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Abstract. Non-random sample selection may render estimated treatment effects
biased even if assignment of treatment is purely random. Lee (2009) proposes an
estimator for treatment effect bounds that limit the possible range of the treatment
effect. In this approach, the lower and upper bound, respectively, correspond to
extreme assumptions about the missing information, which are consistent with the
observed data. As opposed to conventional parametric approaches to correcting
for sample selection bias, Lee’s bounds estimator rests on very few assumptions.
We introduce the new Stata command leebounds that implements the estimator
in Stata. The command allows for several options, such as tightening bounds by
the use of covariates.

Keywords: non-parametric, randomized trial, sample selection, attrition, bounds,
treatment effect.

1 Introduction

Random assignment of treatment provides an ideal setting for identifying treatment
effects. Most prominent, randomized trials are exactly designed for generating a situa-
tion where randomness of treatment is guaranteed, ruling out any potential endogeneity
bias. However, this ideal setting can easily be distorted by non-random sample attrition.
Dropout from a program, denied information on the outcome variable, and death during
a clinical trial may serve as examples. While treatment is purely random in the original
population, this no more holds for the actual estimation sample if attrition is linked
to the treatment status, potentially leading to attrition bias with perhaps unknown
direction.

Parametrically correcting for attrition and selection bias has developed into a stan-
dard procedure in applied empirical research, rendering the seminal method by Heckman
(1976, 1979) a work horse of applied econometrics. This procedure is implemented in
Stata by the heckman command. Yet, this parametric approach has been criticised for
relying on restrictive assumptions, in particular, joint normality, and being vulnerable
to misspecification (e.g. Puhani 2000; Grasdal 2001), which has led to the development
of semi-parametric approaches (e.g. Ichimura and Lee 1991; Ahn and Powell 1993).
Though relying on less restrictive distributional assumptions, valid exclusion restric-
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tions are even more essential for these estimators. More recently, bound estimators
have been proposed that require only very few assumptions and do not rely on valid
exclusion restrictions. These estimators, rather than correcting point estimates for po-
tential bias, determine an interval for the true treatment effect. The interval bases on
extreme assumptions about the impact of selection on estimated effect that are con-
sistent with the data. One of such estimators is Horowitz and Manski (2000). This
approach does not involve any assumption about the selection mechanism, yet it is only
applicable to outcome variables that are bounded to a certain interval since missing
information is imputed on basis of minimal and maximal possible values. This impedes
its application to numerous problems and regularly yields very wide bounds.

The present paper introduces the new Stata command leebounds that facilitates the
estimation of alternative bounds prosed by Lee (2009), which impose more structure on
the assumed selection mechanism while allowing for outcome variables with unbounded
support and often yielding more narrow bounds. The following section gives summary
of Lee’s bounds estimator. The syntax of leebounds is described in section 3. Section
4 illustrates the application of leebounds. Section 5 summarizes and concludes the
article.

2 The Lee (2009) bounds estimator

2.1 The intuition behind the estimator

Lee (2009) proposes a bounds estimator that estimates an interval for the true value of
the treatment effect in the presence of non-random sample selection. It rests on only
two assumptions: random assignment of treatment and monotonicity. The latter implies
that assignment to the treatment group can affect attrition in only one direction. That
means that besides observations for with the outcome variable is observed irrespective of
the assigned treatment status, the actual estimation sample either includes observation
for which the outcome is observed because of receiving the treatment, or observation
for which the outcome is observed because of not receiving the treatment, but not both
simultaneously.

The intuition of the bounds estimator is to trim either the sample of the treated or the
non-treated observations such that the share of observations with observed outcome is
equal for both groups. Trimming is either from above or from below. This corresponds
to two extreme assumption about missing information that are consistent with the
observed data and a one-sided selection mechanism. That is, in the group that suffers
less from attrition either the largest or the smallest values of the outcome are regarded as
‘excess observations’ and are excluded from the analysis. This implies that precisely the
treatment effect on never attriters is subject to estimation. The present paper focusses
on the practical issue of how estimates for the bounds are calculated and, in particular,
on how this procedure is implemented in Stata; for more theory, we refer to Lee (2009).
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2.2 Estimation

Estimating treatment effect bounds as suggested by Lee (2009) is computationally
straightforward. Only a raw group mean and two trimmed group means of the out-
come variable need to be calculated. Let Yi denote the outcome, Ti a binary treatment
indicator, and Si a binary selection indicator, with Si = 0 indicating attriters for which
Yi is not observed. As usual, i indexes observations. The shares of observations with
observed outcome in the treatment group qT and its counterpart for the control group
qC can then be written:

qT =

∑
i 1 (Ti = 1, Si = 1)∑

i 1 (Ti = 1)
(1)

qC =

∑
i 1 (Ti = 0, Si = 1)∑

i 1 (Ti = 0)
. (2)

Here 1(·) denotes the indicator function. To simplify notation, let us consider the case
qT > qC that is the treatment group suffers less from attrition.1 Then

q =
qT − qC
qT

(3)

and 1−q determines the quantiles at which the distribution of Y in the treatment group
are trimmed in order to exclude extreme values of Y from the analysis. Hence

yTq = G−1Y |T=1,S=1(q) (4)

yT1−q = G−1Y |T=1,S=1(1 − q) (5)

determine the marginal values yTq and yT1−q of the outcome that enter the trimmed

means, with G−1Y denoting the inverse empirical distribution function of Y . Using this
notation, estimates for the upper bound and the lower bound are calculated as

θ̂upper =

∑
i 1
(
Ti = 1, Si = 1, Yi ≥ yTq

)
Yi∑

i 1
(
Ti = 1, Si = 1, Yi ≥ yTq

) −
∑

i 1 (Ti = 0, Si = 1)Yi∑
i 1 (Ti = 0, Si = 1)

(6)

θ̂lower =

∑
i 1
(
Ti = 1, Si = 1, Yi ≤ yT1−q

)
Yi∑

i 1
(
Ti = 1, Si = 1, Yi ≤ yT1−q

) −
∑

i 1 (Ti = 0, Si = 1)Yi∑
i 1 (Ti = 0, Si = 1)

. (7)

Lee (2009) considers a purely continuous outcome variable Y . Yet, especially in
survey data, variables that are inherently continuous are often imprecisely reported,
resulting in ‘ties’ in the observed outcome data. Monthly disposable income may serve
as an example, for which many individuals tend to report a round number, such as
$ 1,000 or $ 1,500. Such ‘ties’ may violate the intuition behind (6) and (7) if the

1. For the opposite case qT < qC , all arguments hold symmetrically, with q being defined as
(qC−qT )/qC , the control group being trimmed at yCq and yC1−q , respectively, and the treatment
group remaining untrimmed. For qT = qC , both, the upper and the lower bound coincide with the
difference in raw means.
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marginal values yTq and yT1−q are frequent. For this reason, leebounds excludes the
q ·NT (rounded down to the nearest integer) smallest – respectively largest – values of Y
for the calculation of the trimmed means. Here NT denotes the number of observations
in the treatment group for which the outcome variable is observed. This means that a
certain fraction of the observations that exhibit the marginal values yTq and yT1−q enter
the trimmed means. With no ties in Y , this procedure coincides with (6) and (7).

2.3 Tightening bounds

Estimating Lee (2009) bounds does not involve any covariates. This corresponds to the
assumption of random assignment of treatment, under which the differences in condi-
tional and unconditional expectations of Y coincide. Yet, covariates that are determined
prior to treatment may be used to tighten treatment effect bounds. Covariates that have
some explanatory power for attrition are used to spilt the sample into cells, and bounds
are separately calculated for each cell. Finally, a weighted average of cells specific
bounds is computed. The appropriate weights are the probabilities of cell membership
for never attriters (Lee 2009, 1094). These probabilities are unknown. Yet, because of
random assignment of treatment and monotonicity, they can consistently be estimated

by
∑

i 1(Ji=1,Si=1,Ti=0)∑
i 1(Si=1,Ti=0) for each cell J , where Ji = 1 indicates membership in J . Lee

(2009) shows that such averaged bounds are tighter than those that doe not use any
covariates (Lee 2009, 1086).2 Tightening bounds is offered by leebounds as an option.

Technically, only a limited number of discrete3 variables can be used for tightening,
as the number of observations und the joint distribution of treatment status and selection
must allow for estimating the bounds for each individual cell. Thus, estimation regularly
fails if a large number of covariates is used. Tightening may also fail if for some cells
the control group suffers relatively more from attrition, while for other cells attrition is
more frequent in the treatment group. Due to sampling error, this will frequently occur,
if the sample is split in too many cells.4 leebounds checks for this, issues a warning
if a selection pattern is detected that is heterogeneous across cells and saves a macro
indicating the type of the selection pattern.

2.4 Standard errors and inference

Estimates for the treatment effect bounds are subject to sampling error. Lee (2009,
1088) provides analytic standard errors for them; we refer to the original paper for
details about the calculation of standard errors. Analytical standard errors, and as
an alternative bootstrapped standard errors, are implemented in leebounds. On basis
of these standard errors, one may determine ‘naive’ confidence intervals that cover the
interval [θlower, θupper] with probability 1−α. Interestingly, based on Imbens and Manski
(2004), Lee (2009, 1089) also derives a confidence interval for the treatment effect itself,

2. The proof is for the population parameters, not for their sample analogues. Hence, especially for
ill-suited covariates, estimated bounds may fail in getting tighter with option tight().

3. In practice, continuous variables (e.g. age) must be transformed into categorial ones (age classes).
4. This may also provide indication for a violation of the monotonicity assumption.
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i.e. the scalar parameter of ultimate interest. This interval is tighter than the combined
confidence interval for θlower and θupper. It captures both, uncertainty about the bias due
to non-random sample attrition and uncertainty because of sampling error. leebounds
optionally provides estimation of the confidence interval for the treatment effect.

3 The leebounds command

leebounds requires Stata 11 or higher. The prefix commands by and svy are not
allowed. The prefix command bootstrap is allowed, yet, its use is not recommended.
pweights (default), fweights, and iweights are allowed, aweights are not allowed.
Observations with a negative weight are skipped for any type of weight.

3.1 Syntax for leebounds

The syntax for leebounds reads as follows:

leebounds depvar treatvar
[
if
] [

in
]
,
[

select(varname) tight(varlist)

cieffect vce(analytic|bootstrap) level(#)
]

depvar is a numeric outcome variable and treatvar is a binary treatment indicator, which
can either be numeric or a string variable. The (alphanumerically) lager value of treatvar
is assumed to indicate treatment.

3.2 Options for leebounds

select(varname) specifies a binary selection indicator. varname may only take the
value zero or one. If no selection indicator is specified, any observation with non-
missing information on depvar is assumed to be selected while all observations with
missing information on depvar are assumed to be not selected.

tight(varlist) specifies a list of covariates for computing tightened bounds. With
tight() specified, the sample is split into cells defined by the covariates in varlist .
Continuous variables in varlist will cause failure of the estimation procedure.

cieffect requests calculation of a confidence interval for the treatment effect.

vce(analytic|bootstrap) specifies whether analytic or bootstrapped standard errors
are calculated for estimated bounds. analytic is the default. bootstrap allows
for the suboptions reps(#) and nodots. For vce(analytic) the covariance for the
estimated lower and upper bound is not computed. If this covariance is of relevance,
one should choose vce(bootstrap). Instead of specifying vce(bootstrap) one may
alternatively use the prefix command bootstrap, which allows for numerous addi-
tional options. Yet leebounds’ internal bootstrapping routine is much faster than
the prefix command, allows for sampling weights by performing a weighted boot-
strap, and makes also the option cieffect use bootstrapped standard errors.
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level(#) as usual sets the level of confidence. One may change the reported confi-
dence level by retyping leebounds without arguments and only specifying the option
level(#). However, this affects only the confidence interval for the bounds, but not
for the confidence interval requested with cieffect.

3.3 Saved results for leebounds

leenounds saves the following results to e():

Scalars
e(N) number of observations e(cilower) lower bound of treatment effect-

confidence interval
(only for option cieffect)

e(Nsel) number of selected obs. e(ciupper) upper bound of treatment effect-
confidence interval
(only for option cieffect)

e(trim) (overall) trimming proportion e(level) level of confidence
e(cells) number of cells

(only for option tight())
e(N reps) number of bootstrap rep-

etitions (only for option
vce(bootstrap))

Macros
e(cmd) leebounds e(select) varname

(only for option select())
e(cmdline) command as typed e(cellsel) cell-specific selection pattern,

homo, or hetero (only for option
tight())

e(title) Lee (2009) treatment
effect bounds

e(covariates) varlist (only for option tight())

e(vce) either analytic or bootstrap e(trimmed) either treatment or control
e(vcetype) Bootstrap for vce(bootstrap) e(wtype) either pweight, fweight, or

iweight (if weights are specified)
e(depvar) depvar e(wexp) = exp (if weights are specified)
e(treatment) treatvar e(properties) b V

Matrices
e(b) 1×2 vector of estimated

treatment effect bounds
(column names are
treatvar:lower, treatvar:upper)

e(V) 2×2 variance-covariance matrix
for estimated treatment effect
bounds (covariance set to zero
for vce(analytic))

Functions
e(sample) marks estimation sample

4 Example for using the leebounds command

We use Stata’s cancer.dta example data set for a simple purely illustrative application.
We analyse whether being treated with an active ingredient (drug == 2 | drug == 3),
compared to being treated with a placebo (drug == 1), has an effect on survival time
(studytime). We treat the data as if information on survival time were only available
for those, who died during the study (died == 1). This is not entirely correct, as for
those who did not die (died == 0), after all we know that they survived at least for
the rest of the study period. Yet, for illustration, we regard them as attritters without
any (valid) information on the outcome studytime.
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. sysuse cancer.dta, clear
(Patient Survival in Drug Trial)

. gen activedrug = (drug == 2 | drug == 3)

. leebounds studytime activedrug, select(died)

Lee (2009) treatment effect bounds

Number of obs. = 48
Number of selected obs. = 31
Trimming porportion = 0.5489

studytime Coef. Std. Err. z P>|z| [95% Conf. Interval]

activedrug
lower 2.866667 3.909154 0.73 0.463 -4.795134 10.52847
upper 14.3 3.163771 4.52 0.000 8.099123 20.50088

The output displays that 48 individuals participated in the trial. Out of these 31
died during the study, while 17 survived. The latter are regarded as not selected as we
have no precise information about survival time. The trimming proportion corresponds
to q, see equation (3). The value 0.5489 indicates that the control group is trimmed
by more than half, as the survival rate is much higher among individuals who were
treated with an active drug. Correspondingly, the estimated treatment effect bounds
are pretty wide ranging from 2.87 to 14.30 months gain in survival time. Taking standard
errors into account, the lower bound even does not significantly deviate from zero. For
obtaining a confidence interval for the treatment effect (see section 2.3), one can choose
the cieffect option:

. leebounds studytime activedrug, select(died) cieffect

Lee (2009) treatment effect bounds

Number of obs. = 48
Number of selected obs. = 31
Trimming porportion = 0.5489
Effect 95% conf. interval : [-3.5633 19.5039]

studytime Coef. Std. Err. z P>|z| [95% Conf. Interval]

activedrug
lower 2.866667 3.909154 0.73 0.463 -4.795134 10.52847
upper 14.3 3.163771 4.52 0.000 8.099123 20.50088

This interval, is narrower than the combined confidence intervals for the bounds.
One may allow for a less strikt level of confidence by specifying level(90) and opt for
bootstrapped rather than analytic standard errors:

. set seed 13052007

. leebounds studytime activedrug, sel(died) cie level(90) vce(boot, reps(250))

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

.................................................. 250
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Lee (2009) treatment effect bounds

Number of obs. = 48
Number of selected obs. = 31
Trimming porportion = 0.5489
Effect 90% conf. interval : [-1.9390 18.1498]

Observed Bootstrap Normal-based
studytime Coef. Std. Err. z P>|z| [90% Conf. Interval]

activedrug
lower 2.866667 3.749864 0.76 0.445 -3.301311 9.034644
upper 14.3 3.00403 4.76 0.000 9.358811 19.24119

Bootstrapped standard errors are similar to their analytical counterparts. Even the
90-percent confidence interval for the treatment effect overlaps the value of zero. Finally
we try to tighten the bounds by the use of a covariate. The only available is age, which
we have to transform into a categorial variable. Here we choose three age categories
such that each category has roughly the same number ob observations:

. _pctile age, percentiles(33 66)

. gen agecat = recode(age,r(r1),r(r2),100)

. leebounds studytime activedrug, select(died) cieffect tight(agecat)

Tightened Lee (2009) treatment effect bounds

Number of obs. = 48
Number of selected obs. = 31
Number of cells = 3
Overall trimming porportion = 0.5489
Effect 95% conf. interval : [ 0.1028 19.6897]

studytime Coef. Std. Err. z P>|z| [95% Conf. Interval]

activedrug
lower 7 4.155293 1.68 0.092 -1.144225 15.14423
upper 12.55556 4.29805 2.92 0.003 4.131531 20.97958

Tightening yields much narrower bounds for the treatment effect. Indeed, with
specifying the tight() option, the 95-percent effect confidence interval does not include
the value zero.

5 Summary and conclusions

In this article, the new command leebounds was introduced that implements Lee (2009)
treatment effect bounds for data with random assignment of treatment that suffer from
non-random sample selection. In addition to calculating point estimates for the bounds,
the command accommodates the calculation of confidence intervals for the treatment
effect and tightened bounds based on covariates. leebounds complements the contri-
butions of Beresteanu and Manski (2000) and Palmer et al. (2011), who have already
made other bounds estimators available to Stata users.
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