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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit Kreditrisiko-Modellen �redu-

zierter Form� (Reduced Form Credit Risk Models) zur Analyse staatlicher Kredit-

risiken. In diesen Modellen wird der Insolvenzprozess dem Namen entsprechend

in reduzierter Form modelliert: Erste Sprünge von Poisson-Prozessen sollen hier

Kreditereignisse darstellen. Auf eine tiefergehende Abbildung der �nanziellen

Situation der Einheit wird verzichtet und die Modelle für verschiedene Einheiten

unterscheiden sich lediglich in den Sprungintensitäten der jeweiligen Poisson-

Prozesse. Die Intensitäten bzw. die Intensitätsprozesse, die die Modelle für

bestimmte Einheiten charakterisieren, können entweder als deterministisch oder

als stochastisch modelliert werden. Im letzteren Fall werden die Modelle in der

Regel als �doppel stochastisch� (doubly stochastic1) bezeichnet. Dabei werden

die Intensitätsprozesse als Di�usionsprozesse modelliert.

In dieser Dissertation werden technische Grundlagen und die Funktionsweise

dieser Modelle erörtert. Weiterhin wird im wahrscheinlichkeitstheoretischen

Rahmen dargestellt, wie man anhand dieser Modelle analysieren kann, welche

Rolle eine mögliche Stochastik der Kreditausfallswahrscheinlichkeit bei der Bil-

dung von Kreditwertpapierpreisen spielt. Eine Strategie zur Schätzung solcher

Modelle unter zwei Massen anhand von Zeitreihendaten wird ebenfalls disku-

tiert und evaluiert. Anhand dieser Strategie werden Modelle für verschiedene eu-

ropäische Länder geschätzt. Basierend darauf wird im Hinblick auf die europäis-

che Finanzkrise analysiert, welche Rolle die Stochastik der Ausfallwahrschein-

lichkeit bei der Bildung von Kreditkosten für diese Länder spielt. Weiterhin

wird in diesem Zusammenhang evaluiert, wie gut die Modellierung der Kred-

itkosten anhand von Kreditrisiko-Modellen reduzierter Form für diese Länder

funktioniert und wie gut die geschätzten Modelle zur Prognose von Kreditwert-

papierpreisen geeignet sind.

1Es sei hierbei erwähnt, dass es keinen direkten inhaltlichen Zusammenhang zwischen
der Bezeichnung einer doppelt stochastischen Matrix und eines doppelt stochastischen
Kreditrisiko-Modells gibt.
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Übersichtskapitel Dissertation
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1.1 Einleitung

Die vorliegende Dissertation beschäftigt sich mit Kreditrisiko-Modellen �redu-

zierter Form� (Reduced Form Credit Risk Models) zur Analyse staatlicher Kredit-

risiken. Es werden technische Grundlagen und die Funktionsweise dieser Mo-

delle erörtert. Weiterhin wird im wahrscheinlichkeitstheoretischen Rahmen dar-

gestellt, wie man anhand dieser Modelle analysieren kann, welche Rolle eine

mögliche Stochastik der Kreditausfallswahrscheinlichkeit bei der Bildung von

Kreditwertpapierpreisen spielt. Die Risiken, die auf der Stochastik der Aus-

fallwahrscheinlichkeit beruhen, werden hier Risiken der �zweiten Dimension�

(second dimension risks) genannt. Eine Strategie zur Schätzung solcher Model-

le anhand von Zeitreihendaten wird ebenfalls diskutiert und evaluiert. Anhand

dieser Strategie werden Modelle für verschiedene europäische Länder geschätzt.

Basierend darauf wird im Hinblick auf die europäische Finanzkrise analysiert,

welche Rolle die Stochastik der Ausfallwahrscheinlichkeit bei der Bildung von

Kreditkosten für diese Länder spielt. Weiterhin wird in diesem Zusammenhang

evaluiert, wie gut die Modellierung der Kreditkosten anhand von Kreditrisiko-

Modellen reduzierter Form für diese Länder funktioniert und wie gut die geschätzten

Modelle zur Prognose von Kreditwertpapierpreisen geeignet sind.

Das vorliegende Einführungs-Kapitel soll einen Überblick über den Inhalt der

Disseration geben, der über den obigen Umriss hinausgeht. Ich skizziere hier-

bei zu Beginn kurz, was Kreditrisiko-Modelle reduzierter Form eigentlich sind

und fasse basierend darauf den Inhalt der einzelnen eigentlichen Dissertations-

Kapitel zusammen. Dabei werden eigene Beiträge und deren Zusammenhang

erläutert.

1.2 Kreditrisiko-Modelle reduzierter Form

Zur Modellierung von Kreditkrisen gibt es zahlreiche Herangehensweisen. Die

beiden in der Literatur verbreitetsten Plattformen sind die erwähnten Kreditrisiko-

Modelle �reduzierter�, sowie Kreditrisiko-Modelle �struktureller� Form (vgl. Du�e
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and Singleton (2008)). Bei letzterer Modellklasse wird versucht, die �nanzielle

Situation eines Landes oder eines Staates (im folgenden allgemeiner als Ein-

heit bezeichnet) detailliert im Modell abzubilden. Hierbei werden mehrere

stochastische Prozesse für die verschiedenen Bestandteile einer Vermögensbi-

lanz de�niert. Der Insolvenzfall tritt in dieser Modellwelt dann ein, wenn die

Prozesse, die die Verschuldung abbilden, in der Summe die �Aktiva� bzw. den

allgemeinen Besitz überschreiten. Diese Modelle scheinen zur Modellierung von

staatlichen Kreditrisiken nicht sonderlich gut geeignet, da Informationen hin-

sichtlich der �nanziellen Situation von Staaten nicht so klar strukturiert sind

wie bei ö�entlich gelisteten Firmen.

In Modellen reduzierter Form, die auf Jarrow and Turnbull (1995), Lando

(1998) und Du�e and Singleton (1999) zurückgehen, wird der Insolvenzprozess

dem Namen entsprechend in reduzierterer Form modelliert: Erste Sprünge von

Poisson-Prozessen sollen hier Kreditereignisse darstellen. Auf eine tiefergehende

Abbildung der �nanziellen Situation der Einheit wird verzichtet, die Modelle für

verschiedene Einheiten unterscheiden sich lediglich in den Sprungintensitäten

der jeweiligen Poisson-Prozesse. Die Wahrscheinlichkeit für einen Ausfall in

einer bestimmten Periode entspricht dann der Wahrscheinlichkeit eines ersten

Prozessprungs in dieser Zeit. Die Intensitäten bzw. die Intensitätsprozesse, die

die Modelle für bestimmte Einheiten charakterisieren, können entweder als de-

terministisch oder stochastisch modelliert werden.

Im letzteren Fall werden die Modelle in der Regel als �doppelt stochastisch� (dou-

bly stochastic) bezeichnet. Dabei werden die Intensitätsprozesse in der Regel

als Di�usionsprozesse modelliert. Die Änderung eines Intensitätsprozesses wird

also in jedem Zeitpunkt durch eine stochastische Di�erentialgleichung bestimmt.

Diese setzt sich aus einem deterministischem und einem stochastischem Teil

zusammen. Der stochastische Teil wird dabei von einer Brownschen Bewegung

getrieben. Eine Spezi�kationsmöglichkeit für diese stochastische Di�erentialglei-

chung ist eine sogenannte Wurzeldi�usionsgleichung. Gleichungen diesen Typs

zeichnen sich für bestimmte Parameterwerte durch ein sogenanntes Rückkop-

plungsniveau aus: Ist der jeweilige Prozess oberhalb dieses Niveaus, wird der
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deterministische Teil der Gleichung negativ und es wird eine negative Änderung

erwartet. Ist der Prozess unterhalb dieses Niveaus, ist das Gegenteil der Fall.

Innerhalb des Modellrahmens können relativ einfach Preise für Finanzprodukte

hergeleitet werden, welche dem jeweiligen Kreditrisiko unterliegen. Dazu berech-

net man anhand der Ausfallwahrscheinlichkeit Erwartungswerte bezüglich der

sich aus dem Finanzprodukt ableitenden Zahlungströme und diskontiert diese

anhand der erwarteten Rendite. Hierbei spielen in der Regel zwei unbekannte

Variablen eine Rolle: Die Ausfallintensität und die erwarteten Rendite. Daher

ersetzt man häu�g das letztere durch die sogenannte risikofreie Rendite. Dieses

eigentlich hypothetische Konstrukt ist die Rendite, die ein Investor bekommt,

wenn er temporär Geld zur Verfügung stellt ohne dabei Risiken einzugehen.

Die Substitution der eigentlich erwarteten Rendite wird deshalb häu�g durchge-

führt, da es für die risikofreie Rendite eine ganze Reihe als geeignet erachteter

Approximationen gibt. Kandidaten sind hierfür Renditen auf Investitionen, die

mit - aus Sicht der Investoren - vernachlässigbaren Risiken behaftet sind. Häu-

�g werden zum Beispiel Renditen deutscher oder amerikanischer Staatsanleihen

verwendet.

Wenn sich die eigentlich erwartete Rendite von der risikofreien unterscheidet,

bedarf es bei der Bepreisung einer weiteren Anpassung. Typischerweise wird die

eigentliche Sprungintensität durch eine hypothetische �risikoneutrale� Intensität

ersetzt. Diese ist eben genau so de�niert, dass sie im jeweiligen Bepreisungsrah-

men für das Substituieren der erwarteten Rendite durch die risikofreie Rendite

korrigiert. Ihr Name geht darauf zurück, dass diese hypothetische Intensität als

tatsächlich erwartete Intensität in Preisen impliziert wäre, wenn diese in einer

Welt beobachtet würden, in der Investoren für das Eingehen von Risiken keinen

Anstieg der Rendite erwarteten, sondern im Rahmen ihrer Investitionsentschei-

dung lediglich erwartete Zahlungsströme miteinander vergleichen, würde ohne

die Varianz zu berücksichtigen.

Es bedarf im Falle einer stochastischen Ausfallintensität noch einer weiteren

Anpassung, falls sich die erwarteten Renditen aufgrund dieser Stochastik verän-
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dern. Dies kann bei der Bepreisung berücksichtig werden, indem neben dem

�wahren� Wahrscheinlichkeitsmaÿ, das sich auf das tatsächliche Bewegungs-

gesetz der �risikoneutralen� Intensität bezieht, ein hypothetisches �risikoneu-

trales� Wahrscheinlichkeitsmaÿ eingeführt wird. Die bei der Berechnung der

erwarteten Zahlungströme implizierte Erwartungswertbildung hinsichtlich der

�risikoneutralen� Intensität führt unter diesem hypothetischen riskoneutralem

Maÿ zu erwarteten Auszahlungen, die nach der Diskontierung basierend auf

der risikofreien Rendite mit dem Preis des jeweiligen Finanzprodukts überein-

stimmen. Dieses risikoneutrale Maÿ entspricht in einer hypothetischen Welt,

in der Investoren keine zusätzliche Entlohnung für Risiken der zweiten Dimen-

sion erwarten, dem wahren Wahrscheinlichkeitsmaÿ. Die Unterschiede in den

beiden Maÿen spiegelt sich wider in unterschiedlichen Koe�zienten der stochas-

tischen Di�erentialgleichungen unter beiden Maÿen. Basierend auf dieser Un-

terscheidung kann anhand geschätzter Modelle reduzierter Form analysiert wer-

den, welchen Ein�uss die Stochastik der Ausfallwahrscheinlichkeit auf erwartete

Renditen beziehungsweise Preise von Finanzprodukten hat.

1.3 Thematik der einzelnen Papiere

Im ersten Papier dieser Dissertation werden die wahrscheinlichkeitstheoretisch-

en und �nanzwirtschaftlichen Grundlagen vorgestellt, die zum Verständnis und

zur Einordnung der anderen beiden Kapitel notwendig scheinen. Di�usions-

prozesse zur Modellierung der Intensitätsprozesse werden eingeführt und be-

stimmte Eigenschaften a�ner Prozesse diskutiert (vgl. Du�e et al. (2003)).

Letzteres spielt bei der Schätzung der Modelle anhand von Zeitreihendaten eine

Rolle. Weiterhin wird im Zusammenhang mit der Bepreisung in diesem Modell-

rahmen die Diskontierung anhand erwarteter und risikofreier Rendite erläutert.

Ein besonderer Fokus liegt weiterhin auf der getrennten Einbettung der erwähn-

ten risikoneutralen Intensität und des risikoneutralen Maÿes in den wahrschein-

lichkeitstheoretischen Rahmen des Modells. Zudem wird genauer erörtert, wie
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basierend darauf analysiert werden kann, welche Rolle die Stochastik der Aus-

fallwahrscheinlichkeit bei der Preisbildung von Kredit�nanzprodukten

beziehungsweise bei der Bildung erwarteter Renditen spielt.

Eine ähnliche Analyse wurde schon in den Studien von Pan and Singleton (2008)

und Longsta� et al. (2011) durchgeführt. Allerdings wurde hierbei auf eine aus-

führliche, getrennte Darstellung des erwähnten risikoneutralen Maÿes und des

risikoneutralen Intensitätsprozesses im wahrscheinlichkeitstheoretischen Rah-

men verzichtet. Solch eine Darstellung scheint jedoch äuÿerst wichtig zu sein, um

diese Artikel und zukünftige Forschungsprojekte dieser Art für Leser zugänglich

zu machen, und um auf der Maÿunterscheidung basierende Interpretationen (wie

in den Papieren von Pan and Singleton (2008) und Longsta� et al. (2011)) wis-

senschaftlich zu rechtfertigen. Bisherige Artikel, die Modelle reduzierter Form

im Allgemeinen diskutiern, auf eine wahrscheinlichkeitstheoretische Darstellung

Wert legen und die mir bekannt sind, unterscheiden bei der risikoneutralen Be-

trachtung nicht zwischen dem Risiko eines Ausfalls, gegeben eine bestimmte

Ausfallwahrscheinlichkeit, und dem Risiko hinsichtlich einer unerwarteten Ent-

wicklung der Ausfallwahrscheinlichkeit. Dementsprechend geben sie keinen Auf-

schluss darüber, wie anhand solcher Modelle analysiert werden kann, ob es zu

Änderungen in den erwarteten Renditen aufgrund von Unsicherheiten bezüglich

der zukünftigen Ausfallwahrscheinlichkeit kommt. Die Einbettung des risikoneu-

tralen Maÿes in den gesamten wahrscheinlichkeitstheoretischen Modellrahmen,

der eine isolierte Betrachtung des Risikos zweiter Dimension erlaubt, stellt da-

her einen eigenen sinnvollen Beitrag dar.

Die Änderung der Preise aufgrund der Stochastik der Ausfallwahrscheinlichkeit

wird in dieser Dissertation als Premium für das Risiko der zweiten Dimension

bzw. �second dimension risk premium� bezeichnet. Es hat sich bisher kein fes-

ter Begri� für diese Art des Risiko etabliert und diese Bezeichnung erscheint in

Anbetracht des Modellaufbaus sinnvoll: Die Stochastik der Ausfallwahrschein-

lichkeit impliziert im Modellrahmen neben der Unsicherheit, ob es gegeben einer

bestimmten Intenstität zum Sprung bzw. Ausfall kommt, eine zweite Unsicher-

heitsebene aus Sicht der Investoren.
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Das zweite Papier beschäftigt sich mit der Schätzung von Kreditrisiko-Model-

len reduzierter Form anhand von Kreditversicherungs-Zeitreihendaten. Hier-

bei muss der risikoneutrale Intensitätsprozess und die Bewegungsgesetze dieses

Prozesses (d.h. die Koe�zienten der stochastischen Di�erentialgleichungen)

unter dem tatsächlichen und dem risikoneutralen Maÿ geschätzt werden. Darüber

hinaus ist in diesem Modell die Schätzung des Anteils einer Anleihe notwendig,

der im Insolvenzfall noch zurückgezahlt wird. Ich diskutiere eine Schätzstrate-

gie für Modelle, in denen die Di�usionsprozesse zur Modellierung von Inten-

sitäten �a�n� sind. Hierbei werden bestimmte Eigenschaften �a�ner� Prozesse,

welche im ersten Papier der Dissertation vorgestellt werden, bei der Erwar-

tungswertbildung bezüglich Transformationen zukünftiger Intensitätswerte aus-

genutzt. Weiterhin wird ausgenutzt, dass auf täglicher Basis Prämien für Kre-

ditversicherungen verschiedener Versicherungshorizonte verfügbar sind.

Es werden in einem ersten Schritt die Parameter unter dem risikoneutralen

Bewegungsgesetz ex-ante bestimmt und für einen einzelnen Versicherungsho-

rizont wird eine Intensitätszeitreihe geschätzt (vgl. Longsta� et al. (2005)).

Die Schätzung erfolgt anhand eines Vergleichs der echten Versicherungspreise

für den bestimmten Versicherungshorizont mit den entsprechenden Modellver-

sicherungspreisen, welche auf den zuvor ex-ante bestimmten Parameterwerten

des risikoneutralen Bewegungsgesetzes basieren. Die Schätzwerte für die risikoneu-

trale Intensität werden so gewählt, dass sich Modellpreise und beobachtete

Preise für diesen einen Versicherungshorizont zu jedem Beobachtungszeitraum

entsprechen.

Die sich hieraus ergebende Intensitätszeitreihe wird dann verwendet, um die

zuvor frei bestimmten Parameter neu zu schätzen. Dabei wird für die anderen

verfügbaren Versicherungshorizonte die Di�erenz zwischen Modell- und echten

Versicherungspreisen gegeben der Intensitäten und bezüglich dieser Parameter

unter dem risikoneutralem Maÿ minimiert. Beide Schritte (d.h. Schätzung

der Intensitäten und Schätzung der Parameter unter dem risikoneutralem Maÿ)

werden so lange durchgeführt, bis in beiden Fällen Konvergenz eintritt. An-
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schlieÿend werden basierend auf der geschätzten Intensitätszeitreihe die Para-

meter unter dem wahren Wahrscheinlichkeitsmaÿ geschätzt. Mögliche für diesen

Schätzschritt in Frage kommende Methoden wie Maximum Likelihood oder die

Methode der kleinsten Quadrate werden hierbei diskutiert. Die Strategie zur

Schätzung der Parameter unter dem risiokneutralen Maÿ und der Zeitreihe des

Intensitätsprozesses wird ebenso wie die in Frage kommenden Methoden für die

Schätzung der Parameter unter dem wahren Wahrscheinlichkeitsmaÿ anhand

simulierter Daten überprüft.

Die Schätzmethodik basiert zwar auf Kreditversicherungsdaten. Das geschätzte

Modell kann jedoch für die Bepreisung sämtlicher Finanzprodukte verwendet

werden, deren Auszahlungen mit Kreditrisiken behaftet sind, da in erster Linie

das Ausfallrisiko selbst und nicht der Preis für das jeweilige Finanzprodukt

modelliert wird. Basierend auf der Modellierung des Kreditrisikos können dann

wiederum Preise für alle möglichen Finanzprodukte hergeleitet werden, von

deren Besitz sich mit dem jeweiligen Kreditrisiko behaftete Zahlungsströme

ableiten. Die Erwartungswerte bezüglich dieser Zahlungsströme werden unter

Berücksichtigung des modellierten Ausfallrisikos gebildet.

Mir sind Artikel bekannt, die Schätzergebnisse für solche Modelle unter beiden

Massen präsentieren (nämlich die erwähnten Papiere von Pan and Singleton

(2008) und Longsta� et al. (2011)). Diese Papiere gehen jedoch nicht im Detail

auf die angewendete Schätzmethodik ein. Dennoch lässt sich sagen, dass sich

die hier diskutierte Schätzmethodik von der in diesen Papieren angewendeten

unterscheidet, da in diesen Papieren die zur Modellierung gewählten Di�usion-

sprozesse nicht a�n sind. Die in dieser Dissertation diskutierte Schätzstrategie

basiert jedoch - wie schon erwähnt - auf den Eigenschaften a�ner Prozesse und

orientiert sich dabei an Longsta� et al. (2005). Dabei wird ausgenutzt, dass

die in Bepreisungsformeln enthaltenen Erwartungswerte über bestimmte Trans-

formationen zukünftiger Intensitätswerte substitutiert werden können. Hierzu

müssen, wenn den Modellen a�ne Prozesse zugrunde liegen, lediglich gewöhn-

liche Di�erentialgleichungen gelöst werden, für welche nicht nur numerische, son-

dern auch analytische Lösungen verfügbar sind. Dies ermöglicht im Vergleich zu
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einem Verfahren, das ausschlieÿlich auf numerischem Lösen der entsprechenden

gewöhnlichen Di�erentialgleichungen beruht, ein bezüglich der Rechenkapazität

weniger anspruchsvolles Vorgehen.

Im dritten Papier dieser Dissertation wende ich die vorgestellte Schätzstrategie

an und schätze Kreditrisiko-Modelle reduzierter Form für sechs europäische Län-

der. Die Schätzung basiert dabei auf Daten aus den Jahren 2008 bis 2012. Dieser

Zeitraum war geprägt von starken Schwankungen der Kreditkosten diverser eu-

ropäischer Länder. In Gra�k 1.1 werden die Kreditkosten für einige Beispiel-

Länder und einen auch die Jahre vor der europäischen Fiskalkrise umfassenden

Zeitraum dargestellt. Gra�k 4.12 zeigt die Kreditkosten für die in der Stich-

probe enthaltenen Länder beziehungsweise Zeitpunkte. Die starke Schwankun-

gen sind hierbei genau wie ähnliche Schwankungsmuster verschiedener Länder

augenscheinlich. Von denen in die Studie einbezogenen Ländern sind zwei

(Island und Polen) nicht Mitglieder des Euro-Währungsraums, die restlichen

(Spanien, Irland, Estland und Finnland) dagegen schon. Vier dieser Länder hat-

ten mit stark überdurchschnittlichen Kreditkosten während Teilen des Beobach-

tungszeitraums zu kämpfen: Irland, Spanien, Estland und Island. In den letzten

beiden Fällen war dabei die Rückentwicklung der Kosten in der zweiten Hälfte

des Stichprobenzeitraums zu verzeichnen, wohingegen die irischen und spanisch-

en Kreditkosten erst in der zweiten Hälfte stark anstiegen.

Anhand der geschätzten Modelle analysiere ich den im ersten Papier präsen-

tierten Überlegungen entsprechend, welche Rolle die Stochastik der Ausfall-

wahrscheinlichkeit im Stichprobenzeitraum bei der Bildung dieser Kreditpreise

gespielt hat. Hintergrund für diese Untersuchung ist die europäische Finanzkrise,

die ebenfalls in den Beobachtungszeitraum fällt und in deren Zusammenhang vor

allem die Anstiege der Kreditkosten Spaniens und Irlands zu sehen sind. Die De-

terminanten staatlicher Kreditkosten sind allgemein und vor allem im Kontext

der Finanzkrise noch relativ wenig erforscht. Die bisherigen Forschungsergeb-

nisse ohne Bezug zur Finanzkrise suggerieren, dass globale Finanzmarktrisiko-

maÿe, wie der VIX Index, der sich aus impliziten Varianzen von Aktien aus
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dem S&P 500 Index zusammensetzt, eine auÿerordentlich starke Erklärungskraft

bezüglich staatlicher Kreditkosten haben. Die wenigen Untersuchungen dieser

Art, deren Datenauswahl beziehungsweise deren Interpretation einen Bezug zur

europäischen Finanzkrise haben, bestätigen das für die jeweiligen Länder und

Jahre hingegen nicht. Allerdings ist relativ unklar, welche Treiber stattdessen

relevant waren.

Das Risko zweiter Dimension könnte eine entscheidende Rolle gespielt haben.

Zum einen spielt dieses Risiko bei der Kreditpreisbildung laut der Ergebnisse

von Pan and Singleton (2008) und Longsta� et al. (2011) im Falle der diesen

Studien zu Grunde liegenden Länder eine groÿe Rolle. Dementsprechend könnte

dies generell und eben auch bei europäischen Ländern der Fall sein. Zum an-

deren gibt es Grund zur Annahme, dass gerade im Euro-Raum die Unsicherheit

bezüglich zukünftiger Ausfallwahrscheinlichkeiten gewachsen ist. So könnten im

Zusammenhang mit der Fiskalkrise entstandene Zweifel am langfristigen Beste-

hen des Währungsraumes dazu geführt haben, dass die zukünftigen Determi-

nanten der �skalischen Lage in den jeweiligen Ländern als unsicherer beurteilt

werden. Ein mögliches Auseinanderbrechen des noch jungen Währungsgebildes

hätte wirtschaftlich und somit auch �skalisch unübersehbare Folgen. Weiterhin

könnte die Unsicherheit bezüglich der Qualität noch junger europäischer Insti-

tutionen, die in der kurzen Zeit ihres Bestehens viele weitreichende Entschei-

dungen getro�en haben, aus in Kapitel drei diskutierten Gründen gestiegen

sein. Da die Handlungen dieser Institutionen wiederum direkte Auswirkungen

auf die �skalische Situation der europäischen Mitgliedsländer haben, sollte die

wachsende Unsicherheit auch einen Anstieg der Unsicherheit hinsichtlich der

zukünftigen �skalischen Lage dieser Länder implizieren.

Des Weiteren könnte die Aufnahme in den Euro-Raum als positives Signal hin-

sichtlich der Güte �skalischer Informationen gewertet worden sein. Die starke

Korrektur griechischer Fiskaldaten im Jahr 2009 könnte der Aufnahme in den

Euro-Raum in den Augen der Marktteilnehmer diese positive Signalkraft genom-

men haben und dadurch Unsicherheit hinsichtlich der Qualität der �skalischen

Informationen und dadurch zukünftiger Ausfallwahrscheinlichkeiten von Euro-
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Ländern induziert haben.

Sowohl die Analyse, ob das Risiko zweiter Dimension bei der Bildung der staatlichen

Kreditpreise im Falle dieser Länder generell eine groÿe Rolle gespielt hat, und ob

sich hierbei Euro-Länder von Ländern auÿerhalb des Euro-Raums unterschei-

den, als auch die Analyse, ob die Schwankungen in den Kreditkosten Spaniens

und Irlands stärker als Anstiege in den Kreditkosten anderer Länder mit Ände-

rungen der Prämie auf das Risiko der zweiten Dimension assoziiert werden kann,

scheint basierend auf diesen Überlegungen sinnvoll zu sein und wird durchge-

führt.

Weiterhin wird überprüft, was die Korrelation der Prämien auf das Risiko der

zweiten Dimension über die Korrelation der Kreditkosten zwischen zwei Län-

dern aussagen können. Hintergrund hierfür ist, dass die Korrelation der Spreads

durch Korrelation dieser Kreditaufschläge induziert werden könnte, falls diese

Kreditaufschläge tatsächlich existieren. Die Korrelation dieser Kreditaufschläge

könnte zudem dann auftreten, wenn die Aufschläge verschiedener Länder durch

dieselben Faktoren getrieben werden. Das könnte zum einen Risikoaversion

selbst sein, aber auch Faktoren, die für die Unsicherheit bezüglich der zukünf-

tigen Ausfallwahrscheinlichkeit verschiedener Länder eine Rolle spielen. Ein

möglicher Faktor könnte (wie bereits skizziert) die Reputation von Institutio-

nen sein, deren Entscheidungen auf die �skalische Situation mehrerer Länder

einen Ein�uss haben. Die Frage ob das Premium auf Risiken zweiter Dimension

Korrelationen zwischen den Kreditkosten verschiedener Länder induziert, und

ob hierbei die Zugehörigkeit eines Landes zum Euro-Währungsraum eine Rolle

spielt, wird dementsprechend analysiert.

Darüber hinaus evaluiere ich im Rahmen der in diesem Modell präsentierten

Ergebnisse, wie gut die Modellierung des Kreditrisikos beziehungsweise der

Kreditversicherungskosten innerhalb des Stichprobenzeitraums funktioniert. Zu-

dem analysiere ich, wie gut anhand des Modells Kreditversicherungspreise auÿer-

halb des Stichprobenzeitraums vorhergesagt werden können. Eine solche Eva-

luation der Vorhersagekraft von Kreditrisiko-Modellen reduzierter Form ist mir

noch nicht bekannt.
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1.4 Überblick

Die Papiere dieser Dissertation sind deshalb in der präsentierten Art und Weise

angeordnet, da das erste Kapitel die Grundlagen vermittelt, die zum Verständ-

nis des zweiten und dritten Kapitels notwendig sind, und die im zweiten Kapitel

beschriebene Schätzmethodik im dritten Kapitel angewendet wird. Die Kapi-

tel sind der Idee des �kumulativen� Formats entsprechend so verfasst, dass sie

eigenständig gelesen werden können.

Die Beiträge der Dissertation sind: Das Zusammenstellen der wichtigsten tech-

nischen Grundlagen dieser Modelle, das Einbetten der zur Analyse der Prämie

auf das Risko zweiter Dimension notwendigen Maÿunterscheidung in den wahrschein-

lichkeitstheoretischen Rahmen dieses Modells, das Diskutieren einer Schätzstra-

tegie für diese Modellklasse anhand von Zeitreihendaten, die Anwendung der

Schätzstrategie beziehungsweise der erörterten Interpretationsmöglichkeit für

europäische Staatskreditkosten, das Herausarbeiten des möglichen Zusammen-

hangs zwischen dem Risiko zweiter Dimension und der europäischen Finanzkrise,

die Diskussion inwieweit das Risiko zweiter Dimension im europäischen Rah-

men Korrelation von staatlichen Kreditkosten verursacht haben könnte und die

Evaluation der Modellgüte sowie der Vorhersagekraft dieser Modell bezüglich

staatlicher Kreditkosten.
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2.1 Introduction

This chapter presents the technical foundations of reduced form credit risk mod-

els. The �second dimension� risk premium, which refers to uncertainties regard-

ing underlying default probabilities, is introduced in a reduced form framework.

I show how the relevance of this risk premium can be quanti�ed based on such

models. The model setting and the �second dimension� risk premium are applied

to credit default swaps (CDS) as an example for credit securities. The reason

for this focus on CDS is twofold: First, the pricing of a CDS contract implies

the pricing of di�erent kinds of payment streams. Therefore, the results can

be transferred to a whole range of other credit securities. Second, for several

reasons CDS data is an attractive candidate for the estimation of a reduced

form model (c.f. Pan and Singleton (2008) or Longsta� et al. (2005)). These

reasons are discussed in the second chapter of this dissertation.

The present chapter is structured as follows: the next section presents the basic

idea of reduced form credit risk modelling and introduces the probability the-

oretical framework. The third section discusses the Cox-Ingersoll-Ross (CIR)

(c.f. Cox et al. (1985)) di�usion equations as one possible choice for modelling

the default probability. The fourth section introduces credit default swaps and

shows, how the established framework can be used to derive pricing formulas

based on the concept of risk neutrality. The �fth section discusses the second

dimension risk in the context of the established framework referring to CDS

contracts. The sixth section �nally introduces features of the a�ne process

class (to which the CIR processes belongs). These features are very useful for

estimating reduced form pricing models.

2.2 Basic ideas

There are various ways to statistically model the default risk of a �nancial unit.

One strand in the literature is characterized by a detailed analysis of the credit

taker's balance sheet. To precisely model single components of a unit's �nancial
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situation, authors typically distinguish between a process driving the asset side

and a process driving the liabilities of the respective �rm. Models of that kind

are called �structural form models� and seem to be a plausible choice mainly in

the non-sovereign context. The reason for this restriction is the required access

to precise information on the �nancial situation of a unit. Such information is

more likely to be available for listed companies reporting to the public.

Another very common approach to statistical modelling of default risk � which

requires less detailed accounting information � is to model a default as a jump

of a stochastic (Poisson) process. This implies that default time is viewed as the

stopping time of that process. A helpful feature of this class of �reduced form�

models is the direct link between the underlying Poisson parameter and the

default probability. The basic set up is introduced in the following paragraphs.

This overview builds on Du�e and Singleton (2008), Du�e (2005) and Du�e

(1999).

To establish the basic setting of a reduced form model a measure space

(Ω1,F1, P1) with the corresponding �ltration F1,s, a measurable space (M1,M1)

and an index set S 6= ∅ be de�ned. In addition, a Poisson process

Poi = (Pois, s ∈ S) (2.1)

is de�ned as a family of measurable mappings between probability and measure

space:

Pois : (Ω1,F1, P1)→ (M1,M1) (2.2)

ω1 7→ Pois(ω1) (2.3)

with ω1 ∈ Ω1. Pois counts the number of events up to time s. In the present

case, Pois = 1 means that a credit event has already occurred at time s, while

Pois = 0 denotes that it has not. The increments Pois1 −Pois0 are for s0, s1 ∈

S and s1 − s0 ≥ 0 independently Poisson distributed, the Poisson parameter

depends on the length of the respective period [s0, s1] only and Markov property
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is satis�ed accordingly. At the �rst point in time, the process value be almost

surely zero and the process be supported by the probability space introduced

above. The intensity parameter of this Poisson process is denoted by λs with

s ∈ S. The probability distribution PrPoi(Pois0+t = 0|Pois0 = 0) of the

process value in [s0, s0 + t] ⊂ S conditioned on Pois0 = 0 is accordingly given

by the poisson probability distribution POI(j|ev) for j = 0 with ev denoting

the expected value. This implies in closed form:

PrPoi(Pois0+t = 0|Pois0 = 0) = POI(j = 0|ev = λs0,s0+t) = e−λs0,s0+t . (2.4)

This implies in turn (as the default time denoted as τ ∈ S is in this context also

stopping time for Pois1) that

PrPoi(Pois0+t > 0|Pois0 = 0) = 1− e−λs0,s0+t . (2.5)

If λs is constant for all s ∈ [0, t], one can rewrite λs0,s0+t = λt̂ × t for all

t̂ ∈ [s0, s0 + t]. For non constant λs, one rewrites

λs0,s0+t =

∫ s0+t

s0

λsds. (2.6)

The �ltration F1,s is generated by realizations of the underlying process Poi

prior to time s:

F1,s = σ{Poit : 0 ≤ t ≤ s}. (2.7)

So far, the intensity has been assumed to be deterministic. This does not seem

to be plausible for real world applications. Therefore a second stochastic di-

mension is added and di�usion equations are introduced as stochastic drivers

of the default intensities. Di�usion equations are stochastic di�erential equa-

tions characterized by a speci�c functional form, which will be introduced in

1It is assumed that the model holds only up to the �rst credit event.
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detail later. A Poisson process with stochastic intensity is called �Cox� process

and the framework then becomes �doubly stochastic� (c.f. Du�e and Singleton

(2008)).

To introduce this �second stochastic dimension� in the model set up, a probabil-

ity space (Ω2,F2, P2) with corresponding �ltration F2,s and a measurable space

(M2,M2) withM2 ⊆ Rn for n ∈ N+ denoting a multivariate state vector be de-

�ned. The index set S 6= ∅ is still the same as in the subsection before. Finally, a

Brownian motion Bs ∈ Rn and the following �di�usion� process Y = (Ys, s ∈ S)

is de�ned as a family of measurable mappings between probability and measure

space:

Ys : (Ω2,F2, P2)→ (M2,M2) (2.8)

ω2 7→ Ys(ω2). (2.9)

Ys be moreover distinguished by the family of transition probability laws

PrY(Ys0+t|Ys0+t−1, .., Ys0) and satis�es the Markov law, i.e.

PrY (Ys0+t = m2,s0+t|Ys0+t−1 = m2,s0+t−1, Ys0+t−2 = m2,s0+t−2, · · ·, Ys0 = m2,s0)

(2.10)

= PrY (Ys0+t = m2,s0+t|Ys0+t−1 = m2,s0+t−1) (2.11)

with s0, s0 + 1, · · ·, s0 + t ∈ S, t ≥ 2 and m2s0
,m2,s0+1, · · ·,m2,s0+t ∈ M2 with

F2,s0 ⊆ F2,s0+1 ⊆ · · · ⊆ F2,s0+t. Intuitively, one can say that the �ltration F2,s0

� containing the information provided by all realization of Ys up to time s0 ∈ S

� does not provide more information on the future development of Ys than the

single realization of Ys0 .

The change in the process is moreover determined by a stochastic di�erential

equation of the following form:

dYs = µYsds+ σYsdBs (2.12)
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with µ : M2 → Rn and σ : M2 → Rn×n. The change in the �di�usion� process

Ys is therefore explained by a deterministic part consisting of a so called drift

parameter µYs , which is weighted by the respective time horizon, and a stochas-

tic part. The stochastic component is driven by the change in the previously

introduced Brownian motion Bs. The di�usion process Ys is the solution to the

stochastic di�erential equation of the di�usion type.

In the doubly stochastic framework, the intensity λs is assumed to depend on

the �state vector� Ys in a�ne (i.e. linear) form:

λs = ρ̃0 + ρ̃1Ys, (2.13)

with ρ̃0 ∈ R1 and ρ̃1 ∈ Rn. In the most simple and therefore most frequently

applied case, the state vector is one dimensional, respectively Ys = λs. λs it-

self is then the only state variable driven by the underlying di�usion equation.

This implies Ys ∈ R and one dimensionality of both the drift and the di�u-

sion coe�cients in the underlying stochastic di�erential equation. The present

introduction includes more general, i.e. multi-variate cases.

2.3 The Cox-Ingersoll-Ross model

The set of possible speci�cations of a di�usion equation � i.e. the functional

forms the coe�cients µYs and σYs are assumed to be de�ned by � is rather

large. There are two special speci�cations which are very frequently applied in

Quantitative Finance: the class of Gaussian models and the square root �CIR�-

model presented by Cox et al. (1985). These cases have a rather simple form and

are particularly popular for short term interest rate modelling. The simplicity of

these models is based on the linear functional link between the drift parameter

and the current process value respectively the square product of the di�usion

parameter and the current process value. One can therefore rewrite σ2
Ys

as

σ2
Ys = σ2

0 + σ2
1Y

2
s (2.14)
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with (σ0, σ1) ∈ RN × RN×N and µYs as

µYs = µ0 − µ1Ys (2.15)

with (µ0, µ1) ∈ RN × RN×N . Another popular representation of the drift coef-

�cient is

µYt = (Λ)(Θ− Yt)dt (2.16)

where (Θ,Λ) ∈ RN × RN×N .

The coe�cient σ2
1 is restricted to zero in the Gaussian case and σ2

0 is restricted

to zero for CIR di�usion processes. The drift parameter µYs is indentical for

both cases and the functional form µYs = µ0 − µ1Ys brings along a reversion

mechanism for certain parameter ranges. A helpful feature of both di�usion

process types, is that the family of transition distributions is known in closed

form.

Vasicek (1987) introduced the univariate case of the Gaussian di�usion process

to model short term interest rates. However, in this model there is a positive

probability of a negative realization of the underlying variable if σ2
0 6= 1. The

CIR di�usion process is, on the other hand, not de�ned for negative process val-

ues because the square root of the current process value is part of the di�usion

coe�cient. The process is, moreover positive, for a wide range of parameter

values. For intensity modelling, the CIR di�usion process seems to be the more

plausible choice for intensity modelling. For this reason, the further discussion

will focus on this di�usion type. Di�usion processes of the CIR type were orig-

inally presented by Feller (1951) to model demographic developments and were

adopted by Cox et al. (1985) to model short term interest rates. The term

�Feller di�usion� is therefore frequently used as well. However, the Quantitative

Finance literature refers mostly to �CIR� di�usions.

As mentioned before, the CIR process is only de�ned for non-negtive process val-

ues. Moreover is the process prevented from becoming non-negative for i) µ0 > 0
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and ii) µ1 > 0. Then, the stochastic di�erential equation also has a �unique

strong solution�2 for every starting point Y0 (Overbeck and Ryden (1997)) and

the conditional distribution of Yt approaches the gamma distribution for large t

(Cox et al. (1985)). A CIR process satisfying the �Feller�-condition iii) 2µ0 > σ2
1

is also strictly positive (Feller (1951)). For iv) 0 < µ0 < σ2
1 , the zero bound can

be reached, but it is directly re�ecting (Overbeck and Ryden (1997)) because

the di�usion coe�cient σ1 tends to zero when the process values approaches

zero. The change in the process then becomes deterministic with the mean

reverting drift part being the only relevant determinant. The zero bound is,

moreover, �absorbing� (Overbeck and Ryden (1997)) for µ0 = 0. For µ0 < 0,

the process is �pushed� out of the de�ned domain ((R+)N ). This makes CIR

di�usions with negative drift coe�cients a rather abstract concept and they will

not be discussed in this section.

For CIR processes, satisfying conditions i), ii) as well as condition iv) or con-

dition iii), the probability distribution of the process value conditioned on a

previous value is known in closed form (Cox et al. (1985)). The possibilities to

represent and to numerically implement the probability distribution of a CIR

process are presented in the following paragraphs for the univariate case.

The transition distributions of CIR processes are of the non-central χ2-type.

As described in Johnson et al. (1995a) (chapter 29), the probability density

function Pr(.|nc, dof) of non-central χ2-distributed variables, with nc denoting

the non-centrality parameter and dof denoting the degrees of freedom, can be

expressed in the following way: an in�nite sum of cumulative central-χ2 proba-

bility distributions Pr′(.|dof ′) is weighted by a Poisson probability distribution

POI(.|ev) with an expected value ev of 1
2 times the noncentrality parameter nc.

For a realization Ys0 one can accordingly write:

Pr(Ys0 |nc, dof) =

∞∑
j=0

Pr′(Ys0 |dof ′ = dof + 2j)POI(j|ev =
1

2
nc) (2.17)

2This means: E
[∫ s0+t

s0
|Y 2

s |ds <∞
]
for all s ∈ [s0, s0 + t] with s ∈ S (c.f. Oksendahl

(2003) or Iacus (2008)).
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which, according to Johnson et al. (1995a), complies with

Pr(Ys0 |nc, dof) = e−(nc+Ys)/2
1

2

Ys0
nc

(dof−2)/4

Be dof
2 −1(

√
Ys0nc) (2.18)

where Be dof
2 −1 denotes the modi�ed Bessel function of the �rst kind of order

dof
2 − 1.

Using these relationships, Overbeck and Ryden (1997) and Iacus (2008) derive

closed form representations for the conditional probability distribution of a CIR

process realization Ys0 . This representation depends on the underlying CIR

coe�cients and for the distribution being conditioned on a speci�c previous

realization Ys0−t with [s0 − t, s0] ⊂ S they de�ne:

nct =
2µ1

σ2
1 (1− e−µ1t)

(2.19)

dof =
4µ0 exp−µ1t

σ2
1(1− exp−µ1t)

(2.20)

and present based on that:

Pr(Ys0 |Ys0−t, µ0, µ1, σ
2
1) =

−0.5
Ys0−tnct
exp−µ1t

+ ysnct

2(ysnctYs0−t)
dof/4

Be dof
2 −1(

√
Ys0−tnct). (2.21)

As discussed in Zhou (2000) and Iacus (2008), the Bessel function included in

the distribution function formula can be numerically di�cult to handle in cer-

tain scenarios. Iacus (2008) therefore suggests a numerical approximation of the

Bessel function, which is implemented in the statistical programming language

R. This was done for the numerical applications in the third chapter if this dis-

sertation, the results were compared with the non-scaled implemented version

and no di�erence was detected.

However, simulation based maximum-likelihood estimations of the CIR pro-

cesses in the second chapter of this dissertation generally turned out to be

rather imprecise. The reason for this might be that the numerical approxima-

tion of the Bessel function is rather imprecise. The parameter values, which
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are particularly relevant in the reduced form credit risk context in combination

with the small values of default intensities lead to the evaluation of the Bessel

function in rather steep areas.

Therefore, an alternative representation of the χ2-distribution without the Bessel

function is often used: Zhou (2000) presents a mixing of Poisson- and Gamma-

distributions as representation of a CIR probability distribution. For this rep-

resentation, the fact that the central χ2-distribution complies with a Gamma-

distribution with shape parameter v = dof/2 and scale parameter z = 2 (John-

son et al. (1995b), p.437), is exploited. This leads to

Pr(Ys0 |Ys0−t, µ0, µ1, σ
2
1))

=

∞∑
j

Gamma

[
cYs0−t|v = j +

2µ0

σ2
1

− 1, Z = 1

]
POI [j, ev = cYs0e

µ1 ] (2.22)

with

c =
−2µ1

σ2
1 − 1

(2.23)

where Gamma(.|v, z) denotes the Gamma probability distribution. Simulations

in Zhou (2000), however, show that numerical applications based on this rep-

resentation are particularly troublesome for certain scenarios: The resulting

maximum-likelihood estimation results seem to be very imprecise, compared to

results based on the representation in formula 3.17, if the underlying process

has a high level of persistence. Unfortunately, the estimation results in the

third chapter of this dissertation suggest a unit-root like behavior of intensity

processes for di�erent sovereign cases. Based on theses results, the �rst imple-

mentation approach therefore seems to be the superior choice in the reduced

form model context � despite possible di�culties in numerically implementing

the Bessel function.

For univariate cases, the conditional �rst two moments are known in closed

form. The respective formulas for the conditional expectations and the condi-
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tional variance can be found in Cox et al. (1985) or in Iacus (2008):

E (Ys+t|Ys) =
µ0

µ1
+

(
Ys −

µ0

µ1

)
e−µ1t (2.24)

V ar (Ys+t|Ys) = Ys
σ2

0

(
e−µ1t − e−2µ1t

)
µ1

+
µ0σ

2
0

(
1− e−2µ1t

)
2µ2

1

(2.25)

Cov (Ys+t1 , Ys+t2 |Ys) = Ys0
σ2

0

2µ1
e−µ1(t1+t2)

(
e2µ1t2 − 1

)
(2.26)

for t2 ≥ t1. The conditional expectations are linear in ys and the coe�cient

multiplied with Ys is exp−µ1t. This re�ects a stronger persistence of the process

for weak mean reversion. Moreover, the level of the conditional variance is

proportional to σ2
0 and the persistence of the conditional variance increases

with µ1/σ
2
0 .

2.4 Pricing formulas in the reduced form frame-

work

For the derivation of pricing formulas, the �ltration F2,s needs to be speci�ed

in more detail, similar to F1,s. It is the σ-algebra generated by the realization

of the di�usion process Y prior to s:

F2,s = σ{Yt : 0 ≤ t ≤ s} (2.27)

So far, two di�erent probability spaces have been introduced: one referring to

stochastic movement in the underlying intensity λs and one directly referring

to the random jumps of the Poisson process. Both probability spaces are now

combined to a single one. This is necessary for the calculation of expected val-

ues, which depend both on possible jumps given certain jump intensities, and on

the future (stochastic) developments of the underlying intensity. A new sample
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space Ω = Ω1 × Ω2, a new sigma algebra F = σ{F1 ∨ F2}3 and the respective

�ltration Fs are introduced. Moreover, a probability measure P is introduced

which satis�es all general requirements regarding probability measures with re-

spect to F and Fs, i.e.: P (Ω) = 1, P (F ) <∞ for all F ∈ F as well as countable

additivity for disjoint collections (c.f. Davidson (1994)).

Based on this framework, pricing formulas for future payo�s, which depend on

the respective credit risks, are now derived. This can be used to deduce pricing

formulas for credit securities. One important input for net present values4,

which will be used for deriving pricing formulas, is still missing: the discount

rate rs. The product of discount rate and the expected payo� complies with

the current value of this payo� claim. It is basically the return which investors

require to get for an investment over a certain period of time.

If a unit lends the amount a for two years in a riskfree world at time s = s0 and

expects a single interest payment b after one year and the discounting occurs

only once per year, the expected return r - assuming constancy of rs0,s0+1 on

a annual basis - is given by the following equation (c.f. e.g. Dantine and

Donaldson (2006)):

a =
b

1 + rs0,s0+1
+

a

(1 + rs0,s0+1)2
(2.28)

If there is no risk, the rate rs0+t should equal the �risk free� rate rfs0,s0+t for all

[s0, s0 + t] ∈ S and all t ∈ R+ . For now, it is assumed that the debtor cannot

default during the �rst year, but default occurs with a 10% probability during

the second year. Now, the rates rs0,s0+1 and rs0,s0+2 equating

a =
b

1 + rs0,s0+1
+

0.9a

(1 + rs0,s0+2)2
(2.29)

would only be equal to the risk free counterpart in a so called �risk neutral�

world. Risk averse investors would expect a return above the risk free rates

3In this context, �∨� denotes the union of σ-�elds.
4Net present value refers to the current value of future payo�s
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rfs0,s0+1 and rfs0,s0+2 since they want to be remunerated for taking the risk

of loosing the money invested. The di�erence between rfs0,s0+t and rs0,s0+t is

called �risk premium� for the respective time frame [s0, s0 + t] (c.f. Karatzas

and Shreve (1991), Singleton (2006) or Du�e (2008)).

In this example, only annual compounding is considered and the discount factor

νs0,s0+1 then becomes 1
(1+rs0+1)t . If the compounding frequency increases to n

times per year, the discounting factor changes to t ≤ 1

νs0,s0+t =
1

(1 + (rs0,s0+t/n))
tn . (2.30)

If the compounding frequency tends to in�nity, i.e. with �continuous compound-

ing�, one obtains

νs0,s0+t = e−rs0,s0+tt (2.31)

since limn→∞
[
1 + x

n

]−n
= e−x for any x ∈ R.

So far, it has been assumed that rs0,s0+t only changes after certain periods of

time (i.e. years). This assumption is, however, not plausible. Therefore, a rate

that changes m times per year is assumed instead. One then obtains for a one

year horizon:

νs0,s0+1

= e(−r[s0,s0+(1/m)])
1/m

e(−r[s0+(1/m),s0+(2/m)])
1/m

· · · e(−r[s0+1−(1/m),s0+1])
1/m

= e−[r[s0,s0+(1/m)]+r[s0+(1/m),s0+(2/m)]+···+r[s0+(1/m),s0+(2/m)]](1/m) (2.32)

If m becomes in�nitely small, one can rewrite r[s,s+(1/m)] as rs for any point at

time s ∈ S. Given that rs is continuous in s, one can rewrite

limm→∞

[
e−[r[s0,s0+(1/m)]+r[s0+(1/m),s0+(2/m)]+···+r[s0+(1/m),s0+(2/m)]](1/m)

]
= e

∫ s0+1
s0

rsds. (2.33)

30



The respective discount factor for any t ∈ R+ then becomes

νs0,s0+t = e
−

∫ s0+t
s0

rsds. (2.34)

As in the case of λs, one could assume that the movement of rs is stochastic.

In the presented framework, rs will, however, always be assumed to be deter-

ministic5. Risk free discount factors νs0,s0+t are typically approximated by zero

bond6 prices ZBfs0,s0+t issued by AAA rated sovereigns like the United States

or Germany.

The di�erence between the risk free rate and the interest rate expected by in-

vestors for investing in risky assets has already been established. The latter

does not, however, enter the pricing formulas, which will be presented later on.

Instead, the concept of risk neutrality is applied. This standard approach

in the �eld of Quantitative Finance is based on the hypothetical presumption

that all investors are risk neutral.

This presumption implies that the expected payo�s can be discounted by the

risk free rate in order to obtain market prices. This may seem odd at �rst

glance as real world investors are usually assumed to be risk averse and the

real world market prices should ceteris paribus be inferior to the ones obtained

from a model based on the risk free rate. However, it will be shown that the

assumption of risk neutral investors is only a hypothetical auxiliary construct,

not leading to model prices which generally are below real market prices. In-

stead, the pricing formulas are further adapted.

The mechanics behind this are shown based on the value of a zero bond ZBs0,s0+t

at time s0 with an underlying default process driven by λs, a payment Cs sum-

ming up to the face value c at maturity s0 + t, if no default has occurred. It is

5The possibility to buy interest rate swaps or futures enables investors to plan as if the
interest rate was deterministic

6A zero bond is a bond which obligates to one payment only. The debtor does not pay an
interest payment before the end of the contract, but pays the face value (�Nennwert�) at the
end of maturity only. The value of such a one time payment is per de�nition (with respect to
the discount factor) the expected payo� - i.e. in such a case the payment sum weighted with
the probability of payment - discounted by the discount factor based on the rate of return the
investors expect on their investment.
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assumed that the payo�s sum up to zero in the case of default. In other words,

there is no recovery. The rate expected by risk averse market investors be rs

for all s ∈ [s0, s0 + t]. Therefore, the following equation holds :

ZBs0,s0+t = Es0
[
e
−

∫ s0+t
s0

rsdsCs0+t|Fs0
]

= Es0
[
e
−

∫ s0+t
s0

rsdse
−

∫ s0+t
s0

λsdsc|Fs0
]

= e
−

∫ s0+t
s0

rsdscEs0
[
e
−

∫ s0+t
s0

λsds|Fs0
]

= e
−

∫ s0+t
s0

rsdscEs0
[
e
−

∫ s0+t
s0

λsds|F2,s0

]
(2.35)

The �nal transformation basically says that the current price of the zero bond

ZBs0,s0+t equals the discounted expected payo�. The expectation still included

does not directly refer to the question whether a default occurs, but it refers to

the future development of λs. The expectation is therefore only conditioned on

the part of the �ltration which refers to the development of λs, namely F2,s.

The return is factored out because it is assumed to be deterministic. A detailed

proof was presented by Lando (1998).

This equation includes several unknown variables: both λs and rs are - in

opposition to rfs - not directly observable for any s ∈ S. Just substituting

rs by rfs is not an appropriate approach to reduce the numbers of unknown

variables to one, because the equation then should not hold anymore since

Es0
[
e
−

∫ s0+t
s0

λs+rsds|F2,s0

]
c < Es0

[
e
−

∫ s0+t
s0

λs+r
f
s ds|F2,s0

]
c. (2.36)

A standard trick in the context of risk neutral pricing is to adapt λs in a way

that the expected payo�s discounted by the risk free discount rate are in ac-

cordance with the observed market prices of the respective zero bonds (Du�e

and Singleton (2008)). For the presentation of this step in the present model

framework, the intensity is assumed to be deterministic.

The risk premium, which is originally de�ned as the di�erence between expected

return and risk free return, is roughly speaking assigned to the default intensity
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which is then denoted as �risk neutral�-default intensity λQs , whereas the actual

default intensity is denoted as λPs . λ
Q
s is the intensity process which would be

implied as true intensity process in market prices of zero bonds, if these were

observed in a risk neutral world. λQs should ceteris paribus be higher than λPs

to counterbalance the lower discount rate and one has

Es0
[
e
−

∫ s0+t
s0

λP
s+rsds|F2,s0

]
c = Es0

[
e
−

∫ s0+t
s0

λQ
s+rfs ds|F2,s0

]
c (2.37)

with λQs ≥ λPs and rs ≥ rfs for all s ∈ S. The pricing formula for the zero bond

is then given by

ZBs0,s0+t = Es0
[
e
−

∫ s0+t
s0

λQ
s+rfs ds|F2,s0

]
c (2.38)

So far, the di�erence in between the actual and the risk neutral intensity also

applies in a framework with a deterministic intensity. The original framework is,

however, doubly stochastic and that implies a second source of risk: this �second

dimension� risk refers to the uncertainty regarding current and future default

intensity levels. Risk averse investors may expect a risk premium for this kind

of uncertainty in addition to a premium for the risk of a default given certain

intensity levels. From the perspective of a bond buyer, it is not guaranteed � in

this context � that this source of risk leads to an increase in the expected return.

The respective uncertainty is also relevant for (short) sellers of credit securities

or investors in credit insurances as a sudden drop in default probabilities should

ceteris paribus lead to an increase the prices of bonds and to a decrease of in-

surance prices. The �second dimension� risk premium could � in other words

� become negative. This may rather be the case for units with particular low

anticipated default probabilities: Investors may � for example � rather insure

people against the unlikely default of such a unit instead of insuring themselves

or instead of betting on the occurrence of a credit event. The risk premium

for the parties that pro�t from higher intensities might then dominate the risk

premium from the other side. The main part of the debate in this chapter is,
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however, restricted to increases in returns due to the second dimension of risk

respectively a positive second dimension risk premium because the empirical

results in the third chapter of this dissertation, Pan and Singleton (2008) and

Longsta� et al. (2011) suggest this to be the more relevant case.

It seems reasonable to consider both kinds of risk and the respective premia

separately as they are indeed related, but not in 1:1 relation. It might, for ex-

ample, be the case that the expected intensity levels and the respective default

risk premium are particularly low, while the variance of the intensity and the

respective �second dimension� risk premium are very high. On the other hand,

it might be the case, that the expected intensity levels and the respective risk

premium are very high, while the uncertainty regarding the intensity level re-

spectively the second dimension risk premium is very low.

The presented approach therefore has to be further adapted to equate the ex-

pected payo� of the zero bond, discounted by the risk free rate, and the observed

market prices. Consequently, two new measures with respect to λQs respectively

two di�erent versions of P2 are introduced which both refer to the variation

in the risk neutral intensity λQs but not � at least not directly � to the actual

intensity λPs . The measure P̂ refers to the actual movement of the risk neutral

intensity λQs . The measure Q̂, on the other hand, refers to the distribution of

λQs , which the expectations in pricing equation 2.38 are built on, so the pricing

formula still holds in the context of stochastic intensities. It refers, in other

words, to the expectations with respect to λQs , that would be implied by market

spreads in a world that is second dimension risk neutral.

Under the new (second dimension) risk neutral measure Q̂, the expectations

with respect to future λQs are from now on denoted as EQ̂
s0

[
e
−

∫ s0+t
s0

λQ
sds|F2,s0

]
.

This term di�ers only from EP̂
s0

[
e
−

∫ s0+t
s0

λQ
sds|F2,s0

]
, if market participants' ex-

pected returns change due to the uncertainty regarding λQs . If a risk premium

is only demanded by investors for taking the default risk per se � i.e. the risk

existing no matter whether the default probability is deterministic or not � there

should only be a di�erence between λQs and λPs , but not between the two expec-
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tations with respect to the future development of λQs .

With a discount factor based on the risk free rate rfs the pricing formula of the

zero bond introduced before becomes:

ZBs0,s0+t = Es0
[
e
−

∫ s0+t
s0

λs+rsds|F2,s0

]
c

= EQ̂
s0

[
e
−

∫ s0+t
s0

λQ
s+rfs ds|F2,s0

]
c

= EQ̂
s0

[
e
−

∫ s0+t
s0

λQ
sds|F2,s0

]
ZBfs0,s0+tc. (2.39)

The second dimension risk premium is further discussed in the context of re-

duced form risk models in the next chapter. In this section, the type of payo�s

to be priced is extended �rst:

So far, the valuation of credit payments was based on the assumption of zero

payments in the case of default, i.e. there was no recovery. This will be di�erent

now and the pricing of recovery payments is introduced. In this context,

one has to think about the valuation of a payment that is executed in the case of

default right after the default occurred. This be exempli�ed based on a payment

obligation with payo� Zτ . This obligation pays the amount z if the underlying

unit defaults before maturity s0 + t and nothing otherwise. The payment is

moreover supposed to be executed right after default time τ . The value of that

default payment DPs0,s0+t at time s0 is

DPs0,s0+t = Es0
[
e
−

∫ s0+τ
s0

rsdsZτ |Fs0
]
. (2.40)

The payo� of this obligation may be positive at each point in time until maturity

because a default may occur in each point in time. The expectation therefore

refers at each particular point in time until maturity to the question whether a

default occurs just at that time and not to the question whether a default occurs

anytime until maturity. This implies an expectation regarding the level of the

intensity at each point conditioned on the fact that no default hast occured yet.
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Lando (1998) shows that the discounted expectation of the payment can be

rewritten as

Es0
[
e
−

∫ s0+τ
s0

rsdsZτ |Fs0
]

= EQ̂
s0

[∫ s0+t

s0

λQs e
−

∫ s
s0
λQ
u+rfuduzds|F2,s0

]
= zEQ̂

s0

[∫ s0+t

s0

λQs e
−

∫ s
s0
λQ
u+rfududs|F2,s0

]
(2.41)

The expectations denoted by EQ̂
s now again only refer to the future development

of λQs . Again the expectation based on the true distribution law of λQs would

only equate this pricing formula if market participants' return expectations did

not change because of the uncertainty with respect to λQs . The proof for formula

2.41 presented in Lando (1998) is based on the following equation:

P (τ ≥ s0 + t|τ ≥ s0,F2,s) = e
−

∫ s0+t
s0

λQ
sds (2.42)

∂

∂s
P (τ ≥ s0 + t|τ ≥ s0,F2,s) = λQs e

−
∫ s0+t
s0

λQ
sds (2.43)

The second equation can be interpreted as the probability of default at any

moment in time s, given that the default has not yet occurred. This is the

probability for a payo� Zs = z in s. The value of all aggregated expected

payo�s Zs for s ∈ [s0, s0 + t] is as presented in Lando (1998) given by

z Es0
[∫ s0+t

s0

λQs e
−

∫ s
s0
λQ
ududs|F2,s0

]
. (2.44)

Based on this formula, one can easily derive a risk neutral pricing formula for

the value DPs0,s0+t of a contract with maturity s0 + t paying o� Zs in all
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s ∈ [s0, s0 + t] with Zs = z if s = τ and Zs = 0 otherwise.:

DPs0,s0+t = Es0
[(∫ s0+t

s0

Zse
−

∫ s
s0
rudu

)
|Fs0

]
(2.45)

=

∫ s0+t

s0

Es0 [Zs|Fs0 ] e
−

∫ s
s0
rudu (2.46)

= z

∫ s0+t

s0

EQ̂
s0

[(
λQs e

−
∫ s
s0
λQ
u+rudu

)
|F2,s0

]
(2.47)

= z

∫ s0+t

s0

ZBfs0,sE
Q̂
s0

[(
λQs e

−
∫ s
s0
λQ
udu
)
|F2,s0

]
. (2.48)

Now, the pricing of credit default swaps (CDS) is discussed as an example.

Before this speci�c functional link between default intensity λs and CDS spreads

is presented, the functionality of this class of credit securities is introduced.

CDS are insurance contracts between two parties with respect to the default of

a third party. This basically means that the insurer or CDS seller pays a certain

amount to the insurance or CDS buyer if the third party defaults. The insured

party in return pays a semi- or quarter-annual payment � which is usually called

�spread� payment (denoted by SPs0(M) for a CDS issued in s0 and maturity

M in years) � until the contract ends. This is either the case when maturity

s0 +M is reached or after a possible default of the respective third party. The

spread is constant for one single CDS contract. Historical data of CDS spreads

usually refer to newly issued contracts. In the following, s0 is accordingly the

index for CDS spread time series.

The amount to be paid by the insurance seller in the case of default depends on

the proportion of debt which is not repaid by the third party in the context of

a default. This share is called the �loss rate� LR. In the present framework, LR

is de�ned with respect to the face value of an ordinary bond. If a third party

is, for example, only able to pay back 50% of the issued bonds' face value, the

seller of a CDS referring to this defaulting unit as third party has to pay 50% of

the respective CDS contract's face value. This would usually lead to a payment

of 50 cents per contract as the face value of an ordinary CDS contract is one.
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LR is in the following assumed to be constant for the respective third party7.

LR is identical for all CDS contracts with respect to the same third party. It is

�nally important to notice that the insured person does not necessarily hold a

security issued by the respective third party.

For the pricing of newly issued CDS contracts, the single spread payment claims

can be considered as 2 × M zero bonds, with maturity n
2 and face values

SPs0(M), with n ∈ {1, · · · , 2 ·t} for a CDS maturity of s0 +M , [s0, s0 +M ] ⊂ S,

M ∈ N+ ∪ {0.5} and semi-annually spread payment. n denotes the number of

the respective spread payment. This set up implies sn − sn−1 = 0.5 for all

n ≥ 1. The value SVs0,sn of one single payment obligation to be paid in sn is

in s0 based on the pricing formulas for defaultable zero bonds:

SVs0,sn = EQ̂
s0

[
e
−

∫ sn
s0

λQ
sds|F2,s0

]
ZBfs0,snSPs0(M). (2.49)

The value SV totals0 (M) of the whole set of spread payments SPs0(s0 +t) referring

to a CDS contract issued in s0 with maturity s0 + t is then in s0:

SV totals0 (M) = SPs0(M)

2t∑
n=1

(
EQ̂
s0

[
e
−

∫ sn
s0

λQ
sds|F2,s0

]
ZBfs0,sn

)
. (2.50)

For valuation of the spread payment counterpart, i.e. the insurance obligation,

one can go back to the recovery payments presented in the previous section. The

insurance obligation again refers to a possible payment at each point in time

until maturity. This payment sums up to zero, if the respective third party has

not defaulted yet and it is positive right at the point in time the default occurs.

The payo� is now denoted by INSs. The amount paid in this case of default is

LR. The value of the insurance claim from the perspective of the CDS buyer is

7This is of course a simplifying assumption and assuming the loss rate to be stochastic and
uncertain would be more realistic. An additional risk premium for uncertainty with respect
to the loss rate would then be possible. This might be a �eld for future research.
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denoted by V INSs0 (M) and can be obtained based on the following formula:

V INSs0 (M) = Es0
[∫ s0+t

s0

e
−

∫ s
s0
rsdsINSs|Fs0

]
(2.51)

= LR

[∫ s0+t

s0

ZBfs0,sE
Q̂
s0

[
λQs e

−
∫ s
s0
λQ
udu|F2,s0

]
ds

]
. (2.52)

The �market� spread SPs0(M) is then the one that equates the values of both

payment sides, namely the value of total spread payments SV totals0 (M), and the

value of the insurance claim V INSs0 (M). The following equation is supposed

to hold accordingly (c.f. Du�e (1999)):

SPs0(M)

2M∑
n=1

(
EQ̂
s0

[
e
−

∫ s0+0.5n
s0

λQ
sds|F2,s0

]
ZBfs0,s0+0.5n

)
= LR

[∫ s0+M

s0

ZBfs0,sE
Q̂
s0

[
λQs e

−
∫ s
s0
λQ
udu|F2,s0

]
ds

]
. (2.53)

So far, two versions of P2 have been introduced: Q̂ and P̂. Now, the notation of

the CIR di�usions, which determine the distribution law of λQs , is extended to

distinguish between the di�usion equations under both measures (c.f. Pan and

Singleton (2008)). This is done referring to the CDS pricing formula. Then, it

is shown in the context of the CDS pricing formula 2.53, how the coe�cients

of the respective stochastic di�erential equation can be interpreted with respect

to the second dimension risk premium.

2.5 Di�usion equations under both measures and

the second dimension risk premium

In the previous section, the di�erence between Q̂ and P̂ has already been dis-

cussed. The di�erence between both measures refers to the distribution law of

λQs . The distribution law of the di�usion process λQs is generally determined

by an underlying stochastic di�erential equation like the CIR di�usion. Con-

sidering these two ingredients of the model set up, it seems to be reasonable
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to adjust the notation of the respective di�usion equation accordingly. The

di�usion equation determining the distribution law under Q̂ is denoted in the

following way:

dλQs =
(
µQ̂

0 − µ
Q̂
1 λ

Q
s

)
ds+ σ1

√
λQs dB

Q̂
s . (2.54)

The true distribution law of λQs is given by:

dλQs =
(
µP̂

0 − µP̂
1λ

Q
s

)
ds+ σ1

√
λQs dB

P̂
s . (2.55)

Drift coe�cients and Brownian motion di�er in both equations, while the dif-

fusion coe�cient is identical. The reason for that lies in equation 2.24: only

the drift coe�cient and the respective value of the process itself go into the

formula for the conditional expectation. And the expectations regarding the

intensities are what matters in the �second dimension� risk premium context.

This is shown based on the CDS pricing formula 2.53 and the idea of a positive

second dimension risk premium introduced before:

The ��rst dimension� risk premium, i.e. the premium with respect to the de-

fault risk per se (i.e. given a speci�c deterministic series of intensities), is already

taken into account by substituting λPs by λQs . Because of the uncertainty with

respect to λQs , the discount factor ZBfs,s+t may, however, still be larger (or

smaller) than the discount factor based on the expected return, even after this

substitution. In other words, the discount factor ZBfs,s+t might only be the ap-

propriate one without any further adjustments, if there is no �second dimension�

risk premium in this model. In the following, this is shown referring to the case

of positive second dimension risk premia. To adjust for the e�ect of the lower

discount factor respectively the higher discount rate, positive payo�s have to

get lower weights and negative payo�s have to get higher weights8. This is the

case, if the expectations regarding future intensities, which are conditioned on

8In a risk neutral world, the observed spreads and loss rates would only be reasonable from
a no arbitrage pricing point of view, if the expected values of λQs respectively the expected
default probabilities were higher (than they actually are). The actual expectations regarding
future intensities would be as pessimistic as they are when based under the di�usion equation
referring to Q̂.
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the current intensity levels, tend to be higher. Then, the negative payo� in the

default case is more likely and the actual payment of all single spreads is more

unlikely. The reasoning for a negative second dimension risk premium works

accordingly.

This can be shown based on the expectations with respect to transforms of the

intensity process, which are included in formula 2.53 as well. The expectation

with respect to the �rst transform (e−
∫ s0+0.5n
s0

λQ
sds) refers to the probability that

a default has not occurred yet at the point in time chosen as higher boundary

of the included integral. This �gure is lower if expected future intensities are

higher � both intuitively and based on mathematical reasoning9. Accordingly,

single positive payo�s are weighted by lower weights if the expected future inten-

sities are higher � which is in accordance with the presented economic reasoning.

The relation between future intensities and the level of the second transform

(λQs e
−

∫ s
s0
λQ
udu) is not directly clear. The intensities' expected values enter this

transform in two ways: the transform decreases in the intensity, which goes

into the exponential function negatively, and it increases with the intensity, by

which the exponential function is multiplied. Considering the economic mean-

ing of this transform, this is reasonable: As discussed before, the transform

refers to the probability that the default has not yet occurred at the point in

time chosen as upper border in the included integral, but occurs just right then.

There is, moreover, an integral built over that transform. This integral over the

transform refers to the probability that the default occurs at any point in time

between the time chosen as lower boundary of the outer integral and the time

chosen as higher boundary of the outer integral. The insurance payment is, in

other words, weighted higher if the expectations of the future default intensity

tend to be higher. This is again in accordance with the presented economic

reasoning. The risk neutral expectations regarding the future values of the in-

tensities therefore have to be higher (compared to expectations based on the

9The intensity goes into the exponential function negatively.
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true distribution law), the stronger the expected return (after taking into ac-

count the ��rst dimension� risk premium) exceeds the risk free return10.

The established positive relation between the second dimension risk premium

and the expected values of the intensities can also be explained in a less compli-

cated fashion based on the temporary assumption that there is no �rst dimen-

sion risk premium (i.e. λPs = λQs ) and the zero bond pricing formula 2.39, which

refers to the price of a zero bond without recovery. If the second dimension risk

premium is zero as well, the following version of the pricing equation 2.39 holds:

ZBs0,s0+t = EP̂
s0

[
e
−

∫ s0+t
s0

λQ
sds|F2,s0

]
ce
−

∫ s0+t
s0

rsds

= EP̂
s0

[
e
−

∫ s0+t
s0

λQ
sds|F2,s0

]
ce
−

∫ s0+t
s0

rfs ds (2.56)

If there exists a positive second dimension risk premium, the risk-free rate is

not equal to the expected return (rs > rfs ) and the equation 2.56 does not hold

anymore. As described before, one can adjust for the di�erence between the

discount factors resulting from rfs respectively rs by introducing the risk-free

measure Q̂:

ZBs0,s0+t = EP̂
s0

[
e
−

∫ s0+t
s0

λQ
sds|F2,s0

]
ce
−

∫ s0+t
s0

rsds (2.57)

= EQ̂
s0

[
e
−

∫ s0+t
s0

λQ
sds|F2,s0

]
ce
−

∫ s0+t
s0

rfs ds. (2.58)

If the expected return is higher (lower) than the risk-free return because of a

positive (negative) second dimension risk premium, the intensity values which

are expected under the measure Q̂ should exceed (be inferior to)11 the values

expected under P̂.

Accordingly, the di�erence between the conditional expectations of the intensity

under both measures directly measures the �second dimension� risk premium.

Formula 2.24 shows how the drift coe�cients impact the conditional expecta-

10The opposite is the case if the second dimension risk premium is negative.
11The intensity goes into the exponential function negatively.
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tions. If the ratio µ0

µ1
(i.e. the mean reversion) is the same under both measures,

a comparison of the drift parameter µ1 is su�cient to evaluate the di�erence in

the conditional expectations. A larger value for µ1 implies a larger conditional

expectation (closer to the mean reversion level), if the value of the intensity,

which the expectation is conditioned on, is below the mean reversion level. The

opposite holds if the value of the intensity is above the mean reversion level.

General statements are however for all other cases (e.g. µ0

µ1
is higher and µ1

is smaller under one measure) rather di�cult to make. The di�erence between

both measures with respect to the �second dimension� risk premium is therefore

optimally evaluated with reference to the actual time series of λQs .

Based on the CIR coe�cients under both measures and this time series, condi-

tional expectations can be calculated for all horizons. The di�erence between the

resulting conditional expected values can then be evaluated. Another reason-

able approach to evaluate the relevance of the �second dimension� risk premium

is the following: the model implied CDS spreads can be calculated based on

the respective time series of λQs . The expectations can be calculated based on

both Q̂ leading to �true� model spreads ŜP s0 and P̂ leading to �wrong� model

spreads ŜP
P̂
s0 . The latter is calculated based on this formula:

ŜP s0(M) =
L̂R

[∫ s0+M

s0
ZBfs0,sE

P̂
s0,µ̂P̂

0,µ̂
P̂
1,σ̂1

[
λ̂Qs e

−
∫ s
s0
λ̂Q
udu|F2,s0

]
ds
]

∑2M
n=1

(
EP̂
s0,µ̂P̂

0,µ̂
P̂
1,σ̂1

[
e
−

∫ s0+0.5n
s0

λ̂Q
sds|F2,s0

]
ZBfs0,s0+0.5n

) (2.59)

with L̂R, µ̂P̂
0, µ̂

P̂
1, σ̂1 denoting estimated coe�cients, EP̂

s0,µ̂P̂
0,µ̂

P̂
1,σ̂1

denoting the re-

sulting expectation and λ̂s denoting the estimated intensity process. The true

model spreads are accordingly calculated as

ŜP
Q̂
s0(M) =

L̂R

[∫ s0+M

s0
ZBfs0,sE

Q̂
s0,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂1

[
λ̂Qs e

−
∫ s
s0
λ̂Q
udu|F2,s0

]
ds

]
∑2M
n=1

(
EQ̂
s0,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂1

[
e
−

∫ s0+0.5n
s0

λ̂Q
sds|F2,s0

]
ZBfs0,s0+0.5n

) . (2.60)
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A signi�cant di�erence between the true and wrong model spreads implies that

the �second dimension� risk premium is an important driver of credit spreads.

Finally, the di�erence in the CIR di�usions under both measures can � as for

the standard Quantitative Finance stock price or short term rate models � be

evaluated based on the Girsanov theorem. This standard theorem is intro-

duced in the next paragraphs:

consider a measure space
(

Ω̂, P̂,F
)
. B̂s be a Brownian motion under proba-

bility measure P̂, Θt be an adapted process to the resulting �ltration Fs , the

index set S be the same as before and a process Zs be de�ned as

Zs = e[−
∫ s
0

ΘtdB̂t− 1
2

∫ s
0

Θ2
tdt] (2.61)

for s ∈ S. P̂ be, moreover, related to the second probability measure P̃ with

Zs being a Radon-Nykodin derivative linking these two measures:

dP̃
dP̂

= Zs (2.62)

According to the Girsanov theorem, under mild technical conditions, B̃s de�ned

as B̃s = B̂s +
∫ s

0
Θtdt is a Brownian motion under the measure P̃. In equity

modelling, the variable Θs is frequently considered to be the market price of

risk. Applying this approach to the presented framework is supposed to show

its reasonability12. Θs be in this context denoted by ηs and the Radon-Nykodin

derivative relating Q̂ and P̂ be de�ned by

Ẑs = e

[
−

∫ s
0
ηtdB

Q̂
t − 1

2

∫ s
0
η2t dt

]
(2.63)

for t ∈ S and s ≥ t so that
dP̂
dQ̂

= Zs. (2.64)

12This approach was applied before in the reduced form credit risk context by Pan and
Singleton (2008).

44



This implies that

dλQs =
(
µP̂

0 − µP̂
1λ

Q
s

)
ds+ σ1

√
λQs
(
dBQ̂

s + ηsds
)
. (2.65)

σ1

√
λQs ηs accordingly gives the di�erence in change in λQs between P̂ and Q̂. The

greater ηs, the greater is the increase of λQs under Q̂ compared to the increase

under P̂. ηs is therefore another reasonable measure for the size of the �second

dimension� risk premium. A negative value for ηs would refer to situations

in which the insurance buyer expects a price reduction for the possibility of

changes in the default intensity as the insurance may be worthless in the case

of a sudden decrease in default intensities.

ηs is in the following assumed to depend on λQs in a speci�c functional form. This

step is line with the literature on quantitative equity modelling (c.f. Karatzas

and Shreve (1991), Du�e (2008), Singleton (2001)). An according adaption to

the reduced form model context for a model with another di�usion equation has

been presented by Pan and Singleton (2008). The technical context is, however,

not discussed in the respective application paper. The speci�c form is chosen

based on the plausible assumption that the di�erence in change should increase

linearly in the level of the underlying intensity (c.f. Cheridito et al. (2007) and

Du�ee (2002)). ηs already goes into the change of λQs as a factor multiplied by

σ1

√
λQs . To obtain a linear form, it is accordingly assumed that ηs depends on

λQs in the following way:

ηs =
ρ0√
λQs

+ ρ1

√
λQs . (2.66)

This results in the actual di�erence in change of λQs being given by

σ1

(
ρ0 + ρ1λ

Q
s

)
(2.67)

which is a linear function in λQs as it is supposed to be. This implies the following
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link between ρ0, ρ1 and the CIR coe�cients under both measures:

ρ0 =
µQ̂

0 − µP̂
0

σ1
(2.68)

ρ1 =
µP̂

1 − µ
Q̂
1

σ1
. (2.69)

2.6 A�ne processes in the credit risk context

Roughly speaking an a�ne process is a Markov process, the characteristic func-

tion of which depends on the state vector in an exponential a�ne form. Under

technical conditions, the respective coe�cients of this a�ne function can, fur-

thermore, be described as solution to speci�c ordinary di�erential equations

(ODEs). The following introduction strongly builds up on Singleton (2006), as

well as Du�e et al. (2000) and Du�e et al. (2003). A multivariate state space

K ⊆ Rn for n ∈ N+ and the Markov process (Xs, (Px)x∈K) characterized by

the family probability laws (Px)x∈K be de�ned. This process is called a�ne, if

the conditional characteristic function (CCF) φs1(s2−s1, iu)13 of the transition

distributions depends on x in �exponentially a�ne form� (c.f. Singleton (2006)):

φs1(s2 − s1, iu) = E
[
eiu·Xs2 |Xs1

]
(2.70)

=

∫
K

eiu·Xs2ps(Xs1 , Xs2) (2.71)

= eψ(s1−s2,iu)+ζ(s1−s2,iu)·Xs1 (2.72)

with u ∈ Rn, i =
√
−1, ψ(s1 − s2, iu), ζ(s1 − s2, iu) being complex coe�cients,

s1 ∈ S and s2 ∈ S. Important examples, introduced above, for the class of

a�ne processes are solutions to Gaussian and square root di�usions (c.f. Piazzesi

(2010)). The coe�cients ψ(s1−s2, iu) and ζ(s1−s2, iu) are solutions to ordinary

di�erential equations, which depend in these two cases only on the actual value of

the respective underlying process and the coe�cients of the respective di�usion

13for s2 ≥ s1, s1 ∈ S, s2 ∈ S
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equation (c.f. Du�e et al. (2003)). The presentation of the results in the

next paragraphs is accordingly based on these two cases. The presentation is,

moreover, for the sake of a simpler notation restricted to one dimensional cases

(i.e. n = 1), even though all results hold for multivariate cases, too. The process

Ys is given by formula (2.12) (dYs = µYsds + σYsdBs) with drift and di�usion

part being given by equation 2.15 respectively 2.14.

To derive formulas linking the value of an a�ne process and expectations with

respect to certain functions of this process, it has been exploited that the CCF

of an a�ne process is known under certain technical conditions. For example,

Du�e and Kan (1996) present closed form solutions to expectations with respect

to functions of process values frequently seen in credit pricing formulas:

Es0

[
e
−

∫ s0+t
s0

XsdseuXs0+t |Ys0
]

= f(t,Xs0) (2.73)

with u being a one dimensional real valued coe�cient. Xs is not even necessarily

the respective a�ne process itself, but it depends in linear form on an a�ne state

vector Ys:

Xs = ρ̃0 + ρ̃1Ys (2.74)

with ρ̃0 and ρ̃1 de�ned as introduced in section three. This includes the case of

Xs being a one dimensional a�ne process. Du�e and Kan (1996) show that

f(t,Xs0) = eA(t)+B(t)Xs0 (2.75)

holds with A(t) and B(t) being solutions to complex valued ODEs depending

on µ0, µ1, σ0 and σ1. Equation 2.73 is basically the pricing formula for a zero

bond with maturity t and face value 1. Pricing formulas for some other credit

securities include however - as seen in equation 2.53 - expectations with respect

to transforms of the underlying state process that go beyond transform 2.73.

Luckily, Du�e et al. (2000) built on Du�e and Kan (1996) and present close
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form solutions to expectations for a wider range of transforms represented by

Es0

[
e
−

∫ s0+t
s0

rsXsdsvXse
uXs0+t

]
= F (t,Xs0) (2.76)

with v being in this context univariate and real values coe�cients. Their results

are presented following their own notation14. Du�e and Kan (1996) show that

F (t,Xs0) = eA(t)+B(t)Xs0 (α(t) + β(t)Xs0) (2.77)

with A(t) and B(t) being the same coe�cients as in equation 2.75 as well as

α(t) and β(t) again being solutions to complex valued ODEs which depend on

µ0, µ1, σ0 and σ1.

Based on Du�e et al. (2000) and Singleton (2006), the ODEs determining the

coe�cients in equation 2.75 have the following form:

Ḃ(s) = ρ̃1 − µ1 −
1

2
σ2

1B(s)2 (2.78)

Ȧ(s) = ρ̃0 − µ0B(s)− 1

2
σ2

0B(s)A(s) (2.79)

with boundary conditions B(t) = u and A(t) = 0. The additional coe�cients in

equation 2.77 are given by the following ODEs:

−β̇s = µ1βs + σ2βs (2.80)

−α̇s = µ0βs + σ2
0 (2.81)

with boundary conditions β(t) = v and α(t) = 0.

In the credit risk context, the values of the expectations regarding these trans-

forms, which are conditioned on the current value of the intensity process, can

be calculated if the coe�cients of the underlying di�usion equations are known.

The only step that has to be taken, is solving the respective ODEs (2.78)-

(2.81). This can, of course, be done numerically. It may according to Huang

14This notation has also been adopted from Singleton (2006).
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and Yu (2007), be reasonable to chose an implicit solution method to avoid

wrong convergence due to sti�ness. For the standard case (i.e. ρ̃0 = 0, ρ̃1 = 1

and σ0 = 0), there are however analytical solutions available. Du�e and Gar-

leanu (2001) presented solutions for the equations (2.78) and (2.79) for the case

that the underlying stochastic di�erential equation is a CIR di�usion with an

additional jump component. Longsta� et al. (2005) present closed form repre-

sentations for more complex transforms for the simple CIR case. Combining

these results in the presented case (i.e. a simple CIR di�usion without jump)

leads to the following closed form solutions:

A(t) =
µ0µ1 + µ0ξ

σ2
1

t+
2µ0

σ2
1

[
ln

[
1− µ1 + ξ

µ1 − ξ

]
− ln

[
1− µ1 + ξ

µ1 − ξ
etξ
]]

(2.82)

B(t) =
2
(
1− eξt

)
(ξ + µ1) (eξt − 1) + 2ξ

(2.83)

α(t) =
ν0

ξ

(
eξt − 1

)
(2.84)

β(t) = eξt (2.85)

ξ =
√

2σ2
1 + µ2

1. (2.86)
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3.1 Introduction

Modelling and analyzing credit spreads are very important issues for both eco-

nomic researchers and �nance practitioners. A very versatile platforms for chal-

lenges in this context are reduced form credit risk models. These models were

introduced by Jarrow and Turnbull (1995), Lando (1998) respectively Du�e and

Singleton (1999) and basically assume the default of a unit being representable

by a �rst jump of an underlying Poisson process. The intensity of this Poisson

process is typically driven by a stochastic di�erential equation. Applications of

such models in �nancial market research can, for example, be found in Pan and

Singleton (2008) and Longsta� et al. (2011). These studies analyze the structure

of credit spreads by isolating the �second dimension� risk premium from the rest

of the spread. This risk premium refers to the additional payo� which investors

expect if the present and future default probabilities are not deterministic.

The present paper discusses a convenient estimation strategy for such a re-

duced form credit risk model under both measures based on credit default swap

(CDS) data and tests this estimation strategy based on simulated data. The

discussed estimation strategy � which is oriented towards the strategy employed

by Longsta� et al. (2005)1 � is not the �rst strategy applied for reduced form

credit risk models under both measures in published studies. Estimation re-

sults for such models are, for example, presented in the mentioned studies by

Pan and Singleton (2008) and Longsta� et al. (2011). The strategy discussed

in the present article is, however, particularly convenient and practicable and

the characteristics of the a�ne process class is exploited. The strategy is con-

sequently only applicable in the context of models driven by a�ne di�usion

processes like the �Cox-Ingersoll-Ross� process (CIR) introduced in the �nance

literature by Cox et al. (1985). The estimation procedures applied by Pan and

Singleton (2008) and Longsta� et al. (2011) are in these respective articles not

documented in length but they de�nitely di�er from the one presented in the

present paper as their speci�cation choice for the underlying stochastic di�eren-
1They estimate their model however not exclusively based on CDS and only under the

risk-neutral measure
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tial equation does not allow to exploit the a�ne process class's characteristics.

It seems very likely that the estimation strategy discussed in the present paper

is a particularly practicable one since � although still being demanding with

respect to computational capacities � it does not require numerical solving of

respective Feynman-Kac di�erential equations.

3.2 Model set up

A measure space (Ω1,F1, P1) with the corresponding �ltration F1,s, a measur-

able space (M1,M1) and an index set S 6= ∅ is de�ned. Furthermore, a Poisson

process

Poi = (Pois, s ∈ S) (3.1)

is de�ned as a family of measurable mappings between probability and measure

space:

Pois : (Ω1,F1, P1)→ (M1,M1) (3.2)

ω1 7→ Pois(ω1) (3.3)

with ω1 ∈ Ω1. Pois counts the number of events up to time s. In this model

now, the default of a unit is depicted as �rst jump of this Poisson process and

the time of the �rst jump denoted as τ ∈ S is therefore stopping time for this

process as well2. The increments Pois1−Pois0 are for s0, s1 ∈ S and s1−s0 ≥ 0

independently Poisson distributed, the Poisson parameter depends on the length

of the respective period [s0, s1] only and Markov property is satis�ed accord-

ingly. At the �rst point in time, the process value be almost surely zero and the

process be supported by the probability space introduced above. The intensity

parameter of this Poisson process is denoted by λs with s ∈ S. The time period

between a starting time s0 ∈ S and the �rst jump of the underlying Poisson

2I.e. the model stops after the �rst credit event to avoid the assumption that a model's
structure is still the same after such an event.
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process is exponentially distributed with the parameter process λs, which is �rst

assumed to be deterministic.

Pricing formulas for all kinds of credit risk related securities have been derived

based on that. This usually implies the application of the risk neutrality con-

cept: as returns rs (with s ∈ S) expected by the investors are unknown, they

are in these pricing formulas usually substituted by the risk free rate rfs , with

rs ≥ rfs . The original discount factor ZBs0,s for a respective discount horizon

s − s0 ≥ 0 (and [s0, s] ⊂ S) is now below the resulting risk neutral discount

factor ZBfs0,s. The true default intensity λs is then usually substituted by a

�risk neutral� counterpart λQs to adjust for this e�ect. The �true� intensity is

typically denoted by λPs . λ
Q
s should contain a fraction referring to the default

risk premium which investors in credit securities usually expect. The intensities

λQs equating the non-arbitrage pricing formulas are therefore supposed to be

higher than �real� intensities λPs
3.

So far, this framework holds for deterministic intensities. This limitation is how-

ever rather implausible for real world applications. Therefore, in the following

the framework is extended and a second dimension of randomness is introduced:

a probability space (Ω2,F2, P2) with corresponding �ltration F2,s and a mea-

surable space (M2,M2) withM2 ⊆ Rn for n ∈ N+ denoting a multivariate state

vector be de�ned. The index set S 6= ∅ is still the same as in the subsection

before. Finally, a Brownian motion Bs ∈ Rn and the following �di�usion� pro-

cess ΛQ =
(
λQs , s ∈ S

)
are de�ned as a family of measurable mappings between

probability and measure space:

λQs : (Ω2,F2, P2)→ (M2,M2) (3.4)

ω2 7→ λQs (ω2). (3.5)

3λQs would be the actual intensities implied by credit prices if these prices would have been
observed in a hypothetical world of risk neutral investors who do not expect an additional
remuneration for any kind of risk.
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It is moreover assumed that the process λQs is driven by a Cox-Ingersoll-Ross

(CIR) di�usion:

dλQs =
(
µ0 − µ1λ

Q
s

)
+ σ1

√
λQs dBs (3.6)

with Bs denoting a Brownian motion and µ0, µ1 and σ1 being constant coe�-

cients. This process accordingly reverts to the mean for µ0 > 0 and µ1 > 0.

Both introduced measure spaces can be combined resulting in a new sample

space Ω = Ω1 × Ω2, a new sigma algebra F = σ{F1 ∨ F2}4 and the respective

�ltration Fs. Moreover, the probability measure P is introduced, which just

satis�es all general requirements regarding probability measures with respect to

F respectively Fs. This means: P (Ω) = 1, P (F ) < ∞ for all F ∈ F as well as

countable additivity for disjoint collections (c.f. Davidson (1994)).

The establishment of a CDS pricing formula based on this extended �doubly

stochastic� framework now only requires the introduction of a loss rate LR

and the spread processes SPs0(M) referring to newly issued CDS contracts.

M denotes the maturity of CDS contracts issued in s0 with [s0, s0 +M ] ⊂ S.

Accordingly s0 denotes the time index for historical CDS spread time series. LR

refers to the fraction of the face value5 of a zero bond issued by the third party

that is not paid back when a default event occurs. This typically complies with

the amount which the CDS seller is expected to pay in the case of default, as

CDS usually have a face value of one. The term �default� refers in this context

to all kinds of credit events and the default probability accordingly refers to the

aggregated probabilities of all kinds of credit events. LR is then the average loss

rate over all credit events weighted by the relative probabilities of the respective

credit event. The resulting pricing formula for a newly issued CDS is then as

4�∨� denotes in this context the union of σ-�elds.
5�Face value� of a zero bond refers to the amount of money the borrower is supposed to

receive when maturity is reached.

57



presented by Du�e (1999) based on Lando (1998):

SPs0(M)

2M∑
n=1

(
EQ̂
s0

[
e
−

∫ s0+0.5n
s0

λQ
sds|F2,s0

]
ZBfs0,s0+0.5n

)
= LR

[∫ s0+M

s0

ZBfs0,sE
Q̂
s0

[
λQs e

−
∫ s
s0
λQ
udu|F2,s0

]
ds

]
. (3.7)

The expectations in this pricing formula now all refer to the development of

λQs , i.e. they do not refer to the true default intensities λPs . This di�erentia-

tion between λPs and λQs introduced before refers to the credit risk per se, i.e.

the uncertainty regarding the current and future levels is ignored here. It may,

however, be that investors' expected return changes because of the additional

uncertainty (c.f. Pan and Singleton (2008)). The expectations equating the ar-

bitrage pricing formula would then di�er from the expectations built based on

the �true� distribution law of λQs . Consequently, two variations of P2 are intro-

duced: Q̂, which refers to the hypothetical risk neutral probability measure that

leads to expectations equating the no-arbitrage pricing formula and P̂ referring

to the �real� distribution law of λQs .

This di�erentiation also has to be re�ected by the notation of the di�usion equa-

tions driving λQ under the respective probability measure. The one referring to

Q̂ is denoted by:

dλQs =
(
µQ̂

0 − µ
Q̂
1 λ

Q
s

)
ds+ σ1

√
λQs dB

Q̂
s . (3.8)

The true variation of λQs is given by:

dλQs =
(
µP̂

0 − µP̂
1λ

Q
s

)
ds+ σ1

√
λQs dB

P̂
s , (3.9)

(c.f. Pan and Singleton (2008) and Longsta� et al. (2011)). The di�erence

between these two equations can be found in the superscript of the drift param-

eters and the Brownian motion. The di�usion parameter is identical in both

cases. This complies with the Quantitative Finance literature on stock devel-
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opments respectively the Black-Scholes formula. The di�usion coe�cient σ is

� in opposition to the drift coe�cients µ0 and µ1 � not required to calculate

the conditional expectation of a CIR process. The stronger the di�erence in the

drift coe�cients µ0 respectively µ1, the stronger is the di�erence in conditional

expectations with respect to λQs (this is discussed in the �rst chapter of this dis-

sertation and formulas are presented in the third section of the present chapter

as well.). A comparison of drift components therefore measures the relevance of

that �second dimension� risk premium6. The estimation of the CIR coe�cients

under both measures is, moreover, necessary to forecast future CDS spreads by

forecasting λQs and to calculate the respective expectations respectively the CDS

spreads in the resulting pricing formula.

3.3 Estimation procedure

This section discusses the estimation procedure with respect to the coe�cients

under both Q̂ and P̂. The main focus of this chapter is clearly on the estimation

strategy under Q̂ which is discussed �rst.

3.3.1 Estimation of the di�usion parameters under Q̂

To estimate the distribution law of λQs under the risk neutral measure Q̂ is a

challenging task since only a set of spread time series SPs0(M) and the risk

neutral discount factors ZBfs0,s0+s are directly observable. A loss rate LR is

frequently assumed ex-ante as well. Pan and Singleton (2008) suggest, however,

to estimate LR simultaneously with the other coe�cients by taking advantage

of the broad set of contracts with di�erent maturities issued on a daily basis.

This idea is adopted for this project since the empirical results in Pan and

Singleton (2008) show that the typically assumed loss rate of 70 percent is

sometimes far from the loss rate equating the pricing formula in their model.7

6This set up allows for the application of the Girsanov theorem to compare the drift under
both measures, c.f.Pan and Singleton (2008) or the third chapter of this dissertation.

7Considering for example sovereign data shows that loss rates can strongly vary. Historical
data as published by Moody's (2008) re�ect a wide range of loss rates, ranging from 1.9% in
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This demonstrates, moreover, that the loss rate implied in CDS spreads can be

exactly identi�ed because the loss rate is the same for all maturities, but it has

a di�erent impact on the observed market spreads for di�erent maturities.

The discussed procedure is � as mentioned before � oriented towards Longsta�

et al. (2005) and restricted to models driven by a�ne di�usion processes. The

theory on a�ne processes is exploited to substitute the expectations included

in formula 4.16.

An a�ne process, as de�ned by Du�e et al. (2003a), is roughly speaking a

Markov process the characteristic function of which depends in �exponentially

a�ne form� (c.f. Singleton (2006), Du�e et al. (2003b)) on the current process

value (c.f. the �rst chapter of this dissertation). Furthermore, the respective

coe�cients of this a�ne function can under technical conditions be described as

solutions to speci�c ordinary di�erential equations (ODEs). If the a�ne process

is a di�usion process, the ODEs are fully determined by the process parameters

of that di�usion8.

Du�e and Singleton (1999) moreover show that expectations with respect to

transforms of such a�ne processes can be depicted in exponential linear form

depending on the value of the state process at the point in time when the

expectation is built in. The coe�cients of this function can again be obtained

as solutions to given ODEs that depend on the parameters of the underlying

di�usions9.

Adapting the results in Du�e et al. (2000) to the expectations included in the

CDS pricing formula, one yields

Es0

[
e
∫ s1
s0

λQ
sds
]

= eαs1−s0+βs1−s0λ
Q
s0 (3.10)

Es0

[
λse

∫ s
s0
λQ
uds
]

= eαs1−s0+βs1−s0λ
Q
s0 (As1−s0 +Bs1−s0)λQs0 (3.11)

the case of Belize in 2006, to 82 % in the Russian case.
8As the ones introduced in the following paragraphs, these ODEs can be found in the �rst

chapter of this dissertation.
9Details are presented in the �rst chapter of this dissertation.
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with αs1−s0 , βs1−s0 , As1−s0 and Bs1−s0 being solutions to ODEs. The coe�-

cients depend on the parameter of the di�usion equation driving λQs under the

respective measure.

Knowledge regarding the di�usion coe�cients would therefore allow to substi-

tute the expectations in the CDS pricing formula by the exponential linear

functions depending on the current realization λQs0 of λQs only. The coe�cients

of this exponential linear form are, however, still unknown as the di�usion coe�-

cients are not known either. The set of coe�cients {µ̂Q̂
0 , µ̂

Q̂
1 , σ̂1, L̂R} is therefore

� following Longsta� et al. (2005) � assumed ex-ante and the resulting ODEs are

solved to get a series of coe�cients for the exponential linear form. The expec-

tations in the pricing formula are then substituted by the respective exponential

linear functions depending on the realization of λQs0 and an estimation λ̂Qs0i can

then be obtained for each observation s0i ∈ [s01 , s02 .., s0N ] with N denoting the

respective sample size: de�ne

f(λQs0 |µ̂
Q̂
0 , µ̂

Q̂
1 , σ̂

Q̂
1 , L̂R)

= SPs0(M)

2M∑
n=1

(
EQ̂
s0,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂

Q̂
1

[
e
−

∫ s0+0.5n
s0

λQ
sds|F2,s0

]
ZBfs0,s0+0.5n

)

− L̂R

[∫ s0+M

s0

ZBfs0,sE
Q̂
s0,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂

Q̂
1

[
λQs e

−
∫ s
s0
λQ
udu|F2,s0

]
ds

]
. (3.12)

EQ̂
s0,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂

Q̂
1

denotes expectations built in s0 under Q̂ depending on the set of

coe�cients {µ̂Q̂
0 , µ̂

Q̂
1 , σ̂

Q̂
1 }. For each time step s0i ∈ [s01

, s02
.., s0N ], one searches

for λ̂Qs0i which satis�es f(λ̂Qs0i
|µ̂Q̂

0 , µ̂
Q̂
1 , σ̂1, L̂R) = 0. The extracted time series

λ̂Qs0i
is then however depending on the ex-ante determined coe�cient set and

it is therefore probably biased. This bias is, however, following Longsta� et al.

(2005) still going to be corrected:

spreads from contracts with other maturities (i.e. in the present case 1,3,7 and

10 years) are taken and the sum of squared distances between these observed

spreads SPs0i (M) and the model spreads ŜP s0i (M) based on the time series

of intensities estimated in our �rst step is minimized by choosing a new set
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of coe�cients. Model spreads can in this context be calculated based on this

formula:

ŜP s0i (M) =

L̂R

[∫ s0i+M
s0i

ZBfs0i ,s
EQ̂
s0i ,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂

Q̂
1

[
λ̂Qs e

−
∫ s
s0i

λ̂Q
udu|F2,s0i

]
ds

]
∑2M
n=1

(
EQ̂
s0i ,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂

Q̂
1

[
e
−

∫ s0i+0.5n

s0i
λ̂Q
sds|F2,s0i

]
ZBfs0i ,s0i+0.5n

)
(3.13)

and the minimization problem is accordingly given by

min︸︷︷︸
{µ̂Q̂

0 ,µ̂
Q̂
1 ,σ̂1,L̂R}

∑
M∈{1,3,7,10}

∑
s0i∈{s01 ,..,s0N }

[
ŜP s0i (M)− SPs0i (M)

]2
. (3.14)

This new set of coe�cients {µ̂Q̂
0 , µ̂

Q̂
1 , σ̂1, L̂R} is, however, again biased as it de-

pends in turn on the time series of intensities estimated based on the coe�cient

values, which were chosen ex-ante. The estimation has therefore not been com-

pleted yet. The new set of coe�cients is subsequently used for estimating a

times series λ̂Qs0i which is again based on the time series of SPs0i (5). The es-

timated time series λ̂Qs0i is in turn used for the estimation of a new coe�cient

set by comparing model spreads ŜP s0i (M) with the actual spreads SPs0i (M)

for M ∈ [1, 3, 7, 10]. Both steps are afterwards repeated until the estimates of

the coe�cients and the intensities converge (c.f. Longsta� et al. (2005)). All

variables are identi�ed (c.f. Pan and Singleton (2008)).

The ODEs resulting in the coe�cients of the exponential linear form for the con-

ditional expectations have thereby of course to be solved over and over again.

On the one hand, this can be done numerically but there are on the other hand

fortunately also analytical solutions available that were presented by Longsta�

et al. (2005) (c.f. the �rst chapter of this dissertation). Both the numerical and

the analytical approaches to �nd solutions to the respective ODEs have been

implemented for the present study. For the numerical approach implicit solu-

tion methods10 were applied instead of explicit ones to avoid sti�ness problems

10The method applied was following Huang and Yu (2007): the implicit Runge-Kutta pro-
cedure.
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(c.f Huang and Yu (2007)). For the numerical solution approach, the ODEs

were solved every 1
3600 th time step. The numerical solution procedure, however,

turns out to be computationally extremely demanding.11

3.3.2 Estimation of the di�usion parameter under P̂

After having estimated {µ̂Q̂
0 , µ̂

Q̂
1 , σ̂1, L̂R} as well as a times series of intensities

λQ̂s0i
, the set of CIR drift coe�cients under the historical measure Q̂ can be esti-

mated. The di�usion coe�cient σ under P̂ is the same as under Q̂ and therefore

only {µP̂
0, µ

P̂
1} are left for estimation under Q̂. The transition probability distri-

bution of the CIR process is luckily known to be a non-central χ2-distribution

with non-centrality parameter nct and degrees of freedom dof given by

nct =
2µ1

σ2
1 (1− e−µ1t)

(3.15)

dof =
4µ0 exp−µ1t

σ2
1(1− exp−µ1t)

. (3.16)

Overbeck and Ryden (1997) and Iacus (2008) present closed form representa-

tions for probability distributions of di�usion process realization Ys0+t based on

the underlying CIR coe�cient and conditioned on a speci�c previous realization

Ys0 :

Pr(Ys0 |Ys0−t, µ0, µ1, σ
2
1) =

−0.5 Ys−tnct
exp−µ1t

+ ysnct

2(ysnctYs−t)dof/4
Be dof

2 −1(
√
Ys−tnct) (3.17)

where Be dof
2 −1 denotes the modi�ed Bessel function of the �rst kind of order

dof
2 −1. The evaluation of the Bessel function included in this distribution func-

tion formula can, as discussed in Zhou (2000) or Iacus (2008), be numerically

di�cult in certain scenarios. Alternative representations are, however, numeri-

cally troublesome for typical reduced form model parameter ranges. (c.f. Zhou

11The approach was run for several data sets and did not lead to converged results. The
�nally presented results are therefore the ones based on the analytical solution.
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(2000) respectively the �rst chapter of this doctoral thesis), so the estimates

in the context of this study are based on the numerical approximation of the

Bessel function implemented in R.

The closed form formulas for the conditional expectations and the conditional

variance are as presented in Cox et al. (1985) or Iacus (2008):

E (Ys+t|Ys) =
µ0

µ1
+

(
Ys −

µ0

µ1

)
e−µ1t, (3.18)

V ar (Ys+t|Ys) = Ys
σ2

0

(
e−µ1t − e−2µ1t

)
µ1

+
µ0σ

2
0

(
1− e−2µ1t

)
2µ2

1

. (3.19)

The set of possible approaches to estimate the drift parameters under the

historical measure based on the times series of extracted risk neutral inten-

sities is accordingly wide, including maximum-likelihood estimators (MLE),

quasi-maximum-likelihood estimators (QML) or methods-of-moments estima-

tors (MoM). Most publications dealing with the estimation of square root dif-

fusions based on time series data focus on the short term model context. Most

of these publications, moreover, show that this estimation of a CIR process

based on time series can be troublesome despite the transition distribution be-

ing known in closed form (c.f. Gourieroux and Monfort (2007) or Fa� and Gray

(2006)). The results of such studies can, furthermore, not be directly trans-

ferred to the estimation in the credit risk context as there are two important

di�erences between both estimation situations. The �rst di�erence refers to the

number of coe�cients which have to be estimated from time series data. In the

reduced form context, the di�usion parameter σ is usually assumed to be iden-

tical under both the risk neutral and the historical measure (Q̂ respectively P̂).

Since the parameters under Q̂ are estimated simultaneously with the estimation

of the time series of intensities and the estimation of the coe�cients under Q̂

necessarily have to be estimated �rst, σ is usually already known when drift

parameters µ0 and µ1 are estimated under P̂. In the short term model context

on the other hand, the di�usion parameter has to be estimated simultaneously

with the drift parameters based on the time series of state process realizations.
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The second di�erence between the estimation in the reduced form model con-

text and the short term model context is the relevant parameter range. Empir-

ical results in the short term literature are often restricted to cases where the

Feller-condition 2µ0/σ
2
1 > 1 is satis�ed (c.f. Overbeck and Ryden (1997)). The

estimations in the context of the model set up used for this study suggest that

this does not necessarily seem to be the case for reduced form credit risk appli-

cations (c.f. estimation results in the third chapter of this dissertation). The

estimation of the drift parameters based on the parameter estimates regarding

the di�usion coe�cient is therefore discussed in the following paragraph without

excluding the case that 2µ0/σ
2
1 ≤ 1.

Putting aside these di�erences, MLE and QML are, for example, discussed in

Overbeck and Ryden (1997) and in Gourieroux and Monfort (2007). Overbeck

and Ryden (1997) show, for situations with three free parameters, that MLE

leads to consistent results without the Feller-condition. These MLE results

seem, however, to be not necessarily very precise for moderate sample sizes (e.g.

1000 observations). This corresponds to a time period of roughly three years in

the reduced form credit risk context. Three years seem to be a plausible time

frame for real world applications 12. This trade-o� between the preciseness of

the estimation and the validity of the results with respect to structural model

changes may be problematic.

Overbeck and Ryden (1997) moreover refer to the simultaneous estimation of all

three CIR parameters. As discussed before, the simulation in the present study

now only includes the situation with two free parameters. For the present anal-

ysis, other than the study in Overbeck and Ryden (1997) the empirical mean of

the underlying time series is considered as a non-parametric estimate for µ0/µ1:

[̂
µP̂

0

µP̂
1

]np
=

1

N

∑
s0i∈{s01 ,..,s0N }

λQsi . (3.20)

This seems intuitively reasonable because of the mean reversion characteris-

12Longer time horizons might be questionable because of possible structural changes leading
to di�erent models after more than three years.
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tic of the drift coe�cient. Then there is only one free parameter left for the

next (parametric) estimation step (µ1). The ML estimator based on the non-

parametric estimation of µ0/µ1 is called �mixed� MLE in the following. The

�normal� MLE is considered as well.

Another estimator considered in this study is the MoM respectively LS estimator

which minimizes the sum of squared deviations from the model implied condi-

tional expected values (conditioned on the previous process value) to the actual

process values. Based on formula 3.18, this implies for a sampling frequency of

1
250 that the MoM estimator µ̂P̂,MoM

1 is the solution to

min︸︷︷︸
µP̂
1

∑
i∈{2,3,..,N}

|λ̂Qs0i −

[̂
µP̂

0

µP̂
1

]np
−

λ̂Qs0i−1
−

[̂
µP̂

0

µP̂
1

]np e−µ
P̂
1(1/250)|. (3.21)

In this context, only one parameter is freely estimated and the empirical mean

is again used as a non-parametric estimate of µ0/µ1. Third, a QML estimator

has been implemented, which assumes the di�erence between the values to be

normally distributed. Results in Overbeck and Ryden (1997) and Gourieroux

and Monfort (2007) suggest, however, that this procedure might not be very

promising and the results in the context of the present study endorse that view.

Accordingly, the procedure is not discussed any further.

3.4 Simulation

The following subsections discuss the simulation strategies. The estimates are

presented as well. Even though the main contribution of this study is the

estimation of parameters under Q̂, the simulation of the data set to evaluate

the estimators under P̂ is rather lengthy because of the di�culties related to this

simulation . The parameters chosen for the simulations were the ones estimated

for Finish and Polish data.
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3.4.1 Simulation of the spread time series SPs0(M) for all

maturities M

This paragraph deals with the simulation of CDS spreads for several matu-

rities. The discussed estimation procedure for the parameters under the risk

neutral measure is then evaluated based on the simulated time series of spreads.

The simulation is based on the assumption that the di�erence between model

spreads ŜP s0(M) and the real spreads SPs0(M) is normally distributed with

an expected value of zero. In the following, these model errors are denoted by

εs0(M) respectively ε̂s0 for the empirical counterpart. One can write accord-

ingly:

ε(M) ∼ N (0, σε(M)). (3.22)

In this context, the empirical variance of the model errors for the respective

country is chosen as estimate for the variance of the normal-distribution which

the model error simulation is based on. The spreads are then simulated by

adding the simulated errors to the model spreads which are calculated based

on the estimated default intensities. Spreads of the following maturities are

simulated: one, three, �ve, seven and ten years.

The normality assumption is, of course, a simpli�cation to exploit that the

normal-distribution is fully characterized by its �rst two moments. The ba-

sic structure of the model errors is therefore reproduced in a satisfying man-

ner based on the described moment-matching approximation as the normal-

distribution is fully characterized by its �rst two moments.

Another simpli�cation, which has, for example, been made by Pan and Single-

ton (2008), is an independence assumption regarding the model errors. The

values of the empirical autocorrelation function13 (ACF) do, however, clearly

show that there exists (at least in the case of the present model) a strong de-

pendence between the model errors. Figure 3.1 depicts, for example, values of

the empirical ACF for the Finish 1 year case. This dependence is factored in

by the estimation of an AR process based on the error realizations. For com-

13The depicted ACF is again calculated based on the Finish data.
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parison, two simulations are run in the Finish case: one based on independent

draws from the normal-distribution, with a variance complying to the empirical

variance of the error terms and one based on the estimated AR(3) process.

The variances respectively the AR coe�cients are estimated separately for each

maturity as there are reasons to presume that the errors behave di�erently for

di�erent maturities. The �ve year spread was, for example, chosen as reference

value for the estimation of the intensities λ̂Qs0,i because the CDS with that ma-

turity are characterized by the highest level of liquidity (c.f. Pan and Singleton

(2008)). This is in turn re�ected by the low model errors: the respective mean,

the relative mean14, the respective empirical variance, as well as the variance of

the AR(3)-innovations (denoted by σ2
εs0 (M),AR(p) with p referring to the number

of AR-lags) are the lowest.

Simulation results spreads

The estimates of the parameters under Q̂ based on the simulated data sets were

obtained based on the following details: for the �rst simulated data set, the

starting value for the estimation was at the average value of the estimates for

six countries, which are presented in the third chapter of this dissertation15.

For the further data sets, the �nal estimation results based on the respective

previous data set were chosen as starting value. The starting value was, more-

over, changed randomly, if the number of iterations was above 40. In this case,

the values were increased or decreased by 50% with a probability of 50%. The

estimator is �nally assumed not to be converging for one data set, if the number

of iterations exceeds 120. The estimates for the error term variance and the

estimated variance of the AR-innovations are presented in tables 3.1 and 3.2.

The estimation results referring to the larger samples sizes (i.e. numbers of

observations N=901) can be found in tables 3.3-3.5. The number of simulated

data sets is denoted by n. The results suggest that the estimation strategy leads

to precise results for a sample sizes of N=901. For the Finish case, the estimates

14This refers to the mean of the relative deviation Error
Spread

.
15This complies with {−4.17e−10;−1.493.9× 10−5; 0.5}.
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based on the AR-simulation are, moreover, on average more precise than the

estimates based on the independently simulated errors. This suggests this mod-

elling that auto-regressive structure, is an important detail for the simulation

of spreads. The simulation for Poland was accordingly only run based on the

AR estimation. The 5-year maturity is included for all cases. The respective

results must, however, be interpreted cautiously as the intensities have been es-

timated based on this maturity. The Polish results for all estimations based on

the smaller samples (i.e. N=100) can be found in table 3.616. These results are

very imprecise. In the Finish case, the estimations based on the short samples

do not even converge in most cases. To sum up, one can say that the estimation

strategy seems to perform very well for larger samples, whereas the results for

smaller samples seem to be rather problematic.

3.4.2 Simulation of a time series of intensities λQs

Simulation procedure

In the presented model set up λQs is driven by a CIR di�usion. A CIR di�usion

is generally not de�ned for negative process values as the square root of the

current process value goes into the model's di�usion coe�cient. The process

is, moreover, prevented from taking values outside the de�ned domain if the

conditions µ1 > 0 and µ2 > 0 are satis�ed. In such cases, the impact of the

di�usion part on the change of such a process becomes inde�nitely small as the

process value gets close to zero and the drift part of the stochastic di�erential

equation dominates. This means that the change in λQs becomes approximately

deterministic and positive.

The process does moreover not even touch the zero bound if the so called Feller-

condition 2µ1µ2 > σ2 is satis�ed. If the parameters of the drift coe�cient

are both negative, the drift part still dominates for inde�nitely small process

values. The drift is, however, negative if the process value is below the level

16The 5-year case is included as well, the respective results must be evaluated very cautiously
as the intensities were estimated based on this maturity.
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µ1

µ2
. The values are then directly pushed out of the de�ned domain which makes

this parameter range irrelevant for credit risk applications17. The focus of the

subsequent discussion is therefore restricted to positive drift parameters.

The simulation of CIR processes is, for example, discussed in Andersen et al.

(2010) or Iacus (2008). The most obvious simulation strategy exploits that the

transition distribution of a CIR process is � as mentioned before � a non-central

χ2-distribution with non-centrality parameter nct and degrees of freedom dof

depending on the current value of the process in known functional form.

Simulations based on the non-central χ2-distribution exploit that the non-central

χ2-distributed variable complies with a central χ2-distributed variable with de-

grees of freedom being Poisson distributed. The central χ2-distribution is in

turn a special case of the Gamma-distribution (c.f. Kahl and Jaeckel (2006a)

and the �rst chapter of this dissertation). Draws from the Gamma-distribution

in R are executed as implemented in R based on the algorithm by Loader (2000).

Andersen et al. (2010) point out that despite the transition distribution being

known in closed form, the described simulation approach might not be the best

choice because the simulation of non-central χ2-distributed random variables

can be numerical challenging according to them. The computational time be

particularly high and the draws from a non-central χ2-distribution may be rather

imprecise. The latter issue might be particularly important in the reduced form

credit risk context: the resulting non-central χ2-distributions are in this context

characterized by low degrees of freedom and very low average values. The χ2-

distribution becomes moreover very steep for values close to zero, if the degrees

of freedom are one or smaller.

The simulation was therefore not only run based on the approach discussed so

far but additional simulation approaches were implemented so that the results

can be compared. The other approaches are based on approximation algorithms

presented in Andersen et al. (2010): the �rst approximation is based on a �full

17This refers of course to the actual distribution law of λQs . The respective parameter can
be relevant under the risk neutral measure Q̂ since this distribution law is just a hypothetical
construct.

70



truncation� Euler scheme. This scheme is � as discussed in Andersen et al.

(2010) � based on the Euler algorithm which approximates the di�erence in the

state process in the following way:

λ̃s+∆ = λ̃s +
(
µ0 − µ1λ̃s+∆

)
∆ + σ

√
λ̃s+∆N

√
∆. (3.23)

Symbol ∆ refers to the change in time and N denotes a standard-normally dis-

tributed random variable. An important issue in the context of such discrete

simulation algorithms is how to prevent the simulated process from becoming

negative. The �true� process is � as discussed before � always non-negative if

the drift coe�cients are positive (which is the case in all scenarios analyzed in

this study). The mechanism which prevents the process from becoming nega-

tive in the continuous original process is, however, di�cult to implement in such

discrete algorithms. The stochastic component of the change in the algorithm

above can dominate the deterministic drift component for all current process

values. The simulated process therefore can take negative values which is not

desirable since the original process is de�ned for positive values only. The next

algorithm step cannot be executed either.

The �full-truncation� algorithm tries (as discussed in Andersen (2008)) to min-

imize this issue by setting the current process value in the drift part and the

stochastic part to zero, if the simulated values are negative. The change in the

process then becomes deterministic and positive:

λ̃s+∆ = λ̃s +
(
µ0 − µ1λ̃

+
s+∆

)
∆ + σ

√
λ̃+
s+∆N

√
∆ (3.24)

with λ+
s = max[λs, 0]. The simulated process can, however, still become nega-

tive. The probability of negative values increases, if the mean reversion level is

very low, and the di�usion coe�cient is in relation to the drift coe�cient rather

high. Unfortunately, this is both the case in the reduced form credit risk context

compared to applications in the short term context. The best way to minimize

the problem of negative simulation values seems to set the simulation steps par-
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ticularly small. For the present study, the time steps were set to 1×10−6, which

refers roughly to half a minute in the application context.

Another problem with the �fully truncated� Euler scheme is weak convergence

(c.f. Andersen et al. (2010)). A possible alternative is the �modi�ed implicit

Milstein scheme�:

λ̃s+∆ =
λ̃s + µ0∆ + ε

√
λ̃sN
√

∆ + 1
4σ

2∆(N 2 − 1)

1 + µ1∆
. (3.25)

This scheme is discussed in Andersen et al. (2010) and has been presented and

numerically evaluated by Kahl and Jaeckel (2006b) (c.f. equation 3.28). This

algorithm produces only strictly positive values if the Feller-condition is satis�ed.

As mentioned before, this is not generally the case in the reduced form credit

risk context. For simulations run in the context of the present study, following

Andersen et al. (2010) it was switched to algorithm 3.24 if a negative values had

been simulated for the previous time step.

Finally, a moment matching scheme presented in Andersen (2008) and discussed

in Andersen et al. (2010) has been implemented for the present study: the

�Quadratic−Exponential� scheme. This simulation scheme is suggested in the

mentioned articles to overcome the non-negativity issue described for the other

algorithms. The basic idea is to draw values from other distributions, which

are calibrated so that the distributions' moments comply with the moments of

the respective CIR process. The chosen scheme is �based on a combination of

squared Gaussian and an exponential distribution� (c.f. Andersen et al. (2010):

λ̃s+∆ = a(b+ Z)2 (3.26)

with a and b being constants and Z being a standard normal random variable.

For small process values, the density is following Andersen (2008) and Kahl and

Jaeckel (2006a) approximated by:

φ(λs) = p+ (1− p)(1− exp−βλs), λs ≥ 0. (3.27)
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Details regarding the numerical implementation can be found in proposition 5

and 6 in Andersen (2008) or in proposition 3.1 in Andersen et al. (2010). The

suggested condition for switching from the �rst to the second approximation

scheme is the ratio of the conditional expectation and the conditional variance

for the respective simulation step being beyond a certain level. According to

Andersen (2008), this level must be between one and two. The exact choice not

critical is according to this study.

The simulation was executed based on both the modi�ed implicit Milstein

scheme and the quadratic exponential scheme.

Simulation results intensities

For two parameter sets, the results with respect to the direct simulation scheme

are presented in tables 3.7 and 3.8. The results based on the approximation

schemes are only presented for one parameter set in tables 3.9-3.12. N denotes

the length of the simulated time series and n denotes the number of simulated

time series. The �full truncation� and the �implicit Milstein� approach resulted

in a high number of negative values. The only way to test the described esti-

mation approaches based on this sample is to substitute these negative values

by zeros or alternatively by the minimum positive draws. The estimates based

on these simulations turned however out to be highly imprecise. The signif-

icant superiority of the mixed MLE estimator based on the direct simulation

(the respective results will be discussed afterwards) seems to show that the �nal

simulations based on the other two schemes are very imprecise. The substitu-

tion of negative values has probably changed the structure of the time series too

strongly. The results based on the quadratic exponential scheme do in opposi-

tion to that not include negative values. The very bad estimation results based

on that simulation (compared to the estimate based on the direct simulation

approach) do, however, again suggest that this approximation might be quite

imprecise and that the approximation does not work very well for the respective

parameter values. The results do, moreover, not strongly improve after chang-
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ing the step size from one day to 1
1000 day.

The estimates based on these approximation schemes are therefore assumed to

be not applicable for the evaluation of the estimation techniques. That is also

the reason why only the results for one parameter set are presented in this

chapter. The estimates based on the data set simulated following the direct

approach are - as mentioned before - at least in the mix MLE case not as bad

as the estimates based on the data sets simulated following the approximating

schemes. The results are still highly imprecise. The estimates are, however, at

least spread around the true parameter values (c.f. table 3.3 and table 3.4).

It is not possible to empirically evaluate to which extent the impreciseness is

caused by numerical impreciseness of the simulation implementation. The re-

sults do, however, suggest that estimation results based on the mix MLE give at

least a rough idea about where the levels of the true parameter are at. The re-

sults based on the LS estimator are even less precise than the mix MLE but still

spread around the true parameter. The estimates of the µ1-parameter based on

the normal ML approach are on the other hand completely wrong.

3.5 Conclusion

This chapter discusses a practicable estimation strategy for reduced form credit

risk models under two measures based on CDS data. The focus lies on the

estimation of the coe�cients under the risk neutral measure Q̂. The presented

simulation results suggests that this estimation strategy performs quite well for

longer time series (N=901). For short series, the estimates seem to be quite

imprecise. The estimation of the parameters under P̂ seems to be quite trou-

blesome. It is not clear whether these di�culties result from the numerically

demanding direct simulation approach or from general impreciseness of the im-

plemented estimation procedures. Approximating simulation schemes however

seem to be even less suited for the evaluation of the discussed estimation pro-

cedures. The results suggest these schemes to lead to simulations that are even

less precise than the ones based on the direct approach.
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Maturity 1Y 3Y 5Y 7Y 10Y
Relative Mean 0.12 −0.029 −7.9× 10−16 0.07 −0.059
Variance 2.33× 10−7 8.17× 10−8 1.27× 10−8 2.34× 10−8 5.27× 10−8

σ2
εAR(3)

5.14× 10−9 1.45× 10−9 1.27× 10−8 5.01× 10−10 4.75× 10−10

Table 3.1: Model Error Variance, Finland

Maturity 1Y 3Y 5Y 7Y 10Y
Relative Mean -0.39 0.25 −4.81× 10−18 -0.09 -0.06
Variance 1.25× 10−3 0.71× 10−3 0 0.92× 10−4 1.95× 10−3

σ2
εAR(3)

9.37× 10−9 2.37× 10−8 0 0.56× 10−7 2.94× 10−7

Table 3.2: Model Error Variance, Poland
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Figure 3.1: Error-ACF for the 1Y-case
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Coe�cient µQ̂
0 µQ̂

1 1-LR σ
Mean, Estimates −1.59× 10−10 −0.461 3.55× 10−10 0.169
True value −2.63e−12 −0.482 3.40× 10−10 0.17
St. Dev., Estimates 1.08e−9 0.028 6.6× 10−10 2.69× 10−3

Table 3.3: Finland, N=901, estimates under Q̂ without AR; n=100; non-
converging: 5

Coe�cient µQ̂
0 µQ̂

0 1-LR σ
Mean, Estimates −2.66e−12 −0.49 3.52× 10−19 0.169
True value −2.63e−12 −0.482 3.40× 10−10 0.17
St. Dev., Estimates 2.06e−14 2.5× 10−14 1.31× 10−15 3.13× 10−15

Table 3.4: Finland, N=901, estimates under Q̂ with AR; n=300; non-converging:
4

Coe�cient µQ̂
0 µQ̂

1 1-LR σ
Mean, Estimates −3.17e−13 -5.36 0.99 0.12
True value −1.89e−13 -5.36 0.99 0.13
St. Dev., Estimates 1.53e−11 3.32e−3 7.81× 10−5 4.52× 10−4

Table 3.5: Poland, N=901, estimates under Q̂ with AR, n=300, non-converging:
0

Coe�cient µQ̂
0 µQ̂

1 LR σ
Mean, Estimates −1.89e−11 -0.16 0.84 0.18
True value −1.89e−13 -5.36 0.99 0.13
St. Dev., Estimates 1.86e−11 2.34× 10−3 4.01× 10−4 2.8× 10−3

Table 3.6: Poland, N=100, estimates under Q̂ with AR; n=150; non-converging:
0
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Quantile 0.01 0.05 0.25 0.5 0.75 0.95 0.99
Mixed MLE µ1 10.18538 11.99 14.27 16.21 18.49 22.11 25.02
MLE µ1 -8.83 -7.15 -5.29 -4.13 -2.99 0.96 0.98
MoM µ1 11.36 13.97 19.75 24.02 28.84 35.92 42.70
Mixed MLE µ0 0.009 0.01 0.011 0.012 0.012 0.013 0.013
MLE µ0 0.0098 0.0103 0.0110 0.0115 0.0120 0.012 0.014
MoM µ0 0.009 0.011 0.014 0.0169 0.019 0.024 0.027

Table 3.7: Estimation under P̂ based on simulations with µ0 : 0.0149 and µ1 :
20.98 and σ: 0.17; Simulated time series: 1000; observations per series: 901.

Quantile 0.01 0.05 0.25 0.5 0.75 0.95 0.99
Mixed MLE µ1 0.001 0.0011 0.011 0.248 0.545 1.096 2.231
MLE µ1 -0.83 -0.56 -0.11 0.05 0.33 0.96 1.87
MoM µ1 -0.072 0.57 1.636 2.605 3.857 6.72 8.687
Mixed MLE µ0 3× 10−4 4× 10−4 0.06 0.14 0.32 0.69 1.26
MLE µ0 5.54e−6 8.56e−5 5.77× 10−2 0.15 0.34 0.7 1.19
MoM µ0 -0.04 0.32 0.93 1.52 2.34 4.21 6.13

Table 3.8: Estimation under P̂ based on simulations with µ0 : 0.5 and µ1 : 0.8
and σ: 0.5; Simulated time series: 1000; observations per series: 901.

Quantile 0.01 0.05 0.25 0.5 0.75 0.95 0.99
Mixed MLE µ1 0.02 0.02 1.4 1.42 418.17 1459.93 2415.73
MLE µ1 0.02 0.02 0.02 0.02 0.02 0.02 0.02
MoM µ1 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Mixed MLE µ0 0 1× 10−3 1× 10−3 0.05 0.56 24.66 25.67
MLE µ0 0.96 0.97 0.97 0.97 0.97 0.98 0.98

Table 3.9: Estimation under P̂ based on simulation approximation scheme with
µ0 : 0.0149 and µ1 : 20.98 and σ: 0.17; Simulated time series: 1000; observations
per series: 901.

Quantile 0.01 0.05 0.25 0.5 0.75 0.95 0.99
Mixed MLE µ0 0.0098 0.0103 0.011 0.0114 0.0119 0.0127 0.0133
MLE µ0 0.0098 0.0103 0.011 0.0115 0.012 0.0128 0.0135
MoM µ0 0.0091 0.0109 0.0144 0.0169 0.0193 0.0236 0.0273
Mixed MLE µ1 10.19 11.99 14.27 16.21 18.49 22.11 25.02
MLE µ1 -8.83 -7.15 -5.29 -4.13 -2.99 0.96 0.98
MoM µ1 11.37 13.97 19.75 24.02 28.84 35.92 42.7

Table 3.10: Estimation under P̂ based on the fully truncation approximation
scheme with µ0 : 0.0149 and µ1 : 20.98 and σ: 0.17; Simulated time series:
1000; observations per series: 901.
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Quantile 0.01 0.05 0.25 0.5 0.75 0.95 0.99
Mixed MLE µ0 0 2.1× 10−5 1.4 1.42 418.17 1459.93 2415.73
MLE µ0 0 0.54× 10−6 4.14× 10−6 3.03× 10−5 0.64× 10−3 1.96× 10−3 2.59× 10−3

MoM µ0 0 −3.15× 10−3 −0.97× 10−3 0.66× 10−3 2.26× 10−3 4.66× 10−3 0.01
Mixed MLE µ1 0 1× 10−3 1× 10−3 1.03× 10−3 0.3 1.04 1.72
MLE µ1 -0.16 -0.1 -0.02 0.02 0.08 0.15 0.22
MoM µ1 -0.27 -0.16 -0.05 0.03 0.12 0.25 0.34

Table 3.11: Estimation under P̂ based on quadratic exponential approximation
scheme with µ0 : 0.0149 and µ1 : 20.98 and σ: 0.17; Simulated time series: 1000;
observations per series: 901.

Quantile 0.01 0.05 0.25 0.5 0.75 0.95 0.99
Mixed MLE µ0 0.02 0.02 1.4 1.42 418.17 1459.93 2415.73
MLE µ0 0.02 0.02 0.02 0.02 0.02 0.02 0.02
MoM µ0 0.008 0.009 0.011 0.011 0.014 0.021 0.022
Mixed MLE µ1 0 1× 10−3 1× 10−3 0.05 0.56 24.66 25.67
MLE µ1 0.96 0.97 0.97 0.97 0.97 0.98 0.98
MoM µ1 0 0 0 0 0.01 0.013

Table 3.12: Estimation under P̂ based on quadratic exponential simulation ap-
proximation scheme with µ0 : 0.0149 and µ1 : 20.98 and σ: 0.17; Simulated time
series: 1000; observations per series: 901.
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Chapter 4
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4.1 Introduction

Sovereign credit spreads became a very frequently cited economic �gure during

the last months and years. The strong increase in certain European countries'

credit costs triggered the current European �nancial crisis by exposing massive

problems of these countries to re�nance themselves at costs they can a�ord in

the long run. The evaluation of policy actions to overcome that problem turned

out to be very di�cult since there seems to be only very little knowledge about

the factors driving European sovereigns' credit spreads.

This chapter analyzes one possible driver of credit spreads during the European

�scal crisis: the risk premium that market participants expect because of uncer-

tainties with respect to the prospective and current default probabilities. This

risk premium does not directly refer to the possibility of a default per se at a

given default probability, but it refers to the possibility of unfavorable correc-

tions regarding the default probability. This premium should consequently be

irrelevant by de�nition, if the default probability were deterministic and directly

observable � even if this default probability was characterized by very high or

increasing levels. An analytical model based de�nition of this premium will be

provided later. It is in this chapter empirically tested whether such a risk pre-

mium has had an impact on both Euro and non-Euro sovereigns' credit costs

during the European �scal crisis. Moreover, the impact of such a risk premium

on correlations between sovereigns' credit costs is analyzed in this context.

The risk premium for uncertainties regarding default probabilities has not been

widely studied in the sovereign context so far and no speci�c term exists, which

is always used to refer to the risk of unfavorable changes in the default proba-

bility1. Longsta� et al. (2011) refer to the �distress risk�, but this term does not

seem to capture the exact meaning of the respective risk dimension. Possible

unexpected changes in default probabilities may be relevant for credit spreads

1In the presented framework, the stochastic development of a Poisson intensity � and not
the default probability per se � is modelled. This does however � as will be elucidated later
on � directly imply a stochastic behavior of the default probability itself.
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even if the concerned unit is not in actual distress. The term �distress� is, more-

over, often used in a di�erent context.

Consequently, another term is introduced and used in this chapter to refer to the

respective risk: the �second dimension risk�. This terminology seems to be ap-

propriate as the respective risk does not refer to the default possibility per se, but

to a second risk dimension caused by the plausibly assumed non-observability

and non-deterministic development of the underlying default probability.

The third section of the present chapter shows why this second dimension risk

might be highly relevant for the development of sovereigns' credit spreads during

the European �scal crisis. In the centre of this argument are surprising insights

into member countries' true �scal situations as well as sudden changes in legal

determinants of the �scal policy in member countries. The empirical analysis is

based on a doubly stochastic reduced form credit risk model introduced by Jar-

row and Turnbull (1995), Lando (1998) respectively Du�e and Singleton (1999).

In the doubly stochastic reduced form framework a unit's default is modelled

as a �rst jump of a Poisson process with the underlying intensity being driven

by a stochastic di�erential equation. The model estimation is based on Euro-

pean sovereign �credit default swap� (CDS) data for the years 2008-2012. The

modelling framework is introduced in section four and the estimation strategy

and results are discussed in section �ve. In this context, the �t of the model

is studied, the results are analyzed with respect to the relevance of the second

dimension risk premium during the �scal crisis and forecasting capacities of the

respective models are studied as well. The next section gives an overview of

related research projects.

4.2 Literature review

The following overview considers two kinds of articles: the ones analyzing pos-

sible determinants of sovereign credit spreads in general and articles focussing

on the relevance of risk premia similar to the one de�ned above in both the cor-
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porate and sovereign context. The following paragraphs focus on the numerous

studies of the �rst kind.

Most of these studies do not consider European sovereigns during the �scal crisis

but other geographic areas or other periods. These studies mostly suggest that

sovereign credit spreads are mainly driven by global �nancial market risk factors

approximated by measures like the implied volatility index VIX (see e.g. Kamin-

sky and Reinhart (2002), Pan and Singleton (2008), respectively Longsta� et al.

(2011), Favero et al. (2010), Hao (2011), Baek et al. (2005), Eichengreen and

Mody (2000), Mauro et al. (2002), Remolona et al. (2008), Geyer et al. (2004)).

In opposition to that, country speci�c economic �gures did not seem to be very

important (see e.g. Alper et al. (2012)).

Most of these studies describe the correlation of sovereign credit spreads as

rather strong (see e.g. Kaminsky and Reinhart (2002)), which is often assumed

to be mainly caused by global �nancial market risk measures being important

drivers of sovereign spreads. The described �ndings are also supported in the

European sovereign context for the years before 2008 (De Santis (2012)). The

explanatory power of variables like the VIX index with respect to European

sovereign credit spreads decreased strongly during the past few years. The co-

movement between spreads of speci�c countries stays high for this period (c.f.

De Santis (2012)). De Santis (2012) suggests that � in the cases of sovereigns

like Portugal, Ireland or Spain � in these years the spread development is in-

stead largely a�ected by contagion e�ects going back to the Greek crisis.

This contagion e�ect may have been enforced by the bank rescue packages and

the related risk transfer from banks to sovereigns (c.f. Ejsing and Lemke (2011)).

A detailed understanding of how that contagion could have worked technically

in the context of the European �scal crisis is, however, still missing. The present

chapter provides evidence on the relevance of the mentioned risk premium and

argues that this risk premium might have been an important driver of these

contagion e�ects.

Among the second group of studies (i.e. the studies that analyze similar kinds

of risk premia in both the sovereign and the corporate context) only very few
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are taking exactly the same type of risk into consideration as the present study.

There are, however, (mainly theoretical) studies dealing with related kinds of

risk as possible drivers of credit spreads. Pouzo and Presno (2011) replicate,

for example, the surprisingly high credit spreads during the Latin �scal crisis in

a general equilibrium model. They do so by factoring in investors' uncertainty

regarding the true probability of borrowers' future endowment states, while as-

suming default probabilities to be in accordance with historical levels. They

talk about an �additional uncertainty risk premium�. Hao (2011) calculates the

di�erence between implied realized volatility in the corporate context. His study

is based on equity options and the realized variance of equity returns for several

countries. He analyzes the impact of this di�erence on the respective corpo-

rates' credit spreads and concludes that the �variance risk premium� is indeed

an important factor for a corporate's credit spreads. These results may explain

the mentioned �ndings that sovereign credit spreads are mainly driven by global

risk factors.

Longsta� et al. (2011) and Pan and Singleton (2008) empirically analyze the

relevance of the risk premium as it is de�ned in the present chapter and � unlike

Pouzo and Presno (2011) and Hao (2011) � refer directly to the risk of correc-

tions regarding current and future default probabilities. Like the present study,

their analysis is like the present study executed in a doubly stochastic reduced

form credit risk model framework. Their results suggest that the analyzed risk

premium is highly relevant for the included sovereigns' credit spreads during

the respective years.

The present analysis is oriented towards the methodology in Pan and Single-

ton (2008) and Longsta� et al. (2011). In opposition to the estimation in the

present chapter, the respective estimations in these studies are not based on

sovereign credit data from the years of the European �scal crisis. The possible

interplay between the events during the European �scal crisis and the examined

risk premium is consequently not analyzed and discussed either. In the present

chapter a convenient and practicable estimation procedure for such a reduced

form model driven by an a�ne process based on credit default swap (CDS) is
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applied. This estimation strategy is based on the modelling choice for the un-

derlying stochastic di�erential equation. Unlike Pan and Singleton (2008) and

Longsta� et al. (2011), an a�ne process was chosen for the present study: the

�CIR� di�usion introduced in the �nance literature by Cox et al. (1985). The

estimation strategy applied in the present chapter uses the characteristics of the

a�ne process class.

The next section discusses why the second dimension risk premium might indeed

have been an important factor for sovereign credit spreads during the European

�scal crisis. First of all, it is argued that this premium may have had an im-

portant impact on European sovereign credit spreads during the last years from

a single country perspective and it is moreover argued that this risk premium

may also have induced higher correlation between sovereign credit spreads dur-

ing these years. This discussion is followed by an introduction to the modelling

framework. The estimation procedure is described afterwards. Then the tech-

nical interpretation of the estimated model is discussed. Finally, the estimation

results are interpreted and the forecast capacities of the estimated models are

evaluated.

4.3 The �second dimension risk premium� and

the European �scal crisis

The second dimension risk might be highly relevant for spreads of both European

countries actually struggling during the �scal crisis and countries which have not

been in acute distress. Revealed uncertainty regarding the current and future �s-

cal situations are an important aspect of the �scal crisis. The Greek government

corrected previously published �scal information signi�cantly2. Moreover, Ger-

many and France violated the putative legally binding upper household de�cit

limit and have not been punished for that.

Both the correction of Greek �scal �gures and the high �scal de�cits of Ger-

2In November 2009, �the Greek government revealed a revised budget de�cit of -12.7% of
GDP for 2009, which was the double of the previous estimate� (c.f. De Santis (2012))
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many and France could have lead to a twofold increase in these countries' credit

spreads: On the one hand, the negative correction of Greek �scal �gures could

have lead to an increase in credit spreads due to an actual increase in the default

probability related to the actual deterioration of the observed �scal situation.

The fact that the presumptions regarding the country's �scal situation are based

on information which turned out to be not very robust could have on the other

hand lead to an increase in the second dimension risk premium as well.

The same line of reasoning holds for the unpunished violation of alleged legal

�scal policy determinants: the fact that the net indebtedness of Germany and

France were higher than originally postulated in the European Stability and

Growth pact should ceteris paribus already have lead to an increase in actual

default probabilities for these countries. The fact, that alleged legal determi-

nants of �scal policies actually do not exist, also leads to higher uncertainty

regarding these countries' future �scal policies and therefore regarding future

default probabilities. This could in turn have lead to another increase in the

second dimension risk premium component.

Events like the ones just described could, moreover, not only explain spread

developments of single countries, but they may also cause or catalyse correla-

tions between di�erent European countries' credit spreads due to the second

dimension risk premium. This is a very important aspect with respect to the

events during the European �scal crisis, since the structure of credit cost time

series were perceived as surprisingly similar for several European sovereigns by

many �nancial market commentators, because �the transmission of the initial

instability goes beyond what could be expected from the normal relationships

between markets or intermediaries, for example in terms of its speed, strength

or scope.� (Constancio (2011)).

A comovement between two countries' credit spreads might be induced by the

existence of a second dimension risk premium if these countries' risk premium

components are driven by common factors. Such a factor might of course be

the market participants' risk appetite itself, but it could as well be a common

source driving the market participants' uncertainty regarding current and fu-
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ture default probabilities of two countries. The second dimension risk premium

might therefore have been an important driver of the mentioned �contagion�

e�ects during the European �scal crisis.

A factor driving the uncertainty regarding the default probabilities of several

countries at the same time could, for example, be the reputation of certain

institutions. By accepting countries as members of the Euro zone, European

institutions likewise implicitly rate both their �scal information and their �scal

stability as su�cient. If it turns out that �scal information published by Euro

zone members needs to be signi�cantly corrected or that the �scal situation of

one country was rated overly optimistic, being accepted as member in the Euro

zone may loose its characteristic as positive signal to market participants. Mar-

ket participants' uncertainty regarding the assessment of the other countries'

�nancial situations could then � due to the induced uncertainty regarding the

countries' true �scal situation � increase, even if the level of other countries'

default probabilities may not be impacted directly by a change in information

with respect to the situation of the �rst country.

The exemplarily described situation could be adapted to the Greek crisis. Mar-

ket participants' perception of the membership in the European monetary union

as a signal for su�cient �scal information quality might have su�ered. Market

participants could have felt more insecure with respect to their anticipation of

European sovereigns' default probabilities and the Greek balance sheet correc-

tions might have lead to a twofold increase in other European sovereigns' credit

spreads: �rst due to real economic e�ects respectively to a related direct actual

increase in the default probabilities in other countries and secondly due to the

second dimension risk respectively higher uncertainty regarding the actual de-

fault probability.

Another example for a factor possibly driving the uncertainty regarding sev-

eral countries' �scal information and stability might be the European Stability

and Growth pact. This arrangement aims to assure the �scal stability of the

Euro zone member countries. The violation of such a legal arrangement by one

country may not only a�ect the investors' uncertainty regarding the true cur-
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rent and future level of default probability with respect to countries violating

the agreement. If the expected consequences for the violating countries are not

put through, the uncertainty whether other countries will be tempted to ignore

the rules increases as well. The market participants' uncertainty with respect to

the other countries' future �scal policies respectively default probabilities should

therefore increase likewise.

The latter situation has already been described before. It is, however, important

to point out that the second dimension risk premium might not only lead to a

disproportionate increase in the spreads of the countries violating the respec-

tive agreement, but it might also lead to a twofold increase in other countries'

spreads: First, the anticipated default probability of these countries may di-

rectly be reassessed as unstable �scal strategies seem to be more likely after the

edge was taken o� an important rule intended to �scally discipline the European

sovereigns. Secondly, the revealed general uncertainty about the �scal policies

may have lead to an increase in the second dimension risk premium � both in the

case of the particular country as well as in the case of the other member coun-

tries. The question whether the unpunished violation of the European Stability

and Growth induced credit spreads correlation between European sovereigns

can, however, not be empirically analyzed in the presented framework as � from

a research perspective unfortunately � there has not been a similar incident

since CDS contracts are frequently enough traded to be the basis of a su�cient

data supply.

Summing up, the second dimension risk premium might have been an important

driver of sovereign credit spreads in Europe. Moreover, it might have been an

important driver of the observed comovement between sovereign credit spreads

respectively the contagion during the European �scal crisis as well.
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4.4 The modelling framework

We consider a measure space (Ω,F1, P ), an index set S 6= ∅3 and the Poisson

process

Poi = (Pois, s ∈ S) (4.1)

driven by the intensity λs. This Poisson process generates a �ltration F1,s:

F1,s = σ{Poit : 0 ≤ t ≤ s} with t ∈ S. The default of a unit is in this model

de�ned as a �rst jump of this Poisson process and the time of the �rst jump

denoted as τ ∈ S is therefore the stopping time for this process as well.

The period of time between a starting time s0 ∈ S and the �rst jump of the

underlying Poisson process are exponentially distributed with the parameter

process λs. No-arbitrage pricing formulas for all kinds of credit risk related se-

curities have been derived based on that and Lando (1998) presents for example

pricing formulas for simple zero bonds.

For this example, a zero bond be de�ned with face value one, issued at time

s0 ∈ S, with a recovery rate 1 − LR (denoting the fraction of the face value

which is paid in the case of default right after the default occurred), matu-

rity M (denoting the number of years until the principal is paid back) with

[s0, s0 +M ] ⊂ S, and payo� Zs for s ∈ S, with Zs0+M = 1 and Zs′ = 0 for all

s′ 6= s0 +M if τ /∈ [s0, s0 +M ] as well as Zτ = 1−LR and Zs′′=0 for all s′′ 6= τ

if τ ∈ [s0, s0 +M ]. Lando (1998) shows that the market price ZBs0,s0+M of

3One time unit refers in the context of the estimation, which is discussed later on, to one
year (and not one day).
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this bond in s0 is for deterministic intensities given by:

ZBs0,s0+M

= Es0
[
e
−

∫ s0+M
s0

rsdsZs|F1,s0

]
(4.2)

= Es0
[
e
−

∫ s0+M
s0

λs+rsds|F1,s0

]
+ (1− LR)

[∫ s0+M

s0

Es0
[
λse
−

∫ s
s0
λu+rudu|F1,s0

]
ds

]
(4.3)

= Es0
[
e
−

∫ s0+M
s0

λQ
s+rfs ds|F1,s0

]
+ (1− LR)

[∫ s0+M

s0

Es0
[
λQs e

−
∫ s
s0
λQ
u+rfudu|F1,s0

]
ds

]
(4.4)

rfs denotes the risk free rate and the resulting discount factor complies with

ZBfs0,s0+m denoting the price of a risk free zero bond issued in s0 with maturity

m. rs denotes the return expected by the investors in this zero bond and λQs

denotes the risk neutral default intensity that allows to switch from rs to rfs .

The �rst component of the sum refers to the actual repayment that is executed

after timeM if the counterparty has not defaulted yet. The payment is therefore

weighted by the respective probability that the default has not occurred yet after

M periods. The second component refers to the payment that is executed if the

counterparty defaults right after the default occurred. The respective amount is

therefore in each point in time weighted by the joint probability that the default

has not occurred yet but occurs right then (c.f. Lando (1998) respectively the

�rst chapter of this dissertation).

This framework is now extended for allowing more general intensities. These

are from now on assumed to be stochastic and to follow a Cox-Ingersoll-Ross

(CIR) di�usion:

dλs = (µ0 − µ1λs) + σ1

√
λsdBs (4.5)

with Bs denoting a Brownian motion and µ0, µ1 and σ1 being constant coe�-

cients. The intensity process generates a �ltration F2,s = σ{λt : 0 ≤ t ≤ s} as
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well with t, s ∈ S. Finally, a �ltration Fs is de�ned as

Fs = σ{F1,s ∨ F2,s}, for all s ∈ S (4.6)

with �∨� in this context denoting the union of σ-�elds respectively �ltrations.

After the introduction of this second uncertainty dimension, the equality of

equation 4.3 and equation 4.4 does not necessarily hold anymore. It may be the

case, that investors' expected returns change because of this particular source

of uncertainty. Switching from λP to λQ would then not be su�cient to adjust

for switching from rs to rfs
4. Accordingly, two further variants of measures with

respect to λQs are introduced: Q̂ and P̂ are introduced. The latter refers to

the actual distribution law of λQs and Q̂ refers to expectations with respect to

(transforms of) λQs so that the pricing formula including a discount rate based

on rfs holds despite of the possible existence of the respective �second dimension�

risk premium. The expectations based on these distribution laws are denoted

by EP̂
s respectively EQ̂

s in the following and one rewrites � following Pan and

Singleton (2008) and Longsta� et al. (2011) � for formulas 4.11 and 4.12:

Es0
[
e
−

∫ s0+M
s0

λs+rsds|Fs0
]

+ (1− LR)

[∫ s0+M

s0

Es0
[
λse
−

∫ s
s0
λu+rudu|Fs0

]
ds

]

= EQ̂
s0

[
e
−

∫ s0+M
s0

λQ
s+rfs ds|F2,s0

]
+ (1− LR)

[∫ s0+M

s0

EQ̂
s0

[
λQs e

−
∫ s
s0
λQ
u+rfudu|F2,s0

]
ds

]
(4.7)

The distinction between the two distribution laws of λQs requires another nota-

tion of the di�usion equations driving λQs under both measures. Following the

literature standard (see e.g. Longsta� et al. (2005), Pan and Singleton (2008),

4It is not guaranteed that this source of risk leads to an increase in the aggregated expected
return. It could be the case that investors pro�ting from increases in default intensities (e.g. as
they sell bonds short or as they are betting on a default by buying credit insurance contracts)
dominate the price setting process. Such outcomes are in the following denoted by the term
�negative risk premia�. The main part of the debate in this chapter is however restricted to
positive market prices of second dimension risk as it seems to be the more relevant scenario.
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Longsta� et al. (2011)), one rewrites the underlying di�usion equations under

the risk neutral measure Q̂ as

dλQs =
(
µQ̂

0 − µ
Q̂
1 λ

Q
s

)
ds+ σ1

√
λQs dB

Q̂
s (4.8)

respectively under the actual measure P̂

dλQs =
(
µP̂

0 − µP̂
1λ

Q
s

)
ds+ σ1

√
λQs dB

P̂
s . (4.9)

If market participants do not expect a speci�c remuneration for taking the un-

certainty regarding λQs , the expectations under P̂ and Q̂ with respect to this risk

neutral intensities respectively the transforms included in these pricing formulas

should not di�er. The opposite is the case, if the change in expected returns

due to this uncertainty is high. The relevance of the �second dimension� risk

premium can be analyzed accordingly based on the coe�cients of these di�usion

equations under both measures.

There are various ways to do that. First, the coe�cients can be evaluated

directly. Alternatively, the coe�cients can be analyzed with reference to the

underlying intensity process. The expectations regarding λQs can be calculated

for various time horizons conditioned on the current value of the underlying

process based on both distribution laws and the di�erence between these ex-

pectations can be evaluated. Moreover, the prices of credit securities can be

calculated based on no-arbitrage pricing formulas like the one introduced with

the respective expectations being based on P̂ and Q̂. In the presented frame-

work, the di�erence in the respective model prices refers to the second dimension

risk premium.

Finally, one can also evaluate the coe�cients based on the Girsanov theorem.

This theorem is often applied in the �eld of quantitative equity modelling and

has been applied in the credit risk context by Pan and Singleton (2008). In this

context, the variable, which � after being transformed based on the Girsanov

theorem � is Radon-Nikodym derivative (to describe the change from the actual
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measure P̂ to the risk neutral measure Q̂) is called �market price of risk�. This

leads to the link between BP̂
s and B

Q̂
s in dependence on this market price of risk

denoted by ηs:

BP̂
s = BQ̂

s +

∫ s

s0

ηudu. (4.10)

Substituting ”dBP̂
s ” by ”dBQ̂

s + ηsds” in the di�usion equations under P̂ results

in

dλQs =
(
µP̂

0 − µP̂
1λ

Q
s

)
ds+ σ1

√
λQs
(
dBQ̂

s + ηsds
)
. (4.11)

Moreover, a speci�c functional form linking ηs and λQs is assumed. The speci�c

form is chosen based on the plausible assumption that the increase in change

in the respective intensity should increase linearly in this intensity's levels (c.f.

Cheridito et al. (2007) and Du�ee (2002)). ηs already goes into the change of

λQs as a factor multiplied by σ1

√
λQs . To obtain a linear form, it is accordingly

assumed that ηs depends on λQs in the following way:

ηs =
ρ0√
λQs

+ ρ1

√
λQs . (4.12)

This results in the actual di�erence in change of λQs being given by

σ1

(
ρ0 + ρ1λ

Q
s

)
(4.13)

which is a linear function in λQs . This implies the following link between ρ0, ρ1

and the CIR coe�cients under both measures:

ρ0 =
µQ̂

0 − µP̂
0

σ1
(4.14)

ρ1 =
µP̂

1 − µ
Q̂
1

σ1
. (4.15)

Accordingly, ηs refers to the change in the deterministic drift induced by a

change from the historical to the risk neutral measure. A positive value for ηs

means that the short term expectations equating the no-arbitrage pricing for-
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mula (4.7) are �pessimistic� compared to the expectations one would get under

the historical measure. This means, for example, in the context of credit insur-

ance, that the insurer expects and insurance buyer agrees to pay an additional

compensation for taking the risk of changes in λQs on the short run. A negative

value would on the other hand, for example, refer to situations where investors

in credit insurance contracts �betting� on the default of a unit on the short run,

are only willing to pay a price below the risk neutral level and this reluctance

dominates the respective risk aversion of the insurance seller side. It is in this

context important to point out, that a positive value of ηs does not necessarily

lead in a complementary �nal risk premium. The di�erence in deterministic

drift only refers to a change in the underlying process for a speci�c point in

time. It is possible that for a wider horizon expected process values are higher

under Q̂ than under P̂ even though ηs is negative and vice versa.

In the following, the estimation of such a model is discussed. Credit insurance

securities are also introduced in the presented framework, because insurance

data is a possible basis for this estimation.

4.5 Data and related transformations of the model

representation

The estimation of such a doubly stochastic reduced form credit risk model can

be acchieved based on any kind of credit related security, but there are two

particularly relevant candidates: historical bond prices issued by a particular

sovereign and historical spreads of �credit default swaps� (CDS) that insure the

buyer against a default of the particular sovereign. The information based on

the latter choice might be a�ected by counterparty risk. A frequently used

argument in this context is that the large number of counterparties enables in-

surance buyers to diversify the counterparty risk to a neglectable level. Fontana

and Scheicher (2010) argue that this is less convincing in the sovereign context

due to the strong linkage between the �nancial industries' and the particular
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sovereigns' �nancial stability. The spreads published are, however, based on

a wide range of institutions located in many di�erent global areas. Here, this

should lead to a strong diversi�cation e�ect despite the strong connection of

�nancial institutions' stability and sovereigns' ability to serve their debt.

The advantage of CDS spreads is the very comfortable data situation. New

contracts referring to one sovereign's default risk are issued on a daily basis for

a whole range of maturities. Bond prices moreover seem to be rather a�ected

by the �ight to liquidity phenomenon as discussed in Longsta� et al. (2005),

Beber et al. (2009) or Fontana and Scheicher (2010). This is in accordance

with the results presented by Alper et al. (2012). They analyze the di�erence

between advanced economies' CDS and �relative asset spreads�5 (RAS) of ad-

vanced economies during the European �scal crisis and �nd that CDS quotes

seem to lead the pricing process of sovereign credit risk. The estimation for this

project is therefore going to be based on CDS data.

The CDS pricing formula can be easily derived in the doubly stochastic reduced

form framework. Considering a contract issued in s0 ∈ S, with maturity M

([s0, s0 +M ] ⊂ S), with spread SPs0(M) to be paid semi-annually and the loss

rate LR de�ned as before. The loss rate complies for CDS with a face value6 of

one with the amount the insurer has to pay in the case of default7. The pricing

formula is, as described in Du�e (1999), given by

SPs0(M)

2M∑
n=1

(
EQ̂
s0

[
e
−

∫ s0+0.5n
s0

λQ
sds|F2,s0

]
ZBfs0,s0+0.5n

)
= LR

[∫ s0+M

s0

ZBfs0,sE
Q̂
s0

[
λQs e

−
∫ s
s0
λQ
udu|F2,s0

]
ds

]
. (4.16)

5Denoting the gap between a particular government yield and the �xed rate arm of an
interest rate swap in the domestic currency with the same maturity.

6Face value refers in the CDS context to the insured amount of money.
7Both the term recovery rate and the term loss rate refer to a fraction with respect to

the face value and not the market value. The ratio of two CDS spreads should therefore not
depend on the loss rate as described in Pan and Singleton (2008). The model, moreover,
implicitly assumes that the loss rate in the pricing formula does not include a risk premium,
in opposition to the risk neutral intensity.
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The left part of the equation gives the expected discounted payo� from the per-

spective of the CDS seller, while the counterpart from the perspective of the

CDS buyer can be seen on the right hand side. The single payment obligations

to be paid by the buyer can here be considered to be zero bonds depending on

the survival of the third party whereas the right hand side refers to a payment

that is executed if the third party defaults and the particular default probability

is only positive if the third party has not defaulted yet. Index s0 refers in this

context not only to the point in time when a single contract is issued, but it is in

turn index for the historical time series of CDS spreads used for the estimation.

The formula is designed for pricing of both sovereign and corporate CDS. Fol-

lowing Du�e et al. (2003), it is assumed that the total default intensity λs com-

bines the probabilities of di�erent kinds of credit events like liquidation events

or restructuring with λs being the sum of intensities referring to one particular

default event. The loss rate is then correspondingly the average of the loss rates

for all the di�erent credit events, weighted by the particular probabilities.

The analysis is executed for several European countries: Spain, Ireland, Ice-

land, Estonia, Finland, Poland. These countries can be classi�ed by di�erent

criteria: membership in the Euro area (this excludes Iceland and Poland) and

countries that have been in acute stress during the crisis (this excludes Finland

and Poland). The spreads for Estonia and Iceland have, moreover, decreased

signi�cantly from the �rst part of the sample to the second part, while the op-

posite can be said about Ireland and Spain. The period which the analysis is

from October 2008 to march 2012. The reason for not taking earlier data is

that historical CDS spread data does not reach back very far as CDS is rather

a new security type. The historical CDS spread time series were supplied by

Thomson-Reuters. The spreads for the particular period are depicted in �g-

ure 4.1. Both the spreads' strong increase during this period and the similarity

in time series patterns is striking.

The prices for risk free zero bonds are approximated by using prices of zero bonds

issued by AAA rated units. These prices are calculated based on the spot rate

curve published by the ECB. The published data points (every three months
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with a range from three months to 30 years) are linked by linear interpolation.

4.6 Estimation and results

The key of the empirical analysis is the estimation and the comparison of the

CIR coe�cients under measure Q̂ and measure P̂. Estimating the distribution

law of λQs under the risk neutral measure Q̂ is a challenging task as a set of

spread time series SPs0i (M) (with s0 denoting the index variable for spreads of

newly issued CDS contracts and i ∈ [1, .., N ] denoting the index variable refer-

ring to the actual observations in a data-set with N observations) and the risk

neutral discount factors ZBfs0i ,s0i+m are the only observable data. The coe�-

cients of the CIR di�usion, a time series λQs0i as well as the loss rate LR have to

be estimated. The estimation procedure is presented in the second chapter of

this dissertation in detail. It is quickly summarized in the following paragraph:

If the underlying CIR di�usion was already well known, one could easily esti-

mate a time series of the intensity process λQs by numerically solving the pricing

formula. The expectations with respect to transforms of future intensity values

could be substituted by formulas which only depend on the intensity's value on

the day the expectation has been built. This could be done by exploiting that

the CIR di�usion process belongs to the class of a�ne processes (c.f. Du�e

et al. (2000)8).

However, the set of CIR coe�cients has still to be estimated. To overcome this

di�culty, it is exploited that CDS spreads are published on a daily basis for a

wide range of maturities. The CDS of di�erent maturities with respect to the

particular unit moreover refer all to the same underlying Poisson process. The

iterative procedure chosen for the present study is based on this wide range of

8Du�e et al. (2000) show that an expectation with respect to certain transforms of a�ne
processes can be substituted by an exponential a�ne function only depending on the value
of the process at the time the expectation is built in. The coe�cients of this exponential
a�ne function are, moreover, solutions to speci�c ordinary di�erential equations (ODEs) only
depending on the coe�cients of the underlying di�usion equation. The analytical solutions to
these ODEs were presented by Longsta� et al. (2005)
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daily issued CDS in the following way:

First, a range of parameters {µ̂Q̂
0 , µ̂

Q̂
1 , σ̂1, L̂R} is assumed ex-ante (c.f. Longsta�

et al. (2005)). A time series of intensities λ̂Qs0i is then estimated based on this set

of assumed coe�cients, the time series of 5-year CDS spreads SPs0i (5) and the

time series of risk neutral discount factors ZBfs0i,s for all maturities [s0i , s] ⊂ S.

The estimated time series is then taken and the sum of squared di�erences

between the model implied CDS spreads (based on these previously estimated

intensities) denoted by ŜP s0i (M) and the observed CDS spreads SPs0i (M)

is minimized for other maturities (1,3,7,10 years) with respect to the set of

coe�cients {µQ̂
0 , µ

Q̂
1 , σ

Q̂
1 , LR}. The particular model spreads are in this context

given by

ŜP s0i (M) =

L̂R

[∫ s0i+M
s0i

ZBfs0i ,s
EQ̂
s0i ,m̂u

Q̂
0 ,m̂u

Q̂
1 ,σ̂1

[
λ̂Qs e

−
∫ s
s0i

λ̂Q
udu|F2,s0i

]
ds

]
∑2M
n=1

(
EQ̂
s0i ,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂1

[
e
−

∫ s0i+0.5n

s0i
λ̂Q
sds|F2,s0i

]
ZBfs0i ,s0i+0.5n

)
(4.17)

where EQ̂
s0i ,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂1

denotes an expectation, which is built in s0i under Q̂ and

depends on the set of coe�cients {µ̂Q̂
0 , µ̂

Q̂
1 , σ̂1}. The newly obtained set of co-

e�cients is afterwards used to re-estimate the time series of intensities based

on the 5-year CDS spread like in the �rst step. This time series is then used

again to re-estimate the set of coe�cients. Both steps are repeated over and

over again until the estimates for coe�cients and intensities converge. Figure

4.2 depicts the Finish estimates for for each single iterations.

The coe�cients under the measure P̂ can then be estimated based on the pre-

viously estimated intensity time series. It can be in this context exploited that

the transition distribution the CIR process is known in closed form. For this

study, the average of the intensities has been chosen as non-parametric estimate

for µ0/µ1. This is reasonable as µ0/µ1 complies with the mean reversion level of

the particular CIR process. µ1 is estimated afterwards via maximum-likelihood

estimation (MLE) based on the previously obtained estimate for µ0/µ1.

Table 4.1 presents the average model errors for all maturities. �Mean in rela-

100



tive di�erence� denotes the average in di�erences between model spreads and

observed spreads:

1

N

∑
i∈[1,..,N ]

ŜP s0i (M)− SPs0i (M)

SPs0i (M)
. (4.18)

The models seem to work very well for the 5-year horizon with the average rela-

tive model error being particular small in all six cases. This result has however

to be interpreted cautiously as the intensity has been estimated based on that

maturity. For Iceland, Ireland, and Finland the relative model error is modest

(17% being the highest) for all maturities. In the Estonian and Polish cases,

the errors are in a modest range for all maturities except 1-year. The �t for

spreads with respect to maturities being higher than the 1-year case is only in

the Spanish case rather disappointing.

It is eye catching that the results for the 1-year case are rather bad in three from

six cases. In the Estonian case, the model even completely fails to replicate the

1-year spread. Summing up one can say that the model has a quite satisfactory

�t for the 3-, 5-, 7- and 10-year maturities. Spain is the only country with

rather disappointing average relative errors (more than 25%) for these maturi-

ties 9. The model does, however, not work very well for the 1-year maturity in

three cases. The relative error is �nally in all six cases particularly small for

the 5-year maturity10. The standard deviation of the model errors is moreover

rather small. This indicates that the model spreads either systematically exceed

the true spreads or that they are systematically below them, instead of �uctu-

ating around them. This could again indicate that the model has di�culties to

replicate the term structure of CDS spreads. The overall �t is however, as said

before, satisfying.

The estimation results for all countries can be found in table 4.2. The number of
9A reason, why the model �t is rather bad in the Spanish case compared to the other

countries rather bad has not been detected. It may, however, be a sign for a structural break.
The detection of such breaks might be a topic for further research.

10This must, however, be interpreted cautiously as the intensities have been estimated based
on this maturity.
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iterations refers to the number of times the model had to be estimated until both

intensities and coe�cients converged. The estimated loss rates di�er strongly

from 0.75 which, according to Pan and Singleton (2008), is the typical assump-

tion in the literature if the loss rate is not estimated itself. This result supports

the suggestion by Pan and Singleton (2008) to estimate the loss rate within the

model framework. They demonstrate in their article that the identi�cation is

assured in this context. In �ve out of six cases (all sovereigns besides Poland)

the loss rates are particularly high, which suggests that � in opposition to total

bankruptcy � migration or rating risks (see e.g. Giesecke et al. (2010)) are not

particularly relevant for the pricing of sovereign CDS. These estimation results

may suggest a border value issue. The values of the objective functions for loss

rates above one or below zero suggest however that the estimation results are

the actual optimal in this model context.

The estimates of µQ̂
1 strongly di�er from the estimates of µP̂

1: the estimated

system is in all six cases mean reverting under P̂ but it is only non-explosive

under Q̂ for Ireland. The estimate of µP̂
1 is in the latter case still higher than its

counterpart under Q̂. Moreover, µ
P̂
0

µP̂
1

is higher than µQ̂
0

µQ̂
1

in all cases besides the

Irish one.

It is di�cult to make general statements about conditional expectations regard-

ing λQs for all possible horizons: the expectations are only for Ireland higher

under Q̂, no matter which value the expectations are conditioned on and which

horizon is chosen. The comparison of µQ̂
1 and µP̂

1 suggests that the expectations

regarding λQs are lower under P̂ than under Q̂ for most � and not all � values

which the expectation is conditioned on.

The coe�cient estimates ρ0 and ρ1 (implied by the estimates for the CIR coef-

�cients) can be found in table 4.2 as well. The estimate for ρ0 is in some cases

negative and in some cases positive, whereas the estimate for ρ1 is always posi-

tive. Both coe�cients being positive implies positive �market prices� of risk ηs

respectively a positive change in deterministic drift for a change from measure

P̂ to Q̂ for all values of λQs (σ1

√
λQs ηs). In opposition to that, the market price

102



of risk can be negative for small values of λQs when ρ1 is negative. This is not

implausible per se. As discussed before, a positive market price of risk refers

to the additional remuneration the insurance buyer agrees on paying for the

insurer to take the risk of an increase in λQs . A decrease in the default intensi-

ties, however, lowers the value of the CDS contract from the perspective of the

insurance buyer. There is � in other words � a second dimension risk for the

insurance buyer as well. In the presented framework, negative market prices of

second dimension risk basically suggest that this reversed second dimension risk

premium dominates the �usual� second dimension risk premium. This may in

fact be particularly relevant in scenarios of particularly low default intensities,

when a decrease in the intensity would make the respectve insurance almost

worthless whereas actual default events are particularly unlikely.

The market price average, which is calculated based on the whole sample period,

respectively the average of the di�erence in the deterministic drift, which is cal-

culated based on the whole sample period is positive in all six cases. This result

is also re�ected by the whole sample average of the di�erence in conditional

expectations for 1-day and 1-year horizons under both measures i.e.

EQ̂
s0i ,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂1

[λQs0i+1/360|F2,s0i
]− EP̂

s0i ,µ̂
P̂
0,µ̂

P̂
1,σ̂1

[λQs0i+1/360|F2,s0i
]

EP̂
s0i ,µ̂

P̂
0,µ̂

P̂
1,σ̂1

[λQs0i+1/360|F2,s0i
]

(4.19)

respectively

EQ̂
s0i ,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂1

[λQs0i+1|F2,s0i
]− EP̂

s0i ,µ̂
P̂
0,µ̂

P̂
1,σ̂1

[λQs0i+1|F2,s0i
]

EP̂
s0i ,µ̂

P̂
0,µ̂

P̂
1,σ̂1

[λQs0i+1|F2,s0i
]

. (4.20)

The average conditional expectations are in all cases higher under Q̂ than under

P̂. The relative di�erences are still rather small for 1-day horizons but increase

tremendously for the 1-year cases. Figures 4.3-4.6 plot the expected Spanish risk

neutral intensities conditioned on the estimated current realization for several

horizons. The short term expectations are not higher under Q̂ for all intensity
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realizations which the expectations are conditioned on. Moreover, they do not

di�er strongly for the 3-day horizon, but there is a signi�cant di�erence for the

10-, 20-, and especially the 360-day horizon. For these horizons, the values vary

signi�cantly less under P̂ than under Q̂. The expectations under Q̂ are for each

date higher than the ones under P̂.

The true model spreads ŜP s0i (M) are on average signi�cantly higher than model

spreads ŜP
P̂
s0i

(M) with the expectations calculated based on P̂:

ŜP
P̂
s0i

(M) =

L̂R

[∫ s0i+M
s0i

ZBfs0i ,s
EP̂
s0i ,µ̂

P̂
0,µ̂

P̂
1,σ̂1

[
λ̂Qs e

−
∫ s
s0i

λ̂Q
udu|F2,s0i

]
ds

]
∑2M
n=1

(
EP̂
s0i ,µ̂

P̂
0,µ̂

P̂
1,σ̂1

[
e
−

∫ s0i+0.5n

s0i
λ̂Q
sds|F2,s0i

]
ZBfs0i ,s0i+0.5n

) .
(4.21)

ŜP
P̂
s0i

(M) is the hypothetical insurance model price, which would be valid as

actual model price, if the uncertainty regarding future default probabilities had

no impact on expected returns. In the following, this �gure is denoted by

�hypothetical model spread�. Table 4.2 contains the based ont the complete

sample averaged values for

ŜP s0i (M)− ŜP
P̂
s0i

(M)

ŜP s0i (M)
(4.22)

as well as the estimated standard deviations of this �gure. The average val-

ues of �gure 4.22 are around 0.9 for four of six cases. The only country with

a rather modest averaged relative deviation of the wrong model spreads from

the true model spreads is Ireland. Ireland is also the only country for which

the hypothetical model spread is at some dates smaller than the actual model

spread. These results suggest accordingly that the second dimension risk pre-

mium has been positive for the other �ve sovereigns during the complete sample

period. Figures 4.7 and 4.8 show the actual and the hypothetical 5-year model

spreads for the Irish and the Polish case. Figures 4.9 and 4.10 show the relative

di�erence between the actual and the hypothetical 5-year model spreads for the

Irish and the Spanish case. Summing up the results referring to the complete
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sample, one can say, that the �second dimension� risk premium seems to be a

very important driver of the included countries' CDS spreads. Based on these

results, it can, however, not be concluded that the second dimension risk seems

to be particularly important in the European currency union: for Poland and

Iceland � i.e. the two non-member countries � the second dimension risk pre-

mium seems to be important as well.

Table 4.2 moreover includes results for the averaged di�erence in the determin-

istic drift σ1

√
λQs ηs for two sub-samples. The sample is divided by the last day

of November 2009. This was the day when signi�cant corrections of Greek �scal

data were announced (c.f. De Santis (2012): in November 2009, �the Greek

government revealed a revised budget de�cit of -12.7% of GDP for 2009, which

was double of the previous estimate�). The results can be subdivided into three

cases: for Ireland, Spain and Finland, the average di�erence changed from being

negative to being positive, for Iceland and Estonia, the opposite is the case and

both values are positive but decreasing for Poland. This re�ects the fact that

the Spanish and Irish spreads are on average signi�cantly higher in the second

sub-sample compared to the values in the �rst sub-sample, whereas the opposite

is the case for Iceland and Estonia.

The strongest relative change in averaged σ1

√
λQs ηs is detected for Ireland and

Spain, the strongest absolute change has been detected for Spain, Ireland and

Poland. This suggests that the changes of spreads, which led to the Spanish and

Irish crisis, were strongly induced by changes in the market price of risk. This

supports the hypothesis that the contagion from Greek to Spain and Ireland

may have indeed catalyzed by the second dimension risk premium. This may

also explain the strong increase in the relative di�erence between actual and

hypothetical spreads (de�ned in equation 4.22) for these two countries (shown

in �gures 4.9 and 4.10), as well as the rather high standard deviations of the

relative di�erences. The estimate for the latter can be found in table 4.2. In

opposition to the Irish and Spanish cases, changes in Icelandic and Estonian

spreads may have rather been driven by other factors, namely problems in the
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Icelandic banking sector and actual �scal di�culties in Estonia.

In addition, correlations between 5-year spreads for all countries as well as cor-

relations between all countries' σ1

√
λQs ηs values are presented in tables 4.3 and

4.5. The correlations of the Euro sovereigns' spreads are not always positive.

The correlations between Irish and Estonian spreads are, for example, distinctly

negative. The correlations between Finland and the non-Euro country Poland

or between Estonia and non-Euro country Iceland are in opposition to that the

highest positive ones. Two further pairs which show a distinct positive corre-

lation are Estonia and Poland as well as Spain and Finland. These results do

not suggest that membership in the Euro currency area leads to stronger cor-

relations between spreads per se and comply with the correlations between the

changes in drift σ1

√
λQs ηs.

The correlations of both �gures have been calculated for both sub-samples. The

di�erence between the resptive correlations can be found in tables 4.4 and 4.6.

The di�erences show, that correlations between both spreads as well as the

changes in drift decreased in all but two cases between the �rst period and the

second period. Only both �gures' correlations between Ireland and Finland re-

spectively Poland increased slightly. The strongest decreases in both �gures'

correlations were found for non-Euro country Iceland. The correlations between

Spain and Ireland also decreased, but not as signi�cantly as for country pairs

including Iceland. The di�erence in correlation between changes in drift for the

Spain and Ireland is particularly low.

The results for the change in spread correlations contradict the hypothesis that

the outbreak of the Greek crisis lead to higher correlations between other Eu-

ropean sovereigns' credit costs. The results regarding the change in the market

price of second dimension risk contradict the hypothesis that the corrections of

Greek �scal balances lead to a stronger relation between the uncertainties re-

garding other European sovereigns' future default probabilities. The correlation

in Spanish and Irish changes in drift decreased, for example, slightly.

Graphs 4.11 and 4.12 show the correlations between the Spanish and Irish
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σ1

√
λQs ηs values for a rolling window with widths of 40 respectively 100 days.

These plots do also not support the hypothesis of changes in correlations between

sovereigns' second dimension risk premiums due to the Greek �scal information

correction. It is instead eye catching that these correlations vary strongly over

time and that there is no stable linear dependency between these two countries'

market prices of second dimension risk. Summing up, one can say that these

correlation results do not support the hypothesis that the Greek �scal balance

corrections have a�ected the interplay between second dimension risk premia

for di�erent countries.

Moreover, the spread values SPs(5) are associated with data for the CBOE

volatility index �VIX�, measuring implied volatility for the S&P 500 stock in-

dex. The VIX index is often used as an approximation for global �nancial

market �nervousness�. Table 4.9 simply contains the adjusted R2 values for the

regressions of the 5 year CDS spread on the VIX index V IXs:

SPs(5) = β0 + β1V IXs + εSP,V IXs (4.23)

The adjusted R2 value for Iceland decreases strongly from the �rst part of the

sample to the second part. In other words, the linear relation between the global

�nancial market nervousness indicator and the spreads has been signi�cantly

stronger during the times of distress. This result seems to re�ect that the �scal

crisis in Iceland has mainly been induced by problems of Icelandic banks. The

adjusted R2 values for Ireland and Spain are rather modest for both sub-samples

compared to the Icelandic value for the �rst sample part, suggesting a relatively

weak linear relation between the VIX index and the respective market price of

risk. The change in this value from the �rst to the second sample is, moreover,

relatively small. In combination with the �nding that the average di�erence in

drift changes more strongly between the two sub-samples for these two countries,

this suggests that the global �nancial market nervousness may not have been

a very important factor for the increases in Spanish and Irish spreads. These

increases rather seem to be induced by an increase in the market price of second
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dimension risk. Moreover, the residuals from the regression of the di�erence of

change in drift σ1

√
λQs ηs on the VIX index are calculated:

σ1

√
λQs ηs = β0 + β1V IXs + ε

σ1(ρ0+ρ1λ
Q
s),V IX

s (4.24)

The residuals' correlations for the whole sample respectively the di�erence in

correlations between both sub-samples are displayed in tables 4.7 and 4.8.

This correlation of the Irish and Spanish change in drift is still high after �l-

tering the variation, which can be linearly explained by the VIX index. This

suggests that the correlation between the market prices of risk is not induced

by the simultaneous impact of the general global �nancial market nervousness.

The correlation induced by changes in the market price of risk might instead go

back to simultaneous changes in the actual uncertainty regarding default inten-

sities.

Graphs 4.13 and 4.14 show the correlations between the Spanish and Irish resid-

uals for a rolling window with widths of 40 respectively 100 days. These �gures

do also not support the hypothesis that the Greek �scal information correction

has lead to changes in the linear dependency of market participants' second

dimension risk perception for all other European sovereigns after the impact

of global market nervousness is �ltered out. It is, however, eye catching that

the variation of these correlations is much weaker than the variation of the cor-

relations between changes in drift, which are plotted in �gures 4.11 and 4.12.

This suggests that there might be � independently from the Greek �scal crisis

� a stably strong linear dependency between the actual perception of these two

countries' second dimension risk.

Finally, the forecasting capacities of the estimated models are analyzed. Fore-

casts are calculated with respect to the �ve horizons: 1, 5, 20, 50 and 100 days.

The forecasts are then compared with actual observed spreads lying outside of

the sample period which the model estimates are based on. The sample hori-

zons for the model estimation reach from October 17, 2008 until April 9, 2012.

The comparison sample reaches from the April 18, 2012 until January 1, 2013.
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The comparison for the 1-day horizon is accordingly based on 190 observations,

while the comparison for the 100-day-horizon is only based on 90 observations

per country.

The estimated models are considered as a possible vehicle for forecasting since

their framework allows to forecast intensities based on its actual distribution

law, separately from the calculation of the spreads. This step is taken after-

wards based on the risk neutral distribution law Q̂. Table 4.10 contains six

�gures per country and per forecast horizon: the average forecast errors, the

average relative forecast errors and the standard deviation of the forecast error

as well as the three counterparts for a naive forecast which is simply based on

the spread value in the respective forecast moment. The results do not sup-

port the idea of using reduced form credit risk models as forecast vehicle. The

forecasts based on the model are only in two out of six cases better than the

naive approach. The naive forecast performs in these cases better with respect

to both average error, relative average error and error standard deviation.

4.7 Concluding remarks

This chapter analyzed the relevance of the �second dimension� risk premium in

the context of the European �scal crisis. It is argued that second dimension risk

may have been a crucial aspect for sovereign credit spreads in the context of this

crisis and a reduced form credit risk model has been estimated to analyze the

relevance of the second dimension risk premium in this context. The empirical

results suggest that the second dimension risk premium is indeed an important

driver for the credit spreads of the included Euro countries � this is however also

the case for the countries, which are not members of the Euro currency area and

are included in the sample. The results support moreover the hypothesis that �

compared to the credit cost variations during the Icelandic and Estonian crises

�the increase of the credit spreads of Spain and Ireland after the beginnings

of the Greek crisis has been rather induced by the second dimension risk pre-

109



mium. A strong increase in the average market price of risk after the corrections

of the Greek �scal balances in both the Spanish and the Irish case suggests that

the second dimension risk premium might have been in opposition to the other

country pairs contagion catalysing for these two particularly troubled countries.

The linear dependency between the uncertainty regarding both sovereigns' fu-

ture default probability seems, moreover, to be strong and time consistent. The

empirical results do not support the hypothesis that the second dimension risk

premium induced contagion among Euro countries in general or that the Greek

�scal balance corrections lead to stronger correlation among other European

sovereigns' second dimension risk premia. Finally, the forecasting capacity of

the model has been evaluated and the results do not support reduced form credit

risk models as forecasting vehicles.
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Figure 4.1: CDS spreads for all sovereigns
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Figure 4.2: Convergence of the estimates - Finland
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Figure 4.3: Expected intensities, conditioned on the actual estimated intensity
realizations, Spain, horizon: 3 days
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Figure 4.4: Expected intensities, conditioned on the actual estimated intensity
realizations, Spain, horizon: 10 days
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Figure 4.5: Expected intensities, conditioned on the actual estimated intensity
realizations, Spain, horizon: 20 days
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Figure 4.6: Expected intensities, conditioned on the actual estimated intensity
realizations, Spain, horizon: 360 days
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Figure 4.7: Actual and hypothetical 5-year model spreads, Poland
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Figure 4.8: Actual and hypothetical 5-year model spreads, Ireland
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Figure 4.9: Relative di�erence in actual and hypothetical model spreads, Ireland
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Figure 4.10: Relative di�erence in actual and hypothetical model spreads, Spain
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Figure 4.11: Correlations of Irish and Spanish changes in drift, rolling window,
width: 40 days
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Figure 4.12: Correlations of Irish and Spanish changes in drift, rolling window,
width: 100 days
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Figure 4.13: Correlations of Irish and Spanish residuals, regression: change of
drift on VIX (equation 4.24, rolling window, width: 40 days
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Figure 4.14: Correlations of Irish and Spanish residuals, regression: change of
drift on VIX (equation 4.24, rolling window, width: 100 days
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1Y 3Y 5Y 7Y 10Y
Finland
Mean in rel di�. 0.12 -0.03 −0.69× 10−16 0.07 -0.06
St.dev. di�erence 4.82× 10−4 2.86× 10−4 4.35× 10−19 1.53× 10−4 2.3× 10−4

Mean in di�erence −2.28× 10−4 −1.29× 10−4 −1.46× 10−19 1.6× 10−4 −1.48× 10−4

Iceland
Mean in rel di�. -0.098 0.11 −1.1× 10−17 -0.07 -0.13
St.dev. di�erence 5.42× 10−3 3.32× 10−3 4.31× 10−18 2.72× 10−3 2.18× 10−3

Mean in di�erence 0.83× 10−3 0.54× 10−3 −1.93× 10−19 −3.17× 10−4 −1.61× 10−3

Poland
Mean in rel di�. -0.39 0.25 −0.99× 10−17 -0.09 -0.06
St.dev. di�erence 1.25× 10−3 0.71× 10−3 1.16× 10−18 0.92× 10−3 1.95× 10−3

Mean in di�erence −1.65× 10−3 1.46× 10−3 −4.81× 10−20 −0.76× 10−3 −0.67× 10−3

�- Estonia
Mean in rel di�. -0.97 0.078 −1× 10−16 -0.21 -0.22
St.dev. di�erence 0.01 1.28× 10−3 2.31× 10−6 2.36× 10−3 1.3× 10−3

Mean in di�erence -0.009 −1.75× 10−4 −1.05× 10−18 −2.56× 10−5 −1.54× 10−3

Spain
Mean in rel di�. -0.66 0.36 −3.46× 10−17 -0.25 -0.43
St.dev. di�erence 2.60× 10−3 0.95× 10−3 1.58× 10−18 0.96× 10−3 1.6× 10−3

Mean in di�erence −1.34× 10−3 2.53× 10−3 −2.96× 10−19 −2.13× 10−3 −3.66× 10−3

Ireland
Mean in rel di�. -0.04 -0.05 −4.35× 10−19 0.03 0.06
St.dev. di�erence 2.28× 10−3 2.28× 10−3 3.2× 10−18 4.27× 10−4 0.94× 10−3

Mean in di�erence −1.1× 10−3 −1.55× 10−3 −1.24× 10−19 3.23× 10−4 0.52× 10−3

Table 4.1: Model Errors
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Country Spain Ireland Iceland

µQ̂0 −1.3× 10−12 1.46× 10−3 −3.32×−17

µQ̂1 −1.97 3.6× 10−3 -6.28

µP̂0 0.032 0.01 5.87e−8

µP̂1 47.34 0.57 50.87
σ 0.25 0.21 0.00085
LR 1 1 0.99
ρ0 -0.13 -0.04 −0.55× 10−3

ρ1 198 2.68 53356
Avg. ηs 0.21 0.05 0.63
Avg. di�. in drift 1.32× 10−3 1.4× 10−3 0.73× 10−7

Pre 11/2009 avg. di�. in drift −1.47× 10−2 −4.72× 10−3 0.54× 10−6

Post 11/2009 avg. di�. in drift 9.33× 10−3 4.45× 10−3 −1.62× 10−7

Avg. di�. in cond. expec. (1D) 5.47e−3 2.2e−4 1.73e−3

Avg. di�. in cond. expec. (1Y) 0.86 0.07 0.98
Avg. rel. di�. in model spreads11 0.92 0.06 0.98
St. Dev. Avg. rel. di�. in model spreads 0.06 0.53 3× 10−7

Iterations 48 41 185

Country Finland Poland Estonia

µQ̂0 −2.64× 10−12 −1.9× 10−13 −7.52×−15

µQ̂1 -0.48 -5.35 -5.35

µP̂0 0.015 0.0048 4.62× 10−6

µP̂1 20.98 0.42 6.79
σ 0.17 0.13 3.03e−3

LR 0.99 0.03 0.91
ρ0 -0.087 -0.04 −1.48× 10−3

ρ1 126 45.32 3880

Avg. ηs 0.076 4.5 1.41
Avg. di�. in drift 3.43× 10−4 0.06 3.63× 10−6

Pre 11/2009 mean di�. in drift −1.14× 10−4 0.1 1.34× 10−5

Post 11/2009 mean di�. in drift 5.71× 10−4 0.04 −1.26× 10−6

Avg. rel. di�. in cond. expec. (1D) 1.34e−3 1.48e−2 1.47e−2

Avg. rel. di�. in cond. expec. (1Y) 0.38 0.98 0.97
Avg. rel. di�. in model spreads 0.65 0.97 0.9
St. Dev. Avg. rel. di�. in model spreads 0.16 0.002 4.5× 10−6

Iterations 18 201 31

Table 4.2: Estimation results under both measures
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Notation:

• Avg. ηs: Refers to the average value for ηs over the complete sample.

• Avg. di�. in drift: Average of σ1

√
λQs0i ηs. This refers to the di�erence

in the deterministic drift under P̂ compared to Q̂, i.e. a negative value

characterizes a higher (i.e. more positive) deterministic drift under Q̂.

• Avg. rel. di�. in cond. exp. refers to the average relative di�erence in ex-

pectations of the intensity conditioned on the respective current value with

a one day (1D) respectively (1Y) horizon (i.e.
EQ̂

s0i
,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂1

[λQ
s0i

+1/360
]−EP̂

s0i
,µ̂P̂0,µ̂

P̂
1,σ̂1

[λQ
s0i

+1/360
]

EP̂
s0i

,µ̂P̂0,µ̂
P̂
1,σ̂1

[λQ
s0i

+1/360
]

respectively
EQ̂

s0i
,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂1

[λQ
s0i

+1]−EP̂
s0i

,µ̂P̂0,µ̂
P̂
1,σ̂1

[λQ
s0i

+1]

EP̂
s0i

,µ̂P̂0,µ̂
P̂
1,σ̂1

[λQ
s0i

+1]
).

• Rel. di�. in model spreads refers to the relative deviation of the 5-

year model spread with expectations calculated based on Q̂ (i.e.ŜP s0i (5))

from the 5-year model spread with expectations calculated based on P̂

(i.e.ŜP
P̂
s0i

(5)) - this means:
average(ŜP s0i

(5))−average(ŜP P̂
s0i

(M))

average(ŜP s0i
(5))
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Ireland Finland Poland Iceland Estonia Spain
Ireland 1 0.55 0.18 -0.59 -0.42 0.68
Finland 0.55 1 0.83 0.13 0.32 0.58
Poland 0.18 0.83 1 0.54 0.72 0.24
Iceland -0.59 0.13 0.54 1 0.93 -0.49
Estonia -0.42 0.32 0.72 0.93 1 -0.39
Spain 0.68 0.58 0.24 -0.49 -0.39 1

Table 4.3: Correlations of spreads

Ireland Finland Poland Iceland Estonia Spain
Ireland 0 -0.11 -0.04 1.13 0.57 0.38
Finland -0.11 0 0.04 1.23 0.43 0.05
Poland -0.04 0.04 0 1.14 0.35 0.07
Iceland 1.13 1.23 1.14 0 0.51 1.06
Estonia 0.57 0.43 0.35 0.51 0 0.45
Spain 0.38 0.05 0.07 1.06 0.45 0

Table 4.4: Di�erence in correlations of spreads pre 11/2009 vs post 11/2009

121



Ireland Finland Poland Iceland Estonia Spain
Ireland 1 0.54 0.04 -0.58 -0.33 0.84
Finland 0.54 1 0.65 0.14 0.39 0.59
Poland 0.04 0.65 1 0.49 0.8 0.05
Iceland -0.58 0.14 0.49 1 0.87 -0.59
Estonia -0.33 0.39 0.8 0.87 1 -0.37
Spain 0.84 0.59 0.05 -0.59 -0.37 1

Table 4.5: Correlations σ1

√
λQs ηs

Ireland Finland Poland Iceland Estonia Spain
Ireland 0 -0.07 -0.01 1.17 0.68 0.13
Finland -0.07 0 -0.06 1.22 0.45 -0.01
Poland -0.01 -0.06 0 0.81 0.3 0.01
Iceland 1.17 1.22 0.81 0 0.39 1.25
Estonia 0.68 0.45 0.3 0.39 0 0.64
Spain 0.13 -0.01 0.01 1.25 0.64 0

Table 4.6: Di�erence in correlations of σ1

√
λQs ηs pre 11/2009 vs post 11/2009

122



Ireland Finland Poland Iceland Estonia Spain
Ireland 1 0.7 0.19 -0.65 -0.27 0.83
Finland 0.7 1 0.56 -0.28 0.15 0.75
Poland 0.19 0.56 1 0.15 0.71 0.2
Iceland -0.65 -0.28 0.15 1 0.69 -0.66
Estonia -0.27 0.15 0.71 0.69 1 -0.33
Spain 0.83 0.75 0.2 -0.66 -0.33 1

Table 4.7: Correlations ε
σ1(ρ0+ρ1λ

Q
s),V IX

s

Ireland Finland Poland Iceland Estonia Spain
Ireland 0 0.01 0.13 1.14 0.95 0.19
Finland 0.01 0 0.06 1.04 0.99 -0.15
Poland 0.13 0.06 0 0.2 0.46 0.05
Iceland 1.14 1.04 0.2 0 -0.31 1.01
Estonia 0.95 0.99 0.46 -0.31 0 0.94
Spain 0.19 -0.15 0.05 1.01 0.94 0

Table 4.8: Correlations ε
σ1(ρ0+ρ1λ

Q
s),V IX

s Period 1 - Period 2

complete sample �rst sample snd. sample
Ireland 0.04 −0.78× 10−3 0.08
Finland 0.16 0.4 0.19
Poland 0.49 0.49 0.33
Iceland 0.56 0.7 −1.64× 10−3

Estonia 0.62 0.63 0.18
Spain 0.01 0.15 0.21

Table 4.9: adjusted R2 regression 4.23
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1D 5D 20D 50D 100D
Finland
Mean error 0 1.36× 10−4 0.82× 10−3 1.58× 10−3 1.35× 10−3

Rel. mean err. 0 0.04 0.23 0.39 0.39
Mean err. st.dv. 0 0.54× 10−4 2.42× 10−4 3.74× 10−4 0.68× 10−3

Mean error naive 0 4.89× 10−5 2.47× 10−4 0.75× 10−3 1.28× 10−3

Rel. mean err. naive 0 0.01 0.07 0.19 0.36
Mean err.naiv st.dv. 0 1.7× 10−5 0.78× 10−4 1.33× 10−4 3.26× 10−4

Iceland
Mean error 0 0.99× 10−4 −4.93× 10−3 -0.01 -0.01
Rel. mean err. 0.19 0.01 -0.39 -0.73 -0.81
Mean err. st.dv. 0 1.01× 10−3 0.56× 10−3 1.22× 10−3 0.96× 10−3

Mean error naive 0 −1.95× 10−3 -0.01 -0.01 -0.01
Rel. mean err. naive 0.19 -0.16 -0.6 -0.98 -0.93
Mean err.naiv st.dv. 0 0.94× 10−4 1.42× 10−4 4.9× 10−4 1.8× 10−3

Poland
Mean error 0 0.86× 10−3 1.16× 10−3 1.35× 10−3 −1.35× 10−3

Rel. mean err. 0 3.7× 10−4 3.64× 10−4 2.07× 10−3 1.32× 10−3

Mean err. st.dv. 0 3.7× 10−4 3.64× 10−4 2.07× 10−3 1.32× 10−3

Mean error naive 0 −0.63× 10−4 −1.53× 10−5 2.15× 10−5 0.84× 10−4

Rel. mean err. naive 0.1 -0.01 −1.69× 10−3 2.11× 10−3 0.01
Mean err.naiv st.dv. 0 0.71× 10−4 1.8× 10−4 1.79× 10−4 3.45× 10−4

Estonia
Mean error 0 −1.31× 10−4 −1.01× 10−3 −2.76× 10−3 -0.01
Rel. mean err. 0 -0.02 -0.2 -0.52 -0.96
Mean err. st.dv. 0 1.58× 10−5 1× 10−4 4.69× 10−4 3.53× 10−4

Mean error naive 0 −1.53× 10−4 −0.67× 10−3 −2.22× 10−3 −3.75× 10−3

Rel. mean err. naive 0 -0.03 -0.13 -0.42 -0.71
Mean err.naiv st.dv. 0 1.29× 10−5 1.06× 10−4 2.13× 10−4 0.59× 10−3

Spain
Mean error 0 3.84× 10−3 0.01 0.01 0.01
Rel. mean err. 0.18 0.21 0.35 0.54 0.57
Mean err. st.dv. 0 1.95× 10−3 1.14× 10−3 1.99× 10−3 1.95× 10−3

Mean error naive 0 0.52× 10−3 2.49× 10−3 0.01 0.01
Rel. mean err. naive 0.18 0.03 0.14 0.26 0.34
Mean err.naiv st.dv. 0 3.42× 10−4 3.52× 10−4 0.93× 10−3 1.94× 10−3

Ireland
Mean error 0 −1.9× 10−3 −1.6× 10−3 2.92× 10−4 −4.97× 10−3

Rel. mean err. -0.07 -0.08 -0.07 0.01 -0.2
Mean err. st.dv. 0 0.97× 10−3 1.36× 10−3 4.02× 10−3 2.89× 10−3

Mean error naive 0 0.54× 10−4 −1.12× 10−5 3.77× 10−4 1× 10−3

Rel. mean err. naive -0.07 2.15× 10−3 −4.54× 10−4 0.01 0.04
Mean err.naiv st.dv. 0 2.5× 10−4 0.5× 10−3 0.54× 10−3 0.67× 10−3

Table 4.10: Forecast Errors
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Appendix A

R-Code � Estimation of the

intensity process and the

parameter set under the risk

neutral measure

library(pracma)

library(deSolve)

library(base)

# load interest rate and CDS data

IR <- read.table("IR.txt")

sp <- read.table("countryXY.spreads.txt", header=TRUE)

# calculate the semi annually paid spread payments (original data is annualized)

sp[,2:dim(sp)[2]] <- sp[,2:dim(sp)[2]]*0.5*0.0001
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IR2 <- IR2*0.01

IR <- IR2

# interest rate interpolation

zins <- function(g) {

if (g < 1/12) {

z <- 1/12

}

else {

z <- g

}

dip <- ( 1/ ((1+ ( (IR2[teim,floor(z*12)])* ( (z*12)-floor(z*12) ) ) + (

(IR2[teim,(floor(12*z)+1)] ) * (1- ( (z*12)-floor(12*z) ) ) ) )^g ) )

return(dip)

}

R <- IR[,1]

# create matrix to save risk free discount factors required to calculate the left

#hand side of the CDS pricing formula

rfreeleft <- matrix(data = NA, nrow = length(R), ncol = 20, byrow = FALSE)

# calculate the particular discount factors

for (i in 1:length(R)) {

for (j in 1:20) {

teim <- i

rfreeleft[i,j] <- zins(j*0.5)

}

}

# create vector to save estimated intensities

wlichkeit <- c(1:(dim(sp)[1]-1))
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###################################

# determine the period the estimation is based on

timeframe <- c(1, 901)

##################################

# adjust the length of all vectors / dimension of all matrices to the determined

# timeframe

rfreeleft <- rfreeleft[timeframe[1]:timeframe[2],]

wlichkeit <- wlichkeit[timeframe[1]:timeframe[2]]

sp <- sp[timeframe[1]:timeframe[2],]

R <- R[timeframe[1]:timeframe[2]]

IR2 <- IR2[timeframe[1]:timeframe[2],]

IR <- IR2

# the interest function shall be defined for horizon "zero". The interest rate

# matrix is adjusted accordingly

nullgeschichte <- matrix(data=NA,nrow=nrow(IR),ncol=ncol(IR)+1)

nullgeschichte[,1] <- IR[,1]

nullgeschichte[,2:ncol(nullgeschichte)] <- IR

IR <- nullgeschichte

IR2 <- IR

# Generate a vector / matrix to save the estimated intensities and coefficients

# for each estimation step

parametermatrix <- matrix(data = NA, nrow = 250, ncol = 4, byrow = FALSE)

wlichkeitmatrix <- matrix(data = NA, nrow =timeframe[2]-timeframe[1]+1 , ncol =

250, byrow = FALSE)
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# determine starting values

sig1 <- -0.0001

sig2 <- -0.5

loss <- 0.05

lossr <- 0.05

diffpa <- 0.1

# generate parameter vector

sigma <- c(sig1,sig2,loss,diffpa)

# start the estimation procedure

for (z in 1:250) {

# generate parameter vector for each iteration step

parameters <- c(sigma[1], sigma[2], sigma[3], sigma[4])

# generate functions which the substitutes for the expectations in the pricing

#formula depend on

dingsb <- ((2*((parameters[4])^2)+((parameters[2])^2))^0.5)

kapdings <- (parameters[2]+dingsb)/(parameters[2]-dingsb)

A <- function(te) {

exp(parameters[1]*te*(parameters[2]+dingsb)/(parameters[4]^2)) * ((1-kapdings)/

(1-(kapdings*exp(dingsb*te))))^(2*parameters[1]/(parameters[4]^2))

}

B <- function(te) {

(((parameters[2]-dingsb)/(parameters[4]^2))+(2*dingsb/((parameters[4]^2)*(1-

(kapdings*exp(te*dingsb))))))

}

G <- function(te) {
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(parameters[1]/dingsb)*(exp(dingsb*te)-1)*exp(parameters[1]*(parameters[2]+dingsb)*

te/(parameters[4]^2))*(((1-kapdings)/(1-kapdings*exp(dingsb*te)))^((2*parameters[1]

/(parameters[4]^2)) + 1) )

}

H <- function(te) {

exp((parameters[1]*(parameters[2]+dingsb)+(dingsb*(parameters[4]^2)))*te/(parameters[4]^2))

*((1-kapdings)/(1-kapdings*exp(dingsb*te)))^((2*parameters[1]/(parameters[4]^2)) + 2)

}

# determine the maturity for the 5-year contract

frist <- 5

# calculate the corresponding number of days

fristtage <- frist*364

# calculate for each sample day the intensity based on the 5-year CDS spread and

#the respective CDS spreads

for (p in 1:(timeframe[2]-timeframe[1]+1)) {

# choose the 5-year CDS spread for the particular day

spread <- sp[p,4]

# calculate the vector of discount factors required for the calculation of the left

#hand side of the CDS pricing formula in the 5-year case

linksr <- rfreeleft[p,1:(2*frist)]

# choose the row of the interest-rate matrix for the respective date "p"

reit <- IR2[p,]

# generate the discount function that interpolates the monthly available interest-
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#rates for the respective day

zins <- function(g) {

if (g < (1/12)) {

z <- 1/12

}

else {

z <- g

}

dip <- ( 1/ ((1+ ( (reit[floor(z*12)])* ( (z*12)-floor(z*12) ) ) + (

(reit[(floor(12*z)+1)] ) * (1- ( (z*12)-floor(12*z) ) ) ) )^g ) )

return(dip)

}

# generate a vector for the singly payments associated to the left hand side of

#the pricing formula

links1 <- c(1:(2*frist))

# generate a function that gives the deviation from the model spread and the actual

#spread for the particular day "p"

checks <- function(x) {

# calculate the left hand side of the left hand side of the pricing value

for (i in 1:(2*frist)) {

links1[i] <- zins(i*0.5)*A(i*0.5)*exp(B(i*0.5)*x)

}

links <- sum(links1)*0.5*spread

# calculate the left hand side of the right hand side of the pricing value

rechts1 <- function(tet) {

zins(tet)*exp(B(tet)*x)*(G(tet)+H(tet)*x)
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}

rechts <- ((1-parameters[3])*(gauss_kronrod(Vectorize(rechts1),0,frist)$value))

# return deviation from the right hand side and the left hand side of the pricing

# equation

return(links - rechts)

}

# calculate the intensity value equating the pricing formula

# negative intensity values are not logical. The estimated intensity values are at

#these days substituted by zero

if (checks(0) <=0 ) {

uni <- 0

} else {

uni <- uniroot(checks, c(0,1),tol=.Machine$double.eps^4)$root

}

wlichkeit[p] <- uni

}

# save intensity vector in intensity matrix for the particular estimation step

wlichkeitmatrix[,z] <- wlichkeit

# choose the maturities which the estimation of the new set of CIR-parameters is

#based on
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vergleichfristen <- c(1,3,7,10)

# create a matrix that only contains the spreads the estimation of the spreads

# the estimation is based on

spreadmatrix <- matrix(data = NA, nrow = (timeframe[2]-timeframe[1]+1), ncol =

length(vergleichfristen), byrow = FALSE)

spreadmatrix[,1] <- sp[1:(timeframe[2]-timeframe[1]+1),2]

spreadmatrix[,2] <- sp[1:(timeframe[2]-timeframe[1]+1),3]

spreadmatrix[,3] <- sp[1:(timeframe[2]-timeframe[1]+1),5]

spreadmatrix[,4] <- sp[1:(timeframe[2]-timeframe[1]+1),6]

sigma <- c(sig1,sig2,loss,diffpa)

rm('frist')

rm('fristtage')

rm('sig1')

rm('sig2')

rm('lossr')

rm('between')

rm('spread')

rm('epsilon')

# create scalar to save the deviation of the model spread from the actual spread

epsilon <- 0

buff <- 0

# create functions that gives the deviation in dependence on the set of CIR-parameters

checks2 <- function(x) {

parameters[1] <- x[1]*x[2]

parameters[2] <- x[1]
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parameters[3] <- x[3]

parameters[4] <- x[4]

# create new set of functions for the substitutions of the expectations contained

# in the pricing formula (based on the undetermined set of CIR-parameters

dingsb <- ((2*((parameters[4])^2)+((parameters[2])^2))^0.5)

kapdings <- (parameters[2]+dingsb)/(parameters[2]-dingsb)

A <- function(te) {

exp(parameters[1]*te*(parameters[2]+dingsb)/(parameters[4]^2)) * ((1-kapdings)/

(1-(kapdings*exp(dingsb*te))))^(2*parameters[1]/(parameters[4]^2))

}

B <- function(te) {

(((parameters[2]-dingsb)/(parameters[4]^2))+(2*dingsb/((parameters[4]^2)*(1-

(kapdings*exp(te*dingsb))))))

}

G <- function(te) {

(parameters[1]/dingsb)*(exp(dingsb*te)-1)*exp(parameters[1]*(parameters[2]+dingsb)*

te/(parameters[4]^2))*(((1-kapdings)/(1-kapdings*exp(dingsb*te)))^((2*parameters[1]/

(parameters[4]^2)) + 1) )

}

H <- function(te) {

exp((parameters[1]*(parameters[2]+dingsb)+(dingsb*(parameters[4]^2)))*te /(parameters[4]^2))

*((1-kapdings)/(1-kapdings*exp(dingsb*te)))^((2*parameters[1]/(parameters[4]^2)) + 2)

}

# calculate the aggregated deviations of the model spreads from the observed spreads

# based on the undetermined coefficients

for (n in 1:length(vergleichfristen)) {
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frist <- vergleichfristen[n]

links1 <- c(1:(2*frist))

for (p in 1:(timeframe[2]-timeframe[1]+1)) {

spread <- spreadmatrix[p,n]

intens <- wlichkeit[p]

reit <- IR2[p,]

zins <- function(g) {

if (g < 1/12) {

z <- 1/12

}

else {

z <- g

}

dip <- ( 1/ ((1+ ( (reit[floor(z*12)])* ( (z*12)-floor(z*12) ) ) + (

(reit[(floor(12*z)+1)] ) * (1- ( (z*12)-floor(12*z) ) ) ) )^g ) )

return(dip)

}

for (i in 1:(2*frist)) {

links1[i] <- zins(i*0.5)*A(i*0.5)*exp(B(i*0.5)*intens)

}

links <- sum(links1)*0.5
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rechts1 <- function(tet) {

zins(tet)*exp(B(tet)*intens)*(G(tet)+H(tet)*intens)

}

rechts <- (1-parameters[3])* (gauss_kronrod(Vectorize(rechts1),0,frist)$value)

epsilon <- epsilon + ((spread-(rechts/links))^2)

}

}

# return the aggregated deviations

return(epsilon)

}

# minimze the function that gives the deviation from model spreads from the actual

#spreads with respect to the set of parameters

a <- matrix(c(0,1,0,0,0,0,1,0,0,0,-1,0,0,0,0,1),nrow=4,ncol=4,byrow=TRUE)

b <- c(0,0,-1,0)

res2gmm <- constrOptim(c(sigma[2],sigma[1]/sigma[2],sigma[3],sigma[4]), checks2,

NULL , ui = a, ci = b)

# save estimation results and use them to estimate a new time series of intensities

sig1 <- res2gmm$par[1]*res2gmm$par[2]

sig2 <- res2gmm$par[1]

loss <- res2gmm$par[3]

lossr <- loss

diffpa <- res2gmm$par[4]
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sigma <- c(sig1,sig2,lossr,diffpa)

# save estmiation results of the respective iteration in the estmiation result matrix

parametermatrix[z,] <- sigma

}
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