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Abstract

We consider the problem of estimating an additive regression function in an inverse regres-

sion model with a convolution type operator. A smooth backfitting procedure is developed

and asymptotic normality of the resulting estimator is established. Compared to other meth-

ods for the estimation in additive models the new approach neither requires observations on

a regular grid nor the estimation of the joint density of the predictor. It is also demonstrated

by means of a simulation study that the backfitting estimator outperforms the marginal in-

tegration method at least by a factor two with respect to the integrated mean squared error

criterion.

Keywords: inverse regression; additive models; curse of dimensionality; smooth backfitting

Mathematical subject classification: Primary: 62G20; Secondary 15A29

1 Introduction

In this paper we consider the regression model

Yk = g(Xk) + εk k ∈ {1, ..., N},(1.1)
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where ε1, ..., εN are independent identically distributed random variables and X1, . . . ,XN are inde-

pendent identically distributed d-dimensional predictors with components Xk = (Xk,1, . . . , Xk,d)
T

(k = 1, . . . , N). We assume that the function g is related to a signal θ by a convolution type

operator, that is

g(z) =

∫
Rd

ψ(z− t)θ(t)dt,(1.2)

where ψ : Rd → R is a known function with
∫
Rd ψ(t)dt = 1. The interest of the experiment is

the nonparametric estimation of the signal θ. Models of the type (1.1) and (1.2) belong to the

class of inverse regression models and have important applications in the recovery of images from

astronomical telescopes or fluorescence microscopes in biology. Deterministic inverse regression

models have been considered for a long time in the literature [Engl et al. (1996), Saitoh (1997)].

However, in the last decade statistical inference in ill-posed problems has become a very active

field of research [see Bertero et al. (2009), Kaipio and Somersalo (2010) for a Bayesian approach

and Mair and Ruymgaart (1996), Cavalier (2008) and Bissantz et al. (2007) for nonparametric

methods].

While most of these methods have been developed for models with a one-dimensional predictor,

nonparametric estimation in the multivariate setting is of practical importance because in many

applications one has to deal with an at least two-dimensional predictor. A typical example is

image reconstruction since a picture is a two-dimensional object. Also in addition to the spatial

dimensions, the data might depend on the time thus introducing a third component. For a

multivariate predictor the estimation of the signal θ in the inverse regression model (1.1) is a

much harder problem due to the curse of dimensionality. In direct regression usually qualitative

assumptions regarding the signal such as additivity or multiplicativity are made, which allow the

estimation of the regression function at reasonable rates [see Linton and Nielsen (1995), Mammen

et al. (1999), Carroll et al. (2002), Hengartner and Sperlich (2005), Nielsen and Sperlich (2005)].

In the present paper we investigate the problem of estimating the signal θ in the inverse regression

model with a convolution type operator under the additional assumption of additivity, that is

θ(x) = θ0 + θ1(x1) + ...+ θd(xd),(1.3)

where x = (x1, . . . , xd)
T . In a recent paper Hildebrandt et al. (2013) proposed an estimator of the

signal θ if observations are available on a regular grid in Rd. They also considered the case of a

random design and investigated the statistical properties of a marginal integration type estimate

with known density of the predictor. The asymptotic analysis of both estimates is based on these

rather restrictive assumptions regarding the predictor X. A regular grid or explicit knowledge of

the density of the predictor X might not be available in all applications. Moreover, estimation

of this density in the marginal integration method cannot be performed at one-dimensional rates

[see Hildebrandt et al. (2013)]. In particular it changes the asymptotic properties of additive

estimates such that the signal cannot be reconstructed with one-dimensional nonparametric rates.
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In the present paper we consider the construction of an estimate in the inverse additive regression

model (1.3) with random design, which is applicable under less restrictive assumptions in particular

without knowledge of the density of the predictor. For this purpose we combine in Section 2 smooth

backfitting [see Mammen et al. (1999)] with Fourier estimation methods in inverse regression

models [see Diggle and Hall (1993) or Mair and Ruymgaart (1996)]. Besides several advantages of

the smooth backfitting approach observed in the literature in direct regression models [see Nielsen

and Sperlich (2005)], the backfitting methodology only requires the estimation of the marginal

densities of the predictor. As a consequence, the resulting estimate does not suffer from the curse

of dimensionality. Section 3 is devoted to the investigation of the asymptotic properties of the new

estimator, while we study the finite sample properties by means of a simulation study in Section

4. In particular we demonstrate that the smooth backfitting approach results in estimates with an

at least two times smaller integrated mean squared error than the marginal integration method.

Finally, all proofs and technical arguments are presented in Section 5.

2 Smooth backfitting in inverse regression

Note that the linearity of the convolution operator and assumption (1.3) imply that the function

g is also additive, and consequently the model (1.1) can be rewritten as

Yk = g0 + g1(Xk,1) + ...+ gd(Xk,d) + εk,(2.1)

where Xk = (Xk,1, . . . , Xk,d)
T and the functions g0, g1, . . . , gd in model (2.1) are related to the

components θ0, θ1, . . . , θd of the signal θ in model (1.3) by g0 = θ0,

gj(zj) =

∫
R
ψj(zj − t)θj(t)dt j = 1, . . . , d.(2.2)

Here ψj is the marginal of the convolution function ψ, that is

ψj(tj) =

∫
Rd−1

ψ(t)dt−j(2.3)

and t = (t1, ..., td)
T ∈ Rd, t−j = (t1, . . . , tj−1, tj+1, . . . , td)

T ∈ Rd−1. The estimation of the additive

signal is now performed in several steps and combines Fourier transform estimation methods for

inverse regression models [see Diggle and Hall (1993) or Mair and Ruymgaart (1996)] with the

smooth backfitting technique developed for direct nonparametric regression models [see Mammen

et al. (1999)].

(1) We assume for a moment that the design density is known and denote by fj and Fj the

density and cumulative distribution function of the jth marginal distribution of the random

variable X. In a first step all explanatory variables are transformed to the unit cube by
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using the probability transformation in each component, that is

Zk,j = Fj(Xk,j) j = 1, . . . , d; k = 1, . . . , N.(2.4)

This transformation is necessary because of two reasons. On the one hand, the asymptotic

analysis of methods based on Fourier estimation requires with positive probability observa-

tions at points Xk with a norm ‖ Xk ‖ converging to infinity, because one has to estimate

the Fourier transform of the function gj on the real axis. On the other hand, the asymp-

totic analysis of the smooth backfitting method requires a distribution of the explanatory

variables with a compact support.

In practice the unknown marginal distributions of the predictor are estimated by standard

methods and this estimation does not change the asymptotic properties of the statistic. We

refer to Remark 2.1 for more details.

(2) The transformation in Step (1) yields the representation

Yk = g0 + g∗1(Zk,1) + · · ·+ g∗d(Zk,d) + εk ; k = 1, . . . , N,(2.5)

where the functions g∗j are defined by g∗j = gj ◦ F−1j (j = 1, . . . , d). We now use the smooth

backfitting algorithm [see Mammen et al. (1999)] to estimate each function g∗j in (2.5) from

the data (Z1,1, ..., Z1,d, Y1), . . . , (ZN,1, ..., ZN,d, YN). This algorithm determines estimates of

the components g0, g
∗
1, . . . , g

∗
d recursively, where ĝ0 = Y . = 1

N

∑N
k=1 Yk. For starting values

ĝ
∗(0)
1 , . . . , ĝ

∗(0)
d we calculate for r = 1, 2, . . . the estimators ĝ

∗(r)
1 , . . . , ĝ

∗(r)
d by the recursive

relation

ĝ
∗(r)
j (zj) = ĝ∗j (zj)−

∑
k<j

∫
ĝ
∗(r)
k (zk)

[ p̂jk(zj, zk)
p̂j(zj)

− p̂k,[j+](zk)
]
dzk(2.6)

−
∑
k>j

∫
g
∗(r−1)
k (zk)

[ p̂jk(zj, zk)
p̂j(zj)

− p̂k,[j+](zk)
]
dzk − g∗0,j .

Here

(2.7) ĝ∗j (zj) =

∑N
k=1 L

(
Zk,j−zj
hB

)
Yk∑N

k=1 L
(
Zk,j−zj
hB

)
denotes the one-dimensional Nadaraya-Watson estimator of the jth component (with kernel

L and bandwidth hB), p̂jk and p̂j are the (j, k)th and jth marginals of the common kernel
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density estimator p̂ for the density p of the predictor (Z1, ..., Zd)
T , and we use the notation

p̂k,[j+](zk) =

∫
p̂jk(zj, zk)dzj

[ ∫
p̂j(zj)dzj

]−1
g∗0,j =

∫
ĝ∗j (zj)p̂j(zj)dzj∫
p̂j(zj)dzj

.(2.8)

(3) Estimators of the functions gj in (2.1) are now easily obtained by the transformation

(2.9) ĝj = ĝ
∗(r0)
j ◦ Fj,

where ĝ
∗(r0)
j denotes the estimator obtained after terminating the recursive relation (2.6) at

step r0 (j = 1, . . . , d). In order to recover the signal θj from ĝj we now introduce the random

variables

Uk,j = Yk −
d∑
i=1
i 6=j

ĝi(Xk,i)− ĝ0(2.10)

and use the data (X1,j, U1,j), . . . , (XN,j, UN,j) to estimate the jth component θj of the signal

θ by Fourier transform estimation methods [see Diggle and Hall (1993) for example]. For

this purpose we note that the relation (2.2) implies for the Fourier transforms Φgj and Φθj

of the functions gj and θj the relation

Φθj =
Φgj

Φψj

,

where

Φψj
(w) =

∫
R
ψj(x)eiwxdx

is the Fourier transform of the jth marginal of the convolution function. Now the Fourier

transform Φgj(w) of the function gj is estimated by its empirical counterpart

Φ̂gj(w) =
1

N

N∑
k=1

eiwXk,j
Uk,j

max{fj(Xk,j), fj(
1
aN

)}
,(2.11)

where fj is the density of the jth marginal distribution and aN is a real valued sequence

converging to 0 as N →∞. The estimator of θ̂j is now obtained from a “smoothed” inversion

of the Fourier transform, that is

θ̂j(xj) =
1

2π

∫
R
e−iwxjΦK(hw)

Φ̂gj(w)

Φψj
(w)

dw,(2.12)
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where ΦK is the Fourier transform of a kernel K and h is a bandwidth converging to 0 with

increasing sample size.

(4) Finally, the additive estimate of the signal θ is given by

θ̂(x) = θ̂0 + θ̂1(x1) + ...+ θ̂d(xd),(2.13)

where θ̂0 = ĝ0 = Y . and θ̂j is defined in (2.12) for j = 1, . . . , d.

Remark 2.1

(a) Note that we use the term max{fj(Xk,j), fj(
1
aN

)} in the denominator of the estimate (2.11)

instead of the more intuitive term fj(Xk,j). This “truncation” avoids situations where the

denominator becomes too small, which would yield unstable estimates with a too large

variance.

(b) In practical applications knowledge of the marginal distributions might not be available and

in this case the transformation (2.4) can be achieved by

Ẑk,j = F̂j(Xk,j); j = 1, . . . , d; k = 1, . . . , N,(2.14)

where for j = 1, . . . , d

F̂j(x) =
1

N + 1

N∑
k=1

I{Xk,j ≤ x}

denotes the empirical distribution function of the jth components X1,j, ..., XN,j. Similarly,

the density fj in (2.11) can be estimated by kernel density methods, that is

f̂j(xj) =
1

Nhd,j

N∑
k=1

M
(Xk,j − xj

hd,j

)
; j = 1, . . . , d,(2.15)

where M denotes a kernel and hd,j is a bandwidth proportional to N−1/5. We note that the

estimators F̂j and f̂j converge uniformly to Fj and fj at rates ( log logN
N

)1/2 and ( logN
Nhd,j

)1/2,

respectively [see van der Vaart (1998), Giné and Guillou (2002)]. The rates of convergence

in inverse deconvolution problems are slower and consequently the asymptotic properties of

the estimates θ̂j do not change if fj and Fj are replaced by their empirical counterparts f̂j
and F̂j defined in (2.14) and (2.15), respectively.

3 Asymptotic properties

In this section we investigate the asymptotic properties of the estimators defined in Section 2. In

particular we establish weak convergence. For this purpose we require the following assumptions
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(A1) The kernel L in the Nadaraya-Watson estimator ĝ∗j in the backfitting recursion (2.6) is

symmetric, Lipschitz continuous and has compact support, say [−1, 1]. The bandwidth hB
of this estimator is proportional to N−1/5.

(A2) E[|Yj|α] <∞ for some α > 5
2
.

(A3) The functions g1, . . . , gd in model (2.1) are bounded and twice differentiable with Lipschitz

continuous second order derivatives.

(A4) The Fourier transforms Φψj
of the marginals ψj of the convolution function ψ satisfy∫

R

|ΦK(w)|
|Φψj

(w
h

)|
dw ≤ C1h

−βj ,

∫
R

|ΦK(w)|2

|Φψj
(w
h

)|2
dw ∼ C2h

−2βj ,∣∣∣∣∣1h
∫ ∫

e−iw(x−xj)/h
ΦK(w)

Φψj
(w
h

)
dw

fj(x)

max{fj(x), fj(
1
aN
}
dx

∣∣∣∣∣ = o(h−2β−1)

uniformly with respect to xj for some constants βj > 0 (j = 1, . . . , d) and constants

C1, C2, C3 > 0, where the constant C3 does not depend on xj.

(A5) The Fourier transform ΦK of the kernel K is symmetric and supported on the interval [−1, 1].

Additionally there exists a constant b ∈ (0, 1] such that ΦK(w) = 1 for all w ∈ [−b, b], b > 0,

and |ΦK(w)| ≤ 1 for all w ∈ R

(A6) The Fourier transforms Φθ1 , . . . ,Φθd of the functions θ1, . . . , θd in the additive model (1.3)

satisfy ∫
R
|Φθj(w)||w|s−1dw <∞ for some s > 1 and j = 1, ..., d.

(A7) The functions g1, ..., gd defined in model (2.2) satisfy∫
R
|gj(z)||z|rdz <∞ for j = 1, ..., d

for some r > 0 such that ar−1N = o(hβj+s).

(A8) For each N ∈ N let X1, ...,XN denote independent identically distributed d-dimensional

random variables with marginal densities f1, ..., fd (which may depend on N) such that

fj(x) 6= 0 for all x ∈ [− 1
aN
, 1
aN

]. We also assume that F−1j exists, where Fj is the distribution

function of X1,j. Furthermore we assume, that for sufficiently large N ∈ N

fj(x) ≥ fj(
1

aN
) whenever x ∈ [− 1

aN
,

1

aN
],

for all j = 1, . . . , d.
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(A9) If fijk(ti, tj|tk) and fij(ti|tj) denote the densities of the conditional distribution PXi,Xj |Xk

and PXi|Xj , respectively, we assume that there exist integrable functions (with respect to the

Lebesgue measure), say Uijk : R2 → R , ηij : R→ R, such that the inequalities

fijk(ti, tj|tk) ≤ Uijk(ti, tj) ; fij(ti|tj) ≤ ηij(ti)

are satisfied for all ti, tj, tk ∈ R.

Remark 3.1 Assumption (A1) - (A3) are required for the asymptotic analysis of the backfitting

estimator, while (A4) - (A8) are used to analyze the Fourier estimation methods used in the second

step of the procedure. In order to demonstrate that these assumptions are satisfied in several cases

of practical importance we consider exemplarily Assumption (A4) and (A6).

(a) To illustrate Assumption (A4) the convolution function ψ and the kernel K are chosen as

ψj(x) =
λ

2
e−λ|x|; K(x) =

sin(x)

πx
,

respectively. Furthermore we choose fj as density of a uniform distribution on the interval

[− 1
aN
, 1
aN

] and consider exemplarily the point xj = 0. Note that ΦK(w) = I[−1,1](w). The

integrals in (A4) are obtained by straightforward calculation, that is∫
R

|ΦK(w)|
|Φψj

(w
h

)|
dw =

∫
[−1,1]

(
1 +

w2

h2

)
dw =

2

3h2
+ 2

∫
R

|ΦK(w)|2

|Φψj
(w
h

)|2
dw =

∫
[−1,1]

(
1 +

w2

h2

)2

dw =
2

5h4
+

4

3h2
+ 2

1

h

∫
[−1/aN ,1/aN ]

∫
[−1,1]

e−iw(x−x
∗
j )/h

ΦK(w)

Φψj
(w
h

)
dw

fj(x)

max{fj(x), fj(
1
aN
}
dx

=
2

h

∫
[−1/aN ,1/aN ]

((h2(x2 − 2) + x2) sin(x
h
) + 2hx cos(x

h
))

hx3
dx

=
−2aN cos( 1

aNh
) + 2a2Nh sin( 1

aNh
) + 2hSi( 1

aNh
)

h

and Si(x) denotes the sine-integral
∫ x
0

sin(y)
y
dy. This shows that condition (A4) is satisfied.

(b) In order to illustrate Assumption (A6) let Wm(R) denote the Sobolev space of order m ∈ N,

then the assumption θj ∈ W s(R) with s ∈ N\{1} implies condition (A6). Conversely, if

(A6) holds with s ∈ N\{1}, then θj is (s− 1) times continuously differentiable [see Folland

(1984)]. In other words, (A6) is an assumption regarding the smoothness of the components

of the signal θj (j = 1, . . . , d).
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Our main result, which is proved in the Appendix, establishes the weak convergence of the esti-

mator θ̂j for the jth component of the additive signal in model (1.3). Throughout this paper the

symbol ⇒ denotes weak convergence.

Theorem 3.2 Consider the additive inverse regression model defined by (1.1) - (1.3). If Assump-

tions (A1) - (A8) are satisfied and additionally the conditions

N1/2hβj+1/2fj(
1

aN
)1/2 →∞(3.1)

N1/2h3/2fj(
1

aN
)3 →∞, N1/5hs+βjfj(

1

aN
)→∞(3.2)

are fulfilled, then a standardized version of the estimator θ̂j defined in (2.12) converges weakly,

that is

V
−1/2
N,j

(
θ̂j(xj)− E[θ̂j(xj)]

)
⇒ N (0, 1),

where

E[θ̂j(xj)] = θj(xj) + o(hs−1),

and the normalizing sequence is given by

VN,j =
1

Nh2(2π)2

∫
R

∣∣∣∣∫
R
e−iw(xj−y)/h

ΦK(w)

Φψj
(w
h

)
dw

∣∣∣∣2 (g2j (y) + σ2)fj(y)

max{fj(y), fj(
1
aN

)}2
dy(3.3)

and satisfies

N1/2hβj+1/2fj

(
1

aN

)1/2

≤ V
−1/2
N,j ≤ N1/2hβj+1/2.(3.4)

As a consequence of Theorem 3.2 we obtain the weak convergence of the additive estimate θ̂ of

the signal θ.

Remark 3.3 If all components except one would be known, it follows from Theorem 3.1 in

Hildebrandt et al. (2013) that this component can be estimated at a rate RN satisfying

c1
N1/2h1/2+βj

≤ Rn ≤
c2

N1/2h1/2+βjfj(a
−1
N )

(with appropriate constants c1 and c2). Consequently, it follows from Theorem 3.2 that the smooth

backfitting operator θ̂j defined in (2.12) has an oracle property and estimates the jth component

at the one-dimensional rate.

Corollary 3.4 Consider the inverse regression model defined by (1.1) - (1.3) and assume that the

assumptions of Theorem 3.2 are satisfied for all j = 1, . . . , d. Then a standardized version of the
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the additive estimator θ̂ defined in (2.13) converges weakly, that is

V
−1/2
N

(
θ̂(x)− E[θ̂(x)]

)
⇒ N (0, 1).

Here

E[θ̂(x)] = θ(x) + o(hs−1),

and the normalizing factor is given by VN =
∑d

j=1 VN,j +
∑

1≤k 6=l≤d VN,k,l, where VN,j is defined in

(3.3),

VN,k,l =
1

Nh2(2π)2

∫
R

∫
R
e−iw(xk−y)/h

ΦK(w)

Φψk
(w
h

)
dw

∫
R
e−iw(xl−z)/h

ΦK(w)

Φψl
(w
h

)
dw

× (σ2 + gk(y)gl(z))fk,l(y, z)

max{fk(y), fk(
1
aN

)}max{fl(y), fl(
1
aN

)}
d(y, z),

and fk,l denotes the joint density of the pair (Xk,1, Xl,1). Moreover VN satisfies

N1/2hβj∗+1/2fj∗

(
1

aN

)1/2

≤ V
−1/2
N ≤ N1/2hβj∗+1/2.

where j∗ = argminjh
βjfj(1/aN).

4 Finite sample properties

In this section we briefly investigate the finite sample properties of the new backfitting estimators

by means of a small simulation study. We also compare the two estimators obtained by the

marginal integration method with the backfitting estimator proposed in this paper. All results

are based on 500 simulation runs. For the sake of brevity we concentrate on three models with a

two-dimensional predictor and two distributions for the predictor. To be precise we consider the

models

θ(x1, x2) = θ1(x1) + θ2(x2) = e−(x1−0.4)
2

+ e−(x2−0.1)
2

,(4.1)

θ(x1, x2) = θ1(x1) + θ2(x2) = x1e
−|x1| + (1 + x22)

−1,(4.2)

θ(x1, x2) = θ1(x1) + θ2(x2) = e−|x1| + (1 + x22)
−1,(4.3)

and assume that the convolution function is given by

ψ(x1, x2) =
9

4
e−3(|x1|+|x2|).(4.4)

Note that the signals in (4.1) and (4.2) satisfy the assumptions posed in Section 3, while this is

not the case for the first component of the signal (4.3). For the distribution of the explanatory
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variable we consider an independent and correlated case, that is

a uniform distribution on the square [1/aN , 1/aN ]2(4.5)

a two-dimensional normal distribution with mean 0 and variance Σ =

(
1 1√

2
1√
2

1

)
(4.6)

The sample size is N = 701, the variance is given by σ2 = 0.25 and for the sequence aN we used

0.5. In the simulation the bandwidths are chosen in several (nested) steps. At first the bandwidths

hd,j in (2.15) are calculated minimizing the mean integrated squared error of the density estimate.

These bandwidths are used in the calculation of the mean integrated squared error of the estimate

ĝj in (2.9), which is then minimized with respect to the choice of hB. The final step consists of

a calculation of the bandwidth h minimizing the mean integrated squared error of the resulting

inverse Fourier transform (2.12). In practice this procedure of the mean squared error requires

knowledge of the quantities fj, gj and for a concrete application we recommend to mimic these

calculations by cross validation.

In Figures 1 - 3 we present the estimated mean curves for both components corresponding to model

(4.1) - (4.3) respectively. Upper parts of the tables show the results for independent components

of the predictor, where the case of correlated explanatory variables is displayed in the lower panels.

The figures also contain the (pointwise) estimated 5% and 95%-quantile curves to illustrate the

variation of the estimators. We observe that in models (4.1) and (4.2) both components are

estimated with reasonable precision [see Figure 1 and 2]. The estimators are slightly more accurate

under the assumption of an independent design where the differences are more substantial for the

estimators of the second component. The differences between the uncorrelated and correlated case

are even more visible for model (4.3), for which the results are displayed in Figure 3. Here we

observe that the first component is not estimated accurately in a neighborhood of the origin. This

is in accordance with our theoretical analysis, because the first component in model (4.3) does

not satisfy the assumptions made in Section 3. Consequently, the resulting estimates of the first

component are biased in a neighbourhood of the origin. On the other hand, the second component

satisfies these assumptions and the right panels of Figure 3 show that the second component can

be estimated with similar precision as in model (4.1) and (4.2).

In order to compare the new method with the marginal integration method proposed in Hilde-

brandt et al. (2013) we finally display in Table 1 the simulated integrated mean squared error of

both estimators for the models (4.1) - (4.3). We observe in the case of independent predictors

that the backfitting approach yields an improvement of 50% with respect to the integrated mean

squared error criterion. Moreover, in the situation of dependent predictors as considered in (4.6)

the improvement is even more substantial and varies between a factor 3 and 4. We expect that

the advantages of the backfitting methodology are even larger with an increasing dimension of the

predictor X.
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Figure 1: Simulated mean, 5%- and 95% quantile of the backfitting estimate on the basis of 500
simulation runs, where model is given by (4.1) and the design is given by (4.5) (upper panel) and
(4.6) (lower panel). Left part θ1; right part: θ2.
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Figure 2: Simulated mean, 5%- and 95% quantile of the backfitting estimate on the basis of 500
simulation runs, where model is given by (4.2) and the design is given by (4.5) (upper panel) and
(4.6) (lower panel). Left part θ1; right part: θ2.
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Figure 3: Simulated mean, 5%- and 95% quantile of the backfitting estimate on the basis of 500
simulation runs, where model is given by (4.3) and the design is given by (4.5) (upper panel) and
(4.6) (lower panel). Left part θ1; right part: θ2.
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design (4.5) (4.6)

model (4.1) (4.2) (4.1) (4.2)

θ̂1 0.00179 0.00189 0.00500 0.00353

θ̂2 0.00154 0.00258 0.00488 0.00345

θ̂MI
1 0.00347 0.00365 0.02219 0.00934

θ̂MI
2 0.00311 0.00354 0.01917 0.01092

Table 1: Simulated mean integrated squared error of the smooth backfitting estimator θ̂j (j = 1, 2)

proposed in this paper and of the marginal estimator θ̂MI
j proposed by Hildebrandt et al. (2013).
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5 Appendix: Proof of Theorem 3.2

Let p denote the density of the transformed predictor (Z1,1, . . . , Z1,d)
T . It is shown in Mam-

men et al. (1999) that the smooth backfitting algorithm (2.6) produces a sequence of estimates

(ĝ
∗(r)
1 , . . . , ĝ

∗(r)
d )r=0,1,... converging in L2(p) with geometric rate to a vector (g1, . . . , gd) which sat-

isfies the system of equations

gj(zj) = ĝ∗j (zj)−
∑
k 6=j

∫
gk(zk)

[ p̂jk(zj, zk)
p̂j(zj)

− p̂k,[j+](zk)
]
dzk − g∗0,j j = 1, . . . , d,(5.1)

where g∗0,j is defined in (2.8). Therefore the asymptotic properties of the smooth backfitting

operator can be investigated replacing in (2.11) the random variables Uk,j defined in (2.10) by

their theoretical counterparts

Ũk,j = Yk −
d∑
i=1
i 6=j

g̃i(Xk,i)− ĝ0,

where g̃i(Xk,i) = ḡi(Zk,i) (i = 1, . . . d; k = 1, . . . , N) and g̃i = ḡi ◦F (i = 1, . . . , d). This yields the

representation

Ũk,j = gj(Xk,j) + εk +
d∑
i=1
i 6=j

(gi(Xk,i)− g̃i(Xk,i)) = gj(Xk,j) + εk +Bj,k,N ,(5.2)

where the last equality defines the random variables Bj,k,N in an obvious manner. The results of

Mammen et al. (1999) imply

Bj,k,N = Op(N
−1/5)(5.3)

uniformly with respect to j ∈ {1, . . . , d} and k ∈ {1, . . . , N}.

The assertion of Theorem 3.2 is now proved in four steps establishing the following statements:

bθ̂j(xj) = E[θ̂j(xj)]− θj(xj) = o(hs−1)(5.4)

Var(θ̂j(xj)) = VN,j(1 + o(1))(5.5)

Vn,j satisfies (3.4)(5.6)

|cuml(V
−1/2
N,j θ̂j(xj))| = o(1) for all l ≥ 3(5.7)

where VN,j is the normalizing factor defined in (3.3) and cuml denotes the lth cumulant [see

Brillinger (2001)].

Proof of (5.4): We first determine the expectation of the estimator θ̂j observing that the
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estimator θ̂j is linear, i.e.

θ̂j(xj) =
N∑
k=1

wj,N(xj, Xk,j)Ũk,j,(5.8)

where the weights wj,N(xj, Xk,j) are defined by

wj,N(xj, Xk,j) =
1

2πNh

∫
R
e−iw(xj−Xk,j)/h

ΦK(w)

Φψj
(w
h

)
dw

1

max{fj(Xk,j), fj(
1
an

)}
,(5.9)

and we have replaced the quantities Uk,j by Ũk,j as described at the beginning of the proof. This

representation gives

E[θ̂j(xj)] = E1 + E2,(5.10)

where the terms E1 and E2 are defined by

E1 = E
[ N∑
k=1

gj(Xk,j)wj,N(xj, Xk,j)
]
, E2 = E

[ N∑
k=1

Bj,k,Nwj,N(xj, Xk,j)
]
.(5.11)

Using the definition of Bj,k,N and (5.3) the term E2 can be estimated as follows

|E2| ≤ E
[ N∑
k=1

d∑
i=1
i 6=j

|gi(Xk,i)− g̃i(Xk,i)|max
k
|wj,N(xj, Xk,j)|

]
(5.12)

≤ C

hβj+1fj(
1
aN

)
E
[ d∑
i=1
i 6=j

|gi(Xk,i)− g̃i(Xk,i)|
]
≤ C

N1/5hβj+1fj(
1
aN

)
= o(hs−1),

where we used the representation (5.9) and Assumption (A4). The second inequality in (5.12)

follows from the fact that

E[|gi(Xk,i)− g̃i(Xk,i)|] = O(N−1/5).(5.13)

In order to establish this statement note that gi(Xk,i) − g̃i(Xk,i) = OP (N−1/5) (uniformly with

respect to k = 1, ..., N). The proof of the L1-convergence follows along the lines of the proof of

the stochastic convergence in Mammen et al. (1999). Here one additionally shows in each step of

the backfitting iteration stochastic convergence and L1- convergence [see Hildebrandt (2013) for

details].
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Similarly, we obtain from the definition of the weights wj,N(xj, Xk,j) in (5.9) the representation

E1 =
1

2πh

∫
R
gj(y)

∫
R
e−iw(xj−y)/h

ΦK(w)

Φψj
(w
h

)
dw

fj(y)

max{fj(y), fj(
1
aN

)}
dy(5.14)

=
1

2πh

∫
R

Φgj

(w
h

)
e−iwxj/h

ΦK(w)

Φψj
(w
h

)
dw

− 1

2πh

∫
R
gj(y)

∫
R
e−iw(xj−y)/h

ΦK(w)

Φψj
(w
h

)
dw
(

1− fj(y)

max{fj(y), fj(
1
aN

)}

)
dy ,

= θj(xj)− F1 − F2,

where the terms F1 and F2 are defined by

F1 =
1

2πh

∫
R

Φθj

(w
h

)
e−iwxj/h (1− ΦK(w)) dw,

F2 =
1

2πh

∫
R
gj(y)

∫
R
e−iw(xj−y)/h

ΦK(w)

Φψj
(w
h

)
dw
(

1− fj(y)

max{fj(y), fj(
1
aN

)}

)
dy,

respectively. The term F1 can be estimated using Assumption (A6), that is

|F1| ≤
1

2πh

∫
R
|Φθj

(w
h

)
|1− ΦK(w)|dw ≤ 1

πh

∫
[−b,b]c

|Φθj

(w
h

)
|dw

≤ 1

π

∫
[−b/h,b/h]c

1

|y|s−1
|y|s−1|Φθj(y)|dy

≤ hs−1

bs−1π

∫
[−b/h,b/h]c

|y|s−1|Φθj(y)|dy = o(hs−1),

while the term F2 is estimated similarly, using Assumption (A4), (A7) and (A8) that is

|F2| ≤
1

2πh

∫
R
|gj(y)|

∫
R

|ΦK(w)|
|Φψj

(w
h

)|
dw
∣∣∣1− fj(y)

max{fj(y), fj(
1
aN

)}

∣∣∣dy
≤ 1

2πh

∫
([−1/aN ,1/aN ])c

|gj(y)|dy
∫
R

|ΦK(w)|
|Φψj

(w
h

)|
dw = O

(
arN
h1+βj

)
= o(hs−1).

From these estimates and (5.14) we obtain E1 = θj(xj) + o (hs−1) , and the assertion (5.4) now

follows from the decomposition (5.10) and (5.12).

Proof of (5.5): Using standard results for cumulants [see Brillinger (2001)] the variance of the

estimate θ̂j can be calculated as

Var(θ̂j(xj)) = S1 + S2 + S3 + 2S4 + 2S5 + 2S6,(5.15)
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where

S1 =
N∑
k=1

N∑
l=1

cum
(
εkwj,N(xj, Xk,j), εlwj,N(xj, Xl,j)

)
S2 =

N∑
k=1

N∑
l=1

cum
(
gj(Xk,j)wj,N(xj, Xk,j), gj(Xl,j)wj,N(xj, Xl,j)

)
S3 =

N∑
k=1

N∑
l=1

cum
(
Bj,k,Nwj,N(xj, Xk,j), Bj,l,Nwj,N(xj, Xl,j)

)
S4 =

N∑
k=1

N∑
l=1

cum
(
εkwj,N(xj, Xk,j), gj(Xl,j)wj,N(xj, Xl,j)

)
S5 =

N∑
k=1

N∑
l=1

cum
(
εkwj,N(xj, Xk,j), Bj,l,Nwj,N(xj, Xl,j)

)
S6 =

N∑
k=1

N∑
l=1

cum
(
gj(Xk,j)wj,N(xj, Xk,j), Bj,l,Nwj,N(xj, Xl,j)

)
.

It is easy to see that S4 = 0 because of E[εk] = 0 and the independence of εk and Xk. We will

show that the first two terms S1 and S2 determine the variance and that the terms S3, S5 and S6

are of smaller order. For a proof of the latter result we concentrate on the sixth term because the

results for the terms S3 and S5 can be treated analogously.

As εk, εl, Xk,j and Xl,j are independent for k 6= l the term S1 can be written as

Ncum
(
εkwj,N(xj, Xk,j), εkwj,N(xj, Xk,j)

)
= Ncum

(
εk, εk

)
cum

(
wj,N(xj, Xk,j), wj,N(xj, Xk,j)

)
+ Ncum

(
εk, εk

)
cum

(
wj,N(xj, Xk,j)

)
cum

(
wj,N(xj, Xk,j)

)
,

where we used the product theorem for cumulants and E[εk] = 0. Now a straightforward calcula-

tion gives

S1 =
σ2

Nh2(2π)2

∫
R

∣∣∣∫
R
e−iw(xj−y)/h

ΦK(w)

Φψj
(w
h

)
dw
∣∣∣2 fj(y)

max{fj(y), fj(
1
aN

)}2
dy · (1 + o(1)).

The second summand in (5.16) can be calculated in the same way and we obtain

S2 =
1

Nh2(2π)2

∫
R

∣∣∣∫
R
e−iw(xj−y)/h

ΦK(w)

Φψj
(w
h

)
dw
∣∣∣2 g2j (y)fj(y)

max{fj(y), fj(
1
aN

)}2
dy · (1 + o(1)).

In a last step we investigate the sixth summand of (5.16) (the other terms S3 and S5 are treated

in the same way). By the product theorem and the definition of the cumulants we obtain for this
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term

S6 = −
∑
k 6=l

d∑
i=1
i 6=j

Cov
(
gj(Xk,j)wj,N(xj, Xk,j), gi(F (Xl,i))wj,N(xj, Xl,j

)
· (1 + o(1)),

where we used the definitions of Bj,l,N =
∑

i 6=j(gi(Xl,i)− g̃i(Xl,i)) and gi = g̃i ◦F−1i . We introduce

the weights

qmj(Xl,i) =
L
(Fj(Xm,i)−Fj(Xl,i)

hB

)∑N
s=1 L

(Fj(Xs,i)−Fj(Xl,i)

hB

) l,m = 1, ..., N ; i = 1, ..., d,

denote by

ĝ∗i (Fi(Xl,i)) =
N∑
m=1

qmi(Xl,i)Ym l = 1, ..., N ; i = 1, ..., d(5.16)

the one-dimensional Nadaraya-Watson estimator from the data Fi(X1,i), . . . , Fi(XN,i) evaluated

at the point Fi(Xl,i) and define

vmi(Xl,i, zm) =
p̂im(Fi(Xl,i), zm)

p̂i(Fi(Xl,i))
− p̂m,[i+](zm) i,m = 1, ..., d; l = 1, ..., N

as the integrand in equation (5.1). This yields for the term S6 the decomposition

S6 = (B − A)(1 + o(1)),(5.17)

where the terms A and B are defined by

A =
∑
k 6=l

d∑
i=1
i 6=j

Cov
(
gj(Xk,j)wj,N(xj, Xk,j), wj,N(xj, Xl,j)

N∑
m=1

qmi(Xl,i)Ym
)

and

B =
∑
k 6=l

d∑
i=1
i 6=j

d∑
m=1
m6=i

Cov
(
gj(Xk,j)wj,N(xj, Xk,j),

(∫
g̃m(zm)vmi(Xl,i, zm)dzm + g∗0,i

)
wj,N(xj, Xl,j)

)
,

respectively. We start with the estimation of the term A calculating each covariance separately,

that is

∣∣∣Cov
(
gj(Xk,j)wj,N(xj, Xk,j), wj,N(xj, Xl,j)

N∑
m=1

qmi(Xl,i)Ym
)∣∣∣ ≤ (H1 +H2

)
(1 + o(1)),(5.18)
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where the terms H1 and H2 are defined by

H1 =
1

NhB

∣∣∣ d∑
r=1

E
[
gj(Xk,j)wj,N(xj, Xk,j)L

(Fi(Xk,i)− Fi(Xl,i)

hB

)
gr(Xk,r)wj,N(xj, Xl,j)

]
H2 =

1

NhB

∣∣∣E[gj(Xk,j)wj,N(xj, Xk,j)
]
E
[
L
(Fi(Xk,i)− Fi(Xl,i)

hB

) d∑
r=1

gr(Xk,r)wj,N(xj, Xl,j)
]

and we used the fact that the kernel density estimate

1

NhB

∑
m

L
(Fi(Xm,i)− Fi(Xl,i)

hB

)
= p̂i(Fi(Xl,i))

in the denominator of the Nadaraya-Watson estimate (5.16) converges uniformly to 1 as Fi(Xl,i)

is uniformly distributed on the interval [0, 1] [see Giné and Guillou (2002)]. We first investigate

the term H1 and obtain by a tedious calculation using assumption (A4) and (A9)

H1 ≤
(1 + o(1))

N3h2

∣∣∣ ∫
R2

(∫
R

gj(tj)

∫
R

e−iw(xj−tj)/h
ΦK(w)

Φψj

(
w
h

)dw fj(tj)firj(ti, tr|tj)
max{fj(tj), fj(1/aN)}

dtj

)
×
∫
R

(∫
R

e−iw(xj−sj)/h
ΦK(w)

Φ(w/h)
dw

fj(sj)fij(ti|sj)
max{fj(tj), fj(1/aN)}

dsj

)
gj(tr)dtidtr

∣∣∣
≤ C

N3h2

∫
R2

∣∣∣ ∫
R

e−iw(xj−tj)/h
ΦK(w)

Φψj
(w/h)

dw
fj(tj)

max{fj(tj), fj(1/aN)}
dtj

∣∣∣
×
∣∣∣ ∫
R

e−iw(xj−sj)/h
ΦK(w)

Φψj
(w/h)

dw
fj(sj)

max{fj(tj), fj(1/aN)}
dsj

∣∣∣Uirj(ti, tr)ηij(ti)dtidtr
= o

( 1

N3h2β+1

)
uniformly with respect to k, l. A similar calculation yields

H2 ≤
1

NhB

∣∣∣E1

N
E
[
L
(Fi(Xk,i)− Fi(Xl,i)

hB

) d∑
r=1

gr(Xk,r)wj,N(xj, Xl,j)
]∣∣∣ = o

( 1

N3h2β+1

)
(uniformly with respect to k, l) where we use the estimate (5.11) in the first step. Consequently

the term A in (5.18) can be bounded by A = o(1/Nh2β+1) A tedious calculation using similar

arguments yields for the term B = O(1/Nh2β+1) and by (5.17) the sum S6 is of the same order.

Moreover, it will be shown in the proof of (5.6) below that this order is smaller than the order of

the first two summands S1 and S2 in (5.16) which gives

S6 = O
( 1

Nh2β+1

)
= o(Sj) j = 1, 2.
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A similar calculation for the terms S3 and S5 finally yields

Var(θ̂j(xj)) =
1

Nh2(2π)2

∫
R

∣∣∣∫
R
e−iw(xj−y)/h

ΦK(w)

Φψj
(w
h

)
dw
∣∣∣2 (g2j (y) + σ2)fj(y)

max{fj(y), fj(
1
aN

)}2
dy × (1 + o(1)) ,

= VN,j(1 + o(1)) ,

which proves (5.5).

Proof of (5.6). As gj is bounded for all j = 1, ..., d and max{fj(y), fj(
1
aN

)}2 ≥ fj(y)fj(
1
aN

) the

term VN,j defined in (3.3) can be estimated as follows

|VN,j| ≤
C

Nh(2π)2fj(
1
aN

)

∫
R

∣∣∣∫
R
e−iw(xj/h−y)

ΦK(w)

Φψj
(w
h

)
dw
∣∣∣2dy =

C

Nh(2π)2fj(
1
aN

)

∫
R

|ΦK(w)|2

|Φψj
(w
h

)|2
dw ,

where C is a constant and we used Parseval’s equality for the last identity [see Kammler (2007)].

Now assumption (A4) yields the upper bound, that is |VN,j| ≤ C/Nh1+2βjfj(
1
aN

). From the

assumption fj(x)−1 ≥ C and again Parsevals equality we also get the lower bound |VN,j| ≥
C/Nh1+2βj , which completes the proof of the estimate (3.4).

Proof of (5.7): Observing the representation (5.8) the lth cumulant of the estimate θ̂j can be

estimated as follows

|cuml(θ̂j(xj))| =
∣∣∣ N∑
k1,...,kl=1

cum
(
Ũk1,jwj,N(xj, Xk1,j), ..., Ũkl,jwj,N(xj, Xkl,j)

)∣∣∣ ≤ G1 +G2,

where the terms G1 and G2 are defined by

G1 =
∣∣∣ N∑
k1,...,kl=1

cum
(
Ak1,jwj,N(xj, Xk1,j), ..., Akl,jwj,N(xj, Xkl,j)

)∣∣∣
G2 =

∣∣∣ N∑
k1,...,kl=1

l∑
s=1

(
l

s

)
cum

(
Bj,k1,Nwj,N(xj, Xk1,j), . . . , Bj,ks,Nwj,N(xj, Xks,j),

Aks+1,jwj,N(xj, Xks+1,j), ..., Akl,jwj,N(xj, Xkl,j)
)∣∣∣

and we introduce the notation Aki,j = gj(Xki,j) + εki . Exemplarily we investigate the first term of

this decomposition, the term G2 is treated similarly. As the random variables Ak1,jwj,N(xj, Xk1,j)

and Ak2,jwj,N(xj, Xk2,j) are independent for k1 6= k2 and identically distributed for k1 = k2 it

follows that

G1 = N
∣∣∣cuml(Ak,jwj,N(xj, Xk,j))

∣∣∣ ≤ N
l∑

s=0

(
l

s

) ∑
j∈{0,1}l

j1+...+jl=s

∣∣∣∑
ν

p∏
k=1

cum(Aij, ij ∈ νk)
∣∣∣,

24



where we used the product theorem for cumulants [see Brillinger (2001)] and the third sum extends

over all indecomposable partitions of the table

Ai1 Ai2
...

...

Ai1aaaa Ai2
Aij
...

Aij

with Ai1 = ε1 (1 ≤ i ≤ s), Ai2 = wj,N(xj, X1,j) (1 ≤ i ≤ s) and Aij = gj(X1,j)wj,N(xj, X1,j)

(s+ 1 ≤ i ≤ l). In order to illustrate how to estimate this expression we consider exemplarily the

case l = 3, where G1 reduces to

G1 = N
3∑
s=0

(
3

s

) ∑
j∈{0,1}3

j1+...+j3=s

∣∣∣∑
ν

p∏
k=1

cum(Aij, ij ∈ νk)
∣∣∣.

As ε is independent of X1 and has mean 0 the partitions in G1 with s = 1 vanish. The terms

corresponding to s = 0, 2, 3 contain only quantities of the form

cum3(gj(X1,j)wj,N(xj, X1,j)),

σ2cum
(
wj,N(xj, X1,j), wj,N(xj, X1,j), gj(X1,j)wj,N(xj, X1,j)

)
,

σ2cum
(
wj,N(xj, X1,j)

)
cum

(
wj,N(xj, X1,j), gj(X1,j)wj,N(xj, X1,j)

)
,

κ3cum
(
wj,N(xj, X1,j), wj,N(xj, X1,j), wj,N(xj, X1,j)

)
,

κ3cum
(
wj,N(xj, X1,j), wj,N(xj, X1,j)

)
cum

(
wj,N(xj, X1,j)

)
,

κ3cum
(
wj,N(xj, X1,j)

)
cum

(
wj,N(xj, X1,j)

)
cum

(
wj,N(x∗, X1,j)

)
,

where κ3 denotes the third cumulant of ε1. As the inequality

E
[
|gj(X1,j)wj,N(xj, X1,j))|br |wj,N(xj, X1,j))|ar−br

]
≤ C

Narhar(βj+1)fj(
1
an

)ar

holds for 0 ≤ br ≤ ar all terms can be bounded by C/(N3h3(βj+1)fj(
1
an

)3). This yields

N3/2h3βj+3/2G1 ≤ CN3/2+1h3βj+3/2 1

N3h3(βj+1)fj(
1
an

)3
= o(1),

where we used the conditions on the bandwidth in the last step. Similar calculations for the
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general case show

N l/2hlβj+l/2G1 = O
(
(N l/2−1hl/2fj(

1

aN
)l)−1

)
= o(1)

whenever l ≥ 3. The term G2 can be calculated in the same way, where for example one addition-

ally has to use the estimate Cov(Bj,k,N , εl) = O(1/N) uniformly with respect to all j = 1, ..., d,

and k, l = 1, ..., N , which follows from the definition of the backfitting estimator.
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