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Chapter 1

Introduction

Ever since its postulation by Wolfgang Pauli and its discovery by Reines and
Cowan [1, 2] the neutrino has been the most enigmatic of the elementary particles.
Although first discovered at a nuclear reactor, many different sources of neutrinos
emerged over time.
Solar neutrino experiments [3, 4, 5, 6] were able to detect the flux of neutrinos
emerging from nuclear reactions in the sun, which posed a new challenge, the so
called ”solar neutrino problem”, to the neutrino physics community.
This problem was later resolved by the measurement of neutrino oscillations of at-
mospheric [7] and solar neutrinos [8] by Super-Kamiokande [9]. The measurement
of neutrino oscillations further implies, that neutrinos can in fact have non-zero
mass.
The current best upper limit of mν < 2.2 eV originates from the Mainz neu-
trino experiment [10]. An upper limit of mν < 2.5 eV is reported by the Troitsk
group [11]. A further improvement on this limit is expected from the KATRIN
experiment [12].
In the scope of astroparticle physics, neutrinos are also of interest [13]. Neutrinos
from the type II Supernova 1987A were observed in 1987 [14, 15], being the first
and only neutrinos ever observed from outside the solar system to date. Other
astrophysical sources, such as Active Galactic Nuclei, are also believed to emit
neutrinos [16, 17, 18]. However, no neutrinos from these astrophysical objects
have been observed to date. The cosmological background of relic neutrinos is
believed to exist, but is yet to be discovered as well [19].
Atmospheric neutrinos [16, 19, 20, 21, 22] form another source of neutrinos, span-
ning several orders of magnitude in energy. Within current research the atmosphe-
ric neutrino spectrum is of interest, as its shape, especially at high energies, is still
subject to rather large uncertainties [23]. Moreover, a possible contribution of
so-called prompt neutrinos [24] is still to be measured. Atmospheric neutrinos are
also interesting in the scope of point source searches as they form the most signif-
icant background to these. A detailed understanding of the atmospheric neutrino
spectrum is thus crucial for the detection of point sources as well as for the inter-
pretation of their spectra.
All three arguments provide the background for measurements of the atmospheric
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2 Chapter 1. Introduction

neutrino spectrum using large state of the art neutrino telescopes.
Within the analysis presented in this thesis the atmospheric neutrino spectrum was
obtained in an energy range from 100 GeV to 1 PeV. This is the highest energy
measured for an atmospheric muon neutrino spectrum to date and corresponds
to an increase in energy of more than half an order of magnitude compared to
previous IceCube measurements [22]. This increase in energy range was achieved
by applying state of the art machine learning algorithms in the event selection
and by using the unfolding software Truee [25], which allows for the use of up to
three input variables.

The thesis is organised as follows:

Chapter 2 briefly reviews the theory of atmospheric neutrinos and their role
in astroparticle physics. Furthermore, an introduction to the relevant machine
learning algorithms used in this thesis is given.

Chapter 3 covers the event selection procedure carried out using state of the
art data mining techniques, including an MRMR Feature Selection [26] as well as
the training and testing of a Random Forest [27]. Moreover, detailed comparisons
of data and Monte Carlo simulation are shown. Finally, the application of the
Random Forest on real data including systematic studies is presented.

Chapter 4 explains the application of the unfolding algorithm Truee on the
neutrino sample obtained in chapter 3. Six different unfolding settings are exam-
ined towards their stability and their dependency on changes in the ice model.
Special studies on the unfolding result of the highest energy bin are shown. A de-
tailed binwise and statistically reliable estimation of the systematic uncertainties
is presented. Finally, a discuission of the unfolded flux spectrum is given, inclu-
ding detailed comparisons to theoretical models and previous experimental results.

Chapter 5 introduces a novel data mining based approach towards the unfol-
ding of smeared distributions. Studies on toy Monte Carlo simulations are shown.
A comparison to results obtained with Truee is given together with a comparison
to other existing unfolding approaches. Furthermore, an outlook on possible real
world applications is presented.

In Chapter 6 an overall summary of the thesis including an outlook is presented.



Chapter 2

Theoretical Background

Within this chapter the theoretical background of the thesis is briefly reviewed.
Focus is put on the physics of atmospheric neutrinos, as well as on the machine
learning algorithms applied in the event selection.

2.1 Neutrinos as Astronomical Messengers

Even 100 years after the discovery of Cosmic Radiation by Victor Hess [29] the
mechanisms by which particles are accelerated up to energies of ≈ 1020 eV, are
still unknown. Although high energy cosmic rays are routinely observed at various
experimental sites (e.g. the Pierre Auger observatory in Argentina [30]) their ori-
gin cannot be assigned to specific regions in the sky. This is due to the fact that
the cosmic radiation mainly consists of charged particles. Approximately 79% of
the primary nucleons are protons and approximately 79% of the rest are bound in
helium nuclei [31]. After acceleration by cosmic sources, the trajectories of these
particles are bent by interstellar and intergalactic magnetic fields (see figure 2.1).
Thus, upon the point of detection basically all directional information is lost.
The primary component cannot be directly observed with Earth bound detectors,
as the particles interact with nuclei in the atmosphere, producing what is known
as an extended air shower (EAS) [16, 17].
A small part of the cosmic radiation (≈ 0.01% [19]), however, consists of high ener-
getic photons. As they carry no electrical charge these photons can travel through
space enirely undeflected, making the identification of their sources a relatively
easy task. Unfortunately, the Earth’s atmosphere is opaque to a large part of the
photon energy spectrum. One possible way to circumvent this difficulty, posed by
the atmosphere, is the use of sattelite bound devices (e.g. PAMELA [32], AMS [33]
and Fermi [34]). However, due to weight considerations the size of detection de-
vices feasible to be used in sattelite experiments is limited, thus also limiting the
detectable number of photons per time unit.
Another way to detect high energetic γ radiation is by using the atmosphere itself
for detection. Just like the charged component of the cosmic radiation high en-
ergy photons interact with nuclei in atmosphere, producing extended air showers.
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4 Chapter 2. Theoretical Background

The topology of these air showers, however, is significantly different from those
produced by the interaction of a proton or a nucleus. Nevertheless, a large num-
ber of charged particles are produced, which travel faster than the speed of light
in air, thus, initiating the emission of Cherenkov light [35]. This very faint and
very short light pulse can be observed using dedicated Cherenkov telescopes (e.g.
MAGIC [36], HESS [37] and FACT [38]).
Despite the fact that the observation of high energetic photons carries information
on the location of their sources, no information on the acceleration mechanism
itself can be inferred. Currently hadronic and leptonic acceleration processes are
taken into consideration. See references [16, 17, 39] for a detailed introduction to
the acceleration processes in cosmic sources.
In case of a hadronic acceleration the emission of high energy photons would be
accompanied by the emission of neutrinos. The observation of high energy pho-
tons and neutrinos from the same source would, therefore, reveal details on the
acceleration mechanism in cosmic sources.
As neutrinos do not carry any electrical charge their trajectories are undeflected
by interstellar and intergalactic magnetic fields, allowing for the identification of
their source(s). Moreover, due their small cross sections, neutrinos can traverse
large amounts of matter without interaction. Compared to the observation of γ-
particles this is one of the biggest advantages, as high energy γ-rays can interact
with the Cosmic Microwave Background (CMB) (see [40, 41, 42]) as well as with
the isotropic radio background and the infrared/optical background [17].
This advantage is at the same time the biggest challenge, as neutrinos can only be
observed through leptons created by interactions with matter (see section 2.4). Up
to a certain point, however, this can be accounted for by using detection volumes of
the order of 1 km3. In order to achieve these large instrumented volumes the detec-
tion medium should be as cheap as possible. Since the Cherenkov effect is utilised
in order to detect neutrinos, the second requirement on the detection medium is
transparency. These two very basic requirements for the detection medium leave
two choices: Water [43, 44] and deep glacial ice [45, 46].
These large scale neutrino telescopes also provide the opportunity for measure-
ments of the atmospheric neutrino spectrum (see section 2.2). Due to their large
detection volumes a large number of neutrino events can be collected per time unit,
which in turn leads to an extension of the experimentally accessible energy range.
Furthermore, atmospheric neutrinos form the dominant background in point source
searches. A detailed measurement of the atmospheric neutrino flux is thus inter-
esting upon itself but also a prerequisite for the detection and interpretation of a
neutrino flux from cosmic sources.

2.2 The IceCube Detector

IceCube is a state of the art neutrino telescope located at the geographic South
Pole. Its 5160 Digital Optical Modules (DOMs), mounted on 86 vertical strings,
are arranged in a three dimensional grid at depths between 1450m and 2450m,
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corresponding to an instrumented volume of 1 km3. The vertical spacing between
DOMs on a string is 17m, whereas the spatial distance between individual strings
is 125m [47, 48].
The low energy extension DeepCore consists of six strings, deployed in in a ring
of 72m radius, and the seven innermost IceCube strings. Each of the DeepCore
strings is equipped with 60 DOMs identical to standard IceCube DOMs, except
for new a model of PMT, with a ≈ 30% increased quantum efficiency [47]. On
DeepCore strings 50 DOMs are deployed at depths between 2100m and 2450m
with a DOM to DOM distance of 7m. These depths provide the clearest ice leading
to increased scattering and absorbtion lengths of lscat = 50m and lab = 230m.
Thus, compared to AMANDA a larger fraction of unscattered photons can be
observed [49].
The remaining DOMs on every DeepCore string are placed at shallower depths
between 1750m and 1850m above a major dust layer. This way they can be
utilised as a veto for extremely vertical background muons. Using DeepCore the
energy threshold of the entire IceCube detector can be lowered to 10GeV [47, 49].
Additionally an air shower array, called IceTop, is located on top of the detetor.
Details on DeepCore can be found in [49]. Additional information on IceTop is
given in [50, 51].
Two primary detection channels are observed in IceCube. The first one being
track-like events from charged current νµ interactions of the form:

νµ +N −→ µ+X. (2.1)

The other detection channel are cascade-like events, originating from charged cur-
rent (CC) interaction of νe and ντ and from neutral current (NC) interactions of
all neutrino flavours [48].
When the threshold energy is exceeded, charged leptons as well as cascades in-
duced by NC interactions initiate the coherent superposition of light pulses, due
to polarisation effects in the medium. This superposition of light pulses then forms
a characteristic light cone (Cherenkov effect [35]), detected by the DOMs, from
which the track of the particle can be reconstructed [52]. Since the direction of
the charged lepton deviates only marginally from the direction of the high energy
neutrino, the direction of the incoming neutrino can be reconstructed as well.
The pointing resolution of IceCube was measured utilising a shadowing effect of
the moon [53, 54]. Deficits of 7.6σ and 12.7σ were observed for the 40 and 59-string
configuration, respectively. The pointing resolution of the detector was found to
be of order 1◦ [54].
The light pulses, recorded by the IceCube DOMs, are converted into digital wave-
forms. These digitised waveforms are then read out and time stamped everytime
a DOM triggers. A single majority trigger (SMT) is applied for the in-ice-array
as well as for IceTop. A coincidence of eight or more hits on nearest or next-to-
nearest neighbour DOMs, within a time window of 5µs, is required for the in-ice
part of the detector [48]. Details on the IceCube data acquisition system are given
in [55].
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Despite the fact that the detector was completed in December 2010 data was al-
ready taken in various previous configurations. The data on which this analysis
is based were taken between May 2008 and May 2009 by IceCube in the 59-string
configuration, which corresponds to a detector livetime of 346 days.

2.3 Atmospheric Neutrinos

Despite the fact that the atmospheric neutrino spectrum has already been mea-
sured by several experiments [20, 56] including AMANDA [21] and IceCube in
the 40-string configuration [22], its shape, especially at high energies is subject to
rather large uncertainties [23].
Atmospheric neutrinos are produced by the decay of charged mesons originating
from interactions of cosmic rays in the Earth’s atmosphere. Up to energies of
≈ 100TeV [21] their flux is dominated by neutrinos from Pions and Kaons decay-
ing via [18]:

π+ −→ µ+ + νµ, (2.2)

π− −→ µ− + ν̄µ, (2.3)

K+ −→ µ+ + νµ, (2.4)

K− −→ µ− + ν̄µ. (2.5)

For energies smaller than several GeV the muons themselves decay before reaching
the ground, yielding two νµ for every νe [18, 24]. Due to the rather large energy
threshold of the IceCube detector (≈ 10GeV) the contribution of electron neutri-
nos from muon decay can be negelected. Thus, neutrinos from three body Kaon
decays (Ke3) become the main source of atmospheric electron neutrinos [18]:

KL −→ π± + e± + νe(ν̄e). (2.6)

Due to their relatively long lifetime (2.6033 × 10−8 s for π± and 1.2386 × 10−8 s
for K± [31]) Pions and Kaons can lose a certain fraction of their initial energy
in collsions before decay. This constant competition between energy loss by col-
lision and decay steepens the spectrum of atmospheric neutrinos by roughly one
power compared to the primary cosmic ray spectrum [22], yielding approximately
dN
dE

∝ E−3.7 for E < 1PeV and dN
dE

∝ E−4.0 for E ≥ 1PeV [24].
The flux of conventional atmospheric neutrinos can be described in a simple ana-
lytic form [21]:

dN

dEνdΩ
(Eν , θ) = Aν

(

Eν

GeV

)−γ [
1

1 + 6Eν/Eπ(θ)
+

0.213

1 + 1.44Eν/EK±(θ)

]

, (2.7)

with Aν = 0.0285GeV−1cm−2sr−1 and γ = 2.69. Additional models of the conven-
tional component of the atmospheric neutrino spectrum are given in [57, 58, 59]
Despite the isotropic distribution of cosmic rays the spectrum of high energy at-
mospheric neutrinos is a function of the zenith angle. The energy spectrum of
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horizontal neutrino events is flatter compared to vertical tracks. This is due to
the fact that the density gradient seen by vertically travelling mesons is much
larger than that seen by horizontal ones. As a consequence horizontally travel-
ling mesons have a much higher probability of decaying before losing energy in
collisions [21, 22]. At TeV energies the flavour ratio νe:νµ:ντ is approximately
0.05:1:0 [47].
At higher energies a second component starts to contribute to the atmospheric
neutrino spectrum. This component, called prompt neutrinos, originates from the
decay of charmed mesons. These charmed mesons have rest frame lifetimes of or-
der 10−12 s [31], which in turn means that they decay before given any opportunity
of losing energy in collisions. Thus, the spectrum of the prompt component is ex-
pected to follow the spectrum of the cosmic rays more closely (dN

dE
∝ E−2.7) [21, 22].

Atmospheric neutrinos from charm decays have not been measured so far but are
expected to become dominant above 100TeV [22]. The exact threshold energy,
however, strongly depends on the underlying model [24].

2.4 Muons

2.4.1 Neutrino Induced Muons

Since neutrinos cannot be observed directly, interactions within the detector or the
surrounding medium are utilised for their detection. In the case of an atmospheric
νµ-spectrum, the leptonic partner of the νµ, the µ, is detected. The interaction of
neutrinos with the surrounding medium is depicted in equation (2.1).
From equation (2.12) one finds that a muon of energy 1TeV can travel distrances
of ≈ 2.4 km in ice. Thus, the effective detection volume of IceCube is enhanced.
Furthermore, as the muon range is a function of energy (see eq. (2.12)), the effec-
tive detection volume of the detector is a function of energy as well. This energy
dependency needs to be taken into account, when converting the observed event
rates into neutrino fluxes (see section 4.1).
The calculation of the rate of neutrino induced muons depends on three compo-
nents: the neutrino flux, the muon production cross section and the muon-energy
relation. In general the muon rate is given as [16]:

dNµ

dEµ

=

∫ ∞

Eµ

dEµ

(

dNν

dEν

)(

dP (Eν)

dEµ

)

. (2.8)

In equation 2.8 the first factor in the integrand represents the spectrum of neutri-
nos. In the most general case these neutrinos can be of terrestrial or extraterrestrial
origin, respectively. The second factor depicts the probability of a neutrino on a
trajectory passing through the detector and producing a muon in the energy inter-
val [Eµ, Eµ + dEµ] at the detector. This factor, thus, depends on the propagation
of muons through matter and on the physics of the neutrino interaction [16].
From equation (2.8) one already finds that the observed rates of atmospheric muons
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cannot be directly converted into an atmospheric neutrino spectrum. A consider-
able amount of smearing, which has to be taken into account, is introduced by the
second term of the integrand. Furthermore, the energy of the muon is a quantity,
which cannot be observed directly as well. Energy estimators need to be used
in order to determine the energy of the neutrino induced muon. However, these
energy estimators also suffer from smearing introduced by the limited resolution
of the detector. This smearing, due to the dP (Eν)

dEµ
term in equation (2.8) and the

limited detector acceptance requires the use of unfolding algorithms for the deter-
mination of the atmospheric neutrino spectrum (see section 4.1).
Equation (2.12) can be used to obtain a rough estimate on the rate of muons from
atmospheric neutrinos near the vertical. It is given as 1.4 × 10−13 upward events
per cm2 per second per sr [16]. The full calculation of rates, however, is rather
complex. A full treatment of this calculation is given in reference [16].

2.4.2 Atmospheric Muons

Atmospheric muons produced in the decay of Pions and Kaons (see equation (2.5))
also enter the detector, due to the range of the muons. In contrast to neutrino
induced muons, however, atmospheric muons only enter the detector from above.
As the rate of atmospheric muons exceeds the rate of neutrino induced muons by
a factor of 106, atmospheric muons form the largest source of background in an
atmospheric neutrino analysis. The simplest way to reject this source of back-
ground is the selection of upward going tracks. By doing so, the background of
atmospheric muons can be reduced by roughly three orders of magnitude.
A small fraction of atmospheric muons (≈ 0.1%), however, is falsely reconstructed
as upward going, due to insufficient reconstruction of the track. Taking into ac-
count the large excess with respect to neutrino induced muons, misreconstructed
atmospheric muons still pose a challenge to the event selection in every neutrino
analysis. A further reduction of background events depends on the aims of in-
dividual analyses and is carried out either by the use of straight cuts or by the
utilisation of machine learning algorithms (see section 2.5).

2.4.3 Muon Energy Loss

Two effects contribute to the energy loss. Energy is lost continuously through
the ionisation of the surrounding medium and stochastically through radiative
processes. These radiative processes involve bremsstrahlung, pair production and
photonuclear interactions [31]. Therefore, the muon energy loss can be written as
the sum of ionsiation energy loss and stochastic energy loss [31]:

−
dE

dx
= a(E) + b(E)E, (2.9)

where ionisation losses are represented by a(E) and stochastic energy losses by
b(E). Typical values of a(E) and b(E) in ice where computed in reference [60]:

a(E) = 0.259GeV mwe−1 (2.10)
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b(E) = 3.63× 10−4 mwe−1. (2.11)

From equation (2.9) the mean range of a muon can be estimated to [31]:

x0 ≈
1

b
ln

(

1 +
E0

Ecrit

)

. (2.12)

Ecrit = a/b depicts the critical energy at which energy losses due to ionisation equal
stochastic energy losses. Energy losses above several hundred GeV are dominated
by stochastic processes [31].
Secondaries produced by the muon through bremsstrahlung and pair production,
will also suffer from radiative energy losses, generating more secondaries. This
results in an electromagnetic cascade. Once the energy of the generated electrons
falls below the critical energy, ionisation losses become dominant and the cascade
ceases [61].
Detailed simulations were carried out in reference [62] in order to parametrise
the behaviour of the cascades. The number of Cherenkov photons can then be
calculated as [63]:

NC = Leff(E0)nC , (2.13)

where Leff represents the effective track length given as [62]:

Leff = 0.894×
E0

1GeV
× 4.889m. (2.14)

The factor nC in equation 2.13 represents the intgrated Frank-Tamm formula.
Energy losses due to photonuclear interactions will result in secondary hadrons,
which again interact, producing more secondaries. This will result in a hadronic
cascade. In general the yield of Cherenkov photons will be lower when compared
to an electromagnetic cascade. The reasons for this can be found in the emission
of neutrons, which do not produce Cherenkov photons, in lost energy due to larger
hadronic binding energies and in the larger Cherenkov photon emission threshold
for charged hadrons [63].
Due to the decay of Pions and Kaons, hadronic cascades can have an electromag-
netic component, which increases with energy and does not contribute to a further
development of the cascade.
According to [62], the effective track length for hadronic cascades can be parametrised
via:

Leff = 0.860×
E0

1GeV
× 4.076m. (2.15)

2.5 Selected Machine Learning Algorithms

This section introduces the relevant techniques from machine learning and data
mining used to achieve the separation of neutrino and background events.
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2.5.1 Random Forests and Decision Trees

The Random Forest algorithm, introduced by Breiman in 2001 [27], is a classifi-
cation tool, which uses an ensemble of relatively weak classifiers (decision trees)
in order to obtain a prediction. Compared to Boosted Decision Trees [64, 65]
the outcome of every tree is independent from its predecessors. For a binominal
classification task the final outcome is obtained by averaging the results of the
individual trees:

s =
1

ntrees

ntrees
∑

i=1

si. (2.16)

The si can be computed in different ways depending on the implementation. Grow-
ing of Classification and Regression Trees (CART) is described in the following.
Starting from a root node containing all examples of a training set D a split is cre-
ated producing a number of descending nodes. How many of these new nodes are
created again depends on the implementation used and on the problem at hand.
Using numeric attributes the creation of a split corresponds to answering the ques-
tion ”xi ≤ xis”. Such a split will create a hyperplane boundary perpendicular to
the coordinate axes [66].
As simple and compact trees with only a few nodes are preferred, the aim of the
algorithm is to create descendend nodes that are already as pure as possible. For
convenience reasons, however, the impurity of a node is measured rather than the
purity [66]. The most popular measure is the entropy impurity given as [66]:

i(N) = −
∑

j

P (ωj)log2P (ωj), (2.17)

where P (ωj) denotes the fraction of patterns at node N in class ωj.
Another definition of impurity, particularly useful for the two category case, can
be interpreted as a variance impurity and is given as [66]:

i(N) = P (ω1)P (ω2). (2.18)

A generalisation of equation (2.18) can be written as [66]:

i(N) =
∑

i 6=j

P (ωi)P (ωj) =
1

2

[

1−
∑

j

P 2(ωj)

]

. (2.19)

The measure in equation (2.19) is called the Gini Impurity. The misclassification
impurity is defined as:

i(N) = 1−maxjP (ωj). (2.20)

In order to obtain the optimum split at a certain node, however, the decrease in
entropy, given as [66]:

∆i(N) = i(N)− PL · i(NL)− (1− PL) · i(NR), (2.21)
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has to be minimised. Within this notation NL and NR are the left and right
descendent nodes respectively. The impurities at these left and right descendent
nodes are i(NL) and i(NR) and PL is the fraction of examples being placed in NL

after the split. The use of the entropy impurity in equation (2.21) corresponds to
an information gain [66]. One should note that the optimisation in equation (2.21)
is local and that there is no guarantee that this local optimum corresponds to a
global one [66].
In order to create independent trees within a Random Forest some sort of ran-
domness needs to be introduced into the splitting of nodes. In general this is
achieved by selecting a certain fraction of available attributes at every node. The
optimum split is then determined using this subset rather than all available at-
tributes. Thus, every tree will be different and, even more important, independent
from the previous ones.
The successive splitting of nodes is stopped when either no further split can be
performed or a certain stopping criterion is reached. The first case corresponds
to all examples being described by the same patterns. For the second case several
stopping criteria can be considered. The first of such criteria is that the decrease
in impurity ∆i is smaller than some user defined threshold β [66].
Another possibility to determine when to stop splitting is, when a certain minimal
number of examples is present in each of the nodes. This method has benefits
comparable to those of the k-nearest-neighbour classifier [67, 68]. The number of
terminal nodes is large in regions with a large density of examples and small in
the opposite case [66].
After the tree has been fully grown, labels need to be assigned to the terminal
nodes. In case of zero impurity the assigned label is simply that of the class
present in the node. For the more typical case of positive impurity, however, two
different approaches can be used. The first one is a simple majority vote, whereas
the second one corresponds to assigning the average of classes present in the node
as a label. One should note that the second approach is only feasible for two class
problems.

2.5.2 Minimum Redundancy Maximum Relevance Feature Selection

In general a representation of the data in fewer dimensions needs to be found in
order to achieve a high performance classification within a reasonable amount of
time, while utilising a reasonable amount of resources [69]. Thus, features need
to be selected and deselected according to certain criteria. Probably the most in-
tuitive algorithms performing such a Feature Selection are Forward Selection and
Backward Elimination.
Both, Forward Selection and Backward Elimination, however, only take the rel-
evance of a feature into account. This approach might fail for the case of high
dimensional data with many correlated attributes. This is, for example, the case
for IceCube data, where certain quantities, e.g. the zenith angle, have been recon-
structed by various reconstruction algorithms.
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The Minimum Redundancy Maximum Relevance (MRMR) [26, 70] Feature Se-
lection aims to circumvent this problem by taking into account the relevance of
the individual attributes as well as their redundancy compared to the attributes
already selected in previous iterations. Depending on the implementation and the
user’s choice the quality criterion is calculated as:

Q = R(x, y)−
1

j

∑

x′ in Fj

D(x′, x) (2.22)

or

Q =
R(x, y)

1

j

∑

x′ in Fj
D(x′, x)

. (2.23)

In equations (2.23) and (2.22) R refers to the relevance criterion that is calculated
depending on the type of the attribute x and the type of the class y. D refers to
the redundancy of the attribute x computed with respect to an already selected
attribute x′. To compute the final redundancy of an attribute the pairwise average
of the redundancy with respect to all attributes that have already been selected is
calculated.
Relevance and redundancy are computed using the correlation in case both at-
tributes are numerical and by utilising the mutual information in case one of the
attributes is nominal.
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Figure 2.1: Propagation of various astronomical messenger particles from their sources
to detectors on Earth. Trajectories of electrically charged particles such as electrons,
protons and heavy nuclei get bent thus, having lost all directional information at their
point of detection. High energy photons directly point back to their source, but their
observation is limited in energy, due to interactions with the Cosmic Microwave Back-
ground (CMB). Moreover, their detection can only proceed indirectly by utilising the
Cherenkov effect in air. Like photons, neutrinos do not carry any electrical charge and
therefore also directly point back to their sources. Due to their small interaction cross
sections, they can traverse cosmic distances without absorbtion. On the other hand
their small interaction cross section requires huge detection volumes in order to detect
a significant number of neutrinos. Figure after [28].
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Chapter 3

Separation of Signal and Background

Within this chapter the necessary steps in obtaining a high quality neutrino sam-
ple are summarised. The procedure, as a whole, can be broken down into three
steps, the first one being a preprocessing of data including the application of pre-
cuts. A detailed algorithm-based Feature Selection was carried out as a second
step. The third step consisted of the training, testing and application of a Random
Forest [27].
Monte Carlo simulations were used at various stages of the event selection. The
background of atmospheric muons was simulated using the air shower simulation
Corsika [71], whereas the neutrino generator NuGen [72] was used for the sim-
ulation of signal events.
All machine learning specific tasks were carried out using the data mining envi-
ronment RapidMiner [73, 74]. This chapter focuses on the results of the indi-
vidual stages of the event selection rather than on the technical side including
the implementation of specific processes in RapidMiner. Details on the Rapid-
Miner processes used for the selection of neutrino events are presented in [75].
All cuts were developed on the so-called ”burnsample”, which corresponds to 10%
of the data or 33.281 days of IceCube in the 59-string configuration (IC-59). All
numbers quoted in this chapter correspond to the burnsample, unless stated oth-
erwise.

3.1 Precuts

Starting from a level at which a significant amount of reconstruction algorithms
were already run (level 3), two precuts were applied in order to reduce the back-
ground and to increase the quality of the retained tracks.
The first cut was applied on the LineFit velocity (vLF ≥ 0.19) in order to reject
poorly reconstructed and cascade-like events (see figure 3.1). The more spherical
light pattern initiated by cascades results in smaller values of vLF . Events with
small values of vLF , however, need to be rejected, as long well reconstructed tracks
lead to a better energy reconstruction, which in turn leads to a better measure-
ment of the energy spectrum.

15
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Figure 3.1: Cut on the LineFit velocity vLF excluding events with vLF < 0.19. This
cut mainly intends to increase the quality of the selected events, as cascades show a
spherical event pattern, which in turn leads to small values of vLF .

The second cut was placed on the zenith angle (θMPE), reconstructed from a Multi-
Pulse-Extraction (MPE) Fit. It aimed at significantly reducing the background of
atmospheric muons entering the detector from above. A cut at θMPE = 88◦ was
chosen in order to retain high energy neutrino events entering the detector close
to the horizon (see figure 3.2).
The application of these cuts reduced the number of background events from
19.56 × 106 to 1.68 × 106, while retaining 8 990.87 out of 15 743.1 neutrino in-
duced events. This corresponds to a background rejection of 91.4% at a signal
efficiency of 57.1%. Note, that signal efficiency is often referred to as recall, when
used in the context of machine learning and data mining. Both terms are used
synonymously in this thesis.
In the following the event selection after the application of precuts will be referred
to as level 4.

3.2 Feature Selection

3.2.1 Preselection of Attributes

Prior to an algorithm-based Feature Selection a preselection of attributes was
carried out in order to reduce the required computing resources. The preselection
consisted of four steps, explained in the following:

• Consistency Check: Data and Monte Carlo simulations were checked for
consistency. Attributes not present in either were excluded. At this stage
mainly attributes carrying information on the Monte Carlo simulation e.g.
energy and zenith angle of the primary particle, were excluded.
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Figure 3.2: Cut on the reconstructed zenith angle (θMPE). This cut is mainly used
to reject downward going atmospheric muon events. The threshold of θMPE = 88◦ was
chosen to keep high energy neutrino events originating near the horizon and to slightly
increase the field of view.

• Check for Missing Values: At this point a check for missing values was
performed. Based on studies presented in [76], attributes containing more
than 30% missing values were excluded from the selection. Missing values
might occur in certain attributes, in case the fit fails to reconstruct certain
parameters from a given event pattern.

• Excluding Sources of Potential Bias: As a third step attributes that
were known to be useless, redundant or a source of potential bias were ex-
cluded. This mainly concerned information on time and date as well as sky
coordinates.

• Excluding Highly Correlated Attributes: Within this step highly corre-
lated attributes (ρ = 1.0) were excluded from the selection. Attributes with
smaller correlation were not excluded as they were handled in the automated
Feature Selection.

Within this preselection of attributes a reduction from ≈ 2600 to 477 attributes
was achieved, which resulted in a significant amount of saved computing time and
memory.

3.2.2 Feature Selection Stability

Automated Feature Selections are sensitive to statistical fluctuations in the exam-
ple sets they are performed on. Therefore, it has to be ensured that the Feature
Selection performs in a similar way on statistically independent subsets of exam-
ples, drawn from the same distribution. This is done using the Feature Selec-
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Figure 3.3: Feature Selection stability for a simple Forward Selection. With an increas-
ing number of attributes, a decrease in stability is observed.

tion Stability operator included in the Feature Selection Extension [70]
for RapidMiner. The stability of the Feature Selection is investigated by using
a procedure similar to a simple Cross Validation [77]. The full set of examples
is split into m disjoint subsets. Then the Feature Selections are performed on
each of the subsets and the outcome is compared using either the Jaccard index
or Kuncheva’s index. The Jaccard index is defined as:

J =
|A ∩ B|

|A ∪ B|
, (3.1)

whereas Kuncheva’s Index is given as [78]:

IC(A,B) =
rn− k2

k(n− k)
. (3.2)

In equation (3.2) the parameter k represents the size of the subset, whereas
r = |A ∩ B| represents the cardinality of the subset. The total number of fea-
tures availaible is given as n.
Figure 3.3 depicts the stability of a simple forward selection [77] as a function of
the selected attributes, by applying the introduced indices. Kuncheva’s index is
shown in red, whereas the Jaccard index is depicted in blue. One finds that both
stability measures decrease with an increasing number of attributes remaining at
a constant level of roughly 0.5 for a number of attributes nAtt ≥ 20. This can
be interpreted as only 50% of the selected attributes being selected everytime the
Forward Selection is run. Thus, the Forward Selection cannot be considered stable
in this analysis and was not used as a Feature Selection algorithm accordingly.
Figure 3.4 shows the stability of the Minimum Redundancy Maximum Relevance
(MRMR) Feature Selection [26] as a function of the number of attributes consid-
ered. The Jaccard index is shown in blue, whereas Kuncheva’s index is depicted in
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Figure 3.4: Feature Selection stability for an MRMR Feature Selection. The stability
increases with an increasing number of selected attributes and starts to saturate for
nAtt ≥ 20.

red. One finds that both stability measures increase as the number of attributes
increases, going into saturation around nAtt = 20. It should also be noted that the
maximum for the Jaccard and Kuncheva’s index is reached if only one attribute
is selected. One attribute, however, is not sufficient in order to perform a reliable
separation of signal and background using multivariate methods.
Further, it is observed that both stability measures are well above 0.8 in case the
number of attributes exceeds 20. The MRMR Feature Selection can thus, be con-
sidered stable and was used to extract the attributes used as input parameters for
the separation of signal and background using multivariate methods.
Backward Elimination [77], was not considered for Feature Selection, as the com-
puting resources were found to greatly exceed the ones required by MRMR and a
Forward Selection.

3.3 Data/MC Comparison

A fair agreement between simulated Monte Carlo events and real data is a prere-
quisite for a successful application of any machine learning algorithm on real data.
As the agreement between simulated neutrino events and real neutrino events can-
not be tested before the event selection, the checks focussed on comparing real
data to simulated background events. A possible alteration of real data events by
the presence of neutrino events can be neglected at this stage, since the fraction
of neutrino events in the data sample is well below the 1% level.
Figures 3.5 to 3.7 show the comparison of real data events to simulated background
events for the individual attributes obtained from the MRMR Feature Selection.
Corsika events are depicted in red, whereas real data is shown in black. Si-
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Figure 3.5: Data/Monte Carlo comparison for various attributes at level 4 of the event
selection.
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Figure 3.6: Data/Monte Carlo comparison for various attributes at level 4 of the event
selection.
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Figure 3.7: Data/Monte Carlo comparison for various attributes at level 4 of the event
selection.
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mulated neutrino events, in blue, are shown for completeness. All attributes are
depicted after the application of precuts, therefore, corresponding to level 4 of the
event selection.
In general a good agreement between data and Corsika is observed. One should
however note, that a complete matchup could not be achieved due to the fact that
South Pole ice was used as a detection medium. Like any other natural medium
South Pole ice suffers from impurities that need to be taken fully into account
in order to model the medium correctly. This modelling of South Pole ice is a
particular challenge, as its properties can only be measured indirectly. Details on
measurement of South Pole ice properties are given in [79].
In [79] several layers of dust were observed, which change the optical properties
of the ice. The largest of these dust layers was found at ≈ −2150m. It is note-
worthy, that the positions of these dust layers strongly influence the event rates
at different depths inside the detector. Figure 3.6a shows the center of gravity
of the charge collected by the optical modules. In figure 3.6a the point of origin
corresponds to the center of the detector (≈ 2050m). The different event rates
observed for different depths in this plot correspond to the different layers of dust.
The smallest event rate is observed at COGZ = −100m, which corresponds to a
depth of 2150m and therefore to the position of the largest dust layer.
The differences in event rate are observed for neutrinos as well. They are, however,
less prominent, due to the smaller overall event rate.

3.4 Construction of Additional Attributes

Following an approach presented in [80] three attributes were created in addition to
the ones selected in the automated Feature Selection. The attributes were created
according to the following equations [80]:

Delta logl = SPEFitBayesian logl− SPEFit8 logl (3.3)

plogl =
MPEFit logl

NCh− 2.5
(3.4)

DeltaZenith = |LineFit Zenith−MPEFit Zenith| (3.5)

All three attributes were found to be among the 10 attributes showing the high-
est separation power (see section 3.6), with Delta logl being by far the strongest
attribute in the event selection. The attribute plogl was found to be the fourth
strongest, Delta Zenith was found to be the eighth strongest attribute. It can thus,
be concluded that the event selection was significantly improved by adding these
additional attributes.

3.5 Random Forest Event Selection

Tree-based machine learning algorithms are well known for their stability and good
interpretability. Moreover, very good results were recently obtained using Boosted
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Figure 3.8: Data/Monte Carlo comparison for the three attributes generated prior to
the Random Forest event selection. In general a good agreement between data and MC
is observed. The Corsika distributions are found to be rather distinct from the neutrino
simulation.
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Decision Trees for the separation of signal and background events in an atmosphe-
ric neutrino analysis with IceCube in the 40-string (IC-40) configuration [22]. In
addition, ensembles of trees are in general found to outperform single classification
trees. Therfore, an ensemble of trees (Random Forest) was chosen for the separa-
tion of signal and background in this analysis.
A Random Forest was chosen over Boosted Decision Trees, in order to achieve an
indirect comparison of both algorithms on different detector configurations and
analyses. In addition to being rather robust classifiers, Random Forests were
found to outperform BDTs and several other machine learning algorithms in ref-
erence [81].
The Random Forest from the Weka Extension package for RapidMiner [82] was
used, since studies showed a somewhat more stable behaviour, compared to the
default implementation of a Random Forest in RapidMiner [83].
The Random Forest performance was evaluated in a 5-fold cross validation using
70 093 signal and 749 921 background events. To avoid overtraining the number
of events entering the learner was restricted to 2.7× 104 per class. The simulated
neutrino spectrum used for training the Random Forest is distributed according
to a power law of the form dN

dE
∝ E−2. This spectrum differs significantly from the

energy distribution of atmospheric neutrinos (dN
dE

∝ E−3.7).
There are, however, two reasons for using an E−2-spectrum as an input for the
training of a Random Forest. Neutrinos are created following E−1 and E−2 spectra
within the IceCube Monte Carlo chain. Moreover, neutrinos are forced to inter-
act once their track leads them close enough to the detector. The application of
both procedures ensures that a large number of neutrino events is simulated for
all energies within a reasonable amount of time. Specific neutrino spectra, e.g. an
atmospheric neutrino spectrum, can then be obtained by a reweighting of events
according to the desired spectrum.
The first argument for using an E−2-spectrum can be made as follows: Due to
the power law behaviour of the atmospheric neutrino spectrum the largest part of
the events is observed in the low energy region. This analysis, however, aims at
measuring the atmospheric neutrino spectrum at high and intermediate energies,
where the observed uncertainties are large and the contribution of the prompt
component to the overall flux becomes nonnegligible. Thus, in order to avoid a
too strong bias towards the low energy region an E−2-spectrum was chosen, as
this spectrum ensures a sufficient number of high energy neutrino events to learn
on.
Secondly, tests using a reweighted spectrum for the Random Forest training,
showed a siginificant drop in the recall of neutrino events.
Atmospheric muon events simulated using the air shower simulation Corsika [71]
were used as background examples. The simulated datasets included single, as
well as double and triple coincident muons. Coincident muon events are detected
in case two or more muons, produced in different air showers, enter the detector
from different directions. Coincident muons are not to be confused with muon
bundles, where a number of muons, produced in the same air shower, enters the
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detector from the same direction. In general, the tracks of these double and triple
coincident events cannot be easily reconstructed. Thus, these events might mimic
an upgoing neutrino induced muon. The track quality parameters, on which the
Random Forest is trained, should be rather poor for most of the coincident events.
Hence, the Random Forest is expected to be able to recognise and reject coincident
muon events.
The ratio of signal and background events used for the training of the forest was
chosen to be 1 : 1. Using this ratio might not seem intuitive, since the number
of atmospheric muon events exceeds the number of neutrino events by roughly
three orders of magnitude, which in turn results in a highly skewed distribution.
Using the real signal to background ratio for the training of the Random Forest,
on the other hand, would require a large number of background events, and thus
exceed the available computing resources. Note, that 90% of all muons have been
removed prior to the Random Forest. In addition, there would not be enough
neutrino events left at the lower lying nodes in order to perform meaningful splits.
In fact, if the real signal to background ratio was used, no neutrino events might
be left at all after the first couple of splits. This, however, would render the ad-
vantages of tree-based classification algorithms useless.
Tests using different signal to background ratios for training resulted in a better
recognition of signal or background, respectively, depending on the majority class.
This result is quite intuitive, since the forest has seen more events of the majority
class and hence, more patterns for this specific class have been memorised. Recall
and background rejection are of almost equal importance for the classification task
at hand. Using a ratio of 1 : 1 was found to be a good and reliable tradeoff.
The ice model Spice-1 [84], which utilises the IceCube LED calibration system
for the determination of ice properties, was used for the production of signal and
background Monte Carlo. The nominal DOM efficiency was set to 1.0. The in-
fluences of ice model and DOM efficiency on the event selection were studied in
section 3.8.
Figure 3.9 depicts the output score of the Random Forest. This output score,

called signalness, can be interpreted as the probability of an event to be a signal
event. Real data is shown in black, Corsika in red and Nugen in blue. The sum
of Corsika and Nugen is depicted in magenta. Two distinct peaks are observed
at signalness s = 1.0 (signal peak) and s = 0.0 (background peak), indicating a
well trained forest. The distribution of Corsika events has been scaled as the
number of data events exceeded the number of available background events by
roughly a factor of 2.
A good agreement between the sum of Nugen and Corsika is observed for the
high signalness region (s ≥ 0.98). Between signalness s = 0.2 and s = 0.8 a slight
mismatch of the two histograms is observed, leading to an underestimation of back-
ground in this region. Such an underestimation of background for lower signalness
values might, however, result in an underestimation of background events in the
high signalness region and, thus, in an underestimation of atmospheric muons
in the final neutrino sample. One should note, however, that the slope of both
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Figure 3.9: Random Forest output score for data (black), Corsika (red) and Nu-
gen (blue). The sum of Corsika and Nugen is depicted in magenta. A good agree-
ment between the sum of Corsika and Nugen is observed in the high signalness region
(s ≥ 0.98). A slight mismatch is observed between signalness s = 0.2 and s = 0.8. The
slope of both graphs, however, is similar.

histograms is similar in the intermediate signalness region, indicating that the mis-
match can be resolved through the application of a simple scaling procedure.
From figure 3.9 one further finds that an additional cut needs to be placed on
the signalness in order to obtain a high purity neutrino sample. In order to keep
the contamination of atmospheric muons in the final neutrino sample as low as
possible, only signalness cuts above s = 0.99 are considered (see table 3.1).

3.5.1 Background Scaling

Figure 3.10 shows the ratio of data/(νMC + µMC) in the interval from s = 0.2
to s = 0.8. Within this interval the dominant part of data is still formed by at-
mospheric muons, allowing for the determination of a scaling factor, that corrects
for the data/MC mismatch observed in figure 3.9. The fit to the data points is
depicted in red. The scaling factor f was determined to f = 1.23.
Figure 3.11 depicts data (black), Nugen (blue) and Corsika (red) as a func-
tion of signalness after the application of a scaling factor on the Corsika. The
sum of simulated muon and neutrino events is shown in magenta. One finds that
the data/MC mismatch in the regions of high and medium signalness (s ≥ 0.2)
is resolved by the application of this scaling factor. The enhanced mismatch for
s < 0.2, however, is not relevant within the scope of this analysis, as all events in
this region will be rejected by a cut on the signalness.
Figure 3.12 shows the same plot but on a linear scale. Again an excellent agree-
ment between data and Monte Carlo simulations is observed, showing that no
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Figure 3.10: Ratio data/(νMC+µMC) as a function of signalness in the intervall s = 0.2
to s = 0.8. Within this signalness region, data are still dominated by atmospheric muons,
allowing for the determination of a constant scaling factor, correcting for the data/MC
mismatch. The fit to data points is depicted in red.

mismatches were hidden in the logarithmic plot. Moreover, the very good agree-
ment between data and Monte Carlo with respect to the Random Forest output
score (signalness), shows that the forest is well trained and that the application
on real data is justified.
Figures 3.13 and 3.14 show the high signalness region, on a logarithmic and a
linear scale respectively, after the application of a scaling facor f = 1.23 on the
Corsika events. Real data is depicted in black, Nugen in blue and Corsika in
red. The sum of simulated muon and neutrino events is shown in magenta. Again
a very good agreement between data and Monte Carlo simulation is observed, in-
dicating a stable and well trained Random Forest.

3.5.2 Statistical Uncertainties of the Event Selection

Statistical fluctuations in the training and test set will influence the estimation of
the remaining signal and background events after the application of a cut on the
signalness s. To obtain a reliable estimate these statistical fluctuations need to be
taken into account.
In this work the statistical uncertainties were obtained using a 5-fold cross valida-
tion. The outcomes of the individual iterations of the cross validation were then
evaluated for different signalness cuts. For all of these cuts the number of sig-
nal and background events was averaged and the statistical uncertainties on those
numbers were calculated.
The results of this compuation are summarised in table 3.1. The errorbars, espe-
cially on the simulated neutrino events and on the sum of simulated muon and
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Figure 3.11: Real data (black), Nugen (blue) and Corsika (red) as a function of
signalness after the application of a scaling factor on the Corsika. The sum of muon
and neutrino events is shown in magenta. One finds that the data/MC mismatch is
resolved for signalness values exceeding 0.2. The created mismatch for signalness s < 0.2
is not relevant within the scope of this analysis, as all events within this region will be
rejected by an additional cut on the signalness.

neutrino events are rather small. These small errorbars reflect the very small dif-
ference in the performance of the forest, when trained and tested using different
subsets of events. The Random Forest can, thus, be considered stable, which again
justifies the application of the algorithm on real data.
The errorbars on the remaining background events are larger (up to 91% depend-
ing on the cut), but can be explained by statistical effects. Since the number of real
data events exceeded the number of available background Monte Carlo by more
than a factor of two, the output of the Random Forest, in terms of background
events, needed to be scaled in order to obtain a reliable background estimate.
Moreover, only very few simulated atmospheric muon events (on average less than
1 per cross validation iteration) survived a signalness cut of s = 1.0. Thus, the
relative deviation between individual iterations of the cross validations becomes
large, leading to a large RMS error on the mean.
Table 3.1 also summarises the anticipated purity of the final neutrino sample for
different cuts on the signalness. The purity of the final neutrino sample should be
be greater than 95% in order to be able to perform a proper analysis of the sample.
The impurities imposed by the remaining atmospheric muons, however, should be
kept as small as possible. Moreover, the energy of these remaining muons cannot
be estimated with 100% certainty. Thus, in order to avoid a fake signal at high
energies in the final neutrino sample, a strict cut on the signalness needs to be
chosen.
The final cut on the signalness was chosen to s = 1.0, in order to achieve a high
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Figure 3.12: Real data (black), Nugen (blue) and Corsika (red) as a function of
signalness after the application of a scaling factor on the Corsika, shown on a linear
scale. The sum of simulated muon and neutrino events is shown in magenta. After the
application of a scaling factor an excellent agreement between data and Monte Carlo is
observed, even on a linear scale.

quality sample of atmospheric neutrino events with a low background contamina-
tion. By applying this final cut on the signalness, the number of background events
is reduced from 1.68× 106 to 11± 10. This corresponds to a background rejection
of more than five orders of magnitude. At a signal efficiency of 31.9% with respect
to level 4 2873 out of 8990.9 neutrino events are retained by the application of
the signalness cut. The sample obtained by this final cut, is in the following be
referred to as level 5 or neutrino level.

3.6 Attribute Importance

The Weka Random Forest can not only be utilised for classification but also for
checking the importance of the individual attributes. This functionality was used
to validate the performance of the MRMR Feature Selection. Within this study
all three constructed attributes (see section 3.4) were ranked among the top eight
attributes. This again emphasises the importance of these three attributes for the
use in the learning process. The outcome of the study is summarised in table 3.2.
As not all of the attributes can be discussed in detail only the top five attributes
are discussed in this section.
For Delta logl the importance within the event selection becomes clear when loo-
king at the distributions of signal and background Monte Carlo, respectively (see
figure 3.8c). Two clearly distinct peaks are observed for the background MC,
whereas only one peak is observed for the signal Monte Carlo. The maxima of
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Cut νMC µMC νMC + µMC Data Events Purity [%]

0.980 5392 ± 49 359 ± 87 5751 ± 100 5831 93.84

0.982 5306 ± 40 317 ± 65 5632 ± 76 5691 94.43

0.984 5197 ± 38 261 ± 50 5458 ± 63 5551 95.30

0.986 5079 ± 31 219 ± 36 5298 ± 48 5389 95.94

0.988 4933 ± 36 182 ± 31 5115 ± 48 5216 96.51

0.990 4777 ± 38 149 ± 24 4926 ± 45 5010 97.03

0.992 4596 ± 35 120 ± 31 4716 ± 47 4473 97.32

0.994 4371 ± 35 87 ± 27 4458 ± 44 4507 98.07

0.996 4075 ± 39 45 ± 16 4120 ± 42 4138 98.91

0.998 3642 ± 40 34 ± 19 3676 ± 44 3648 99.07

1.000 2872± 47 11 ± 10 2883 ± 48 2765 99.60

Table 3.1: Expected number of simulated muon and neutrino events for various cuts
on the signalness, compared to the number of events observed in real data. In general a
good agreement between the sum of simulated events and real data events is observed.
A complete matchup could not be achieved as certain systematics, such as the modelling
of the ice have not been taken into account at this point.
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Figure 3.13: Random Forest output score for the high signalness region. Due to the
large contamination of the level 4 sample with atmospheric muons a signalness cut within
this region needs to be chosen in order to achieve the required purity.

both peaks in the background are clearly shifted with respect to the simulated
signal distribution, clearly depicting the importance of this particular attribute
for the event selection.
MPEFit LDirC (see figure 3.5g) shows a strong peak in the background distribu-
tion at small track length, possibly originating from poorly reconstructed events.
Compared to the background, the signal distribution does not show a strong ma-
ximum and in general appears to be more uniformly distributed.
Signal and background distributions were found to be less distinct for LineFit Zenith
(see figure 3.5b). Moreover, no clear maxima can be observed for any of the dis-
tributions. The importance of this attribute, thus, most likely originates from
synergy effects with other attributes.
For plogl (see figure 3.8a) two distinct maxima can be observed for the signal
and background distribution, respectively, emphasising the importance of this at-
tribute.
The signal and background distributions observed for MPEFit SmoothAll were
also found to be clearly distinct. The maxima of both distributions were observed
at different positions. Additionally the background distribution appears to be less
steeply falling, compared to the distribution of simulated signal events.
In conclusion one finds that the importance of individual attributes can in most
cases be attributed to distinct distributions in signal and background. For some
attributes, however, synergy effects with other attributes appear to be equally im-
portant. Such synergy effects can in general not be spotted by eye. It can thus
be concluded that a detailed algorithm based Feature Selection plays a significant
role in the separation of signal and background using machine learning techniques.
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Attribute Importance

Delta logl 11.274

MPEFit LDirC 7.219

LineFit Zenith 5.013

plogl 4.845

MPEFit SmoothAll 4.668

MPEFit NDirC 4.030

SPEFit8 NDirA 3.914

DeltaZenith 3.788

MPEFit rlogl 3.779

SPEFit8Bayesian NLate 3.547

NString 3.180

SPEFit8Bayesian logl 2.254

MPEFit Zenith 2.175

SPEFit8 logl 2.103

COGZ 2.084

MPEFit logl 1.891

MPEFitParaboloid pbf sigma zen 1.520

MPEFitParaboloid pbf err 1 1.116

SPEFit8Noisey NEarly 0.756

DoubleMuFitTimeSplitBayesianParams NDirA 0.750

NCh 0.661

MPEFitMuESLC NDirA 0.646

DoubleMuFitGeoSplitBayesianParams StatusI 0.441

SPEFitSingleSLC NDirA 0.398

DoubleMuFitTimeSplitBayesianParams NEarly 0.334

SPEFitSingleSLC NEarly 0.271

SPEFit8Bayesian StatusI 0.212

DoubleMuFitTimeSplitBayesian nmini -0.005

Table 3.2: Attribute importance as estimated by the Weka Random Forest.
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Figure 3.14: Data (black), Nugen (blue) and Corsika (red) as a function of signalness
in the high signalness region, depicted on a linear scale. The sum of simulated muon-
and neutrino events is shown in magenta. A very good agreement between data and
Monte Carlo simulations is observed.

3.7 Data/MC Comparison after Event Selection

A comparison of real data and simulated neutrino events after application of the
Random Forest can serve as a cross check on the reliability of the forest. This
comparison is depicted in figures 3.15 to 3.17. Data is shown in black, whereas
the simulated neutrino events are depicted in red. In order to have enough events
to perform a statistically meaningful comparison these checks were carried out on
the full year of IceCube in the 59-string configuration (346.3 days).
In general a good agreement between data and Monte Carlo simulation is observed.
One should, however, note that the number of data events is ≈ 8% smaller than
the number of simulated events. This is due to the fact that an underfluctuation
in the event rate was observed with respect to the number of events expected from
Monte Carlo simulation. The underfluctuation is discussed in section 3.9. No scal-
ing was applied to any of the plots.
This underfluctuation mainly appears close to the horizon, as can be seen from
figures 3.15b and 3.15a. These slight mismatches between data and simulation
can be tolerated as no overfluctuations were observed in any of the distributions.
Overfluctuations in certain regions of an input variable would indicate a possible
underestimation of the background contamination in that region.
Furthermore, it should be noted, that certain features of the distributions are
smoothened by the application of the Random Forest. This is particularly visible
for the center of gravity in the z-direction COGZ, depicted in figure 3.16a. Com-
pared to the distribution before the application of the forest, shown in figure 3.6a,
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Figure 3.15: Data/Monte Carlo comparison for various attributes at the final neutrino
level.
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Figure 3.16: Data/Monte Carlo comparison for various attributes at the final neutrino
level.
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Figure 3.17: Data/Monte Carlo comparison for various attributes at the final neutrino
level.
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most of the modulations in the event rate are smoothened. The position of the
largest dust layer, however, can still be inferred from the distribution.

3.8 Systematic Uncertainties of the Event Selection

As the separation of signal and background depends on the Monte Carlo simulation
used for training, it also depends on the ice model and DOM efficiency used to
generate these simulations. Differences in these two quantities from reality will
thus result in different performances of the forest on real data. Hence, ice model
and DOM efficiency need to be taken into account as systematic uncertainties of
the event selection.

3.8.1 DOM Efficiency Uncertainties
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Figure 3.18: The Random Forest output score for different DOM efficiencies. A DOM
efficiency of 1.0, used as a standard in this analysis, is shown in blue. DOM efficiencies
of 1.1 and 0.9 are shown in red and magenta respectively. It should be noted that a
DOM efficiency of 1.1, corresponds to an increase of 10% above the nominal value, as
an absolute efficiency of 110% is, of course, unphysical. A good agreement between all
three efficiencies is observed. A slight mismatch appears in the very last bin.

Figure 3.18 shows the Random Forest output score for different DOM effi-
ciencies. A DOM efficiency of 1.0 was used as a standard in this analysis and is
shown in blue. DOM effiencies of 1.1 and 0.9 are depicted in red and magenta,
respectively. It should be noted that all DOM effiencies cited here are relative
efficiencies. This means that DOM efficiencies of 1.1 and 0.9 correspond to a 10%
increase/decrease with respect to the simulation standard. One should further
note that an increase or decrease in DOM efficiency might mimic other systematic
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Cut D.E. = 1.0 D.E. = 1.1 D.E. = 0.9 D.E. = 1.1
D.E. =1.0

D.E.=0.9
D.E.=1.0

0.980 5392 ± 49 5393 4273 1.00 0.79

0.982 5306 ± 40 5268 4191 0.99 0.79

0.984 5197 ± 38 5142 4078 0.99 0.78

0.986 5079 ± 31 4979 3960 0.98 0.78

0.988 4933 ± 36 4837 3811 0.98 0.79

0.990 4777 ± 38 4655 3643 0.97 0.76

0.992 4596 ± 35 4429 3446 0.96 0.78

0.994 4371 ± 35 4160 3215 0.95 0.74

0.996 4075 ± 39 3748 2890 0.92 0.71

0.998 3642 ± 40 3194 2448 0.88 0.67

1.000 2872 ± 47 2396 1803 0.82 0.63

Table 3.3: Dependency of the number of retained neutrino events on the DOM efficiency.
All results were obtained using Spice-1 at a DOM efficiency of 1.0 were used for the
training of the forest.

effects, e.g. interaction cross sections and increased/decreased scattering and ab-
sorbtion lengths.
A good agreement in shape is observed for all three graphs, except for the very
last bin. A DOM efficiency of 0.9 was found to result in a lower overall event rate
which becomes prominent in the last bin. The event rates as well as the systematic
uncertainties introduced to the event selection by variation of the DOM efficiency
are summarised in table 3.3.
All in all, one finds that the dependency of the event selection on changes in
the DOM efficiency is rather strong, resulting in a 18% deviation for a 10% in-
creased DOM efficiency. The deviation for 10% decreased DOM efficiency is even
larger (≈ 40%). Due to the large disagreement between data and simulated events
generated with a nominal DOM efficiency of 0.9, it can be concluded that the
uncertainties derived for this DOM efficiency largely overestimate the actual un-
certainty. Moreover, the DOM efficiency was increased by 10% for the simulation
standard of IceCube in the 79-string configuration.

3.8.2 Ice Model Uncertainties

Figure 3.19 shows the output score of the Random Forest for different ice models.
Spice-1 [84], used as a standard in this analysis, is shown in blue. Spice:Mie [85]
and WHAM are depicted in red and black, respectively. A nominal DOM efficiency
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Figure 3.19: Random Forest output score for different ice models. Spice-1 [84], used as
a standard in this analysis, is shown in blue. Spice:Mie [85] and WHAM are depicted
in red and black, respectively. A nominal DOM efficiency of 1.0 was used for all three
ice models. Slight deviations are observed for signalness values s ≤ 0.9. For the high
signalness region all three graphs were found to agree well.

of 1.0 was used for all three ice models. Slight deviations were observed especially
for Spice:Mie. For the high signalness region, however, all three ice models were
found to agree.
The expected data rates for Spice-1, Spice:Mie and WHAM for various cuts on
the signalness are summarised in table 3.4. One finds that the expected event
rates for Spice-1 and Spice:Mie agree within 5%. Larger deviations are observed
when comparing Spice-1 and WHAM. These deviations are a result of the large
mismatches between Spice-1 and WHAM for various attributes used for selection.
This becomes most visible for signalness cuts of s ≥ 0.998 and s = 1.0.
Since the mismatches are also observed between WHAM and data, it can be con-
cluded that the deviations between Spice-1 and WHAM overestimate the system-
atic uncertainties. Thus, the uncertainties introduced by variations of the ice
model can be approximated by the difference between Spice-1 and Spice:Mie. Ac-
cordingly, the systematic uncertainties introduced through assumptions on the ice
is smaller than 5%.

3.8.3 Total Systematic Uncertainties of the Event Selection

Summarising the results obtained in the application of the Random Forest on sim-
ulation produced with different ice models and DOM efficiencies, one finds that
the total systematic uncertainty on the event selection is 19%. This value is fully
dominated by the estimated 18% uncertainty originating from changes in DOM
efficiency. The event rate obtained on real data can, therefore, be expected to vary
within 19% from the event rate estimated on Monte Carlo simulation.
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Cut Spice-1 Spice:Mie WHAM Spice:Mie
Spice-1

WHAM
Spice-1

0.980 5392 ± 49 5541 5356 1.028 0.993

0.982 5306 ± 40 5440 5233 1.025 0.986

0.984 5197 ± 38 5352 5101 1.030 0.982

0.986 5079 ± 31 5221 4944 1.028 0.973

0.988 4933 ± 36 5097 4771 1.033 0.967

0.990 4777 ± 38 4966 4598 1.040 0.963

0.992 4596 ± 35 4790 4374 1.042 0.952

0.994 4371 ± 35 4580 4087 1.048 0.928

0.996 4075 ± 39 4272 3705 1.048 0.909

0.998 3642 ± 40 3792 3181 1.041 0.873

1.000 2872 ± 47 2885 2310 1.005 0.804

Table 3.4: Dependency of the number of retained neutrino events on the ice model. All
results were obtained using Spice-1 at a DOM efficiency of 1.0 for the training of the
forest.
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Changes in the rate of atmospheric muon events surviving the forest cannot be
tested directly. As only a handful of events survives the cuts, a large number of
background events is required as input to the overall event selection procedure.
The production of these background events would require further time and com-
puting resources. Moreover, one finds that the atmospheric muon rate is already
dominated by the statistical uncertainties, due to the small number of events sur-
viving the final signalness cut. Assuming a dependency on systematics comparable
to neutrino events, one finds that the total errorbar on the number of atmospheric
muons is still dominated by the statistical uncertainty. Even a 100% systematic
uncertainty would not become visible in the event rate on real data, due to the
much larger rate of neutrino events.

3.9 Application to full year of IC59

The application of the individual event selection steps, developed on 10% of the
data yielded 27 771 neutrino events in 346.3 days of livetime, corresponding to 80
neutrino events per day. Compared to the 29 884 neutrino events expected from
simulation, this corresponds to an underfluctuation of approximately 8%. This
underfluctuation is found to be well within the range expected from the studies
on the event selection systematics.

3.10 Comparison to other Results

The IC-59 point source (PS) analysis [86] as well as the IC-40 atmospheric neutrino
analysis [22, 80] both utilised Boosted Decision Trees for the selection of upward
going neutrino events. A comparison to the event selection at hand, therefore,
provides the opportunity of an indirect comparison of Boosted Decision Trees and
Random Forests on a real world problem. Such a comparison is of particular in-
terest in the scope of machine learning.
The challenge in comparing the event selection at hand to the IC-59 point source
event selection, lies in the different purities of the individual samples at final level.
Using the Random Forest a purity well above 99% was achieved, whereas the IC-59
point source sample was found to have a contamination of atmospheric muons on
the order of 5%. One should note, however, that a purity of 95% is fully sufficient
for point source searches.
Therefore, in order to achieve a fair and reliable comparison of the individual event
selections, the signalness cut was loosened to s ≥ 0.984, resulting in an estimated
purity of 95.3%. Comparing the number of neutrino events at this cut level, and
therefore at a comparable purity level, one finds that 55 000 neutrino events are se-
lected using the Random Forest preceded by a detailed Feature Selection, whereas
≈ 35 856 neutrino events are selected using BDTs. This corresponds to an increase
in event rate of more than 50%.
However, as individual event selections might perform differently on different en-
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Figure 3.20: Effective area as a function of neutrino energy for three different signalness
cuts, as well as for the IC-59 point source (PS) event selection. The event selection using
the Random Forest is found to be about twice as effective as the IC-59 Point source event
selection. With increasing energy, however, the point source event selection outperforms
the Random Forest event selection.

ergy scales, the energy dependence of the samples needs to be taken into account
as well. This can be done by comparing the effective areas of the individual event
selections.
A comparison of the effective areas obtained at different signalness cuts for the
analysis at hand as well as the effective area of the IC59 point source analysis is
depicted in figure 3.20. One finds that the Random Forest event selection in gen-
eral outperforms the BDTs at low energies, whereas an almost equal performance
is obtained at intermediate energies. For high energies, however, the performance
of BDTs is found to be better.
The event selection used in reference [80] also utilised Boosted Decision Trees.
Two BDTs were trained each outperforming the other in a specific energy region.
An E−1 neutrinos spectrum was chosen as input for the training of the BDTs [80].
Events were selected when passing either BDT [80].
The final event sample in reference [80] consisted of 20 496 upward going neutrino
events in 359 days of detector uptime. This corresponds to 57.1 neutrino events
per day. Due to an unexpected excess of events near the horizontal, events with
zenith angles between 90◦ and 97◦ had to be excluded from the event selection.
This additional cut resulted in a final number of neutrino events of 17 682, corre-
sponding to 49.3 neutrino events per day [22, 80].
Comparing the numbers of the final neutrino sample, to the event selection at hand
(80 neutrino events per day) one finds that an increase of ≈ 62% was achieved with
respect to the IC-40 event selection. Part of this increase in event rate, however,
is due to the larger detector volume (59 in contrast to 40 strings), which results in
an approximate increase of 50% in the trigger rate. Taking into account the im-
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proved trigger rate between the individual detector configurations, one finds that
an increase of ≈ 8% was achieved for the event selection at hand. Unfortunately a
reliable comparison of the effective areas for both event selections cannot be given,
as the effective area derived in the IC-40 analysis suffers from a bug in the IceCube
neutrino generaor Nugen.

3.11 Summary and Conclusion

Level atm. µ νµ

level 3 19.56× 106 15 743.1

level 4 1.68× 106 8990.9

level 5 11± 10 2872

Table 3.5: Overview over the individual analysis levels.

In total a background rejection better than 99.9999% was achieved with re-
spect to level 3, at a signal efficiency of 18.2%, calculated with respect to level 3
as well. One should note that this corresponds to a rejection of background events
of approximately five orders of magnitude, while keeping approximately one fifth
of the neutrino events.
The largest part of the background (91.4%) was removed through the application
of precuts, while these precuts retained 57.1% of the neutrino events. Remaining
background events were removed by the application of state of the art machine
learning techniques, namely an MRMR Feature Selection and a Random Forest.
Although the absolute number of events removed by the forest is small compared
to those removed by the precuts, one should note that these background events
were significantly harder to reject.
A signal efficiency of 31.9% was obtained for the machine learning part of the event
selection alone.
In summary the event selection presented here was found to show a high per-
formance at an equally high stability. Especially the combination of a powerful
Feature Selection and a stable high performance classifier, was found to yield very
positive results in terms of signal efficiency and background rejection. Since the
loss of neutrino events between level 3 and 4 is rather large, the application of
precuts still leaves room for improvements. These improvements can be expected,
due to the more homogeneous detector geometry of the full IceCube detector and
due to improved track reconstruction algorithms.
The individual steps of the event selection are summarised in table 3.5. Note, that
all event numbers correspond to the burnsample on which the event selection was
developed (33.281 d).
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The application of the event selection to the full year of IC-59 was carried out
successfully.
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Chapter 4

Energy Spectrum Unfolding

4.1 Introduction to Unfolding

Since the atmospheric neutrino spectrum cannot be accessed directly, it needs to
be inferred from the measured rate of neutrino induced muons. Due to stochastic
processes involved in muon production and propagation, however, the energy of
the observed muon cannot be directly converted into the energy of the neutrino
(see equation (2.8)). Moreover, the muon energy distribution cannot be measured
itself but needs to be estimated from energy proxies, which are smeared due to
the limited resolution of the detector. In general, this problem is described by the
Fredholm equation of first kind [87]:

g(y) =

b
∫

a

A(x, y)f(x) dx, (4.1)

where the distribution of the quantity of interest f(x) is connected to the measured
quantity g(y) by the response function of the detector A(x, y). In order so to solve
the inverse problem equation (4.1) can be converted into a matrix equation:

~f(x) = A(x, y)~g(y), (4.2)

where the response matrix A(x, y) needs to be determined. As no direct energy
calibration can be used in IceCube, A(x, y) is obtained from Monte Carlo simula-
tions. In the most naive assumption, equation (4.2) can be solved by inverting the
transition matrix [87]. However, as A(x, y) is in general not a square matrix, the
inverse might not exist. Moreover, a simple inversion of the matrix might result in
an oscillating solution. Equation (4.2) can then be solved by minimizing either a
least squares [88] or a log-likelihood expression [87]. Additionally, a regularisation
term is introduced to avoid an oscillating behaviour of the solution [87, 88].
Within this work the unfolding software Truee [25, 89], which is based on the
RUN algorithm [90], was used for the reconstruction of the spectrum.
More detailed information on regularised unfolding can be found in references [25,

47
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87, 89, 91]. Alternative approaches for solving equation (4.2) are reviewed in ref-
erences [88] and [92]. A detailed introduction to regularisation is given in [87]
and [88].

4.2 Input Variables and Unfolding Settings

The quality of the unfolding strongly depends on the choice of the input variables
and the parameter settings for the unfolding algorithm. In general, the choice of
the unfolding parameters cannot be considered independent from the input vari-
ables. Therefore, both, the set of input variables and the unfolding parameters,
need to be determined in an optimisation procedure.
Four energy dependent quantities (LDirC, NDirC, dEdX and NCh) were combined
to three distinct sets of input variables as Truee is able to handle as many as
three input variables [25]. Other combinations of input variables were used as well.
These sets are not discussed, as no stable unfolding settings were found for these
sets of input parameters. The quality of the four unfolding parameters towards
the use in an unfolding (energy dependence, Data/Monte Carlo agreement) will
be addressed further down in this section. A summary of the individual input sets
can be found in table 4.1.
The most important settings in Truee are the number of bins (nbins) of the
unfolded distribution and the number of knots nknots. The strength of the regu-
larisation can be adjusted by the number of degrees of freedom ndf [25]. Further
information on the individual unfolding parameters and their specific settings can
be found in [25, 89, 91].
For the unfolding at hand, the unfolding parameters were chosen to nbins = 10
and nknots = 17. Given the sets of input parameters two stable settings (ndf = 5
and ndf = 6) were found for the number of degrees of freedom, where ndf = 5
corresponds to a somewhat stronger regularisation. The unfolding settings were
chosen in an optimisation procedure and are summarised in table 4.2.

Set Var. 1 Var. 2 Var3

1 LDirC NDirC —

2 LDirC NDirC NCh

3 LDirC NDirC dEdX

Table 4.1: Summary of the sets of input variables used for unfolding.
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Setting nbins nknots ndf

1 10 17 5

2 10 17 6

Table 4.2: Summary of the unfolding parameters.

4.2.1 Description of Unfolding Variables

In this section a short description of the variables considered as input for the
unfolding is given.

Number of Direct Photons (NDirC)

Photons detected without being scattered by impurities in the ice are called direct.
In IceCube the time residual tres, defined as [93]

tres = thit − tgeo, (4.3)

is used to distinguish between direct and non-direct photons. In equation (4.3) thit
represents the actual hit time, whereas tgeo depicts the arrival time of an unscat-
tered photon. Both times are computed with respect to the reconstructed particle
track. Several time windows indicated by capital letters from A to F are used to
define direct photons of different types. Photons reaching a DOM in the interval
from tres = −15 ns to tres = 75 ns are considered as direct of type C [63, 89].
A good correlation between the number of direct photons and the energy of the
incoming neutrino is observed, which makes NDirC well suited as an input variable
for unfolding.

Direct Length (LDirC)

The direct length, LDirC, can be used as an estimator for the length of the track
inside the detector, which itself can serve as an estimator for the energy of the neu-
trino (see equation (2.12)). The direct length of type C is obtained by projecting
all DOMs registering direct photons within time window C onto the reconstructed
muon track.

Number of Channels (NCh)

The number of channels (NCh) depicts the number of DOMs detecting photons in
an event [63, 89]. NCh is expected to correlate well with energy, since high energy
muons will emit more photons, leading to more hit DOMs and a longer track length
(see equation (2.13)). This parameter is, thus, also expected to correlate with the
track length LDirC.
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(b) Energy dependency of LDirC.
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(c) Energy dependency of NCh.

2.0 3.0 4.0 5.0 6.0
log10(Energy/GeV)

0.0

0.4

0.8

1.2

1.4

1.0

0.6

0.2
d
E

d
X

0

5

10

15

20

25

30

35

40

45

(d) Energy dependency of dEdX.

Figure 4.1: Energy dependency of the four variables used as input for the unfolding.
A good correlation with energy is observed for each of the variables, indicating that it
can be used in an unfolding algorithm. Note, that dEdX is depicted on a linear scale,
whereas the other three variables are depicted on a logarithmic scale.

Differential Energy Loss (dEdX)

Since the differential energy loss dEdX of the neutrino induced muon depends
strongly on the muon energy (see equation (2.9), it can be used as an estimator
for the energy of the muon and, thus, also as an estimator for the energy of the
incoming neutrino.

4.2.2 Energy Dependency

Figure 4.1 depicts the energy dependency of the four variables considered as input
for the unfolding. A good correlation with energy is observed, indicating that
all variables carry valuable information that can be exploited in the unfolding
process. Note, that dEdX is depicted on a linear scale, as it enters the unfolding
in a linear fashion as well. The three remaining variables (LDirC, NDirC, NCh)
enter the unfolding logarithmically and are therefore depicted on a logarithmic
scale. The energy dependency of other energy correlated variables can be found
in reference [89].
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Figure 4.2: Data/Monte Carlo comparison for all variables considered as input for the
unfolding. Spice-1 with a nominal DOM Efficiency of 1.0 was used for simulation. A
good agreement is observed for all four variables.

4.2.3 Data/Monte Carlo Comparisons

In addition to a reasonably good correlation with energy the variables considered
as input for the unfolding should show a good agreement between data and Monte
Carlo, as mismatches might affect the unfolding in an undesirable manner.
Figure 4.2 shows the comparison between data and Monte Carlo simulation for all
variables considered as input for the unfolding. A good agreement between data
and Monte Carlo simulation is observed for all variables, indicating that all four
are well suited for the use in an unfolding procedure.

4.2.4 Test Mode Results

Figure 4.3 depicts selected test mode results using LDirC, NDirC and dEdX as
input variables for the unfolding. In general, a good agreement between the true
and the unfolded distribution is observed. No strong oscillations were found, indi-
cating stable unfolding settings. The solution for ndf = 6 appears to be slightly
more oscillating compared to the solution for ndf = 5. The discrepancies with
respect to oscillations, however, are marginal between the two settings and caused
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Figure 4.3: Selected test mode results using LDirC, NDirC and dEdX as input para-
meters for the unfolding. A good agreement between the unfolding result and the true
distribution is observed.
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by the difference in regularisation strength.
Selected test mode results using only LDirC and NDirC as input parameters for
the unfolding are shown in figure 4.4. The true and the unfolded distribution were
found to agree well. Furthermore, no oscillations in the solution were observed,
indicating stable and reliable unfolding settings. Again, the statistical error bars
were found to not cover the discrepancy between the two distributions for the
highest energy bin.
Figure 4.5 shows selected test mode results using LDirC, NDirC and NCh as

input variables for the unfolding. A good agreement is observed between the true
distribution and the unfolding result. No oscillating behaviour was observed for
either of the solutions, indicating stable unfolding settings. It was found that the
discrepancy between the true and the unfolded distribution in the very last bin is
not covered by the statistical uncertainty.
In summary, one finds that the true and the unfolded distributions agree well for
all six unfolding settings presented here. As no signs of oscillating solutions could
be observed, all settings are potentially stable. Moreover, it is found that the
statistical error for the very last bin does not cover the discrepancy between the
true and the unfolded distribution. Whether or not this poses a potential problem
to the unfolding cannot be determined from the test mode results alone.

4.2.5 Pull Mode Results

The stability and performance of the individual unfolding settings and sets of input
variables was validated in a bootstrapping procedure. Within this bootstrapping
500 test unfoldings, called pulls, were carried out treating 10% (corresponding
to 30 000 Monte Carlo events) of the simulated events as pseudodata. For each
pull the deviation of the unfolding result from the true distribution was calculated
binwise and in units of the statistical uncertainty.
Figure 4.6 depicts the results of the pull mode. For all settings and all sets of
input parameters, considered for the use in the final unfolding, an extremely stable
performance is observed in the first seven bins. The deviations are found to increase
with energy. This behaviour, however, can be attributed to the small statistics in
these bins, caused by the steeply falling spectrum of atmospheric neutrinos.
In general, it appears that smaller deviations are observed for the settings using
ndf = 6, especially in the highest energy bins. This is misleading and due to the
fact, that settings with less regularisation are found to produce larger statistical
uncertainties. This behaviour is further illustrated in tables C.1, C.2 and C.3.
The rather large discrepancies observed for bin 10 are discussed in the next section.
The pull distribution derived for individual bins are summarised in appendix B.

4.2.6 Discussion on Bin 10

Figure 4.7 depicts the pull mode distributions of bin 10 for all six stable unfolding
settings. Three clearly distinct populations of unfolding results were observed for
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Figure 4.4: Selected test mode results using LDirC and NDirC as input variables for
the unfolding. A good agreement between the unfolding result and the true distribution
is observed.



4.2. Settings and Variables 55

unfolded distr.

true distribution

LDirC, NDirC, NCh, ndf=510-6

10-4

10-2

1
E

v
e

n
ts

/G
e

V

2.0 3.0 4.0 5.0 6.0

log
10

(Energy/GeV)

2.5 3.5 4.5 5.5

2.0 3.0 4.0 5.0 6.0

log
10

(Energy/GeV)

2.5 3.5 4.5 5.5

0.0

0.6

-0.8

(u
n

fo
. 

- 
M

C
)/

M
C

(a) LDirC, NDirC and NCh. ndf = 5.

2.0 3.0 4.0 5.0 6.0

log
10

(Energy/GeV)

2.5 3.5 4.5 5.5

2.0 3.0 4.0 5.0 6.0

log
10

(Energy/GeV)

2.5 3.5 4.5 5.5

0.0

-1.0

(u
n
fo

. 
- 

M
C

)/
M

C

unfolded distr.

true distribution

10-6

10-4

10-2

1

E
v
e
n
ts

/G
e
V

LDirC, NDirC, NCh, ndf=6

(b) LDirC, NDirC and NCh. ndf = 6.

Figure 4.5: Selected test mode results using LDirC, NDirC and NCh as input variables
for the unfolding. In general a good agreement between the unfolding result and the
true distribution is observed.
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(a) Pull mode results using LDirC, NDirC
and dEdX. The number of degrees of free-
dom was set to 5.
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(b) Pull mode results using LDirC, NDirC
and dEdX. The number of degrees of free-
dom was set to 6.
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(c) Pull mode results using LDirC, NDirC
and NCh. The number of degrees of free-
dom was set to 5.
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(d) Pull mode results using LDirC, NDirC
and NCh. The number of degrees of free-
dom was set to 6.
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(e) Pull mode results usings LDirC and
NDirC only. The number of degrees of free-
dom was set to 5.
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(f) Pull mode results using LDirC and
NDirC only. The number of degrees of free-
dom was set to 6.

Figure 4.6: Pull mode results for all unfolding settings and all sets of input parame-
ters considered for the use in the final unfolding. For all settings an extremely stable
performance is observed in the first seven bins. Deviations are found to increase for
higher energy bins, due to the limited statistics, caused by the steeply falling spectrum
of atmospheric neutrinos.
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Figure 4.7: Pull mode distributions of bin 10 for all six stable unfolding settings. Three
clearly distinct populations are observed for all settings, corresponding to 0, 1 or 2 events
in the true distribution (from left to right). Only a fraction of an event, typically 0.5
events, is unfolded for the highest energy bin. Since the statistical uncertainty estimated
by Truee is not large enough to cover the deviation to either 0 or 1 events, distinct
populations are observed.
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all settings, corresponding to 0, 1 or 2 events in the true distribution. Such large
deviations indicate unstable unfolding settings. For the unfolding at hand, how-
ever, the situation is somewhat different.
Due to the sampling of events performed in the pull mode and the steeply falling
spectrum, either 0 or 1 events will be found in the last bin of the true distribution.
A sampling of 2 or more events is only observed in rather rare cases. The unfolding
on the other hand reconstructs a fraction of an event for the last bin. Typically
bin contents around 0.5 events are observed. As the statistical error estimated by
Truee is smaller than the deviation between the true and the unfolded distribu-
tion, the discrepancy is not covered.
From figure 4.7 the individual populations appear to have a larger overlap for the
ndf = 6 settings. This is misleading as the obtained statistical uncertainty is found
to be somewhat larger for ndf = 6 compared to ndf = 5.
Nevertheless, an additional conclusion can be drawn from the pull mode distri-
butions of the highest energy bin. In case there is no event present in the true
distribution, the unfolding tends to overestimate the bin content. However, if one
or more events are present in the last bin, the unfolding tends to underestimate
the true bin content. As the true content of the last bin is not known on data, no
clear statement can be made about a possible contribution of prompt neutrinos to
the flux in the highest energy bin.
Nevertheless, the atmospheric νµ flux can be obtained for the highest energy bin,
thus, extending the energy range up to 1 PeV.
Additionally, the question arises whether the statistical uncertainties of the very
last bin should be increased due to the findings in this section. In the sections 4.3
and 4.5 the systematic uncertainties of the last bin were found to increase above
the 100% limit. Thus, the flux obtained for the highest energy bin is compatible
with zero. Therefore, no scaling of the statistical uncertainty was applied to the
highest energy bin.

4.2.7 Performance on Real Data

Figure 4.8 shows the results of the unfolding settings using ndf = 5, when ap-
plied to real data. All three sets of input variables are found to agree within their
statistical uncertainties. The set utilising LDirC, NDirC and dEdX, however, is
found to be somewhat steeper compared to the other two variable sets. As the last
three bins already suffer from a possible underestimation, this behaviour is rather
undesirable.
The real data results obtained using ndf = 6 are depicted in figure 4.9. All three
variable sets are found to agree within their statistical uncertainties for the first
couple of bins. For the last three bins an oscillating behaviour is observed for
the input set using LDirC, NDirC and dEdX. This oscillating solution results in
negative bin contents for the last three bins. The negative bin contents are not
shown in figure 4.9. As negative bin contents are unphysical, the setting using
this particular set of input parameters (LDirC, NDirC, dEdX) and ndf = 6 is no
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Figure 4.8: Real data results obtained using ndf = 5. The results obtained using LDirC,
NDirC and dEdX are shown in black, whereas the results obtained with LDirC, NDirC
and NCh are depicted in blue. The results utilising LDirC and NDirC only are shown
in red. All three unfolding results are found to agree within the estimated statistical
uncertainties, indicating stable and reliable unfolding settings.

longer considered for the final unfolding.
Moreover, all input sets used in combination with ndf = 6 tend to produce sig-
nificantly larger statistical errors, compared to those using ndf = 5. Thus, the
settings using ndf = 6 are no longer considered for the final unfolding either.
The unfolding results obtained on real data are summarised in table C.4 and ta-
ble C.5.

4.2.8 Unfolding Cross Checks

A check comparing the distributions of unused variables on real data to reweighted
MC, was carried out in addition to the various unfolding checks performed on
Monte Carlo simulations. Within this approach the MC is reweighted according
to the unfolding result and compared to real data [25, 91].
The outcome of this particular unfolding check is depicted in figure 4.10. Data is
shown in black, whereas the reweighted Monte Carlo is depicted in red. A good
agreement between the two distributions is observed for all four parameters. This
is another indicator for the stable and trustworthy performance of the unfolding
on real data.

4.3 Ice Model Dependency

The sensitivity of the combinations of input variables on the modeling of the ice
was studied using the pull mode in Truee. For all three sets of input variables 500
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Figure 4.9: Real data results obtained using the different sets of input variables and
ndf = 6. The results using LDirC, NDirC and dEdX are shown in black, whereas the
results utilising LDirC, NDirC and NCh are depicted in blue. The results obtained using
LDirC and NDirC only are shown in red. All real data results are found to agree within
the estimated statistical uncertainties. Negative bin contents, caused by an oscillating
solution, were observed when using LDirC, NDirC and dEdX. Thus, this setting is no
longer considered for the final unfolding. The negative bin contents are not shown in
the plot.

test unfoldings were performed on 10% of the Monte Carlo set, corresponding to
30 000 events. In either case Spice-1 [84] Monte Carlo was used to build the matrix,
whereas Spice:Mie [85] Monte Carlo was treated as pseudodata. The deviation of
the unfolded distribution from the true distribution was then computed in units
of the statistical uncertainty estimated by the algorithm. Note, however, that a
large deviation of order 20σ in a low energy bin (large statistics, small statistical
uncertainty) might correspond to a smaller relative error than a 2σ deviation in
a high energy bin (small statistics, large statistical uncertainty). To illustrate this
behaviour, the deviations were converted into relative uncertainty.
Figure 4.11 shows the dependency of all sets of input variables considered for
the final unfolding on the modeling of the ice. The ice model dependency of the
unfolding settings used in [89] is shown for completeness. A clear dependency on
the ice model is observed for all three sets of unfolding variables. The set using
LDirC, NDirC and NCh, however, was found to have the smallest ice dependency
of all three sets considered for unfolding. In particular no relative errors larger
than ≈ 70% were observed. Note, that deviations larger than 100% were observed
for the two remaining sets of input variables. Moreover, the fluctuations between
neighbouring bins were found to be significantly smaller using this set of variables.
In comparison to the unfolding presented in [89], the ice dependency of the variable
set is found to be much smaller, which results in a much larger reliability of the
unfolded spectrum. One should note, however, that the ice model uncertainty in
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Figure 4.10: Unfolding cross check carried out in Truee. Unused energy dependent
variables are reweighted according to the unfolding result. The good agreement between
data and Monte Carlo indicates stable and reliable unfolding settings.
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(d) Ice model dependency of the variable
combination LDirC, NDirC and dEdX.

Figure 4.11: Ice model dependency of the three sets of input variables considered in
the analysis at hand. The ice model dependency of the input variables and settings
used in [89] is shown for completeness. A clear dependency on the ice model is
observed for all sets of input variables. The unfolding using LDirC, NDirC and
NCh, however, was found to have the smallest ice dependency of all input sets. In
particular, no relative uncertainties above 100% were observed for this very set of
unfolding variables.
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reference [89] was accessed differently, as the possibility of performing pulls on
different Monte Carlo sets was implemented after the analysis presented in [89]
had been finished.
The results of the ice model studies are summarised in table C.6.

4.4 Sensitivity to Unfolding Parameters
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Figure 4.12: Dependency of the unfolding result on the settings used for the number
of degrees of freedom. The number of knots was kept constant during the investigation,
whereas ndf was set to ndf = 4, ndf = 5 and ndf = 6 respectively. The unfolding results
are depicted on a linear scale for better visibility. All results were found to agree within
the estimated statistical uncertainties.

Studies on the dependency of the unfolding result on specific settings of the pa-
rameters ndf and nknots were carried out. Both unfolding parameters were varied
by ±1 around the value used for the determination of the final neutrino spectrum.
For ndf this corresponds to using ndf = 4, ndf = 5 and ndf = 6, respectively.
The number of knots was set to nknots = 16, nknots = 17 and nknots = 18. All
results were obtained using LDirC, NDirC and NCh as input parameters for the
unfolding.
Figure 4.12 shows the unfolding results obtained on real data for different settings
of the number of degrees of freedom, which corresponds to different settings of the
regularisation strength. The number of knots was kept constant. One finds that
the slight differences obtained for the individual settings are compatible with each
other and well inside the statistical uncertainties. In contrast to other unfolding
results presented in this work, a linear scale was used on the y-axis of figure 4.12
in order to display the tiny differences more clearly.
Figure 4.13 shows the dependency of the unfolding results obtained on real data
on the setting of the number of knots, while keeping the number of degrees of
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Figure 4.13: Dependency of the unfolding on changes in the number of knots. The
number of degrees of freedom was kept constant at ndf = 5 throughout the study,
whereas nknots was varied by ±1 around the value used to obtain the final neutrino
spectrum. The y-axis is depicted on a linear scale to increase visibility. All results were
found to agree within the estimated statistical uncertainties.

freedom constant. Again a linear scale is used in order to display the differences
more clearly. One finds that the observed discrepancies are small and well covered
by the estimated statistical uncertainties.
In summary, a weak dependency of the real data result to changes in the unfol-
ding settings is observed. This dependency is, however, due to the differences in
regularisation strength. Moreover, all observed deviations were found to be well
inside the estimated statistical uncertainties.

4.5 Other Systematic Uncertainties

Apart from the modelling of the ice, the main sources of systematic uncertain-
ties entering the unfolding are the DOM efficiency, the interaction cross sections
of muons as well as the normalisation and the spectral index of the atmospheric
neutrino spectrum. All uncertainties are addressed separately in this section in a
way similar to the procedure outlined in section 4.3.
All errorbars are computed in units of the statistical uncertainty. They can, how-
ever, easily be converted into relative errors by a simple scaling, as the statistical
uncertainties in individual pulls only deviate from the statistical errors obtained
on data on the 1-2% level.

4.5.1 Normalisation Uncertainties

Figure 4.14 shows the systematic errors estimated due to the uncertainty of the nor-
malisation of the atmospheric neutrino flux. The normalisation of the atmospheric
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normalisation of the atmospheric neutrino
flux, obtained for a 25% increased flux nor-
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normalisation of the atmospheric neutrino
flux, obtained for a 25% decreased flux nor-
malisation.

Figure 4.14: Systematic errors due to uncertainties in the normalisation of the at-
mospheric neutrino flux, estimated for a 25% increased and decreased flux normalisation,
respectively. In general, a rather weak dependency on changes in the normalisation is
observed for the first 7 bins. The uncertainties are found to increase towards the higher
energy bins.

neutrino spectrum was varied by ±25% with respect to the spectrum used for the
determination of the unfolding matrix. All uncertainties were computed in units
of the statistical error and converted into a relative uncertainty in a simple scaling
procedure.
One finds that the uncertainty introduced by the normalisation of the atmosphe-
ric neutrino spectrum is small, especially in the low and intermediate energy bins.
Deviations below the 3% level were observed for the first seven bins. The dis-
crepancies to the true distribution of events increases for the highest energy bins,
which is in part due to the limited statistics in this energy region. However, in or-
der to obtain a conservative estimate for the systematic uncertainties all errorbars
derived for the normalisation uncertainty were fully taken into account.
Furthermore, the relative deviations in the plus and minus direction were found to
be of comparable size. Accordingly, only the deviations in the plus direction are
used for the computation of the final systematic uncertainty. The errorbars, intro-
duced by the normalisation of the atmospheric neutrino spectrum, are assumed to
be symmetric.
Moreover, one finds that the normalisation of the atmospheric neutrino flux is re-
tained in the unfolding.
The results obtained for the different normalisations of the atmospheric flux are
summarised in table C.7.

4.5.2 Spectral Index Uncertainties

The systematic errors due to uncertainties in the spectral index were obtained
by varying the spectral index by ±0.03 in Monte Carlo simulations, according to
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of the spectrum from E−γ to E−(γ−0.03).

Figure 4.15: Uncertainties derived for changes in the spectral index γ. The uncertainties
were estimated by varying γ by ±0.03, which corresponds to a steepening and a flattening
of the spectrum respectively.

reference [80]. The simulated events were then used in 500 test unfoldings and
treated as pseudodata. The pull mode results are depicted in figure 4.15.
One finds that the deviations are well below the 5% level for the first eight bins.
In fact, it should be noted that discrepancies of less than 1% were observed in
four different bins. Two bins were found to show average deviations only slightly
above the 1% level. The discrepancies were found to increase with energy, leading
to an uncertainty on the order of 60% in the very last bin. This large deviation
can in part be attributed to the small statistics in the two highest energy bins,
but is fully taken into account to achieve a conservative estimate of the systematic
uncertainty.
The small uncertainties estimated especially for the low energy region of the spec-
trum clearly indicate that the spectral index is preserved throughout the entire
unfolding process. Such a behaviour is highly desirable in order to obtain a re-
liable atmospheric neutrino spectrum with small systematic uncertainties. Since
the errorbars were found to be comparable when changing the spectral index to-
wards steeper and flatter spectra, respectively, the spectral index uncertainties are
assumed to be symmetric. Only the deviations obtained for E−(γ−0.03) are used for
the final calculation of errors. A summary of the errorbars derived for individual
bins is given in table C.8.

4.5.3 Cross Section Uncertainties

Systematic uncertainties introduced by the pair production cross section were es-
timated by using Monte Carlo sets produced with a 5% increased and decreased
pair production cross section respectively. As less or more secondary particles are
produced for a decreased or increased pair production cross section, the amount
of Cherenkov light produced by individual neutrino induced muons changes ac-
cordingly. Changes in the pair production cross section, thus, serve as examples
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Figure 4.16: Systematic uncertainties obtained for a 5% decreased and increased pair
production cross section, respectively. The first bin is found to be particularly sensitive
to changes in this parameter.

for the detection of different amounts of light in the detector. It should be noted,
that changes in the amount of light can also be produced by other processes, e.g.
changes in the cross sections for bremsstrahlung and ionisation. Despite the fact
that these processes vary on different energy scales, changes in the pair production
cross section can serve as an estimate. Moreover, using σpp did not require the
production of additional systematic Monte Carlo sets, which is rather time con-
suming and resource intense.
The results are depicted in figure 4.16. Especially the lowest energy bin is found
to be very sensitive to changes in this parameter as deviations on the order of 20σ
(60%) are observed. This rather large uncertainty can be understood from the
fact that the first bin is close to the energy threshold in IceCube. Changing the
amount of light in the detector, will thus result in a shift of the threshold towards
the lower and higher energies, respectively. It is worth noting that both an increase
and a decrease of the pair production cross section result in an underestimation of
events in the first bin. A smaller sensitivity to this parameter is observed for the
remaining bins.
The shape of the pull distributions further implies an oscillating behaviour, which
can possibly be accounted for by stronger regularisation. As the regularisation
chosen for this very unfolding is already quite strong (ndf = 5), an even stronger
regularisation is not considered.

4.5.4 Uncertainties in the DOM Efficiency

The systematics of the unfolding introduced through uncertainties in the DOM
efficiency were estimated using the pull mode in Truee. Monte Carlo simulations
with a 10% increased and decreased DOM efficiency, respectively, were treated
as pseudodata. 500 test unfoldings were performed on these pseudodata and the
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Figure 4.17: Pull mode results using Monte Carlo simulation with a nominal DOM
efficiency of 0.9 as pseudodata. Large discrepancies, especially in the first three bins are
observed, indicating that the unfolding behaves very sensitive towards changes in this
parameter.

deviation from the true Monte Carlo distribution was calculated binwise and in
units of the statistical error. The 10% increase and decrease in the DOM efficiency
correspond to nominal DOM efficiencies of 1.1 and 0.9 calculated with respect to
the standard in the IC-59 simulations. These nominal efficiencies are not to be
confused with real DOM efficiencies, where a value of 1.1 would of course be un-
physical.
The pull mode results are depicted in figures 4.17 and 4.18. In figure 4.17 large
deviations and fluctuations are observed especially in the first three bins. Large
deviations in the first two bins, as well as in bins 4 and 5 are observed in figure 4.18.
This behaviour indicates that the unfolding behaves very sensitive towards changes
in this very parameter. The largest uncertainties are observed for the first bin.
Note, that the deviation of the first bin exceeds 30 σ in figure 4.18 and is therefore
not shown.
The actual size of the deviation becomes understandable when taking into ac-

count the test mode results (see figure 4.19). Selected test mode results obtained
using Monte Carlo simulation with a DOM efficiency of 0.9 and 1.1, respectively,
as pseudodata are shown. The true distribution is shown for comparison. Large
deviations of the unfolding result from the true distribution are observed, espe-
cially for the first three bins. Due to the logarithmic scale the discrepancies might
appear smaller but their actual size can be clearly inferred from the ratio plots. For
the first bin for example, deviations of approximately a factor of 8 are observed.
Furthermore, the unfolding result appear to show an oscillating behaviour, which
becomes most visible from the ratio plots. Such a behaviour is common for many
unfolding procedures. In general, however, it is suppressed by the use of regulari-
sation. As the regularisation for the unfolding at hand is already quite strong, a
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Figure 4.18: Pull mode results using Monte Carlo simulation with a nominal DOM
efficiency of 1.1 as pseudodata. Large discrepancies are observed, especially in the first
two bins as well as in bins 4 and 5, indicating that the unfolding behaves very sensitive
towards changes in this parameter. Note that the devitation in the first bin is > 30σ
and therefore no longer plotted in Truee.

further increase in regularisation might introduce an unnecessary bias.
An increase in regularisation can nonetheless account for the observed oscillating
behaviour of the unfolded distribution. Using the maximum possible regularisa-
tion (ndf = 2) appears to smoothen the oscillations (see figure 4.21). The use
of maximum regularisation, however, cannot be considered as the solution to this
problem since it would result in a very strong bias and an unnecessary smoothen-
ing of possible features.
In addition to the pull modes the unfolding was carried out on real data in order to
further investigate the dependency of the unfolding on the efficiency of the DOMs.
Since the DOM efficiency cannot be varied on data, different nominal DOM effi-
ciencies were used for the determination of the response matrix.
The unfolding results are depicted in figure 4.20. As expected, discrepancies be-
tween the results obtained using different matrices are observed. These discrepan-
cies, however, are found to be much smaller than the discrepancies observed in the
pull mode results. Especially the results for the first bin should be highlighted. A
deviation of 15% is observed between the results obtained with a DOM efficiency of
1.0 and those obtained with a DOM efficiency of 1.1 in the first bin. Furthermore,
the results obtained using a DOM efficiency of 1.0 and 1.1 for the determination
of the matrix are found to differ only marginally. Somewhat larger discrepancies
on the order of 20% to 40% are observed for the bins at intermediate energies.
Taking into account the pull mode results as well as the results obtained on real
data, one finds that the influence of the DOM efficiency appears to be much larger
in the pull modes. It can, thus, be concluded that an estimation of systematics
due to the DOM efficiency using the pull mode would largely overestimate the
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(a) Selected test mode result using Monte Carlo simulation with a
nominal DOM efficiency of 0.9 as pseudodata.
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(b) Selected test mode result using Monte Carlo simulation with a
nominal DOM efficiency of 1.1 as pseudodata.

Figure 4.19: Selected test mode results using Monte Carlo simulation with nominal
DOM efficiencies of 0.9 and 1.1 as pseudodata. The true distribution of events is shown
for comparison. Large deviations and fluctuations are observed for the unfolded dis-
tribution. Moreover, a certain shift of events towards the center of the distribution is
observed for the pulls carried out on events generated with a DOM efficiency of 1.1.
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effect, especially in the first few bins, where the statistics are largest.
Moreover, the effect of an increased and decreased DOM efficiency might mimic
other sources of systematic uncertainties, e.g. an increase or decrease in the muon
interaction cross section. On the other hand, changes in the DOM efficiency might
be mimicked as well. Thus, by fully accounting for the systematics due to DOM
efficiencies and cross sections, one runs the risk of double or triple counting the
same uncertainty. A cancellation of effects is possible as well. Since many of these
sources of systematics can only be studied in Monte Carlo simulation, it is not
possible to fully disentangle the contributions of individual sources on real data.
Therefore, the estimation of systematics due to uncertainties in the DOM efficiency
must be handled with care in order to not largely overestimate the final size of the
errorbars.
In summary, the unfoldings in the pull mode were found to be significantly more
sensitive to changes in the DOM efficiency than the unfolding results on real data.
This might in turn lead to a significant overestimation of the systematic error,
which would not reflect the quality of the data and the overall stability of the
unfolding. In addition, an increased and decreased DOM efficiency could possibly
be mimicked by other sources of systematics, which might result in considering the
same source of uncertainty twice. Therefore, the systematic errors, due to changes
in the DOM efficiency are not considered in the final calculation of systematic
uncertainties, as their influence might already be covered by the cross section er-
rors. This further allows for a consistent treatment of all systematics using the
pull mode in Truee. In order to avoid an underestimation of systematics through
the exclusion of the DOM efficiency error, dedicated cross checks were carried out
to verify the size of the overall systematic uncertainty. These cross checks are
described in section 4.5.5.

4.5.5 Cross Checks on the Systematic Uncertainty

Following an approach presented in [89], the detector was divided into two parts
according to COGZ in order to verify the obtained systematic uncertainties. In
contrast to [89], buffer zones were introduced to avoid events being randomly
counted for the one or the other subdetector, due to small variations in the ice or
in the reconstructed parameters.
By dividing the detector according to COGZ, no changes in the spectra are ex-
pected after acceptance correction (in contrast to dividing the detector according
to θZenith). Discrepancies are, however, expected due to differences in the ice and
other sources of systematics. The comparison of the subdetector spectra to the
full detector spectrum can, therefore, be utilised to check the size of the overall
uncertainties.
Within this work the detector was divided into an inner and an outer part in a
first attempt. The inner part contained all events for which COGZ ≤ 225m and
COGZ ≥ −225m. The outer part contained all events for which COGZ ≥ 275m
or COGZ ≤ −275m. Accordingly, two buffer zones of 50m were created.
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Figure 4.20: Unfolding results obtained on real data using different nominal DOM
efficiencies for the determination of the unfolding matrix. The changes in the matrix are
found to produce deviations between the individual unfolding results. These deviations,
however, are found to be much smaller compared to those observed in the pull mode
results.

By dividing the detector into an inner and an outer part, one aims at maximizing
the ice model uncertainties. The inner part of the detector is located around the
large dust layer, whereas the outer part contains the deep clear ice [79].
Both subdetectors were unfolded using Monte Carlo simulation divided in the same
way as real data. An acceptance correction was obtained by using simulation di-
vided in the same way as real data. This produre ensures, that small and implicit
mismatches, e.g. data/Monte Carlo mismatches are accounted for as well.
The cross check results comparing the spectra of the inner and outer part of Ice-
Cube to the spectrum obtained using the full detector are depicted in figure 4.22.
The errorbars of the full detector contain the combined systematic and statisti-
cal uncertainties, whereas the errorbars shown for the subdetectors contain the
statistical uncertainty only. The x-positions of the two subdetectors were slightly
shifted to increase the visibility of the data points.
For most of the data points the full detector spectrum is found to agree with the
spectra obtained with the two subdetectors within its errorbars. Deviations are
observed for bins 5 and 6, for which the smallest ice model uncertainties and the
smallest errorbars were obtained.
Figure 4.23 shows a second cross check, dividing the detector into a top and a
bottom part. The bottom part contains all events for which COGZ ≤ −50m,
whereas the top part contains all events for which COGZ ≥ 50m. The errorbars
shown for the full detector spectrum contain the combined statistical and system-
atic uncertainties. Only statistical errors are shown for both of the subdetectors.
Again, the x-values of the subdetectors were slightly shifted in order to increase
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(a) Test mode result obtained with a DOM efficiency of 0.9 at ndf =
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(b) Test mode result obtained with a DOM efficiency of 1.1 at
ndf = 2.

Figure 4.21: Selected test mode results obtained using different DOM efficiencies at the
maximum possible regularisation (ndf = 2). Compared to ndf = 5 a somewhat better
overall agreement is observed. Especially the result for the first bin is found to improve
significantly.
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Figure 4.22: Unfolded spectra of the inner- and outer part of the detector, compared
to the spectrum obtained using the full detector. The errorbars of the full detector
spectrum represent the statistical and the systematic uncertainty, whereas the errorbars
for both subdetectors are purely statistical. The subdetector spectra agree with the full
detector spectrum for most of the data points. Deviations are observed for bins 5 and 6.

the overall visibility.
The full detector spectrum is found to agree with the subdetector spectra within
its errorbars for most of the bins. Deviations are observed for bins 5 and 6. Tak-
ing into account that deviations outside the estimated errorbars were observed for
these bins in two cross checks, one concludes that the systematic uncertainties are
possibly estimated too small for the two bins.
In order to achieve a more conservative estimate of the systematic uncertainties
in these bins, the ice model uncertainties for both bins were scaled by a factor of
2. Therefore, the relative ice model error for bin 5 increases from 15.9% to 31.8%.
For bin 6 the relative ice model uncertainty is increased from 18.4% to 36.8%. By
this scaling the relative size of the ice model uncertainty becomes comparable to
the ice model induced errors of the two neighbouring bins (bin 4 and bin 7). The
total systematic uncertainty for both bins increases accordingly, from 22.5% to
35.5% in bin 5 and from 27.9% to 42.3% in bin 6.
Using a more conservative estimate is justified by the fact that the errorbars were
still found to decrease compared to the IC-40 measurement [22, 80].
The cross checks using the scaled ice model uncertainties are depicted in fig-
ures 4.24 and 4.25. The full detector spectrum agrees with the subdetector spectra
within its errorbars for all bins. Thus, it can be concluded that the size of the
systematic uncertainties has been estimated correctly.
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Figure 4.23: Unfolded spectra of the top- and bottom part of the detector, compared to
the spectrum obtained using the full detector. The errorbars shown for the full detector
contain the combined statistical and systematic uncertainties, whereas the errorbars for
the two subdetectors only contain the statistical uncertainty. Within the errorbars a
good agreement between the two subdetector spectra and the full detector spectrum is
observed. Deviations are observed for bins 5 and 6.

4.6 Acceptance Correction

In order to reconstruct the differential flux of atmospheric neutrinos, the unfolded
distribution needs to be corrected for the acceptance of the detector. The depen-
dency of the flux on detector properties, such as solid angle and livetime, is given
according to the following equation [80]:

NEvents =

∫

dt

∫

dΩ

∫

dE Φ(E, θ)Aeff (E, θ). (4.4)

Note that Φ(E, θ) in equation (4.4) depicts the differential rather than the integral
flux. Since the effective area of the detector is energy dependent (see (2.12)), this
area has to be calculated individually for every energy bin. Carrying out the
integration in time and solid angle one finds:

NEvents = TLive ∆Ω

∫

Φ(E, θ)Aeff (E, θ) dE. (4.5)

Making the transition from the continous to the discrete case:

NEvents = TLive ∆Ω
∑

Φ(E, θ)Aeff (E, θ)∆E. (4.6)

Thus, one finds that the relation for an individual bin is given as:

Φ(E, θ) =
NEvents

∆E∆ΩTLive AEff

. (4.7)
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Figure 4.24: Unfolded spectra of the inner and outer part of the detector in compar-
ison to the spectrum obtained by using the full detector. The errorbars for the full
detector spectrum contain the combined statistical and systematic uncertainty, whereas
the uncertainties shown for both subdetectors are purely statistical. The ice model un-
certainties for bins 5 and 6 were scaled by a factor of 2 to account for the deviations
observed in these bins. After scaling, the subdetector spetra agree with the full detector
spectrum within their errorbars.

As the effective area is not known on real data, it needs to be determined from
Monte Carlo simulation:

Aeff (E) =
NEvents,MC

Φ(E, θ)∆E∆ΩTLive

, (4.8)

with the number of MC events calculated via:

NEvents,MC = ΦDiff ×
∑

i

OneWeight×
TLive

NGen

, (4.9)

where NGen represents the total number of generated events, which is given as the
number of generated events per file, multiplied by the number of files. OneWeight
is an event weight assigned to all events during the generation of Monte Carlo. It
accounts for neutrino properties, such as cross section as well as for geometrical
properties of the detector.

4.7 Final Results

Figure 4.26 depicts the acceptance corrected atmospheric νµ energy spectrum. The
errobars include the statistical as well as the systematic uncertainty. Two theoreti-
cal flux models, Bartol [59] and Honda-Sarcevic [57, 94], are shown for comparison.
Note, that the Bartol model does not account for a possible flux of neutrinos from
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Figure 4.25: Unfolded spectra of the top and bottom part of the detector, compared
to the spectrum obtained by using the full detector. The errorbars shown for the full
detector contain the statistical as well as the systematic uncertainty, whereas the error-
bars for the two subdetectors are purely statistical. The ice model uncertainties for bins
5 and 6 were scaled by a factor of 2 to account for the deviations observed in these bins.
After scaling the subdetector spectra agree with the full detector spectrunm within their
errorbars for all data points.

the decay of charmed mesons. An uncertainty of 15% is assumed for both theo-
retical models.
A good agreement between the obtained spectrum and the theoretical models is
observed. A relatively large errorbar is observed in the first bin, which is due to
the sensitivity of the unfolding towards changes in the muon interaction cross sec-
tion. In part, this large errorbar also accounts for the sensitivity of the unfolding
towards changes in the DOM efficiency, which is not explicitly included in the
calculation of the final errors (see section 4.5.4 for details).
It should be noted that the measurement is particularly accurate in the energy
region between 102.5 GeV and 104.5 GeV, as can be seen from the small errorbars
in this very region. The errorbars are found to increase with energy, due to smaller
statistics and larger systematic uncertainties in the high energy bins. No statement
on a possible contribution of prompt neutrinos can be inferred from the spectrum,
due to the large errorbars in the two highest energy bins. The flux in the last bin
is found to be compatible with zero within the estimated uncertainties.
It should, however, be pointed out that the neutrino sample used in this unfolding
provided the very first measurement of the atmospheric neutrino flux in the en-
ergy range from 400TeV to 1PeV. It is noteworthy that this extension of the νµ
energy spectrum has been achieved with an increase of ≈ 60% in statistics com-
pared to [22, 80]. Due to the power law dependency on energy, the extension of
the spectrum cannot be attributed to the increased statistics alone. It was rather
achieved by an improved event selection and the utilisation of the improved unfol-
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Figure 4.26: Final unfolding result including the statistical as well as the systematic
uncertainties. Two different theoretical models, Bartol [59] and Honda-Sarcevic [57, 94],
are shown for comparison. Note, that the Bartol model does not account for a possible
contribution of neutrinos from the decay of charmed mesons. Within uncertainties a
good agreement of the unfolded neutrino spectrum with both models is observed. Due
to the relatively large errorbars, no statement can be made about a possible contribution
of prompt neutrinos.

ding algorithm provided by Truee. Especially the use of three energy dependent
variables in contrast to the use of only one such variable in reference [22, 80] greatly
contributed to the overall quality of the spectrum.
Figure 4.27 shows the final unfolding result weighted by E3.2. The spectrum is

found to follow a power law proportional to E−3.2 up to energies of E = 104.5 GeV.
Above these energies a steepening of the spectrum is observed.
This steepening of the spectrum may be caused to the knee in the spectrum of the
primary cosmic rays. Due to the rather large errorbars, however, no concluding
statement can be made on this behaviour of the spectrum.

4.8 Comparison of the Result

Figure 4.28 shows the comparison of the atmospheric νµ spectrum for the thesis
at hand compared to the flux obtained with IceCube in the 40-string configura-
tion. The Honda-Sarcevic model including a ±15% uncertainty is shown as well.
It should be noted, that the IC-40 result was obtained in a forward folding proce-
dure using dEdX as the only input variable [22, 80]. In general, a good agreement
between the two individual flux spectra is observed.
In comparison to the IC-40 unfolding, the errorbars were found to be significantly
improved, especially in the energy range from 102.5 GeV to 104.5 GeV. A larger
errorbar is observed in the very first bin, due to the large sensitivity of this bin to
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Figure 4.27: Final unfolding result including statistical and systematic uncertainties,
weighted by E3.2. The spectrum is found to follow a power law of the form proportional
to E−3.2 up to energies of E = 104.5GeV. Above these energies, a steepening of the
spectrum is observed.

changes in the muon interaction cross section. In comparison to the IC-40 unfol-
ding the errorbar estimated for the next to last bin, appears to be roughly 10%
larger. In the plot this small deviation appears to be enlarged due to the logarith-
mic scale. A detailed bin to bin comparison between the two unfoldings cannot be
given, due to the different binnings. For the detailed results of the IC-40 unfolding
see [22, 80].
Figure 4.29 shows a comparison of the unfolded flux obtained in the analysis

at hand to the results obtained in [89]. The Honda-Sarcevic model including a
±15% uncertainty is shown as well. Both results are found to agree well with the
theoretical flux within their errorbars. The flux obtained in this analysis, however,
appears to be somewhat closer to the theoretical prediction. A possible reason for
the larger discrepancies in [89] can be found in the use of LDirC, NDirC and QTot
as input parameters for the unfolding. This combination of parameters was found
to be particular sensitive to changes in the ice model (see section 4.3). Also note
that the x-values in [89] were obtained using a spline fit, whereas the mean of the
Monte Carlo distribution for every bin was used in this analysis.
The errorbars obtained with the detailed binwise estimation of uncertainties in
this analysis are found to be significantly smaller compared to the ones estimated
in [89]. The improvement in the errorbars is particularly prominent for the highest
energy bins. One should, however, note that the use of different sets of simulation
in the pull mode of Truee was not possible in [89] (this feature has been imple-
mented after the analysis was finished).
A larger errorbar was obtained in the first bin. It is, however, noteworthy that
in [89] the impact of changes in the cross section were included in an overall
uncertainty. Figure 4.30 shows the comparison of the final unfolding result to
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Figure 4.28: Comparison of the unfolded νµ spectrum compared to the spectrum
obtained with IceCube in the 40 string configuration [22, 80]. The Honda-Sarcevic model
including a ±15% uncertainty is shown as well. In general a good agreement between the
two measurements and the theoretical prediction is observed. The uncertainties of the
measurement at hand were found to improve for most of the bins, especially in energy
the range from 102.5GeV to 104.5GeV.

measurements obtained with Frejus [20] and AMANDA [21]. The Frejus results
are shown in blue, whereas the AMANDA measurement is depicted in red. In gen-
eral a good agreement between the measurements is observed and the unfolding
result obtained for the analysis at hand is found to nicely extend the previous mea-
surements. Smaller errorbars were obtained compared to the AMANDA results,
especially at intermediate energies.
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Figure 4.29: Comparison of the unfolding result obtained in the analysis at hand to
the results obtained in [89]. The Honda-Sarcevic model including a ±15% uncertainty
is shown as well. Although both unfolding results agree with the Honda-Sarcevic flux
within uncertainties, the result obtained in this analysis deviates less from the theoretical
prediction. Compared to [89] the size of the errorbars was significantly improved. A
larger errorbar is obtained for the very first bin.
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Figure 4.30: Comparison of the final unfolding results (black) to the measurements
obtained using Frejus [20] and AMANDA [21]. The Frejus results are shown in blue,
whereas the AMANDA measurement is depicted in red. In general, a good agreement
between the measurements is observed and the unfolding result obtained for the analysis
at hand is found to nicely extend the previous measurements.
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Chapter 5

A Data Mining Approach to Unfolding

5.1 Introduction

Throughgoing 

track

Corner

Clipper

Stopping

Track

Dust 

Layer

Figure 5.1: Sketch of a large volume neutrino detector utilising a natural medium for
detection. Tracks of equal energy can produce significantly different patterns within the
detector depending on their geometry (zenith angle, center of gravity, vertex position).
The same argument holds for stopping and throughgoing tracks. Inhomogenities in the
detection medium, e.g. layers of dust might introduce additional changes to the event
patterns.

Despite the fact that unfolding algorithms such as Truee [25] and RUN [90]
provide stable and reliable results they suffer from several drawbacks. Firstly, the
number of simulated events required for a reliable determination of the response
matrix grows exponentially with the number of input variables. This is a common
challenge for all density based model building algorithms [95] and limits the num-
ber of input variables to three in the most recent version of Truee [25, 89].
However, by using three or less input variables, additional and possibly useful
information on individual events is discarded. Moreover, the estimation of the
response matrix in general implies that the response function of the detector is
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identical for all parts of the detector. This implication is of course true for small
and homogeneous detectors. For large detectors, especially for those in which nat-
ural media are used for detection, this assumption does not hold. Events of the
exact same energy may produce different patterns of light depending on their ver-
tex position and zenith angle. A neutrino induced muon of energy 1 TeV stopping
inside a large layer of dust, will produce a signature that differs strongly from
a 1TeV muon traversing the detector edge to edge. Therefore, additional infor-
mation, especially on the geometry of the track, will be helpul in the unfolding
process.
Limitations of current unfolding techniques are also observed for small homoge-
neous detectors, as no information on the individual events is available after un-
folding. Thus, the user will in general not be able to determine the contribution
of a certain event to a specific part of the energy spectrum. As an additional im-
plication it follows that studies on the behaviour of an energy spectrum with time
or angle, require the unfolding of different time slices or zenith bands. This means
that studies on the variation of the neutrino energy spectrum over ten different
bins in zenith or time, require ten different unfoldings, which need to be tested,
optimised and validated individually. Thus, such studies require an additional
amount of time and computing resources.
Information on individual events, however, is not only useful for signal events.
Studying the contribution of background events to the energy spectrum, might
lead to an increase in statistics, as the purity requirements of the sample can be
relaxed in case background events do not contribute to regions suffering from small
statistics.
Within this chapter a novel data mining based approach towards spectrum un-
folding is presented. Section 5.2 will introduce the algorithm itself, whereas sec-
tion 5.3 is dedicated to a comparison to other existing unfolding approaches. In
section 5.4 the performance of the algorithm on a toy Monte Carlo simulation is
shown.

5.2 The Dortmund Spectrum Estimation Algorithm DSEA

5.2.1 Description of the Algorithm

In general, unfolding aims at reconstructing a distribution f(x) from a measured
distribution g(y) (see section 4.1 for details). For most physics cases, however, a
detailed reconstruction of the continuous function f(x) is not necessary and the

reconstruction of binned a version ~f(x) is fully sufficient.

Several approaches to the reconstruction of ~f(x) exist (see [92] for a review on
several unfolding approaches). Most of these approaches state that the inversion

of the response matrix is required in order to obtain ~f(x) from ~g(y). From the
machine learning point of view this matrix inversion appears to be unnecessary
as the individual bins in ~f(x) can be interpreted as individual classes of events.
Solving an inverse problem in physics is therefore equivalent to solving a multiclass
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Figure 5.2: Comparison of the predictions returned by a classification algorithm (Ran-
dom Forest) with the initial spectrum. Despite the fact that characteristic features, e.g.
the peak position can be reproduced, the distributions do not agree.

classification problem in machine learning. In fact, reference [87] states that the
unfolding of two bins corresponds to a classification problem. Fortunately, several
algorithms for solving multinominal classification problems exist.
The result of treating the reconstruction of a spectrum as a multinominal classifi-
cation task is shown in figure 5.2. The true distribution is shown in red, whereas
the reconstructed distribution is depicted in black. Despite the fact, that the major
features of the true distribution, the positions of the two peaks, were reconstructed
correctly, large discrepancies are observed for several bins. The reconstructed spec-
trum appears to overestimate the number of events under the peaks, whereas the
number of events between the two peaks is underestimated. It should, however,
be noted that such an oscillating behaviour of the solution is typical for solutions
of inverse problems.
Taking into account the confidence distributions of individual bins, one finds that
this oscillating behaviour can be understood. Confidence distributions of two se-
lected events are depicted in figure 5.3. From both distributions one finds, that the
maximum of the confidence distribution is not very distinct. The confidences for
the neighbouring bins are found to be only marginally different from the maximum
value of the distribution. In figure 5.3b the same confidence value is obtained for
two adjacent bins. As the maximum of these distributions determines the class
into which an event is classified, it can be concluded, that this classification task
poses a challenge for the learning algorithm. Furthermore, one should note that
confidence values around 0.3 are observed for the class, in which an event was
classified.
The small discrepancies in the confidence distributions can be understood, when
taking into account that events from neighbouring bins appear to produce similar
event patterns, which in turn results in highly similar attribute values.
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(a) Confidence distribution of a selected
event after application of the forest.
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(b) Confidence distribution of a selected
event after application of the forest.

Figure 5.3: Confidence distribution of two selected events. Only small differences be-
tween the confidence values of neighbouring bins are observed, due to the high similarity
of events from neighbouring bins.

The Dortmund Spectrum Estimation Algorithm (Dsea) takes into account the
large similarity of adjacent classes by utilising the confidence values cik of indi-
vidual events rather than their predictions. These cik can be interpreted as the
probability of an event originating in bin k, given a certain event signature i.
Therefore, the confidence distributions obtained from a machine learning algo-
rithm can be interpreted as probability density distributions of individual events.
Provided the probability densities of the individual events are estimated reliably,
summing up these events will reproduce the correct distribution.
Summarising the previous arguments in one equation one finds that the content
of bin k of the final distribution f can be computed via:

fk =

NEvents
∑

i=1

cik. (5.1)

It should be noted that the training and testing of a reliable classification algorithm
is not part of Dsea, as it only uses the output of these classifiers. This general
independence from the learning algorithm, as long as it shows a stable performance,
has to be considered one of the greatest advantages of Dsea, as different real life
problems might require the use of different learning algorithms.

5.3 Comparison to other Unfolding Approaches

As already outlined in section 4.1 the simplest approach to solving inverse prob-
lems is the direct inversion of the response matrix. In addition to the drawbacks
already discussed in section 4.1, an overall response matrix for the detector as a
whole is computed, which is not desirable for large scale neutrino telescopes (see
section 5.1).
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The differences between Dsea and the regularised unfolding approach by Blo-
bel [87, 90] are quite numerous. Firstly, in [90] the discretisation is achieved by
representing the f(x) as a set of base functions pj with coefficients aj. f(x) is then
obtained by a maximum likelihood fit, in which the aj are reconstructed. The
conversion into a user defined binning is performed after obtaining f(x).
In Dsea, however, the user defined binning is applied before training and testing
of the learning algorithm, which allows the user to pick a binning fully tailored
to the problem at hand. For example a more dense binning might be chosen, in
regions where a large number of events has been observed. Compared to Truee,
Dsea therefore offers better control over the distribution of classes that enter the
learner.
Furthermore, information on individual events is lost in the case of regularised
unfolding and events cannot be unfolded on an event-by-event basis. Moreover,
regularised unfolding appears to be a density based method and is therefore inher-
ently limited in the number of input variables, which might cause a loss of relevant
information.
It should be pointed out that compared to Dsea at its current stage, regularised
unfolding offers the advantage of explicitly using regularisation. The implementa-
tion of a regularisation procedure in Dsea was not covered in the thesis at hand,
but is one of the key topics in the future development of the algorithm.
As the probability of x given y is obtained on an event by even basis, Dsea can
in a sense be seen as a Bayesian unfolding method [96]. This becomes even more
understandable, when considering that a Naive Bayes learner, a learner which di-
rectly utilises Bayes’ theorem for the classification of events, could in principle
be used as a machine learning algorithm prior to Dsea. Despite this similarity,
however, several differences exist, which will be discussed in the following.
The iterative method presented in [97] utilises Bayes’ theorem and also aims at
obtaining the conditional probability of x given y. Compared to Dsea, however,
the general approach is somewhat different. First of all, the conditional probabil-
ities are estimated in a binwise fashion for all bins in x, rather than event-wise.
This binwise computation, has the drawback that the smearing matrix, which is
computed from Monte Carlo simulations, is kept constant for every event. The
drawbacks of this approach have already been discussed above. The smearing
matrix is not explicitly calculated in Dsea, as the pdf of the individual events is
obtained using a machine learning algorithm.
Furthermore, no information on individual events is retained in the approach pre-
sented in [97]. Although Bayesian Networks are used, a possible utilisation of
machine learning algorithms is not discussed.
An approach towards the use of machine learning techniques for solving inverse
problems is given in [98], where neural networks are utilised. In contrast to Dsea,
where unfolding is handled as a multiclass problem, the inverse problem is con-
verted into a binominal classification task, through a series of variable transforma-
tions, which transform f(t) into g(s) [98]. Moreover, the cumulated conditional
probability density G(s|~x) is obtained from the neural network output rather than
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the conditional probability density g(s|~x). This is due to the two class structure
in which the inverse problem was transformed. The neural network is used to
determine whether the true value t is greater or smaller than a certain threshold
L.
Despite the fact that [98] is able to perform an event-by-event unfolding, without
determining the response matrix the method appears to include some unnecessary
complexity, which is easily resolved, by treating the inverse problem as a multi-
nominal classification task. It should, however, be noted that the use of neural nets
in principal allows for the use of more than three input variables, and therefore
for the use of additional information in the unfolding process.
Another machine learning based approach to the solution of inverse problems is
presented in [99]. In contrast to Dsea, however, it still aims at determining the
transition matrix A, through the use of machine learning techniques. The matrix is
obtained by utilising system identification techniques. Validation of the unfolding
is carried out using standard validation procedures such as leave-one-out and cross
validation. Furthermore, the algorithm presented in [99] aims at reconstructing
the spectrum as a whole, rather than at the unfolding of individual events. The
explicit use of a learning algorithm is not discussed. One should note that the
dimensionality of the algorithm is, at least in principle, not limited.
The largest similarities can be found with the connectionist approach presented
in [100], where the regression problem is also converted into a classification problem
and solved by the application of a neural net. Furthermore, a fractional binning is
discussed, where events are not classified in one bin but in at most two adjacent
bins. This is very similar to Dsea. For Dsea, however, an event can be classified
into an arbitrary number of bins. Moreover, an explicit ordering of bins is required
in [100]. Such an explicit ordering is not required in Dsea. Furthermore, the data
is partitioned into equal mass bins, each having approximately the same number
of events. The individual bin centers are then calculated after binning. This kind
of binning is highly undesirable for the application in astroparticle physics, where
power law spectra are observed for a number of phenomena. Furthermore, the
algorithm in [100] appears to be originally designed for the purpose of time series
predictions. A possible use of an eventwise information extraction is not discussed.
The review of various very different unfolding methods in this section shows that
certain elements and ideas of these algorithms can also be found in Dsea. One
should, however, note that the explicit use of learning algorithms for the recon-
struction of spectra has been discussed only in [98] and [100]. In both references
the learning process is built into the spectrum reconstruction process. This is very
different for Dsea, as it does not depend on a specific kind of classifier as long as
the learner is well trained and stable in performance.
The idea of fractional classification can be traced back to [100]. It has, however
been improved by allowing for a partioning of events into more than two adjacent
bins.
One of the great advantages of Dsea can be found in the fact that it allows the
user to follow the flow of any given event throughout the complete learning and
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reconstruction method directly. This firstly removes the black box character of
some other unfolding procedures and secondly enables the user to extract physical
meaningful information about the spectrum on an event-by-event basis.

5.4 Validation of DSEA on Toy Monte Carlo simulations

5.4.1 Toy Monte Carlo production

Since the use of toy Monte Carlo events did not aim at simulating a specific exper-
iment or a certain type of detector a simple approach using Gaussian smearing was
utilised. Ten different observables were computed from a given input spectrum,
which was composed of two distinct gaussian peaks of different width. Dependen-
cies of the form:

yi ∝ xγ
i , γ ∈ [0.5; 1.5], (5.2)

were used to include a certain degree of nonlinearity. The yi was then smeared
using a gaussian distribution:

ȳi = f(yi, σ), (5.3)

with σ obtained at random before running the actual Monte Carlo production but
fixed throughout the Monte Carlo production. Random offsets were used in order
to make the individual observables as distinct as possible.

5.4.2 Training of the Machine Learning algorithm

A Random Forest was chosen as a machine learning algorithm for the validation of
the Dsea performance on a toy Monte Carlo simulation. The Random Forest is a
quite intuitive choice for the treatment of this problem because of its well known
stability and interpretability. Moreover, the Random Forest is able to handle
multiclass problems and returns the confidence values for every class, which is
required as an input for Dsea. Training and testing of the forest was carried out
in a 5-fold cross validation using 2.6 × 105 Monte Carlo events. The number of
events used for training was limited to 8× 104.
The forest was found to perform stably and reliably on the Monte Carlo events.
No signs of overtraining were observed.

5.4.3 Performance on Toy Monte Carlo

Figure 5.4 shows the outcome of the unfolding with Dsea compared to the true
distribution. In general, a good agreement within statistical uncertainties in ob-
served between the two distributions. Slight deviations are observed in the center
and towards the higher end of the distribution.
Figure 5.5 shows the deviation of the unfolded distribution obtained withDsea from
the true distribution in units of the statistical uncertainty σ. For 18 out of 20 bins



90 Chapter 5. D-SEA

0 5 10 15 20 25 30 35 40
x [a.u.]

500

1000

1500

2000

2500

3000

N
u
m

b
e
r 

o
f 

E
v
e
n
ts True Distribution

D-SEA Unfolding

Figure 5.4: Unfolding results obtained with Dsea compared to the true distribution.
A good agreement is observed within statistical uncertainties. Slight deviations are
observed in the region between the two peaks and towards the higher end of the distri-
bution.

both distribution are found to agree within 1σ. One bin is found to show a devi-
ation only slightly above the 1σ limit. One bin is found to show a deviation on
the order of 2σ. No deviations above 2σ were observed.

5.4.4 Utilising the 2D Binning

The capabilities of Dsea compared to other unfolding approaches can best be
demonstrated by analysing 2-dimensional histograms. Due to the fact that the
information on the individual events is still available after the unfolding, this in-
formation can be utilised to plot other x-dependent or independent variables versus
the unfolding variable x. The capabilities of this approach will be outlined in this
section.
Figure 5.6 shows the true distribution of x versus the x-dependent variable y. The
colour column corresponds to the bin content. Two clear maxima are observed.
The reconstructed two dimensional distribution of y versus x is depicted in fig-
ure 5.7. Despite the fact that the resolution is quite limited the major features of
the distribution, the two peaks, are clearly visible.
The ratio of the true distribution and the reconstructed distribution is shown in
figure 5.8. The deviation in units of the statistical uncertainty σ is depicted as
the colour column. No deviations above the 3 σ limit were observed. Several bins
appear to have deviations above 1σ or 2σ, respectively. This is, however, expected
since the number of bins in this very histogram is nbins = 400. Thus, only 272 bins
are expected to be below the 1σ limit and 380 bins are expected to be below the
2σ limit.
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Figure 5.5: Deviation between the distribution unfolded using Dsea and the true dis-
tribution in units of the statistical uncertainty σ. Only two bins out of 20 have been
found to show deviations larger than 1σ.

5.4.5 Comparison to TRUEE

To further investigate the performance of Dsea its results were compared to the
ones obtained using Truee. The comparison of the reconstructed spectrum ob-
tained with Truee (red) and Dsea (black) is depicted in figure 5.9. The shaded
area represents the true distribution of events. One finds that the results of both
unfolding algorithms produce comparable results. The statistical errorbars ob-
tained with Truee, however, appear to be somewhat larger. In general, the
results of both algorithms were found to reproduce the true distribution within
the estimated statistical uncertainties.
Figures 5.10 and 5.11 show the pull mode results of Dsea and Truee, respec-
tively. On average no deviations larger than 1σ are observed for either of the
unfolding algorithms. This result indicates, that the slight deviations to the true
distribution, observed in section 5.4.3 are due to statistical fluctuations.
Compared to the Truee result a slightly oscillating behaviour of the Dsea so-
lution is observed. Such behaviour is characteristic for the solution of inverse
problems and indicates that regularisation is explicitly required in Dsea. Note,
however, that the observed oscillations are well below the 1 σ limit. They can,
thus, be tolerated in the application of Dsea.

5.4.6 Dependency on the Input Distribution

Within this chapter the dependency of the obtained spectrum on the input distri-
bution used for training the classifier is examined. The role of the input spectrum
of the learner is comparable to that of the prior in Bayesian unfolding. For the
case of Bayesian unfolding the unfolding algorithm was found to reproduce the
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Figure 5.6: True distribution of an x-dependent variable used to illustrate the capabil-
ities of Dsea, when using it for the analysis of two dimensional distributions.

prior only in cases where no additonal information was present in the unfolding
attributes [96].
In order to study the behaviour of Dsea with respect to the input spectrum, a
uniform distribution was used as input for the learner. A uniform distribution was
chosen, as this is the most reasonable distribution to commence with, when no
additional information, theoretical or experimental, is available.
The outcome is shown in figure 5.12. The Dsea unfolding result is depicted in
red, whereas the true distribution is shown in black. Although the two distribu-
tions do not agree, the reconstructed distribution clearly deviates from a uniform
distribution.
Furthermore, the algorithm is found to correctly reproduce the position of the two
peaks. This result is remarkable as it allows for the detection of features in the true
distribution even if those have not been directly simulated. Note, that generally
some information will be available on the sought after distribution, either from the
theoretical or from the experimental side.
Moreover, the result obtained using a uniform distribution can be used in an it-
erative procedure. In this case the outcome of the unfolding is used as an input
distribution for the generation of Monte Carlo events. These Monte Carlo events
can then be used for the training of the machine learning algorithm. This proce-
dure is repeated until a stopping criterion is reached.
The result of such an iterative unfolding is presented in figure 5.13. The outcome
of the first iteration is shown in black, whereas the outcome of the seventh itera-
tion is depicted in red. The average deviations are found to significantly decrease
between the first and the seventh iteration. Moreover, the oscillatory behaviour
of the solution is found to decrease as well. In fact the result obtained after the
seventh iteration is comparable to the result obtained using the exact spectrum as
input for the training of the learner.
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Figure 5.7: Distribution of the x-dependent variable y obtained after unfolding with
Dsea. Despite the limited resolution, the major features of the distribution (2 peaks)
are restored.

In conclusion, it is found that the output of Dsea does show a certain dependency
on the input spectrum. This dependency is, however, found to be small. Further-
more, the algorithm was able to reconstruct the correct peak positions in the true
distribution, using a uniform distribution as input. Moreover, the Dsea results
can be used in an iterative manner for spectrum reconstruction in case no prior
knowledge on the sought distribution exists.

5.5 DSEA as a RapidMiner plugin

Using Dsea in an already existing data mining environment such as Weka,
TMVA or RapidMiner appears to be the optimal choice since the algorithm
relies on the output of already existing machine learning algorithms. Thus, no
effort is required for the implementation and debugging of learning algorithms.
Morevover, the user is enabled to select from a variety of classification algorithms,
which further enables him to select the algorithm best suited for a specific unfol-
ding problem.
Further requirements for utilising Dsea within any data mining environment are
high performance, simple installation and good usability. All of these features are
offered by RapidMiner. Thus, Dsea was implemented as a plugin in Rapid-
Miner. The operator list, after successful installation of the plugin, is shown in
figure 5.14. The installation of plugins in RapidMiner is explained in [75].
An example process utilising all three operators available in the current version
of Dsea is depicted in figure 5.15. All three operators require the input of a la-
belled example set which has been classified using a learner of the user’s choice.
The actual Dsea operator, which can be run in data and MC mode, realises the
binwise summation over the confidence values of the individual attributes. In case
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Figure 5.8: Comparison of the true distribution to the distribution unfolded usingDsea.
The deviation of both distributions in units of the statistical uncertainty σ is shown as
the color column. No deviations > 3σ are observed. Deviations of the order of 1σ and
2σ are observed for a couple of bins. One should note, however, that such a behaviour
is expected, as the total number of bins in this histogram is nbins = 400.

the operator is run in MC mode a comparison to the true distribution is performed
in addition to the estimation of the spectrum.
Within the D-sea Pull operator a user specified number of test unfoldings is per-
formed on a given fraction of the data. These test unfoldings are then compared
to the Monte Carlo truth and the average deviation is computed binwise and in
units of the statistical uncertainty.
The Dsea-2D operator can be used to construct a two dimensional histogram
using the unfolding variable and an arbitrary additional parameter, e.g. angle or
time. The additional parameter needs to be discretised before the application of
Dsea-2D. Note, that this operator is not to be confused with a multidimensional
unfolding, as no unfolding is carried out for the second parameter.

5.6 Summary and Conclusion

The novelDsea approach was successfully applied to toy Monte Carlo simulations.
The true distribution was fully reproduced by utilising Dsea within statistical
uncertainties. All but two bins were found to deviate less than 1σ from the true
distribution.
The data mining approach to unfolding was further found to be applicable for the
reconstruction of two dimensional distributions. Despite the fact that the reso-
lution of the plot still has some optimisation potential, the major features of the
distributions could be reconstructed. No deviations larger than 3σ were observed.
The reconstruction of two dimensional distributions is, however, not to be con-
fused with a two dimensional unfolding. Within the toy Monte Carlo no additional
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Figure 5.9: Comparison of unfolding results obtained with Dsea (black) and
Truee (red). Comparable reults are obtained. Truee, however, was found to pro-
duce slightly larger errorbars.

smearing was introduced to the x-dependent variable y. A true two dimensional
unfolding, however, would also require the correction of such an additional smear-
ing.
The results were found to agree with unfolding results obtained with Truee.
In summary, a first application of Dsea on toy Monte Carlo simulations was found
to be very successful. Furthermore, the great potential of this data mining based
approach to unfolding has been illustrated through the reconstruction of a two
dimensional distribution. An application of Dsea in astroparticle physics in the
near future, will yield deeper insight and a better understanding of astrophysical
phenomena. Studies of variations in the atmospheric neutrino spectrum with time
and angle, are key candidates for a first application of Dsea, as reference mea-
surements obtained with Truee or in a forward folding procedure [22, 80] exist.
Moreover, a great improvement of studies on neutrino oscillations with IceCube is
expected, since these studies no longer rely on energy estimators, but can obtain
the energy versus zenith distribution using Dsea.
Finally, Dsea might be applied in studies on the neutrino mass hierarchy using
the Proposed IceCube Next Generation Upgrade (PINGU) [101, 102].
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Figure 5.10: Result of the pull mode implemented in Truee. 500 pulls were performed
unfolding 10% of the data and comparing it to the MC truth. On average the correct
distribution is obtained for every bin within the statistical error.
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Figure 5.11: Pull results obtained with Dsea in a bootstrapping procedure. 10% of all
MC events were treated as pseudodata. After unfolding the result was compared to the
MC truth. A slightly oscillating behaviour of the solution is observed.
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Figure 5.12: Dsea output, depicted in red, using a uniform distribution for the training
of the learner. The true distribution, in black, is shown for comparison. Although the
distributions do not agree within the estimated statistical uncertainties, the positions of
the two peaks have been correctly reconstructed using Dsea.
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Figure 5.13: Pull mode results for the first (black) and the seventh (red) iteration.
The unfolding result of iteration i was used to generate Monte Carlo events used in the
training of iteration i + 1. A uniform distribution was used for the training of the first
iteration.
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Figure 5.14: View of the list of available operators in RapidMiner, after a successful
installation of the Dsea-plugin. In the current version three operators are available.

Figure 5.15: RapidMiner example process depicting the use of the individual operators
implemented in the Dsea-plugin for RapidMiner.



Chapter 6

Summary and Outlook

A measurement of the atmospheric neutrino spectrum up to an energy of 1 PeV
using IceCube in the 59 string configuration was presented in this thesis. This
corresponds to the highest energy ever accessed in a measurement of atmospheric
neutrinos.
The analysis consisted of two basic parts, the first one being an event selection,
aiming at separating neutrino induced events from atmospheric muons. This was
achieved by utilising state of the art machine learning techniques, consisting of
a Random Forest, preceeded by a dedicated feature selection. An improvement
from 49.3 neutrino events per day, obtained in an IC-40 analysis by using Boosted
Decision Trees, to 80 neutrino events per day was achieved. Correcting for the
increased detector volume one finds that this corresponds to an increase of ap-
proximately 8%, which can be attributed to the utilisation of a Random Forest
preceeded by a dedicated MRMR Feature Selection.
A more direct comparison was obtained to the IC-59 point source sample, which
als utilised boosting but had a higher contamination of atmopheric muons. When
this contamination is taken into account, an increase in event rate of approximately
50% was achieved.
Furthermore, it was observed that the increase in event rate was primarily achieved
at low and intermediate energies. The IC-59 point source event selection was found
to outperform the Random Forest event selection at the highest energies. Neutri-
nos from point sources follow a harder spectrum and will, therefore, be dominant
over the background of atmospheric neutrinos at higher energies. Accordingly, a
point source event selection is optimised for high energy neutrinos.
The unfolding of the obtained neutrino sample by utilising the unfolding software
Truee was presented in the second part of the thesis. Within this unfolding the
atmospheric νµ spectrum was probed between 100 GeV and 1 PeV. Compared to
a measurement obtained with IC-40 this corresponds to an increase of more than
half an order of magnitude in energy. Furthermore, the errorbars, especially at
intermediate energies, were significantly reduced compared to previous measure-
ments [22].
Furthermore, systematic uncertainties were derived in a statistically reliable way,
by using the pull mode of Truee on different sets of Monte Carlo simulations.
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100 Chapter 6. Summary and Outlook

Several sources of uncertainties including the ice model were investigated in de-
tail. The error estimation using different DOM efficiencies was found to fail, due
to unknown reasons. A detailed discussion on this matter was given, concluding
that an estimation of errors due to uncertainties in the DOM efficiency is not
necessarily required since it might be mimicked by other systematic effects, e.g.
increased/decreased cross sections.
As different sources of systematic uncertainties, which result in similar effects in-
side the detector, cannot be disentangled on real data, cross checks were carried
out dividing the detector into different parts and unfolding each part of the de-
tector separately. The spectra obtained for these individual parts were found to
agree with the full detector spectrum within the estimated uncertainties, after the
ice model uncertainties of bins 5 and 6 were scaled by a factor of two. The scaling
became necessary, since the ice model uncertainties derived for these bins were
particularly small.
A novel approach towards unfolding was given in the third part of the thesis.
This new approach is based on treating unfolding as a mutinominal classification
problem and utilising the output of an arbitrary but well trained learner. The
algorithm corresponds to an event-by-event unfolding in which all information on
the individual events is retained in the process. In comparison to the popular
regularised unfolding this approach offers the possibility of using a larger number
of input variables. This leads to an increase in the available information, which in
turn leads to a more accurate estimation of the sought distribution.
In addition to theoretical considerations the algorithm was applied in toy Monte
Carlo studies. From an unfolding carried out using Truee it was found that both
algorithms yield comparable results. It was observed that the algorithm can be
used in an iterative procedure in case no prior information is available on the
sought spectrum.
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Correlation Between Unofolding Variables
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Figure A.1: Mutual correlation of the individual variables considered for unfolding.



Appendix B

Pull Distributions for Individual Bins
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Figure B.1: Pull mode distributions for bins 1 to 9 using LDirC, NDirC and NCh as
input variables. The number of degrees of freedom was set to ndf = 5.
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Figure B.2: Pull mode distributions for bins 1 to 9 using LDirC, NDirC and NCh as
input variables. The number of degrees of freedom was set to ndf = 6.
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Figure B.3: Pull mode distributions for bins 1 to 9 using LDirC and NDirC as unfolding
variables. The number of degrees of freedom was set to ndf = 5.
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Figure B.4: Pull mode distributions for bins 1 to 9 using LDirC and NDirC as input
variables. The number of degrees of freedom was set to ndf = 6.
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Figure B.5: Pull mode distributions for bins 1 to 9, using LDirC, NDirC and dEdX as
input variables. The number of degrees of freedom was set to ndf = 5.
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Figure B.6: Pull mode distributions for bins 1 to 9 using LDirC, NDir and dEdX as
input for the unfolding. The number of degrees of freedom was set to ndf = 6.



Appendix C

Summary of Systematic Uncertainties

Bin mean (ndf=5) [σ] RMS (ndf=5) mean (ndf=6) [σ] RMS (ndf=6)

1 0.03 1.01 0.03 1.04

2 0.02 1.06 0.01 1.06

3 0.19 1.05 0.12 1.08

4 0.15 1.07 0.11 1.05

5 0.22 1.03 0.16 1.06

6 0.16 1.08 0.17 1.03

7 0.45 1.13 0.33 1.10

8 0.85 1.33 0.52 1.10

9 2.85 3.02 1.36 1.69

10 5.26 8.51 2.74 4.89

Table C.1: Binwise summary of the pull mode results obtained using LDirC, NDirC
and dEdX as input variables for the unfolding.
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Bin mean (ndf=5) [σ] RMS (ndf=5) mean (ndf=6) [σ] RMS (ndf=6)

1 0.01 1.00 0.01 1.02

2 0.01 1.04 0.10 1.06

3 0.13 1.08 0.02 1.03

4 0.03 1.09 0.08 1.07

5 0.09 1.12 0.06 1.08

6 0.03 1.16 0.05 1.07

7 0.34 1.14 0.04 1.08

8 0.93 1.36 0.44 1.10

9 1.90 2.60 0.89 1.57

10 5.56 9.55 3.15 5.65

Table C.2: Binwise summary of the pull mode results obtained using LDirC, NDirC
and NCh as input variables for the unfolding.

Bin mean (ndf=5) [σ] RMS (ndf=5) mean (ndf=6) [σ] RMS (ndf=6)

1 0.08 1.03 0.05 1.04

2 0.14 1.06 0.13 1.11

3 0.28 1.11 0.17 1.04

4 0.03 1.05 0.05 1.08

5 0.28 1.10 0.16 1.10

6 0.12 1.03 0.07 1.08

7 0.20 1.13 0.11 1.15

8 0.69 1.28 0.33 1.17

9 2.36 2.76 1.04 1.61

10 4.91 7.92 2.52 4.49

Table C.3: Binwise summary of the pull mode results obtained using LDirC and NDirC
as input variables for the unfolding.
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Bin dEdX NCh NDirC

1 4020.77± 128.72 3830.19± 95.51 3998.24± 133.16

2 8348.71± 233.56 8425.01± 193.26 8475.10± 244.96

3 6925.63± 234.96 6888.01± 220.44 7009.54± 245.48

4 4528.70± 215.74 4370.43± 190.19 4241.30± 229.37

5 2438.19± 127.58 2475.81± 110.52 2387.26± 131.32

6 796.17± 72.28 904.09± 60.64 898.68± 76.10

7 139.62± 28.18 198.03± 25.88 195.18± 29.75

8 17.40± 6.32 31.37± 5.99 30.60± 6.57

9 1.56± 0.82 4.00± 0.94 3.24± 0.84

10 0.15± 0.10 0.33± 0.09 0.33± 0.10

Table C.4: Binwise summary of the unfolding results obtained on real data using ndf =
5. The results for LDirC, NDirC and dEdX are shown in the column labelled dEdX,
whereas the results obtained using LDirC, NDirC and NCh are depicted in the column
labelled NCh. The column labelled NDirC represents the results obtained using LDirC
and NDirC only.
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Bin dEdX NCh NDirC

1 4057.08± 164.07 3944.88± 122.98 3991.56± 164.78

2 8412.93± 333.88 8214.53± 267.62 8521.99± 347.02

3 6920.64± 403.39 7133.18± 324.14 7282.83± 437.22

4 4167.92± 331.04 4178.14± 272.44 3765.77± 356.48

5 2748.21± 215.21 2558.75± 169.58 2535.63± 231.80

6 862.69± 89.00 888.74± 74.03 956.59± 95.97

7 90.51± 43.50 191.50± 36.86 182.33± 48.72

8 −7.90± 14.17 32.67± 10.15 25.31± 12.75

9 −2.20± 2.49 4.38± 1.74 2.52± 1.78

10 −0.22± 0.24 0.37± 0.18 0.25± 0.21

Table C.5: Unfolding results obtained on real data using ndf = 6. The results for
LDirC, NDirC and dEdX are shown in the column labelled dEdX, whereas the results
obtained using LDirC, NDirC and NCh are depicted in the column labelled NCh. The
column labelled NDirC represents the results obtained using LDirC and NDirC only.
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Bin dEdX [σ] dEdX [%] NDirC [σ] NDirC [%] NCh [σ] NCh [%] QTot [%]

1 19.04 35.7 18.96 35.6 13.97 26.1 33.3

2 0.86 2.0 0.57 1.3 11.48 26.8 23.7

3 17.95 48.6 17.34 47.0 10.25 27.8 16.1

4 1.43 5.9 1.39 5.4 8.69 34.0 37.8

5 10.08 50.4 10.11 50.3 3.20 15.9 65.2

6 3.66 32.3 3.86 34.1 2.09 18.4 24.2

7 1.37 23.1 1.12 18.9 2.18 36.9 122

8 3.23 69.0 3.06 65.4 2.39 51.0 153

9 5.68 110.0 5.29 102.5 3.41 66.6 90

10 8.87 83.1 8.91 85.1 7.58 72.4 1

Table C.6: Binwise summary of the ice model dependency of the various sets of input
parameters. The derived errorbars are shown in units of the statistical uncertainty σ as
well as in percent. The results obtained using LDirC, NDirC and dEdX are summarised
in the column labelled dEdX, whereas the uncertainties derived using LDirC, NDirC and
NCh are depicted in the column labelled NCh. The errorbars estimated using LDirC and
NDirC only are shown in the column labelled NDirC. The uncertainties derived for the
unfolding settings used in [89] are shown in the column labelled QTot for comparison.
The number of knots was set to nknots = 17, wheras the number of degrees of freedom
was set to ndf = 5.
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Bin A + 25% [σ] A + 25% [%] A -25% [σ] A - 25% [%]

1 0.09 0.2 0.17 0.4

2 0.04 0.1 0.11 0.2

3 0.13 0.4 0.05 0.1

4 0.07 0.3 0.13 0.5

5 0.18 0.9 0.02 0.0

6 0.18 1.6 0.23 2.1

7 0.13 2.3 0.03 0.5

8 0.71 16.7 0.52 12.4

9 1.68 38.4 1.67 37.3

10 5.11 62.8 4.85 59.6

Table C.7: Binwise summary of the uncertainties derived for a 25% increased and
decreased normalisation of the atmospheric νµ flux.

Bin E−(γ−0.03) [σ] E−(γ−0.03) [%] E−(γ+0.03) [σ] E−(γ+0.03) [%]

1 0.18 0.3 0.46 1.1

2 0.10 0.2 0.43 0.9

3 0.04 0.1 0.16 0.4

4 0.04 0.2 0.34 1.2

5 0.01 0.1 0.19 0.9

6 0.07 0.7 0.40 3.3

7 0.07 1.5 0.08 1.3

8 0.73 19.8 0.94 19.3

9 1.11 30.6 2.00 38.2

10 3.83 65.9 4.68 57.5

Table C.8: Binwise summary of the errorbars derived due to uncertainties in the spectral
index γ, which was varied by ±0.03. The errorbars are depicted in units of the statistical
uncertainty σ as well as in percent.
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Bin σpp+5% [σ] σpp+5% [%] σpp-5% [σ] σpp-5% [%]

1 21.16 61.7 19.45 56.5

2 10.44 23.7 15.71 34.8

3 3.81 9.4 3.29 8.3

4 6.39 21.9 9.38 32.2

5 3.36 15.2 7.92 34.8

6 2.50 19.5 0.89 6.9

7 2.49 37.5 2.76 38.8

8 0.93 16.5 3.15 64.1

9 0.33 5.4 1.99 38.8

10 2.74 33.6 2.95 28.1

Table C.9: Binwise summary of the errorbars derived due to changes in the pair produc-
tion cross section σpp. The obtained uncertainties are depicted in units of the statistical
error σ as well as in percent.

Bin log(E/GeV) E2 × Φ [GeV cm−2 sr−1 s−1] Rel. Error [%]

0 2.25 2.42× 10−4 67.0

1 2.62 1.03× 10−4 35.9

2 3.01 3.02× 10−5 29.5

3 3.39 9.63× 10−6 40.7

4 3.78 3.55× 10−6 35.6

5 4.17 1.12× 10−6 42.3

6 4.56 2.80× 10−7 54.3

7 4.96 5.77× 10−8 62.4

8 5.36 1.49× 10−8 89.1

9 5.76 2.91× 10−9 119.6

Table C.10: Binwise summary of the acceptance corrected unfolding result, which cor-
responds to the differential flux of atmospheric neutrinos, scaled by E2. The relative
uncertainties, containing systematic as well as statistical errors is depicted as well.
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D-SEA

Inverse problems are described by the Fredholm integral of first kind [87]:

g(y) =

∫ b

a

A(E, y)f(E)dE (D.1)

Since one is interested in a binned solution of f(E), equation (D.1) can be rewritten
as a matrix equation:

⇒ ~g(x) = A~f(E) (D.2)

~g = (g1, . . . , gn) (D.3)

~f = (f1, . . . , fm) (D.4)

gi =
m
∑

j=1

Aijfj (D.5)

The normalisations of ~g and ~f yield:

n
∑

i=1

gi =
n
∑

i=1

m
∑

j=1

Aijfj = NEvents (D.6)

m
∑

j=1

fj = NEvents (D.7)

The output of any machine learning algorithm returning confidence values can be
interpreted as a conditional probability. According to Bayes theorem this can be
written as:

P (Ej|~x) =
p(~x|Ej)P (Ej)

p(~x)
. (D.8)

Comment: Introducing equation (D.8) at this stage is not required for the proof
itself. It is, however, useful to keep in mind, that the confidence values returned
by a Naive Bayes Classifier, are computed using this very equation.
One should also keep in mind that a confidence cjk depicts the probability of the
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kth event to have an energy corresponding to bin j. Summation over all j is of
course normalised:

m
∑

j=1

cjk = 1 ⇒
NEvents
∑

k=1

m
∑

j=1

cjk = NEvents (D.9)

Identification of (D.9) and (D.6) yields:

n
∑

i=1

m
∑

j=1

Aijfj =

NEvents
∑

k=1

m
∑

j=1

cjk (D.10)

Rewriting the sums:

m
∑

j=1

n
∑

i=1

Aijfj =
m
∑

j=1

NEvents
∑

k=1

cjk (D.11)

⇔
m
∑

j=1

n
∑

i=1

Aijfj −
m
∑

j=1

NEvents
∑

i=k

cjk = 0 (D.12)

⇔
m
∑

j=1

(

n
∑

i=1

Aijfj −
NEvents
∑

i=k

cjk

)

= 0 ⇔
m
∑

j=1

∆j = 0 (D.13)

Analysing the individual ∆j:

∆j =
n
∑

i=1

Aijfj −
NEvents
∑

i=k

cjk ⇔
NEvents
∑

i=k

cjk =
n
∑

i=1

Aijfj −∆j (D.14)

Since the summation in
∑n

i=1 Aijfj is only in i, fj can be treated as a constant
factor:

NEvents
∑

i=k

cjk = fj

n
∑

i=1

Aij −∆j (D.15)

Examining the case fj
∑n

i=1 Aij ≫ |∆j| yields:

NEvents
∑

i=k

cjk ≈ fj

n
∑

i=1

Aij ⇔ fj ≈

∑NEvents

i=k cjk
∑n

i=1 Aij

(D.16)

Comment: at this stage a special case is studied. This might seem random for the
moment, but will deliver a criterion in order to determine, whether the classifier
is well trained. The same result can be obtained starting out from the assumption
of a well trained classifier, which will be defined in equation (D.27).
For better readability

∑n

i=1 Aij = γj. This yields:

fj =
1

γj

NEvents
∑

i=k

cjk (D.17)
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This result can be interpreted as follows: The content of bin j can be estimated
as the sum over all confidence values for this very bin, multiplied by a normalisa-
tion factor. This normalisation factor can be determined by studying the matrix
elements Aij:

Aij = PijBj (D.18)

Pij is the probability of an event of type j, producing a signature of type i. Bj is
the detector acceptance for events of type j. Furthermore:

n
∑

i=1

Pij = 1 (D.19)

Bj ≤ 1 (D.20)

⇒ γj =
n
∑

i=1

Aij = Bj

n
∑

i=1

Pij = Bj (D.21)

This yields: fj equals the sum of all confidences multiplied by an acceptance cor-
rection factor.
In order to derive a quality criterion for the machine learning method fj

∑n

i=1 Aij ≫
|∆j| is examined:

NEvents
∑

k=1

cjk = fjγj −∆j (D.22)

⇔ ∆j = fjγj

NEvents
∑

k=1

cjk (D.23)

(D.24)

fj
∑n

i=1 γj = fj,MC is known from Monte Carlo simulations:

|∆j| = fj,MC −
NEvents
∑

k=1

cjk (D.25)

⇔
|∆j|

fj,MC

=
fj,MC −

∑NEvents

k=1 cjk
fj,MC

(D.26)

fj,MC ≫ |∆j| yields:

⇒ 1 ≫
fj,MC −

∑NEvents

k=1 cjk
fj,MC

(D.27)

Thus, for every bin the relative difference between the reconstructed distribution
and the true distribution needs to be small.
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