreviation.

To circumvent the costly task to invert P” in equation (4.4.3), we use the common workaround
to express (4.4.3) in two steps involving the solution of a linear system in terms of

i) P'(xp)y = res"(Xu), 44.5)

ii) Xpil = XptYy.

Hence, after these transformations we end up with the task to solve linear systems of kind (4.4.3)
multiple times to obtain the solution for the original nonlinear system at the (n+4 1) time step,
i.e., a proper nonlinear termination criterion accepts wyy, for a certain iteration number M, as new
solution, w1 := wy,.

For the remainder of this thesis, especially in Chapter[5] we will refer to the monolithic Picard’s
iteration as “P1C”. This iteration scheme can be sketched as in the following algorithm, Algorithm
4.2

Newton’s method

In contrast to the rather simple Picard linearization it might be helpful to discuss Newton’s method
for the governing system (4.4.3)) already here at this point. It is well known from the literature,
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Nonlinear Richardson scheme

A(wW")w" =b"

— W1 = W+ P71 (W) (D" — A (W) W)

Picard linearization (PIC) (Inexact) Newton method (NEWT)

Choose P"(w,,) = A(Wy,) Choose P"(Wy,) = J (W) = jac(A(Wy))

s
s
-

K

Newton-like schemes]

|\

Decoupled Picard linearization

Reduction yields two N x N systems

A11(W,)y1 = res;

Ay, = —Ajy| +resy

Decoupled Newton method

Reduction yields three N x N systems
Jnz) =resy

C(Wn)y1 =res; —Ji2z;

Jnz =Juy

1
1
v

Strong decoupled

Picard’s linearization (DEC)

Figure 4.2: Roadmap of nonlinear iteration schemes. The definitions of the involved vectors and
matrices are provided in the corresponding paragraphs.

Algorithm 4.2 Monolithic Picard linearization (P1C)

Given the nonlinear system A(w")w" = b”
Initialize w' = w"~!
while m < my,x and not converged do
Build system block matrix A(w,,)
Calculate block residual: res, = b" — A(W,, )W,
Solve A(w,,)y = res],
Update solution: w,, 1| = W, +y
end while

2 S AN A

e.g., [22], that today there is a variety of different kinds of Newton methods for particular effi-
ciency purposes. In our work we will restrict ourselves to so-called inexact ordinary Newton and
inexact Newton-like methods. They are characterized by inexactly solving the underlying linear
subsystem (4.4.5), e.g., with an iterative linear Krylov-space solver such as BICGSTAB, rather
than with a direct solver, where the iteration matrix P"(w,,) is the exact or only an approximative

37



CHAPTER 4. Discretization of a general chemotaxis model

Jacobian, respectively. The latter case is employed to reduce the computational work per itera-
tion, e.g., by dropping ‘weak’ terms in the exact Jacobian (sparsing) or by a ‘close-by’ Jacobian
P"(Wm) = jac(A(z)) for all nonlinear iterations, where z # w,, is fixed. However there are cer-
tainly situations where particular choices for the coefficients in the general model (4.1.1)) hinder a
matrix representation of the exact Jacobian system, cf. [97], which actually requires Newton-like
schemes. In the concluding chapter, Chapter [} we will briefly discuss these issues again.

Because the Jacobian is highly dependent on the particular underlying model, we will only
provide it explicitly for the minimal model (4.1.2). The chemotaxis term introduces an additional
FE-matrix in the associated Jacobian, namely

[Kg(u)} = /Q(V‘Pi'V(Pj)udx.

ij

The exact Jacobian evaluated in w,, can now be written as

jacAn) = 1O LX) —03Ks{un) (4.4.6)
: —05rM M+ 08 [d,L+M] | N

Note that in contrast to the system matrix A(w,,) the (1,2)-block is non-zero and hence the itera-
tion matrix loses its block triangular shape.

In Algorithm 4.3] we provided a pseudocode for Newton’s method which is the basis for our
implemented inexact Newton (Newton-like) iteration, referred to as “NEWT” for the remainder of
this thesis. Note that if we issue a direct solver in line [5| we actually end up with the exact Newton
method. Moreover, if we use an approximation of the ordinary Jacobian in line [/} we arrive at
Newton-like methods.

Algorithm 4.3 Monolithic Newton method (NEWT)

Given the nonlinear system A(w")w" = b”
Initialize wo = w" ™!
while m < mp,.x and not converged do
Build system block matrix A(w,,)
Build block jacobian J(w,,) = jac (.A(wm)) > approximation leads to Newton-like
methods
Calculate block residual: res, = b" — A(W, )Wy,
Solve J(w,,)y = res!, > direct solver leads to exact Newton methods
Update solution: Wy, 1| = W, +y
end while

AN A e

o %3S

4.4.3. Decoupled approach

Instead of a monolithic treatment of the system as introduced in the preceding section, sometimes
it is more convenient to decouple the discrete equations in (4.4.5)). Indeed this is a very common
approach when facing only weakly coupled nonlinear PDEs, special shapes of iteration matrices
or striving to limit the computational expenses. In the framework of saddle-point problems the
most common decoupled approach involves the so-called Schur complement, cf., e.g., the sur-
veying paper of Benzi et al. [8]. For chemotaxis PDEs simplified versions of decoupling can
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4.4. Formulation of the iteration schemes

already be found in [96-H98]]. Here we will derive a decoupled scheme that follows the idea of the
Schur-complement. For reasons of comprehensibility we drop obvious indices and arguments and
identify the underlying iteration matrix with

Al Ap
Ar Ap

P (W) =

Provided some block transformations, we can rewrite this system matrix by the following triangu-
lar factorization

Al Ap I ApAx'| [A1—ApAn Ay 0 I 0

Aryi Ap 0 I 0 An| [An7'Ay I

Hence, if the entire block matrix and the submatrix A, are regular, the solution of {.4.5)) admits
the following representation

y = PYw,) 'res

I o [C!' o I —ApAy™!
= 1222 res, 4.4.7)

—A2271A21 I 0 A2271 0 I

where we set C = Aj; — Aj2A2 'Ay;, which is a standard Schur complement reduction. By
expanding (y = (y1,y2)” ,res = (res;,res;)”) we obtain

yi = C !(res;—AnAy 'res;),
y2 = —A22_1A21C_1(resl—A12A22_1b2)+A22_1res2.

Hence, instead of solving the system (4.4.5)) simultaneously, it is sufficient to solve the following
equations

A22 7] = Tresy,
Cy1 = Tres; —Alzzl, (4.4.8)
Anz; = Agyi,

where z; and z, are auxiliary solutions. The original solution y, is re-obtained by setting y, =
7, —17).

The crucial part is the form of C, since it explicitly contains (i) Ay ~! and (ii) the nonlin-
ear characteristic chemotaxis contributions. For particular models/situations the shape of C can
be readily simplified. Exemplary let us have a look on the minimal model with very low chem-
ical diffusion, i.e., d, < 1. In this case Ay, degenerates to Ay ~ —(1+608)M and therefore
C~ A +03t/(1+08t)A;, which simplifies the computations since Ay ~! does not have to be
calculated explicitly anymore.

Remark 4.2 The provided triangular factorization of the block system matrix is not the only op-
tion for deriving a Schur-complement-like decoupled system. Instead of inverting the submatrix
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CHAPTER 4. Discretization of a general chemotaxis model

Ay, we can also consider a factorization of kind

Al Ap I 0| |Aq 0 I A 'Ap
Ary Ap AyAp !t T 0 Axn—AyA;'Ap| [0 I

This is indeed a very popular Schur complement reduction which, amongst others, can be found in
[8]. However, in order to be well-defined we have to require regularity of A1 which is sometimes
a very crucial assumption.

For completeness, let us remark that the factorizations that involve inversion of the A1, and
Ay blocks could also be considered for our application. However, in common literature this is
often not the case because of dimension concerns. For instance, consider the discretization of the
Navier-Stokes equation where A1, is not necessarily a square-matrix.

The task to choose the most suitable factorization and hence the proper Schur complement-like
reduction highly depends on the underlying (chemotaxis) model and definitely give rise to further
research. For the Picard linearization we will see in the next paragraph that inversion of the A1,
block is not feasible, simply because it vanishes for a Picard linearization. However, for the scope
of this work, we focus on the Schur complement reduction provided in ({#.4.7).

After this general formulation of a decoupling of the system via the Schur complement reduc-
tion, we take a look on the specific nonlinear iterations. As mentioned above, we shall present
Picard’s linearization and Newton’s method.

Picard'’s linearization

From the expression of the iteration matrix P"(w,,) = A(w,,) we recognize that the solution of
(4.4.5) admits the more convenient representation

y = PYwp) 'res

I 0| |A; ! 0
—AnlAy 1 0 Ayp!

and thus, the solving procedure can be rewritten as

Ayt = resp, 4.4.9)

Anys = —Ajyy;+res;.

We remark that in our considerations Ay, is often well conditioned (at least under mild assump-
tion on the mesh), such that solving for y, is much cheaper than inverting A;;. Additionally we
might think of simplifying (4.4.9) even more by weakening the nonlinearities. Remember that the
equations (#.4.9) must be solved for every nonlinear iteration. However, the system matrix of the
second equation gives rise to solve this system only once outside of the nonlinear iteration loop.
This strong decoupling has already been proposed and approved by Strehl ef al. in [96]. In the
light of this strong decoupling, the second solution block v**! will be provided by solving the
original system (4.3.2)) with an explicit treatment of the first solution block u”,

AQQV”+l = bz(Wn)—AQ](un)lln.
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4.4. Formulation of the iteration schemes

Herein, we explicitly pointed out the nonlinearity of the (2,1) block matrix entry. In order to solve
for the first solution block u”*!, we employ a nonlinear iteration which only consists of solving
for y; and updating u,, (both representing only the first solution block) in terms of

Ai(Wn)y1 = resy,

Uptl = UyutYyr-

For convenience, we stressed the nonlinearity of the (1,1) block matrix entry. This iteration scheme
will certainly reduce the computational expense in each nonlinear iteration, because only one sin-
gle N x N system needs to be solved. Note that this nonlinear iteration degenerates if the matrix is
only nonlinear in the second solution block, say Aj;(w,,) = Aj;(V,,). This is the case in generic
situations, e.g., when considering the minimal model of chemotaxis (#.1.2)) or the aggregation
model (#.1.3). Hence, this strong decoupling only issues a non-trivial nonlinear iteration if the
underlying model gives rise to u-nonlinearities in the equation for the cell concentration, e.g.,
stemming from kinetic terms as introduced in the kinetic model (4.1.4).

Indeed, considerations like these are the reason for the (at least theoretical) success of inves-
tigating decoupled solvers. Numerical and practical benefits and drawbacks will be discussed in
detail in the chapter of the numerical results, Chapter [5} For the remainder of this thesis we will
refer to this strong decoupled iteration scheme as “DEC”. Let us conclude our current theoretical
thoughts with a sketch of the algorithm for the strong decoupled Picard linearization of an abstract
iteration matrix of the above kind, Algorithm [4.4]

Algorithm 4.4 Strong decoupled Picard linearization (DEC)

. . A11<Wn) 0 u” b](Wn)
1: Given the nonlinear system
)

A21 (u" A22 v b2 (W")

2: Solve Ay V! = by (W") — Ay (u") u*

3: Initialize wo = x* !

4: while m < mpy,,x and not converged do

5: Build current matrix Aj;(X,)

6: Calculate residual: res; = b1 (x") — A (X )0y
7: Solve Ay (x,,)y = res;

8: Update u iteration: W, = U, +Yy

9: end while

Newton’s method

For simplicity, we shall only discuss the ordinary Newton method, as approximations of the Jaco-
bian require little more work. For an exemplary derivation of a second-order approximation of the
Jacobian originating from the aggregation model (4.1.3]), which will be applied in our upcoming
numerical simulations, the interested reader is kindly referred to [97]]. In order to introduce the
ordinary Newton method we consider the system obtained from the minimal model. In the case
of non-trivial/non-zero chemosensitivity and chemical consumption all blocks of the Jacobian are
non-zero. Hence the structure of the decoupling in is maintained. When we recapture the
explicit nonlinearities of (#.4.8) we observe that only the first block row holds nonlinear contribu-
tions in terms of Aj;(v,,) and Aj2(u,,). Therefore only the second equation in is explicitly
nonlinear. In correspondence to the consideration for the Picard linearization this gives rise to
simplify the computational calculus. However in the case of a full block system matrix the strong
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CHAPTER 4. Discretization of a general chemotaxis model

decoupling seems doubtful since the equations (4.4.8)) are accompanied by a ‘two-way coupling’.
The solution z; is required for solving for y;, which in turn is explicitly needed for computing
Z,. Repeating the remark given in the discourse of the general decoupled scheme above, the main
drawback of the decoupled Newton method is the explicit requirement of the inverse of A, con-
tained in the underlying system matrix C.

4.5. Stabilization technique

A robust numerical solver for conservative physical differential equations can be mainly charac-
terized by five design principles, namely

1. consistency,

2. algorithmic stability,
3. convergence,

4. mass conservation,

5. positivity preservation.

While the first three properties describe the necessary requirements for the pure numerical scheme
(commonly consistency and stability imply the convergence of the numerical scheme), the last
two principles link the quality of the scheme to the underlying physical system to model. Indeed,
the last two points are essential when it comes to interpreting the provided solutions in a proper
physical (and biological) setting.

Under suitable discretization restrictions, we can safely assume the convergence of a proper
implementation of the standard discretization scheme presented in the preceding section. In what
follows, we will focus on presenting one promising way of admitting also mass conservation and
positivity preservation in order to obtain (converging) physical meaningful solutions.

Numerical solutions of standard discretization schemes as introduced in the preceding section
suffer from ill-conditioned operators by adopting non-physical behavior such as negative function
values or strong oscillations. One promising approach of tackling this issue was introduced by
Kuzmin et al. [59,162]. Therein, an Algebraic Flux Correction (AFC) was developed which is
based on the idea of preserving the positivity of the solutions. In terms of a classical one-step
method for the temporal discretization and non-negative basis functions this can be formulated as

X'>0 = x"'>0.

Moreover, in the course of the development of the AFC methodology for models of incompressible
(divergence-free) flow-fields without source/sink terms, the property of positivity preservation was
accompanied by the consistent numerical property of being Local Extremum Diminishing (LED).
For the readers convenience let us therefore very briefly recapitulate the basic definitions of LED
frameworks.

Definition 4.1 (LED) In the absence of source/sink terms, a discretized scheme is called LED, if
local maxima/minima do not increase/decrease with time.

One-dimensional LED schemes can also be proven to be a subset of general Total Variation Dimin-
ishing (TVD) schemes which strives to diminish the ‘wiggliness’ of transient solutions in terms
of

TVW't) < TV(W'), with TV (u) = / 19,u] dx.
Q
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For detailed references the interested reader is kindly referred to Jameson [51]] and the references
therein.

We remark that the chemotaxis velocity is not divergence-free, which gives rise to a zero-order
reaction term in the equation for u. Moreover, interesting applications of kinetic terms, e.g., model
(#.1.4), induce (cell) growth and death which do not yield mass conservation in general. In Section
M.5.4)lwe will see that the AFC concept is still applicable and turns out to be a promising approach.

In the following we will describe the design principles of an AFC scheme with a particular
focus on the embedding of such a scheme into the final resulting discretized nonlinear system for
our general model of chemotaxis (@.1.1).

4.5.1. The concept of AFC

In our context AFC can practically be considered as a blending strategy of the so-called high-order
scheme, i.e., the previously introduced standard Galerkin scheme, and a numerically dissipative
counterpart, usually referred to as low-order scheme or formulation. Because the latter deteri-
orates the overall second order accuracy of standard Q; Galerkin schemes, we will adopt this
nomenclature for the two differently accurate schemes. Moreover, an intermediate accuracy will
be referred to as being of mixed order for the remainder of this work.

To give a first very brief introductory to AFC, its concept can be sketched as a two-step
methodology. In a first step, the original high-order scheme is transformed into a low-order scheme
that introduces as much numerical dissipation as it is required to ensure ‘stable solutions’, a more
precise criterion is given shortly. In a second step, the overdissipative parts of the low-order
scheme that cause excessive smearing of the solution profile are canceled by blending the low-
order with the high-order solution pointwise.

A major design criterion for a proper stabilized transient discretization scheme for (.3.2)) is
the preservation of positivity of the numerical solution. Remember that for chemotaxis models, the
solution x = (u, V) represents the population of cells and the density of chemical agents, respec-
tively, so that positivity preservation is naturally recommended. The following theorem provides a
handy condition for the monotonicity of matrices and is also often used to prove discrete maximum
principles (DMP).

Theorem 4.1 (M-matrix property, cf. [103]) If A = {a;;} is an irreducibly diagonal dominant
matrix with a;; > 0 for all i and a;; < 0 for all j # i, then A is nonsingular and its inverse yields
A~ > 0 component-wise.

Hence for the system (4.3.2)), a sufficient condition for positivity preservation reads

Corollary 4.1 Letb(-) > 0 for all nonnegative arguments and A satisfy the conditions of Theorem
then the system yields positivity preservation.

Notably, we recognize that, under mild assumptions on the discretization, system (#.3.2) satisfies
the above conditions in the case of a dominant diffusion term and a lumping of the mass matrix
M = {m;;} in terms of

M, = diag{m;}, mi=) m. 4.5.1)
j
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This stems from the fact that the discrete diffusion operator (consider for instance the common
five-point stencil) already satisfies the M-matrix property for the standard Galerkin approach.

However generally speaking, the M-matrix properties are often violated by standard Galerkin
discretizations. In our specific case of chemotaxis-driven PDEs, the main ‘troublemaker’ can be
identified by the discrete contributions of chemotaxis, i.e., K, K;. Moreover, in a fully discretized
system the M-matrix properties is also violated by large time steps. It is well known that even if all
coefficients of the semi-discrete scheme have the correct sign, a CFL-like condition must
hold for the fully discretized system to possess the M-matrix property [61, section 3.3.3].

So the very first step towards a full AFC scheme is to transform the underlying system (4.4.5)
into a positivity preserving discretization of low-order. Beside the DMP condition we also require
the transformation to hold the law of mass conservation, for that the main physical nature of the so-
lution should be maintained. In particular Kuzmin et al. suggested artificial diffusion to fulfill the
requirements of DMP and mass conservation. Furthermore their transformation yields the LED
criterion. To recapture high-order where possible, we apply a limited amount of compensating
fluxes which will still yield the DMP, mass conservation and LED criterion. The compensating
antidiffusive fluxes can be either incorporated into the nonlinearity (nonlinear AFC-schemes) or
they can be linearized, explicitly computed and applied in a post-processing fashion. In this work
we will focus on the explicit application of compensating antidiffusion, since it is an efficient
variant and has already been approved in the context of chemotaxis models [96} 98]]. The limiter
coefficients are defined by the so-called Zalesak limiter in a symmetric fashion such that mass
conservation is also preserved in the limiting step.

In the following course of demonstrating the above methodology it is helpful to distinguish
between the semi- and the fully-discretization of the problem at hand. We will therefore follow
the ideas of Kuzmin in [60] by first take a look on the spatial discretization, the semi-discretized
system, before going on to the temporal discretization, the fully discretized system. Hence, we
take some steps back from the underlying system and identify its corresponding semi-
discretized system by the general formulation (4.2.7). Moreover, for the sake of simplicity, we
will derive all schemes in the case of only one single variable, i.e., we consider a semi-discretized
system of kind

du

dr
Herein the matrices are explicitly no block matrices and u corresponds to one single solution vari-
able only.

= B(u)u7 4.5.2)

4.5.2. The low-order formulation

Before we turn to the low-order scheme for the semi-discretized system (4.5.2)), some introductory
words are advisory, since the following derivations use terms that might be misleading for certain
readers. As we will outline in the numerical state of art in Chapter[5|positivity preserving schemes
have already been developed by several authors. Mainly, these authors used Upwinding techniques
to approximate the fluxes generated by the chemotaxis term in an adequate manner. In this context
let us remark that Upwinding is equivalent to adding artificial diffusion. Since we will make use
of both of these terms, let us briefly recapture the reason for this ambivalent usage, which is taken
from Brookes and Hughes [13]].
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For simplicity, let us consider a straightforward finite difference (FD) discretization of the one
dimensional scalar stationary convection-diffusion model

u'(x) = cu(x), forxeQ=(0,l), (4.5.3)

where ¢ > 0 is the constant velocity. Note that the derivatives in this ordinary differential equation
are denoted by primes, u’ and u”. Let the (spatial) discretization be uniform with step width
Oh =1 /imax, imax denoting an integer, and the discretized solutions be indexed by the discretized
interval under consideration, i.e., u(ih) in the continuous space corresponds to u; in the discrete
space. The standard Upwind discretization for the convective part, i.e., along the positive stream,
reads

u'(i8h) =~ (u;—wu_y)/0h,
and the standard central difference scheme for the convection and the diffusion read
Lt/(iSh) =~ (Lti+1 — ui,l)/(28h) s
u'(idh) =~ (upry —2u+ ui,l)/ﬁhz .

Now we can relate the approach of artificial diffusion with the one of Upwinding for the convection
term by means of

(thiy1 —uir1)/(20h) (central difference for the convection)
—(8h/2)- (w1 —2u;+u;1)/8h*  (additional artificial diffusion) (4.5.4)
= (uj—uj_1)/dh (Upwinding)

Thus, if we employ the central differences for the convection term and add as much diffusion as
Oh/2 to this discretized operator, then we obtain the standard Upwind discretization of the con-
vection term. Note that the introduced artificial diffusion has to be shifted to the right hand side of
(#.5.3), hence, there is a negative sign in the relation (.5.4).

In terms of this interpretation, the terms of Upwind schemes and artificial diffusion approaches
will be used interchangeable for the remainder of this work.

Let us now turn back to the low-order formulation and derive the low-order scheme for the
semi-discretized system (4.5.2)). It is a very common practice to approximate the (consistent) mass
matrix M by its diagonal counterpart in terms of the lumped mass matrix, cf. (#.5.1). Although
this lumping can notably affect the accuracy of the scheme, the favorable practical properties of a
diagonalized mass matrix, such as its simple inverse, mostly dominate. Moreover we will see that
the loss in phase accuracy, which is caused by the lumped mass matrix, will be countered by the
subsequently introduced flux correction. For the formulation of the low-order scheme, the diag-
onalization of the consistent mass matrix is of particular interest, since it cancels out entries that
cause a threat to the M-matrix properties and provides an easy proof for the positivity-preservation
of the semi-discretized scheme. Let us additionally remark that diagonal mass matrices also arise
naturally, e.g., for the nonconforming Crouzeix-Raviart element or for a special choice of the un-
derlying quadrature rule. Here we will only consider the ‘artificial’ diagonalization of the mass
matrix via (4.5.1). For detailed discussions on this kind of mass lumping, the interested reader is
referred to the short surveying paper of Wendland and Schulz [[105] and their references therein.

Besides the lumping we take care of the ‘trouble-making’ entries, b;; < 0 for j # i with
B(u) = {b;;}, by adding a symmetric artificial diffusion operator D(u) = {d;;}. We drop the
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nonlinear dependencies when they can easily deduced from the context. For convenient reasons,
this operator should provide a zero row/column sum. Kuzmin et al. proposed the following coef-
ficients

dl'j :max{—bij,O, —bji} ZO, ]7&1 and dil'z —Zdl'j. (455)
J#i
Let us first remark that a possible nonlinearity of B also imposes a nonlinearity in D. We note fur-
ther that this definition is just enough to eliminate negative entries, hence, we have
b; ;= b;j+d;; > 0. However, we acknowledge that the symmetry causes overdiffusive entries
which has to be rectified. Before turning to this assignment, let us quickly prove that the above
choice of the modified transport operator B = B+ D indeed also yields the LED criterion.

Together with the upper definitions the semi-discretized system is transformed into

du ~
Ly = B(u)u, (4.5.6)

Under the assumption that B(u) has zero row sum (e.g., we assume incompressibility of a corre-
sponding flow-field) the i row reads
dlll' .

m; dar = Zzij(uj—u,-). (4.5.7)

J#i

Let u; be a local maximum/minimum, i.e., u; —u; <0 or > 0 for all j # i, respectively (note that
we implicitly assume that the FE matrices have only local stencils, i.e., b;; = 0 if the nodes i and
J are not nearest neighbors). With b;; > 0 for all j # i we obtain

mflzij(“j —w) <0 (or 20), Vj#i
dll,‘
dr

That is, beside the positivity, we see that local extrema cannot be amplified by the scheme. Un-
fortunately a theorem by Godunov [35] states that linear monotonicity-preserving schemes, which
particularly contain our approach {#.5.6)), can at most be first-order accurate, hence it is termed
low-order scheme. To re-obtain second-order accuracy where possible, nonlinear limiters are re-
quired (even if the governing PDE model is linear).

= <0 (or >0).

Remark 4.3 In correspondence with a simple one dimensional scalar example of Kuzmin and
Turek in [63]] we see that the definition of the discrete upwinding term (#.5.3)) leads to the standard
upwind method and hence is of first-order accuracy.

To the best of our current knowledge, however, there is no notably theoretical foundation of the
(first-order) accuracy of the definition by means of the resulting semi-discretized scheme
([{.5.6) in the context of a general discretization in space, e.g., FE in two dimensions.

4.5.3. The explicit flux correction

Now that we have a semi-discretized low-order scheme of kind (.5.6) at hand, this current sub-
section is devoted to the challenge of defining a suitable antidiffusive correction to re-obtain high
order where possible. In essence the (common) idea is to add a proper correction term f to the
right hand side of (4.5.6). A straightforward choice for this term is derived from the difference
between the residuals of and the original high-order Galerkin scheme (4.5.2)), i.e.,

du

f = (M.—M)L —D(uu. (4.5.8)
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Together with the symmetry of the above matrices and an edge-wise decomposition, the residual
error yields the following component-wise representation

fi = Y. fi with f;; = — fii,
J#

where the raw antidiffusive fluxes from node j to node i are denoted by f;; and can be written as

d
fij = {mij&"’dij}(ui_uj) (4.5.9)

In order to control the amount of raw antidiffusive flux that will return to the scheme, we limit the
single contributions of (4.5.9) by symmetric solution-dependent correction factors a;; € [0, 1], i.e.,
the AFC scheme reads

du

Ly = Bu+f  with f; =Y ofis. (4.5.10)

J#
Let us stress that indeed the values of o;; balance the (artificial) diffusivity of the scheme, e.g., for
o;; = 0 we arrive at the low-order scheme and for o;; = 1 we re-obtain high order. Additionally,
with a solution-dependent choice of these correction factors, we have a scheme at hand that is

(in correspondence to Godunov) potentially more than first-order accurate, since it is nonlinear
overall.

In the course of the temporal discretization of (4.5.10) with the theta-scheme, we will reveal
another key-property of AFC schemes. Therefore let us briefly provide the high- and low-order
fully discretized schemes,

M-08B"u""!' = [M+(1-6)5B"|u", 4.5.11)
M, - 08B u"™! = [M+(1-6)5B"]u". (4.5.12)

Here we use the abbreviation B" = B(u"). Referring to (4.5.8) and (4.5.9) the corresponding raw
antidiffusive fluxes (here explicitly with respect to the old and current solution) admit the following
decomposition

fi@ et = m,'j(u;““]—u?“)—m,’j(u?—u?) (4.5.13)

+8 [0 (T — i)+ (1-0)df (uf —u)].

Hence, the fully discretized AFC scheme is formulated as
M, — 08B u"! = [M,+(1-6)&B"ju" +fu""! u"). (4.5.14)

Here, we easily recognize that this scheme is implicit in time even if we choose 6 = 0. Moreover,
this implies that even in the case of linear system matrices, i.e., B” = B, we eventually have to solve
a nonlinear system. This is a main drawback of this formulation. However, amongst others, there
is a linearization technique for these kinds of AFC schemes that does not necessitates a nonlinear
treatment of the antidiffusive fluxes (#.5.13). In [60], Kuzmin introduced an explicit correction of
a “transported and diffused” end-of-step solution, as in the case of classical diffusion-antidiffusion
methods. His principle idea was to compute one low-order solution per nonlinear iteration, e.g.,
following , and correct its nonlinear converged counterpart, say u”, outside of the nonlinear
iteration via

Mo = Mgl + S f(ut,u). (4.5.15)
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Herein, the corresponding raw antidiffusive fluxes are defined as,
fip = my(ig —uf) + dis(up —u5), (4.5.16)

where we use the following approximation for the time derivative u* = (iik, ..., #k) stemming

from the semi-discretized system (4.5.6),
ul = M. !Bl (4.5.17)

Note that since M is a diagonal matrix, this value can be directly computed without actually solv-
ing a linear system.

We saw that the whole process of solving the presented AFC scheme for a nonlinear model of
type (4.5.T1) can be accomplished by nonlinearly solving the low-order counterpart (4.5.12)) and
correcting the obtained overdiffusive solution only once per time step. The additional numerical
costs are hence mainly determined by the computation of the artificial diffusion D once per non-
linear iteration and by the construction of the antidiffusive fluxes a;;f;; once per time step. Note
that indeed the nonlinear solution of the low-order scheme (4.5.12) is usually less expensive than
the original high-order Galerkin scheme ({#.5.11)), because the latter scheme does not satisfy the
conditions of Corollary 4.1]in general.

Let us notice that in the light of Corollary A.1] and the fully discretized low-order scheme
(#.5.12) the application of the one step theta-scheme can lead to a CFL-like restriction on the time
stepping. In fact, we remark that the scheme does not generally satisfy the conditions of the corol-
lary if © < 1, since the right-hand side of {.5.12)) is not guaranteed to be positive. In this case
a proper CFL-like condition must hold for the corresponding discretization, cf. [61}, theorem 3.29].

Antidiffusive flux limiter

The goal of a proper choice of the correction factors o;; € [0, 1] is to allow as less artificial diffu-
sion as possible in terms of positivity-preservation. We recall that o;; = 0 and o;; = 1 refer to the
low-order and high-order reconstructions, respectively. In the following we present a symmetric
limiting strategy that was proposed by Zalesak and approved to keep the solutions from exceeding
local maxima and minima, the interested reader is kindly referred to, e.g., Kuzmin et al. [59,(62]]
for details.

0. In a pre-limiting step we cancel the fluxes that would impose further diffusivity and tend to
flatten the solution profiles instead of steepening them. The former is clearly undesirable,
hence, we nullify all such fluxes that point in the same direction as the solution fluxes, i.e.,

. L L
fij=0, if fij(uj —u;) > 0.
1. In the first step we calculate all positive and negative antidiffusive fluxes into node i,

Pt = Zmax{(),ﬁj}, P = Zmin{O,fij}.
A J#i

2. In order to keep the solutions from exceeding local maxima and minima, we compute the
distance to them,

Q" = max {O,H}i?((ug — uf)} , Q7 =min {O,rggl(uf - ulL)} .
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3. Correspondingly, to limit the net increase to node i, we calculate the maximal correction

factors,
. mQ+ B . m-Q.ﬁ
RF=min{1,—=L % R =min{ 1, —~— 3.
| { SfPf} | { StPf}

4. With taking care of the symmetry of the final correction factors we define,

min{R;",RJT}, if f;; >0,

min{R; , R;’ }, otherwise.

Remark 4.4 Notably, all the derivations and modifications that we introduced above are of al-
gebraic character, i.e., they work on the involved discrete matrices and vectors directly. Whereas
many alternative stabilization approaches modify the governing model on the continuous level by
adding highly problem dependent stabilization parameters, AFC does not require any additional
stabilization parameters. The paradigm of AFC does not depend on the origin of the underlying
(non-)linear system. In other words, AFC is very flexible in terms of also being applicable to
different discretizations schemes such as finite volumes (FV), FD or discontinuous Galerkin meth-
ods (DG). In these cases the limiting techniques, which also crucially depend on the particular
underlying model, requires some modifications.

4.5.4. Application to chemotaxis

Here, we focus on the application of AFC for the two nonlinear Richardson schemes and leave
the corresponding straightforward formulation for the linearization via extrapolation to the reader.
The application of AFC for the decoupled scheme (4.4.8)) can also be readily derived from the
upcoming formulations for the nonlinear Richardson schemes.

The subsequent considerations take into account that the application of the AFC scheme can
also be directly addressed to the governing fully discretized system rather than its semi-discretized
counterpart. We will therefore first of all discuss a proper transformation of system (4.4.5) into
its low-order equivalent. After obtaining the corresponding overdiffusive, nonlinearly converged
solution we restore the high order, where possible, via the explicit flux correction. For the readers
convenience Figure [4.3] depicts these steps. Again for reasons of simplicity we will restrict the
upcoming derivations to the minimal model of chemotaxis.

In our case, the velocity field is given by the gradient of the chemoattractant, i.e., V= Vv,
and does not yield incompressibility in general. Particularly in terms of equation (.5.6), this
implies that we cannot assume B(u) having a zero row sum and hence, we cannot cast our discrete
system into the form (4.5.7), i.e., our entire numerical scheme is not LED. However, it can still
be positivity-preserving if a suitable CFL-like condition holds for the explicit and implicit part.
A more detailed consideration of our application reveals that, in fact, the discretized chemotaxis
flux can be decomposed in a LED and a non-LED part, which allows us to cast the flux at least

partially into equation (#.5.7), cf. [39].
(B(u)u)i = Zbij”j
J

= Zbij(uj—ui)+ Zbijui

J#i J
—_— =
LED part non-LED part
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If the row sum of B(+) is negative, the non-LED part poses hazards to the overall LED property,
whereas a positive row sum is harmless. From the modelling point of view, the non-LED part is
the reason for local accumulation of the chemotaxing entity and must not be neglected. For the
remainder of this chapter we must therefore keep in mind that the LED property is only partially
preserved for chemotaxis problems. The positivity, however, can still be entirely preserved when a
suitable CFL-like condition holds. This condition must hold for both the explicit and the implicit
Euler, because of the possibly varying signs of entries of the discrete chemotaxis operator, i.e., K;.

High-order Galerkin scheme

P W)y = res"(Xp)

W+l = Wm+y

Low-order scheme

(positivity and mass preserving)

Pr(w,)y = res’(xy)

Wntl = Wity

n+l .

l

Explicit flux correction

witl = w8t (wyth wh)

Figure 4.3: Schematic outline of the AFC for a time-dependent system.

Low-order formulation

When applying the concept of AFC to our governing chemotaxis system (#.4.3)), it is useful to
distinguish the schemes according to the nonlinear treatment, e.g., either via the Picard lineariza-
tion or Newton’s method. Definitely, the latter alternative needs special handling (note that the
artificial diffusion operator is not differentiable) and therefore we start with the former variant.

Preliminary studies revealed that under mild assumptions on the geometric properties of the
mesh (no sharp angles, moderate aspect ratios) the most DMP and LED criterion violating terms
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act on the first block row in (#.4.5)), i.e., the u equation. It is therefore sufficient to only manipulate
this block row in terms of adding artificial diffusion.

Low-order formulation for Picard’s linearization
With recalling the iteration matrix for the Picard linearization

P (W) = A(Wp)

we define the (approximative) low-order system of (4.4.5) by

AWn)y = res'(x,), (4.5.18)
where the transformed iteration matrix and residual read

Ao M, + 08¢ [L— (K (vy) +D)] 0
Xm =
—08rM M+ 68t [d,L+M]

res’ (x,,) = b(Xx")—A(Xpy)Xn
with

M u" —(1-6)8r [L — (K;(v") +D)] u"

b(x") =
MV" — (1 —6)8t [dy LV + Mv" — Mu"]

The artificial diffusion operator is constructed in correspondence to K ()

dij = di./(') = max{_kli,‘(')aoa_klﬁ(')} >0, j#i and d;; = _Zdij-
J#i

From this formulation of the low-order system the reader can easily derive the corresponding sys-
tem for the decoupled scheme (4.4.8)) since the modifications only concern the first block row, i.e.,
only the second equation in (4.4.8) requires corresponding modifications.

Low-order formulation for Newton’s method

For Newton’s method, the proper definition of a low-order iteration matrix is a bit more delicate.
Basically, we firstly have to transform the high-order system matrix A(w,,) into its low-order
counterpart A (W,). Secondly, we have to approximate its low-order Jacobian. Note that this will
naturally lead to a Newton-like method (rather than the ordinary Newton method), since the dis-
crete upwinding process is not differentiable in the classical sense. This renders the assembly of
the (approximated) Jacobian a computationally challenging task.

Let us turn to the derivation of the low-order scheme in more detail. As the underlying Jacobian
can only be approximated, let us denote by

Gowy = [0 Jaw)

j; (Wn)  J22(Wi)
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the second-order divided difference approximation of the low-order Jacobian, i.e.,

_ ﬂ(wf)w;r o fl(w]_)wj_ l_
{[3(Wm)]ij} ~ [ } 26[ }
+_

with w;” = w,, £ G e;, e; being the 7" unit vector and ¢ being some relative deviation parameter
whose particular choice can crucially effect the performance of the Newton-like method.
Particularly for our system it is more comprehensive to rewrite the approximation of the Jacobian
as

A(wh) —A(w7)

[?J(Wm)} .= . (4.5.19)

e
A(w])+A(w;) ]

€l .

It is useful to look a little more carefully on this expression, since the second block row of ﬁ() is

indeed linear. Since N denotes the number of degrees of freedom per variable, our entire system
is a 2N x 2N system. The first term in (#.5.19) vanishes for i > N and the second one reduces

to [(—G M M+66{L+M})e j] . Carefully rewriting every single block contribution to the
1
block Jacobian we end up with the following blocks

Contributions to JAfl (W) For the indices 1 < i, j < N the only non-zero contribution is given by
the second term in (4.5.19), i.e.,

[fﬁ (Wm)} =

ij

w5+ An(w?)
2
ij

M, + 081 (L —0.5K;(w}) — 0.51'(1(w;)>] . (45.20)
ij
Here and hereafter we define

K (w) = K(wW)+D,

where D is the discrete Upwind operator introduced above. Particularly for our designated
chemotaxis operator K () we can even simplify the above expression since K;(+) is only
nonlinear in the second block row j > N, i.e., K;(w) = K;(v). Therefore equation
can be rewritten as

)] - =

1y

M + 63t (L. — 0.5K, (w)) —O.Si(vl(wj)>]

ij

M, + 08¢ (L—fi(wm)>] . 45.21)
i

Contributions to j?z(wm) For the indices 1 <i < N and N < j < 2N the only non-zero contri-
bution stems from the first term, i.e.,

[JTZ(W'”)} i(j—N) -

- [(f(] (W) —K, (wj)>um] . (4.5.22)
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We remark that in the absence of Upwinding, i.c., K;(-) = K (-) the above expression sim-
plifies to

— 0t |/~ . =~
[le(Wm)L(j_N) = T [(Kl (Wj )—Ki (Wj ))“m] '
4
= —00or [K] (ej) llm]
i
— 208 [Kx(u,)] .

ij
In other words, the approximation of the high-order Jacobian coincides with the exact Jaco-
bian.

Contributions to E (W) Since the (2,1)-block is linear, there is only the contribution stemming
from the system matrix itself, i.e.,

i(wn) = Jo = —68M. (4.5.23)

Contributions to ,]sz(wm) As in the previous block we simply obtain

JnWn) = Jn = M+608(d,L+M). (4.5.24)

At this stage of AFC application we have a corresponding low-order scheme at hand. As in-
dicated in, e.g., Figure 4.3] the only remaining task is to choose the explicit flux correction via

(4.5.15).

Applying explicit flux limiting

By virtue of the general discussions in Section[4.5.3] we do not employ implicit AFC schemes for
chemotaxis models in this work. We would rather defer this challenge to ongoing future research.
Here we state the formula for the explicit AFC scheme as introduced above. Note that therefore
the flux correction applies to both nonlinear Richardson schemes in the same manner.

Since we imposed artificial diffusion in terms of equation (4.5.6) only on the first solution
block u we also promote the flux limiting to be only applied on this part of the solution. Let us

denote the nonlinearly converged low-order (intermediate) solution by WZH (independently of the

choice of the underlying nonlinear solution method). The explicit flux correction of uZ“ reads

L (AR 2. s (AR VO

The fluxes are defined as in (@.5.13)-@.5.17).

Practical concerns of applying AFC for Newton’s method

From the theoretical point of view the aforementioned AFC-scheme improves the solution in terms
of preserving positivity and non-oscillatory profiles, particularly for ill-conditioned chemotaxis
systems. However, we like to point out that a naive implementation of this scheme is not competi-
tive with respect to computational expense. In the next paragraph we will present the main reason
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for this postulate.

Algorithms that embed nested loops can often be optimized or at least significantly accelerated
by shifting the main workload to the outermost iteration or, in the best case, outside any loop. In
the context of algorithmic schemes for solving PDEs, possible pre-calculations of vectors, right-
hand sides and matrices are of particular interest.

Here, since we implemented an explicit AFC-scheme, the main computational costs will be
spent in calculating the discrete Upwind operator D. Because of the nonlinearity of the chemotaxis
operator K; = K;(w) = K;(v) we have to calculate the contribution of D in every nonlinear
iteration. The main drawback is that this Upwind operator cannot be easily split up in order to do
some global pre-calculations before entering the nonlinear loop. In fact from the definition of K,
we know

= /Q(V(Vicej)-V(pj) (Pi]

kl L

Ki(vtoe;)

kl

(L(V%WV%>%]

= /Q (VV'V(PJ) o

+o
Kl

ki

= |Ki(v)

+o
K

K(e;) (4.5.25)

kl

In general, however, the Upwind operator D yields

D D(vtoe))

— max{ - :Kl(ViGej)LfO’ _[K](Vicej)}kz}

kl kl

= max{ — :Kl(V):i:G K, (ej)}kf()’ —|:K1(V):t0 K, (ej)}kl}

” max{ - :Kl(v)}kl,o, - {K] (V)Ld} (4.5.26)

to max{ - [Kl(ej)]kl,o, . [Kl(ej)]kl}.

Precisely speaking we tend to over- or underestimate the contributions of Upwind when applying
the expression on the right-hand side of the inequality in (4.5.26) (also depending on the + sign)
in order to shift some workload outside the nonlinear iteration. We see that the approximation
of the low-order Jacobian seems to be a very costly task. As we can see from the expressions in
— the main computational effort will be expensed by the (1,1)-block, since only
this term crucially depends on the perturbation 06 e;. In fact, this block has to be build in a loop
over all ej, i.e., in terms of FE language, in a loop over all degrees of freedom of the current FE-
space (note that the block solution has overall 2N degrees of freedom). Algorithm [4.5] sketches
the computations for assembling the approximated Jacobian in one particular, say m™, nonlinear
iteration step, i.e., J(Wy,).

Note that in the light of we save some computation time by assembling K; (w) outside
the j-loop, see line Moreover the assembly of K;(e;) (j > N) in line can be readily improved
by comprehensively studying its definition and the underlying FE-space. Let us recall the main
assumption of our underlying FE discretization, i.e., our FE trial and test function-space coincide
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Algorithm 4.5 Computing the approximated low-order Jacobian J (w) (given w)

Require: Let us assume that all linear matrices, i.e., M,M; and L, and all parameters are passed

10:

to this routine

: Assemble K;(w)
Calculate K; (w) = K;(w) +D(w)
~ <N -
Build jacblock(1,1): [(w)] = M. +08r (L—K1 (w))
'~ TSN v
Build jacblock(2,1): [J(w)| .= -0t M;;
L 41> _
~ 1/>N
Build jacblock(2,2): [J(w)| . M+ 00t (d,L+M)
L J1>
L ij
for j =N +1,2N do
Assemble K (e;)
Calculate ﬁ(wji) =Ki(w)£K(ej)+ D(w;‘L)
g ~ 1/ 0t | [~ . — _
Build jacblock(1,2): [H(W)} N 2 [(Kl (W) —Ki(w; ))u] )
ij
end for

and are defined by Qi, i.e., bilinear-quadrilateral elements whose degrees of freedom are the func-
tion values at the corner vertices (cf. Chapter [2)).

As we recall from (@.2.5)) we have

{K“ek)},-, = /QX(thkV(pi)(pjdx.

From the assumptions about the FE-space above, we remark that the integral vanishes for most of
the i- j-combinations, simply because for a given index k the support of the integrand is already
covered by at most four neighboring elements of node k. Figure illustrates these non-zero
contributions on a simple mesh. In other words at most only nine degrees of freedom contribute

Figure 4.4: Exemplary grid section depicting the non-zero contributions to matrix K;(e;) for a
given node k. Only the gray-shaded elements and their corresponding nodes, marked by a dot,
contribute non-zero entries.
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to K (ex). Let Ny denote these degrees of freedom, then we have

[Kl(ek)}ij — 0, fori,j&N;. 45.27)

This consideration not only saves enormous memory (precisely speaking there are only 81 non-

. . . N;
zero entries), but also allows for a fast matrix assembly. We therefore substitute K; (e;) by K|’ (e;)
in line (7, wherein N; denotes the restriction of the matrix to the contributions of the 81 entries.

In addition, if we use a uniform and fixed grid, we can also make use of template matrices. For
example let k, be a particular inner node and let K; (e, ) be assembled and stored globally. Then
the assembly of subsequent matrices K (e ), where k refers to an inner node, can be enhanced by
copying corresponding entries of the template matrix K (e, ). In other words, the matrix entries
of K (ex), for k referring to an inner node, do not require explicit calculations anymore.

Remark 4.5 Firstly, concerning the stabilization of the chemotaxis term in the low-order formu-
lation let us remark that in the case of the general chemotaxis model (#.1.1)) the formu-
lation yet ignores possible negative contributions from the discrete proliferation term G(-) and
the chemical production term S(-). This is intended by the author, since source and sink terms
usually require more special care due to their physical nature, e.g., missing mass conservation.
The treatment of sources and sinks in the context of AFC stabilization methods is still a vital topic
of current research and hence cannot be satisfactorily discussed in this present work.

Secondly, we remind ourselves that in our formulation we do not modify the second
row-block. However, for consistency reasons we recommend to use mass lumping for the cor-
responding terms, which, in turn, entails also an explicit flux correction for the second solution
block. In fact, another selling point for employing mass lumping is the simplification of the re-
sulting system. Note that as the time stepping keep decreasing, the crucial task is to invert the
mass matrices, and if those are diagonalized, the challenge of inverting can indeed be easily ac-
complished. Let us state the modifications for the mass lumping of the second row-block for the
minimal model of chemotaxis. After substituting all consistent mass matrices in this row-block
with the lumped counterparts My, the correcting flux reads

dv
r = (ML _M)E — (ML —M)V+ (ML —M)l.l.

Similar to the flux in the residual error can be casted into the following representation

Fo= LAy witfy==1,
J#
where the raw antidiffusive fluxes from node j to node i are denoted by f;; and can be written as

d

fii = mif[&(vi—vj')—(Vi—Vj)+(”i_”f)'

The fully discretized AFC scheme can now be easily derived in a similar fashion as for the first
block row.
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This main chapter deals with the numerical analysis of the FEM iteration strategies which were de-
veloped in the preceding chapter, Chapter 4] Prior to the investigation of these iteration schemes,
we will briefly shed light on the multigrid solver which is one of the improvements of already
existing schemes in preceding papers of the author, [96198]]. As the main objective of this chapter,
these bundles of methodologies will be applied on particular nonlinear models for chemotaxis,
whereby we mainly focus on the influence of the chemosensitivity on the stability of the solution
process, i.e., convergence of the solver.

Before we begin our numerical study we will provide the reader with a short state of the art
of numerical investigations which can be found in present literature, Section[5.1] Afterwards we
will present the numerical analysis of the solver for the underlying linear subsystems, Section[5.3]
a numerical comparison of all iteration schemes, Section [5.4] and numerical results that reveal
certain limitations of the iteration schemes, Section[5.5] In all of these investigations we will not
consider any stabilization techniques. This will be solely the subject of Section[5.6] At the end of
this chapter, we will provide a summary of the main numerical findings, Section

5.1. The numerical state of the art

Even though this work offers an unprecedented in-depth study of solver methodologies for chemo-
taxis related systems of nonlinear equations, (particularly very recently) there have been some no-
table numerical assets. Basically all well-established spatial discretization frameworks have been
considered for chemotaxis related PDEs: FV, FD, DG and finally FEM. This brief survey gives
references for all of the above frameworks.

Tyson et al. [102] introduced a FV based fractional step method of so called Strang splitting-
type, which is at most of second order. However this operator splitting approach is only largely
applicable for operators of ‘pure’ character, i.e., problems arise when the advective part (here
chemotaxis) is not of pure hyperbolic character anymore. For the governing model in [102]] (pat-
tern formation in bacterial growth) the assumption of a hyperbolic advection is reasonable, but for
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the minimal model of chemotaxis this fails in generic situations as, e.g., Chertock and Kurganov
pointed out in [[16]. In fact, Tyson ef al. figured out this problem in numerical test cases when they
stated that

“[...] the advection-diffusion and reaction-diffusion pairings are stable while the
advection-reaction pairing is highly unstable. [...] We investigated changing the
methods used for reaction and advection steps, but these did not eliminate the prob-
lem.”

In this context, Chertock and Kurganov [[16] developed a positivity preserving central upwind
scheme based on FV. This scheme has been successfully applied on the minimal model, a kinetic
model and a haptotaxis model. Very recently, an ongoing research of Bencheva [7] strive to apply
this scheme also to a model of stem cell migration. These schemes, however, give only rise to first
order accuracy.

In the context of a hyperbolic-parabolic chemotaxis model a FD based operator splitting has
also been addressed by Gerisch et al. [34]. The limitations of the operator splitting as mentioned
earlier remain also for this work. Another FD based scheme was promoted by Wise et al. in [[108]].
Therein they applied an adaptive multigrid algorithm on a complex tumor growth model with an
overall of five variables, which obviously reflects one motivation of keeping the total number of
degrees of freedom as small as possible, e.g., by spatial adaptation strategies. Unfortunately di-
vergence of the embedded multigrid solver in case of a fully implicit treatment primary causes a
first order accuracy of the overall algorithm.

The recent gain in popularity of DG also hit the chemotaxis community. Epshteyn and
Kurganov [29] adapted the FV upwind scheme of [[16]] to fit in the context of DG. Their main
idea was it to rewrite the original model, i.e., the minimal model of chemotaxis, into a form which
provides a pure hyperbolic advection term. This extends the model to a system of four variables.
One of the main shortcomings of FV, FD and DG approaches is the practical restriction of the
algorithms to be only capable of mostly ‘academic’ computational domains. Caused by the nature
of these approaches highly tedious mesh-dependent calculations are required to capture ‘realistic’
domains. A soon appearing paper of Epshteyn [28]] counters this issue. In this paper she proposes
a novel upwind-difference potentials method that was originally developed for composite domain
problems.

Among the FEM approaches in the literature let us comment on the ones obtained by Kirk
and Carey [55]], Marrocco [70], Saito [90]] and Strehl et al. [96]]. Kirk and Carey [55]] considered
a parallel, adaptive FEM scheme, which was mainly motivated by a pattern forming model of
chemotaxis. The spatial adaption was obtained via a gradient-jump error indicator and subdomain
partitioning parallel solution strategy. The additional time step adaption was ensured by simple
truncation error estimates. The authors were surprised that their contributions provided one of the
first adaptive approaches for chemotaxis models by remarking

“It is interesting to note that while such features [rapid transients and highly localized
spatial features, RS] make this class of problem particularly well-suited to simulation
techniques employing local adaptive mesh refinement and coarsening, there has been
little adaptive work for these chemotactic biological systems to date.”

Marrocco followed a mixed FEM approach originating from the numerical treatment of semi-
conductor modeling, [70]. Notably, his proposed scheme is only first order accurate, since he
employed the first-order Raviart-Thomas element Ry. Furthermore, most probably driven by the
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semiconductor origin, Marrocco studied the parabolic-elliptic version of the minimal model, i.e.,
dropping the time derivative in the v equation. However, for reasons of stability the author used
fully implicit artificial transients to solve the semi-discretized system in time.

“As the time step (physical time step) becomes smaller and smaller the convergence
of the iterates becomes more and more difficult to obtain and solution of quasi-static
problems is not reached. The whole algorithm failed to converge.”

Saito also studied the simplified parabolic-elliptic version of the minimal model and derived a
conservative upwind FEM scheme, [90]. The drawback of his upwinding method is its first order
accuracy. The discretization in time was countered with the first order backward Euler difference
quotient and the resulting nonlinear system was finally linearized by the standard first order fixed-
point method. Certainly, the limit of being a first order discretization in space and time (and in the
nonlinearity) is a major drawback, however, with his scheme Saito developed a first stabilized FEM
scheme for chemotaxis models which preserves positivity (under reasonable restrictions on the
spatial mesh and the time steps) and conserves the initial mass. The investigation of a high-order,
ie.,

1+a-order, FEM discretization scheme for general chemotaxis models was the subject of the work
of Strehl et al. in [96]. Therein, in contrast to Saito, the stabilized spatial discretization was de-
rived via a discrete upwinding scheme that was corrected by algebraic fluxes, cf. Section4.5] The
advantage of this approach is the modification of the underlying system on a pure algebraic level,
i.e., there is no need for an explicit approximation of fluxes on the continuous level. Moreover all
modifications can be composed in a conservative manner. At the same time all the flexibility of
FEM discretizations are maintained.

It is remarkable that all (except [108]]) of the aforementioned numerical results only considered
schemes for simulating 2D chemotaxis models. To the best of our current knowledge the devel-
opment and analysis of stable, accurate, efficient and flexible numerical tools for 3D simulations
of chemotaxis models are largely omitted by the numerical community. Taking into account the
lack of theoretical background for three dimensions, this reveals a remarkable gap. So far, there
are only very few research groups that numerically treat 3D chemotaxis models, [98]. Moreover,
despite the aforementioned numerical contributions, a comparison of different solver techniques
is still missing. Therefore, in Strehl et al. [97]] the authors provided a first attempt to quantitatively
compare different solver strategies for selected chemotaxis models.

To put it into a nutshell, up to the best knowledge of the present author, the state of the art
of the numerical investigation of general chemotaxis models only provides ‘partial solutions’. In
the best believe of the present author a FEM approach for tackling complex chemotaxis models
admits several advantages over the other aforementioned methods. Amongst others, the most
striking features are as follows:

1. Complex geometries: Because of its nodal basis functions, FEM can be readily adopted to
irregular spatial meshes and complex geometries, which makes it particular favorable from
the application point of view.

2. r-/h-/p-adaptivity: Pursuing the preceding point, the flexibility of FEM are the major
asset when applied to highly dynamic systems, e.g., local transient solutions or deforming
geometries. Relocation of mesh nodes, local refinements and augmentation of polynomial
degree lead to fast convergence even in the case of strongly perturbed meshes or locally
transient behavior.
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Therefore the upcoming numerical sections of the current work pursues the research path of Strehl
et al. by that it thoroughly analyzes specialized FEM discretizations of high order and suitable
solver for generic chemotaxis models.

5.2. Numerical preliminaries

After we presented the current state of the art of the numerical treatment of chemotaxis related
PDEs, we will introduce some preliminaries which facilitate the guidance through the upcoming
numerical analysis. Besides a brief sketch over the underlying hardware of the present numerical
investigations, we will also provide a conceptual survey of the software library on which our
implementation is based on. Moreover, general issues concerning the algorithmic design and
setup will be tackled in a following section prior to the numerical analysis.

5.2.1. On the software

The development and implementation of the numerical algorithms presented in this work has been
accomplished in FORTRAN90 and is embedded into the open-source software library of FEA
(Finite Element Analysis Tools). This software is maintained by the chair of Applied Mathemat-
ics and Numerics at the TU Dortmund and benefits from contributions of a huge variety of fields
of finite element applications. The original focus of FEAT was to solve complex problems arising
from fluid dynamics with an industrial background. The modelling was mainly based on vari-
ants of the incompressible Navier Stokes equations with particular interest in nonlinear viscosity,
fluid-structure interaction, multiphase flow with chemical reactions, free boundary value problems
with solidification, just to mention a few. However, currently FEAT experiences new algorithmic
contributions coming from various applied fields of research such as hardware-oriented and par-
allel computing, Lattice Boltzmann methods, level-set approaches, fictitious boundary methods,
collision detection models. Also from the application point of view the software library com-
prises increasingly more PDE problems arising from (magneto-)hydrodynamic or non-Newtonian
flows, optimization of physical quantities, fluid-structure interactions, population balance equa-
tions, solid mechanics, drug delivery and, beginning with this recent work, also chemotaxis related
developments.

The graphical illustrations of the resulting solutions have been rendered with GMVEI (General
Mesh Viewer) or the open-source, multi-platform data analysis and visualization application
PARAVIEWE The convergence plots and the representative plots of cutlines have been visual-
ized with MATLAB]

5.2.2. On the general numerical setup

This section is devoted to the general notations and setup of the algorithms that will be in the
spotlight in the subsequent numerical analysis. For transparency purposes Table depicts some
basic abbreviations used in the upcoming numerical data.

Online presence: http://www.featflow.de/en/index.html
2Online presence: http://www.generalmeshviewer.com/
30nline presence: http://www.paraview.org/

4Online presence: http://www.mathworks.de/products/matlab/
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LEV underlying spatial level refinement (coarsest level = 0)

IT_LIN number of linear iterations

ERR error estimation (concerning a reference solution)

COSTS computational costs in terms of required number of iterations

EFF approximation of the efficiency by means of EFF = ERR ! - cosTS ™!

ALGA(ALGp) cascaded solver algorithm, ALG, is preconditioned with ALGp

Table 5.1: Overview of basic abbreviations used in the subsequent analysis.

In order to provide an overview of the resulting degrees of freedom of the underlying spatial
mesh refinements, Table [5.2] lists some commonly used discretizations. Table [5.2] contains the
resulting degrees of freedom for Q; finite elements and the range of the mesh size &k for the main
computational domains used in this present numerical investigation. Moreover in Figure [5.1] we
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Figure 5.1: Visualization of the different computational domains at exemplary refinement levels.

When dealing with numerical results we have to rely on the convergence of the underlying
(linear/nonlinear) iteration processes. To this end, let us consider an appropriate choice of a ter-
mination criterion for the emerging iterations. As we see from Chapter [ we have at most two
iteration procedures: (i) an outer nonlinear loop obtained by the nonlinear Richardson scheme and
(i1) an inner linear iteration arising from the linear subproblem of the Richardson corrections/up-
dates — note that we do not consider exact solver for the linear subsystems in this work, since
the applicability of our schemes should be retained for complex systems with a huge number of
degrees of freedom which renders direct solver unpractical.

Now, in terms of a reliable nesting strategy for the outer and inner iterations, the prescribed
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Qp underlying domain Q LEV oh #FE N
QUADI  {xeR?| 0 1 1 4
0<x1,x <1} 7 1/128 16384 16641
8 1/256 65536 66049
QUADI6 {x€R?| 0 16 1 4
0 < x1,x < 16} 7 1/8 16384 16641
8 1/16 65536 66049
QUAD3D {x€R? 0 16 1 8
0 < x1,x2,%3 < 16} 6 1/4 262144 274625
7 1/8 2097152 2146689
CIRCI {x e R?| 0 ~[0.5,1] 9 13
X2 +x3 < 1} 6 ~[1/128,1/64] 36864 37057
7 ~ [1/256,1/128] 147456 147841
8 ~ [1/512,1/256] 589824 590593
CIRC16  {x€R? 0 ~ [4,8] 9 13
X2 +x5 < 82} 5 ~[1/8,1/4] 9216 9313
CIRC3D {xe€R3| 0 ~[3.7,7.4] 16 29
xt+x3+x3 < 8} 6 ~ [0.06,0.12] 4194304 4219265
CYL3D {xeR?| 0 ~[0.5,1] 36 65
O<xs<4,xi+xi<1} 4 ~[1/32,1/16] 147456 152945

Table 5.2: Listing of the most commonly used spatial levels and resulting degrees of freedom of
the different computational domains.

termination criteria must be matched. That is, the inner solver precision should be related to the
current outer solver precision to counter an excessive overhead of accuracy of the inner solver.
Moreover, not only the precision, but also the measurement of precision should be concerned. By
means of measurement we address the two main strategies, reducing the actual error in subsequent
solutions, i.e., ||x, —x*|| — min!, or reducing the residual error, i.e., ||b —Ax,,|| — min! for
some linear system Ax = b. Herein x,, and x* denote the m'™ nonlinear iteration of the numerical
solution and the exact solution, respectively. In the framework of Newton methods, the former and
latter are sometimes also referred to as error-based and residual-based concepts, respectively, cf.
Deuflhard in [22].

Termination criterion for a nested Richardson iteration

Recapture that we consider two schemes within the Richardson framework, a Picard and a inexact
Newton(-like) linearization. Efficient cascaded iteration procedures link the termination criteria
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for the nonlinear (outer) and linear (inner) iteration in such a way that the outer convergence rate
is retained at ‘minimal’ expense for the inner iteration. A constant accuracy for the inner iteration,
e.g., prescribing a gain of four digits, obviously does not render this concern. Exemplary, let us
confine ourselves here to the inexact Newton linearization, as this method is well popular for hav-
ing a rather fuzzy convergence rate.

For the readers convenience we therefore repeat the Newton formulation. We are looking for
solution updates via

jac(A(wn) ¥ = res(wa). 5o

Wil = Wp+Yy'.

Certainly, if we employ an inexact solver for this system, we only end up with an approximative
update y ~ y* introducing some error ERR'™. Let us now suppose that the outer Newton itera-
tion m already reached the area of quadratic convergence, i.e., ERR,, = (‘)((ERRm, 1)2). For the
inexact Newton method this outer error apparently depends upon the inner approximation, i.e.,
ERR,, = ERR,,(ERR"™). The question that naturally arises is how ERR'™ has to be restricted in
order to still retain the quadratic convergence per outer iteration. As the linear solver is converg-
ing, it is clear that we could prescribe a precision at will. However, this strategy turns out to be
very costly, because the outer Newton iteration limits the accuracy gain (in terms of quadratic
convergence). In this context, Dembo et al. [21] suggested a choice of kind

ERR'™ = min {cERRm, 0.5} ,

where ¢ < 1 is some constant. In other words, the inner termination criterion is proportional to
the outer one. Note that the additional second argument of min accounts to the well known fact of
poor initial convergence of Newton’s method. More elaborated choices and corresponding proofs
of convergence can be found in [26] and [22]. In our numerical studies we adapt the above choice
by taking ¢ = 1 and a minimal residual drop of 0.01 instead of 0.5 (as above).

As the interested reader might have remarked, we did not clarify the measurement for ERR,, and
ERR™ yet. This will be illuminated in the following.

On the error norms

We notice that Dembo et al. as well as Eisenstat et al. studied the convergence of inexact Newton
methods in terms of consistent residual drops. Consistency accounts to the fact that the authors
restricted the residual of the inner Newton system (we refer to this as linear or inner residual)
in order to control the residual of the outer iteration (we refer to this as the nonlinear or outer
residual).

outer residual : res(wy,)

inner residual :  res(w,,) —jac(A(wy))y
In terms of the above, the suggested constraint of Dembo et al. reads

|[res(Wim) —jac(A(Wm)) ¥

[Ires(wn)|
viz., the relative inner residual (the initial guess of the inner system is assumed to be zero) is
controlled by the outer residual of the current (nonlinear) iteration. In fact, it is very reasonable that

this consistency must be obeyed. Dembo ef al. commented on the error convergence ||y —y*|| — 0
as follows, [21} p.407]:

min{cHres(wm)|]/Hres(wo)H,O.S}, (5.2.2)
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“The problem is that a step which makes the error very small need not result in a
correspondingly small relative residual.”

For our purposes their statement can be interpreted as: the control of the inner residual does not
necessarily give a control of the actual Newton iterates w,,, but of the corresponding outer residu-
als res(wy,).

This issue of consistency has been vastly examined by Deuflhard [22]. For our concerns two
main classes of so-called adaptive inexact Newton methods are of importance, the residual-based
and the error-based approach. The former measures the norms of the nonlinear and linear resid-
ual, whereas the latter monitors approximations of the norm of the solution error ||w,, — w*||
and ||y — y*||, respectively for the nonlinear solution and the inner Newton update. A particular
choice of one of those approaches consistently entails the recommendation of a specific linear
solver for the inner Newton system. In particular the standard GMRES is predestined to work
within a residual-based strategy, whereas CGNE (CG normal equations error-minimizing) works
consistently within a error-based strategy. Since error-based minimization techniques are rather
uncommon, we refer the interested reader to Weiss [[104] for the recent development herein. For
well conditioned systemmatrices this classification might seem redundant, however in the case of
ill conditioned systems (or more precisely, ill conditioned Jacobians) a proper choice is unavoid-
able, since the control of the residual does not necessarily imply a sufficient control over the final
solution itself in these cases.

What we did not concern about yet is the well known phenomenon of ‘oversolving’ (of either
outer and inner iteration) if the initial residual is already close to zero. In this case a relative
tolerance, e.g., of kind (5.2.2)), will result in excessively many iterations and hence we additionally
introduce an absolute stopping criteria. Kelley [S3]] proposed the balancing

!
[lres(wn)[| < & ||res(wo)l[ +&a,

where €, and €, are certain real values for the relative and absolute error tolerance, respectively.
In our implementations we terminated the iteration if either the relative or the absolute threshold
is reached, which is a sufficient condition for the above inequality to hold. Typically the absolute
threshold is chosen close to a common machine precision, i.e., €, ~ 1E-14, and the relative toler-
ances can be different for the outer nonlinear (ej’l ) and inner linear (sl,i") iteration.

In all of our numerical algorithms we implemented a residual-based termination criterion since
it matches very well with the underlying linear solver. For clarity reasons, let us close our consid-
erations with listing our implemented residual-based termination criteria for the outer and inner
iteration.

outer : Mgsﬁ” or ||res(wn)|| <€,
[[res(wo)l|
) iac(A(w., | 2 (5.2.3)
inner [Ires(Wn) Jac( (w ))yH < €/ = min (Hres(wm)]> ,0.01 or
[[res(wm)| [Ires(wo)l|
|[res(Win) —jac (A(Wm)) ¥]| < €4

If not explicitly stated else, we choose €, = 1E-14 and € = 1E-6.
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5.3. Analysis of the linear sub-solver

This section is devoted to the analysis of the linear (sub-) solver for the monolithic schemes LIN,
P1Cc and NEWT, i.e., the linear solver for LIN and the inner iteration cycle within the nonlinear
Richardson scheme for PIC and NEWT. Our main objective is to promote a powerful multigrid
solver that delivers a mesh-independent convergence and hence a reliable feature to tackle chemo-
taxis related discretizations on a very accurate spatial mesh. The preliminary work of Wise et al.
[[LO8] already stressed the potential of applying multigrid algorithms to chemotaxis related PDEs.
In the current work we focus on a basic analysis of a proper multigrid setup which includes the
choice of the level-to-level smoother.

5.3.1. The multigrid algorithm

In the following we will sketch the multigrid algorithm for conforming quadrilateral finite ele-
ments with canonical level refinement leading to an approximate halfening of the mesh size, cf.
Figure [5.2] In Table [5.3] we introduce some notations which will ease the understanding of the
multigrid algorithm.

LEV O
LEV 1
3 4
1 *
LEV 2
1 2!
(a) Canonically element refinement (b) Resulting mesh hierarchy

Figure 5.2: Visualization of the canonical 2D mesh refinement for quadrilateral finite elements.
Every edge-midpoint and every face midpoint creates one new node. Hence a refinement of one
quadrilateral finite element results in four quadrilateral finite elements. This refinement is applied
for all Elements, particularly no hanging nodes appear. The right-most figure shows a canonically
resulting three level hierarchy.

In contrast to usual single grid solver routines, multigrid operates on a given hierarchy of
successive discrete subspaces, say {Vh}zzr Here, we will only focus on a pure spatial multi-
grid, i.e., only different spatial meshes are considered, in contrast to the full time-space cylinder.
Therefore, we can also simply identify the discrete space hierarchy with the spatial mesh size, say
{h}sz: The underlying discretized problem is originally only defined on the most finest grid,
ie., Ap, Wi, = bp,,,. However, the treatment of this problem is now passed through the level
hierarchy until the coarse level is reached. During this transfer, auxiliary problems of the form
Apwy, = by, are considered. But only on the coarse level a problem of the form Ay, w, _ =by .
is actually solved by an underlying coarse grid solver (CG). This is usually accomplished by a
direct solver (e.g., provided by UMFPACK).

Let us introduce the multigrid algorithm in more detail for a two level hierarchy, cf. [12, Chap-
ter V]. Given the problem on a fine level Aj; w;, = by, the multigrid algorithm consists of several
smoothing steps, say s times, and a coarse grid correction. The smoothing steps are required to
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h = hmin, - ., Amax mesh size (as an index it also determines the corresponding mesh)

Viacr - - s Vs @nd V- discrete subspaces related to the corresponding meshes and the con-
tinuous (spatial) space stemming from the governing PDE

w;l an i iterative solution on the level corresponding to &, particularly

W2 corresponds to the initial guess

Ay and by, system matrix and right-hand side of the problem on the level corre-
sponding to &
RhZh and 332,’3 prolongation and restriction operators which will be used as transfer

operators between successive mesh levels

Sn smoothing operator on the level corresponding to 2. Remark that we
simplify the notations by assuming both pre- and postsmoothers are
alike (we also employ the number of pre- and postsmoothing steps
being equal)

Table 5.3: Overview of most multigrid notations to which we refer to in the subsequent analysis.

damp high frequencies of the error. Usually we employ smoothing steps equally before and after
the coarse grid correction. Let us denote the application of a smoothing step by the operator §,.
The coarse grid correction involves the level transfer from the fine level to the coarse level and
vice versa. This is accomplished by restriction and prolongation operators, denoted by fRz}f’ and
ha,l, respectively. With j denoting an iteration index, we can formulate the coarse grid correction
as follows:

j+r j h —1p2h J
W = w, + R, A R (b — Apwy),

where Ay, is the conforming restriction of Ay on the coarse level which is assembled prior to the
call of the multigrid algorithm. This formulation gives rise to an auxiliary problem on the coarse
grid to be solved, and hence, we can rewrite the coarse grid correction by means of

HAopwop, = boy,
o J h
W/’l — Wh-i-R 2h W2h,

where by, = Rzlf(bh — Ay w{1) is the restriction of the defect. For a two level hierarchy, the auxil-
iary problem on the coarse grid is usually solved exactly by a direct solver, as already mentioned
above. However, for a multi level hierarchy, this problem is treated by a recursive call of the multi-
grid algorithm.

For a level hierarchy that consists of at least three levels, multigrid algorithms can be altered
by the number of (recursive) coarse grid corrections. If the coarse grid correction is only applied
once, this leads to a so-called V-cycle. If the coarse grid correction is executed twice, then a
so-called W-cycle is performed. The corresponding nomenclature can easily be explained by de-
picting the level transfers, cf. Figure[5.3]

In Algorithm [5.1] we sketch the core of multigrid. This algorithm represents one single V-
cycled multigrid sweep. For a full iterative solver routine we should embed this single sweep into
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(b) Multigrid W-cycle

Figure 5.3: Visualization of the V- and W-cycle. Herein Sh,Rz,’l’,RhZh and CG denote the corre-
sponding smoother, restriction, prolongation and (direct) coarse grid solver, respectively.

an outer loop which checks for convergence. For the alternative W-cycled sweep we must modify
line [/| by employing the coarse grid correction twice in a row, note that for only two levels the V-
and W-cycle coincide.

Algorithm 5.1 Single Multigrid sweep

1: function MGS(W), A, by,)

2 Given initial data wg, system matrix Ay and right-hand side by,

3 if (h = hpyax) then

4 Solve the coarse grid problem Aj, w;, = by, via the coarse grid solver
5: else
6

7

8

9

Apply presmoothing steps WZ = Shwz_1 fori=1,...,s
Solve .Azh Wy, = bZh by Calling MGS(O,AQh, b2h)

Update multigrid solution wz“ =w, + ha,l W

Apply postsmoothing steps wﬁl = Shw;'l’1 fori=s+2,...,25+1
10: Define solution wj, = w%”]
11: end if
12: return w;,

13: end function

The smoothing steps in line[|and 0] of Algorithm[5.1|can be accomplished by calling a suitable
(preconditioned) iterative solver for a fixed number of iterates, say s times. In this work we con-
sider JAC or a preconditioned BICGSTAB or GMRES as smoother. For further remarks about
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how a proper smoother can be derived we defer the interested reader to the Appendix

5.3.2. Numerical results for multigrid

We study the multigrid solver applied on the stationary variant of the minimal model of chemotaxis
in its non-dimensional form, namely

0 = oJu = V-(duVu—uva),
(5.3.1)

0 = ov = Av+u—v,

defined on two different computational domains, QUADI1 and CIRC1, cf. Table [5.2] and Figure
[5.1] The objective is to capture the property of multigrid to require a discretization-independent
number of iterations per nonlinear step, referred to as IT_LIN. Or, to put it in other words, we
expect a similar number of iterations for different top-level discretizations, whereas for standard
singlegrid solver we conjecture that this number increases significantly with finer discretizations.
Moreover, we investigate the robustness of the multigrid algorithm.

For our numerical tests we use a stationary solver for system (5.3.1). Furthermore we comple-
ment the nonlinear problem with the initial guess

wy = (1-0.01)u*
vo = (1-0.01)

The functions ©* and v* are prescribed sinusoidal solutions with zero Dirichlet and flux boundary
conditions, i.e.

ouAD W= (1/40) :cos <2n x, —0.5) ) + 1} [ ( n(x1 0. 5)> + 1} (5.3.2)
v = (1/80) :cos<2ﬂxz—05)+1H ( T 05)) }

CIRCI : w = (1/20) ;COS <n a +x2)> * 1} ’ (5.3.3)
- - wmle(of) )

In order to yield a steady solution for ( we augment the equations by corresponding right-
hand sides, namely we actually solve

0 = oJu = V-(dMVufuva)ngu,
(5.3.4)

0 = ov = Avtu—v+g,,

where g, and g, are the right-hand sides obtained by substituting (5.3.2)) or (5.3.3) in (5.3.4) in
terms of

gu = -V (d,Vu' —yu*V"),
g = —AV'—u V",
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In order to allow for a reasonable comparison of multigrid and singlegrid solver (in terms of
IT_LIN), we modify the termination criteria for the underlying solver. The nonlinear iteration,
which is tackled by the Newton method, is terminated solely by reaching the absolute criterion
with €, = 1E-12. For the inner linear system, which is solved by the multigrid or singlegrid algo-
rithms, we solely employ a relative termination criterion with €/ = 1E-6.

As reference singlegrid solver we use the standard preconditioned iterative Krylov-space solver
BICGSTAB(JAC). The multigrid solver is configured to use a W-cycle and a standard direct
coarse grid solver provided by UMFPACK. As the smoothers play a key-role in a successful
application of multigrid, we focus our attention on five different choices, i.e., JAC, GMRES(JAC),
GMRES(SSOR), BICGSTAB(JAC) and BICGSTAB(SSOR). The corresponding multigrid solver
are denoted by MG(-), e.g., MG(GMRES(JAC)).

Mesh-independence of IT_LIN

Let us begin with examining the number of iterations that the multigrid and singlegrid solver
require to obtain a converging steady-state solution of (5.3.4). We simulate the system (5.3.4)
with the model parameters ) = 1 = d,,, on which we subsequently refer to as (PS1), on suc-
cessively refined meshes for QUADI1 and CIRCI1. The coarse level is set to 4 and 2, respec-
tively for the former and latter mesh. Figure [5.4] depicts the corresponding averaged IT_LIN
showcases in logarithmic scale. Therein we provided the results for the reference singlegrid
solver BICGSTAB(JAC) and for the three multigrid solver MG(JAC), MG(GMRES(SSOR))
and MG(BICGSTAB(SSOR)). The plots for the two multigrid solver MG(GMRES(JAC)) and
MG(BICGSTAB(JAC)) are omitted since their results are very similar to the ones obtained by
MG(GMRES(SSOR)) and MG(BICGSTAB(SSOR)).
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Figure 5.4: Average number of linear iterations for an increasing spatial refinement with the
parameter setting (PS1). For QUADI the levels are ranging from LEV 5 (1024 Q; elements) to
LEV 10 (1,048,576 Q; elements), where the coarse level is set to LEV 4. For CIRC]1 the levels
are ranging from LEV 3 (576 Q; elements) to LEV 8 (589,824 Q, elements), where the coarse
level is set to LEV 2.

The results for both computational domains reveal that IT_LIN remains nearly constant for
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all multigrid variants. Among these different variants, MG(JAC) provides the minimal averaged
number of linear iterations. Moreover, one advantage of JAC (besides its algorithmic simplicity)
is the fact that no further choice of relaxing parameter is required (e.g., in contrast to SSOR), i.e.,
its application is somehow more convenient. Furthermore, we observe that both multigrid variants
with a preconditioned smoother lead to very much comparable results.

In contrast to this mesh-independent number of iterations, we roughly observe a doubling for
the reference singlegrid solver BICGSTAB(JAC) for both computational domains. This renders
the singlegrid solver rather costly and unpractical at a high spatial discretization level.

Robustness of multigrid

After we have confirmed our expectations concerning the exerted number of iterations for the
multigrid and singlegrid solver, in this section we turn to the analysis of the robustness of these
solvers in terms of increasing values of chemosensitivity. We focus on the same setting of the nu-
merical test as before, but consider two additional configurations of the model parameters, namely
(PS2):(dy,x) = (1,40) and (PS3):(d,,x) = (0.1,100). Figure[5.5|and Figure 5.6 provide the de-
velopment of IT_LIN for the multigrid and singlegrid solver for the parameter setting (PS2) and
(PS3), respectively. According to the numerical tests of Figure[5.4] we confine the following anal-
ysis to the three variants of multigrid mentioned before.
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Figure 5.5: Average number of linear iterations for an increasing spatial refinement with the
parameter setting (PS2). The range of levels for QUAD1 and CIRCI are the same as in Figure

B4

We observe that there is only a marginal difference between the results for (PS1) and (PS2), cf.
Figure[5.4]and Figure[5.5] However for (PS3) there are notable differences in IT_LIN among the
solver algorithms. The missing plot for MG(JAC) in Figure[5.6is caused by a diverging solution
for all spatial mesh levels under consideration. This drawback clearly dominates the advantages of
the simple implementation of JAC in terms of robustness. Moreover for QUADI, the singlegrid
solver diverges for the finest mesh level (therefore the last data is omitted). In contrast to these
problems in terms of numerical convergence, the multigrid solver with a preconditioned smoother
still provide reliable and nearly mesh-independent numbers of linear iterations. Again, let us re-
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Figure 5.6: Average number of linear iterations for an increasing spatial refinement with the
parameter setting (PS3). The range of levels for QUAD1 and CIRCI1 are the same as in Figure
@ Note that the omitted data for MG(JAC) and for BICGSTAB(JAC) are caused by divergence
of the corresponding solver.

mark that these latter results are similar to those obtained by the omitted variants of multigrid with
preconditioned smoothers, namely MG(GMRES(JAC)) and MG(BICGSTAB(JAC)).

Concluding our observations, we recommend the use of a multigrid solver particularly for a
high level of the spatial discretization, since in this case the exploding number of linear iterations
render standard singlegrid solver unpractical. Moreover, we advise the use of a preconditioned
Krylov-space smoother since these smoothers are more robust in terms of increasing chemosensi-
tivities as demonstrated above.

5.4. Numerical comparison of the iteration schemes

After having investigated the application of multigrid solver to chemotaxis PDEs, we will focus on
qualitative and quantitative comparisons of the different FEM discretization approaches introduced
in Chapter[d, namely DEC, LIN, P1c and NEWT. We will present basic studies of convergence and
a study of the efficiency of the four approaches. The convergence will be demonstrated on the ba-
sis of the stationary minimal model by employing artificial transients. The study of the efficiency
provides a glance on the relation between required iterations and accuracy on the basis of highly
transient chemotaxis models. These evaluations pursue the ideas of Strehl ez al. in [97] and extend
the results therein by considering more methodologies, namely including a multigrid solver and
the nonlinear Picard iteration.

5.4.1. Convergence analysis of the stationary minimal model

In this primary study we examine the convergence of the different solver methodologies in terms
of the spatial discretization. To simplify the analysis we confine ourselves to the stationary min-
imal model (5.3.1), however similar results have also been obtained for the stationary variants of
the other exemplary models.
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Figure 5.7: Stationary minimal Model. Convergence towards analytical solution.

The convergence is measured towards an analytically given reference solution. The numerical
approximations are obtained via introducing so-called artificial transients into (5.3.1)) and simu-
lating till steady state. Similar to the underlying model for the previous multigrid analysis, the
analytic solutions «* and v* are given by the prescribed sinusoidal solutions (5.3.2)). The corre-
sponding computational domain is ;, = [0, 1]?. Remark that the reference solutions satisfy
zero Dirichlet and Neumann boundary conditions. In order to capture the analytical reference so-
Iutions, we augment the equations by corresponding right-hand sides and again solve the modified

model (5.3.4).

To simplify the calculations we consider rather simple initial conditions which are already
close to the analytic solutions. Here we prescribe slightly perturbed analytical solutions, in detail

up = (1—0.1rand(x))u",
co = (1—0.lrand(x))v",

with rand(x) denoting [0, 1]-uniformly distributed random numbers in every coordinate.

For stability concerns steady state simulations are performed by the implicit Euler discretiza-
tion in time of the artificial transients, i.e., in terms of the theta-scheme, we set 6 = 1. The approx-
imation of the steady state of the numerical solution will be checked by the standard first order di-
vided difference with a tolerance of 1E-6, namely the simulation stops if
|[wi — w1 /8t < 1E-6, where w! = (ul!,v"") denotes the numerical solution at the n'™ time step.
As a reference time stepping we choose 0t* = 1E-2.

Concerning the spatial convergence, we expect all numerical schemes to be of second order
stemming from the underlying Q; element space. In Figure we plotted the convergence be-
havior for successive spatial refinements ranging from 62 = 1/16 to dh = 1/256. From the figure
we can numerically readily confirm the quadratic convergence of all four schemes. Moreover we
recognize that all monolithic schemes, i.e., LIN, PIC and NEWT, provide effectively similar error
estimates and that the errors of DEC are slightly superior to the monolithic counterparts. However,
we remark that in return the monolithic schemes naturally give rise to a fully stationary solver, i.e.,
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without artificial transients, whereas the decoupled scheme does not.

5.4.2. Efficiency of the iteration schemes

In contrast to the previous study, this section deals with the investigation of the numerical effi-
ciency of the four discretization techniques DEC, LIN, P1C and NEWT applied on transient models
for chemotaxis. Beside the transient counterpart of the aforementioned minimal model, we also
consider an aggregation and a kinetic model. In order to examine the convergence behavior in
time and space, reasonable numerical reference solutions are pre-calculated. In other words, we
solve the underlying PDE systems with Newtons method at a properly refined spatial mesh and
time stepping, say 0h*,8t* < 1, up to a specified time instance, say 7. The numerical error is then
estimated in terms of ||w} — w'_ ||, where w!, denotes the numerical solution on the discretization
level corresponding to 84 > dh* and &f > ot*.

Measurements of the numerical efficiency

As already proposed in [97], in this investigation the numerical efficiency is understood as the
ratio of accuracy and computational costs/complexity, say
accuracy

efficiency = - . 541
computational costs

For the remainder we will refer to the efficiency and computational costs as EFF and COSTS, re-
spectively. While the accuracy is measured in terms of the numerical error estimation, ERR, given
above, the computational costs are to be understood as required number of iterations. Although
the author is aware of the simplicity of this measurement (e.g., neglecting vector/matrix assem-
blies, memory concerns or overall computing time), it already serves as a valuable yardstick for
our concerns.

Let us explain in detail how we calculate the ratio of efficiency of the underlying iteration
schemes for our purposes. We will always compare the efficiency of two schemes, say A and B,
by the relation EFF, /EFFs,

EFF, ERR; COSTS;z

EFFz ERR, COSTSa

We apply our definition on the data obtained from successive choices of time stepping, namely
for each &t we compute the error (to a numerical reference solution) and the averaged number of
linear iterations per time step for both schemes A and B. Moreover, we study the development of
the efficiency as the value of the chemosensitivity is increased. In other words, we are interested
in how the efficiency of the numerical schemes scales with the chemosensitivity.

Particularly when considering the four underlying solver schemes, the following remarks con-
cerning the suggested efficiency (5.4.1)) are in order: (i) while DEC, PIC and NEWT exert a non-
linear iteration, LIN is purely linear. (ii) all schemes except DEC are based on a monolithic block
discretization, therefore the complexity of their underlying solver is higher in comparison to DEC
(ii1) moreover all monolithic schemes employ a multigrid solver for the linear systems, whereas
DEC uses a standard single grid solver (iv) employing a nonlinear iteration and a monolithic ap-
proach, as in the case of PIC and NEWT, possibly enhances the accuracy in contrast to purely
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linearized or decoupled approaches, as in the case of LIN and DEC.

Thus, there is no doubt that a comprehensive evaluation of such concerns are of utmost interest
when recommending a particular solver scheme. Table roughly presents the complexities of
the four schemes. Again, the author would like to mention that this does not serve as a detailed
look-up-table, since it blurs memory and matrix-vector-assembly concerns.

DEC (x) LIN Pic NEWT

per time step 2 RHS 1 BLK-RHS 1BLK-RHS 1BLK-RHS
1 SOL 1 BLK-MAT
1 BLK-SOL

per nonlin. it. 1 MAT 1 BLK-MAT 2 BLK-MAT
1 SOL 1 BLK-SOL 1 BLK-SOL

Table 5.4: A rough sketch of the complexities for the four underlying schemes. RHS, MAT and
SOL denote the right-hand side and matrix to be built and the call of the linear solver, respectively.
BLK represents the block extensions for the monolithic approaches. (x) The system matrix for the
v equation can be built in advance, say once at the beginning of the simulation.

In what follows, we will present the convergence results and the corresponding statements
concerning the efficiency of the four different numerical schemes applied on the three transient
chemotaxis PDE models.

The transient minimal model of chemotaxis

This paragraph is concerned with the convergence analysis of the transient minimal model of
chemotaxis (#.1.2) on the unit square QUADI1. For reasons of readability we recapitulate the
equations,

ou = V'(dL,Vu—uXVv),
v = Av—v+tu.

For the upcoming simulations we choose the initial conditions

uy = 1006—100[(x—0.5)2+(y—0.5)2]’

(54.2)
Vo = 0.

The termination criteria of the underlying (non-)linear solver are set up as described in Section[5.2]
with €, = 1E-6 and ¢, = 1E-14.

The transient minimal model of chemotaxis — basic convergence analysis

We begin by studying the spatial convergence of the numerical solution, i.e., we fix 8¢ and observe
the behavior as &k increases. The underlying numerical reference solution was obtained with
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Sh 1/256 1/128 1/64
DEC 2.2594E-03 1.2949E-02 5.5540E-02
LIN 2.7442E-03 1.3452E-02 5.6042E-02

Pic, NEwT 2.7437E-03 1.3452E-02 5.6042E-02

Table 5.5: Minimal Model. Convergence of the (spatial) error.

Sh* =279 (resulting in 262,144 Q, elements) and &* = 1E-5. The simulation was driven up to
the time instance 7 = 1.28E-3. The error towards the numerical reference solution is depicted in
Table[5.5] Therein, we list the error for all four iteration schemes at successive mesh refinements.
We recognize that all schemes provide a reliable O(84?) convergence as the spatial mesh is refined.
Note that PIc and NEWT effectively have the same error estimates. Our observations confirm the
proper choice of the (reference) time stepping, namely all schemes effectively result in the same
solution and the temporal error contribution is neglectable when ¢ is chosen appropriately.

When considering the pure temporal error contribution we issue numerical simulations at one
distinct mesh level and vary the time stepping 8¢. For the upcoming results we fixed h* = 277,
which already serves as a reasonable mesh level resulting in 16,384 elements. Furthermore the
time stepping for the numerical reference solution was chosen to be 8* = 5SE-4. Figure[5.8|shows
the corresponding convergence results for the model parameters y = 1 = d,, with the temporal dis-
cretization tackled by Crank-Nicolson (left figure) and Backward Euler (right figure). Let us draw
our first attention to Crank-Nicolson. The figure reveals that the decoupled scheme converges lin-
early while all monolithic schemes provide a quadratic convergence behavior. This results in error
estimates for DEC that are approximately 5 up to 34 times larger than the ones for NEWT. Note
that, once again, the error estimates for PIC and NEWT are essentially the same, therefore their
corresponding plots coincide. As a second observation we remark that the error estimates for the
linearized scheme are up to 40% larger compared to PIC and NEWT.

Coming to the Backward Euler case we recognize that all four schemes promote a linear con-
vergence. The error estimates for all monolithic schemes effectively coincide. However the de-
coupled variant provides a poorer numerical solution, the corresponding error is approximately
50 —90% larger than the one of the monolithic schemes.

The transient minimal model of chemotaxis — study of increasing chemosensitivity

After we have provided basic studies of the convergence behavior of all numerical schemes, we
turn our focus now to the simple measurement of efficiency as introduced above. Because all four
schemes reveal a similar spatial convergence behavior but a different temporal one, we draw our
attention to the temporal accuracy. Indeed, the control of the time stepping allows us for better
resulting statements of efficiency, since & can be chosen arbitrary while 1/84 is restricted to take
only distinct values of powers of two.

From the numerical and from the application point of view the four numerical schemes should
reliably cope with reasonable variations of the model parameters. In our case of chemotaxis-
driven processes we will focus on different values of the chemosensitivity x. Figure[5.9|depicts the
temporal error convergence for the Crank-Nicolson discretization. The value of % is successively
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Figure 5.9: Minimal Model. Convergence of the temporal error for = 2, ¥ = 4 and ) = 8. The
four plots represent the different solver schemes, DEC, LIN, PIC and NEWT. The time stepping
was chosen &t = 4E-3,2E-3,1E-3.

doubled up to % = 8. The numerical reference solution is computed as above with a corresponding
value of . From observing these plots three main points are eye-catching.

1.

Firstly, three data sets are distinguishable. The two nonlinear Richardson schemes PIC
and NEWT essentially provide the same error estimates, while the decoupled and linearized
variants reveal characteristic differences. The decoupled discretization leads to the poorest
approximation, followed by the explicitly linearized scheme. Both Richardson schemes
provide the most accurate results.

Secondly, the convergence rates, as demonstrated above, are mainly preserved. While DEC
only reveals a first order error reduction, all three monolithic schemes scale well with a
quadratic error convergence.

The final observation concerns the development of the error for the three data sets as ¥,
is increasing. We recognize that the error increases for all schemes when x grows, which
eventually leads to remarkable differences in accuracy for the three distinguishable data sets.
For y, = 8, Figure [5.9 reveals that we roughly gain one digit of accuracy when comparing
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LIN Pic NEWT

S\y|l2 4 8 |2 4 8 |2 4 38

1E3 167 68 73196 100 103 (72 70 6.7
2E-3 (73 75 791100 105 13870 7.0 70
4E-3 | 82 84 9.0 116 122 165 |76 81 84

Table 5.6: Minimal Model. Averaged total number of linear iterations for all monolithic schemes.

DEC with LIN or LIN with either PIC or NEWT at the coarsest time stepping (for smaller ¢
we even gain up to more than 30 times the accuracy).

The transient minimal model of chemotaxis — basic efficiency analysis

In order to get a first idea of the efficiency of the four proposed schemes (in fact we will consider
only three data sets in the following since the two Richardson schemes are very much similar),
we assume that the plots of convergence in Figure [5.9] can be continued up to an arbitrary fine
time stepping. In other words, for an arbitrary small & < 5E-4 and a corresponding numerical
reference solution, the error estimates for the four iteration schemes with & = 4E-3,2E-3,1E-3
coincide with the data given in the figures If their slope is also maintained we can state the
following:

Consider the errors of DEC and LIN for ¢ = 2. In order to drop the error of DEC to the level
of LIN, we have to refine the time stepping more than 13 times, i.e., even with 8t = 5E-4 DEC
provides a larger error than LIN with & = 4E-3. As it is not very handy to quantitatively compare
the required iterations of DEC with any of the monolithic schemes (recapitulate that these schemes
employ a multigrid solver for the block system rather than a single grid solver for the decoupled
scalar schemes), we skip this comparison for the remainder of this section and proceed with ana-
lyzing the three monolithic schemes in more detail.

We begin with commenting on P1C and NEWT. We already saw that the corresponding error
estimates effectively coincide, hence from the aspect of accuracy these schemes are identical.
When considering the averaged numbers of iterations however, a slight difference can be observed.
Table 5.6 provides the averaged number of linear iterations for all monolithic schemes.

Let us have a look on the case } = 2. The Picard scheme employs up to 11.6 iterations in
average, whereas Newton’s scheme only requires up to 7.6 iterations. Therefore, in terms of the
efficiency ratio defined in equation (5.4.1)), we can deduce that NEWT is approximately up to 1.5
times as efficient as P1C. For y = 4 this ratio effectively does not alter significantly, whereas for
X = 8 we arrive at a efficiency ratio up to 2.0, i.e., NEWT is up to twice as efficient as PIC. Table
summarizes all ratios of efficiency for all configurations.

Let us turn to LIN and PiC. Note that now the ratio of efficiency takes into account the different
error estimates. From Table we observe that the ratio of efficiency EFFp;c/EFFL 1y for y = 2
ranges from 1.1 to 2.0. For the large value of the chemosensitivity, x = 8, the difference of the
two schemes is more pronounced, EFFp;c /EFFLy reaches from 5.0 to 25.0. This clearly renders
the nonlinear Richardson scheme to be highly favorable in case of high nonlinearities (in terms of

x-

The combination of both ratios of efficiency allows us to estimate EFFyy/EFFNgwr by means
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EFFNewr/EFFpic | EFFpic/EFFLy | EFFNgwr/EFFLIN

\yl|l2 4 8 |2 4 8 |2 4 3

1E3 13 14 15 1.1 07 25014 09 375
2E-3 114 15 20 14 10 200 (20 15 400
4E-3 |15 15 20 20 13 50 |30 19 100

Table 5.7: Minimal Model. Ratios of efficiency EFFNgwr/EFFpic, EFFpic/EFFLy and
EFFNgwr/EFFLy for all configurations.

of

EFFNewr  EFFNewr EFFpic

EFFLn EFFp;c EFFLIx

This ratio takes values of up to 3.0 and 40.0 for y = 2 and y = 8, respectively.

Briefly concluding, we noticed that the efficiency of the two nonlinear Richardson schemes
only moderately differs. Particularly when considering the additional costs of assembling the Ja-
cobian for Newton’s scheme, we do not intent to state a clear recommendation for either of these
schemes. Hence, in this context more sophisticated testing is required. However, we definitely
observed that the linearized scheme cannot be recommended for large chemosensitivities.

Remark 5.1 The choice of the employed initial conditions for the minimal model of chemotaxis is
delicate, because of the possible emerging of a singularity in terms of a blowing-up solution. With
an initial cell concentration ug as in we have x||ug||;1 < 4m. Thus we expect the solution to
exist globally in time, cf. the cited results in Section[2.2] Therefore the analysis of the convergence
can be undertaken as usual. However, if we prescribe an initial cell distribution which leads to a
blow-up, numerical convergence is only valid before the blow-up time, which, in turn, is hard to
determine — up to the authors best knowledge the precise theoretical determination of the blow-
up time is still an open question. This is also the reason of the rather moderate increase of 7, in
the context of the study for the numerical efficiency. Indeed y, = 8 is the critical value of global
existing solutions of the minimal model ({.1.2).

78



5.4. Numerical comparison of the iteration schemes

The transient aggregation model

Let us now turn to the aggregation model that has already been introduced in Section For
comprehensibility we recall the governing equations (4.1.3),

a,u = V. (du Vu—x(l_i_uv)sz> y

W2
0v = Av+ T

This model introduces a nonlinear coefficient in the chemotaxis term and in the chemical produc-
tion rate. Since these terms determine the ‘strength’ of coupling, we might expect the decoupled
scheme to provide poorer results compared to the monolithic variants. Moreover, the nonlinearity
itself possibly gives rise to further distinguished (subtle) convergence behavior of the different
nonlinear treatments in our iteration schemes. For the upcoming numerical convergence tests we
focus on the unit square QUADI. As initial conditions we prescribe a cell distribution consisting
of five initial aggregates (cf. the first subfigure in Figure[5.10) whereas the chemical concentration
is zero everywhere, i.e.

up(X) = 0.9+0.05 [cos (4m(x; —0.25)) + 1] [cos (47(x; —0.25)) + 1]
+0.2 ¢ 100[(x1-0.55)*+(x2-0.6)?] 7 (5.4.3)
VO(X) = 0.

The exponential part of the initial cell distributions renders u#o unsymmetrical. The idea behind this
choice is to observe the preferences of aggregation to occur when single aggregates are initially
connected. In fact, numerically it can be shown (cf. Figure that in case of only weak (or the
absence of) connectivity, single aggregates tend to prefer to agglomerate at the boundaries. Hence
for our setting the two bottom-peaks from the initial condition initially tend to move to the lower
boundary. Just after all three top-peaks merge together, the two bottom-peaks start to feel more
attracted to this merged aggregate (the bottom-right peak being more excited than the bottom-left).
Note that the color-coding is relative to the particular snapshot, so that the cell density of different
snapshots cannot be easily compared (umax (f = 0) & 1.3 but umayx (f = 0.85) ~ 412). Especially, let
us stress that the total cell mass is conserved during our simulation.

The transient aggregation model — basic convergence analysis

The numerical reference solution is computed at a discretization level with 84" = 27° and
Or* = 1E-5. The simulation run up to 7 = 1.28E-3. The termination criteria remain unchanged.
Table [5.8] provides the error estimates for the spatial convergence. We observe that all schemes
roughly converge in accordance to the expected O(84?) order. Moreover all monolithic schemes
essentially produce the same error and the error of the decoupled variant only differs in the 7%/8"
digit. The reason for this coincidence is the rather subtle temporal error introduced by the fine
time stepping.

After the spatial convergence we now take a look on the temporal convergence behavior. For
numerical convenience we use 8h* = 2% and 8¢* = 3.125E-7 as reference discretization and sim-
ulate to 7 = 1.28E-3. Figure [5.11] depicts the convergence plots of all four iteration schemes.
As before the left and right figures depict the temporal error obtained from the Crank-Nicolson
and Implicit Euler time discretization, respectively. We observe that certain data sets coincide
and the corresponding plots cannot be distinguished in the figures. In the Crank-Nicolson case
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(@) t=0 (b) t =4E-2 (c) t =8E-2 (d) 1= 1.3E-1
(e) t = 1.7E-1 () t =4E-1 (2) t =5E-1 (h) t = 8.5E-1

Figure 5.10: The dynamics of the aggregation model with d, = 0.33,% = 500. Simulated with
dh =277 and & = 1E-3. Merging of the three top aggregates happens fast (t = 8E-2), while
the lower aggregates require some time to ‘sense’ the attractive agglomeration (after t = 1.3E-
1). Absence of interior attraction seems to lead to boundary (and finally corner) attraction (after
t = 1.7E-1). Notably the aggregate moves first to the closest boundary (¢t ~ SE-1) before it is
directed to a corner (f ~ 8.5E-1).

Sh 1/256 1/128 1/64

DEC 1.1338E-05 5.5474E-05 2.3150E-04
LIN, Pic, NEWT 1.1366E-05 5.5502E-05 2.3152E-04

Table 5.8: Aggregation Model with d, = 1 = %. Convergence of the (spatial) error.

all monolithic schemes essentially provide similar error estimates, i.e., their plots coincide. In the
case of Implicit Euler effectively all four schemes reveal similar error estimates and we cannot
distinguish their plots. Besides these first observations, we recognize in the Crank-Nicolson case
that DEC converges linearly (at least for sufficient small 8¢), whereas the monolithic schemes con-
verge quadratically as expected. Interestingly, DEC provides a better approximation for large time
stepping before the linear convergence limits its accuracy towards the quadratically converging
monolithic competitive schemes. In the case of Implicit Euler, the convergence is clearly linear.

The transient aggregation model — study of increasing chemosensitivity

As for the minimal model we now turn our focus to the study of increasing chemosensitivity. In
Figure [5.12) we show the temporal convergence plots for the cases of x = 100,500, 1000 with the
Crank-Nicolson time discretization. The corresponding numerical reference solutions are obtained
with 8h* =277, 8t* = 5E-6.
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Figure 5.11: Aggregation Model d, = 1 = 7. Convergence of the temporal error. The four plots
represent the different solver schemes, DEC, LIN, PI1C and NEWT. The time stepping was chosen
Ot =4E-5,2E-5,1E-5,5E-6.

Our observations are similar to the ones stated for the minimal model. The decoupled scheme
performs poorest in terms of accuracy as it converges only linearly. Among the three monolithic
schemes we can identify two data sets. The first set of error estimates consists of the data obtained
from the two nonlinear Richardson schemes P1C and NEWT. For all three values of  their plots
effectively coincide and reveal a second order convergence of the temporal error. The linearized
scheme LIN also provides a quadratic convergence, however its error estimates are significantly
poorer. As Y increases the differences between the error estimates of the three data sets also in-
crease. In other words, the strength of the chemosensitivity crucially influences the wealth of the
four different iteration schemes. To emphasize our findings let us exemplarily analyze the increas-
ing error gap for x = 100 and = 1000. In the case of jy = 100, LIN provides a 1.5 times poorer
accuracy as the nonlinear Richardson schemes PIC and NEwWT. Moreover, the error estimates of
DEC are roughly 20-200 times poorer than the ones for PIC and NEWT. These factors significantly
increase for ) = 1000. In this case the approximations of LIN are even more than six times poorer
than the ones for PIC and NEWT. Furthermore, the inaccuracy of the decoupled scheme is also
enhanced and provide approximately 120—1200 times poorer results than PIC and NEWT. Or, to
put it into the context of the increasing chemosensitivity: While the increase of chemosensitivity
is ten-fold, the differences in accuracy between LIN and the two nonlinear Richardson schemes
increase by a factor of nearly 4. For DEC and the two nonlinear Richardson schemes, this increase
is approximately six-fold.

The transient aggregation model — basic efficiency analysis

For the analysis of the efficiency of the different schemes we proceed as described in the case of
the minimal model. Firstly, we compare the two nonlinear Richardson schemes PIC and NEWT.
Since their error estimates essentially coincide we can focus on their required averaged iterations,
cf. Table In the case of y = 100, PIC requires up to about 1.6 times more iterations than
NEWT. Since the accuracy is almost identical, we can hence deduce that NEWT is 1.6 times more
efficient in terms of our definition of efficiency, i.e., EFFNgwr/EFFpic = 1.5. For increasing y this
ratio is augmented to 1.8 as PIC requires at most an average of 1.8 times the number of iterations
as NEWT. In Table[5.10] we depict the ratios of efficiency for all schemes under consideration and
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Figure 5.12: Aggregation Model. Convergence of the temporal error for ¥ = 100, 3 = 500 and
% = 1000 on the spatial level with 84* =277, The four plots represent the different solver schemes,
DEC, LIN, P1c and NEWT. The time stepping was chosen 8¢t = 8E-5,4E-5,2E-5, 1E-5.

LIiN Pic NEWT

dr\y | 100 500 1000 [ 100 500 1000 | 100 500 1000

1E-5 | 34 33 33 45 57 59 36 40 4.0
2E-5 (40 40 4.0 60 68 72 40 40 4.0
4E-5 140 4.0 40 63 72 78 40 40 49
8E-5 |41 41 4.1 69 84 80 46 51 57

Table 5.9: Aggregation Model. Averaged total number of linear iterations for all monolithic
schemes.

for all configurations of 8¢ and .

Secondly, let us compare the efficiencies of PIC and LIN. Because of the significant differ-
ences between the error estimation of these two schemes, we will additionally take into account
the ratio of accuracy. In the case of ¥ = 100 we do not obtain a clear picture of the resulting ratio
of efficiency EFFp;c/EFFLy. Calculations revealed that it reaches from 0.8 to 1.1, i.e., depending
on the time stepping either LIN is up to 25% more efficient than PIC or PIC is 10% more efficient
than LIN. However for larger ), this relation becomes clear. For 3 = 500 the ratio is always greater
than 1.0 and lies in the range of 1.6 — 2.4, i.e., now PIC is up to 2.4 times as efficient as LIN. For
% = 1000 this becomes even more pronounced as the ratio now increases up to 3.6, i.e., PIC is 3.6
times as efficient as LIN.

Finally, combining the results for the ratios of efficiency EFFNgwr/EFFp;c and EFFp;c/EFFyy
allows us to approximate the ratio of efficiency EFFNgwr/EFFLn. For x = 100,500, 1000 the cor-
responding ratio reaches up to 1.7, 3.4 and 5.4, respectively.

We conclude that the ratio of efficiency scales with the chemosensitivity of the aggregation
model, e.g .the value of %. From the analysis of LIN and PIC we can also state that for moderate
values of  the linearized scheme seems to be preferable, particularly in the case of a coarse time
stepping. With regard to the additional costs of assembling the Jacobian for Newton’s scheme,
the moderate ratio of efficiency of EFFNgwr/EFFpic does not allow for a clear recommendation for
either of those two nonlinear Richardson schemes.
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EFFNgwt/EFFpic EFFpic/EFFLn EFFNgwt/EFFLN

dr\y | 100 500 1000 [ 100 500 1000 | 100 500 1000

1E-5|113 14 15 08 24 36 1.0 34 54
2E-5 (15 1.7 1.8 09 20 3.0 14 34 54
4E-5 116 18 1.6 09 19 27 14 34 43
8E-5115 16 14 1.1 1.6 27 1.7 2.6 38

Table 5.10: Aggregation Model. Ratios of efficiency EFFNgwr/EFFpic, EFFpic/EFFLy and
EFFNgwr/EFFLy for all configurations.

The transient kinetic model

The last model under concern is the kinetic model (@.1.4). Here we focus on the model with a =0
and remind the reader of the corresponding equations as provided in Section 4.1]

du = V- (d,Vu—yuVe) +u*(1—u),
ov = Av—Pv+u.

The main numerical challenge of this particular example of a chemotaxis model is the introduction
of the kinetic term which gives rise to certain patterns. The sensitivity of those patterns require an
accurate numerical scheme capturing the spatial and temporal resolution of evolving patterns in
terms of sharp fronts and high transients, respectively.

Our simulations of this model were exerted on the enlarged square QUAD16 with a simulation
end time of 7 = (0.128. The numerical reference solution was computed at the discretization level
dh* =273 and 8* = 1E-3. Since models of this kind are known for their radially evolving traveling
waves we start our simulations given the following cell/chemical distributions

x) 1+ 1.1 cos? (nr&g(x)) , forrgg(x) <1.5
up(X =
1 , otherwise

vo(x) = 1/32.

Herein rg g(x) denotes the Euclidean distance to the center point (8,8) of the domain.

The transient kinetic model — basic convergence analysis

As before we provide error estimates for all of the four numerical schemes. We begin with the
convergence in time. To this end let us have a look on Table We remark that all numerical
schemes provide a quadratic convergence in terms of O(84?), in other words the error is (at least)
quartered with increasing level. Furthermore the computations reveal effectively the same errors
for the both Richardson schemes P1C and NEWT.

When focusing on the temporal errors we obtain the classical behavior which has already been
documented in [97]. Figure [5.13| shows the convergence plots for the Crank-Nicolson and the
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Sh 1/16 1/8 1/4
DEC 7.5570E-04 4.1882E-03 1.7062E-02
LIN 8.7983E-04 4.3157E-03 1.7184E-02

Pic, NEwT 8.8227E-04 4.3182E-03 1.7186E-02

Table 5.11: Kinetic model with d, = 1 = . Convergence of the (spatial) error.

Implicit Euler time discretizations. Herein the numerical reference solution was computed with
Newton’s scheme and a discretization with k2* = 1/8 and &* = 5E-4. As the spatial discretization
level is fixed for the upcoming simulations we assume that no deteriorating spatial errors are
introduced. First of all, in both cases we observe no essential difference in the error estimates for
the Richardson schemes P1C and NEWT, this is why the corresponding plots coincide. Secondly,
in the case of Crank-Nicolson, the plots reveal first-order and second-order convergence for DEC
on the one hand and for LIN, PIC and NEWT on the other hand, respectively. In the case of an
implicit Euler time discretization we obtain first-order convergence for all schemes as expected.
As a last remark we observe that initially the decoupled scheme is slightly more accurate than the
linearized scheme in the Crank-Nicolson case.

+=O-'Dec
8. ~B Lin
‘N, —&— Pic

10°F 10°F

error
error

10 10°F

. . . . . . . .
8E-3 4E-3 2E-3 1E-3 8E-3 4E-3 2E-3 1E-3
St St

(a) Crank-Nicolson (b) Implicit Euler

Figure 5.13: Kinetic model d, = 1 = 7. Convergence of the temporal error. The four plots
represent the different solver schemes, DEC, LIN, PI1C and NEWT. The time stepping was chosen
Ot = 8E-3,4E-3,2E-3,1E-3.

The transient kinetic model — study of increasing chemosensitivity

In this paragraph we will provide the plots for the study of increasing chemosensitivity for all of
our numerical schemes applied on the kinetic model. To study the effect of the chemosensitiv-
ity we use three distinct values ¥ = 10,20, 50. Our numerical reference solution is computed with
O = 5E-4. The spatial discretization is fixed for all simulations (including the reference solution),
Oh* = 1/16. Figure depicts the reduction of the temporal error for successively decreased ot
for all iteration schemes. We observe a similar behavior of the error as we already pointed out for
the aggregation model. Mainly three data sets can be distinguished, namely the poor performance
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of DEC, the quadratically converging error of LIN and the very similar error estimates of both non-
linear Richardson schemes, PIC and NEWT. We notice that the difference between LIN and the
two nonlinear Richardson schemes scale with the value of the chemosensitivity. In other words,
as % is increased, the gap between the two data sets of LIN and PIC or NEWT also increases. For
instance, for ¥ = 10 the left-most plot in Figure reveal that the two nonlinear Richardson
schemes are approximately 2.5 times more accurate than LIN. For ) = 50 this is significantly pro-
nounced as the two nonlinear Richardson schemes are roughly 25 times more accurate than LIN.
In contrast to this clear ten-fold increase of the gap, the situation changes remarkably when con-
sidering the difference between DEC and the two nonlinear Richardson schemes. Here, P1C and
NEWT are nearly 40 — 400 times as accurate as DEC for x = 10, whereas this value only increases
to 80 — 1000 for ¢ = 50. To put it in other words, there is roughly only a two-fold increase of the
difference between DEC and PIC or NEWT.

Hence, we conclude that an explicit linearization, e.g., of type LIN, of the underlying kinetic
model is very sensitive to the parameter . Its performance, in terms of accuracy, decreases faster
than the one obtained from nonlinear schemes. Note that DEC also introduces a non-trivial non-
linear iteration for the underlying kinetic model, since the growth term in the u equation gives rise
to a nonlinearity (in u).
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Figure 5.14: Kinetic model. Convergence of the temporal error for ¥ = 10, x = 20 and { = 50. The
four plots represent the different solver schemes, DEC, LIN, PIC and NEWT. The time stepping
was chosen & = 8E-3,4E-3,2E-3,1E-3.

The transient kinetic model — basic efficiency analysis

We start by comparing the efficiency of the two nonlinear Richardson schemes NEWT and PIC. In
order to compute EFFNgwr/EFFpyc it suffices to consider the ratio of required number of average
iterations for the two schemes. Table [5.12] provides these numbers for all monolithic schemes. In
the case of y = 10 this ratio reaches from 1.5 to 1.8, i.e., PIC requires up to 1.8 times as many
iterations as NEWT. For larger values of y this ratio only varies subtly, 1.3 —1.9 and 1.5 — 2.3 for
% = 20 and = 50, respectively. All corresponding data can be taken from Table

When considering EFFp;c /EFFL 1y, the effect of increased chemosensitivity is substantially rec-
ognizable. = For a moderate choice of ¥ = 10 the ratio of efficiency lies in between
EFFLn/EFFp;c = 1.0 and EFFx/EFFp;c = 1.6. For larger values of y this ratio increases re-
markably. We calculate the ranges EFFy v /EFFp;c = 2.0 — 2.9 and EFF v /EFFp;c = 5.5 —12.3 for
% = 20 and %, = 50, respectively. Interestingly enough, the ratio of efficiency seems to be propor-
tional to the value of %, namely a two- or five-fold increase of % approximately results in a similar
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LIN Pic NEWT

dr\y | 10 20 50 | 10 20 50 10 20 50

1E-3 |45 44 53187 95 11658 75 7.6
2E-3 (45 45 5489 112 13560 58 8.1
4E-3 | 46 46 54116 116 158 |63 60 90
8E-3 148 50 56116 120 195]68 6.8 84

Table 5.12: Kinetic Model. Averaged total number of linear iterations for all monolithic schemes.

EFFNgwr/EFFpic | EFFpic/EFFLiy | EFFNgwr/EFFLIN

or\y | 10 20 50 10 20 50 10 20 50

1E-3 |15 13 15 1.6 29 123 |24 38 185
2E-3 (15 19 17 1.3 21 85 |20 40 145
4E-3 | 1.8 19 1.8 1.0 20 6.8 |18 38 122
8E-3 |17 1.8 23 1.0 20 55 1.7 3.6 127

Table 5.13: Kinetic Model.  Ratios of efficiency EFFngwr/EFFpic, EFFpic/EFFLy and
EFFNgwr/EFFLy for all configurations.

increase of EFFLy/EFFpc. This was not observed for the ratio EFFp;c /EFFNgwr Or other models.

The ratio of efficiency for LIN and NEWT can be inferred by the transitive relation as before.
For x = 10,20,50 we obtain values in the range of EFFyy/EFFNgwr = 1.7 — 2.4,
EFFL iy /EFFNgwr = 3.6 — 4.0 and EFFL 1y /EFFNewr = 12.2 — 18.5, respectively.

To summarize our findings for the kinetic model, we can suggest that the nonlinear Richardson
schemes are the most favorable schemes throughout all of our choices for %. Most remarkably for
large values of  and a small time stepping either PIC or NEWT are recommended. Note that we
only studied the effect of scaling the chemosensitivity in the model in order to enhance the nonlin-
earity. The growth term in the cell equation of (4.1.4) might also play a vital role in determining
the strength of the nonlinearity and hence should also be taken into account when considering the
efficiency. Particularly this might lead to a more detailed distinction of the two similar appealing
nonlinear Richardson schemes.

5.4.3. Conclusion of the numerical comparisons

To conclude this section, let us recapitulate the most common observations. Firstly, we recognize
the consistency of all our iteration schemes and underlying models in terms of spatial and temporal
convergence behavior. Our numerical findings meet our a priori expectations. For all schemes a
quadratical spatial convergence is observed and a second-order temporal discretization drove all
monolithic schemes to a corresponding second-order convergence in time. Because the strongly
decoupled scheme does not incorporate a fully nonlinear treatment of the v equation, DEC could
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only be driven to first order accuracy in time.

Secondly, we observed that the ratio of efficiency among the monolithic schemes scales with
the chemosensitivity. In other words, an increase of  led to a correspondingly related increase
of the ratio of efficiency. For the strongly decoupled scheme, we documented this type of scaling
only for the accuracy. This was reasonable since a thorough comparison of the complexity of
the underlying iterations for a singlegrid solver applied on a decoupled system on the one hand,
and for a monolithic multigrid solver on the other hand, are highly intricate and would have over-
whelmed the scope of this section.

A bit of caution is advised when presenting a recommendation for a specific numerical scheme
at this current stage of numerical analysis. At the one hand, accuracy concerns clearly favor mono-
lithic schemes, since DEC provides errors that are significantly larger (up to several powers of 10)
than the ones for the monolithic schemes. Among the monolithic schemes, the both nonlinear
Richardson schemes provide the most efficient results, particularly for large chemosensitivities.

On the other hand, the simple implementation and complexity of DEC is a feasible argument
for its application in the context of rather moderate nonlinear chemotaxis models. Moreover,
in our numerical study we did not take into account the (sometimes) costly task of constructing
a reasonable Jacobian for NEWT. Last but certainly not least, we remark that the requirement
of a stabilization method crucially influence our recommendations. Referring to Section #.5.4]
we remark that the AFC stabilizing algorithm cannot be efficiently implemented for NEWT in a
straightforward manner. Therefore, in terms of efficiency, we cannot recommend the AFC stabi-
lized Newton’s method at its current stage of development. With this concern in mind, we tend to
favor PI1C if the initial guess for the nonlinear iteration can be chosen appropriately and ¥, is rather
large.

5.5. Limitations of the iteration schemes

After the previous basic convergence and efficiency analysis we turn now to the limitations of the
four iteration schemes, which one encounters when applying these schemes to non-academic pa-
rameter settings. Our designated testing models reveal characteristic numerical challenges, which
should be captured by reliable iteration schemes.

The following observation are mostly of qualitative nature and will provide more detailed in-
sights into the robustness and applicability of our four iteration schemes.

5.5.1. About misleading solutions

We start our investigation with the transient version of the minimal model (4.1.2). In contrast to
the convergence study above, we will now focus on a parameter setup that lead to a blowing-up
solution. In terms of the initial condition (5.4.2) this implies the choice 3 = 10 and we can expect
the blow-up to occur in the center of the computational domain QUAD. In order to validate this
conjecture, we apply all iteration schemes with an appropriate spatial and temporal discretiza-
tion. We follow the definition of the numerical blow-up time as already practiced by Chertock
and Kurganov [[16]. Therein the authors identified the instant of time * where the maximal value
of the solution (in the center) keeps increasing remarkably (does not converge) when the spatial
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mesh is refined, whereas the solution converges at time instants ¢ < ¢*. In this case, Chertock and
Kurganov proposed ¢* as a first reasonable estimation for the blow-up time.

In the following cutplanes in Figure [5.15| we demonstrate how the maximum of the peaky so-
lution at the designated time instant grows as the spatial mesh is refined for all iteration schemes.
This validates that our simulation setup generates a solution that blows up in finite time t* < 0.348.
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Figure 5.15: Minimal Model. Capturing of the blowing-up solution for all iteration schemes when
the spatial mesh is refined. The time stepping was chosen to be 6t = 1E-6 for DEC and &t = 1E-4
for all monolithic schemes. All solutions are shown at simulation time ¢ = 0.348.

Remarkably, the required uniform time stepping ¢ that is required to obtain our results differs
for the underlying iteration scheme. For a coarser temporal discretization, certain schemes pro-
duce misleading results or even diverging solutions in terms of a crash-down of the solver. Let us
have a closer look on this behavior.

Firstly, the decoupled scheme DEC seems to be very sensitive to the time stepping, cf. Figure
When running simulations with the larger time stepping, e.g., ¢ = 1E-2, the solution is
misleading, as we would accept a blow-up time somewhere before t* < 0.04 (left column in Figure
[5.16). Moreover the underlying solver breaks down very early (after seven time steps). In other
words, DEC is not as robust as the nonlinear Richardson schemes, i.e., the time stepping must be
chosen carefully.

Secondly, the linearized scheme also reveals significant drawbacks. If the time stepping is
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chosen insufficiently small, e.g., 8t = 1E-2, the solution differs dramatically from our expecta-
tions. Figure depicts the solutions obtained by LIN and NEWT for comparison reasons. We
observe that the linearized solution tends to be too diffusive and does not blow up, in contrast to
the solution obtained from Newton’s scheme. Indeed, ongoing simulations (not shown) revealed
that LIN finally leads to the homogeneous steady state u* = ||ug||;1 = 7.

Hence, both of the schemes, DEC and LIN, are not as robust as the nonlinear Richardson
schemes. From the applicant’s point of view the wrong results of the linearized scheme are often
more crucial, since they pretend a totally different solution, while a solver break-down of the de-
coupled scheme serves as a decent indicator for an erroneous simulation. This latter case can be
more easily recognized by the applicant.

One possible explanation of this odd behavior is based on the fact that the nonlinear coupling
between u and v cannot be accurately treated by the decoupled and linearized approach. Indeed,
while LIN explicitly linearizes the nonlinear coupling, DEC breaks the two-way coupling by the
approach of strong decoupling, which also leads to linearization for the minimal model of chemo-
taxis. Hence in both cases the treatment of the nonlinearity leads to significant inaccuracies, in
contrast to the nonlinear Richardson schemes which integrate a true nonlinear iteration (for the
minimal model of chemotaxis). In the light of the rather mild nonlinearity of the minimal model,
caused by the chemotaxis term V - (uy Vc¢), this behavior is particularly interesting and we finally
conjecture that the coupling via the positive feedback in our model,

agglomerationof u#  — increaseof v —  even stronger agglomeration of u,

is the more crucial reason for the poor numerical approximations of DEC and LIN.
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Figure 5.16: Minimal Model. The solution obtained from DEC (left column) and NEWT (right
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Figure 5.17: Minimal Model. The solution obtained from LIN and NEWT at certain time instants
is shown. While LIN reveals an illusive global in time solution (left column), NEWT still captures
the blow-up reliably (right column). All simulations were run with 2 = 1/128 and &t = 1E-2.
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5.5.2. About the nonlinearity

In this paragraph we will examine the strength of the nonlinearity of the transient aggregation and
kinetic model of chemotaxis, cf. (4.1.3)) and (.1.4). In the context of nonlinearities these models
are of particular interest since their order of nonlinearity give rise to more complex dynamics and
numerical challenges than the minimal model of chemotaxis (#.1.2)). In the course of this exam-
ination we will compare the both nonlinear Richardson schemes in terms of required nonlinear
iterations. It is well known that the nonlinear Newton iterations locally converge quadratically
whereas the Picard iterations only converge linearly. However, the costly assembly of the corre-
sponding Jacobian matrices in each nonlinear iteration has to be taken into account when com-
paring the overall performance/efficiency of both schemes. There exist several alternatives to the
nonlinear schemes presented in this work, see, e.g., [22] for competitive Newton schemes, and we
will discuss some promising approaches at the end of this chapter. Nevertheless, for a first basic
analysis, the upcoming results provide characteristic properties of the two most commonly used
nonlinear Richardson schemes and uncover possible improvements for future work.

For a first comparison we consider the transient aggregation and kinetic model, (4.1.3)) and

(@.1.4), with the usual boundary and initial conditions, cf. (2.2.3), (5.6.1) and (5.4.4), on the
default computational domain QUAD16. We discretize the domain with a uniform mesh size

Oh = 1/8 and use the default model parameters for both models:

Kinetic model: d, =0.0625,x = 8.5 and § = 32;
Aggregation model: d, =1,x =80 and d, = 0.33.

Figure [5.18] depicts the nonlinear residual drop of Newton’s method and of the Picard iteration
exemplary for the first time step with & = 0.01. Concerning Picard’s iteration we distinguish an
inner termination criterion of kind (5.2.3)) (as it is also used for Newton’s method) and a criterion
with a fixed relative threshold of 1E-10. We observe that this differentiation is rather subtle and
hence we employ the criterion (5.2.3)) for NEWT and P1cC for all numerical simulations. Further-
more we observe the linear convergence of Picard’s iteration and the quadratical residual drop of
Newton’s method. Note that the last nonlinear iteration of Newton’s method applied on the ki-
netic model does not drop the residual quadratically since the absolute stopping criterion for the
nonlinear iterations, €, = 1E-14, can already be reached by terminating the corresponding inner
multigrid solver after very few iterations. Indeed, while the third nonlinear residual drop (from
2.9553E-9 to 1.7426E-14) requires five linear multigrid iterations, the last (from 1.7426E-14 to
1.5686E-15) only requires one single multigrid sweep.

To examine the difference in the residual drop in more detail, we continue our study with
different temporal discretizations. In Figure [5.19] we plot the average number of exerted nonlin-
ear iterations for PIC and NEWT for increasing values of &t. We clearly observe that the average
number of nonlinear iterations remain almost constant for Newton’s method, whereas the number
remarkably increases for Picard’s linearization, for that it requires up to 15 and 5 times the num-
ber of iterations of Newton’s method for the aggregation and kinetic model, respectively. This
additional computational expense cannot be balanced by the extra assembly costs of Newton’s
Jacobian. In fact, the simulations revealed that PIC requires up to 11 and 4 times more CPU time
than NEWT for the aggregation and kinetic model, respectively (not shown). Hence, for larger
time steps Newton’s method clearly pays off. Furthermore, these numbers support the idea that
the aggregation model seems to be more sensitive to the accuracy of the nonlinear treatment than
the kinetic model. This meets our introductory conjecture in Section {.T|about the increased non-
linear index of that model, i.e., in the aggregation model both equations (# and v) contribute to the

92



5.5. Limitations of the iteration schemes

nonlinear residual

T
+B Pic_fixed
—— Pic

-V~ Newt

2 4 6 8 10
iteration

(a) Aggregation model

12

nonlinear residual

B Pic_fixed
——Pic
. ] - V- Newt

iteration

(b) Kinetic model

Figure 5.18: Nonlinear residual drop obtained from PIC and NEWT. Additionally, the results for
a fixed relative stopping criterion for PIC are displayed, PIC fixed. The data is collected from the
first time step with & = 0.01.

nonlinearity. However, these findings should be interpreted with caution. The &¢-threshold beyond
which Newton’s method pays off, can be unpractical in particular cases, because the temporal er-
ror introduced by excessive large time stepping can significantly deteriorate the overall accuracy
of the scheme.
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5.6. Stabilization via AFC

The stable numerical treatment of chemotaxis-dominated PDEs, namely a dominant contributions
of the chemotaxis term in the overall system dynamics in terms of advection, is a challenging task.
This is particularly crucial if local agglomeration of cells leads to steep gradients of the chemical
substance, e.g., in the case of blowing-up solutions or traveling fronts. As already mentioned in
the numerical state-of-the-art in Section[5.1] plenty of approaches of stabilizing nature have been
introduced by many researchers. The arising trade-off between preserving physical properties
and a certain accuracy of the solution is the crucial point for stabilizing algorithms. In the context
of FEM, yet, only first-order accurate stabilization schemes have been introduced (cf. Section|5.1]).

This section is concerning about the applicability of stabilization via AFC, which has been
introduced in Section d.5] One of its key-features is its convergence of practically mixed-order,
hence, providing a competitive novel approach in stabilizing chemotaxis-dominated PDEs.

In the following paragraphs we will present qualitative analysis of AFC stabilized numerical
schemes applied on the three exemplary transient chemotaxis models which have already been
used before. The author would like to remark that partial results can already been found in previ-
ously published work by Strehl ez al., cf. [96,198]]. Since the models have been considered multiple
times in the course of this chapter, we kindly refer the reader to the corresponding equations for
details.

5.6.1. AFC for the transient minimal model of chemotaxis

The reader is referred to (.1.2) for model details. Since this model gives rise to blowing-up
solutions, i.e., immensely steep gradients of solutions of nearly vanishing support, it deals as a
valuable yardstick for stabilization schemes. The upcoming numerical simulations are performed
on the unit square QUAD1. The minimal model will be complemented by initial conditions that
theoretically lead to a blowing-up solution. Correspondingly to, e.g., Chertock and Kurganov [[16]]
we focus on

up(x) = 1000 o 100[(x1-0.5)*+(x2-0.5)?]

)

vo(x) = 500 ¢ 301(x1-0.5)*+(12-05)%]

Since ||up||;1 > 8m we expect a blow-up in finite time even for ) = 1. This blow-up will be
located in the center of the domain, likewise to the initial condition. In contrast to the initial con-
ditions accompanying the minimal model before, cf. (5.4.2), the choice of initially non-vanishing
chemoattractant concentration accelerates the blow-up and is only due to computational reasons.

In the upcoming numerical studies we qualitatively present (i) unstable transient solutions pro-
vided by the high-order numerical scheme, i.e., without the application of AFC (ii) the low-order
counterpart via discrete upwinding, introduced as an intermediate step of the AFC paradigm and
finally (iii) the AFC stabilized solution. Once again, we like to mention that quantitative results
of the AFC methodology are not the scope of this current study but definitely give rise to future
research since they have not been considered in the literature so far.
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AFC for the transient minimal model of chemotaxis — high-order solutions

The first task is to reveal that all iteration schemes often provide only meaningless high-order
solutions, because of severe numerical instabilities. To this end we choose &t = 1E-6 and observe
the development of the solution. Figure [5.20] documents the appearance of negative values that
finally lead to the formation of spurious oscillations for all four iteration schemes, from top to
bottom, DEC, LIN, P1C and NEWT.
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Figure 5.20: Minimal model. Documentation of numerical instabilities for all four high-order
iteration schemes at different instances of time, namely ¢t = SE-5, t = 7E-5 and t = 8E-5. Dis-
cretization parameters were chosen as &k = 1/128, 6t = 1E-6.

These artifacts are of pure numerical character as our findings in Figure at successive
spatial refinements (34 < 1/128) suggest that the solution exists (and particularly does not blow
up) at the given time instant. Therefore our results demonstrate that the four high-order schemes
are very sensitive in terms of the discretization parameters and cannot be considered robust. Fur-
thermore, we recognize that all four schemes provide very similar results, i.e., qualitatively we
cannot distinguish their solutions for the current parameter setting.
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Figure 5.21: Minimal model. Documentation of the existence of the solution at + = 8E-5 for
all four high-order iteration schemes at successively decreased spatial mesh sizes, dh = 1/256,
Sh =1/512 and 6k = 1/1024. Time stepping was chosen as 8t = 1E-6.

AFC for the transient minimal model of chemotaxis — low-order solutions

In what follows we present the solutions for the low-order counterparts of our underlying four
iteration schemes. As we already discussed in Section[4.5.2] we expect the schemes to remedy the
numerical artifacts, such as negative solution values. For reasons of comprehensibility, Figure[5.22]
displays the corresponding solutions at the same time instances as Figure We observe that,
accordingly to our expectations, all solutions yield positivity and no oscillations can be identified.

The stabilizing character of the discrete upwinding method allows for a more detailed anal-
ysis of the blowing-up solution. Indeed, it is computationally a very hard task to estimate the
blowing-up time for the high-order scheme, simply because the numerical pollution would require
impractical fine discretization levels to study the spatial convergence/divergence of the solution
as practiced before, [16]. The low-order solutions, however, are not polluted by instabilities and
hence, the analysis for the blow-up time can be conducted on reasonable discretization levels as
before. Following our results documented in Figure[5.23]and the definition of the numerical blow-
up in [16], we conjecture that the blow-up happens at a time * € (8E-5, 1E-4], since we know
that the numerical solution converges at t = 8E-5 (cf. Figure[5.21)) but does not so at t = 1E-4 (cf.

Figure [5.23).
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Figure 5.22: Minimal model. Plots of the low-order counterparts of the four iteration schemes at
different instances of time, namely t = SE-5, t = 7E-5 and ¢ = 8E-5. Discretization parameters
were chosen as before, 6h = 1/128, 8¢ = 1E-6.

AFC for the transient minimal model of chemotaxis — AFC solutions

In this paragraph, the final step of eliminating overdiffusive fluxes from the solutions is presented.
Because of those artificially introduced diffusive contributions, the low-order solutions, as de-
picted above, cannot shape the singular behavior well enough. Indeed, when comparing the max-
ima of the low-order solutions for 82 = 1/512 at t = 1E-4 (Figure with the corresponding
maxima of the high-order solutions for the same discretization level but at r = 8E-5 (Figure [5.21),
we recognize that the former are less pronounced. That is a contradiction to the fact that at the
blow-up time all mass is expected to be agglomerated at one single point (delta-singularity), which
implies that we expect our solution to attain its maximum (obeying mass conservation) at the time
of the blow-up. One reasonable explanation of this discrepancy is the additional diffusion which
tries to smoothen the formation of such a singularity, resulting in a smaller maximum value.

The results given in Figure [5.24] and [5.25] confirm our conjectures. Firstly, we observe that
AFC is capable of preserving positivity of the solution. Moreover, no severe oscillations appear,
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Figure 5.23: Minimal model. Increasing low-order solution at t = 1E-4 for all four iteration
schemes at successively decreased spatial mesh sizes, h = 1/64, h = 1/128 and &h = 1/256.
This affirms the conjecture a blowing-up time of t* € (8E-5,1E-4]. Time stepping was chosen as
ot = 1E-6.

Figure Since all four iteration schemes provide similar results, in Figure we only plot
the solution for two of the four schemes. As in the case of the discrete upwinded schemes, AFC
allows for capturing the blowing-up solutions properly. Figure [5.25]shows the solutions obtained
from the AFC application for all four iteration schemes. As the spatial mesh is successively re-
fined we observe a significant increase of the solutions’ maxima which affirms the conjecture of
the blowing-up time as t* € (8E-5,1E-4].

Remarkably, the maxima of the AFC solutions differ from the low-order solutions, compare
the corresponding assays in Figure [5.23] and Figure [5.25] AFC provides solutions with larger
maxima than their low-order counterparts, which agrees well with the overdiffusive nature of the
upwinded schemes and the concept of AFC.
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Figure 5.24: Minimal model. Exemplary plots of the AFC counterparts of DEC and NEWT at
different instances of time, namely t = 5E-5, t = 7E-5 and t = 8E-5. Discretization parameters
were chosen as before, 8h = 1/128, 8¢ = 1E-6.
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Figure 5.25: Minimal model. With the application of AFC, increasing solution at ¢ = 1E-4 for all
four iteration schemes at successively decreased spatial mesh sizes, 6h = 1/64, 6h = 1/128 and
Oh = 1/256. This affirms the conjecture a blowing-up time of t* € (8E-5,1E-4]. Time stepping
was chosen as &t = 1E-6.
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AFC for the transient minimal model of chemotaxis — an exemplary 3D case
After presenting the AFC stabilized results for the minimal model in a classical setting, i.e., blow-
up in a 2D square, we will present now selected results from a 3D application that are taken from

[98]. The purpose of this demonstration is to promote the flexibility of AFC in terms of dimension
and underlying computational domain.

The upcoming simulations are subject to a discretization of & = 1E-4 and a total of 147,456
conforming trilinear finite elements. We used the decoupled iteration scheme DEC and a slightly
different limiting strategy for the AFC application, see [98] for details.

We simulated the minimal model of chemotaxis (¢.1.2)) on the computational domain CYL3D
with standard Neumann boundary conditions (2.2.3). Initially we prescribe well separated cell and
chemoattractant distributions, see Figure

uo(x) = 1000 100ki+x+(x3-2)’]

V()(X) _ 5008750[x%+x%+(x3*3)2]_
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1000¢
800; A

©
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x3—cutI|ne
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Figure 5.26: Minimal model. Initial condition for the 3D simulation. Left: Initial distribution for
the cells (centered dark spot) and the chemoattractant (upper bright spot). Right: Cutlines of the
cell distribution (solid line) and chemoattractant concentration (dashed line) along the x3-axis.

Our simulations in Figure reveal that the cells tend to chemotax to the origin of the
chemoattractant and blow up. Here we only show the results for ¥ = 1 and d,, = 1. The top row
of the figure displays the 3D distribution of the cells (dark) and the chemoattractant (bright) as
isovolumes. The bottom row depicts cutlines along the x3-axis of the cell distribution. We clearly
recognize the smooth solution profile without any appearance of severe oscillations or negative
values. In contrast to that, the pure high-order Galerkin discretization provides poor numerical
solutions, namely the solution profile is polluted by frequent oscillations and negative values, see
[98]] for details.
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Figure 5.27: Minimal model. Development of cell and chemoattractant concentrations for y =
1,d, =1 att = 0.005,0.007,0.01,0.02; & = 1E-4. Top: Distribution of cells u (dark volumes)
and chemoattractant v (bright volumes). Bottom: Cutline along the x3-axis for cells u.

5.6.2. AFC for the transient aggregation model

The motivation behind the aggregation model was to introduce certain saturation coeffi-
cients that render the solution to exist globally in time, particularly, no blow-up can be observed.
However, numerically speaking, this model remains challenging because of it nonlinearity and the
usual chemotaxis-favoring parameters, e.g., % >> 1 cf. [16].

In what follows we firstly consider the high-order solutions of our four iteration schemes and
reveal their numerical artifacts that accumulate and eventually lead to divergence of the underlying
solver. Then we will see how AFC helps to stabilize the solutions and allows us to give qualitative
conclusions. For the upcoming numerical simulations the aggregation model (4.1.3)) is accompa-
nied by a random distributed initial concentration of u and initial absence of the chemoattractant
v,

0.9+0.2rand(x),

ug

(5.6.1)
vo = O.

We used the same random numbers for all simulations running on the same spatial discretization
level, i.e., the initial conditions for the high-order solutions coincide with the ones of the AFC
application when the spatial discretization is not altered. This allows us to compare the solutions
obtained for one particular &h.

As standard model parameters we follow [16] and set d,, = 1, = 80,d, = 0.33. The compu-
tational domain is set to QUAD16 and the standard discretization yields 8k = 1/4 and & = 1E-2.

AFC for the transient aggregation model — high-order solutions

Figure [5.28] depicts the high-order solutions for our four iteration schemes at the dimension-
less time instant ¢ = 1, namely, after 100 time steps. We observe that numerical undershoots
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lead to negative solution values for all four iteration schemes. In order to compare the numeri-
cal results more carefully, in Figure we plotted the solution values along the x; /x,—cutline
(0,0) — (16, 16) which crosses the computational domain diagonally. The right plot zooms into the
data marked by the highlighted box. We recognize that the undershoots mostly appear at the sharp
interfaces of the separate accumulation sites, which is a well known characteristic for numerically
instable transport equations. The cutlines for the monolithic and decoupled schemes are clearly
distinguishable, whereas the difference between the linearized and the Richardson schemes is more
subtle, which is most notable in the zoomed view. Finally, the cutlines of the Picard linearization
and the Newton scheme practically coincide. These observations confirm our expectation of the
qualitative comparison of our four underlying iteration schemes based on their mathematical de-
velopment as outlined in Chapter ]
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Figure 5.28: Aggregation model. High-order solutions at ¢ = 1 for all four iteration schemes. Par-
ticularly we recognize the occurrence of numerical undershoots, negative values appear. Standard
model and discretization parameters are used.

AFC for the transient aggregation model — AFC solutions

The AFC application renders the solution of our four iteration schemes positivity-preserving as
Figure evidently demonstrates. Therein we depict the AFC stabilized solutions for all four
iteration schemes subject to the same model and discretization parameters as in Figure [5.28] be-
fore. Besides countering the negative solution values, the application of AFC also provides a
more robust solution in terms of a consistent solution profile throughout all four iteration schemes,
which can be best recognized from Figure[5.31] This figure sketches the solution profiles obtained
from the solution values along the x; /x,—cutline (0,0) — (16, 16), as it was already done in Figure
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Figure 5.29: Aggregation model. Same high-order solutions as in Figure This time the
values along the x; /x,—cutline (0,0) — (16, 16) are shown. The solution profiles clearly reveal the
numerical undershoots. Standard model and discretization parameters are used. The right figure
zooms into the data of the marked box.

Moreover, the zoomed view on the right provides a clearer picture of the first solution peak
marked by the box. Similar comparisons reveal that the four cutlines do not alter as much as they
did for the high-order solutions. Even in the zoomed view, no significant differences between the
four iteration schemes can be recognized. However, this stabilization comes along with a slightly
diffused solution profile, which can be readily observed in the provided figures.

The robustness and stability of the AFC application allows for a qualitative analysis of the
underlying aggregation model. Indeed, we can now draw our attention more closely to the rela-
tions of the involved model parameters without concerning too much about temporal or spatial
discretization issues.

Experimental assays that study chemotaxis-driven aggregation can take several hours or even
days of observation. Exemplary, in-vitro case studies of roughly 200 starving amoebae of the
species Dictyostelium discoideum are tracked within an eight hour time frameﬂ With our stabi-
lized schemes at hand we can address questions concerning the aggregation with less time con-
suming simulations. Exemplary in-silico experiments shown in Figure [5.32] run for less than five
minutes (Intel Core i7 X 980 @ 3.33 Mhz). The provided results were obtained from the
AFC stabilized variant of PIC. As we demonstrated above, cf. Figure [5.31] similar results could
have been obtained with the other iteration schemes. Our numerical simulations were performed
on CIRC16, discretized with a total of 9216 Q; elements. The temporal discretization remains at
ot = 1E-2.

When comparing the three different numerical simulation assays presented in Figure we
recognize that an increase of X leads to a finer grained accumulation while the total number of
aggregates roughly remains constant throughout the different strength of chemosensitivity. Be-
cause the underlying aggregation model yields mass conservation in the # equation, the stronger
accumulation at larger y necessarily implies a higher concentration at these aggregation sites. This
can be easily verified by the corresponding color bars of the given screenshots which indicate the
maximal and minimal solution values. These observations agree well with the nature of (attrac-
tive) chemotaxis flux.

SLaboratory for the Physics of Life, Princeton University. Blog of November 21, 2008:
http://tglab.princeton.edu/blog/classic-papers/
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Figure 5.30: Aggregation model. Solutions obtained via AFC at t = 1 for all four iteration
schemes. No undershoots or negative values appear. Standard model and discretization param-
eters are used.
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Figure 5.31: Aggregation model. Same AFC stabilized solutions as in Figure This time the
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Figure 5.32: In-silico experiments of the aggregation of Dictyostelium discoideum with the under-
lying aggregation model for different chemosensitivities. Exemplarily we used the AFC stabilized
variant of PIC for simulation. Every column shows snapshots of one particular simulation run,
from left to right x = 100,200,300, d, = 0.33 is fixed for all simulations. Discretization parame-
ters: 0h ~ 1/8 (92169, elements) and &t = 1E-2.
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AFC for the transient aggregation model — an exemplary 3D case

In correspondence to the 3D simulations for the minimal model of chemotaxis, we will now present
particular results for a 3D application for the aggregation model provided by a previous paper of
the current author [98]]. Again, the AFC stabilized decoupled iteration scheme DEC was employed,
for details the interested reader is referred to the provided reference [98]].

Together with the usual Neumann boundary conditions (2:2.3)) and the priorly defined initial
conditions (5.6.1)) the aggregation model (.1.3)) is simulated on the 3D cubic domain QUAD3D.
The uniform temporal and spatial discretization was set to 8¢ = 0.01 and 84 = 0.25 (resulting in
a total of 262,144 conforming trilinear finite elements), respectively. The simulations shown in
Figure [5.33| were run with the same parameters as in the 2D case, i.e., d, = 1,d, = 0.33, = 80.

From the Figure [5.33| we can easily track the aggregation which takes place after the random
initial cell distribution undergoes chemotactic communication. The depicted isosurfaces refer to
solution values of 5.0 in all subfigures. We can therefore readily observe (e.g., by counting the
simple-connected cell batches) that, as time evolves, single cell agglomerations merge together
to form bigger (more favorable) aggregates. Neither oscillatory solution profiles nor negative
solution values are emerging.

(@t=10 (b) t=2.0

() t=4.0 ) t=5.0

Figure 5.33: Aggregation model. Simulation in 3D with the screenshots taken at the distinct times
t=1.0,2.0,4.0,5.0.
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5.6.3. AFC for the transient kinetic model

Kinetic models of kind as stated in Section provide a spatially proliferation of an ini-
tial inoculum. When prescribing a perturbed concentration positioned in the center of the do-
main, the solution exhibits multiple radially traveling waves. The traveling fronts leave trailing
(spiky) spots as they propagate through the entire domain, cf. the numerical results of, e.g.,
(16l [55) 80, 87, 188, [96] [100]. The sensitivity of generated patterns and their richness require
accurate and particularly stable numerical solver.

Our upcoming numerical study considers the model (3.3.1)) which introduces a logistic growth
term. We choose K = K = 1 and simple linear reaction terms in the chemoattractant equation, so
as to use the kinetic model (4.1.4) with a Fisher growth term

du = V- (d,Vu—xuVe) +u(l—u), (5.6.2)
atv = AV—BV+M-

Note that despite the carrying capacity of K = 1, the solution u is not limited to unity, as in the
case of the original Fisher’s equation. The reason is the non-saturating chemotaxis feedback which
leads to local accumulation.

As underlying computational domain we use the square QUAD16. The numerical simulations
of are complemented by randomly perturbed initial data
1 +rand(x), for||x—(8,8)7||<1.5
1 , otherwise (5.6.3)
vo(x) = 1/32.

up(x) =

The standard model parameters (after Aida et al. [2]) read d, = 0.0625,x = 8.5 and § = 32.
As standard discretization parameters we choose 8k = 1/8 and 6t = 0.1. Similarly to the aggre-
gation model, we will examine the numerical instability of the high-order solutions and compare
them with the results obtained from the AFC application.

AFC for the transient kinetic model — high-order solutions

Figure [5.34] displays screenshots of the high-order solutions for all four iteration schemes at the
dimensionless time instant ¢t = 1.5. From these figures we observe that negative values appear
and pollute the solution profile. In fact, the resulting over- and undershoots lead to divergence of
the underlying solver shortly after the depicted time instant (r < 2.2). Excepting the very similar
results of the two Richardson schemes, the solutions at t = 1.5 of the iteration schemes provide
significantly different profiles as demonstrated in Figure [5.35] note the logarithmic scaling. The
highly varying profiles can be best recognized in the zoomed view on the right of the figure. Thus,
besides the numerical instabilities, the high-order solutions for the different iteration schemes are
not as robust as in the case of rather moderate model and discretization parameters (compare the
basic convergence analysis given in Section [5.4.1).
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Figure 5.34: Kinetic model. High-order solutions at ¢ = 1.5 for all four iteration schemes. Note
the appearance of negative values. Standard model and discretization parameters are used as given
above.
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Figure 5.35: Kinetic model. Same high-order solutions as in Figure This time the values
along the x;—cutline (0/16) — (8, 8) are shown on a logarithmic scale, note that 1 +u is displayed.
Remark the highly varying solution profiles for DEC, LIN and both Richardson schemes (P1C and
NEWT). Standard model and discretization parameters are used. The right figure zooms into the
data of the marked box.
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AFC for the transient kinetic model — AFC solutions

Now, let us consider the application of AFC on all our four iteration schemes. In Figure [5.36] we
can readily acknowledge the positive solution values, the propagating fronts and the emergence of
trailing spots. Notably, all four stabilized iteration schemes provide consistent solution profiles,
which is even more recognizable in Figure[5.37] As in the high-order case, the solution values are
plotted in logarithmic scale, which allows for a comparison with Figure [5.35]
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Figure 5.36: Kinetic model. AFC stabilized solutions at # = 1.5 for all four iteration schemes. All
solutions remain positive in contrast to Figure[5.34] Standard model and discretization parameters
are used as given above.

We see that the AFC stabilized schemes provide robust and meaningful results in terms of
consistency and positivity preserving, non-oscillatory solution profiles and hence, allow for a more
detailed analysis of the model parameters even on a rather coarse discretization level. In the
following we illuminate the chemosensitivity dependent propagation of the emerging waves. We
provide the AFC stabilized solutions for the P1C. In Figure we examine the solutions character
for an increasing chemosensitivity, y = 8.5,10,15,20. Our results seem to be two-fold. On the
one hand they reveal that the value of  influences the speed of propagation, i.e., larger values of
trigger a faster wave-like propagation until the boundary of the computational domain is reached.
On the other hand, the screenshots show that our choice of  only slightly influences the number
of trailing spots. Note that the inner most circle consists of six trailing spots for = 8.5, while for
% = 20 one additional spot can be detected.
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Figure 5.37: Kinetic model. Same AFC stabilized solutions as in Figure Again the values
along the x;—cutline (0/16) — (8, 8) are shown on a logarithmic scale, note that 1 + u is displayed.
In contrast to the high-order solutions, cf. Figure[5.35] the AFC stabilized profile for all iteration
schemes do not differ substantially. Standard model and discretization parameters are used. The
right figure zooms into the data of the marked box.

AFC for the transient kinetic model — an exemplary 3D case

Let us now have a look on the application of the AFC stabilization for the kinetic model
on a 3D computational domain, namely the sphere CIRC3D. The upcoming results can already
be found in a preceding paper of the author [98] and were performed with the decoupled scheme
DEC. We use the same boundary conditions as before and similar initial conditions

1 +rand(x), for|[x|| < V2
1 , otherwise (5.6.4)
vo(x) = 1/32.

uop (X) =

The uniform temporal discretization was set to 6 = 0.1 while the spatial mesh was discretized to
provide a total of 4,194,304 conforming trilinear finite elements. For the following simulations we
choose the same model parameters as before, namely d, = 0.0625,% = 8.5 and B = 32. In Figure
we observe how the initial random distribution of cells propagates into the whole domain in
a moving-wave pattern where trailing spots are left as the advancing wave-front moves on. Fur-
thermore we observe that the solution values remain positive and no oscillations occur.

After the wave-fronts hit the boundary of the domain the trailing spots tend to aggregate in a
chaotic manner (not shown). Indeed, the longterm behavior of chemotaxis models incorporating
kinetic terms is subject of current research as it is not entirely investigated if steady states exists
and how they are influenced by the chemosensitivity.
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Figure 5.38: Kinetic model. AFC stabilized solutions obtained with P1C at + = 10 for different
values of . Standard model and discretization parameters are used as given above.
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Figure 5.39: Kinetic model. AFC stabilized cell distribution (after [98]]) obtained with DEC. The
screenshots were taken at times r = 5.0,10.0,20.0. Left column: sliced spherical domain, gray-
scale-coded cell concentration from low to high. Right column: centered x;x,—cutplanes of the
cell concentration, gray-scale- and heights-coded cell concentration from low to high.
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5.7. Numerical summary

Let us summarize the numerical results provided by the preceding sections to have a brief com-
pendium of our numerical investigation.

In order to identify a robust and efficient solver algorithm for the resulting discrete linear
systems, we analyzed the applicability of a geometric multigrid solver. In the present, multigrid
frameworks become increasingly popular because of their wide-spread practicability for a vari-
ety of (also non-elliptic) problems under consideration. In our numerical analysis we found out
that multigrid algorithms can indeed improve the robustness and practicability of the solving pro-
cess for chemotaxis-dominated PDEs, particularly in the case of a large chemosensitivity (Section

p.3.1).

The exploration of the role that chemosensitivity plays in the successful application of a nu-
merical scheme is indeed of paramount interest. In the course of the numerical assays which
focused on this, we observed that (i) the numerical error remarkably scales with y for all un-
derlying models and (ii) the difference between the solutions of the four iteration schemes also
significantly scales with %. These results emphasize that chemosensitivity plays a crucial role for
the accuracy and overall efficiency of numerical solution algorithms. Hence, a proper numerical
treatment of the corresponding discrete terms are of utmost relevance (Section[5.4).

Moreover, the study of the different iteration schemes focused on their consistency with the
analytical properties of the underlying chemotaxis models. In this context we can state that the
decoupled and the linearized variants of our iteration schemes provide misleading solutions if the
simulation parameters are chosen inappropriately. To the best of the authors belief, this issue has
been revealed for the first time. The outcome is that the numerical analyst must either be aware
of suitable discretization parameters for convenient numerical schemes or he/she is advised to use
more elaborated solver algorithms, such as the nonlinear Richardson schemes. For the latter, we
examined their efficiency concerning the required nonlinear iterations. Our findings clearly pro-
mote Newton’s method for a coarse time stepping, emphasizing the strength of nonlinearity in the
governing models (Section [5.5).

Since all of the high-order solution schemes recapitulated so far suffer from numerical ar-
tifacts which pollute the solutions in generic cases, stabilization techniques are highly recom-
mended. With the advent of AFC, a promising and flexible stabilization technique for FEM has
been identified and successfully applied to chemotaxis models. Our results show that all our
numerical schemes can be stabilized, allowing for a more detailed theoretical analysis of the gov-
erning PDE model, e.g., approximating the blow-up time or the speed of traveling waves/pattern
formation. Moreover, with the AFC stabilization, we obtained numerical schemes that provide
a consistent solution. Throughout all four iteration schemes, the AFC stabilization remarkably
weakened the high volatility of the difference between the solutions: after the application of AFC
all four schemes provide similar solutions, which was not the case for the high-order solutions

(Section [5.6).

Finally, let us point out that our numerical results also provided certain points for optimiza-
tion/improvement of the algorithms in terms of accuracy and, in particular, computational effi-
ciency. One of the main points is the calculation of the Jacobian in the Newton-like method for
the low-order and AFC scheme. The currently implemented expensive calculation limits its appli-
cation to a rather moderately refined spatial discretization. Possible algorithmic improvements of
the current implementation will be one of the topics in the last concluding chapter of this work,
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Chapter[6] where we will conclude our work and discuss some ideas for ongoing investigations.
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In this last chapter of the present work, we will provide the reader with some concluding para-
graphs. In Section we start with a short reflection of what we have studied in this thesis and
emphasize the main achievements of our numerical investigation. Subsequently, we point out in
Section the conclusions of our work and discuss them in a broader context. The final Section
[6.3] of this chapter is devoted to possible further extensions of our work and ongoing researches
in the field of chemotaxis-driven PDEs. This outlook is divided into two parts. While the first
part, Section [6.3.1] considers algorithmic improvements of our presented numerical schemes, the
second part, Section [6.3.2] deals with future applications of our numerical methodologies in the
field of Mathematical Biology.

6.1. Summary

Owing to our belief in providing a self-contained work, we started our thesis by demonstrating
how chemotaxis models can be derived via simple argumentation about a biased random walk. The
motivation of both strands of derivations, microscopic and macroscopic, can be easily explained.
However, the application of the limiting process in the microscopic derivation is vitally discussed
in the community, particularly because the employment of a PDE approach for the development of
cells cannot be recommended in general. Nevertheless, for our purpose, the formulation of a PDE
system for the cell-chemical interaction is well-suited. Besides the modeling, we also pointed out
that basic chemotaxis PDEs are still not completely solved by theoretical analysts, despite their
wide-ranged consideration in real life applications. Many open questions, particularly concerning
the development of the cell concentration, cannot be tackled by today’s analytical methods and
hence demand numerical approaches. Since chemotaxis processes take mostly place in a highly
vital environment, e.g., a living body, a growing tissue or a moving cell, a numerical methodology
that can easily cope with unstructured evolving meshes is highly recommended.

In our work, we employed FEM for the spatial discretization and presented different corre-
sponding temporal discretization strategies, namely a decoupled approach (derived from a Schur
complement ansatz), an explicit linearization technique, a Picard linearization and Newton’s
method. The temporal discretization was exerted by the method of lines, where the employed
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one-step theta-scheme gives rise to an overall second-order FE approximation. Besides these ba-
sic discretization schemes, one of the main assets of this work was the formulation of a proper AFC
stabilization scheme which renders the FE solution robust and positivity preserving, two proper-
ties that basic high-order FE discretization schemes can hardly meet in general. It has already
been approved in preliminary publications by the author and his collaborators that the applica-
tion of AFC is primarily required for the discretized chemotaxis operator, whereas all remaining
terms are mainly well-conditioned, at least under some mild assumptions on the spatio-temporal
discretization. Moreover, for reasons of efficiency we employed a linearization technique for cop-
ing with the anti-diffusive fluxes, which are, surprisingly enough, of implicit character, even in the
case of an explicit time integration. A smart implementation of the overall resulting AFC stabilized
FE discretization schemes is of paramount interest when competing with existing FE stabilization
techniques. The edge-wise formulation of fluxes by Kuzmin, e.g., [61} section 2.1.8], provides
favorable properties which readily enhances the assembly of the stabilizing and correcting fluxes.
Furthermore, regarding Newton’s method, careful considerations regarding the differentiation of
the discrete Upwinding should be taken into account. In our work, we applied first order divided
differences that can be understood as mimicking algorithmic differentiation [74]].

After we presented the proper formulation of our discretization schemes, we focused on their
application to some selected chemotaxis-driven models. We validated our numerical schemes
in terms of consistency and convergence and mainly obtained results that meet our experienced
expectations. In order to extend our basic numerical analysis we furnished them with studying
the effect of increasing chemosensitivities and also proposed certain statements about the overall
computational efficiency of the application of the underlying discretization schemes. These stud-
ies allowed us to compare the different high-order discretization schemes applied on chemotaxis
models in detail for the first time and revealed some remarkable drawbacks of the decoupled and
the linearized approaches. Furthermore, we demonstrated that our standard high-order schemes
crucially limit the numerical analysis of the underlying chemotaxis models because of the emerg-
ing numerical pollution of the approximate solution, i.e., negative values and severe numerical
oscillations occur that eventually lead to divergence of the numerical schemes. In order to ad-
dress this problem, we applied the AFC stabilization technique in these situations. Our findings
document the tremendous benefit of the AFC stabilization, not only since it renders the solution
positivity-preserving and oscillation-free, but particularly because the stabilized solution allows
us to analyze the underlying PDE models in much more detail, e.g., approximating blow-up time,
exploring emerging patterns and the speed of propagation. Another selling-point of the FE sta-
bilization technique via AFC is its flexibility concerning the structure of the underlying mesh,
particularly for 3D applications. For this reason, we provided the reader with selected results of
AFC stabilized solutions in 3D domains.

We saw that this thesis not exclusively deals with the formulation and application of an accu-
rate, stabilized and efficient numerical solver for chemotaxis-driven PDEs, but that it also covers
some introductory principles of the modeling and a brief survey of selected analytical results con-
cerning basic chemotaxis processes occurring in Mathematical Biology. Besides pure mathemati-
cal ambitions, in the belief of the author, these non-numerical insights were mandatory in order to
provide the reader with basic and mandatory background information on the subject of chemotaxis
modeling that significantly eases the understanding, finally rendering this thesis self-contained.
Moreover, particularly since Mathematical and Computational Biology are rather young research
disciplines, these modeling and analytical insights can also provide a source of fruitful discussions
or even promising new challenges and tasks for future work.
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6.2. Discussion

The obligatory task of formulating an appropriate ‘take home message’ for this thesis, in terms of
a conclusion, is quite delicate. On the one hand, keeping in mind the proclaimed self-contained
character of this work, we may tend to emphasize the potent numerical results in terms of

i) the comparative nature of the computational accuracy and efficiency of the numerical schemes
in Section[5.4.2}

ii) the identification of remarkable drawbacks of certain discretization schemes in Section[5.5}

iii) the flexible and stabilizing AFC application in Section[5.6]

On the other hand, as we partially already mentioned before, our employed numerical scheme
gives rise to certain algorithmic enhancements, with some of their ideas already present in the
literature provided in Section [5.1] on the numerical state of the art. For example this comprises
parallelism, temporal and, particularly, spatial adaptivity.

Therefore, we like to include the modeling principles and the analytical results into the follow-
ing consideration for this paragraph. Despite its strongly debated justifications, many chemotaxis-
driven models are based on PDE approaches for cells and chemicals modeled at a similar scaling
level. Presently, special focus has been on modeling and simulating tumor development in some
early stages. In these stages, however, the tumor may effectively consist of a number of abnormal
cells that is too low to neglect individual cell development, rendering a continuous approach rather
inconvenient. Thus, before considering suitable discretization schemes for PDEs, we have to take
into account the modeling framework of our underlying problem. This may seem to be a trivial
and obvious concern. However, in the context of living matter, e.g., developing cell compounds,
this is a crucial task, since the modeling framework may have to be adjusted to the current state of
the development, e.g., growing and proliferating, living matter under consideration.

Another important concern when dealing with chemotaxis-dominated PDEs are the analytical
results which we partially summarized in Section[2.2] Hereby, the blow-up results may be paid the
most attention to. It is not only the lack of pure analytical results for this phenomenon in higher
dimensions, but it is also the numerical challenge that arises from capturing this effect adequately.
Spiky solution profiles are commonly regarded as being of pure numerical character. Hence, when
simulating models that tend to blow up, analysts may simply be misled, because they assume their
solution being polluted by some numerical artifacts. Despite the fact that models from which
blow-ups may emerge seem to be rather senseless from the biological perspective, their (math-
ematical) study faces some fascinating questions, e.g., about determining the blow-up time and
critical masses in higher dimensions, cf. the open problems at the end of Section [2.2] We have
to also acknowledge that the minimal model of chemotaxis, from which blow-ups may emerge,
serves as a ‘blueprint’ for extended and more complex models for chemotaxis-driven processes.
That is, the (mathematical) study of this basic model should be claimed to be of high priority be-
fore considering to proceed with much more complex chemotaxis-driven models. With the recent
increase of numerical interest and computational power, we arrived at a point where the analytical
instruments can be readily complemented by the huge wealth of numerical tools. In the authors
opinion, this symbiosis has tremendous potential to lead to fruitful new insights into analytical
problems, such as the blow-up challenge, studying developing patterns and sets of possible steady
states. Indeed, linear analysis as introduced in the appendix, cannot reveal the complete devel-
opment of feasible patterns and a nonlinear analysis, as exerted by e.g., Tyson et al. [100] and
Murray [[79], is very tedious.
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When we have taken this into account and strive to simulate a PDE system of general kind
@.1.1) the numerical studies conducted in this work provide valuable assets for numerical ana-
lysts, see (i)—(iii), in order to identify a most appropriate numerical solver scheme for their par-
ticular chemotaxis-driven PDE model. As our conclusion is two-fold, it is advisable to mention
the subtle restrictions concerning the efficiency of our presented discretization schemes. While the
(relative) comparisons across our four standard high-order schemes remain justified, their absolute
performance could have readily been enhanced by implementing parallel and adaptive algorithms
from the literature, see Section [5.1] Since we do not claim to provide a computationally opti-
mized code and since we understand the development of efficient and accurate numerical schemes
as a long term evolving process which keeps improving in terms of accuracy, memory concerns
and rate of floating point operations per second, this present thesis can be used as reference for a
fundamental numerical analysis of chemotaxis-driven PDEs rather than as a fully developed and
‘ready-for-market’ product of a solver for such PDEs. Nonetheless, we particularly like to stress
that the application of an AFC stabilized scheme on chemotaxis-driven models reveals a potent,
flexible, robust, accurate and efficient numerical tool for investigating chemotaxis processes at a
promising high level of details for the first time.

6.3. Outlook

As we have already mentioned above, our numerical framework could be extended by algorith-
mic improvements which potentially enhance the overall performance. Besides considering these
technical challenges in some more detail, this section is devoted to providing the reader with an
outlook on possible further investigations in the field of numerical treatment of chemotaxis-driven
PDEs. We are certainly aware of the fact that we cannot cover all the associations which the in-
terested reader may come up with, particularly because Computational Biology is such a youthful
discipline and hence offers an overwhelming pool of possible further studies. We will therefore
confine ourselves to selected ideas for ongoing research which the author personally got into touch
with in the pursuit of this thesis. Similar considerations hold for the algorithmic improvements.

6.3.1. Algorithmic improvements

Stable higher-order time integrators such as multi-step, strong stability preserving Runge-Kutta
methods [54] or backward differences formulas and higher-order finite elements, e.g., Q (bi-
quadratic polynomials), are the most convenient approaches to improve existing PDE solvers.
Moreover, it is often advisable to employ higher-order discretization techniques in time and space
at a similar scale, simply because the time stepping and the spatial mesh size can often not be
independently chosen, cf. CFL-like restrictions, and they contribute equally to the overall FE ap-
proximation error. As we will remark in some of the following selected ideas for possible future
investigations, the proper application of higher-order discretizations can nevertheless be quite a
challenging task. Besides this consideration, the subsequent objectives aim at providing ideas how
to improve the nonlinear numerical schemes and the AFC application.

Adaptive time stepping In the present work, we introduced numerical schemes with a uniform
time stepping. While this is very handy for a simple numerical analysis, particularly to
compare different solutions and/or schemes, it is definitely preferable to employ adaptive
time stepping methods when solutions undergo a mixture of transient and stationary stages.
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This is indeed often the case in chemotaxis-driven PDEs. For instance, consider the kinetic
model: in a first stage, the kinetic terms drive the solution to form propagating rings that
spread out into the entire computational domain and, in a second stage, the chemotaxis term
drives a rather chaotic aggregation phase which happens at a considerably lower speed as
the wave propagation.

In the context of the aforementioned higher-order multi-step time integrators, we like to note
that the proper implementation of adaptive time steps may be a tedious task. Remark that
a R-step method requires memory for p - R solution vectors if we allow a p-fold step width
increase. Furthermore, we would have to interpolate the solution values of u(-,X) at up to
R intermediate time steps when decreasing the step width, e.g., we require at time ¢ = n ot
approximations of the solutions u([n — r/2]0t,x), r = 1,...,R, if the step width is halved.

Adaptive spatial discretization Besides an adaptive temporal discretization the highly localized
chemotaxis aggregation gives naturally rise to the application of r-/h-/p-adaption schemes,
cf. Kirk and Carey’s statement in [55] (quoted already in Section [5.1)). The r-adaptivity
‘deforms’ the underlying spatial mesh to better fit to the locations that require a finer dis-
cretization. Particularly, it does not introduce new degrees of freedom. However, the defor-
mation should still yield certain moderate regularity constraints in order not to degenerate
discrete operators such as diffusion. The well-known h-adaptivity simply refines the spatial
mesh locally, e.g., certain (quadrilateral) elements. While this approach is often practiced
for triangular elements, its application for quadrilateral elements might lead to the challenge
of handling hanging nodes. The so-called polynomial adaptivity, p-adaptivity, augments the
order of local finite elements, e.g., while one element is of type Qi, the next one may be
of kind Q;. We will see in the last point, why a complete ‘tessellation’ with Q, elements
cannot necessarily be recommended.

Modifications of Newton’s method From the analysis of the AFC stabilization, in particular
from the construction of the Jacobian, we recognize the poor efficiency of the current algo-
rithm for NEWT. The explicit derivation of the Jacobian is an expensive task and therefore
it limits the overall efficiency, although it provides physically meaningful solutions. There
are indeed some conceivable approaches that might remedy this problem of inefficiency.
Certainly, these approaches need to be validated by numerical analysis and hence give rise
to further research challenges.

For the ordinary Newton method, the Jacobian needs to be calculated in every nonlinear
iteration. One way to circumvent this task is to use one stationary Jacobian for all nonlinear
iterations, i.e., we shift the calculation of the Jacobian outside of the nonlinear loop. When
evaluating the Jacobian only at the initial guess we end up with the so-called Simplified
Newton. Resulting from the geometric perspective this method is also called the Chord
method. The iteration reads

jac(A(WO))y = res"(Wp),

Wntl = WptYy.

The remedy to the explicit calculation of the Jacobian in every step is accompanied by its
approximate nature. For the overall applicability of the simplified Newton methods we have
to take into account the possibly increasing number of nonlinear iterations and the smaller
region of convergence.
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Even if we maintain the derivation of the Jacobian in every iteration it might be more effi-
cient to use an approximation of it, which leads to so-called Newron-like methods. Besides
approximating the exact Jacobian by divided difference schemes or Taylor expansions, as
it is required if a matrix-vector representation of the Jacobian-vector product cannot be
achieved [97], another promising approximation of the Jacobian aims at dropping weak
couplings. This may result in more favorable algebraic properties of the approximated Jaco-
bian, such as sparsity patterns, bandwidth, diagonal dominance or factorization properties.

Splitting of Upwind The next three points consider improvements of the application of AFC.

Therefore we may suggest the interested reader to briefly recapitulate the general concept
of AFC introduced in Section 4.5.1]

We saw in Section m that the nonlinearity of the Upwind operator D(-) prohibits a split-
ting that would promote some pre-calculations in order to save some computation time, see
(#.5.26). However, we also recognized that the contributions to the approximate Jacobian
stemming from the perturbation of the chemotaxis operator in the e;-direction, K(e;), only
modify a total of 81 matrix entries, see (4.5.27). In other words, the inequality (4.5.26)
only holds for these 81 matrix entries. This gives rise to another accelerating technique.
The transition from K, (w) to K1( =) only alters the 81 matrix entries determined by the
indices of the set N;. Therefore, the calculation of K; (w ) in line 8] of Algonthmﬂ can
be readily 51mp11ﬁed

N . . . .
Let KE ’(w) denote the usual discrete chemotaxis operator K;(w) where all matrix entries
corresponding to N; have been set to zero, i.e.,

{K?Nj (w)] = {Kl (W)} ko for k.1 & Nj,
M 0 , for k,1 € N;.

N; . . . .
Furthermore, let K}’ (w) denote the matrix obtained from the matrix entries of K;(w) cor-
responding to N;, i.e.,

[Kl(w)}kl, for k,1 € N;,
K 0, for k,1 ¢ N;.

Thus, for each fixed j we can write

—_~

= CN;
Ki(w;) = K{/(w )+K (i),
where Kz\fj (Wji) = K?fj (w) + GK?I" (ej). Furthermore, with this formulation in mind, the

calculation of the (1,2) block of the Jacobian (4.5.22) significantly simplifies. We note that

Kiw) -Kiwy) =[RS+ K7 wh)] - K )+ K ()

Thus for the (1,2) block of the Jacobian, Upwinding can be readily accelerated, because
it suffices to apply it only on the (possibly) 81 non-zero entries of KN'( ) Algorithm
[6.1] depicts these improvements. Therein the differences to Algorithm (4.3 are indicated by
comments.
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Algorithm 6.1 Improved computing of the approximated low-order Jacobian j(w) (given w)

Require: Let us assume that all linear matrices, i.e., M,M; and L, and all parameters are passed

11:

12:

to this routine

: Assemble K;(w)
. Calculate K (w) = K;(w) +D(w)

iy ] _
Build jacblock(1,1): |J(w)| _ "= [M.+03 (L —Kl(w))]
L 1i< ..
~ SN !
: Build jacblock(2,1): |J(w)| N: —08tM;;
L 41> _
~ />N
Build jacblock(2,2): |J(w)| o= M+ 606 (d, L+ M)
L di1>
L ij
for j =N +1,2N do
Extract K;™/(w) and K?Nj (W) > no explicit assembly is necessary
N.
Assemble K" (e;)
Calculate Kjlq" (w]i) =K;"i(w) £ 0K;(e;) > only 81 entries are considered
Calculate Ki\f" (w]i) > Upwinding for a 81 element matrix
~ ' 0o | /N, N
Build jacblock(1,2): [J(W)} ;N]_ - [(K?[’ (w))—K)" (wj)>u] )
ij
end for

Non-conservative AFC schemes AFC schemes of the kind we proposed do currently not explic-

itly take into account reaction terms which give rise to the birth of local extrema. As long
as these terms do not harm the positivity of the numerical scheme, they obviously do not
require any further numerical attention. However, the AFC stabilization of reaction terms
that cause severe hazards to the positivity, is an objective of current research. From the brief
survey in [61, section 1.6.3.3] we acknowledge preliminary studies in that direction. In
his seminal book, Patankar [89] introduced a negative-slope linearization technique which
yields positivity preservation for (nonlinear) reaction terms, say r(u«), which can be refor-
mulated as

r(u) = ry—r_u,

where the parameters r, and r_ may also depend on the unknown solution values and yield
non-negativity, 1 > 0, r— > 0. More recently, MacKinnon and Carey [69] studied the
positivity preservation of the above reformulation of reaction terms, where ;. = otu, o being
a constant. Particularly, they remarked that such a favorable reformulation is possible in the
case of a combination of first- and second-order kinetics which we already encountered
in (3.3.1). Hence, the detailed exploration of non-conservative AFC schemes undoubtedly
provide promising improvements of the stabilization of chemotaxis-driven PDEs.

Adaptive AFC schemes Another improvement of the currently implemented AFC stabilization

aims at combining the stabilization with adaptive FEM schemes. Besides the widely em-
ployed adaptive time stepping schemes and r-/h-adaption for the underlying spatial mesh,
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current research has a special focus on coupling AFC with p-adaptivity. Since the devel-
opment of properly defined correcting fluxes is an utmost difficult task for higher-order
elements such as Q,, very recent considerations of Bittl and Kuzmin [10] promote the use
of higher-oder elements in regions of smooth solutions and (bi-)linear elements in regions
of steep fronts.

6.3.2. Future applications

Our entire numerical framework was developed to cover its application to a variety of chemotaxis
PDE models, cf. the general formulation of the model @[) Although, in this work, we have
focused our numerical analysis on three particular models, there is no doubt that considerations of
similar models can be easily undertaken and would deliver similar and qualitatively comparable
results. As this thesis provides a reference for fundamental numerical analysis of chemotaxis-
driven PDEs, our findings can be used by future modelers and numerical analysts to get familiar
with the numerical properties of selected solver methodologies and recognize the huge potential
of the presented AFC application for chemotaxis models, allowing a detailed view on the modeled
biological process by liaising between (experimental) biologists, (mathematical) modelers and nu-
merical analysts.

From the practical point of view the probably most interesting question is, whether we can use
the stabilized FE scheme for our kind of model (if it does not fit into the formulation[d.T.1)? Let us
therefore propose some possible further applications of our AFC stabilized numerical framework
that should convince and might even inspire the interested reader.

Open analytical problems As we have partially motivated our development and detailed anal-
ysis of numerical schemes for solving chemotaxis-driven PDEs by reflecting some open
problems that (theoretical) analysts and modelers still face, we believe that our numerical
methodologies can lead to detailed insights and hence further the understanding of blow-up,
steady states and patterns for chemotaxis models. Particularly with the proposed algorith-
mic improvements in terms of adaptive discretization techniques (in time and space), ap-
proximations of the solution’s behavior near the blow-up time, the faster (and still accurate)
simulation of steady states and the high resolution of spatially local agglomerations in the
context of evolving patterns are three particular future objectives. Of course a tight col-
laboration with (theoretical) analysts is mandatory in order to keep track of the theoretical
relevance of open questions.

Multiple chemical agents and species At the most detailed scale, the (intracellular) chemical
signaling pathways that underlie the modeled chemotaxis process actually comprises an
enormous network of chemical triggers, receptors and several mediators, rf. e.g., [3, Chap-
ter 15] or the short review [99]], that can hardly be modeled with a set of only two equations.
There are certain models that incorporate a third or fourth PDE in order to model another
entity that may not be directly part of the chemotaxis signaling cascade, but is necessary
nevertheless, e.g., a nutrient (for bacterial propagation in a semi-solid medium [101]]) or an
extracellular matrix (for tumor development via angiogenesis [4]). In all of those cases our
numerical framework has to be extended by certain additional PDEs. Then the (numerically)
most interesting challenge is to identify possible ‘trouble-makers’ in these new equations
and adapt the AFC stabilization correspondingly. In fact, models for multi-species chemo-
taxis (to which class the aforementioned examples generally belong) have recently gained
increasing popularity in the (theoretical) analysis community [30, 147, |58} 166, (67, 95| [109]]
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and hence their numerical treatment will soon be one of the mostly challenging tasks in or-
der to understand the entire network of interactions. Let us formulate a basic multi-species
model, that can also be derived by the more general model of Horstmann [47]],

n m
atui = dui Au;+V- Z u; kl‘J Vu, | — Z uiXi,j VVj R
I=T,1#i =1

m n
atvj = deAVj_ ZOC/{JVk—f- Z BkJuk,
k=1 k=1

where i =1,...,nand j = 1,...,m denote the particular species and chemical agent under
consideration, respectively, which share one common habitat. The coefficients k;; describe
the direct attracting or repelling effect of species / on species k, whereas all other coeffi-
cients, d,,, X, j,dvj,och ; and B, j» are self-explaining when considering the usual model of
chemotaxis correspondingly. Some interesting model paradigms have been mentioned and
investigated in the already provided literature. For instance Wolansky already formulated
a first reasonable mathematical definition for the absence of conflicts and presence of con-
flicts between two species, say k and /. For simplicity let us assume k.. = 0. We define
Mg = Y Xk Bs,; and interpret A;; > 0(< 0) as the indirect effect that species k is at-
tracted (repelled) by species /. Particularly, remark that in general Ay; # A; x. With this in
mind, Wolansky proposed the following definition (modified from [109])

“The situation where A and A; i are opposite in sign is of a particular interest.
We denote this case as a ‘conflict of interests’ between the k and | species.”

Where Wolansky studied the conflict-free case, Horstmann [47] extended this definition and
even provided some preliminary remarks on the situation of conflicts.

It is this latter situation that certainly gives rise to many interesting questions. Even for
a small number of species/chemicals, the complexity of their possible interactions makes
it very much unhandy for a theoretical analyst to develop results concerning interesting
phenomena such as (non-)uniform co-existence or extinction of species. This problem can
even be more emphasized when considering multi dimensions. In fact, up to the current
date, most of the analytical results are limited to the 1D (or uniform spatial distributions of
species/chemicals) or, exceptionally, 2D case.

Based on our numerical framework that we presented in this thesis, Sokolov[] already ini-
tiated some preliminary numerical studies for multi-species models which were communi-
cated with Horstmann. The yet unpublished results reveal the basic applicability of AFC
for these systems. However, more elaborated numerical techniques are crucially required
in order to cope with the extended complexity of these systems. This addresses both com-
putational concerns and the challenge of stabilization. Whereas in the former context, the
storage-management for the additional species/chemicals is the most striking point, the latter
concern must take into account new positive feedback interactions that give rise to advanc-
ing the AFC technique by means of stabilizing additional discretized terms, e.g., consider
the coefficients k;; for the direct attraction of two species.

Chemotaxis on surfaces When considering situations where motile cells live on a certain densely
packed tissue that cannot be modeled via a flat surface, we naturally end up with a chemo-
taxis system defined on a non-trivial surface, e.g., on an ellipsoid. As being among the first

IDr. Andriy Sokolov is a senior colleague at the chair of Applied Mathematics, LS3, TU Dortmund.
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who explored chemotaxis-driven PDEs on surfaces, the reader is kindly referred to the work
of Landsberg ef al. [64] and Elliott ef al. [27]]. Particularly because of the algebraic char-
acter of the AFC concept, the stabilization of chemotaxis PDEs on a surface seems to be a
feasible task, albeit the derivation of a proper FE discretization for an arbitrary surface is all
but a trivial challenge. Nonetheless, Sokolov et al. [93] presented a first approach in this
direction by applying an AFC stabilization technique on the minimal model of chemotaxis
and the kinetic variant both defined on either a sphere or an ellipsoid. These surfaces were
modeled implicitly via the level set method, i.e., the surfaces were given by the set of roots
of a level set function. Alternative FE approaches employ certain parametrization methods
or a so-called surface finite element method [25]]. A future goal will be to embed chemotaxis
PDEs on surfaces in a model for a regular domain. In this context a level set approach as em-
ployed by Sokolov et al. is favorable since no explicit (spatial) discretization of the surface
is required. Moreover, very recent modeling frameworks consider evolving surfaces which
certainly augment the numerical complexity but also gives rise to a more detailed model and
enriches possible applications. Consider for example bacterial development on a growing
cell-tissue, where the growth can either be uniform or can even interact with the bacterial
development on its surface, e.g., growth is inhibited/promoted at a high/low concentration
of bacteria.
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Linear stability analysis

In this appendix we will show how a basic linear stability analysis can be conducted. A linear
stability analysis is one of the major analytical tools for examining the dynamics of an underlying
PDE model. Exemplary we will employ the linear stability analysis on the minimal model in
dimensionless form (3.2.4)) in 1D,

ou(t,x) = V- (dVu(t,x) —u(t,x)xVv(t,x)), for (t,x) € I x[0,1],
ov(t,x) = Av(t,x)+u(t,x)—v(t,x), for (r,x) € I x[0,1]. &.1)

The goal is to identify the possibilities of a solution to form heterogeneous steady states when
starting with an initially slightly perturbed homogeneous profile. We remark that the linear anal-
ysis only captures first-order behavior of the solution. Nevertheless the linear analysis provides
conditions for the emerging of possible heterogeneous steady states.

Linearization of the 1D minimal model

The first step will be to linearize the system (A.1) around a homogeneous steady state, say (u*,v*).
To this end we derive the corresponding jacobian of the right-hand side of (A.T]). We can transform
our equation into

o = F(uav)> (A.2)
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where F(u,v) = (F (u,v),Fz(u,v))T denotes the right-hand side of 1| The aforementioned
jacobian (of F') now reads

0. Fi(u,v) = dV?e—xV-(eVv),

oFi(u,y) = —xV-(uVe), A3)
aqu(l/t,v) = I,

o (u,v) = Vie—I.

After evaluating this jacobian at (u*,v*) — note that according to (A.1)) the steady state yields
v =u* — we end up with the following linearized system

ot = dVZi—yuV*,
(A.4)
o0 = VZi+ia—7.

Herein the notation (%) stems from the linearization about the steady state (u*,v*), i.e.,

u = uten+0(e?),
v o= vied+0(e?).

Let us remark that the linearized system (A.4) introduces a further parameter u* which was not
present in the original non-dimensionalized model (A.I)). In the next paragraph we will recognize
its role in the stability analysis.

Stability analysis of the 1D minimal model

After we have transformed the governing nonlinear model (A.I) into an adequate linear model
we are now able to apply standard linear stability analysis. This will provide us with suf-
ficient conditions for unstable homogeneous steady states. The basic concept can be found in
standard PDE analysis books. In the background of biological motivated PDEs we refer the in-
terested reader to, e.g., chapter 14 in [78]. In the following we will recall the main results for
the minimal model which have already been postulated by Keller and Segel [52] themselves and
continued by Nanjundiah [|83]].

The main concept can be formulated by looking for solutions of the governing PDE via the
method of separation of (temporal and spatial) variables, i.e., w(t,x) = &(¢) §(x), where w denotes
the solution vector w = (u,v). When following the argumentations in the literature about the scalar
1D spatial-dependent solution {(x), we will encounter the following auxiliary PDE (also referred
to as spatial eigenvalue problem)

V2{+kC = 0, (A.5)

where k represents a certain eigenvalue, which is also referred to as wavenumber. Together with
Neumann boundary conditions this PDE is responsible for the spatial heterogeneous solution be-
havior. From corresponding literature we learn that general solutions for (A.5)) in one dimension
take the form

C(x) = Ajcos(kx)+Aysin(kx). (A.6)
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Herein A; and A, are constant coefficients. For Neumann boundary conditions and a domain
Q = (0,/) we can deduce A, = 0, k = nm/I and hence (for a given k) the space of eigenfunctions
is spanned by {cos(kx) }x>1.

When focusing on the temporal-dependent solution, (), we use the standard growth/decay ansatz
E(t) = Ajexp(\t). Putting everything together (and introduce new constants) we end up with the
following representation of a general solution of shape

w(t,x) = ZBneMcos(nnx/l), (A7)

where the sum stems from the different admissible n, determining the wave frequencies. Keeping
the above derivations in mind, we will now consider our original governing PDE (A.4). To begin
with, we rewrite (A.4) in terms of

oW = (DVZ4+A)w, (A.8)

where V2 is meant component-wise, w = (u,v) and D, 2 are defined as

d —yu*
D = X ,
0 1
0O O
A =
1 -1

Using the solution (A.7) we find (k being a vector of admissible wave modes for the solution
(u,v)
Aw = —DK|*w +Aw

coeff.cmp.

Bl
= [M+[kD-2]| " 0.
BZ

n

In other words, the stability can be studied from the determinant of the left-hand side matrix,
‘M+ K> — 2{‘ = N2 (kP 1+ d P ) At K2+ d K[ [

Hence its two roots read

1
b = g (P R A AP 4 k).

Since the term in front of the square root is strictly negative, the only possibility of A, to get a posi-
tive real part is that the term under the square root becomes sufficiently large, i.e.,
4d|k|> —4|k|*xu* +4dk* < 0. Basic calculus reveals that a necessary and sufficient condition
for this to hold reads

(1+k*d < xu'. (A.9)

This condition can also be illustrated by a dispersion relation diagram as a function Re (k(k))
for certain parameter settings for d,y and u*, see Figure In the figure we recognize that
more wave modes become unstable as the value of ) is increased. The admissible modes are
undoubtedly of utmost interest when concerning the shape of possible heterogeneous steady states.
From the above calculations we can deduce that admissible wave modes must satisfy

0<|k|<yu*/d—1.
For the parameters in Figure [A.1]this condition simplifies to 0 < |[k| <y — 1.
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Re(\)
/

-8
Iki?

Figure A.1: Dispersion relation for the condition |i for different values of Y = 1,5,10,20 and
fixed parameters d = 1,ug = 1. The plot illustrates Re()) as a function of the wave mode |k|?.

Discussions

In the presence of multiple admissible modes let us remark that our linear analysis is not able to
identify the most dominant. Furthermore, the condition (A.9) only indicates that homogeneous
equilibria can be unstable. It does, however, not provide certain shapes of inhomogeneous equilib-
ria. Indeed, note that condition (A.9) gives rise to an exponential (unbounded) growth (in time) of
the solution of type w ~ Bexp(A(k)t) cos(kx). Hence for (inhomogeneous) equilibria to appear,
this linear approximation fails. We might expect a growing mode to be bounded by the nonlinear-
ity of the original PDE and eventually obtain a steady solution similar to a corresponding cosine
mode. However, following the calculations of Keller and Segel [52]] and Nanjundiah [83] initial
fluctuations of homogeneous equilibria lead either to homogeneous solutions with u = ||ug||;1 = v
or O-singularities. A comprehensive discussion about possible non-trivial (inhomogeneous) steady
states exceeds the scope of this appendix. Therefore we refer the interested reader to the corre-
sponding paragraphs in the literature, e.g., [46], [79] or [100]. Where Horstmann nicely recapit-
ulates the historical accomplishments beginning with the minimal model in [46], the latter two
references consider a nonlinear analysis for a particular chemotaxis model, cf. Section[3.3]

In Figure we sketch the evolution of the steady state (dw/df = (w" — w"~1)/8t) against
the time steps, once for a stable setting, ¥ = 1 = d,ug < 1, and once for an instable setting,
x =1=d,up > 1. The solution remains bounded and eventually approaches the homogeneous
equilibrium u* = ||up||;1 = v* in the former case while it excites a blowing-up solution in the latter.

dwdt
5,

1 o
0 100 200 300 400 500 0 100 200 300 400 500 600
time steps time steps

(@) up <1 (b) ug >1

Figure A.2: Evolution of an initially perturbed homogeneous equilibrium. Left: Initial value
below critical level. Right: Initial value above critical level.
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When studying analytic results for complex PDE-systems like the classical Keller-Segel(KS)
model (e.g., existence or uniqueness of solutions as well as long-time behavior), one encounters
the theory of Lyapunov functions (beside a variety of certain inequalities). Lyapunov functions
are closely connected to the field of dynamical systems. Therefore, let us try to briefly recall this
theory following Griine [37]].

Definition B.1 Let T be a time line (in the following we assume T = R) and X a metric space. A
dynamical system is a continuous mapping ® : T x X — X satisfying the following two properties

®(0,x) = x, forallxeX,
Ot +5,x) = cb(z,cb(s,x)), forallt,seT.
For a fixed xo € X (the so-called initial-condition) we call ®(t,X¢) a solution or trajectory.

In the context of ODEs a dynamical system can be simply considered as the solution of the
governing ODE. Let us consider an autonomous ODE of the form

() = f(x0), (B.1)

subject to the initial condition
x(0) = xo, (B.2)
wherein x : R — RY™ x, € RIM apd f: RIM _, RAM 1 these functions are ‘well-suited’, i.e., a

unique solution x(#;X) exists, then we can call ®(¢,x¢) := x(t;X0) a dynamical system.

When studying dynamical systems with a trajectory ®(,x) we might be interested in stable
equilibriums ®(¢,x*) =x* forall7 € R, i.e., we are interested in regions of stability Uy~ or even
regions of asymptotic stability U].. These sets can be described as

xeUy = &P(1,x) € Uy,
xeU. = ®&@,x) =x".

In a more informal way these two properties can be viewed as
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1. when perturbing the equilibrium the trajectories remain in a certain neighborhood (of the
equilibrium) for all instances of time;

2. when perturbing the equilibrium the trajectories converge (back) to the equilibrium.

As an extension to regions of asymptotic stability, we can particularly consider so-called attrac-
tors. For its definition, we briefly introduce invariant sets in the context of trajectories

Definition B.2 (Invariant set) Let ®(t,X) be a trajectory of a dynamical system. A subset D C X
is invariant, if

®(t,D) = D, forallteR.

Informal this means that if we initiate trajectories in D, they will remain in this domain and they
cover all of D.
Now we can provide the definition of attractors.

Definition B.3 (Attractor) Given a dynamical system, a region of asymptotic stability A C X is an
attractor, if this set is furthermore invariant. Attractors can also be characterized as the minimal
region of asymptotic stability.

In the following we will always assume, that the considered dynamical system arises from a
PDE, cf. the corresponding definitions for ODEs (B.T)) and (B.2).

Although the above properties are easy to understand theoretically, they are unhandy to proof
for a given dynamical system or, in our particular case, for a PDE. In this context Lyapunov
functions provide a good tool. Lyapunov functions can be viewed as energy functionals, which
correspond to the underlying system. The construction of a suitable Lyapunov function is non-
trivial in most cases, indeed there is no fixed ‘manual’ which works for all physical, chemical or
biological systems. As a guideline there are two properties which have to be satisfied by Lyapunov
functions.

Definition B.4 (Lyapunov function, PDE version) Given a n-dimensional autonomous vector
valued PDE

w(t,x) = f(w(,x)), for(t,x)elxQ,

complemented by suitable boundary conditions and initial conditions w(0,X) = wy(Xx) for x € Q
with a fixed point w*, e.g., f(w*) = 0. Let this PDE be well-defined, in a way that for all wy
there exists a unique solution w(t,x;wo) € C' (I W), where W is some sufficiently smooth space.
A Lyapunov function for this PDE is a continuous differentiable functional E : W — R which
satisfies

1. E is locally positive definite, i.e., E(w) > 0 for all w € B \ {w*} and E(w*) =0,
2. E is locally negative definite, e.g., E(w) < 0 for all w € BE. \ {w*}.

Herein E denotes the derivative of E along the trajectories of the given PDE and
BE. ={w : ||w—w"|| <&} is some neighborhood around the equilibrium.

The focus of Lyapunov functions is to prove existence of attractors (for a given PDE). That
is, whenever we can find a Lyapunov function, we have a practical tool to try to characterize the
stable behavior of solutions. For instance, starting from an equilibrium, we may be interested in
the critical mass-perturbation (of the solution) in a way, that the perturbed solution is not anymore
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in the region of stability. Thus we can observe a different temporal development of the solution.

In the presence of our chemotaxis-driven PDEs we would like to gain insights into the bounded
evolution of solutions. In particular one main challenge is to classify initial conditions which lead
to either a ‘stable’ solution (steady-state or norm-bounded solutions) or a blow-up in finite or in-
finite time. In terms of dynamical systems we like to ‘control’ the trajectories obtained from the
governing chemotaxis PDE. For example in the 2D case of our classical minimal model (2.2.1)),
we already obtained certain critical mass-perturbation. Given a suitable domain and boundary
conditions, if the Lj-norm of the initial cells exceeds a limit, then the solution exits the region of
stability and the L..-norm of the cells becomes unbounded (as time evolves).

The basic idea to classify the solutions’ behavior by means of Lyapunov functions can be cap-
tured as followed:

Given a suitable Lyapunov function E for the governing PDE, we are able to estimate certain
norms of the solution to obtain upper (and lower) bounds. However, finding a proper functional is
a difficult task in general. To this end certain physical properties like conservation-laws (energy,
mass, momentum) can lead to first attempts. To obtain L? estimates of the solution we certainly
have to invest more sophisticated analysis. Remark that in many cases the L' norm of the cells
should remain constant along the time line, because of the mass conservation ||u(z,-)||;1 = ||uo||.1
for all ¢ > 0.

As briefly sketched in Theorem [2.2]in Section [2.2] there are already certain results for Lya-
punov functions in the context of our governing minimal model of chemotaxis (2.2.1):

Yagi [110] already proved that a blow-up of the H'*€ norm occurs whenever Tj,.x < oo. Herein
[0, Thnax) denotes the maximal interval of existence of the solution (u,v). He even stated that
Thax < o implies the blowing-up of the L” norm for 1 < p < e. On the other hand Gajewski and
Zacharias [33]] showed that the unboundedness of the Lyapunov function leads to a blow-up of the
L? norm of the cell density. On the other hand, in many cases that boundedness of the Lyapunov
function (as time evolves) implies the boundedness of certain norms of the solution. The imminent
task of finding conditions which lead to either T,,x < oo or the unboundedness of the Lyapunov
function, is still vitally discussed in the community.
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The law of mass action and the
Michaelis-Menten kinetics

This appendix provides an overview of the basic knowledge of understanding the modeling of
common reaction terms and more sophisticated kinetics employed particularly in the presence of
chemotaxis PDEs, see Section |3} When modeling a (biological) system one of the first steps tack-
les the mapping of observable relations among underlying entities (cells, enzymes, chemicals or
even single atoms) in terms of a stoichiometric equation such as A + B = C. This diagram can now
be ‘translated’ to ODEs or under certain quasi steady-state assumptions even to expressions of the
concentration of underlying entities. The resulting equations can subsequently be used to eventu-
ally derive a targeting model describing the real system precisely enough (up to certain modeling
preliminaries). For the remainder of this appendix the encouraged reader might want to check
basic literature, e.g., [57, 92, 194], which we will follow in the proceeding paragraphs. Besides
detailed derivations, therein the authors also discuss the theoretical assumptions (e.g., constant
temperature, pH) and other preliminaries which we will skip for reasons of clarity.

To allow a smooth introduction, the first section of this appendix is devoted to a brief clas-
sification of chemical reactions which are considered in our context. The second section will
demonstrate what the law of mass action postulates and how it can be applied to obtain a corre-
sponding ODE. In other words, we will see how reaction diagrams can be ‘translated’. The third
section will offer a brief survey about a particular theory which was originally established for en-
zyme kinetics in 1913, namely the Michaelis-Menten theory. We will sketch how this theory can
be applied to chemotaxis models. A concluding fourth section will point out some remarks about
the Michaelis-Menten theory which give rise to certain revisions.

A simple classification of chemical reactions

Here we will concern about (biochemical) reactions and its inferred mathematical model in terms
of an ODE. Having in mind our focus of this thesis, we restrict ourselves to two main classes of
reactions which are formulated as stoichiometric equations.
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A first class describes a simple (ir-)reversible chemical reaction of certain order and molecu-
larity, i.e.,

aA+bB = cC+H+dD. (C.1)

Therein A,B,C and D denote the underlying reactants/products and a,b,c,d are stoichiometric
coefficients. The bidirectional arrow describes the reversibility, whereas a simple arrow denotes
irreversibility. A simple example would be the irreversible formation of water out of hydrogen and
oxygen given by

2H,+0, — 2H0. (C2)

A reaction of kind is called elementary if the indicated products are formed directly from
the reactants, e.g., via a direct collision at the molecular level (which is not the case in (C.2))).
Furthermore let us require that by virtue of mass conservation, the stoichiometric coefficients of
an elementary reaction of kind (C.I) yield

a+b = c+d,

namely (loosely speaking) the kinetics are consistent with stoichiometry, cf. [92]. Note however
that for abstract elementary reactions this is not always fulfilled in some books, simply because the
abstract reactants/products represent a molecules of different complexity and weight. Exemplary
in [94] we find the elementary reaction

2I+Hy, — H)+I,
which can be casted in abstract form as
2A+B — C+A,

with A =I,B = H, and C = H,I. Obviously the stoichiometric coefficients yield 2+ 1 £ 1+ 1,
however reconsidering the definitions of A, B,C mass conversation is still preserved. For the re-
mainder of this section we only consider elementary reactions, if not explicitly stated different.

A second class of reactions is catalysis. In certain reactions of kind (C.I)) another entity influ-
ences the reaction which explicitly does not appear in the stoichiometric equation, these complexes
are called catalysts. In the context of biochemical reactions these catalysts are commonly particu-
lar enzymes. Formally we rewrite such reactions in terms of (C.I)) as a two-step reaction

A+B = AB — A4C, (C.3)

where A is now referred to as a catalyst, e.g., an enzyme, B,C are correspondingly a catalysis
reactant and product, respectively, and AB is the catalyst-reactant complex. These reactions are
commonly used for biochemical signal pathways and we will return to them in the proceeding
section.

The law of mass action

Now that we have the two (in our belief) most interesting classes at hand, we want to discuss the
further (mathematical) modeling processing. We still owe the reader a proper definition of the
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order and molecularity of a certain reaction. To this end let us state the law of mass action.

Originally established by Guldberg and Waage [38]] in 1864, the law of mass action states that
the rate of a elementary chemical reaction is proportional to the product of active masses. Here,
we understand active masses as the number of active reactants, i.e., the stoichiometric coefficients.
The molecularity of a reaction is simply the number of different reactants that are involved in the
reaction step. Furthermore, the order with respect to one reactant is determined by the index to
which the concentration of this reactant is raised in the rate equation. The overall order is simply
the summation of all single reactant orders.

Let us consider a simple example of an irreversible chemical reaction of one single reactant:
A — B
This is a first order unimolecular reaction since its reaction rate r reads
ro= k],

i.e., the concentration of A, denoted by [A], is only raised to the first power. Here k is a constant
corresponding to the law of mass action. Sometimes this rate-constant is also directly depicted in
the stoichiometric equation. A second example is a third order bimolecular reaction

2A+B — 3C.

Here the reaction rate reads

For a reversible reaction

we define the reaction rate as

that is, we read the reaction from left to right and sum up the related ‘single reaction rates’: a plus
and minus sign contributes to the reaction from left to right and right to left, respectively.

Now that we introduced the law of mass action we turn to the next step towards a derivation
for the chemical concentrations (in quasi equilibrium). For simplifications consider the reaction
occurring in a closed homogeneous environment, a so-called batch reactor, e.g., a petri dish. This
simplifies the general equation of mass balance

accumulation = input — output + generation by reaction
to
accumulation = generation by reaction.

The input and output correspond to (continuous) feed-in and effluence of involved chemicals. A
commonly used environment for reaction-studies in the field of biological processes is a chemostat,
see Figure[C.I] The stirring practically provides homogeneous chemical distributions. Chemostats
are commonly used for steady state studies of involved chemicals. The obtained data can be used
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Inlet Outlet
_>

Figure C.1: Chemostats as examples of paradigm bioreactors. Left: A photography of a battery
of four chemostats, used with permission from Gregor Fussmann, Fussman Lab, McGill Univer-
sity (http://biology.mcgill.ca/faculty/fussmann/chemostats.html). Right: A technical drawing of a
chemostat.

for modeling purposes, e.g., to determine reaction constants. Cutting down the in- and out-flow
turns the chemostat into a classical batch reactor.

Under this conditions, a n-th order irreversible reaction of kind
A — B
with reaction rate r = k [A]" yields
oAl = —k[A]".
After integrating and assuming an initial concentration [A] we obtain
A1) = [Ad(1+(n— 1) kA" 1)/
Note that for n = 1 the upper expression is undefined. In this special case the mass balance reads
WAl = —k[A]
and we simply obtain exponential decay
[Al(t) = [Ao]exp(—kt).

According to the reaction, the concentration of the product [B] develops correspondingly in an
increasing fashion.
When looking at a reversible reaction of kind

A = B
with reaction rate
r = ki[A]-k_[B]
and initial concentrations [A] = [A¢] and [B] = 0 att = 0, we finally end up with

Al = [Ad] (1 = (1—exp(—<k++k_>t))),

ki +k

where [B](1) can be obtained analogue.
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The Michaelis-Menten theory

With our biological processes (cf. Section [3)) in mind we are particularly interested in biologi-
cal motivated reactions, e.g., enzyme kinetics as already mentioned before, cf. (C.3). Now we
interpret A as free enzyme and B,C as reactant chemical and product, respectively. The enzyme-
chemical complex AB corresponds to a bounded enzyme. In Figure [C.2] we sketched a exemplary
enzymatic reaction.

N;—mjuc

A

A
A+B:@
A B

\_/

synthesis

Figure C.2: An exemplary schematic enzyme reaction. Freely diffusing chemicals B can bind
to the enzyme A, which results in a reversible complex AB. If this complex remains stable, the
synthesis of a product C is initiated. After releasing the synthesized product, the enzyme A is
freely available again.

If we study the concentrations of the involved entities at equilibrium with respect to the
enzyme-reactant complex [AB] — precisely speaking it is rather a dynamically equilibrium where
forward and backward reaction rates are equalized, cf. [S7] — then we obtain

o[AB] = kL[A][B]—kL[AB]—ki[AB] = 0
K
= [AB] = P [A][B].

Together with mass conservation for the total enzyme concentration [A] + [AB] = [Ag], with [Ag]
being the initial concentration, we write the concentration of bounded enzymes as

8]

[AB] = K[AO]TK[B]’

where K = klr / (k' + ki) Correspondingly, the velocity for the overall reaction lb reads

d[C] = k[AB]
[B]

= kKol g
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This, in turn, is exactly what Michaelis-Menten kinetics classically state. More often the reaction
velocity 7y (here y = d,[C]) is written in terms of
[B]

V= e (C4)
where Ymax = k[Ao] and Kjy = K~!. These new notations are proposed for reasons of mathematical
interpretation of these coefficients. Figure|C.3|depicts the reaction velocity (C.4)) for different val-
ues of Ky, while Yi,ax = 1 being fixed. First of all we acknowledge fast increase of reaction velocity
at low concentration levels, whereas Ymax = 1 asymptotically limits the reaction velocity (hence the
notation) which is accompanied by a rather inconspicuous increase at high concentration levels.
In other words there is a saturation effect of
enzyme-reactant binding. We see that K, tog-
gles the concentration for Yy = 0.5 = Ypax/2,

1

o8 viz., this constant is a good yardstick for
- measuring binding affinity and hence it de-
S 06r termines the main characteristic of such re-
g 05 actions. In the literature Kj, is often called
50-4 the Michaelis Constant, cf. Steinfeld et al.

(94].

02§ ! -

P When applying this theory to our model,

s 10 i.e., to the definition of a suitable chemosen-

concentration sitivity (see Section 3:3), we should comple-

Figure C.3: Plots of the reaction velocity Yy ment three further abstractions: (1) the enzyme

for three values of Ky; = 1,5, 10. concentration [A] is much less than the reac-

tant concentration [B], which will be identified

by the chemoattractant v, (2) the concentration of bounded enzymes, i.e., the enzyme-reactant-

complex [AB], is the direct measurement of chemotaxis potential, (3) the cells are able to detect

the local gradient of the chemosensitivity potential. This encourages us to define the chemosensi-
tivity as proposed in Section [3.3]

Furthermore the Michaelis-Menten kinetics provided a descent basis for other reaction terms
in our governing chemotaxis model. Despite the fact that Michaelis and Menten introduced their
kinetics in the context of enzyme reactions, commonly they are also practically applied when mod-
eling saturation effects, e.g., chemical production/depletion as in Section

Discussions

However regarding growth rates, e.g., bacteria proliferation, the Michaelis-Menten kinetics need
certain revisions. To begin with, it was Monod who recovered the Michaelis-Menten equation
when he was investigating the non-linear relation between growth rates of bacteria cultures and
limiting resources in 1949. The Monod model basically reads as the Michaelis-Menten kinetics,
modulo different notations

S

_— CS5
MmaxS+KS ) ( )

u

where u, timax, S and Kg denote growth rate, maximal rate, limiting resource (e.g., nutrient) and
resource concentration at umay/2. The main difference between the Michaelis-Menten and the
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Monod equation is based in their derivations. While the former was theoretically derived under
certain assumptions, the latter was developed from empirical data. Furthermore the rather abstract
view of  Monod’s bacterial growth tends to be more suspicious.
In fact, we recognize that the growth rate is
positive whenever § > 0. However in nature

the limiting resource is already consumed by 3
cells just for maintenance concerns. This ef- é
fect is commonly included in the so-called /ag %
phase of bacterial growth. Monod explicitly &
did not consider this phase when proposing the he
equation (C.5), in fact his equation only mod- g
els the so-called exponential growth phase.
Hence, when applying such kind of growth _
rates we assume that all cells are at a "ready- g
to-proliferate” state. Besides the lag and ex- 2
ponential growth phase, moreover, the entire %
process of bacteria growth incorporates more o
distinct phases, as Monod pointed out. With- 3 — , . s ]

out going into detail (cf. [75] for detailed ref-
erences), Figure [C.4] sketches these phases. To
conclude, we have to keep in mind that growth  Figure C.4: Sketch of the entire bacteria growth
terms, such as the ones introduced in Section process, cf.[75]: 1) lag phase, 2) acceleration
B.3] are most probably not capable to capture phase, 3) exponential phase, 4) retardation phase,

the entire growth process, viz., one specific 5) stationary phase, 6) phase of decline.
term only models a certain phase of prolifer-

ation. We encourage the reader to keep this in mind when interpreting numerical results obtained
for the underlying models.

time
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About smoothers

As described in Section we perform smoothing via the standard Jacobi iteration or via a pre-
conditioned iterative solver, e.g., preconditioned BICGSTAB or GMRES. As important multigrid
component, a proper smoother should provide the following roughly sketched features in order to
be applicable in a appropriate multigrid setup (for more details the reader is referred to [40]):

(S1) It is desirable that the smoother “damps high frequencies (w.r.t. a given mesh) of the solu-
tion”.

(S2) The smoother is computationally “efficient”.

(S3) The smoother yields consistency in terms of the exact solution x; , i.e., §;X; = X;.

A typical approach for the construction of such a smoother is a preconditioned iterative solver,
where the number of iterations is fixed, say s. For a given system AX = b and an initial guess x°,

the defect correction approach can be written as
x = x'4Cc i b-Ax"Y, fori=1,...,s.
It is common practice to reformulate this iteration by means of

Cy = b—Ax"!,

x = x4y,
The matrix C is an appropriate approximation of A. In terms of preconditioning, it can be associ-
ated to a preconditioning matrix such that cond(C) < cond(A) and the above system can be rather
“easily” solved. Let us provide some well known examples for suitable preconditioning matrices.

Example D.1 A straightforward attempt to damp the condition of the governing system matrix
A is to use scaling, i.e., apply a diagonal matrix C = diag(dy1,...,dn,). The special choice
C =D :=diag(ayy,...,am) leads to the so-called Jacobi-preconditioner (JAC).

Other preconditioners can be derived from the associated splitting methods. For example the
common Symmetric Gauf3-Seidel method (SGS) leads to the preconditioning matrix C = (D +
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L)D~'(D +R), where L and R denotes the lower and upper triangular part of A, respectively.
Caution is advised when using non-symmetric preconditioning matrices such as the one obtained
from the simple Gauf3-Seidel method (GS), C = (D+L). They do not work in the context of
positive definiteness requiring algorithms such as the Conjugate Gradient Method (CG). Table
provides the preconditioning matrices for well known iterative solver, it was extracted from
Meister [[71, Chapter 5].

Method Preconditioning matrix
JAC D

GS (D+L)

SOR o ' (D+oL)
SGS (D+L)D"'(D+R)

SSOR  [0(2—w)] ' (D+oL)D (D +®R)

Table D.1: Overview of the preconditioning matrices associated to the corresponding iterative
methods. Extracted from [[71]].

The following algorithm, Algorithm [D.T] sketches the defect correction approach for a simple
construction of a smoother.

Algorithm D.1 Smoother variant 1, (preconditioned) defect correction

1: Given the underlying original system A x = b with initial solution x° and an appropriate matrix
C

2: fori=1,...,sdo

3 Solve the system Cy =b — Axi~!

4: Update solution x' = x'~! +y

5: end for

More generally a smoother can be constructed with a preconditioned Krylov-space solver such
as BICGSTAB or GMRES. Given the original system A x = b, the idea is to transform this system
into an equivalent one with a system matrix that is well conditioned before calling the underlying
Krylov-space solver. With two invertible matrices C;, and Cp the transformed system reads

CLACRy = CLb7
x = Cgy.
Hereby, three situations can be distinguished. The case Cp # I # Cg is referred to as left-right

preconditioning, whereas Cg = I and Cp =1 are called left preconditioning and right precondi-
tioning, respectively.

This preliminary transformed system deals as the input system for the underlying iterative
solver. Algorithm[D.2]depicts the pseudo code framework for a preconditioned solver cascade that
can be used as a smoother.

Remark D.1 The choice of proper preconditioning strategy (left, right or left-right precondition-
ing) must be seen in the context of the entire solver cascade. We like to stress two main points.
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Algorithm D.2 Smoother variant 2, preconditioned iterative solver cascade
0

1: Given the underlying original system A x = b with initial solution x

2: Precondition the system by setting A := C;ACg and b := C. b

3: fori=1,...,sdo

4: Perform one iteration of the underlying solver for Ay =b—Ax'~! > in our case either
BICGSTAB or GMRES

Update solution x' =x"~! 4y

: end for

7: Transform the solution x = Cgx*

AN

A straightforward implementation of a general preconditioned solver cascade that can be used
as a solver by driving the iteration to convergence (no limit s for the number of iterations) can be
troublesome. Common termination criteria monitor the residual of the transformed system, i.e.,
|[b— Ax!||, rather than the residual of the original system, i.e., ||b— AX!||. This problem does not
emerge for a pure right preconditioning. For more details the reader is referred to [3]0]].

If we use a one-sided preconditioning, namely, either a right or a left preconditioning, an
underlying iterative solver that requires symmetry of the iteration matrix is not directly applicable,
e.g., CG. It is therefore common practice to use full left right preconditioning in these cases.
To this end we can consider a symmetric matrix of the form C = EET and set C; = E~' and
Cr =E~T. The resulting iteration matrix yields symmetry and hence, solver that require symmetry
are applicable.
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