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Abstract

In nonlinear regression models the Fisher information depends on the parameters of

the model. Consequently, optimal designs maximizing some functional of the information

matrix cannot be implemented directly but require some preliminary knowledge about

the unknown parameters. Bayesian optimality criteria provide an attractive solution to

this problem. These criteria depend sensitively on a reasonable specification of a prior

distribution for the model parameters which might not be available in all applications.

In this paper we investigate Bayesian optimality criteria with non-informative prior dis-

tributions. In particular, we study the Jeffreys and the Berger-Bernardo prior for which

the corresponding optimality criteria are not necessarily concave. Several examples are

investigated where optimal designs with respect to the new criteria are calculated and

compared to Bayesian optimal designs based on a uniform and a functional uniform prior.

Keywords: optimal design; Bayesian optimality criteria; non-informative prior; Jeffreys prior;

reference prior; polynomial regression; canonical moments; heteroscedasticity

1 Introduction

Nonlinear regression models provide an important tool to describe the relation between a re-

sponse and a predictor and have many applications in engineering, physics, biology, economics

and medicine, among others [see Ratkowsky (1983)]. It is well known that a good design can

improve the accuracy of the statistical analysis substantially and numerous authors have worked
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on the problem of constructing optimal designs for nonlinear regression models. An intrinsic

difficulty of these optimization problems consists in the fact that the Fisher information, say

I(x,θ), at an experimental condition x depends on the unknown parameter θ ∈ Θ of the model.

A common approach in the literature is to assume some prior knowledge of the unknown pa-

rameter, which can be used for the construction of optimal designs. Chernoff (1953) proposed

the concept of local optimality where a fixed value of the unknown parameter is specified, and

a design is determined by maximizing a functional of the information matrix for this specified

parameter.

Since this pioneering work numerous authors have constructed locally optimal designs for var-

ious regression models [see He et al. (1996), Khuri et al. (2006), Fang and Hedayat (2008),

Yang and Stufken (2009), Yang (2010) and Dette and Melas (2011), among many others]. On

the other hand, the concept of local optimality has been criticized by several authors, because

it depends sensitively on a precise specification of the unknown parameters and can lead to

inefficient designs if these parameters are misspecified [see for example Dette et al. (2013),

Example 2.1]. As a robust alternative Pronzato and Walter (1985) and Chaloner and Larntz

(1989) proposed Bayesian optimal designs which maximize an expectation of the information

criterion with respect to a prior distribution for the unknown parameters [see also Chaloner

and Verdinelli (1995) for a review]. Bayesian optimal designs for various prior distributions

have been discussed by numerous authors [see Haines (1995), Dette and Neugebauer (1997),

Han and Chaloner (2003) or Braess and Dette (2007) among others]. However, there exist

many applications where the specification of a prior distribution is difficult and several authors

advocate the use of a uniform prior as a pragmatic approach if no preliminary knowledge about

the unknown parameter is available. In a recent paper it was pointed out by Bornkamp (2012)

that for several models the use of a uniform prior as a non-informative prior does not yield

reasonable designs. This author proposed the concept of a functional uniform prior in order to

construct Bayesian optimality criteria with respect to non-informative prior distributions.

In this paper we consider two alternative criteria for the construction of Bayesian optimal

designs with respect to non-informative prior distributions. Roughly speaking, the criteria

maximize the predicted Kullback-Leibler distance between the prior and the posterior distri-

bution for the unknown parameter of the model with respect to the choice of the experimental

design, where – in contrast to the classical approach to Bayesian optimality – the prior distribu-

tion depends also on the design of experiment. The criteria are introduced in Section 2, which

also gives an introduction into the field of optimal experimental design. Here it is demonstrated

that Bayesian optimal design problems corresponding to non-informative priors are in general

not convex. Necessary conditions for the optimality of a given design are also derived. In Sec-

tion 4 we use the theory of canonical moments which is introduced in Section 3 [see also Dette

and Studden (1997)] in order to determine saturated Bayesian optimal designs with respect to

non-informative priors for polynomial regression models with a heteroscedastic error structure.

Finally, in Section 5 we consider two frequently used nonlinear regression models and compare

the optimal designs with respect to the new criteria proposed in this paper with optimal designs

with respect to “classical” Bayesian optimality criteria based on a uniform and a functional

uniform distribution.
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2 Optimal design and non-informative priors

An approximate design is defined as a probability measure ξ on the design space X with finite

support [see Kiefer (1974)]. If the design ξ has masses ξi at the points xi (i = 1, . . . ,m) and N

observations can be made by the experimenter, this means that the quantities ξiN are rounded

to integers, say ni, satisfying
∑m

i=1Ni = N , and the experimenter takes Ni observations at

each location xi (i = 1, . . . ,m). The corresponding design with masses Ni/N at the points xi
(i = 1, . . . ,m) will be denoted as exact design ξN . Assume that ξN is an exact design with

masses Ni/N at points xi (i = 1, . . . ,m) and that Ni independent observations Yi1, . . . , YiNi
are

taken at each xi with density

p(yij|θ, xi) ; j = 1, . . . , Ni, i = 1, . . . ,m;(2.1)

such that

lim
N→∞

Ni

N
= ξi > 0, i = 1, . . . ,m,(2.2)

where θ ∈ Θ is a k-dimensional parameter. If ξN denotes the design with masses Ni/N at

xi (i = 1, . . . ,m) we define by

p(y|θ, ξN) =
m∏
i=1

Ni∏
j=1

p(yij|θ, xi)

the joint density of the N -dimensional vector Y = (Y11, . . . , YmNm)T . In the following we

assume that the prior distribution for the parameter θ may depend on the design (such as the

Jeffreys prior) and consider the problem of maximizing the expected Kullback-Leibler distance

between the prior and posterior distribution with respect to the choice of the design ξN , that is

U(ξN) =

∫
log(

p(θ|y, ξN)

p(θ|ξN)
) · p(y,θ|ξN) dθdy.(2.3)

Here p(θ|ξN) denotes the density of the prior distribution of θ, p(θ|y, ξN) the density of the

posterior distribution of θ given y and p(y,θ|ξN) is the density of the joint distribution of

(Y ,θ). Note that all distributions may depend on the design ξN .

Under regularity assumptions it can be shown by similar arguments as in Chaloner and Verdinelli

(1995) that the expected Kullback-Leibler distance can be approximated by

U(ξN) ≈ −k
2

log(2π)− k

2
+

1

2

∫
log
(
|NM(θ, ξN |

)
p(θ|ξN) dθ(2.4)

−
∫

log p(θ|ξN) p(θ|ξN) dθ,

where

M(ξN ,θ) =

∫ ( ∂

∂θ
log p(y|θ, x)

)( ∂

∂θ
log p(y|θ, x)

)T
p(y|θ, x)dyξN(dx)(2.5)
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denotes the Fisher information matrix. If the prior distribution of θ does not depend on the

design, then the criterion for Bayesian D-optimality arises, i.e.

(2.6) ΦD(ξ) =

∫
log(|M(ξ,θ)|)p(θ)dθ.

We call the designs maximizing the criterion (2.6) Bayesian D-optimal designs with respect to

the prior p. A noninformative prior often used in applications is the uniform prior, i.e.

(2.7) puni(θ) ∝ 1.

Bornkamp (2012) pointed out some deficits of this prior and proposed Bayesian D-optimal

designs with respect to functional uniform priors

(2.8) pfunct(θ) =

∫
X |M(δx,θ)|1/2dx∫ ∫
X |M(δx,θ)|1/2dxdθ

,

where here and throughout this paper δx denotes the Dirac measure at the point x ∈ X .

As stated in Chaloner and Verdinelli (1995) a necessary and sufficient condition for Bayesian

D-optimality is given by the following theorem.

Theorem 2.1 A design ξ∗ is Bayesian D-optimal if and only if the inequality∫
tr
{
M−1(ξ∗,θ)M(ξx,θ)

}
p(θ)dθ ≤ k(2.9)

holds for all x ∈ X . Moreover, there is equality for all support points of the design ξ∗.

In the context of Bayesian analysis priors depending on the design are frequently used. A

typical example is the Jeffreys prior [see Jeffreys (1946)]

(2.10) pJ(θ|ξ) =
|M(θ, ξ)|1/2∫
|M(t, ξ)|1/2dt

≈ |NM(θ, ξN)|1/2∫
|NM(t, ξN)|1/2dt

.

Using the Jeffreys prior the expression (2.4) reduces to

U(ξN) ≈ V (ξ) = −k
2

log(2π)− k

2
+ log(

∫
|NM(ξ,θ)|1/2dθ).

Consequently, we call an approximate design ξ Bayesian optimal with respect to the Jeffreys

prior if ξ maximizes the functional

ΦJ(ξ) =

∫
|M(ξ,θ)|1/2dθ,(2.11)

where we assume throughout this paper that the integral in (2.11) is finite for all approximate

designs (sufficient for this property are compactness assumptions regarding the parameter space
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and continuity of the information matrix with respect to the parameter). This criterion for the

choice of an experimental design has been sporadically discussed in the literature before [see

Polson (1992) or Firth and Hinde (1997a,b)].

An intrinsic difficulty in these optimization problems consists in the fact that the criterion

ΦJ is in general not convex. Consequently, standard optimal design theory based on convex

optimization is not directly applicable. Nevertheless, the following results provide a necessary

condition for optimality with respect to this criterion. A proof can be found in Firth and Hinde

(1997b).

Theorem 2.2 If a design ξ∗ is Bayesian optimal with respect to the Jeffreys prior, then the

inequality ∫
tr
{
M−1(ξ∗,θ)M(ξx,θ)

}
|M(ξ∗,θ)|1/2dθ ≤ k

∫
|M(ξ∗,θ)|1/2dθ

holds for all x ∈ X . Moreover, there is equality for all support points of the optimal design ξ∗.

The next Bayesian optimality criterion with respect to a non-informative prior distribution

is motivated by the fact that not all components of the vector θ are of equal importance.

To be precise, we use similar arguments as in Berger and Bernardo (1992) and decompose

the parameter θ into θ = (θT1 ,θ
T
2 )T where θ1 and θ2 are k1 and k2-dimensional parameters,

respectively, and k = k1 + k2. The information matrix M(ξ,θ) is decomposed in a similar way,

that is

M(ξ,θ) =

(
M11(ξ,θ) M12(ξ,θ)

M21(ξ,θ) M22(ξ,θ)

)
,(2.12)

where Mij(ξ,θ) ∈ Rki×kj (i, j = 1, 2). In the following we assume that θ2 is a nuisance

parameter and that the parameter θ1 is of primary interest to the experimenter.

This approach results in a criterion where the marginal expected Kullback-Leibler distance be-

tween the prior and posterior distribution of the parameter of primary interest θ1 is maximized

with respect to the choice of the experimental design ξN , that is

U1(ξN) =

∫ ∫
log(

p(θ1|y, ξN)

p(θ1|ξN)
)p(θ1,y|ξN)dθ1dy

=

∫ ∫
log(

p(θ|y, ξN)

p(θ|ξN)
)p(θ,y|ξN)dθdy

−
∫ ∫

log(
p(θ2|θ1,y, ξN)

p(θ2|θ1, ξN)
)p(θ,y|ξN)dθdy.

Under regularity assumptions it can be shown that the marginal expected Kullback-Leibler

distance can be approximated by

U1(ξN) ≈ 1

2

∫
log
(

exp
{∫

p(θ2|θ1, ξN) log(
|M(ξN ,θ)|1/2

|M22(ξN ,θ)|1/2
)dθ2

})
p(θ1|ξn) dθ1(2.13)

+
k1
2

log(
N

2πe
)−

∫
log p(θ1|ξN) p(θ1|ξN) dθ1.
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This follows by similar arguments as in equation (2.2) [see Berger and Bernardo (1992) or

Ghosh and Mukerjee (1992)].

Following Berger and Bernardo (1992) we decompose the prior for the parameter θ (which may

depend on the experimental design) as

p(θ|ξN) = p(θ2|θ1, ξN)p(θ1|ξN),

where p(θ2|θ1, ξN) denotes the conditional density of the distribution of θ2 given θ1 and

p(θ1|ξN) is the density of the prior distribution for θ1. More precisely, for the conditional

density of θ2 given θ1 an analogue of the Jeffreys prior is used, that is

pBB(θ2|θ1, ξN) =
|M22(ξN ,θ1,θ2)|1/2∫
|M22(ξN ,θ1, t2)|1/2dt2

,(2.14)

while the density of the prior distribution for θ1 is given by

pBB(θ1|ξN) = exp
{∫

pBB(θ2|θ1, ξN) log(
|M(ξN ,θ)|1/2

|M22(ξN ,θ)|1/2
)dθ2

}
· α(2.15)

where

α =
(∫

exp
{∫

pBB(θ2|θ1, ξN) log(
|M(ξN ,θ)|1/2

|M22(ξN ,θ)|1/2
)dθ2

}
dθ1

)−1
(2.16)

is a normalizing constant. Since this pioneering work on the construction of reference priors,

several authors have worked on this subject and we refer to the work of Clarke and Wasserman

(1993) and Kass and Wasserman (1996) for a general discussion on this subject. Combining

this prior and equation (2.13) yields the following optimality criterion

ΦBB(ξ) =

∫
exp
{∫ |M22(ξ,θ1,θ2)|1/2∫

|M22(ξ,θ1, t2)|1/2dt2
log(

|M(ξ,θ1,θ2)|1/2

|M22(ξ,θ1,θ2)|1/2
)dθ2

}
dθ1,(2.17)

where we again assume that the integral exists for all designs ξ. Designs maximizing the

function ΦBB are called Bayesian optimal with respect to the Berger-Bernardo prior. Again

this criterion is in general not convex and a necessary condition for optimality will be derived.

Theorem 2.3 If a design ξ∗ is Bayesian-optimal with respect to the Berger-Bernardo prior,

then the inequality

d(ξ∗, δx) =

∫ ∫
tr
[
M−1

22 (ξ∗,θ)M22(δx,θ)
]

log(
|M(ξ∗,θ)|1/2

|M22(ξ∗,θ)|1/2
)pBB(θ, ξ∗)dθ

−
∫ {∫

log (
|M(ξ∗,θ1, t2)|1/2

|M22(ξ∗,θ1, t2)|1/2
)pBB(t2|θ1, ξ∗)dt2

×
∫

tr(M−1
22 (ξ∗,θ1, t2)M22(δx,θ1, t2))pBB(t2|θ1, ξ∗)dt2

}
pBB(θ1|ξ∗)dθ1

+

∫ ∫ [
tr(M−1(ξ∗,θ)M(δx,θ))− tr(M−1

22 (ξ∗,θ)M22(ξx,θ))
]
pBB(θ|ξ∗)dθ ≤ k1
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holds for all x ∈ X , where pBB(θ2|θ1, ξ) and pBB(θ1|ξ) are defined by (2.14) and (2.15),

respectively, and pBB(θ|ξ) = pBB(θ2|θ1, ξ)pBB(θ1|ξ). Moreover, there is equality for all support

points of the design ξ∗.

Proof. The proof follows by a standard argument calculating the directional derivative

∂

∂t
ΦBB(ξt)|t=0,

where the design ξt is defined by ξt = ξ∗ + t(η − ξ∗), η denotes an additional approximative

design and t ∈ (0, 1). Observing the fact

∂

∂t
log |M(ξt,θ)|

∣∣∣
t=0

= tr(M−1(ξ∗,θ)(M(η,θ)−M(ξ∗, θ)))

we obtain (recalling the definitions (2.14), (2.15) and (2.16))

∂

∂t
ΦBB(ξt)

∣∣∣
t=0

=
1

2α

∫
pBB(θ1|ξ∗)

∫ [
log(

|M(ξ∗,θ)|1/2

|M22(ξ∗,θ)|1/2
)
{
pBB(θ2|θ1, ξ∗)tr(M−1

22 (ξ∗,θ)(M22(η,θ)−M22(ξ
∗,θ))

−pBB(θ2|θ1, ξ∗)
∫
pBB(t2|θ1, ξ∗)tr(M−1

22 (ξ∗,θ1, t2)(M22(η,θ1, t2)−M22(ξ
∗,θ1, t2))dt2

}
+pBB(θ2|θ1, ξ∗)

{
tr(M−1(ξ∗,θ)(M(η,θ)−M(ξ∗,θ)))

−tr(M−1
22 (ξ∗,θ)(M22(η,θ)−M22(ξ

∗,θ))
}]
dθ2dθ1

=
1

2α
(d(ξ, η)− k1).

The assertion now follows by the same arguments as given in (Silvey, 1980, p.19). 2

In the following chapters we will discuss optimal designs maximizing the criteria (2.11) and

(2.17) in several examples.

3 Canonical moments

In Section 4 we discuss Bayesian optimal designs with respect to non-informative priors for

heteroscedastic polynomial regression models. An important tool to derive optimal saturated

designs for polynomial models is the theory of canonical moments which was firstly used by

Studden (1980, 1982b) to determine Ds-optimal designs for homoscedastic polynomial regres-

sion explicitly and will be briefly introduced in this section. Since these seminal papers nu-

merous authors have used this methodology to determine optimal designs in polynomial and

trigonometric regression models [see Lau and Studden (1985), Spruill (1990), Dette (1994,

1995), and Zen and Tsai (2004) among many others]. A detailed description of the theory of

canonical moments can be found in the monograph of Dette and Studden (1997).
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To be precise let a, b ∈ R denote two constants such that a < b and introduce by P([a, b]) the

set of all probability measures on the interval [a, b]. We define for a design ξ ∈ P([a, b]) its

moments by

ci = ci(ξ) =

∫ b

a

xiξ(dx), i = 1, 2 . . . .

Define Mn = {(c1, . . . , cn)T | ξ ∈ P([a, b])} as the nth moment space and Φn(x) = (x, . . . , xn)

as the vector of monomials of order n. Consider for a fixed vector cn = (c1, . . . , cn)T ∈Mn the

set

Sn(cn) =
{
ξ ∈ P([a, b]) :

∫ b

a

Φn(x)ξ(dx) = cn

}
of all probability measures on the interval [a, b] whose moments up to the order n coincide with

cn = (c1, . . . , cn)T . For n = 2, 3, . . . and for a given point (c1, . . . , cn−1)
T ∈ Mn−1 we define

c+n = c+n (c1, . . . , cn−1) and c−n = c−n (c1, . . . , cn−1) as the largest and smallest value of cn such

that (c1, . . . , cn)T ∈ ∂Mn (here ∂Mn denotes the boundary of Mn), that is

c−n = min
{∫ b

a

xnξ(dx) | ξ ∈ Sn−1(c1, . . . , cn−1)
}
,

c+n = max
{∫ b

a

xnξ(dx) | ξ ∈ Sn−1(c1, . . . , cn−1)
}
.

Note that c−n ≤ cn ≤ c+n and that both inequalities are strict if and only if (c1, . . . , cn−1)
T ∈

int(Mn−1) where int(Mn−1) denotes the interior of the set Mn−1 [see Dette and Studden

(1997)].

For a design ξ on the interval [a, b] with corresponding moment point cn = (c1(ξ), . . . , cn(ξ))T ,

such that cn−1 = (c1(ξ), . . . , cn−1(ξ))
T is in the interior of the moment spaceMn−1, the canon-

ical moments or canonical coordinates are defined by p1 = c1(ξ) and

(3.1) pi = pi(ξ) =
ci(ξ)− c−i
c+i − c−i

, i = 2, . . . , n .

Note that the canonical moments pi vary independently in the interval [0, 1] (whenever they

are defined). Moreover, it follows that pi ∈ (0, 1), i = 1, . . . , n − 1 and pn ∈ {0, 1} if and only

if (c1(ξ), . . . , cn−1(ξ)) ∈ int(Mn−1) and (c1(ξ), . . . , cn(ξ))T ∈ ∂Mn. In this case the canonical

moments pi of order i > n remain undefined.

The main idea of Studden (1980) was to describe designs in terms of their canonical moments,

to find a (simple) representation of the optimality criterion by these quantities and to perform

optimization on the unit cube. For this purpose optimality criteria have to be expressed ex-

plicitly in terms of canonical moments and we recall the following basic facts [for a proof see

Studden (1982b,a) and Lau and Studden (1988)].

Theorem 3.1 Let ξ denote a design on the interval [a, b] with moments c1, c2, . . ., canonical

moments p1, p2, . . . and q0 = 1, q1 = 1− p1, q2 = 1− p2, . . .
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(a) Let Hn(ξ) = (ci+j)i,j=1,...,n denote the Hankel matrix of the moments of the design ξ. If if

(c1, . . . , c2n−1)
T ∈ int(M2n−1), then

|H(ξ)| = (b− a)n(n+1)

n∏
i=1

(q2i−2p2i−1q2i−1p2i)
n−i+1.

(b) Let ξ denote a design on the interval [a, b] with n+ 1 support points x1, . . . xn+1, then

n+1∏
i=1

(xi − a) = (b− a)n+1p2n+1

n∏
i=1

p2i−1q2i ,

n+1∏
i=1

(b− xi) = (b− a)n+1

2n+1∏
i=1

qi,

n+1∑
i=1

(xi − a) = (b− a)
2n+1∑
i=1

qi−1pi.

The following results are shown in Dette and Studden (1997) and can be used to derive a design

corresponding to an “optimal” sequence of canonical moments (i.e. a sequence maximizing a

particular optimality criterion).

Theorem 3.2 Let ξ denote a design on the interval [a, b] with canonical moments p1, .p2, . . ..

(1) If pi ∈ (0, 1), i = 1, . . . , 2n − 1 and p2n = 0, then ξ has m = n support points in the

interior of the interval (a, b).

(2) If pi ∈ (0, 1), i = 1, . . . , 2n and p2n+1 = 0, then ξ has m = n+ 1 support points, n points

in the interior of the interval (a, b) and the point a.

(3) If pi ∈ (0, 1), i = 1, . . . , 2n and p2n+1 = 1, then ξ has m = n+ 1 support points, n points

in the interior of the interval (a, b) and the point b.

(4) If pi ∈ (0, 1), i = 1, . . . , 2n− 1 and p2n = 1, then ξ has m = n + 1 support points, n− 1

points in the interior of the interval (a, b) and the points a and b.

Moreover, the support points x1, . . . , xm are the roots of the polynomial Pm(x) = Wm(x), where

the polynomials Wi(x) are defined recursively by

(3.2) Wi+1 = (x− a− (b− a)(ζ2i + ζ2i+1))Wi(x)− (b− a)2ζ2i−1ζ2iWi−1(x),

with initial conditions W0(x) = 1,W−1(x) = 0 and we use the notation ζ0 = 0, ζ1 = p1, ζi =

(1 − pi−1)pi, i ≥ 2. The weights ξ(x1), . . . , ξ(xm) at the support points x1, . . . , xm are obtained

by the formula

(3.3) ξ(xi) =
P

(1)
m−1(xi)

∂
∂x
Pm(x)|x=xi

; i = 1, . . . ,m,

where P
(1)
i (x) = Wi+1(x) and the polynomials Wi(x) are defined recursively by (3.2) with initial

conditions W1(x) = 1,W0(x) = 0.
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4 Robust designs for heteroscedastic polynomials

We are now in a position to determine Bayesian optimal saturated designs with respect to

non-informative priors for the polynomial regression model. To be precise, we assume that the

density p(y|θ, x) of the response Y (at experimental condition x) is governed by a by normal

distribution with mean

(4.1) µ(x,θ) =
n∑
j=0

θjx
j

and variance σ2(x,θ), where the variance and design space are given by

σ2(x,θ) = θn+1 exp(θn+2x) , X = [0, b] (θn+1 > 0, θn+2 ≥ 0)(4.2)

σ2(x,θ) = (1− x)−θn+1−1(1 + x)−θn+2−1 , X = (−1, 1) (θn+1, θn+2 > 0)(4.3)

and b > 0 is a constant. We also note that there are several other variance functions, which are

usually investigated in the context of polynomial regression [see Karlin and Studden (1966), p.

328, Chang (2005) or Chang et al. (2009)]. For these variance functions similar results to those

described in the following section can be obtained, but the details are omitted for the sake of

brevity.

Adapting the notation of the previous section we have for the parameter of interest θ1 =

(θ0, . . . , θn)T and for the nuissance parameters θ2 = (θn+1, θn+2)
T . The Fisher information at a

point x ∈ X is given by

I(x,θ) =

(
I11(x,θ) I12(x,θ)

I21(x,θ) I22(x,θ)

)
∈ Rn+3×n+3,(4.4)

where I12(x,θ) = 0 ∈ Rn+1×2 and

I11(x,θ) = σ−2(x,θ)(xi+j)i,j=0,...,n ∈ Rn+1×n+1,(4.5)

I22(x,θ) =
1

2σ2(x,θ)

( ∂

∂θ2
σ2(x,θ)

)( ∂

∂θ2
σ2(x,θ)

)T
∈ R2×2.(4.6)

In the following we call a design optimal m-point design, if it maximizes a particular optimality

criterion in the class of all designs supported at m points. Our first result describes the class

of all Bayesian-optimal (n + 1)-point designs for polynomial regression and variance function

(4.2) with respect to the Jeffreys and the Berger-Bernardo prior.

Theorem 4.1 Consider the polynomial regression model (4.1) with variance function (4.2) and

design space X = [0, b].

(1) Assume that (θ0, . . . , θn+2) ∈ Θ ⊂ (R+
0 )(n+1) × R+ × R+

0 , where Θ is a compact set. The

canonical moments of the Bayesian optimal (n+1)-design with respect to the Jeffreys prior

10



are given by (p1, . . . , p2n−1, 1), where p1, . . . , p2n−1 ∈ (0, 1) are obtained as a solution of

the system of equations

0 =
n− i+ 1

2
(

1

p2i−1
− 1

q2i−1
) + (p2i − q2i−2)(

2n∑
j=1

qj−1pj)
−1 (i = 2, ..., n)

0 =
n− i+ 1

2p2i
− n− i

2q2i
+ (p2i+1 − q2i−1)(

2n∑
j=1

qj−1pj)
−1 (i = 2, ..., n− 1)

0 =
n+ 1

2
(

1

p1
− 1

q1
) + (p2 − 1)(

2n∑
j=1

qj−1pj)
−1

0 =
n+ 1

2p2
− n− 1

2q2
+ (p3 − q1)(

2n∑
j=1

qj−1pj)
−1.

(2) Assume that (θ0, . . . , θn+2) ∈ Θ ⊂ (R+
0 )(n+1) × (R+)2 is a compact set, denote by z the

largest root of the nth Laguerre polynomial L
(1)
n (x) and define

γ =

∫
θn+2dθn+2∫
dθn+2

.

(a) If bγ ≥ z, then the Bayesian optimal (n + 1)-design with respect to the Berger-

Bernardo prior puts equal masses at the roots of the polynomial xL
(1)
n (xγ).

(b) If bγ < z, then the canonical moments of the Bayesian optimal (n + 1)-design with

respect to Berger-Bernardo prior are obtained as a solution of the system of equations

p2n = 1

n− i+ 1

p2i−1
− n− i+ 1

1− p2i−1
− bγ(1− p2i−2) + bγp2i = 0 (i = 1, ..., n)

n− i+ 1

p2i
− n− i

1− p2i
− bγ(1− p2i−1) + bγp2i+1 = 0 (i = 1, ..., n− 1)

with q0 = 0. Moreover, the optimal design has equal masses at its support points.

Proof. Note that the lower diagonal block of the Fisher information is given by

I22(x,θ) =
1

2θ2n+1

(
1 θn+1x

θn+1x θ2n+1x
2

)
.

If ξ denotes a design with n+ 1 support points x1, . . . , xn+1, then it follows from Theorem 3.1

that

|M11(ξ,θ)| =
|H(ξ)|

(θn+1)n+1
exp(−bθn+2

n+1∑
i=1

xi)(4.7)

= (
bn

θn+1

)n+1

n∏
j=1

(q2j−2p2j−1q2j−1p2j)
n−j+1 exp(−bθn+2

2n+1∑
j=1

qj−1pj).

11



Moreover, the canonical moments p1 and p2 are related to the moments c1 and c2 by c1 = bp1
and c2 = b2(p1 + q1p2), respectively [see Dette and Studden (1997)], which yields for the lower

right block of the matrix M(ξ,θ) in (2.12)

|M22(ξ,θ)| = 1

4
θ−2n+1b

2p1p2q1.(4.8)

Consequently, Bayesian optimal designs with respect to the Jeffreys and the Bernardo-Berger

prior depend only on the parameter θn+2, and only this dependence will be reflected in the

optimality criterion.

For a proof of (1) note that the criterion (2.11) reduces to

ΦJ(ξ) = α1

∫
(
θ
−n+3

2
n+1

2
b

n(n+1)
2

+1)dθn+1

∫
R+

[ n∏
j=1

(q2j−2p2j−1q2j−1p2j)
n−j+1

2

× exp
(
−bθn+2

2

2n+1∑
j=1

qj−1pj

)
(p1p2q1)

1
2

]
dθn+2

=
α2

b
∑2n+1

j=1 qj−1pj

n∏
j=1

(q2j−2p2j−1q2j−1p2j)
n−j+1

2 (p1p2q1)
1
2

with appropriate constants α1 and α2. Obviously this expression is maximized if (p1, . . . , p2n−1) ∈
(0, 1)2n−1 and q2np2n+1 = 0, which can be achieved either by p2n+1 = 0 and p2n ∈ (0, 1) or if

p2n = 1. Now assume that p2n ∈ (0, 1) then (p1, . . . p2n) ∈ (0, 1)2n would be a solution of

the system of equations ∂
∂pj

log ΦJ(ξ) = 0, j = 1, . . . , 2n. The derivative with respect to the

coordinate p2n yields the equation

∂

∂p2n
log ΦJ(ξ) =

1

2p2n
− q2n−1∑2n

j=1 qj−1pj
= 0 ,

which gives

(4.9) q2n−1p2n =
2n−1∑
j=1

qj−1pj.

Inserting this expression in the partial derivative with respect to p2n−1 yields

∂

∂p2n−1
log ΦJ(ξ) =

1
p2n−1

− 1
q2n−1

2
− q2n−2 − p2n∑2n

j=1 qj−1pj
=

1
p2n−1

− 1
q2n−1

2
− q2n−2 − p2n

2p2nq2n−1
= 0 ,

which is equivalent to p2nq2n−1 = q2n−2p2n−1. Combining this equation with (4.9) gives

2n−2∑
j=1

qj−1pj = 0,

12



which is a contradiction to the assumption pi ∈ (0, 1) (i = 1, . . . , 2n). Consequently, we have

p2n = 1 and calculating ∂
∂pj

log ΦJ(ξ) = 0 for j = 1, . . . , 2n − 1 gives the system of equation

stated in part (1) of Theorem 4.1.

We now turn to a proof of part (2). Recall the representation (4.8), which yields for the first

ratio of the determinants in criterion (2.17)

|M22(ξ,θ)|1/2∫
|M22(ξ,θ1, t2)|1/2dt2

=
θ−1n+1∫

t−1n+1dtn+1

∫
dtn+2

=
θ−1n+1

α3

,

where the last equality defines the constant α3 in an obvious manner. We introduce the notation

α1 =

∫
dθ1 ; α2 =

∫
dθn+2 ; α4 =

∫
θn+2dθn+2.

Observing the fact that the Fisher information matrix is block diagonal we obtain

|M(ξ,θ)|/|M22(ξ,θ)| = |M11(ξ,θ)|,

and (4.8) yields for the optimality criterion (2.17)

ΦBB(ξ) = α1 exp
(∫ [n+ 1

2α3

θ−1n+1 log(
1

θn+1

)]dθ2 +
1

2

[
n(n+ 1) log(b)

+
n∑
j=1

(n− j + 1) log(q2j−2p2j−1q2j−1p2j)−
bα4

α2

2n+1∑
j=1

qj−1pj

])
.

Consequently, the Bayesian optimal (n + 1)-point design with respect to the Berger-Bernardo

prior is obtained by maximizing the expression

n∑
j=1

(n− j + 1) log(q2j−2p2j−1q2j−1p2j)−
bα4

α2

2n+1∑
j=1

qj−1pj

with respect to the canonical moments (p1, . . . , p2n+1) ∈ [0, 1]2n+1 and identifying the design

corresponding to these canonical moments by Theorem 3.2. But this problem has been solved by

Dette and Wong (1998), and the assertion follows from Theorem 3.2 in this reference observing

that γ = α4/α2. 2

Example 4.1 In this example we illustrate the application of Theorem 4.1 by calculating

Bayesian optimal designs with respect to non-informative priors in the polynomial regression

model (4.1) with variance function (4.2). Recall that only the parameter θn+2 appears in the

optimality criterion in a non-trivial way and as a consequence Bayesian optimal designs depend

only on prior information regarding this parameter. We assume that θn+2 ∈ [0, 4]. In Table

1 we present Bayesian optimal 4-point designs for the cubic regression model on the interval

X = [0, 1] with respect to the Jeffreys prior, the Berger-Bernardo prior and Bayesian D-optimal

4-point design with respect to a uniform distribution. The Bayesian D-optimal design with

respect to the uniform prior and Bayesian optimal design with respect to the Bernardo-Berger

13



prior are similar, where the latter puts less weights at the boundary of the design space. On the

other hand the support points of the Bayesian optimal design with respect to the Jeffreys prior

in the interior of the design space are larger. In Figure 1 we illustrate the application of Theorem

2.2 and 2.3. We observe that all designs satisfy the necessary condition for optimality.

Corresponding results for a quadratic polynomial regression model are depicted in Table 2,

where the design space is now given by the interval [0, 3]. Here the right boundary point of

the design space is a support point of the Bayesian optimal design with respect to the Jeffreys

prior and the Bayesian D-optimal design with respect to the uniform prior. On the other hand

the Bayesian optimal design with respect to the Berger-Bernardo prior does not contain the

point 3 in its support. We observe from Figure 2 that not all designs satisfy the necessary

condition of optimality. Therefore we maximized the criteria for 4-point designs numerically,

and the corresponding designs are shown in Table 3. Only the criterion based on the Jeffreys

prior yields a 3-point design while the other hand two criteria yield 4-point designs. Moreover,

all designs meet the corresponding necessary condition for optimality (these results are not

depicted for the sake of brevity).

(2.6) with (2.7) (2.11) (2.17)

ξ(xi) xi ξ(xi) xi ξ(xi) xi

0.2760 0 0.2809 0 0.25 0

0.2195 0.2072 0.2170 0.2347 0.25 0.2177

0.2082 0.6606 0.2114 0.7018 0.25 0.6497

0.2963 1 0.2907 1 0.25 1

Table 1: Bayesian optimal 4-point designs with respect to non-informative priors for the cubic

polynomial regression model on the interval [0, 1] with variance structure (4.2), where θn+2 ∈
[0, 4]. Left column: Bayesian D-optimal designs with respect to the uniform prior. Middle

column: Bayesian optimal designs with respect to the Jeffreys prior. Right column: Bayesian

optimal designs with respect to the Bernardo-Berger prior.

We finally briefly discuss optimal designs with respect the variance function (4.3). In this case

we are only able to determine the Bayesian optimal designs with respect to the Berger-Bernardo

prior.

Theorem 4.2 Consider the polynomial regression model (4.1). If the design space and the

variance function are given by X = (−1, 1) and by (4.3), respectively, then the Bayesian optimal

(n + 1)-design with respect to the Berger-Bernardo prior puts equal masses at the roots of the

(n+ 1)th Jacobi polynomial P
(g1,g2)
n+1 (x), where the parameters g1 and g2 are given by

gj =

∫
θn+jdθ2∫
dθ2

; j = 1, 2.
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Figure 1: The necessary condition of optimality for three Bayesian-optimal 4-point designs in

the cubic polynomial regression model with variance structure (4.2). Left: Bayesian D-optimal

design with respect to a uniform prior. Middle: Bayesian optimal design with respect to the

Jeffreys prior. Right: Bayesian optimal design with respect to the Berger-Bernardo-prior.

(2.6) with (2.7) (2.11) (2.17)

ξ(xi) xi ξ(xi) xi ξ(xi) xi

0.3356 0 0.3624 0 0.3333 0

0.2686 0.6532 0.2527 1.1859 0.3333 0.6340

0.3958 3 0.3849 3 0.3333 2.36603

Table 2: Bayesian optimal 3-point designs with respect to non-informative priors for the

quadratic polynomial regression model on the interval [0, 3] with variance structure (4.2), where

θn+2 ∈ [0, 4]. Left column: Bayesian D-optimal designs with respect to the uniform prior.

Middle column: Bayesian optimal designs with respect to the Jeffreys prior. Right column:

Bayesian optimal designs with respect to the Bernardo-Berger prior.

Proof: Observing the representation (4.6) we obtain for the lower block in the Fisher informa-

tion matrix I(x,θ) the representation

I22(x,θ) =

(
log2(1− x) log(x+ 1) log(1− x)

log(x+ 1) log(1− x) log2(x+ 1)

)
.

Therefore we have
|M22(ξ,θ)|1/2∫

|M22(ξ,θ1, t2)|1/2dt2
=

1∫
dθ2

=
1

α2

,

where the last equality defines the constant α2 in an obvious manner. Consequently, for an

(n+1)-point design with masses ξ(x0), . . . , ξ(xn) at the points x0, . . . , xn the optimality criterion
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Figure 2: The necessary condition of optimality for Bayesian optimal 3-point designs in

the quadratic polynomial regression model with variance structure (4.2). Left: Bayesian D-

optimality. Middle: Bayesian optimal design with respect to the Jeffreys prior. Right: Bayesian

optimal design with respect to the Berger-Bernardo-prior.

(2.6) with (2.7) (2.11) (2.17)

ξ(xi) xi ξ(xi) xi ξ(xi) xi

0.3209 0 0.3624 0 0.3193 0

0.1931 0.4480 0.2527 1.1859 0.2478 0.4728

0.1601 1.2939 0.3849 3 0.2453 1.4472

0.3259 3 0.1876 3

Table 3: Bayesian optimal 3- or 4- point designs with respect to non-informative priors for the

quadratic polynomial regression model on the interval [0, 3] with variance structure (4.2), where

θn+2 ∈ [0, 4]. Left column: Bayesian D-optimal designs with respect to the uniform prior.

Middle column: Bayesian optimal designs with respect to the Jeffreys prior. Right column:

Bayesian optimal designs with respect to the Bernardo-Berger prior.

reduces to

ΦBB(ξ) = α1 exp
(∫ 1

2α2

log
[ n∏
j=0

ξ(xj)
n∏
j=0

(1− xj)θn+1+1(1 + xj)
θn+2+1

∏
m,`=0,...,n

m<`

(xm − x`)2
]
dθ2

)

= α1 exp
(∫ 1

2α2

log
[ n∏
j=0

(1− xj)θn+1+1(1 + xj)
θn+2+1|Hn(ξ)|

]
dθ2

)
,

where α1 :=
∫
dθ1 and the matrix Hn(ξ) is the Hankel matrix of the (n + 1)-point design ξ,

that is

Hn(ξ) = (ci+j(ξ))i,j=0,...n =
n∏
j=0

ξ(xj)
∏

m,`=0,...,n
m<`

(xm − x`)2.
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Observing Theorem 3.2 it therefore follows that the Bayesian (n+1)-point optimal design with

respect to the Bernardo-Berger prior can be determined by maximizing the expression(2n+1∏
i=1

qi

)g1+1(
p2n+1

n∏
i=1

(p2i−1q2i)
)g2+1

n∏
i=1

(q2i−2p2i−1q2i−1p2i)
n−i+1

with respect to the canonical moments p1, . . . , p2n+1. Straightforward algebra gives for the

corresponding “optimal” canonical moments

p2i−1 =
g2 + n+ 1− i

g1 + g2 + 2(n+ 1− i)
; i = 1, . . . , n+ 1

p2i =
n+ 1− i

g1 + g2 + 2(n+ 1− i) + 1
; i = 1, . . . , n+ 1.

The design corresponding to these canonical moments has been determined in Studden (1982a)

and puts equal masses at the roots of the (n+1)th Jacobi polynomial P
(g1,g2)
n+1 (x) [see also Dette

and Studden (1997) for an alternative proof], which completes the proof of Theorem 4.2. 2

5 Bayesian optimal designs for nonlinear regression

In this section we illustrate the application of the methodology determining Bayesian optimal

designs for the EMAX model and a compartment model, which are frequently used in pharma-

cology. Locally optimal designs for this model have been determined by numerous authors [see

Atkinson et al. (1993), Jones et al. (1999), Dette et al. (2008) and Dette et al. (2010)] and we

present some Bayesian optimal designs with respect to non-informative priors.

For both models we assume that the response at experimental condition x ∈ X is normally

distributed with mean µ(x,θ) and variance σ2(θ) = θ3 > 0. Here the variance is considered as

a nuissance parameter. For the criterion (2.6) we use a uniform and a functional uniform prior

for the parameters (θ0, θ1, θ2) and an arbitrary prior for θ3. The criteria with respect to the

Jeffreys prior and the Berger-Bernardo-prior are equivalent in this case. All designs have been

calculated numerically using Maple.

We begin with the EMAX model which describes a dose-response relationship

µ(x,θ) = θ0 +
θ1x

x+ θ2
,

where θ1 determines the asymptotic maximum effect, θ2 the dose that gives half of the asymp-

totic maximum effect and θ0 describes the effect of placebo.

In Table 4 we display some Bayesian optimal designs with respect to non-informative priors,

where the design space is given by the interval [0, 4]. For the parameters we assume θ0 ≥ 0, θ1 ∈
(0, 5], and θ2 ∈ [1, 6], where θ0 and θ3 are each from a compact interval.

We observe that the Bayesian-optimal 3-point designs with respect to the Jeffreys prior and

the Berger-Bernardo prior and the Bayesian D-optimal design with respect to the functional

uniform prior look similar, while the Bayesian D-optimal design with respect to the uniform
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(2.6) with (2.7) (2.11)/(2.17) (2.6) with (2.8)

ξ(xi) xi ξ(xi) xi ξ(xi) xi

0.333 0 0.333 0 0.333 0

0.333 1.2028 0.333 0.9472 0.333 0.9766

0.333 4 0.333 4 0.333 4

Table 4: Bayesian optimal 3-point designs with respect to non-informative priors for the EMAX

model on the interval [0, 4]. Left column: Bayesian D-optimal design with respect to the uniform

prior. Middle column: Bayesian optimal designs with respect to the Jeffreys and Bayesian

optimal designs with respect to the Bernardo-Berger prior. Right column: Bayesian D-optimal

designs with respect to the functional uniform prior.
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Figure 3: The necessary condition of optimality for optimal 3-point designs in the EMAX model.

Left: Bayesian D-optimality design with respect to a uniform prior. Middle: Bayesian opti-

mal design with respect to the Jeffreys prior and the Berger-Bernardo-prior. Right: Bayesian

optimal design with respect to a functional uniform prior.

prior has a larger interior support point. The application of Theorem 2.1 - 2.3 is illustrated in

Figure 3. We observe that all designs satisfy the necessary condition for optimality.

We conclude this paper with a brief discussion of Bayesian optimal designs for a compart-

ment model, which is used as a model for the concentration of a substrate over time involving

absorption and the elimination of a substrate. Here the mean is given by

µ(x,θ) = θ0(exp(−θ1x)− exp(−θ2x)),

where θ1 is the elimination constant and θ2 the absorption constant. The corresponding optimal

designs are displayed in Table 5, where the design space is given by X = [0, 20] and θ0 > 0, θ1 ∈
[0.05, 0.07], and θ2 ∈ [3.3, 5.3] [see Atkinson et al. (1993)]. As before θ0 and θ3 are each

from a compact interval. All designs presented in this table satisfy the necessary condition of

optimality (the corresponding plots are not displayed for the sake of brevity). Interestingly all

designs exhibit a very similar structure.
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(2.6) with (2.7) (2.11)/(2.17) (2.6) with (2.8)

ξ(xi) xi ξ(xi) xi ξ(xi) xi

0.333 0.2286 0.333 0.2321 0.333 0.2343

0.333 1.4106 0.333 1.4310 0.333 1.4420

0.333 18.1145 0.333 18.3185 0.333 18.3132

Table 5: Bayesian optimal 3-point designs with respect to non-informative priors for the com-

partment model. Left column: Bayesian D-optimal designs with respect to the uniform prior.

Middle column: Bayesian optimal designs with respect to the Jeffreys and the Bernardo-Berger

prior. Right column: Bayesian D-optimal designs with respect to the functional uniform prior.
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