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Abstract

In a recent paper Noh et al. (2013) proposed a new semiparametric estimate of a regression

function with a multivariate predictor, which is based on a specification of the dependence structure

between the predictor and the response by means of a parametric copula. This paper investigates

the effect which occurs under misspecification of the parametric model. We demonstrate that even

for a one or two dimensional predictor the error caused by a “wrong” specification of the parametric

family is rather severe, if the regression is not monotone in one of the components of the predictor.

Moreover, we also show that these problems occur for all of the commonly used copula families and

we illustrate in several examples that the copula-based regression may lead to invalid results even

when more flexible copula models such as vine copulae (with the common parametric families) are

used in the estimation procedure.

Keywords: curse of dimensionality, semiparametric inference, copulae, pairwise copulae, vine copulae

1 Introduction

Nonparametric regression has emerged as a rather flexible tool to describe the relation between a

response Y and a predictor X. Since the pioneering work of Nadaraya and Watson [Nadaraya (1964)

and Watson (1964)] numerous authors have worked on this problem and various estimates such as

smoothing splines, local polynomials or series estimators have been proposed and investigated in the

literature [see for example Fan and Gijbels (1996)]. It is well known that nonparametric regression

estimates suffer from the curse of dimensionality if the dimension of the predictor is large. In this case

a regression function cannot be estimated with reasonable accuracy and several authors have proposed
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methods to avoid this problem. A common feature of all publications in this direction consists in

additional structural or parametric assumptions regarding the unknown regression function, such as

additivity [see Stone (1985)], tree-based models [Hastie et al. (2001)] or single index models [Ichimura

(1993)]. In a recent paper Noh et al. (2013) introduced a novel semiparametric estimate of the regression

function in a nonparametric regression model with a high-dimensional predictor. Roughly speaking,

these authors propose to model the dependency structure between the response and the predictor by a

parametric copula family in order to obtain estimates of the regression function which converge with a

parametric rate. The authors demonstrate (theoretically and empirically) that the resulting estimates

have nice properties if the parametric copula family has been chosen correctly.

This note is devoted to a careful investigation of the properties of the copula-based regression estimate

proposed by Noh et al. (2013) in the case where the copula family is misspecified. More precisely,

our aim is to investigate the kinds of regression dependence that can be described by commonly used

copula models. See Section 3 for a precise list of copula families that we considered. For one-dimensional

predictors it will be demonstrated that copula-based regression estimation yields satisfactory results for

monotone regression functions if the copula is chosen appropriately. On the other hand, if the regression

function is not monotone, copula-based regression estimates do not reproduce the qualitative features

of the regression function. This property does not depend on the specific misspecified copula model

but can be observed for all of the commonly used parametric copula families. For a high-dimensional

predictor the situation is even worse. Moreover, we also show that more flexible models as vine copulae

(based on the commonly used parametric models) will not improve the properties of the estimator. The

reason for these observations is simple: all of the commonly available parametric copula models are not

flexible enough to describe a non-monotone behaviour between the response and one of the predictors.

The remaining part of this note is organized as follows. In Section 2 we introduce some notation and

recall the estimate proposed by Noh et al. (2013). Section 3 is devoted to some illustrative examples

in the one and two-dimensional case, while some conclusions and additional explanations are given in

Section 4.

2 Copula-based regression inference

In this section we briefly review the copula-based estimation of a regression function as introduced by

Noh et al. (2013). To be precise let Y and X = (X1, . . . , Xd)
T be a real and d-dimensional random

variable (d ≥ 1), respectively, and denote by FY , F1, . . . , Fd the cumulative distribution functions of Y

and the margins of X, which will be assumed as differentiable throughout this note. The corresponding

densities are denoted by fY , f1, . . . , fd. The famous Sklar’s theorem [Sklar (1959)] shows that the joint

distribution function F of the vector (Y,XT )T can be represented as

F (y,xT ) = C(FY (y), F1(x1), . . . , Fd(xd)),
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where (y,xT )T = (y, x1, . . . , xd)
T and C is the copula. Noh et al. (2013) showed that the mean regression

function

m(x1, . . . , xd) = IE[Y |X = (x1, . . . , xd)]

can be represented as

(2.1) m(x1, . . . , xd) =

∫ ∞
−∞

y
c(FY (y), F1(x1), . . . , Fd(xd))

cX(F1(x1), . . . , Fd(xd))
dFY (y),

where c denotes the density of the copula C, that is

c =
∂d+1

∂y∂x1 . . . ∂xd
C

and

cX(u1, . . . , ud) =

∫ ∞
−∞

c(FY (y), u1, . . . , ud)dFY (y),

denote the copula densities corresponding to the distribution of the vectors (Y,XT )T and X, respectively.

In order to avoid the curse of dimensionality in the estimation of the regression function m these authors

propose to use a semi-parametric estimate using a parametric copula family, say {cθ| θ ∈ Θ} for the

copula density c in (2.1) and to estimate the unknown marginal distributions separately. More precisely,

if (Y1,X
T
1 )T , . . . , (Yn,X

T
n )T denotes a sample of independent identically distributed observations with

copula C and marginal distribution functions FY , F1, ..., Fd, Noh et al. (2013) suggest to estimate the

marginal distributions FY and Fj nonparametrically by

F̂Y (y) =
1

n+ 1

n∑
i=1

I(Yi ≤ y) and F̂j(x) =
1

n+ 1

n∑
i=1

I(Xij ≤ x),

respectively (here we use the notation Xi = (Xi1, . . . , Xid)
T ) and to estimate the parameter θ of the

parametric copula family by a pseudo–maximum likelihood method, that is

θ̂PL = argmax
θ∈Θ

n∑
i=1

log c(F̂Y (Yi), F̂1(Xi1), . . . , F̂d(Xid);θ)

[see Genest et al. (1995) or Tsukahara (2005)]. The final estimate of the regression function m is then

defined by

m̂(x) =

∫ ∞
−∞

y
c(F̂Y (y), F̂1(x1), . . . , F̂d(xd); θ̂PL)∫∞

−∞ c(F̂Y (u), F̂1(x1), . . . , F̂d(xd); θ̂PL)dF̂Y (u)
dF̂Y (y)(2.2)

=
1

n

n∑
i=1

Yi
c(F̂Y (Yi), F̂1(x1), . . . , F̂d(xd); θ̂PL)

1
n

∑n
j=1 c(F̂Y (Yj), F̂1(x1), . . . , F̂d(xd); θ̂PL)
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In the case of a one-dimensional covariate, i.e. d = 1, we have cX1 ≡ 1 and thus the estimate simplifies

to

m̂(x) =
1

n

n∑
i=1

Yic(F̂Y (Yi), F̂1(x); θ̂PL).(2.3)

Noh et al. (2013) demonstrate that the estimator defined in (2.2) avoids the problem of the curse of

dimensionality. More precisely, they show that m̂(x) is a
√
n-consistent and asymptotically normal

distributed estimate if the parametric copula model has been specified correctly. On the other hand,

under misspecification of the copula structure it is shown that the statistic m̂(x) estimates the quantity

(2.4) m(x,θ∗) =

∫ ∞
−∞

y
c(FY (y), F1(x1), . . . , Fd(xd),θ

∗)

cX(F1(x1), . . . , Fd(xd),θ
∗)

dFY (y),

where θ∗ is the minimum of the function

(2.5) I(θ) =

∫
[0,1]d+1

log
( c(u0, . . . , ud)

c(u0, . . . , ud,θ)

)
dC(u0, . . . , ud).

As it was pointed out by Noh et al. (2013), the quantity m(x,θ∗) does in general not coincide with

the true regression function m(x). Consequently there exists a bias if the parametric copula has been

misspecified, but no further evidence regarding the kinds of regression functions which can be estimated

well (i.e. for which this bias is small) is given. Overall, one might hope that the commonly used

parametric copula models are flexible enough to model a rich variety of regression dependencies. In

the following section however we will demonstrate that this is not the case and that the quality of the

estimate (2.2) under misspecification of the parametric copula depends heavily on the specific structure

of the unknown regression function m. In particular we show that for non-monotone regression functions

these estimates are in fact not reliable. We will also demonstrate that model selection from a class of

the commonly used copula families by information type criteria (in the case d = 1) or the application of

more flexible copula families such as vine copulae in the case d ≥ 2 [see Bedford and Cooke (2002); Aas

et al. (2009)] does not solve these problems. As soon as the regression is not monotone in one of the

components of the explanatory variable the copula based regression estimate and the true regression

function show substantially different qualitative features.

3 Inference under misspecification - examples

In this section we provide several examples indicating some difficulties in copula based regression infer-

ence as proposed by Noh et al. (2013). All presented results are based on a sample of size n = 100 and

for the simulation of the mean squared error we use 1000 simulation runs. For the sake of brevity we

restrict ourselves to the case d = 1 and d = 2, where the problems of misspecification of the parametric

copula family are already very visible and the arguments are more transparent. We expect that for high

dimensional predictors these problems are even more severe.
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Figure 1: Copula based regression estimates of the regression model (3.2). The Joe copula (left panel),

Clayton copula (middle panel) and survival Clayton copula (right panel) are used in the estimate (2.2).

3.1 One-dimensional predictors

We start our investigation with the one-dimensional nonparametric regression model

(3.1) Yi = m(Xi) + σεi, i = 1, . . . , n,

where the explanatory variable Xi in the regression model (3.1) is uniformly distributed on the interval

[0, 1] and the errors are normally distributed with mean 0 and variance σ2 = 0.01. The regression

functions are given by

m(x1) = x2
1(3.2)

m(x1) = (x1 − 0.5)2(3.3)

and reflect a typical increasing and convex case. Exemplarily we present in Figure 1 ”typical” simulated

data from these models with the corresponding copula regression estimates. We have investigated most

of the commonly used copula models, but for the sake of brevity we show only results for three cases,

namely the Joe, Clayton and the survival Clayton copula [see Nelson (2006)]. The application of the

Joe copula yields a rather reasonable fit, while the Clayton copula does not show satisfactory results.

On the other hand the application of the survival Clayton copula again produces a reasonable fit. These

findings are also reflected in the mean squared error curves, which are shown in Figure 2 and we conclude

that some care is necessary in the choice of the parametric copula family for the estimate (2.2), even

if the regression function is monotone. If this family has been chosen appropriately, and the regression

function is monotone, the statistic (2.2) produces reliable estimates of the regression function m with a

small bias.

On the other hand, if the regression function is not monotone, the situation is completely different,

which is demonstrated by our second example considering the regression function (3.3). Corresponding
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Figure 2: Mean squared error of the copula based regression estimates of the regression function in model

(3.2). The Joe copula (left panel), Clayton copula (middle panel) and survival Clayton copula (right

panel) are used in the estimate (2.2).

results are shown in Figure 3 for typical simulated data, where we use the t, Frank copula in the left

and middle panel and a mixture of two normal copulas in the right panel (here the mixing proportion

is also estimated from the data). The corresponding mean squared errors are depicted in Figure 4 and

as a first conclusion we note that none of these choices yields a reasonable estimate of the regression

function. In fact we considered all copulae from the following list {“amh copula”,“independence copula”,

“Gaussian copula”, ”t-copula”, “Clayton copula”, “Gumbel copula”, “Frank copula”, “Joe copula”,

“Clayton-Gumbel copula”, “Joe-Gumbel copula”, “Joe-Clayton copula”, “Joe-Frank copula”} together

with corresponding rotations. No copula mentioned above reproduces the structure of the regression

function in the resulting estimate.

This observation can be explained by the fact that none of the available parametric copula models for

the vector (Y,X1) yields a non-monotone regression function

m(x1) = E[Y |X1 = x1] =

∫ ∞
∞

yc(FY (y), F1(x1))dFY (y) =

∫ 1

0

F−1
Y (y)c(y, F1(x1))dy(3.4)

In Figure 5 this function is exemplarily displayed for various commonly used parametric copula mod-

els (and different parameters). Other results, which are not displayed here for the sake of brevity,

show similar features. We observe that all of the commonly used parametric copula models lead to

a monotone regression in (3.4). As a consequence we point out that model selection (for example by

the AIC criterion) from a large class of commonly used parametric copula models will not improve the

performance of the estimate. We conclude this section with two remarks

Remark 3.1 hello

(1) Obviously, by definition of a copula, there exists a copula model corresponding to the model (3.1)
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Figure 3: Copula based regression estimates of the regression function in model (3.3). The student

copula (left panel), Frank copula (middle panel) and a mixtures of two normal copulae (right panel) are

used in the estimate (2.2).

with m(x1) = (x1 − 0.5)2, but on the basis of our numerical investigations this copula cannot be

well approximated by any of the commonly proposed parametric copula models.

(2) The application of alternative estimates for the parameter of the copula does not lead to a signif-

icant improvement of the situation. For example investigations for the L2-type estimator defined

by

(3.5) θ̂L2 = argmin
θ∈Θ

n∑
i=1

(Yi − m̂(Xi;θL2))2 ,

with

(3.6) m̂(x;θL2) =
1

n

n∑
i=1

Yic(F̂Y (Yi), F̂1(x);θL2)

yield a picture very similar to the results presented here (these results are not displayed for the

sake of brevity).

3.2 Two-dimensional predictors

In this section we consider the case d = 2. Obviously the observations of the previous paragraph carry

over to higher dimensional predictors if the regression is not monotone in one of the predictors and for

this reason we exemplarily briefly consider the two-dimensional regression model

(3.7) Yi = m(Xi1, Xi2) + σεi, i = 1, . . . , n,
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Figure 4: Mean squared error of the copula based regression estimates of the regression function in

model (3.3). The student copula (left panel), Frank copula (middle panel) and a mixtures of two normal

copulae (right panel) are used in the estimate (2.2).

with regression function

(3.8) m(x1, x2) = (x1 − 0.5)2 + (x2 − 0.5)2,

where the sample size is again n = 100 and Xi1 and Xi2 are independent uniformly distributed on the

interval [0, 1]. Some results for the Gaussian, Gumbel and t copula copula are displayed in Figure 6,

and we observe the same problems as in the one-dimensional case. The considered parametric copula

families are simply not flexible enough such that the resulting estimate is able to reflect the curvature

of the regression function.

3.3 Vine copulae

In order to investigate more flexible classes of parametric copula models we briefly consider the concept

of vine copulae, which is based on a decomposition of the copula density into a product of bivariate

copula densities according to a carefully chosen so called regular-vine structure. The bivariate copula

densities are then chosen from parametric copula families by applying a model selection criterion. It has

been argued by several authors [see e.g. Bedford and Cooke (2002); Aas et al. (2009)] that the resulting

vine copula obtained by this pair-copula decomposition admits a flexible modelling of the dependency

structure in the case of multiple covariates. In this section we investigate if this concept can be used to

obtain improved copula based regression estimates. For a two dimensional predictor we obtain for the

copula density of the random vector (Y,X1, X2)

c(FY (y), F1(x1), F2(x2)) = cY,X1(FY (y), F1(x1))cX1,X2(F1(x1), F2(x2))(3.9)

×cY,X2|X1(FY |X1(y|x1), FX2|X1(x2|x1)),

8



where cY,X1 , cX1,X2 and cY,X2|X1 denote the copula densities associated with the distributions PY1,X1 ,

PX1,X2 and PY,X2|X1 respectively. This decomposition is unique up to permutations of the variables.

This pair-copula decomposition gives us the possibility to model the copula density c in different ways

by first selecting a R-Vine structure and then choosing the pair-copulae independently from a set of

parametric copula families. In the implementation we used the R-package VineCopula and the copulae

{“independence copula”, “Gaussian copula”, ”t-copula”, “Clayton copula”, “Gumbel copula”, “Frank

copula”, “Joe copula”, “Clayton-Gumbel copula”, “Joe-Gumbel copula”, “Joe-Clayton copula”, “Joe-

Frank copula”} with corresponding rotations. The mean regression function m is then defined by (2.2)

with copula (3.9), where the copulae for cY,X1 , cX1,X2 and cY,X2|X1 are chosen by a function of the R

package VineCopula which determines a R-Vine tree-structure as well as the copula families with the

corresponding estimated parameters using the Akaike information criterion [see Dißmann et al. (2011)

for more details]. In Figure 7 we display a typical situation for model (3.7) with regression functions

given in (3.8) as well as,

m(x1, x2) = (x1 − 0.5)2 − (x2 − 0.5)2(3.10)

The sample size is again n = 100 and the variance is σ2 = 0.01. We observe that in all cases the

copula based regression method does not yield estimates which reflect the qualitative behaviour of the

regression function. These results show that even the rather large family of vine-copulae is not flexible

enough to adapt for the unknown copula structures imposed by the models (3.8) and (3.10).

4 Conclusions

In this note we have studied some properties of a semiparametric copula-based regression estimate which

has been recently proposed in Noh et al. (2013), and, more broadly, the types of regression dependence

that can be obtained from commonly used copula families. Our simulations confirm that the approach

of Noh et al. (2013) is attractive if the dependency structure of the data can be specified accurately. On

the other hand – if the true copula structure has been misspecified – the approach often does not yield

reliable estimates of the regression function. The reason for these problems consists in the fact that all

commonly used parametric copula families produce a regression m(x) = E[Y |X = x] which is monotone

in any of the components of the explanatory variable X. As a consequence non-monotone features of

the regression function cannot be reproduced by the copula-based regression estimate. In Figure 8

we display level sets of a copula density corresponding to some non-monotone regression functions.

We observe that these differ substantially from the sets of all parametric copula densities. Future

research is necessary to develop more flexible parametric copula models reflecting these structures. If

this is possible we expect that the method proposed by Noh et al. (2013) will be able to reproduce

non-monotone features of the regression function.

9
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A, 26(4):359–372.

11



●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

parametric t−copula

x

m
(x

)

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

parametric Frank copula

x
m

(x
)

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

parametric Gaussian copula

x

m
(x

)

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

parametric Joe copula

x

m
(x

)

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

parametric rotated (270 degrees) Joe copula

x

m
(x

)

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

parametric rotated (90 degrees) Clayton copula

x

m
(x

)

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

parametric Clayton−Gumbel copula

x

m
(x

)

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

parametric Joe−Clayton copula

x

m
(x

)

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

parametric Joe−Frank copula

x

m
(x

)

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

parametric Clayton copula

x

m
(x

)

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

parametric Joe−Gumbel copula

x

m
(x

)

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

parametric Gumbel copula

x

m
(x

)

Figure 5: The function (3.4) for commonly used parametric copula families (different parameters are

used in each figure)
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Figure 6: Copula based regression estimates of the two-dimensional regression function (3.8). The

copula in the estimate (2.2) is chosen as Gaussian copula (left panel), Frank copula (middle panel) and

t-copula (right panel).

Figure 7: Copula based regression estimates of the regression function in model (3.8) (left panel), and

(3.10) (right panel). A vine copula selected by the AIC criterion has been used in the estimate (2.2).
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Figure 8: Simulated contour plots of the copula density corresponding to the one-dimensional regression

model (3.3) (left panel), the function m(x) = x sin(10x) (middle panel) and the function m(x) =

exp(cos(10x)) (right panel) with Gaussian errors.
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