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Abstract

In a wide range of applications, the stochastic properties of the observed time
series change over time. It is often realistic to assume that the properties are
approximately the same over short time periods and then gradually start to vary.
This behaviour is well modelled by locally stationary processes. In this paper,
we investigate the question how to estimate time spans where the stochastic
features of a locally stationary time series are the same. We set up a gen-
eral method which allows to deal with a wide variety of features including the
mean, covariances, higher moments and the distribution of the time series under
consideration. In the theoretical part of the paper, we derive the asymptotic
properties of our estimation method. In addition, we examine its finite sample
performance by means of a simulation study and illustrate the methodology by
an application to financial data.
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1 Introduction

In many applications, the stochastic properties of the observed time series such as the

mean, the variance or the distribution change over time. Examples can be found in a

wide range of application areas: In climatology, temperature data frequently exhibit a

trending behaviour, i.e., their mean varies over time. In neuroscience, EEG and MEG

signals change their characteristics depending on the state of the patient. Finally,

financial time series are often characterized by a time-varying volatility level.

One way to model the time-varying features of a time series is to use change point

methods. In this approach, the time series is split into segments. Its stochastic proper-

ties are assumed to be the same within segments but are allowed to vary across them.

Estimating the change point between the segments is a well studied problem which has

been analyzed in a variety of settings; see for example Hinkley [14], Worsley [29] and
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Carlstein [3] among many others. The change point framework is apt to model abrupt

changes over time. However, in many applications, the observed time series changes

its behaviour gradually rather than abruptly. In such cases, it is not very appropriate

to partition it into segments where the stochastic properties are the same. It is more

realistic to assume that the stochastic features of interest are (approximately) stable

within a certain time span and then gradually start to vary. This behaviour is well

captured by locally stationary processes as introduced in Dahlhaus [5, 6].

An important issue in a locally stationary framework is to identify time periods where

the stochastic features of interest are (approximately) the same. More specifically,

suppose we observe a sample {Xt,T : t = 1, . . . , T} from a locally stationary process

and are interested in its behaviour around the time point t∗, or equivalently, around

the rescaled time point u∗ = t∗/T . Moreover, assume that the stochastic properties of

interest are the same within the time interval [u0, u1] around the point u∗ but gradually

start to vary outside it. Knowledge of the interval [u0, u1] is crucial in many situations.

As an example, suppose we want to forecast a specific feature of the process {Xt,T}
such as its volatility. In this case, u∗ = 1 and our interest focuses on the interval [u0, 1].

If we knew the interval [u0, 1], we could estimate the feature of interest from the data

in this interval and base our forecasts on the resulting estimate. Hence, identifying

the time span [u0, 1] is an important first step when performing forecasts.

The main goal of this paper is to develop a statistical procedure to estimate the

interval [u0, u1] around the time point u∗. We tackle this problem within a locally

stationary framework which is formally introduced in Sections 2 and 3. Rather than

restricting attention to a specific stochastic property, we set up a general procedure

which allows to deal with a wide variety of features including the mean, covariances,

higher moments and the distribution of the process under consideration. To keep the

exposition as simple as possible, we stick to the case u∗ = 1 throughout the paper, i.e.,

we focus on estimating the lower end point u0 of the interval [u0, 1]. Our methods and

results can however be easily extended to the case of an arbitrary point u∗ ∈ [0, 1] at

the cost of a more involved notation. Remark 5.3 in Section 5 outlines how to achieve

this.

The problem of estimating the point u0 can be approached in different ways. In some

settings, it is possible to make use of change point methods. Consider for example

the time-varying mean model Xt,T = µ( t
T

) + εt, where the mean function µ takes a

constant value on [u0, 1] and smoothly deviates from it prior to u0. Under certain

conditions, the function µ has a break point in the k-th derivative. When k is known,

u0 can be estimated by standard methods to detect a break in the k-th derivative; see

e.g. Müller [21] and Wu & Chu [30]. In the vast majority of applications, however, the

order k is unknown. Moreover, an approach based on derivative estimation only seems

reasonable in fairly simple model settings. When concerned with more complicated
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stochastic features like the distribution function of the process, we would ideally like

to do without estimating intricate higher-order derivatives.

Another possible way is to work with testing ideas. In recent years, a variety of

procedures have been proposed to test whether the covariance structure of a locally

stationary process is stable over time. Most of these tests for second-order stationarity

are based on comparing a local spectral density with a global version; see Paparoditis

[22, 23], Dette et al. [8] and Preuß et al. [24] among others. A Portmanteau-type

test has been constructed in Dwivedi & Subba Rao [10]; a Wavelet-based test can be

found in von Sachs & Neumann [28]. To estimate the time point u0, one may try to

sequentially apply such testing methods.

A sequential procedure roughly works as follows: Given a suitable test statistic, we

first perform the test on a small interval [u, 1] with u being close to 1 and then suc-

cessively shift the point u further and further away from 1 until the test rejects. Such

a sequential method has for example been applied to a simple time-varying volatility

model in Chen et al. [4]. Importantly, the critical values are different in each step of

such a procedure. In particular, we cannot just use the critical values from the static

version of the test; we rather have to calculate a whole sequence of critical values. This

may become quite cumbersome and involved when the test statistic has a complicated

form. Even in the static testing case, computing the critical values is often an issue

and bootstrap procedures are required to achieve a reasonable approximation.

In this paper, we introduce an alternative method to estimate the point u0 which avoids

the disadvantages and problems outlined above. Our approach is based on a function

D : [0, 1]→ R≥0, where D(u) measures the amount of time-variation in the stochastic

features of interest within the interval [u, 1]. By construction, D(u) = 0 if there is no

time-variation on [u, 1] and D(u) > 0 if there is some time-variation involved. Since D

is not observed, we replace it by an estimator D̂T . Section 4 gives a detailed account

of how to construct the measure of time-variation D and its estimator D̂T . The time

point u0 can now be characterized as the point where the measure D starts to deviate

from zero. Since D generally deviates from zero in a smooth fashion, we transform it

together with its estimator to behave approximately like a function with a jump at

u0. This transformed measure in turn is used to set up a criterion function which is

approximately minimized at u0. The minimizer û0 serves as our estimator of u0. It

is worthwhile mentioning that the proposed procedure does not require the choice of

any smoothing parameter for curve estimation. Section 5 describes in detail how the

measure D and its estimator D̂T are used to construct û0.

In Section 6, we discuss the asymptotic properties of our estimation method. In

particular, we derive the convergence rate of the new estimator û0. The smoother

the stochastic properties of interest vary around u0, the slower the convergence rate

of the estimator turns out to be. This reflects the intuition that the smoother the
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time-variation, the harder it is to detect the point u0. Section 7 discusses how to

implement our procedure in practice to achieve a good finite sample behaviour. In

Section 8, we perform a simulation study which confirms that the procedure works

well in small samples. In addition, we illustrate the method by a real data example

in Section 9 where it is applied to a sample of financial return and volatility data.

Finally, all proofs and technical details are deferred to an appendix.

2 Local Stationarity

Throughout the paper, we assume that the sample of observations {Xt,T : t = 1, . . . , T}
comes from a locally stationary process of d-dimensional variables Xt,T . Specifically,

we work with the following concept of local stationarity, which was introduced in Vogt

[27].

Definition 2.1. The array {Xt,T : t = 1, . . . , T}∞T=1 is called a locally stationary

process if for each rescaled time point u ∈ [0, 1], there exists a strictly stationary

process {Xt(u) : t ∈ Z} with the property that

∥∥Xt,T −Xt(u)
∥∥ ≤ (∣∣∣ t

T
− u
∣∣∣+

1

T

)
Ut,T (u) a.s.

Here, ‖·‖ denotes a norm on Rd and {Ut,T (u) : t = 1, . . . , T}∞T=1 is an array of positive

random variables whose ρ-th moment is uniformly bounded for some ρ > 0, that is,

E[Uρ
t,T (u)] ≤ C <∞ for some fixed constant C.

Our definition of local stationarity is similar to those in Dahlhaus & Subba Rao [7] and

Koo & Linton [15] for example. The intuitive idea behind these definitions is that a

process is locally stationary if it behaves approximately stationary locally in time, i.e.,

over short time periods. This idea is turned into a rigorous concept by requiring that

locally around each rescaled time point u, the process {Xt,T} can be approximated by

a stationary process {Xt(u)} in a stochastic sense.

There is a wide range of time series processes which are locally stationary in the sense of

Definition 2.1. In particular, many processes with time-varying parameters can be lo-

cally approximated by a stationary process provided that the parameters are smoothly

changing over time. This is fairly straightforward to show for linear models like time-

varying MA or AR processes. However, it may also be verified for more complicated

models like time-varying ARCH and GARCH processes; see for example Dahlhaus &

Subba Rao [7] and Subba Rao [25]. It is also possible to derive local stationarity for

nonparametric models. Vogt [27] for example has shown that nonparametric AR pro-

cesses with a time-varying regression function are locally stationary under appropriate

conditions.
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3 Model Setting

Let λt,T be some time-varying feature of the locally stationary process {Xt,T} such

as the mean E[Xt,T ], the variance Var(Xt,T ) or the distribution function Ft,T (·) =

P(Xt,T ≤ · ), where for vectors the inequality sign is understood componentwise.

Generally speaking, we allow for any feature λt,T which fulfills the following property:

(Pλ) λt,T is uniquely determined by the set of moments {E[f(Xt,T )] : f ∈ F}, where

F is a family of measurable functions f : Rd → R.

We illustrate the property (Pλ) by some examples:

Example I. Let λt,T be the mean µt,T = E[Xt,T ] of a univariate locally stationary

process {Xt,T}. Then the corresponding family of functions is simply F = {id}, since

the mean µt,T can be written as E[id(Xt,T )].

Example II. Let λt,T be the vector of the first p autocovariances of a univariate locally

stationary process {Yt,T} whose elements Yt,T are centred for simplicity. Specifically,

define γ`,t,T = Cov(Yt,T , Yt−`,T ) to be the `-th order autocovariance and set λt,T =

(γ0,t,T , . . . , γp,t,T )
ᵀ
. To handle this case, we regard the data as coming from the (p+1)-

dimensional process {Xt,T} with Xt,T = (Yt,T , Yt−1,T , . . . , Yt−p,T )
ᵀ
. We now define

functions f` : Rp+1 → R for 0 ≤ ` ≤ p by f`(x) = x0x`, where x = (x0, . . . , xp)
ᵀ
. As

E[f`(Xt,T )] = E[Yt,TYt−`,T ] = γ`,t,T , we obtain that F = {f0, . . . , fp} in this setting.

Example III. As in the previous example, let {Yt,T} be a real-valued locally stationary

process and write Xt,T = (Yt,T , Yt−1,T , . . . , Yt−p,T )
ᵀ
. We now set λt,T to be the distribu-

tion function Ft,T of the variable Xt,T , or put differently, the joint distribution function

of the variables (Yt,T , Yt−1,T , . . . , Yt−p,T ). Define I(y ≤ x) =
∏p

`=0 1(y` ≤ x`) for vec-

tors x = (x0, . . . , xp)
ᵀ

and y = (y0, . . . , yp)
ᵀ
, where 1(·) denotes the indicator function.

Noting that E[I(Xt,T ≤ x)] = Ft,T (x), we obtain that F = {I( · ≤ x) : x ∈ Rp+1}.

Generally speaking, (Pλ) is a fairly weak condition which is satisfied by a wide range

of stochastic features. Indeed, it essentially allows us to deal with any feature that

can be expressed in terms of a set of moments.

Let us now define λu to be the stochastic feature of the approximating process {Xt(u)}
which corresponds to λt,T . This means that λu is fully characterized by the set of

moments {E[f(Xt(u))] : f ∈ F}. Throughout the paper, we assume that

sup
f∈F

∣∣E[f(Xt,T )]− E[f(Xt(u))]
∣∣ ≤ C

(∣∣∣ t
T
− u
∣∣∣+

1

T

)
, (3.1)

which is implied by the high-order condition (C4) in Subsection 6.1. In a wide range

of cases, the inequality (3.1) boils down to mild moment conditions on the random

variables Xt,T , Xt(u) and Ut,T (u). This in particular holds true in the settings from
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Examples I–III as shown in Subsection 6.4. The inequality (3.1) essentially says that

λt,T and λu are close to each other locally in time. In the time-varying mean setting

from Example I, it can be expressed as∣∣µt,T − µ(u)
∣∣ ≤ C

(∣∣∣ t
T
− u
∣∣∣+

1

T

)
with µ(u) being the mean of Xt(u). Similarly, in Example II, it is equivalent to the

statement ∥∥(γ0,t,T , . . . , γp,t,T )
ᵀ − (γ0(u), . . . , γp(u))

ᵀ∥∥ ≤ C
(∣∣∣ t
T
− u
∣∣∣+

1

T

)
,

where γ`(u) = Cov(Yt(u), Yt−`(u)) and ‖ ·‖ is some norm on Rp+1. Finally, in Example

III, it says that

sup
x∈Rd

∣∣Ft,T (x)− F (u, x)
∣∣ ≤ C

(∣∣∣ t
T
− u
∣∣∣+

1

T

)
,

where F (u, ·) denotes the distribution function of the variables Xt(u). Hence, if (3.1)

holds true, then the feature λt,T converges to λu locally in time. In particular, time-

variation in λt,T is asymptotically equivalent to time-variation in λu. To detect whether

the stochastic feature λt,T of interest changes over time, we may thus check for varia-

tions in the approximating quantity λu.

Our estimation problem can now be formulated as follows: Assume that λu does not

vary on the rescaled time interval [u0, 1] but is time-varying prior to u0. Our aim is to

estimate the time point u0 where λu starts to change over time.

4 A Measure of Time-Variation

In this section, we construct a function D : [0, 1]→ R≥0 which captures time-variations

in the stochastic feature λw of interest and explain how to estimate it. The function

D is assumed to have the property

(PD) D(u)

= 0 if λw does not vary on [u, 1]

> 0 if λw varies on [u, 1]

and is called a measure of time-variation. In what follows, we describe how to set up

such a measure for a generic stochastic feature that satisfies (Pλ) and then reconsider

the features from Examples I–III.

Our construction is based on the following idea: By the property (Pλ), the feature λw

is fully characterized by the values E[f(Xt(w))] with f running over all functions in

the family F . This implies that time-variation in λw is equivalent to time-variation in

the moments E[f(Xt(w))] for some f ∈ F . To detect changes in λw over time, we may
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thus set up a function which captures time-variations in the quantities E[f(Xt(w))]

for any f ∈ F . This idea underlies the following definition:

D(u) = sup
f∈F ,v∈[u,1]

∣∣D(u, v, f)
∣∣, (4.1)

where

D(u, v, f) =

∫ 1

v

E[f(Xt(w))]dw −
(1− v

1− u

)∫ 1

u

E[f(Xt(w))]dw. (4.2)

The function D has the following property: If the moment function E[f(Xt(·))] is con-

stant on the interval [u, 1], then the average
∫ 1

v
E[f(Xt(w))]dw/(1− v) takes the same

value at all time points v ∈ [u, 1]. From this, it immediately follows that D(u, v, f) = 0

for any v ∈ [u, 1]. Hence, if the function E[f(Xt(·))] is constant on [u, 1] for any

f ∈ F , then D(u) = 0. If E[f(Xt(·))] varies on [u, 1] for some f in contrast, then the

average
∫ 1

v
E[f(Xt(w))]dw/(1 − v) varies on this time span as well. This is ensured

by the fact that E[f(Xt(·))] is a Lipschitz continuous function of rescaled time, i.e.,

|E[f(Xt(u))] − E[f(Xt(v))]| ≤ C|u − v| for any u, v ∈ [0, 1], which is an immediate

consequence of (3.1). We thus obtain that D(u, v, f) > 0 for some v ∈ [u, 1], which in

turn yields that D(u) > 0. As a result, the function D satisfies (PD).

Since the feature λw is constant on [u0, 1] but varies before u0, the property (PD)

immediately implies that

D(u)

= 0 for u ≥ u0

> 0 for u < u0.

The point u0 is thus characterized as the time point where the measure of time-

variation starts to deviate from zero. Importantly, the measure D does not have a

jump at u0 in general, but smoothly deviates from zero at this point. Its degree of

smoothness depends on how smoothly the moments E[f(Xt(w))] vary over time, or

put differently, on how smoothly the feature λw varies over time. In particular, the

smoother the time-variation in λw, the smoother the function D.

Since our measure of time-variation depends on the unobserved moment functions

E[f(Xt(·))], we cannot work with it directly but have to replace it by an estima-

tor. This can be achieved as follows: The integral
∫ 1

v
E[f(Xt(w))]dw can be regarded

as an average of the moments E[f(Xt(w))], where all time points from v to 1 are

taken into account. This suggests to estimate it by a sample average of the form

T−1
∑T

t=dvT+1e f(Xt,T ). Following this idea, an estimator of D(u) is given by

D̂T (u) = sup
f∈F ,v∈[u,1]

∣∣D̂T (u, v, f)
∣∣,

where we set

D̂T (u, v, f) =
1

T

T∑
t=dvT+1e

f(Xt,T )−
(1− v

1− u

) 1

T

T∑
t=duT+1e

f(Xt,T ).
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It is important to note that the statistic D̂T is completely free of bandwidth pa-

rameters, even though we have not imposed any parametric restrictions on the time-

varying feature λw. This is possible for the following reason: To estimate the moments

E[f(Xt(w))] at a fixed time point w, we would require some bandwidth to localize in

time. However, we are not interested in the moments at a fixed point w but rather

want to estimate averages of them over some time spans [u, 1] and [v, 1]. This can be

achieved by using partial sum processes, i.e., by simply forming sample averages of the

observations that lie in the time spans [u, 1] and [v, 1], respectively.

We now apply the general definitions from above to the settings from Examples I–III.

Example I. In the time-varying mean setting, the function family F only consists of

the identity function. Our measure of time-variation in the mean is thus given by

Dµ(u) = sup
v∈[u,1]

∣∣Dµ(u, v)
∣∣

together with

Dµ(u, v) =

∫ 1

v

µ(w)dw −
(1− v

1− u

)∫ 1

u

µ(w)dw,

where µ(w) = E[Xt(w)]. This quantity can be estimated by

D̂µ,T (u) = sup
v∈[u,1]

∣∣D̂µ,T (u, v)
∣∣,

where we set

D̂µ,T (u, v) =
1

T

T∑
t=dvT+1e

Xt,T −
(1− v

1− u

) 1

T

T∑
t=duT+1e

Xt,T .

Example II. Let the feature of interest be the vector of the first p autocovariances

of the process at hand. In this case, the family F consists of the (p + 1) functions

f1, . . . , fp. Our measure of time-variation may thus be written as

Dγ(u) = max
0≤`≤p

sup
v∈[u,1]

∣∣Dγ(u, v, `)
∣∣

together with

Dγ(u, v, `) =

∫ 1

v

γ`(w)dw −
(1− v

1− u

)∫ 1

u

γ`(w)dw,

where γ`(w) = Cov(Yt(w), Yt−`(w)). The overall measure Dγ(u) can be regarded as

aggregating the individual measures supv∈[u,1] |Dγ(u, v, `)| each of which captures time-

variations in the autocovariance function γ` of a different order `. The estimator of

Dγ(u) is given by

D̂γ,T (u) = max
0≤`≤p

sup
v∈[u,1]

∣∣D̂γ,T (u, v, `)
∣∣,
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where we let

D̂γ,T (u, v, `) =
1

T

T∑
t=dvT+1e

Yt,TYt−`,T −
(1− v

1− u

) 1

T

T∑
t=duT+1e

Yt,TYt−`,T .

Importantly, the statistic D̂γ,T can be used to detect time-variations in the parameters

of a large class of linear locally stationary models. As an example, consider the time-

varying AR(p) process

Yt,T =

p∑
`=1

a`

( t
T

)
Yt−`,T + εt (4.3)

with i.i.d. residuals εt. Time-variation in the parameter functions a1, . . . , ap is equiv-

alent to time-variation in the autocovariance structure of the process {Yt,T} up to the

p-th order. If the underlying model has the autoregressive structure (4.3), we can

thus use the above statistic to measure the amount of time-variation in the parameter

functions.

Example III. We finally examine the case where the feature of interest is the dis-

tribution function of the process. In this situation, F = {I(· ≤ x) : x ∈ Rp+1} with

I(· ≤ x) being a product of indicator functions as defined earlier on. As the family F
can be identified with the set of points x ∈ Rp+1, the measure of time-variation turns

out to be

DF (u) = sup
x∈Rp+1,v∈[u,1]

∣∣DF (u, v, x)
∣∣ (4.4)

together with

DF (u, v, x) =

∫ 1

v

F (w, x)dw −
(1− v

1− u

)∫ 1

u

F (w, x)dw,

where F (w, ·) is the distribution function of Xt(w). The terms supv∈[u,1] |DF (u, v, x)|
measure the amount of time-variation in the distribution function evaluated at a fixed

point x. The measure DF (u) is obtained by aggregating these expressions, specifically

by taking the supremum over all points x. To estimate DF (u), we use the statistic

D̂F,T (u) = sup
x∈Rp+1,v∈[u,1]

∣∣D̂F,T (u, v, x)
∣∣,

where

D̂F,T (u, v, x) =
1

T

T∑
t=dvT+1e

I(Xt,T ≤ x)−
(1− v

1− u

) 1

T

T∑
t=duT+1e

I(Xt,T ≤ x),

compares averages of the binary variables I(Xt,T ≤ x).
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5 Estimating the Smooth Change Point u0

We now describe how to use our measure of time-variation to estimate the point u0.

Our estimation method is based on the observation that

√
TD(u)

= 0 for u ≥ u0

→∞ for u < u0

as T → ∞. As the statistic D̂T estimates the measure D, its scaled version
√
T D̂T

should exhibit a similar behaviour. Indeed, as we will see later on, it holds that

√
T D̂T (u)

= Op(1) for u ≥ u0

P−→∞ for u < u0.

The main idea is to exploit this dichotomous behaviour of the process
√
T D̂T .

To set up the estimation procedure, we proceed in two steps. First we transform

the statistic
√
T D̂T to behave approximately like a function that has a jump at u0.

To achieve this, define Φ : R≥0 → R≥0 to be a strictly increasing function which is

normalized to satisfy Φ(0) = 0 and limx→∞Φ(x) = 1. Moreover, let {ρT} be a sequence

of positive constants which slowly converges to zero, in particular much slower than

O(T−1/2). Premultiplying
√
T D̂T (u) with the shrinkage factor ρT and then applying

the function Φ yields the quantity q̂T (u) = Φ(ρT
√
T D̂T (u)) which has the property

that

q̂T (u)
P−→

0 for u ≥ u0

1 for u < u0.

Hence, q̂T (·) behaves approximately like the step function 1(· < u0) which has a jump

at the point u0.

In the second step, we use the quantity q̂T to construct a criterion function which is

minimized approximately at u0. To do so, define

Q̂T (u) = u+ (1− u)q̂T (u).

The function value Q̂T (u) measures the area below the curve ζu(w) = 1(w ≤ u) +

q̂T (u)1(w > u), which takes the value 1 at points w ≤ u and the value q̂T (u) at points

w > u. We can thus write Q̂T (u) =
∫ 1

0
ζu(w)dw, which is graphically illustrated in

Figure 1. Since q̂T (·) approximately behaves like the indicator function 1(· < u0),

the area Q̂T (u) should be minimized at a point close to u0. Indeed, the asymptotic

counterpart Q(u) = u+ (1− u)1(u < u0) of Q̂T (u) is easily seen to take its minimum

exactly at u0. These considerations suggest to estimate u0 by

û0 := argmin
u∈[0,1]

Q̂T (u).
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Q̂T (u)

ζuq̂T

u0 u 10

1

Figure 1: Graphical illustration of the criterion function Q̂T . Its value Q̂T (u) at the time

point u is equal to the grey shaded area.

The estimator û0 implicitly depends on the choice of the transformation function Φ

and the shrinkage factor ρT . As demonstrated in Section 6, our asymptotic theory

allows for a wide range of different choices. In particular, any sequence {ρT} that

converges more slowly to zero than O(T−1/2) and any strictly increasing and Lipschitz

continuous function Φ with Φ(0) = 0 and limx→∞Φ(x) = 1 will do. Moreover, it goes

without saying that the choice of Φ and ρT influences the finite sample behaviour of

û0. In Section 7, we give some heuristic discussion of this issue and provide a natural

data driven choice of Φ and ρT which yields a good finite sample performance of the

estimator û0.

Remark 5.1. Our estimation procedure may alternatively be based on a criterion

function of the form

Q̂Lp,T (u) =

∫ u

0

[
1− q̂T (w)

]p
dw +

∫ 1

u

q̂T (w)pdw

for some integer p ≥ 1. This function measures the Lp-distance between q̂T (·) and

the indicator 1(· < u). Similarly as before, its asymptotic counterpart QLp(u) =∫ u
0

[1− 1(w ≤ u0)]pdw +
∫ 1

u
1(w ≤ u0)pdw is minimized exactly at u0, suggesting that

Q̂Lp,T (u) should take its minimum close to u0 as well. The minimizer of Q̂Lp,T (u) may

thus be used as an alternative estimator of u0. It is worth noting that the estimators

resulting from Lp-criteria with different p are essentially the same. This is due to

the fact that asymptotically QLp ≡ QL1 for any p ≥ 1, meaning that the criterion

functions asymptotically coincide for all p.

Even though the criterion Q̂Lp,T may appear to be an interesting alternative to Q̂T ,

it has an important drawback: Since the statistic q̂T (·) approximates the indicator

function 1(· < u0), it sharply increases as soon as u < u0. Hence, the point u0

should be close to the point where q̂T shots up towards a value of one. However,

the Lp-criterion is not minimized at this point but at a smaller time point where q̂T

has already grown sufficiently large. This produces an estimator which has a strong

11



downward bias in small samples and thus notoriously underestimates the true value

u0. One way to obtain estimates with a smaller bias is to modify the Lp-criterion:

Since
∫ 1

u
q̂T (w)pdw ≈ (1 − u)q̂T (u)p for u ≥ u0, we may replace the integral by the

term (1−u)q̂T (u)p which picks up an increase in the statistic q̂T (u) much more strongly

than the integral. A modified version of the Lp-criterion can thus be defined as

Q̂Lp,T (u) =

∫ u

0

[
1− q̂T (w)

]p
dw + (1− u)q̂T (u)p.

Simulations suggest that the minimizer of this modified criterion performs similarly

well in small samples as the estimator û0. We thus recommend to work either with

the criterion function Q̂T or with the modified Lp-criterion. In the remainder of the

paper, we restrict attention to Q̂T to keep the exposition as clear as possible.

Remark 5.2. Our estimation method relies on a similar idea as the procedure pro-

posed in Mallik et al. [19] and [18]. There, a p-value based method is suggested to

estimate the point u0 in the time-varying mean setting Xt,T = µ( t
T

) + εt with µ being

constant on [u0, 1]. Whereas the approach of Mallik et al. is tailored to this simple

mean setting, our method addresses the problem from a general perspective and al-

lows to deal with a wide variety of stochastic features. For this reason, the technical

arguments of our approach are very different from theirs which heavily draw on the

structure of the time-varying mean setting. It is also worth noting that their proce-

dure is based on a nonparametric kernel estimator of the function µ and thus requires

to specify a bandwidth. The method proposed here in contrast is free of bandwidth

parameters.

Remark 5.3. As noted in the Introduction, our estimation problem is a special case

of the following issue: Let u∗ ∈ [0, 1] and assume that λw is constant in the time region

[u0, u1] around u∗ but varies outside it. We aim to estimate the interval [u0, u1], or put

differently, the two points u0 and u1.

To tackle this more general problem, we modify our estimation method in a straight-

forward way. First of all, we generalize our measure of time-variation. This has been

designed to detect time-variations within intervals of the form [u, 1]. It can be easily

extended to measure time-variations on a general interval [u, u] with 0 ≤ u ≤ u ≤ 1.

In particular, we may define

D(u, u) = sup
f∈F ,v∈[u,u]

∣∣D(u, u, v, f)
∣∣

along with

D(u, u, v, f) =

∫ u

v

E[f(Xt(w))]dw −
(u− v
u− u

)∫ u

u

E[f(Xt(w))]dw.

12



This function has the property that D(u, u) = 0 if λw does not vary on [u, u] and

D(u, u) > 0 if λw varies within this time span. An estimator D̂T (u, u) can be con-

structed in exactly the same way as described in Section 4.

We next apply the construction steps from above to the generalized statistic√
T D̂T (u, u). In particular, we define the transformed statistic

q̂T (u, u) = Φ
(
ρT
√
T D̂T (u, u)

)
and introduce the criterion function

Q̂T (u, u) = (1− (u− u)) + (u− u)q̂T (u, u).

Analogous considerations as above suggest that Q̂T (u, u) should be minimized close

to the point (u0, u1). We can thus use

(û0, û1) = argmin
(u,u): u≤u∗≤u

Q̂T (u, u)

as an estimator of (u0, u1).

6 Asymptotic Properties

We now examine the asymptotic properties of the estimation method. We first in-

vestigate the weak convergence behaviour of the statistic D̂T and then derive the

convergence rate of the estimator û0. Since the proofs are very technical and involved,

they are deferred to the Appendix. To state the results, we use the symbol `∞(S) for

the space of bounded functions f : S → R endowed with the supremum norm and let

 denote weak convergence.

6.1 Assumptions

Throughout the paper, we make the following assumptions:

(C1) The process {Xt,T} is locally stationary in the sense of Definition 2.1.

(C2) The process {Xt,T} is strongly mixing with mixing coefficients α(k) satisfying

α(k) ≤ Cak for some positive constants C and a < 1.

(C3) Let p ≥ 4 be an even natural number and endow the set F with some semimetric

dF . (F , dF) is separable, totally bounded and not too complex in the sense that

its covering number N (w,F , dF) satisfies the condition∫ 1

0

N (w,F , dF)1/pdw <∞.

13



Moreover, the set F has an envelope F (i.e. |f | ≤ F for all f ∈ F) which satisfies

E[F (Xt,T )(1+δ)p] ≤ C <∞ for some small δ > 0 and a fixed constant C. Finally,

for any pair of functions f, f ′ ∈ F ,

E
[∣∣∣f(Xt,T )− f ′(Xt,T )

dF(f, f ′)

∣∣∣(1+δ)p]
≤ C <∞.

(C4) For k = 1, 2 and all f ∈ F , it holds that E[|f(Xt,T )−f(Xt(u))|k] ≤ C(| t
T
−u|+ 1

T
)

for some fixed constant C.

Condition (C2) stipulates that the array {Xt,T} is strongly mixing. A wide variety of

locally stationary processes can be shown to be mixing under appropriate conditions;

see for example Fryzlewicz & Subba Rao [12] and Vogt [27]. To keep the structure of

the proofs as clear as possible, we have assumed the mixing rates to decay exponentially

fast. Alternatively, we could work with slower polynomial rates at the cost of a more

involved notation in the proofs. The conditions (C3) and (C4) are formulated in a

very general way and depend on the family F under consideration. For many choices

of F , they boil down to simple moment conditions on the variables Xt,T , Xt(u) and

Ut,T (u). This will be seen later on in Subsection 6.4, where we revisit Examples I–III

and verify (C3) and (C4) in these settings.

6.2 Weak Convergence of the Measure of Time-Variation

To start with, we investigate the asymptotic properties of the expression

ĤT (u, v, f) =
√
T
(
D̂T (u, v, f)−D(u, v, f)

)
.

To do so, let ∆ = {(u, v) ∈ [0, 1]2 : v ≥ u} and equip the space ∆×F with the natural

semimetric |u−u′|+|v−v′|+dF(f, f ′). In what follows, we regard ĤT as a process that

takes values in `∞(∆ × F) and show that it weakly converges to a Gaussian process

H with covariance structure

Cov(H(u, v, f), H(u′, v′, f ′)) =
(1− v)(1− v′)
(1− u)(1− u′)

∞∑
l=−∞

∫ 1

max{u,u′}
cl(w)dw

− 1− v′

1− u′
∞∑

l=−∞

∫ 1

max{v,u′}
cl(w)dw

− 1− v
1− u

∞∑
l=−∞

∫ 1

max{u,v′}
cl(w)dw

+
∞∑

l=−∞

∫ 1

max{v,v′}
cl(w)dw, (6.1)

where cl(w) = Cov(f(X0(w)), f ′(Xl(w))). The following theorem gives a precise de-

scription of the weak convergence of ĤT .
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Theorem 6.1. Let (C1)–(C4) be satisfied. Then

ĤT =
√
T
[
D̂T −D

]
 H

as a process in `∞(∆ × F), where D̂T and D are defined in Section 4 and H is a

Gaussian process on ∆×F with covariance kernel (6.1).

This result can be used to characterize the weak convergence behaviour of the process

ĤT defined by

ĤT (u) = sup
f∈F ,v∈[u,1]

∣∣ĤT (u, v, f)
∣∣

=
√
T sup
f∈F ,v∈[u,1]

∣∣D̂T (u, v, f)−D(u, v, f)
∣∣. (6.2)

In particular, we can derive the following statement.

Theorem 6.2. Let (C1)–(C4) be satisfied. Then

ĤT  H

as a process in `∞([0, 1]), where H(u) = supf∈F ,v∈[u,1] |H(u, v, f)|.

6.3 Convergence of the Estimator û0

Let us now turn to the asymptotic behaviour of the estimator û0. We assume through-

out that the transformation function Φ is Lipschitz continuous. To capture the amount

of smoothness of the measure D at the point u0, we suppose that

D(u)

(u0 − u)k
→ ck > 0 as u↗ u0 (6.3)

for some number k > 0 and a constant ck > 0. The larger k, the more smoothly

the measure D deviates from zero at the point u0. The next theorem specifies the

convergence rate at which the estimator û0 approaches the point u0.

Theorem 6.3. Let (C1)–(C4) be satisfied and assume that u0 ∈ [0, 1). Moreover, let

ρT ↘ 0 with ρT
√
T →∞. Then

û0 − u0 = Op(γT ),

where γT = max{ρT , (ρT
√
T )−1/k} and k is defined in (6.3).

As can be seen from the theorem, the convergence rate of û0 depends on the degree

of smoothness k of the measure D in the point u0. In particular, the smoother D,

the slower the convergence rate. This reflects the intuition that it becomes harder to

precisely localize the point u0 when D varies more smoothly and gradually around

this point. The convergence rate also depends on the shrinkage parameter ρT . The

“optimal” rate is achieved by setting ρT = (ρT
√
T )−1/k, i.e., by setting the shrinkage

factor ρT to equal T−
1

2(k+1) . This yields the rate γT = T−
1

2(k+1) .
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6.4 Verification of Conditions

Theorems 6.1–6.3 are derived under the high-order conditions (C1)–(C4). Conditions

(C1) and (C2) require the process {Xt,T} to be locally stationary and strongly mix-

ing. These properties are well understood and have been verified for a wide range of

processes as we have pointed out earlier on. In what follows, we have a closer look at

the conditions (C3) and (C4). In particular, we show that they boil down to simple

moment conditions in Examples I–III. As we will see, these moment conditions are

fairly weak, in particular much weaker than those usually imposed in the related liter-

ature on stationarity tests; cp. for example Dette et al. [8] and Preuss et al. [24] who

assume all moments of the underlying process {Xt,T} to exist.

We first consider the time-varying mean setting from Example I. Here, the variables

Xt,T are real-valued and the function family of interest is F = {id}. It is straightfor-

ward to show that in this scenario, (C3) and (C4) are satisfied if the model variables

fulfill the following moment assumptions:

(Aµ) Either (a) E|Xt,T |r ≤ C for some r > 4 and EU2
t,T (u) ≤ C or (b) E|Xt,T |r ≤ C,

E|Xt(u)|r ≤ C and EU r/(r−1)
t,T (u) ≤ C for some r > 4 and a sufficiently large

constant C that is independent of u, t and T .

A similar situation arises in the setup of Example II, where Xt,T = (Yt,T , . . . , Yt−p,T )
ᵀ

takes values in Rp+1 and the function family under consideration is F = {f0, . . . , fp}
with E[f`(Xt,T )] = E[Yt,TYt−`,T ]. As before, (C3) and (C4) are fulfilled under a set of

moment conditions:

(Aγ) It holds that E‖Xt,T‖r ≤ C, E‖Xt(u)‖r ≤ C and EU q
t,T (u) ≤ C for some r > 8

and q = r
3
/( r

3
− 1), where C is a sufficiently large constant that is independent

of u, t and T .

We finally examine the setting from Example III. First of all, note that in this setup,

we can assume without loss of generality that the variables Xt,T = (Yt,T , . . . , Yt−p,T )
ᵀ

along with their stationary approximations Xt(u) have bounded support, say [0, 1]p+1.

The reason for this is as follows: Take ψ : R→ [0, 1] to be any function which is strictly

increasing and Lipschitz continuous (i.e. |ψ(y)−ψ(y′)| ≤ L|y−y′| for a fixed constant L

and all y, y′ ∈ R). Now consider the variables Zt,T = (ψ(Yt,T ), . . . , ψ(Yt−p,T ))
ᵀ

together

with their approximations Zt(u) which are defined analogously. It is easily seen that

{Zt,T} is locally stationary and strongly mixing with the same mixing rate as {Xt,T}.
Moreover, it holds that

∀u, v ∈ [0, 1] : Xt(u)
L
= Xt(v) ⇐⇒ Zt(u)

L
= Zt(v)

∀s, t ∈ {1, . . . , T} : Xt,T
L
= Xs,T ⇐⇒ Zt,T

L
= Zs,T ,
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where V
L
= W means that V and W have the same distribution. Hence, the distri-

bution of {Xt,T} is time-varying on the interval [u, 1] if and only if the distribution of

{Zt,T} varies within this time span. Consequently, we can replace the process {Xt,T}
by {Zt,T} and work with the latter which has support on [0, 1]p+1. In what follows, we

simply assume that the variables Xt,T have support on [0, 1]p+1 themselves.

The non-smooth nature of the indicator functions I(· ≤ x) poses some technical prob-

lems when verifying (C3). To circumvent these issues, we replace I(y ≤ x) with a

smoothed version defined by

ϕ(x, y) =

p∏
`=0

(
1− 1(y` > x`)

(y` − x`)
ε

)+

for some small ε > 0. It is straightforward to see that ϕ is Lipschitz continuous in all

arguments. Moreover, it holds that limε→0 ϕ(x, y) = I(y ≤ x), which means that ϕ

provides a smooth approximation of the indicator I. We now define

Fϕ(w, x) =

∫
Rp+1

ϕ(x, y)dF (w, y)dy,

which may be regarded as a smoothed version of the distribution function

F (w, x) =

∫
Rp+1

I(y ≤ x)dF (w, y)dy.

Whereas the function F (w, ·) fully characterizes the distribution of the variablesXt(w),

this is in general not true for the function Fϕ(w, ·). Intuitively, by smoothing the

indicator I, we slightly blur the structure of the distribution function F (w, ·). As a

result, we are not able to detect time-variations in all aspects of the distribution any

more. Nevertheless, when ε is fairly small, the smoothed function Fϕ(w, ·) gives a good

approximation of F (w, ·) and thus provides a fairly accurate picture of the distribution

of the variables Xt(w). Thus, we should still be able to reliably detect time-variations

in the distribution.

With these comments and definitions at hand, we now replace the measure of time-

variation from Example III along with its estimator by the modified versions

DFϕ(u) = sup
x∈[0,1]p+1,v∈[u,1]

∣∣DFϕ(u, v, x)
∣∣

D̂Fϕ,T (u) = sup
x∈[0,1]p+1,v∈[u,1]

∣∣D̂Fϕ,T (u, v, x)
∣∣,

where

DFϕ(u, v, x) =

∫ 1

v

Fϕ(w, x)dw −
(1− v

1− u

)∫ 1

u

Fϕ(w, x)dw

D̂Fϕ,T (u, v, x) =
1

T

T∑
t=dvT+1e

ϕ(x,Xt,T )−
(1− v

1− u

) 1

T

T∑
t=duT+1e

ϕ(x,Xt,T ).
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The function family associated with these statistics is F = {ϕ(x, ·) : x ∈ [0, 1]p+1}.
Here, we can restrict attention to x ∈ [0, 1]p+1 as the model variables have support on

the cube [0, 1]p+1.

Noting that the metric entropy of the function class F is the same as that of the unit

cube [0, 1]p+1 and exploiting the Lipschitz continuity of ϕ, it is easily seen that (C3)

is satisfied for the class F . Moreover, (C4) is fulfilled under the following moment

assumption:

(AFϕ) It holds that EU r
t,T (u) ≤ C for some r ≥ 1 and a sufficiently large constant C

that is independent of u, t and T .

Hence, if we work with the family F of smoothed indicator functions ϕ, then (AFϕ) is

sufficient to ensure that (C3) and (C4) hold true.

7 Implementation

In this section, we discuss how to choose the transformation function Φ and the shrink-

age factor ρT to achieve a good small sample performance of the estimator û0. Our

estimation procedure is based on the idea that the transformed statistic q̂T (·) approx-

imately behaves like the step function 1(· ≤ u0). We thus aim to choose Φ and ρT in a

way which ensures that q̂T (·) yields a reasonable approximation to 1(· ≤ u0) even for

moderate sample sizes. The heuristic idea to achieve this is as follows:

Step 1. As a preliminary step, we slightly rewrite the transformed statistic q̂T (u).

Since the function Φ is strictly increasing, we have

q̂T (u) = Φ
(
ρT
√
T D̂T (u)

)
= Φ

(
ρT
√
T sup
f∈F

sup
v∈[u,1]

|D̂T (u, v, f)|
)

= sup
f∈F

q̂f,T (u), (7.1)

where

q̂f,T (u) = Φ
(
ρT
√
T sup
v∈[u,1]

|D̂T (u, v, f)|
)
.

According to (7.1), q̂T (·) is close to the step function 1(· ≤ u0) if q̂f,T (·) is close to

1(· ≤ u0) for each function f ∈ F . In what follows, we thus restrict attention to

the statistic q̂f,T (·) for an arbitrary but fixed function f . In particular, we attempt

to select Φ and ρT in a way which guarantees that q̂f,T (·) is close to 1(· ≤ u0). To

emphasize that f is fixed, we make use of the notation D̂f,T (u, v) := D̂T (u, v, f) and

define the expressions Df (u, v), Ĥf,T (u, v) and Hf (u, v) analogously.

Step 2. We now normalize the processes D̂f,T and Ĥf,T in a suitable way. By Theorem

6.1, we know that

Ĥf,T (u, ·) Hf (u, ·)
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for any time point u, where the asymptotic covariances are given in (6.1). Inspecting

formula (6.1), the covariances are seen to depend on expressions of the form (1 −
v)σ2

f (v), where

σ2
f (v) =

∑∞
l=−∞

∫ 1

v
cl(w)dw

1− v
and cl(w) = Cov(f(X0(w)), f(Xl(w))). In what follows, we take for granted that

the functions cl(·) are constant on the interval [u0, 1], which implies that σf (·) is

constant on this time span as well. This assumption is not very restrictive, as it is

satisfied in a wide range of settings. Consider for example the time-varying mean

model Xt,T = µ( t
T

) + εt. As long as the error process {εt} is stationary, cl(w) has the

same value at all points w ≥ u0. A similar situation arises in a wide range of models

with time-varying parameters such as the AR model in (4.3): Suppose we want to

estimate the point u0 where the model parameters start to vary over time. Since the

parameters are constant on the interval [u0, 1], the process is stationary on the interval

[u0, 1], implying that cl(·) is a constant function on this time span. As a final example,

consider the setting from Example III. There, cl(·) is constant on [u0, 1] as well, since

the processes {Xt(w)} have the same distribution for all w ≥ u0.

We now use the expression σf (u) to normalize the process Ĥf,T . In particular, we

define the scaled version Ĥsc
f,T of the process by

Ĥsc
f,T (u, v) =

Ĥf,T (u, v)

σf (u)
√

1− u
.

Analogously setting Hsc
f (u, v) = Hf (u, v)/σf (u)

√
1− u, Theorem 6.1 implies that

Ĥsc
f,T (u, ·) Hsc

f (u, ·)

at each time point u ∈ [0, 1). Since σf (u) = σf (v) for any pair of time points u, v ≥ u0,

the covariance structure of the scaled limit process Hsc
f (u, ·) is given by

Cov
(
Hsc
f (u, v), Hsc

f (u, v′)
)

= min
{(1− v

1− u

)
,
(1− v′

1− u

)}
−
(1− v

1− u

)(1− v′

1− u

)
whenever u ≥ u0. Noticing that u ≤ v, v′ ≤ 1 and thus 0 ≤ 1−v

1−u ≤ 1 as well as

0 ≤ 1−v′
1−u ≤ 1, this turns out to be the covariance structure of a standard Brownian

bridge on the unit interval.

Next define D̂sc
f,T (u, v) = D̂f,T (u, v)/σf (u)

√
1− u. Since

√
TD̂sc

f,T (u, ·) = Ĥsc
f,T (u, ·)

at any fixed time point u ≥ u0, the above considerations immediately imply that√
TD̂sc

f,T (u, ·) weakly converges to a standard Brownian bridge B at any point u ∈
[u0, 1). Writing

D̂sc
f,T (u) = sup

v∈[u,1]

∣∣D̂sc
f,T (u, v)

∣∣,
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we can further conclude that for any f ∈ F ,

√
T D̂sc

f,T (u)
d−→ sup

w∈[0,1]

|B(w)|

at any time point u ∈ [u0, 1), where the distribution function of supw∈[0,1] |B(w)| is

given by

Ψ(x) = 1− 2
∞∑
k=1

(−1)k−1 exp(−2k2x2). (7.2)

Step 3. We next examine the behaviour of the expression

q̂sc
f,T (u) = Ψ

(
ρ
√
T D̂sc

f,T (u)
)
, (7.3)

where the distribution function Ψ defined in (7.2) plays the role of the transformation

Φ and ρ = q0.5/q0.99 with qα being the α-quantile of Ψ. The constant ρ is closely linked

to the shrinkage factor ρT as we will see shortly.

The main idea behind the construction of q̂sc
f,T (u) is to achieve a good approximation

of the step function 1(u ≤ u0):

(i) For time points u ≥ u0, the statistic
√
T D̂sc

f,T (u) is approximately distributed

according to Ψ. The factor ρ shrinks the statistic in a specific way: If Z is

distributed according to Ψ, then P(Ψ(ρZ) ≤ 0.5) = 0.99. Hence, q̂sc
f,T (u) ≤ 0.5

with high probability, in particular with probability around 0.99.

(ii) At time points u < u0, the statistic
√
T D̂sc

f,T (u) mimics the behaviour of the

diverging expression
√
TDsc

f (u). Consequently,
√
T D̂sc

f,T (u) gets pushed into the

extreme upper tail of Ψ, which means that q̂sc
f,T (u) should take values close to one.

Taken together, these considerations suggest that q̂sc
f,T (u) should give a reasonable

approximation of 1(u ≤ u0).

As already indicated above, the constant ρ plays the role of the shrinkage factor ρT in

(7.3). It is designed to meet two opposite requirements: On the one hand, we should

avoid shrinking the statistic
√
T D̂sc

f,T (u) too strongly because otherwise its diverging

behaviour at time points u < u0 is dampened too much. On the other hand, we

need to shrink it sufficiently strongly to guarantee that q̂sc
f,T (u) is small for u ≥ u0.

In particular, we would like q̂sc
f,T (u) to be closer to zero than to one at the points

u ≥ u0 for most of the time, i.e., we would like it to be smaller than 0.5 with high

probability at these points. This suggests to use ρ = q0.5/q0.99 as the shrinkage factor

ρT .1 However, as ρT must converge to zero from a theoretical perspective, we cannot

take the constant ρ at face value but have to replace it by an appropriate sequence.

1Clearly, q0.99 may be replaced by a slightly different quantile like q0.95 or q0.975.
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Specifically, we may set ρT = ρT−1/N , where N is a large natural number. The so-

defined shrinkage factor ρT converges to zero but is very close to ρ for any reasonable

sample size which appears in practice. In applications, we may ignore the difference

between ρT and ρ and simply set ρT = ρ.

Step 4. Since the normalization σf (u) is not known in practice, we cannot work with

the statistic q̂sc
f,T (u) directly but have to replace σf (u) by an estimate. As long as

the model under consideration is not too complicated, this is a fairly straightforward

task. Consider for example the time-varying mean model Xt,T = µ( t
T

) + εt with i.i.d.

residuals εt. Denoting the error variance by σ2 = E[ε2
t ], it holds that σf (u) = σ which

is easily estimated by standard techniques.

To construct a general estimator of σf (u), we define Zt,T = f(Xt,T )−E[f(Xt,T )] along

with Zt(w) = f(Xt(w))− E[f(Xt(w))] and write

σ2
f (u) =

∞∑
l=−∞

νl(u) with νl(u) :=

∫ 1

u
cl(w)dw

1− u
=

∫ 1

u
E[Z0(w)Zl(w)]dw

1− u
.

This formula shows that σ2
f (u) essentially is the average long-run variance of the pro-

cesses {Zt(w)} on the interval [u, 1]. This suggests to estimate σ2
f (u) by

σ̂2
f (u) =

LT∑
l=−LT

ν̂l(u)

with

ν̂l(u) =
1

(1− u)T

T∑
t=duT+1e

Ẑt,T Ẑt+l,T ,

where Ẑt,T = f(Xt,T )−m̂( t
T

) and LT is a cutoff sequence that diverges to infinity at an

appropriate rate. Here, m̂( t
T

) is a standard Nadaraya-Watson estimator of E[f(Xt,T )].

Specifically, m̂(w) = T−1
∑T

t=1 Kh(w− t
T

)f(Xt,T ) with K being a kernel function and

Kh(x) = h−1K(x/h). Alternatively, a local linear or more generally a local polynomial

estimator may be employed.

It is worth noting that it is not essential for our method to have an extremely precise

estimate of σf (u) at one’s disposal. The estimate should just be precise enough to

make sure that the distribution function of the statistic
√
T D̂sc

f,T (u) is not too far

away from Ψ for time points u ≥ u0. Hence, in most cases a fairly rough estimator

based on a crude choice of the truncation parameter LT and the bandwidth h will do

in practice.

Taken together, the above considerations suggest to implement our procedure as fol-

lows in practice: To start with, we normalize our measure of time-variation by the

term σ̂f (u)
√

1− u, thus yielding

D̂sc
f,T (u) = sup

v∈[u,1]

∣∣∣ D̂T (u, v, f)

σ̂f (u)
√

1− u

∣∣∣
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with σ̂f (u) defined in Step 4. Choosing Ψ as the transformation function and setting

ρT = ρT−1/N as described in Step 3, we further define

q̂sc
f,T (u) = Ψ

(
ρT
√
T D̂sc

f,T (u)
)

together with q̂sc
T (u) = supf∈F q̂

sc
f,T (u), which leads to the criterion function Q̂sc

T (u) =

u + (1 − u)q̂sc
T (u). The estimator that results from minimizing this criterion function

is denoted by ûsc
0 . The following corollary summarizes its asymptotic properties.

Corollary 7.1. Let the conditions of Theorem 6.3 be satisfied. Moreover, assume that

there exist constants σ and σ such that 0 < σ ≤ σ̂f (u) ≤ σ <∞ for all u ∈ [0, 1] and

f ∈ F with probability approaching one. Then

ûsc
0 − u0 = Op(γT )

with γT as defined in Theorem 6.3.

The additional condition that σ ≤ σ̂f (u) ≤ σ for all u and f with probability ap-

proaching one can be shown to be satisfied in a wide range of cases. Rather than

going into the technical details, we briefly describe a way to get rid of this condition:

We simply replace the estimate σ̂f (u) with the truncated version

σ̂tr
f (u) = σ · 1(σ̂f (u) < σ) + σ̂f (u) · 1(σ ≤ σ̂f (u) ≤ σ) + σ · 1(σ < σ̂f (u)),

which is bounded by the constants σ and σ by construction. When σ and σ are chosen

sufficiently small and large, respectively, then σ̂f (u) and σ̂tr
f (u) differ only slightly and

there is no difference in using σ̂f (u) or σ̂tr
f (u) from an applied point of view.

8 Simulations

We now examine the finite sample performance of our estimator ûsc
0 in a Monte-Carlo

experiment. To do so, we consider a variety of different time series processes which

are stationary on the rescaled time interval [u0, 1] but deviate from stationarity on

any interval [u, 1] with u < u0. In all settings, u0 is equal to 0.5. For each model,

we generate N = 5000 samples of length T ∈ {500, 1000} and apply our procedure to

estimate u0. We thus obtain N = 5000 estimates of u0 for each model specification.

The results are presented by histograms that show the empirical distribution of the

estimates for each specification. In particular, the bars in the plots give the number

of simulations (out of a total of 5000) in which a certain value ûsc
0 is obtained.

22



8.1 Time-Varying Mean Models

To start with, we consider the model

Xt,T = µ
( t
T

)
+ εt (8.1)

with different mean functions µ = µk (k = 1, 2, 3). The residuals εt are assumed to

follow the AR(1) process εt = 0.25εt−1 + ηt, where the innovations ηt are i.i.d. normal

with zero mean and standard deviation 0.5. The mean functions are all piecewise

linear and equal to zero for time points larger than u0 = 0.5. Specifically,

µ1(u) = 1(u ≤ 0.4) + [1− 10(u− 0.4)] · 1(0.4 < u < 0.5)

µ2(u) = 1(u ≤ 0.25) + [1− 4(u− 0.25)] · 1(0.25 < u < 0.5)

µ3(u) = 4u · 1(u ≤ 0.25) + [1− 4(u− 0.25)] · 1(0.25 < u < 0.5).

The functions µ1 and µ2 start to linearly deviate from zero at the point 0.5 until they

reach a value of one and then constantly remain at this value. The function µ3, in

contrast, is tent-shaped on the interval [0, 0.5].

To estimate the point u0, we base our estimation method on the statistic D̂µ,T from

Example I and use the implementation strategy outlined in Section 7. As suggested

there, the shrinkage parameter is set equal to ρ = q0.5/q0.99. In the present setting, the

scaling factor σ2
f (u) = σ2

id(u) is equal to the long-run variance
∑∞

l=−∞ E[ε0εl] of the

error terms. To estimate it, we proceed as described in Step 4 of Section 7. Specifically,

we pick the bandwidth h of the Nadaraya-Watson estimator to equal 0.1 and truncate

the infinite sum at 5 (and −5), i.e., we take into account autocovariances up to the

fifth order. As a robustness check, we have varied the truncation points between 2 and

10. This yields very similar results, underpinning our claim from Section 7 that it is

not essential to work with a very precise estimator of the scaling factor.
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Figure 2: Simulation results for model (8.1) with the mean function µ1.
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The simulation results for the design with µ1 are presented in Figure 2, the left-hand

panel corresponding to a sample size of T = 500 and the right-hand one to T = 1000.

Since µ1 deviates from zero fairly quickly, our procedure is able to localize the point

u0 = 0.5 quite precisely. Indeed, the histograms show that the estimates are not very

dispersed but cluster tightly around u0. The plots also make visible a downward bias

of the estimates. This bias reflects the difficulty of the change point problem under

consideration. In fact it is very hard to detect smooth time-variations on an interval

[u0 − ξ, 1] if ξ is very small. As can be seen, the bias becomes less pronounced when

moving to the larger sample size T = 1000.

0 100 200 300 400 500

−
1
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2

Figure 3: A typical sample of length 500 simulated from model (8.1) with the function µ2.

We next turn to the design with µ2. Since µ2 deviates from zero much more slowly

than µ1, it is harder for our method to localize the point u0. This is illustrated by

Figure 3 which depicts a typical sample of length 500 drawn from this design. As can

be seen, the deviation of µ2 from zero is clearly visible only at time points u much

smaller than u0. When getting closer to u0, the signal of the time-variation becomes

fairly weak and is more and more dominated by the noise of the error term.
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Figure 4: Simulation results for model (8.1) with the mean function µ2.
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The simulation results for the design with µ2 are shown in Figure 4. As can be

seen there, the distribution of the estimates is more dispersed than in the design

with µ1, reflecting the fact that it is harder to detect the point u0 in this setting.

Nevertheless, the great bulk of estimates takes values in the region between 0.4 and

0.5, thus providing us with a reasonable approximation of u0.
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Figure 5: Simulation results for model (8.1) with the mean function µ3.

We finally turn to the results for the setting with µ3. Since the function µ3 deviates

from zero in the same way as µ2 on the segment [0.25, 0.5], we may expect our procedure

to perform similarly as in the previous setting. This is confirmed by the histograms

in Figure 5 which strongly resemble those in Figure 4.

8.2 Time-Varying Autoregressive Models

We next investigate a couple of time-varying AR models. In particular, we consider

the AR(1) setting

Yt,T = a
( t
T

)
Yt−1,T + εt (8.2)

with two different parameter functions a = ak (k = 1, 2) and i.i.d. residuals εt that are

normally distributed with zero mean and unit variance. The coefficient functions are

given by

a1(u) = 0.5 · 1(u < 0.5)− 0.5 · 1(u ≥ 0.5)

a2(u) = 0.5 · 1(u ≤ 0.4) + [0.5− 10(u− 0.4)] · 1(0.4 < u < 0.5)− 0.5 · 1(u ≥ 0.5).

The function a1 has a break at the point u0 = 0.5, where it jumps from its baseline

value −0.5 to a value of 0.5. The function a2 in contrast linearly deviates from its

baseline −0.5 until it reaches the value 0.5. To estimate the point u0, we employ the

statistic D̂γ,T from Example II with p = 1, i.e., we take into account covariances up to

the first order and implement our method along the lines of Section 7. To estimate the
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scaling factor, we set h = 0.1 and truncate the infinite sum occurring in its definition

as before at 5. As a robustness check, we have again varied the truncation point but

found that it does not affect the procedure in any notable way.

We first report the simulation results for the AR design with a1. In this setting, the

deviation from stationarity occurs instantaneously. Our method is thus able to detect

the point u0 = 0.5 quite precisely as can be seen from the histograms in Figure 6.

Again the estimates are downward biased in small samples, the bias being much less

pronounced for the larger sample size T = 1000.
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Figure 6: Simulation results for the AR model (8.2) with the parameter function a1.

Moving to the second design with the function a2, the deviation from stationarity is

not as clear-cut as in the previous setting but occurs gradually. As is illustrated by

Figure 7, the visual appearance of the time series in the transition region [0.4, 0.5] is

fairly similar to that within the time span [0.5, 1]. Hence, it is quite difficult for our

method to localize the time point u0 = 0.5.

0 100 200 300 400 500

−
3

−
2

−
1

0
1

2
3

Figure 7: A typical sample of length 500 simulated from model (8.2) with the parameter

function a2.
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Figure 8 displays the simulation results for the design with a2. As expected, the

precision of the estimator is lower than in the jump design with a1. Nevertheless,

most of the estimates take values between 0.4 and 0.5, thus picking up the structural

change in the parameter function quite quickly and accurately.
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Figure 8: Simulation results for the AR model (8.2) with the parameter function a2.

8.3 A Time-Varying Volatility Model

We finally consider the time-varying volatility model

Yt,T = σ
( t
T

)
εt (8.3)

with two different volatility functions σ = σk (k = 1, 2) and i.i.d. residuals εt that are

normally distributed with zero mean and unit variance. The volatility functions are

given by

σ1(u) = 2 · 1(u < 0.5) + 1 · 1(u ≥ 0.5)

σ2(u) = 2 · 1(u < 0.4) + [2− 10(u− 0.4)] · 1(0.4 < u < 0.5) + 1 · 1(u ≥ 0.5).

As in the AR setting, the function σ1 has a jump at u0 = 0.5, whereas σ2 smoothly

deviates from its baseline value 1. We base our method on the statistic D̂F,T from

Example III with p = 0, thus restricting attention to time-variations in the marginal

distribution of the variables Yt,T . As before, we follow the strategy from Section 7 to

implement our method.

The simulation results for the design with σ1 are summarized in Figure 9. Since the

time-variation is exactly localized at the point u0 = 0.5, our method is able to pick it

up rather quickly. The distribution of the estimates is thus not very dispersed, but is

again downward biased in small samples.
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Figure 9: Simulation results for model (8.3) with the volatility function σ1.

We finally turn to the results for the design with σ2 which are displayed in Figure 10.

As expected, the histograms are more dispersed in this setting, reflecting the fact that

the time-variation is smooth and gradual in this case.
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Figure 10: Simulation results for model (8.3) with the volatility function σ2.

9 Application

To illustrate our estimation procedure, we apply it to a sample of financial return

and volatility data. Specifically, we consider a sample of daily returns and realized

volatilities for the S&P 500 index which are depicted in Figure 11.2 The data span the

period from the beginning of 2011 to the beginning of 2013, leaving us with a sample

of approximately 500 data points. In what follows, we apply our estimation method

2The data are taken from Oxford-Man Institute’s “realized library” [13]. In particular, our volatility

data are calculated by taking the square root of the library’s realized variance time series that is

based on a realized kernel estimator.
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both to the return and to the volatility time series. For each of the two series, we

estimate the time point u0 where the data start to severely deviate from stationarity.
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Figure 11: The left-hand panel shows the time series of daily returns, the right-hand panel

the time series of realized volatilities. The estimates of u0 are indicated by the dashed vertical

lines.

We first examine the time series of daily returns. A simple locally stationary model

for financial returns is given by the equation

rt,T = σ
( t
T

)
εt, (8.4)

where rt,T denotes the daily return, σ is a time-varying volatility function and εt are

i.i.d. residuals. Model (8.4) has been studied in a variety of papers; see Drees & Stărică

[9] and Fryzlewicz et al. [11] among others. It suggests to estimate u0 by means of a

statistic that measures time-variations in the unconditional variance level σ2( t
T

). Such

a statistic is given by D̂T (u) = supv∈[u,1] |D̂T (u, v)|, where

D̂T (u, v) =
1

T

T∑
t=dvT+1e

r2
t,T −

(1− v
1− u

) 1

T

T∑
t=duT+1e

r2
t,T .

Alternatively, we may base our estimation method on a statistic which is able to

detect time-variations in a wider range of distributional features. In particular, as in

the simulations, we may work with the statistic D̂T (u) = supx∈R,v∈[u,1] |D̂T (u, v, x)|,
where

D̂T (u, v, x) =
1

T

T∑
t=dvT+1e

I(rt,T ≤ x)−
(1− v

1− u

) 1

T

T∑
t=duT+1e

I(rt,T ≤ x).

As turns out, both variants of our method yield the same estimate ûsc
0 which is depicted

by the dashed vertical line in the left-hand panel of Figure 11. Having a closer look at
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the plot of the return data, ûsc
0 appears to be a reasonable estimate of the point where

the time series starts to deviate from stationarity. Indeed, visual inspection suggests

that the returns become much more volatile in the time period before ûsc
0 .

We next turn to the time series of volatilities. Daily realized volatility is commonly

modelled by means of autoregressive processes. Since it is characterized by slowly

decaying sample autocorrelations, long-memory models like ARFIMA have been sug-

gested quite frequently; see Andersen et al. [1] among others. However, as pointed out

for example in Mikosch & Stărică [20], the long-memory behaviour may be spuriously

generated by nonstationarities in the volatility process. This has led several authors

to use autoregressive processes with time-varying parameters for modelling volatility;

see e.g. Chen et al. [4]. Following this line of thought, a simple model of daily volatility

is given by

vt,T = a0

( t
T

)
+ a1

( t
T

)
vt−1,T + εt, (8.5)

where vt,T denotes realized volatility and εt are i.i.d. innovations. Model (8.5) suggests

to base our estimation method on a statistic which is able to capture time-variations

in the parameter functions a0 and a1. This is for example achieved by the statistic

D̂T (u) = max1≤k≤3 supv∈[u,1]

∣∣D̂T (u, v, k)
∣∣, where

D̂T (u, v, k) =
1

T

T∑
t=dvT+1e

w
(k)
t,T −

(1− v
1− u

) 1

T

T∑
t=duT+1e

w
(k)
t,T

with w
(1)
t,T = vt,T , w

(2)
t,T = v2

t,T and w
(3)
t,T = vt,Tvt−1,T . This statistic can be regarded as

combining the measures from Examples I and II. By construction, it is able to detect

time-variations in the mean, the variance as well as the first autocovariance of the

volatility process. The estimate of u0 obtained from using this statistic is plotted as

the vertical dashed line in the right-hand panel of Figure 11. Again, visual inspection

of the volatility data suggests that our method gives a reasonable approximation of

the time point where the volatility process starts to deviate from stationarity.
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Appendix

In this appendix, we prove the main theoretical results of the paper. Throughout the

appendix, the symbol C denotes a generic constant which may take a different value

on each occurrence. Moreover, the expression ‖X‖p = (E|X|p)1/p is used to denote the

Lp-norm of a real-valued random variable X.

Auxiliary Results

Before we turn to the proofs of the main theorems, we derive some technical lemmas

which are needed later on. To formulate them, we introduce some additional notation.

To start with, partition the observations {Xt,T , t = 1, . . . , T} into blocks of size q,

where the r-th block spans the observations from time point (r− 1)q+ 1 to rq and we

set q = CT b for some small b > 0 (in particular b < 1
4
). Now define

WT (k, k′) = sup
f∈F

∣∣∣ k′∑
r=k

Qr,T (f)
∣∣∣

along with

Qr,T (f) =
1√

(k′ − k + 1)q

(2r−1)q∧T∑
t=(2r−2)q+1

(
f(Xt,T )− Ef(Xt,T )

)
.

The terms Qr,T (f) are scaled sums of the variables f(Xt,T )−Ef(Xt,T ), the summation

running over the observations of the (2r− 1)-th block. The expression WT (k, k′) sums

up the terms Qk,T (f), . . . , Qk′,T (f) which correspond to the odd blocks (2k− 1), (2k+

1), (2k + 3), . . . , (2k′ − 1). The next two lemmas provide a bound on the Lp-norm of

WT (k, k′).

Lemma A.1. Let (C1) and (C2) be satisfied and let f0 ∈ F have the property that

E|f0(Xt,T )|(1+δ)p ≤ C for some even p ∈ N and a small δ > 0. Then

∥∥∥ k′∑
r=k

Qr,T (f0)
∥∥∥
p
≤ C

for some sufficiently large constant C.

Proof. To shorten notation, write wt,T = f0(Xt,T )−Ef0(Xt,T ) and consider the term

VT = VT (k, k′) = E
[( k′∑

r=k

Qr,T (f0)
)p]

≤ 1

((k′ − k + 1)q)p/2

k′∑
r1,...,rp=k

(2r1−1)q∧T∑
t1=(2r1−2)q+1

. . .

(2rp−1)q∧T∑
tp=(2rp−2)q+1

∣∣E[wt1,T . . . wtp,T ]
∣∣
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≤ p!

((k′ − k + 1)q)p/2

(2k′−1)q∧T∑
t1,...,tp=(2k−2)q+1

t1≤...≤tp

∣∣E[wt1,T . . . wtp,T ]
∣∣.

Let (t1, . . . , tp) be a tuple of ordered indices, that is, t1 ≤ . . . ≤ tp. We say that the

index ti has a neighbour if |ti− ti−1| ≤ C∗ log T or |ti− ti+1| ≤ C∗ log T for some large

constant C∗ to be specified later on. Moreover, ti is said to have exactly one neighbour

if either |ti − ti−1| ≤ C∗ log T and |ti − ti+1| > C∗ log T or vice versa. Finally, we call

(ti−1, ti) a pair of neighbours if |ti − ti−1| ≤ C∗ log T . Now let S≤ denote the set of

ordered tuples (t1, . . . , tp) ∈ {(2k−2)q+1, . . . , (2k′−1)q∧T}p such that each index ti

has a neighbour. In addition, let S> be the set of tuples such that at least one index

does not have a neighbour. With this notation at hand, we can write

VT = V ≤T + V >
T ,

where for ` ∈ {≤, >},

V `
T =

p!

((k′ − k + 1)q)p/2

∑
(t1,...,tp)∈S`

∣∣E[wt1,T . . . wtp,T ]
∣∣.

We now analyze the two terms V ≤T and V >
T separately. For the investigation of V ≤T ,

define

S≤,a =
{

(t1, . . . , tp) ∈ S≤ | each index ti has exactly one neighbour
}

together with

S≤,b = S≤ \ S≤,a.

First suppose that (t1, . . . , tp) ∈ S≤,a. In this case, there are exactly p pairs (t2i−1, t2i)

of neighbours (recalling that p is even by assumption). Using Davydov’s inequality

(see e.g. Corollary 1.1 in Bosq [2]) to bound the covariances of the mixing variables

wt,T , we obtain that∣∣E[wt1,T . . . wtp,T ]
∣∣ ≤ ∣∣E[wt1,Twt2,T ]E[wt3,T . . . wtp,T ]

∣∣+
∣∣Cov(wt1,Twt2,T , wt3,T . . . wtp,T )

∣∣
=
∣∣E[wt1,Twt2,T ]E[wt3,T . . . wtp,T ]

∣∣+O
(
α(C∗ log T )

)
=
∣∣Cov(wt1,T , wt2,T )E[wt3,T . . . wtp,T ]

∣∣+O
(
α(C∗ log T )

)
...

≤
∣∣∣p/2∏
i=1

Cov(wt2i−1,T , wt2i,T )
∣∣∣+O(T−ν),

where we have used the fact that the mixing coefficients are decaying exponentially

fast and the constant ν > 0 can be made arbitrarily large (by choosing the constant

32



C∗ sufficiently large). This implies that

V ≤,aT =
p!

((k′ − k + 1)q)p/2

∑
(t1,...,tp)∈S≤,a

∣∣E[wt1,T . . . wtp,T ]
∣∣

≤ p!

((k′ − k + 1)q)p/2

∑
(t1,...,tp)∈S≤,a

∣∣∣p/2∏
i=1

Cov(wt2i−1,T , wt2i,T )
∣∣∣+ o(1)

≤ p!

((k′ − k + 1)q)p/2

p/2∏
i=1

( dC∗ log T e∑
`=0

(2k′−1)q∧T∑
t2i−1=(2k−2)q+1

∣∣Cov(wt2i−1,T , wt2i−1+`,T )
∣∣)+o(1)

≤ C
p!

((k′ − k + 1)q)p/2
((k′ − k + 1)q)p/2

(dC∗ log T e∑
`=0

α(`)
)p/2

+ o(1) ≤ C

for some sufficiently large constant C, where the last line again uses Davydov’s in-

equality to bound the covariance expressions in the formula.

Next consider the sum V ≤,bT corresponding to indices in the set S≤,b. The cardinality

of this set is bounded by

C
(
(k′ − k + 1)q

) p
2
−1(

log T
) p

2
+1
,

which implies

V ≤,bT =
p!

((k′ − k + 1)q)p/2

∑
(t1,...,tp)∈S≤,b

∣∣E[wt1,T . . . wtp,T ]
∣∣

≤ C
(log T )p/2+1

(k′ − k + 1)q
= o(1)

(noting that q = T b). This shows that the term V ≤T is bounded.

Finally, we examine the term V >
T corresponding to the index set S>. By definition, the

tuples contained in this set have at least one element, say ti, without a neighbour, that

is, |ti − ti+1| > C∗ log T and |ti − ti−1| > C∗ log T . Exploiting the mixing conditions

on the model variables in a similar way as above, we obtain that

E[wt1,T . . . wtp,T ]

= E[wt1,T . . . wti−1,T ]E[wti,T . . . wtp,T ] + Cov(wt1,T . . . wti−1,T , wti,T . . . wtp,T )

= E[wt1,T . . . wti−1,T ]Cov(wti,T , wti+1,T . . . wtp,T ) +O(T−ν)

= O(T−ν),

where ν can be chosen arbitrarily large (if C∗ is chosen large enough). Recalling the

definition of V >
T , this yields that V >

T = o(1). Putting everything together, the quantity

VT is seen to be bounded. This completes the proof.
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Lemma A.2. Let (C1) and (C2) be satisfied. Moreover, assume that for some even

p ∈ N and some small δ > 0,

E
[∣∣∣f(Xt,T )− f ′(Xt,T )

dF(f, f ′)

∣∣∣(1+δ)p]
≤ C

for all functions f, f ′ ∈ F . Then for any f0 ∈ F ,

∥∥WT (k, k′)
∥∥
p
≤ C

(∥∥∥ k′∑
r=k

Qr,T (f0)
∥∥∥
p

+

∫ diam(F)

0

N (w/2,F , dF)1/pdw
)
,

where N (w,F , dF) is the covering number of (F , dF) and diam(F) = supf,f ′∈F dF(f, f ′)

denotes the diameter of F .

Proof. The claim immediately follows from Theorem 2.2.4 and Corollary 2.2.5 in van

der Vaart & Wellner [26] (see their remark on p.100 before Subsection 2.2.1). It thus

suffices to verify the conditions of Theorem 2.2.4. In particular, we have to show that

E
[∣∣∣ k′∑
r=k

Qr,T (f)−
k′∑
r=k

Qr,T (f ′)
∣∣∣p] ≤ CdF(f, f ′)p

for some sufficiently large constant C. To prove this, we introduce the notation

wt,T =
f(Xt,T )− f ′(Xt,T )

dF(f, f ′)
− E

[f(Xt,T )− f ′(Xt,T )

dF(f, f ′)

]
and consider

VT = VT (k, k′) = E
[∣∣∣ k′∑
r=k

Qr,T (f)−Qr,T (f ′)

dF(f, f ′)

∣∣∣p]
≤ 1

((k′ − k + 1)q)p/2

k′∑
r1,...,rp=k

(2r1−1)q∧T∑
t1=(2r1−2)q+1

. . .

(2rp−1)q∧T∑
tp=(2rp−2)q+1

∣∣E[wt1,T . . . wtp,T ]
∣∣

≤ p!

((k′ − k + 1)q)p/2

(2k′−1)q∧T∑
t1,...,tp=(2k−2)q+1

t1≤···≤tp

∣∣E[wt1,T . . . wtp,T ]
∣∣.

Repeating the arguments from Lemma A.1, we can show that VT is bounded, thus

completing the proof.

Proof of Theorem 6.1

To show that ĤT =
√
T [D̂T −D] weakly converges to H, it suffices to prove that

Ĥc
T :=

√
T
[
D̂T − ED̂T

]
 H (A.1)

together with √
T sup

(u,v,f)∈∆×F
|ED̂T −D| = o(1), (A.2)
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where Ĥc
T is the centred version of ĤT . We start with the proof of (A.2). Making use

of condition (C4), we obtain that

1√
T

T∑
t=duT+1e

E
[
f(Xt,T )

]
=

1√
T

T∑
t=duT+1e

E
[
f
(
Xt

( t
T

))]
+ o(1)

=
√
T

T−1∑
t=duT+1e

∫ t+1
T

t
T

E
[
f(Xt(w))

]
dw + o(1)

=
√
T

∫ 1

u

E
[
f(Xt(w))

]
dw + o(1)

uniformly with respect to u ∈ [0, 1] and f ∈ F . From this, (A.2) immediately follows.

To verify (A.1), we show weak convergence of the finite dimensional distributions of

Ĥc
T as well as stochastic equicontinuity of Ĥc

T . In particular, we derive the following

two results.

Proposition A.1. For any finite number of points (ui, vi, fi) with 1 ≤ i ≤ n, it holds

that Ĥ
c
T (u1, v1, f1)

...

Ĥc
T (un, vn, fn)

 d−→ N(0,Σ)

where Σ = (Σij)1≤i,j≤n and Σij = Cov(H(ui, vi, fi), H(uj, vj, fj)).

Proposition A.2. The sequence of processes Ĥc
T is asymptotically stochastically equicon-

tinuous, that is, for any ε > 0,

lim
δ↘0

lim sup
T→∞

P
(

sup
|u−u′|+|v−v′|
+dF (f,f ′)≤δ

∣∣Ĥc
T (u, v, f)− Ĥc

T (u′, v′, f ′)
∣∣ > ε

)
= 0.

Combining the above two propositions, (A.1) now follows from a standard functional

central limit theorem (see van der Vaart & Wellner [26]).

Proof of Proposition A.1. We start by calculating the asymptotic expectation and

covariances of the process Ĥc
T . As the process is centered, it holds that E[Ĥc

T (u, v, f)] =

0. To calculate the asymptotic covariances, we introduce the notation

Ĥc
T (u, v, f) = ĜT (v, f)−

(1− v
1− u

)
ĜT (u, f) (A.3)

together with

ĜT (u, f) =
1√
T

T∑
t=duT+1e

(
f(Xt,T )− Ef(Xt,T )

)
. (A.4)
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With this, we can write

Cov
(
Ĥc
T (u1, v1, f1), Ĥc

T (u2, v2, f2)
)

=
(1− v1)(1− v2)

(1− u1)(1− u2)
E
[
ĜT (u1, f1)ĜT (u2, f2)

]
− 1− v2

1− u2

E
[
ĜT (v1, f1)ĜT (u2, f2)

]
− 1− v1

1− u1

E
[
ĜT (u1, f1)ĜT (v2, f2)

]
+ E

[
ĜT (v1, f1)ĜT (v2, f2)

]
. (A.5)

In what follows, we show that

E
[
ĜT (u1, f1)ĜT (u2, f2)

]
=

∞∑
`=−∞

∫ 1

max{u1,u2}
c`(w)dw + o(1) (A.6)

with c`(w) = Cov(f1(X0(w)), f2(X`(w))). Plugging (A.6) into (A.5) yields

Cov
(
Ĥc
T (u1, v1, f1), Ĥc

T (u2, v2, f2)
)

= Cov
(
H(u1, v1, f1), H(u2, v2, f2)

)
+ o(1).

Hence, the covariances of Ĥc
T converge to those of the Gaussian process H.

To show (A.6), we assume without loss of generality that u1 ≥ u2. Exploiting the

mixing conditions of (C2) by means of Davydov’s inequality, it can be seen that

Cov
(
f1(Xt,T ), f2(Xs,T )

)
≤ Cα(|s − t|) ≤ Ca|s−t| for some a < 1 and a sufficiently

large constant C. We thus obtain that

E
[
ĜT (u1, f1)ĜT (u2, f2)

]
=

1

T

T∑
t=du1T+1e

T∑
s=du2T+1e

Cov
(
f1(Xt,T ), f2(Xs,T )

)
=

1

T

T∑
t=du1T+1e

T∑
s=du2T+1e

I{|s− t| ≤ C∗ log T}Cov
(
f1(Xt,T ), f2(Xs,T )

)
+ o(1)

=: Q
(1)
T +Q

(2)
T +Q

(3)
T + o(1)

for some sufficiently large constant C∗, where the random variables Q
(j)
T (j = 1, 2, 3)

are defined by

Q
(1)
T =

1

T

dC∗ log T e∑
`=1

T−∑̀
t=1

I
{
t ≥ du1T + 1e, t+ ` ≥ du2T + 1e

}
Cov

(
f1(Xt,T ), f2(Xt+`,T )

)
Q

(2)
T =

1

T

T∑
t=du1T+1e

Cov
(
f1(Xt,T ), f2(Xt,T )

)
Q

(3)
T =

1

T

dC∗ log T e∑
`=1

T∑
t=`+1

I
{
t ≥ du1T + 1e, t− ` ≥ du2T + 1e

}
Cov

(
f1(Xt,T ), f2(Xt−`,T )

)
.
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By assumption (C4), it follows for ` ≤ dC∗ log T e and any w with |w − t
T
| ≤ 1

T
that

ct,T,` := Cov
(
f1(Xt,T ), f2(Xt+`,T )

)
= Cov

(
f1

(
Xt

( t
T

))
, f2

(
Xt+`

(t+ `

T

)))
+O

( log T

T

)
= Cov

(
f1

(
Xt

( t
T

))
, f2

(
Xt+`

( t
T

)))
+O

( log T

T

)
= Cov

(
f1(X0(w)), f2(X`(w))

)
+O

( log T

T

)
=: c`(w) +O

( log T

T

)
,

the last line defining c`(w) in an obvious manner. From this, it is easy to see that

1

T

dC∗ log T e∑
`=1

T−∑̀
t=1

|ct,T,`| =
dC∗ log T e∑

`=1

T−∑̀
t=1

∫ t
T

t−1
T

∣∣∣c`( t
T

)∣∣∣dw +O
((log T )2

T

)
=

dC∗ log T e∑
`=1

T−∑̀
t=1

∫ t
T

t−1
T

|c`(w)|dw +O
((log T )2

T

)
=

dC∗ log T e∑
`=1

∫ 1

0

|c`(w)|dw +O
((log T )2

T

)
.

Because of the mixing assumption (C2), the left-hand side of this equation is bounded

as T →∞ and consequently
∑∞

`=1

∫ 1

0
c`(w)dw is absolutely convergent. Therefore we

obtain for the term Q
(1)
T as T →∞ (recall that u1 ≥ u2)

Q
(1)
T =

dC∗ log T e∑
`=1

T−∑̀
t=du1T+1e

∫ t
T

t−1
T

c`(w)dw +O
((log T )2

T

)
=
∞∑
`=1

∫ 1

u1

c`(w)dw +O
((log T )2

T

)
and similarly

Q
(2)
T =

∫ 1

u1

c0(w)dw +O
((log T )2

T

)
, Q

(3)
T =

∞∑
`=1

∫ 1

u1

c−`(w)dw +O
((log T )2

T

)
.

Putting everything together, we arrive at (A.6).

Having calculated the asymptotic covariance structure of Ĥc
T , we now apply a central

limit theorem for mixing arrays of random variables (see e.g. Liebscher [16]) together

with the Cramér-Wold device to obtain weak convergence of the finite dimensional

distributions.
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Proof of Proposition A.2. As for the proof of Proposition A.1, we make use of the

notation (A.3) and (A.4). Straightforward calculations show that

sup
|u−u′|+|v−v′|
+dF (f,f ′)≤δ

∣∣Ĥc
T (u, v, f)− Ĥc

T (u′, v′, f ′)
∣∣ ≤ 2 sup

|u−u′|≤δ
f∈F

∣∣ĜT (u, f)− ĜT (u′, f)
∣∣

+ 2 sup
dF (f,f ′)≤δ
u∈[0,1]

∣∣ĜT (u, f)− ĜT (u, f ′)
∣∣

+ 2
√
δ sup
u∈[0,1]
f∈F

∣∣∣ 1√
1− u

ĜT (u, f)
∣∣∣.

Therefore, stochastic equicontinuity follows from the statements

lim
δ↘0

lim sup
T→∞

P
(

sup
|u−u′|≤δ
f∈F

∣∣∣ĜT (u, f)− ĜT (u′, f)
∣∣∣ > ε

)
= 0 (A.7)

lim
δ↘0

lim sup
T→∞

P
(

sup
dF (f,f ′)≤δ
u∈[0,1]

∣∣∣ĜT (u, f)− ĜT (u, f ′)
∣∣∣ > ε

)
= 0 (A.8)

lim
δ↘0

lim sup
T→∞

P
(√

δ sup
u∈[0,1]
f∈F

∣∣∣ 1√
1− u

ĜT (u, f)
∣∣∣ > ε

)
= 0. (A.9)

As the three statements can be shown by similar arguments, we restrict ourselves to

the proof of (A.7).

First of all, observe that for any function g : [0, 1]→ R, the inequality

sup
|u−u′|≤δ
u,u′∈[0,1]

|g(u)− g(u′)| ≤ max
j=1,...,d1/δe

sup
u∈[uj−1,uj ]

|g(u)− g(uj)|

+ max
j=1,...,d1/δe

sup
u′∈[uj−2,uj+1]

|g(u′)− g(uj)|

holds, where u−1 = u0 = 0, uj = jδ (j = 1, . . . , d1/δe − 1) and ud1/δe = ud1/δe+1 = 1.

This implies that (A.7) is a consequence of

lim
δ↘0

lim sup
T→∞

P
(

max
j=1,...,d1/δe

sup
u∈[uj−1,uj ]

sup
f∈F

∣∣∣ĜT (u, f)− ĜT (jδ, f)
∣∣∣ > ε

)
= 0. (A.10)

In the sequel, we derive a suitable bound for the probability

PT (δ, ε) = P
(

max
j=1,...,d1/δe

sup
u∈[uj−1,uj ]

sup
f∈F

∣∣∣ĜT (u, f)− ĜT (jδ, f)
∣∣∣ > ε

)
in (A.10). To start with, we crudely bound this probability by

PT (δ, ε) ≤
d1/δe∑
j=1

PT,j(δ, ε),

where

PT,j(δ, ε) = P
(

sup
u∈[uj−1,uj ]

sup
f∈F

∣∣∣ĜT (u, f)− ĜT (jδ, f)
∣∣∣ > ε

)
= P

(
max

(j−1)δT≤`≤jδT
sup
f∈F

∣∣∣ĜT

( `
T
, f
)
− ĜT (jδ, f)

∣∣∣ > ε
)
.
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To bound the probabilities PT,j(δ, ε), we write

ĜT

( `
T
, f
)
− ĜT (jδ, f) = B`+

T (f) +

b jδT
q
c∑

r=d `
q
e+1

Br,T (f) +Bj−
T (f).

Here, Br,T (f) are blocks of length q given by

Br,T (f) =
1√
T

rq∑
t=(r−1)q+1

(
f(Xt,T )− Ef(Xt,T )

)
,

where as in the subsection on auxiliary results, we set q = CT b for some small b > 0

(specifically, b < 1
4
). In addition,

B`+
T (f) =

1√
T

d `
q
eq∑

t=`+1

(
f(Xt,T )− Ef(Xt,T )

)
Bj−
T (f) =

1√
T

djδT e∑
t=b jδT

q
cq+1

(
f(Xt,T )− Ef(Xt,T )

)
denote the first and the last block, respectively. With this notation at hand, we obtain

PT,j(δ, 6ε) ≤ P
(

max
(j−1)δT≤`≤jδT

sup
f∈F

∣∣∣ b
jδT
q
c∑

r=d `
q
e+1

Br,T (f)
∣∣∣ > 4ε

)
+ P

(
max

(j−1)δT≤`≤jδT
sup
f∈F
|B`+

T (f)| > ε
)

+ P
(

sup
f∈F
|Bj−

T (f)| > ε
)

=: PT,j,1(δ, 4ε) + PT,j,2(δ, ε) + PT,j,3(δ, ε).

The terms PT,j,2 and PT,j,3 can be bounded by fairly straightforward arguments: Ap-

plying a maximal inequality (see e.g. Section 2.1.3 in van der Vaart & Wellner [26]),

we get that∥∥∥ max
(j−1)δT≤`≤jδT

sup
f∈F
|B`+

T (f)|
∥∥∥
p
≤ C(δT )1/p max

(j−1)δT≤`≤jδT

∥∥sup
f∈F
|B`+

T (f)|
∥∥
p
.

Moreover,

sup
f∈F
|B`+

T (f)| ≤ 2√
T

d `
q
eq∑

t=`+1

F (Xt,T )

and by the moment conditions on the envelope F in (C3), ‖ supf∈F |B`+
T (f)|‖p ≤

Cq/
√
T . Hence by Markov’s inequality,

PT,j,2(δ, ε) ≤ ε−p
∥∥∥ max

(j−1)δT≤`≤jδT
sup
f∈F
|B`+

T (f)|
∥∥∥p
p
≤ CδT

( q

ε
√
T

)p
= o(1)
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for T →∞ given that q = T b with b < 1
4
. By similar considerations, PT,j,3(δ, ε) is seen

to converge to zero as well. To deal with PT,j,1, we split it up into two parts:

PT,j,1(δ, 4ε) ≤ ∆
(0)
T + ∆

(1)
T

with

∆
(0)
T = P

(
max

b (j−1)δT
2q

c≤k≤d jδT
2q
e
sup
f∈F

∣∣∣b
jδT
2q
c∑

r=k

B2r,T (f)
∣∣∣ > 2ε

)

∆
(1)
T = P

(
max

b (j−1)δT
2q

c≤k≤d jδT
2q
e
sup
f∈F

∣∣∣d
jδT
2q
e∑

r=k

B2r−1,T (f)
∣∣∣ > 2ε

)
.

As the two terms can be treated in the same way, we restrict ourselves to ∆
(1)
T . Ap-

plying a version of Ottaviani’s inequality for α-mixing processes (which has the form

stated in Chapter 10.2 of Lin & Bai [17] and can be proven by the arguments therein),

we obtain that

∆
(1)
T ≤

P
(

sup
f∈F

∣∣∣ d jδT
2q
e∑

r=b (j−1)δT
2q

c
B2r−1,T (f)

∣∣∣ > ε
)

+ δT
2q
α(q)

1− max
b (j−1)δT

2q
c≤k≤d jδT

2q
e
P
(

sup
f∈F

∣∣∣ k∑
r=b (j−1)δT

2q
c
B2r−1,T (f)

∣∣∣ > ε
) . (A.11)

In order to bound the right-hand side of (A.11), we make use of the random variables

Qr,T (f) =
1√

(k′ − k + 1)q

(2r−1)q∧T∑
t=(2r−2)q+1

(
f(Xt,T )− Ef(Xt,T )

)
and

WT (k, k′) = sup
f∈F

∣∣∣ k′∑
r=k

Qr,T (f)
∣∣∣,

which have been introduced at the beginning of the appendix. Combining Lemmas A.1

and A.2 and noting that the integral
∫ diam(F)

0
N (w/2,F , d)1/pdw is finite by assumption

(C3), we get that

E
[
|WT (k, k′)|p

]
≤ C <∞ (A.12)

for some sufficiently large constant C. This implies that

P
(

sup
f∈F

∣∣∣ k′∑
r=k

B2r−1,T (f)
∣∣∣ > ε

)
= P

(
WT (k, k′) >

ε
√
T√

(k′ − k + 1)q

)
≤ E

[
|WT (k, k′)|p

]((k′ − k + 1)q

ε2T

)p/2
≤ C

((k′ − k + 1)q

ε2T

)p/2
.
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Specifically, whenever (k − k′ + 1)q ≤ δT ,

P
(

sup
f∈F

∣∣∣ k′∑
r=k

B2r−1,T (f)
∣∣∣ > ε

)
≤ C

δp/2

εp
. (A.13)

With (A.13), it is easy to see that the denominator in (A.11) is bounded away from

zero as T →∞ and to infer that

∆
(1)
T ≤ C

(δp/2
εp

+
δT

2q
α(q)

)
.

Using an analogous bound for the term ∆
(0)
T , it follows that

PT (δ, ε) ≤
d1/δe∑
j=1

PT,j(δ, ε) ≤ C
⌈1

δ

⌉(δp/2
εp

+
δT

2q
α(q)

)
.

This yields that

lim
δ↘0

lim sup
T→∞

PT (δ, ε) = 0

and the assertion (A.10) follows. By the discussion at the beginning of this proof we

obtain (A.7), which implies stochastic equicontinuity.

Proof of Theorem 6.2

Note that the operator L : `∞(∆×F)→ `∞([0, 1]) defined by

L(g)(u) = sup
f∈F ,v∈[u,1]

|g(u, v, f)|

is continuous. Applying the continuous mapping theorem thus yields the result.

Proof of Theorem 6.3

To start with, we introduce some notation. Recall that the criterion function Q̂T (u)

has the form Q̂T (u) = u + (1 − u)q̂T (u) with q̂T (u) = Φ(ρT
√
T D̂T (u)). Additionally,

we define

QT (u) = u+ (1− u)qT (u)

with qT (u) = Φ(ρT
√
TD(u)) and let

u0,T = argmin
u∈[0,1]

QT (u).

In the sequel, we prove that

|u0,T − u0| = O
(
ρT
√
T
)−1/k

(A.14)

|û0 − u0,T | = Op(γT ). (A.15)
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Combining (A.14) and (A.15) completes the proof.

Proof of (A.14). It suffices to verify that for large sample sizes T ,

(1− C1νT )u0 ≤ u0,T ≤ u0, (A.16)

where νT = (ρT
√
T )−1/k and C1 is a large positive constant. Since QT (u) = u >

u0 = QT (u0) for any u > u0, it directly follows that u0,T ≤ u0. To prove that

(1−C1νT )u0 ≤ u0,T , we verify that QT (u) > QT (u0) for any u < (1−C1νT )u0, which

is equivalent to

(1− u)qT (u) > u0 − u for u < (1− C1νT )u0. (A.17)

(A.17) can be seen as follows: To start with, notice that

min
u∈[0,(1−C1νT )u0]

D(u) ≥ ck
2

(C1νTu0)k

for sufficiently large T , which easily follows upon inspection of (6.3). This implies that

qT (u) ≥ Φ
(
ρT
√
T min
u∈[0,(1−C1νT )u0]

D(u)
)
≥ Φ

(ckCk
1u

k
0

2

)
for any u ≤ (1 − C1νT )u0. Choosing C1 sufficiently large, we further obtain that

Φ(ckC
k
1u

k
0/2) > (1 − δ) for an arbitrarily small δ > 0. As a result, (1 − u)qT (u) >

(1 − u)(1 − δ) > (1 − δ) − u > u0 − u given that u0 < 1 and δ is sufficiently small.

This yields (A.17).

Proof of (A.15). As a first step, we verify the following fact: There exists a (small)

positive constant κ such that

|u− u0,T | > MγT ⇒ |QT (u)−QT (u0,T )| > κMγT (A.18)

for sufficiently large constants M and samples sizes T . To show this, first suppose that

|u−u0,T | > MγT and u < u0,T . Repeating the arguments from the proof of (A.14), we

get that qT (u) > (1− δ) for an arbitrarily small δ > 0 provided that M is sufficiently

large. Hence,

QT (u)−QT (u0,T ) ≥ QT (u)−QT (u0)

= (u− u0) + (1− u)qT (u)

≥ (u− u0) + (1− u)(1− δ)
≥ (1− δ)− u0.

Recalling that u0 < 1 and setting κ = (1−δ)−u0
u0

, we now arrive at

QT (u)−QT (u0,T ) ≥ κu0 ≥ κ|u− u0| ≥ κ|u− u0,T | > κMγT .
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We next turn to the case with u > u0,T . From (A.14), we know that u0 − u0,T ≤
C1νT ≤ M

2
γT provided that M is chosen sufficiently large, in particular M > 2C1.

Since u− u0,T > MγT , we can infer that u > u0 and thus

QT (u)−QT (u0,T ) ≥ QT (u)−QT (u0) = (u− u0,T ) + (u0,T − u0)

> MγT −
M

2
γT =

M

2
γT .

This completes the proof of (A.18).

In the next step, we apply (A.18) to get

P
(
|û0 − u0,T | > MγT

)
≤ P

(
|QT (û0)−QT (u0,T )| > κMγT

)
.

Since

|QT (û0)−QT (u0,T )| = QT (û0)−QT (u0,T )

=
[
QT (û0)− Q̂T (û0)

]
+
[
Q̂T (û0)−QT (u0,T )

]
≤
[
QT (û0)− Q̂T (û0)

]
+
[
Q̂T (u0,T )−QT (u0,T )

]
≤ 2 sup

u∈[0,1]

|Q̂T (u)−QT (u)|,

we can further conclude that

P
(
|û0 − u0,T | > MγT

)
≤ P

(
sup
u∈[0,1]

|Q̂T (u)−QT (u)| > κMγT
2

)
.

To complete the proof, we show that for any given ε > 0, we can choose the constant

M large enough to obtain

P
(

sup
u∈[0,1]

|Q̂T (u)−QT (u)| > κMγT
2

)
≤ ε. (A.19)

To see this, note that

√
TD(u)− ĤT (u) ≤

√
T D̂T (u) ≤

√
TD(u) + ĤT (u).

Since Φ is Lipschitz, this implies that∣∣Q̂T (u)−QT (u)
∣∣ ≤ (1− u)

∣∣q̂T (u)− qT (u)
∣∣

≤ CρT
∣∣√T D̂T (u)−

√
TD(u)

∣∣
≤ CρT ĤT (u) ≤ CρT sup

u∈[0,1]

|ĤT (u)|.

As ĤT weakly converges in `∞([0, 1]), we know that for any ε > 0, we can find a

constant Cε > 0 with

lim sup
T→∞

P
(

sup
u∈[0,1]

|ĤT (u)| > Cε

)
≤ ε.
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Hence, for any given ε > 0,

P
(

sup
u∈[0,1]

∣∣Q̂T (u)−QT (u)
∣∣ > κMγT

2

)
≤ P

(
CρT sup

u∈[0,1]

|ĤT (u)| > κMγT
2

)
≤ P

(
C sup

u∈[0,1]

|ĤT (u)| > κM

2

)
≤ ε,

provided that M is chosen sufficiently large.

Proof of Corollary 7.1

The proof follows by slightly modifying the arguments for Theorem 6.3. To start with,

define

D̂sc
T (u) = sup

f∈F ,v∈[u,1]

∣∣∣ D̂T (u, v, f)

σ̂f (u)
√

1− u

∣∣∣
Dsc
T (u) = sup

f∈F ,v∈[u,1]

∣∣∣ D(u, v, f)

σ̂f (u)
√

1− u

∣∣∣
together with

Q̂sc
T (u) = u+ (1− u)q̂sc

T (u)

Qsc
T (u) = u+ (1− u)qsc

T (u),

where q̂sc
T (u) = Ψ(ρT

√
T D̂sc

T (u)) and qsc
T (u) = Ψ(ρT

√
TDsc

T (u)). Moreover, let ûsc
0

and usc
0,T be the minimizers of the two criterion functions Q̂sc

T and Qsc
T , respectively.

Analogously to the proof of Theorem 6.3, we show that

|usc
0,T − u0| = Op

(
ρT
√
T
)−1/k

(A.20)

|ûsc
0 − usc

0,T | = Op(γT ). (A.21)

The following remarks are helpful for verifying (A.20) and (A.21):

(i) Let Eσ denote the event that

σ ≤ σ̂f (u) ≤ σ for all u ∈ [0, 1] and f ∈ F .

Since by assumption, the event Eσ occurs with probability approaching one, we

can restrict attention to Eσ throughout the proof. In particular, it is sufficient to

show that (A.20) and (A.21) hold true on the event Eσ.

(ii) Since u0 < 1 by assumption and D(u, v, f) = 0 for any u ≥ u0, it holds that

Dsc
T (u) = 0 for any u ≥ u0 on the event Eσ. Moreover, Dsc

T has the same degree of

smoothness at the point u0 as the non-scaled version D.

Keeping the above remarks in mind, (A.20) and (A.21) follow by the same arguments

as in the proof of Theorem 6.3.
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