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Introduction

Interactions of very intense and coherent light �elds provided by modern laser sys-
tems with media reveal optical phenomena showing nonlinear dependences on the
incident light intensity [1�3]. This research �eld called nonlinear optics gains con-
tinuously more attention and its achievements �nd applications in multiple �elds of
science [3�5]. Among them, frequency conversion processes, where new colors are
generated from monochromatic light, like harmonics generation, parametric genera-
tion, or four-wave mixing are particularly interesting for technology. These processes
allow the production of laser systems at frequencies that are unavailable otherwise.
Profound examples in modern technology are green and blue lasers achieved by
frequency doubling.

The fundamental three photon process, where two photons of the same frequency
are converted to one photon with twice the frequency called second harmonic gen-
eration (SHG), has a distinctively prominent role among the manifold processes [6].
The selection rules of SHG are radically di�erent from linear optics opening new
avenues to probe the optical and electronic properties of a system. SHG has be-
come a widely used tool to investigate all di�erent kinds of materials reaching from
bulk semiconductors and colloidal quantum dots to molecules and complex chemical
compounds [1, 4, 7]. Even in medical research SHG leads to prosperous insights,
e.g., the high spatial resolution microscopy of the eye [8, 9]. Utilizing such optical
nonlinearities successfully requires the detailed understanding of their underlying
processes.

SHG studies on semiconductors have attracted a lot of attention since the begin-
ning of nonlinear optics, leading to thousands of related publications. Especially
the pronounced sensitivity towards symmetries promises magni�cent opportunities
for studies in applied �elds [10]. Magnetic and electric �elds are appropriate con-
trols to selectively break inherent symmetries. In the last decade manifold magnetic
�eld induced contributions to SHG were identi�ed [11]. In the diamagnetic semi-
conductors GaAs and CdTe the magnetic �eld induced second harmonic (MFISH)
was attributed to the orbital quantization of Landau-Levels [12]. In diluted mag-
netic semiconductors (Cd,Mn)Te the MFISH was shown to stem from the large spin
splittings [13]. In the magnetic compounds EuTe and EuSe the MFISH was traced
down to originate from the parallel alignment of their spin sub-lattices [14].

The optical properties of semiconductors are largely determined by excitons, bound
electron-hole pairs, which have been intensively studied by linear optics. Surpris-
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2 Contents

ingly, the role of excitons in the SHG process has remained essentially unexplored
in experimental and theoretical studies. This gap motivates the spectroscopic study
of SHG in hexagonal ZnO. It has a rich exciton structure and is well suited to
investigate the in�uence of excitons on SHG.

In case the SHG is forbidden, e.g., in centrosymmetric materials, allowed third har-
monic generation (THG) contributions might be studied instead. In contrast to
SHG spectroscopy, publications on THG spectroscopy are scarce. The spectroscopic
study of THG in cubic, magnetic EuTe and EuSe is performed in order to dis-
cuss its strengths and advantages. In addition, the results are compared to recent
spectroscopic SHG studies in the same materials [15].

Gained perceptions are deepened and expanded by exploring the in�uence of control-
lable external magnetic and electric �elds. Such perturbations break speci�c sym-
metries purposefully leading to induced contributions. The additional adjustable
parameters enrich the experimental capabilities.

This thesis is structured in three parts: First, an introduction to harmonic generation
spectroscopy provides the theoretical background and presents the experimental
setup. Second, the second harmonic generation spectroscopy of the exciton structure
in wurtzite ZnO is analyzed and interpreted on the basis of a microscopic discussion.
Thirdly, the third harmonic generation spectroscopy in vicinity of the band gap in
cubic, magnetic EuSe and EuTe is discussed and, afterwards, compared to the second
harmonic generation spectroscopy studies.



1 Optical Harmonic Generation

Spectroscopy

Optical harmonic generation can be derived phenomenologically from the very basic
principles of electromagnetism, although quantum mechanics are necessary to fully
grasp the nature of this phenomenon.

1.1 Theoretical Background

First, the generation of optical harmonic waves is derived as a direct consequence
of the Maxwell's equations. Second, the polarization and the susceptibility of a
medium is introduced and discussed. Thirdly, the quantum mechanical origin of the
susceptibilities is outlined.

1.1.1 Electromagnetic Wave Equation

Maxwell's equations comprise the complete set of equations, which are necessary to
describe the dynamics of electromagnetic problems. In the form of e�ective charges
and currents (all charges/currents are summed up in an e�ective charge/current),
they can be written in the microscopic form; see for example Refs. [3, 16]:

div E =
ρ̃

ε0
(1.1)

div B = 0 (1.2)

curl E = −µ0
∂B

∂t
(1.3)

curl B = ε0µ0
∂E

∂t
+ µ0j̃ (1.4)

Here, E and B are the electric and magnetic �elds1, ε0 and µ0 the dielectric and
magnetic constants, ρ̃ and j̃ are the e�ective charge and current densities. Taking

1More accurately, E is the electric �eld strength, and B is the magnetic �ux density.
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4 Chapter 1. Optical Harmonic Generation Spectroscopy

the curl of (1.3), using the vector identity a× (b× c) = b · (a · c)− (a · b) c, and
the relations (1.1) and (1.4)

curl (curl E) = − ∂

∂t
curl B , (1.5)

grad (div E)−∆E = − ∂

∂t

(
ε0µ0

∂E

∂t
+ µ0j̃

)
, (1.6)

grad
ρ̃

ε0
−∆E = −ε0µ0

∂2E

∂t2
− ∂

∂t
µ0j̃ , (1.7)

the electromagnetic wave equation is derived for the electric �eld

∆E− 1

c2

∂2E

∂t2
= grad

ρ̃

ε0
+
∂

∂t
µ0j̃ . (1.8)

For the interaction of light with semiconductors, some assumptions are made to
simplify this problem. (i) In loss-less, neutral, nonconducting, non-magnetic media
the free charges and currents are assumed to be zero. (ii) For fast oscillating �elds
(like it is the case for photons) the gradient of the electric charge density is negligible
small compared to the time derivation of the electric current density; see Refs. [1,2].
Thus, the e�ects of an incident light wave on a system are described by the changes
in the electric current density. It can be expanded into a series of multipole moments
[17�19]:

j̃ = ∂p
∂t

+ 1
µ0
curl m− ∂

∂t
div q + ... . (1.9)

Here, p andm are the electric- and magnetic-dipole moments, and q are the electric-
quadrupole moments. All are induced by the incoming light �eld, because it is
assumed that no intrinsic moments are present. With these assumptions, the induced
electric and magnetic moments become source terms that in�uence the dynamics of
the electric light �eld itself:

∆E− 1

c2

∂2E

∂t2
= µ0

∂2p

∂t2
+
∂

∂t
curl m− µ0

∂2

∂t2
div q + ... . (1.10)

It is convenient to introduce the electric displacement �eld D and the magnetic �eld
strength H:

D = ε0E + P , (1.11)

H =
1

µ0

B−M . (1.12)
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P and M are called the polarization and magnetization of the medium, respectively.
They correct the electric and magnetic �elds by accounting for the induced electric
and magnetic moments. They can be understood as the total macroscopic dipole
moments originating from the averaged microscopic moments. Then, Maxwell's
equations can be rewritten in their macroscopic form (with the assumption that no
free carriers and currents are present):

curl E = −∂B
∂t

, (1.13)

curl H =
∂D

∂t
, (1.14)

and the wave equation becomes

∆E− 1

c2

∂2E

∂t2
= µ0

∂2P

∂t2
+
∂

∂t
curl M . (1.15)

1.1.2 Polarization and Susceptibility

The optical harmonic generation is an e�ect that emerges quickly during the discus-
sion of the polarization P. In general, it is assumed to be expandable into a power
series of the incoming electric �eld Eω 2:

1

ε0
P = χ(1)Eω + χ(2)EωEω + χ(3)EωEωEω + ... , (1.16)

where χ(i) are the i-th order susceptibilities describing the optical properties of the
system. Their magnitude decreases quickly with increasing order, i.e., high-order
e�ects are relevant for intense light �elds. The ansatz of a plane monochromatic wave
already demonstrates that the nonlinear source terms generate optical harmonic light
waves of frequency nω (n ∈ N):

Eω(r, t) = E′ expi(kr−ωt) + c.c. (1.17)

Here, k is the light wave vector, ω the frequency of the light wave (later, a superscript
will indicate the corresponding frequency: kω), r is the position, and t the time.
Thus, the second term in Eq. (1.16) becomes

1

ε0
P(2) = χ(2)E′E′∗ +

(
χ(2)E′

2
expi(2kr−2ωt) + c.c.

)
. (1.18)

2For a discussion of the situation, when the series in Eq. (1.16) does not converge, see, e.g., Ref. [1]
Chap. 6.
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The terms in brackets depending on 2ω are responsible for the second harmonic gen-
eration. The �rst term describes the e�ect called optical recti�cation, which is not
discussed here; for a discussion see, e.g., Refs. [1�3]. The third harmonic generation
can be shown to originate from P(3), accordingly. Thus, studying the SHG or THG
yields information on the second or third order susceptibility, respectively. In the
following, P(2) is discussed exemplarily in more detail.

Often it is instructive to modify the optical properties of the studied system by
external perturbations, e.g., static electric or magnetic �elds, stress, etc. In these
cases it is convenient to separate the susceptibility into a crystallographic part,
the natural response of the crystal, and a part, that is induced by the external
perturbation. The second order polarization can then be written as

P = ε0(χcryst + χind)EωEω. (1.19)

In �rst order, a linear dependence on the perturbation may be extracted from the
induced susceptibility, e.g., for a static electric �eld E0:

1

ε0
P = χcrystEωEω + χind

′
EωEωE0. (1.20)

In more general cases, the dependences on the external perturbations cannot be
extracted easily from the susceptibility anymore, and the induced contributions
become:

Pind = ε0χ
ind(B0,E0)EωEω, (1.21)

where the nonlinear optical susceptibility χind(B0,E0) accounts for phenomena in-
duced by static magnetic and electric �elds.

Is the energy of the outgoing light wave in resonance with an excited crystal state,
e.g., the second harmonic is in resonance with the exciton energy Eexc, the electric-
quadrupole (EQ) and magnetic-dipole (MD) contributions may become important,
and have to be taken into account as well. In such cases, it is convenient to consider
an e�ective polarization depending on the resonance energy, which sums up all
contributions (for a detailed description of this concept see Ref. [20]):

Pe�(Eexc) = ε0χ(Eexc,kexc)EωEω, (1.22)

where the nonlinear optical susceptibility χ(Eexc,kexc) describes spatial-dispersion
phenomena including EQ and MD contributions. kexc = 2nkω is the exciton wave
vector, where n is the refractive index at the fundamental energy ~ω, and kω is the
wave vector of the incoming light.
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In some cases, multiple mechanisms are induced by the same perturbation. Then
their susceptibilities have to be summed up to account for interferences among them:

P = ε0(χcryst + χindmechanism A + χindmechanism B)EωEω. (1.23)

1.1.3 Polarization Anisotropies

The experimental study of the emitted harmonic light polarization reveals the prop-
erties of the just discussed polarization of the medium. According to Neumann's
principle "the symmetry of a physical phenomenon is at least as high as the crys-
tallographic symmetry", it is possible to predict these properties to a certain extent
from the space group of the crystal; see, e.g., Refs. [1, 2, 21, 22]. Group theoretical
considerations allow to foresee zero and non-zero elements of a susceptibility, and to
deduce linear dependences between them. As a consequence, the emitted harmonic
light polarizations in Eq. (1.16) show distinct angular distributions, which can be
modeled due to the group theoretical predictions. In Sec. 5.1 the algorithm, which
is used to model such rotational polarization dependences, is given and discussed.
These rotational anisotropies give comprehensive information on the symmetry of
the involved nonlinear susceptibilities and underlying processes. Thus they help
to distinguish nonlinear optical mechanisms of di�erent nature, which is especially
important when more than one mechanism may be involved.

1.1.4 Quantum Mechanical Picture

The introduced susceptibilities describe the optical properties of the material, which
are determined by its transition matrix elements. In quantum mechanics the inter-
action of a system with a light �eld can be described by the minimal coupling
p → p − qA and i~ ∂

∂t
→ i~ ∂

∂t
− qU in the Schrödinger's equation; see, e.g.,

Refs. [1, 2, 19,23�25]. This leads to the interaction hamiltonian:

Hint =
∑
i

−qpA
m
− qAp

m
+
q2A2

2m
+ qU (1.24)

m and q are the particle's masses and charges. The sum is carried out over all
interacting particles. The vector potential A and the scalar potential U describe
the light wave. Note, that Eq. (1.24) does not consider relativistic corrections, i.e.,
the interaction with the spin remains disregarded.
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Choosing the radiation gauge divA = 0 and U = 0, the interaction Hamilton sim-
pli�es to; compare, e.g., with Refs. [24, 25]:

Hint =
∑
i

−2qpA

m
+
q2A2

2m
(1.25)

If the solutions of |Ψi〉 of the Schrödinger equation i~ ∂
∂t
|Ψ〉 = H |Ψ〉 including the

interactions in Eq. (1.25) are known, the expectation value of the polarization at 2ω
is given by〈

P2ω
〉

= 〈Ψ|P2ω |Ψ〉 . (1.26)

The full polarization P2ω is given by the electric- and magnetic-dipole, and higher
order momenta operators. In calculations, the choice of the momentum operator
determines the outgoing transition, e.g., calculating the expectation value of the ED
operator will yield the susceptibility that describes microscopic processes in which
the emission is via an ED transition. In the following the superscript is neglected
P2ω = P.

Approximated solutions |Ψ〉 =
∣∣Ψ(0)

〉
+ λ

∣∣Ψ(1)
〉

+ λ2
∣∣Ψ(2)

〉
+ ... can be obtained by

perturbation theory. It is assumed that λ� 1, and that the series converges quickly.∣∣Ψ(0)
〉
are the solutions of the unperturbed systemH0 without time dependence, i.e.,∣∣Ψ(0)
〉
are the eigenstates of the crystal (

〈
Ψ

(0)
l

∣∣∣ Ψ
(0)
m

〉
= δlm and

〈
Ψ

(0)
l

∣∣∣H0
∣∣∣Ψ(0)

m

〉
=

Emδlm). In time-dependent perturbation theory, the time-dependent solutions are
constructed from the solutions of the unperturbed system:

|Ψ(t)〉 =
∑
n

bn(t)e−
iEnt
~
∣∣Ψ(0)

n

〉
(1.27)

⇒ i~
d
dt
bn(t) =

∑
k

e−
i(En−Ek)t

~
〈
Ψ(0)
n

∣∣λHint
∣∣∣Ψ(0)

k

〉
bk(t) , (1.28)

assuming bn(t) = b(0)
n (t) + λ1b(1)

n (t) + λ2b(2)
n (t) + ... and b(0)

n (t) = b(0)
n (1.29)

⇒ i~
d
dt
b(i)
n (t) =

∑
k

e−
i(En−Ek)t

~
〈
Ψ(0)
n

∣∣Hint
∣∣∣Ψ(0)

k

〉
b

(i−1)
k (t) (1.30)

This recurrence yields in �rst order:

b(1)
n (t) =

1

i~

∫ t′

0

dt′e−
i(En−Ei)

t

〈
Ψ(0)
n

∣∣Hint
∣∣∣Ψ(0)

i

〉
(1.31)

Thus, the �rst order correction is linear in the transition matrix elements determined
by the perturbation. It follows from the recurrence that the n-th order correction
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will be proportional to the n-th order in the incoming �eld. Further, the n-th order
correction to the wave function can be written as:

∣∣Ψ(n)
〉

=
∑
i

b
(n)
i

∣∣∣Ψ(0)
i

〉
. (1.32)

The expectation value of P becomes up to second order in perturbation theory:

〈P〉 =
〈
Ψ(0)

∣∣P ∣∣Ψ(0)
〉

(1.33)

+
〈
Ψ(0)

∣∣P ∣∣Ψ(1)
〉

+
〈
Ψ(1)

∣∣P ∣∣Ψ(0)
〉

(1.34)

+
〈
Ψ(1)

∣∣P ∣∣Ψ(1)
〉

+
〈
Ψ(0)

∣∣P ∣∣Ψ(2)
〉

+
〈
Ψ(2)

∣∣P ∣∣Ψ(0)
〉

(1.35)

+
〈
Ψ(1)

∣∣P ∣∣Ψ(2)
〉

+
〈
Ψ(2)

∣∣P ∣∣Ψ(1)
〉

+
〈
Ψ(2)

∣∣P ∣∣Ψ(2)
〉
. (1.36)

The terms can be sorted according to their order in the perturbation of the incoming
�eld; see for example Refs. [1,7]. Consequently, e.g., the 2-nd order polarization P (2),
i.e., the contribution quadratic in the electric �eld, is obtained by

〈
P(2)

〉
=

〈
Ψ(0)

∣∣P ∣∣Ψ(2)
〉

+
〈
Ψ(1)

∣∣P ∣∣Ψ(1)
〉

+
〈
Ψ(2)

∣∣P ∣∣Ψ(0)
〉
, (1.37)

and the respective susceptibility can be calculated according to

χ(i) =
P (i)

(Eω)i
, (1.38)

where P (i) ∝
〈
P(2)

〉
. The terms in Eq. (1.37) describe di�erent processes of which

the �rst one will be of interest. It describes the process of a two-photon excitation
of a state with higher energy than the ground state and a respective one-photon
emission.

The excitation processes are governed by the transition matrix elements 〈n|Hint |i〉
induced by the incoming light �eld. For the vector potential A, the following ansatz
is valid:

A(r, t) =
∑
k

Ake
−iωkt+ikr + Ake

+iωkt−ikr . (1.39)

The linear term −2qpA
m

in Eq. (1.25) is responsible for the transitions between the
crystal states. The term quadratic in the vector potential is neglected for the follow-
ing discussion, although it can be of interest occasionally, e.g., for the description
of diamagnetism. In the present work the wave length λ = 2π

k
is large compared to
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the lattice constant a and the dimensions of the crystal, and the Euler function can
be approximated by its �rst Taylor polynomials:

e±ikr = 1± ikr− 1

2
(kr)2 +O

(
k3
)

(1.40)

The + and − describe the emission and absorption of photons with frequency ωk,
respectively. A multipole expansion up to the second order of the interaction matrix
between two states 〈f | and |g〉 yields:〈

f

∣∣∣∣qAp (1± ikr)

m

∣∣∣∣ g〉 (1.41)

These matrix elements can be rewritten in a way (see for example Refs. [23, 24]),
that the transitions can be classi�ed in accordance with multipole moments:

〈f |p| g〉 → ∝ r, electric-dipole transition (1.42)

〈f |ipkr| g〉 → ∝ ikL, magnetic-dipole transition, and (1.43)

∝ kr2, electric-quadrupole transition (1.44)

It is readily seen that magnetic-dipole and electric-quadrupole transitions depend
linear on k. They originate from the same order of multipole expansion and are
of the same order, but much weaker than the electric-dipole transitions. Generally
they are assumed to be α ≈ 1

137
times weaker [25].

For the emission process the momentum operators have to replaced by the respective
wave vector, e.g., for the emission of second harmonic k −→ 2kω.

The electric �eld E is obtained from the vector potential A by the relation [23]:

E = − ∂

∂t
A = i

∑
k

(
ωkAke

−iωkt+ikr + c.c.
)
. (1.45)

The time origin shall be chosen so that:

iωkAk =
Ek

2
, (1.46)

ikAk =
Bk

2
, (1.47)

Ek
Bk

=
ωk
k

= c . (1.48)

The interaction Hamiltonian −2qpA
m

in Eq. (1.25) can be rewritten for a monochro-
matic electric �eld as:

Vint =
iqpE

mω
. (1.49)
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1.1.5 In�uence of Static Magnetic and Electric Fields

The generation of optical harmonics is a coherent process being very sensitive to
the symmetry properties of the system under investigation. Application of external
perturbations can be described by a reduction of the crystal symmetry. This directly
in�uences the nonlinear response function χ and may lead to new �eld induced
components. Especially the magnetic �eld has proven to be a very fruitful source of
induced contributions to harmonics generation [12�14,26,27].

This section brie�y summarizes the strongest e�ects of static magnetic and elec-
tric �elds on crystal excitations; for detailed discussions of these perturbations see
Refs. [23�25, 28�30]. A perturbation may have two consequences: (i) the energy
correction and (ii) the mixing of states.

The treatment of magnetic �elds is generally separated into three regimes [28]:

• The weak �eld regime - ERyd � ~ωc ⇒ ~ eB
µERyd

� 1, the Coulomb energy
dominates and the magnetic �eld can be treated according to perturbation
theory.

• The strong �eld regime - ERyd � ~ωc ⇒ ~ eB
µERyd

� 1, leading to the formation
of Landau levels; see e.g., Ref. [26].

• The intermediate �eld strength is di�cult to handle; see, e.g., Ref. [28].

Here, ERyd = 13.6 eV µ
m0

1
ε2r

is the exciton Rydberg energy, εr = 1 + χ is the relative
permittivity, ~ωc = ~ eB

µ
is the cyclotron energy, and µ = memh

me+mh
the reduced exciton

mass. The presented studies �t into the weak �eld regime, which is therefore assumed
to be valid in the following.

The interaction between static electromagnetic �elds and particles is summarized in
the Lorentz force

F = q (E + v ×B) . (1.50)

It describes the forces on a particle with charge q and velocity v.

Diamagnetic Shift

For bound complexes, e.g., excitons, the Lorentz force deforms their relative mo-
tion. Phenomenologically this can be understood as a change in the overall angular
momentum. This change is proportional and antiparallel to B. Thus, the change
in the inherent magnetic dipole moment is proportional to B as well. The energy
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of a magnetic moment scales linear with the magnetic �eld B leading to an overall
energy correction quadratic in B:

∆Edia = αdiaB
2 . (1.51)

The expressions for the factor αdia can be found in literature, e.g., for ZnO in
Ref. [31]. For 1S excitons, αdia is proportional to the square of the exciton Bohr
radius de�ned as aB = ahydrB εr

m0

µ
, with the hydrogen Bohr radius ahydrB ≈ 0.53 Å; see

Ref. [28]. More accurately an e�ective exciton radius can be calculated according
to rexc = 3n2−l(l+1)

2
aB. It increases with the main quantum number n, and is further

depended on the orbital quantum number l. This directly re�ects that states with
an higher main quantum number show stronger diamagnetic shifts.

The diamagnetic shift is present for all exciton states [31]. On the one hand, it is
not strong enough to be regarded as a direct mixing mechanism. On the other hand,
it may enhance the mixing by other mechanisms due to favorable energy shifts.

Zeeman E�ect

States that show a non-vanishing magnetic moment for B = 0 couple directly to
an applied magnetic �eld. There are two types of perturbations, that can be dis-
tinguished in case the spin-orbit interaction is small, for a detailed discussion of
the Hamiltonian in wurzite structures see Refs. [31, 32]. The spin Zeeman e�ect
describes the coupling of the magnetic �eld to the magnetic moment caused by the
electron or hole spin:

∆Espin Zee = ±1

2
gµBB (1.52)

This perturbation mixes di�erent spin states with the same orbital function by the
perturbation (σB), where σ is a Pauli matrix. The electron and hole g-factors
(g = ge + gh) are taken from literature, e.g., for ZnO see Ref. [49]. The orbital
Zeeman e�ect describes the coupling of the magnetic �eld to the magnetic moment
caused by the angular momentum of the envelope of the exciton:

∆Eorb Zee = ±gorbµBB (1.53)

It mixes di�erent orbital functions for exciton states having nonzero envelope orbital
momentum L, e.g., P excitons with l = 1, by the perturbation ∝ (LB). The expres-
sions for the orbital g-factor can be found in literature, e.g., for ZnO in Ref. [31].

The magnetic �eld is of even parity and yields non-zero matrix elements solely for
states of same parity.

A detailed discussion of the Zeeman eigenvalues and eigenfunction can be found in
Refs. [31, 32].
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Magneto-Stark E�ect on Excitons

Excitons with non-vanishing crystal momentum ~k exhibit in magnetic �elds an
energy correction

∆E = rexceEe� (1.54)

proportional to an e�ective electric �eld, see Ref. [33,34],

Ee� =
~

Mexc
[kexc ×B] . (1.55)

Here, Mexc = me +mh denotes the exciton translation mass. This e�ect stems from
oppositely directed Lorentz forces acting on electron and hole with opposite electric
charge. The respective perturbation of the exciton wave function is equivalent to
the e�ect of the e�ective electric �eld Eeff on the exciton at rest.

Stark E�ect

An electronic state of non-vanishing electric dipole moment p = qr couples directly
to a static electric �eld E [23,30]. This e�ect is called the Stark e�ect, and described
in quantum mechanics via the perturbation:

HStark = pE . (1.56)

(1.57)

The electric dipole moment p is calculated by the position operator r, which is of
odd parity. Hence, only states of opposite parity get mixed by the Stark e�ect.
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1.2 Optical Setup

The main components of the optical setup are a laser system consisting of a seeding
laser, a pump laser and an optical parametric oscillator (OPO), a split-coil cryo-
stat, a monochromator, a charge-coupled-device (CCD) camera, numerous optical
components, and a computer with respective software. The data of most measure-
ments is collected in an automated process. Therefore, most components are driven
and read out by customized measurement routines programmed in LabView. The
orientation of the sample and the alignment of lenses and other optics alike are ad-
justed manually on a regular basis. For the most time, two types of measurements
are performed: (i) The investigation of the frequency dependence of the harmonic
light intensity for �xed light polarizations. (ii) The angular dependence of light
polarizations for �xed frequencies.

B

E

MC CCD

GT - Glan-Thompson prism | λ/2 - half-wave plate | F - filters | REF - reference (energymeter)
A - analyzer (foil/GT) | DP - depolarizer | MC - monochromator | CCD - charged-coupled device camera

Figure 1.1: Sketch of the optical setup.

Figure 1.1 shows a sketch of the used optical setup. The basis is provided by a
Nd-YAG laser system to achieve the required high laser intensities. An OPO built
of two Beta-Bariumborat (BBO) crystals allows measurements over a large spectral
range (412 − 2550 nm). A spit-coil cryostat facilitates low temperatures down to
1.6 K and high magnetic �elds up to 10 T at the sample. Electric �elds can be
applied via electrodes of a custom sample holder. A CCD-camera detects the light
intensity, which is spectrally selected by a monochromator. These main components
are described in detail in the following subsections.

SHG and THG spectra are obtained by tuning synchronously the fundamental light
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energy and the selectively detected harmonic light energy of twice or triple the fre-
quency. The spectra are measured in transmission geometry, i.e., kω ‖ k2ω. The
setup allows the adjustment of numerous parameters: (i) The tuning of the funda-
mental light intensity allows to check the nonlinear nature of the signals. Further, it
needs to be adjusted for each sample to optimize the signal strength without dam-
aging the sample. (ii) The settings of fundamental and harmonic light polarizations
allow to match speci�c selection rules. (iii) The dependences on the magnetic and
electric �eld strengths give insights into the mechanisms involved in the harmonic
generation. The magnetic �eld is applied either in Faraday (k ‖ B) or in Voigt
(k ⊥ B) geometry. (iv) The temperature dependence provides additional informa-
tion on the involved mechanisms. (v) The angle of light incidence can increase the
number of addressable tensor components, e.g., for light incident on a tilted sample
other components are addressed than for the normal incidence on the surface with
a distinct orientation.

Rotational anisotropies are measured in four di�erent geometries:

• I2ω
‖ 7→ E2ω ‖ Eω, fundamental and SHG light polarization are chosen to be
parallel, and are turned synchronously by the same angle during measure-
ments.

• I2ω
⊥ 7→ E2ω ⊥ Eω, fundamental and SHG light polarization are turned syn-
chronously, whereas the SHG light polarization is always 90◦ ahead.

• I2ω
‖B 7→ E2ω ‖ B, SHG light polarization is �xed parallel to the magnetic �eld
direction while the fundamental light polarization is turned around k.

• I2ω
⊥B 7→ E2ω ⊥ B, SHG light polarization is �xed perpendicular to the magnetic
�eld direction while the fundamental light polarization is turned around k.

1.2.1 Laser System

To obtain the pump beam a �ash lamp �lled with xenon pumps neodymium-doped
yttrium aluminum garnet (Nd:Y3Al5O12) rods. At maximum population inversion
the Pockels cell enables the back coupling of radiation through an optical resonator
and lasing begins [35].

A Pockels cell is an electronically controlled attenuator. It consists of a birefringent
KDP crystal and two polarization foils, one before and one behind the crystal.
Their polarization planes are twisted by 90◦. Variation of the high voltage applied
to the crystal allows to turn the polarization plane of light passing through, and the
transmission rate can be set between 0 and 100 percent. The electronic control unit
is synchronized to the 10 Hz repetition rate of the �ash lamp. The pulse energy
achieves its maximum in case the Pockels cell opens 15 µs after a pump duration
of 200 µs. The control of this delay allows a stepless setting of the pulse energy.
Further Nd-YAG rods pumped by the same �ash lamp increase the emitted laser
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radiation. the temperature of the rods and the �ash lamp is precisely stabilized
through water cooling. At the fundamental wave length of 1064 nm pulse energies
of up to 800 mJ can be gained for pulse durations of 6−8 ns. The frequency tripling
to 355 nm by two consecutive KDP-crystals can reach a conversion rate of up to
30 %. Line widths of < 90 MHz can be achieved in the longitudinal single mode
operation with the help of a �brous coupled injection seeder.

Figure 1.2: Conversion e�ciency of the premiScan (versions midband MB and broadband
BB) taken from [36].

The used OPO model premiScan (midband version) from GWU is based on two long
turnable birefringent type II Beta-Bariumborat (β-BaB2O4) crystals from Castech.
Type II crystals provide smaller line widths especially in vicinity of the degeneracy
compared to type I crystals (compare the line widths of versions MB type II and BB
type I shown in Fig. 1.3), that show a more e�cient conversion (see Fig. 1.2). Inside
the BBO-crystals the pump beam induces the generation signal and idler radiation
through a nonlinear parametric process [38]. The radiation with higher energy is
conventionally called the signal. Typically the signal beam passes six rounds in the
resonator set up in the short con�guration (the end mirror does not re�ect the idler).
The polarizations of signal and idler are perpendicular to each other and their beams
are separated by a Glan-Thompson prism.

The generation of both waves ful�lls the conservation of energy

ωP = ωS + ωI (1.58)
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Figure 1.3: Line widths of the premiScan (versions midband MB and broadband BB)
taken from [36].

and momentum

nPωP = nSωS + nIωI , (1.59)

where ω is the angular frequency, n is the refractive index, and the wave vector is
ki = niωi

c
. The emitted wave length is set by means of angle tunning, which allows

spectroscopic studies over a broad spectral range: the red crystal allows to tune the
range of 514− 1145 nm, whereas the blue crystal covers 412− 514 nm (signal) and
1145 − 2550 nm (idler) (see Fig. 1.4). Both crystals di�er only in their orientation
with respect to the resonator axis.

The large vertical divergence (3 − 8 mrad) of the signal and convergence (8 mrad)
of the idler are adjusted to the weak horizontal beam divergence (< 0.5 mrad) by a
cylindric lens with a large focal length (700 mm).

Note, that their are two major advantages of an OPO based ns laser system: (i)
The e�ciency is large, and the spectral dependence is �at compared to, e.g., a fs
system. (ii) For pulse widths typically> 1 ns, the waves can be considered essentially
monochromatic [3].
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Tuning angle (°)

Figure 1.4: Reachable wave lengths in a BBO crystal via angle tuning for di�erent pump
waves taken from [37].

1.2.2 Cryostat

The Spectromag from Oxford Instruments is built of three main components: a
nitrogen shield, a helium tank, and a VTI (Variable Temperature Inset). All parts
are isolated by vacuum (∼ 10−7 bar). The N2 shield reduces the He consumption
and prevents thermal bridges. The combination of a needle valve controlling the
connection between He tank and VTI, and an electric heater allows to set the sample
temperature between 4.2 and 300 K. Temperatures down to 1.6 K can be achieved
by under-in�ation. The superconducting split-coils can generate magnetic �elds up
to 11 T. Four windows allow measurements in Faraday (k ‖ B) and in Voigt (k ⊥ B)
geometry.

1.2.3 Analyzing Optics

A λ
2
-plate mounted on a electronic rotation stage (polarizer) sets the linear polar-

ization plane of the fundamental light wave. biconvex lenses focus the fundamental
beam on the sample. Selected color �lters (Tab. 1.1) in front of the sample suppress
accidentally generated harmonics from lenses/mirrors. Further �lters behind the
sample block the transmitted fundamental light (Tab. 1.2). A polarization foil/Glan-
Thompson prism mounted on a rotation stage selects the detected harmonics light
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Filter / Thickness [mm] Block [nm] Pass [nm]
Si/1 673− 1032 1346− 2064

RG850/3 500− 838 1000− 1676
OG590/3 305− 550 610− 1100
GG385/3 206− 356 412− 712

Table 1.1: Filter in front of the sample.

Filter / Thickness [mm] Pass [nm] Block [nm]
RG9/3 730− 1025 1460− 2050
KG2/2 500− 800 1000− 1600
BG39/3 340− 636 680− 1272
UG11/1 269− 378 538− 756
UG5/1 230− 330 460− 660

Table 1.2: Filter behind the sample.

polarization (analyzer). A depolarizer partly compensates the polarization depen-
dent e�ciency of the monochromator (see Fig. 1.5). Lenses project the emitted light
on the entrance slit of the monochromator.

1.2.4 Detection System

Inside the Jobin Yvon HR460 a collimator projects this focused light on turnable
and switchable blazed gratings. A collector focuses the spectrally widened light on
the CCD chip. Two holographic gratings are mounted. Their e�ciencies are shown
in Fig. 1.5. The grating 53018 is optimized for a central wave length of 400 nm and
has a density of 1800 lines/mm. The grating 53028 is optimized for a central wave
length of 750 nm with a density of 1200 lines/mm.

The Pixis256E from Acton is an air and Peltier cooled charge-coupled-device (CCD)
camera [40]. A photo active media creates charge carriers, which are transported
to a signal ampli�er by moving potential traps on the analogy of a shift register.
The ampli�er transforms the charge into a voltage. After several rounds the whole
256×1024 pixel array is read out and digitalized. A working temperature of −70 ◦C
reduces the dark current and a vacuum atmosphere protects against contamination.
The camera is sensitive to light in the spectral region 250− 1050 nm.

Various corrections of the signal are necessary to ensure the comparability of di�er-
ent measurements performed under di�erent conditions. Intensities recorded by the
camera are corrected for the e�ciency curves of the CDD chip and the monochro-
mator directly during the measurement. Further, a reference signal, which intensity
is about ∼ 1 % of the transmitted laser beam, is recorded by an energy meter. Two
energy meters were used: the head QE12LP-S-M8-D0 with the respective monitor
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Figure 1.5: E�ciency of the gratings used in the monochromator taken from [39].

from Maestro and the head RjP-375 in combination with the monitor Rm-6600 from
LaserProbe Inc. The normalization on the square (for SHG) and the cube (for THG)
of the reference accounts for temporal variations and di�erent laser settings.

1.2.5 Custom Sample Holder

Figure 1.7 shows technical drawings and a photograph of the custom sample holder.
It was designed for the Oxford Spectromag to apply electric �elds E perpendicular
and simultaneously to the magnetic �eld B of the split-coil. It is made from nylon
and brass. The basis made from nylon rods and plates is insulating and insensitive to
large temperature variations. The brazen poles are radiused and polished spherical
segments wired to an external connector. The distance between the poles can be set
by three adjustable springs.

The application of static electric �elds to ZnO samples has shown to be very chal-
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Figure 1.6: Quantum e�ciency of the CCD camera chip taken from [40].

lenging. Other attempts than the above described custom sample holder failed to
be applicable for di�erent reasons. In case, the sample was put in-between copper
plates, and the contact was achieved by the gravitational forces, the contact was
unstable and, thus, insu�cient to obtain reproducible results. Further, the direct
wiring of copper cables to the sample by conductive silver or soldering showed to
be unpractical, because it led to unwanted side e�ects, e.g., damaging the sample,
creating conductive pathways through the sample holder, or insu�cient accessibility
of the sample surface.
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(a) (b)

(c)

Figure 1.7: (a) Technical drawing of the custom sample holder designed for the application
of electric �elds. (b,c) Photographs showing a ZnO sample mounted inside the custom
sample holder.



2 Second Harmonic Generation of

Exciton-Polaritons in ZnO

ZnO is widely used in every day life. Huge amounts of ZnO, mainly in form of white
powder, are processed every year as additive in various products. ZnO is involved in
the production of many common goods, e.g., plastics, cements, ceramics, lubricants,
medical and sun cremes. Further, ZnO is of great importance for sciences and
technologies. It is a large direct band-gap semiconductor with large exciton binding
energies, which is favorable for, e.g., solar cells, TFT LCDs, and LEDs. Other
major advantages of ZnO are the potentially low production costs due to simple
and advanced growing methods. Recent interest is fueled by the availability of
ZnO crystals of very high quality, which is necessary to investigate its potential for
e�cient high temperature exciton-based semiconductor lasers of low threshold. For
more and detailed information on ZnO see the review by Özgur [41] and references
therein. An early attempt to detect SHG signals in the spectral region of the C-
exciton in ZnO and the 1S excitons in CuCl was undertaken in Refs. [42,43].

2.1 Band Structure and Electronic Con�guration

In the majority of cases, ZnO crystals are grown in the hexagonal wurtzite structure,
which is the thermodynamically stable phase at ambient conditions [41, 44, 45]. Its
lattice is built on two intertwined Zinc and Oxide hexagonal-close-packed sublattices
so that each atom is tetrahedrally surrounded by four atoms of the other kind; an
arrangement being typical for the covalent sp3 hybridization. Each unit cell contains
two Zn2+ and two O2− ions. Figure 2.1 (a) illustrates the wurtzite crystal and
typical tetrahedrons within. Typical lattice constants of ZnO are a0 = 3.25 Å (edge
of hexagon) and c0 = 5.21 Å (along z-axis) [46].

The electronic structure of wurtzite ZnO is shown in Fig. 2.1 (b). As a consequence
of the large fraction of ionic bonding, the valence band is primarily formed from 2p
orbitals of O2− ions and the conduction band is primarily formed from 4s orbitals
of Zn2+ ions. The band gap is about 3.437 eV at low temperatures [44, 47]. The
hexagonal crystal �eld splits the 2p-levels into two subbands of Γ5 and Γ1 symmetry.
Taking into account spin wave functions and consequently the spin-orbit interaction
gives rise to further splittings into three spin degenerated valence band states (Γ1⊕

23
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Figure 2.1: (a) Uniaxial crystal structure of wurtzite ZnO. The hexagonal crystal axis is
chosen to be the z-axis ([0001] ‖ z), in literature it is sometimes also labeled as c-axis . (b)
Electronic structure of wurtzite ZnO near the Γ point (k = 0). One photon transitions are
allowed from A and B valence bands to the lowest conduction band for Eω ⊥ z. Respective
transitions from the C valence band are strongest for Eω ‖ z.

Γ5)⊕ Γ7 = Γ7 ⊕ Γ9 ⊕ Γ7. But in contrast to the usual order A (Γ9), B (Γ7), and C
(Γ7) in wurtzite semiconductors, ZnO has an inverted valence band ordering A (Γ7),
B (Γ9), and C (Γ7) due to its negative spin-orbit coupling coe�cients originating
from the repulsion of the close lying 3d-orbitals of the Zn ions [44].

Optical transitions from the two upper valence bands A (Γ7) and B (Γ9), both
having almost entirely Γ5 character, to the conduction band (Γ7) obey in principle
the same selection rules, because the spin-orbit coupling in ZnO is small and the
resulting admixture of the |z〉 character (Γ1) to the Bloch wave functions of the

A (Γ7) valence band is small
(

∆spin-orbit

∆crystal-�eld

)2

≈
(

5−6 meV
50meV

)2 ≈ 0.01 [48, 49]. These

transitions are electric-dipole allowed for Eω ⊥ z (Γ5), where Eω is the electric �eld
of the fundamental light wave. In contrast, transitions from the lowest valence band
C (Γ7) to the conduction band (Γ7) are electric-dipole allowed for Eω ‖ z (Γ1); see
Fig. 2.1 (b).

Three exciton series are formed in ZnO by a Γ7 electron and a hole from one of
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the A (Γ7), B (Γ9), or C (Γ7) bands. It determines the labeling of the exciton
as A-,B-, or C-exciton, respectively. These excitons have approximately the same
binding energy of ' 60 meV and a Bohr radius of aB ' 1.8 nm. The exciton
symmetries result from the direct product of the envelope function symmetry and
the symmetry of conduction and valence bands Bloch states; see, e.g., Ref. [31] for
details. The energies of the resulting one-photon allowed and forbidden states, in
ZnO called ortho- and paraexciton, are split by the short-range exchange interaction
[30]. For the S-symmetry excitons of the A- and B-series, the strong one-photon-
allowed orthoexciton states have Γ5 symmetry. They are twofold spin-degenerate
and polarized perpendicular to the z-axis. For the C-series the strong one-photon-
allowed orthoexcitons posses Γ1 symmetry and are polarized parallel to the z-axis.
As a result, for light propagating along the z-axis (k ‖ z) both Γ5 excitons are
transverse and form polaritons (see Sec. 2.2), while the Γ1 exciton is longitudinal
and cannot be excited. For light propagating perpendicular to the z-axis (k ⊥ z),
one of the Γ5 exciton states is transverse and another is longitudinal, while the Γ1

exciton is transverse. The energies of the longitudinal excitons are shifted to higher
energies by the long-range exchange interaction [30].

2.2 Exciton-Polaritons

Strong light-matter interaction in ZnO leads to the formation of coupled exciton-
photon states called exciton-polaritons, i.e., states with strong oscillator strength
and solutions of the light �eld cannot be treated separately [30]. The interaction of
transverse excitons with photons leads to the formation of lower (LPB) and upper
(UPB) polariton branches. Their symmetries depend strongly on the direction of
light propagation. In ZnO their dispersion relations are obtained from the condition
ε⊥(ω,k) = (kc/ω)2 for Γ5 excitons and ε‖(ω,k) = (kc/ω)2 for Γ1 excitons [50]. ε⊥
and ε‖ are dielectric functions for the electric �eld of light polarized perpendicular
and parallel to the z-axis, respectively. They include contributions of exciton reso-
nances with energies close to ~ω. The energy of the UPB at k = 0 coincides with the
energies of the longitudinal excitons determined from ε⊥,‖(ω, k = 0) = 0, while the
energies of the LPB at k →∞ coincide with the energies of the transverse excitons.
If k is not parallel or perpendicular to the crystal z-axis, polaritons form so called
mixed-mode or extraordinary polaritons [44,50�52].

The 1S exciton-polariton-dispersion relations were studied in detail by two-photon
absorption and three-photon-di�erence frequency generation by Fiebig [52] and
Wrzesinski [50]. Fiebig considered the 1S, 2S excitons and two background os-
cillators to model his experimental results, whereas Wrzesinski included 2S states
and all higher oscillators in one background oscillator. Their results are summed up
in the Appendix 5 in Table 5.1. Figure 2.2 shows the 1S dispersion relations (here
given in the Kurosawa form underlining the impact of excitons on the dielectric
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Figure 2.2: The ordinary exciton-polariton-dispersion relations in the region of the 1S
exciton energies according to (a) [52] and (b) [50]. Γ5 and Γ1 denote the pure geometries
Eω ‖ z and Eω ⊥ z, respectively. (c) The extraordinary exciton-polariton-dispersion
relations in the region of the 1S exciton energies according to Eq. (2.3) for θ = 49◦ based
on the results from Ref. [52].
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, (2.2)

according to (a) Fiebig and (b) Wrzesinski. E denote the polariton energies. εb de-
scribe the dielectric background constants. T and L are the transverse, and respec-
tively longitudinal exciton energies. The light line follows E = ~c k

n
. The refractive

index n = 1.97 ( [53, 54]) of ZnO is assumed to be constant, because its energy
dependence in the region of the fundamental light is small. The consideration of
the 2S state in�uences the slope of the 1S polariton branches at intersections with
the light line. It is seen that the intersection is shifted to lower energies, when the
2S-states are not accounted for explicitly. Fiebig's results from [52] will be used as
a basis for the interpretation of our data.

Fiebig also showed, that for a tilted sample geometry ∠(k, z) 6= 0◦ mixed-mode
(mimo) polaritons are observed. They can be modeled separately by shifting the
transverse exciton energies to higher energies until the longitudinal-transverse split-
ting ∆L−T vanishes completely for ∠(k, z) = 90◦. Alternatively the polariton-
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dispersion relations can be described by

~2c2k2

E2
mimo

= εmimo =
ε‖ε⊥

ε‖ sin2 θ + ε⊥ cos2 θ
. (2.3)

Figure 2.2 (c) shows a mixed-mode dispersion for θ = 49◦ based on the results
of [52]. Further, the investigation of the mixed-mode polariton has underlined that
interactions among 1S excitons between A and B, and A and C series must be taken
into account, while the interaction between B and C series can be neglected.

2.3 Polarization Selection Rules

The uniaxial lattice of wurtzite ZnO belongs to the point group 6mm (space group
P63mc) [44, 55] and SHG is allowed in leading order of the electric-dipole (ED)
approximation. As �rst step, only these ED contributions arising from o�-resonant
and band-gap states at the fundamental ~ω and SHG 2~ω photon energies are
considered. The polar hexagonal [0001]-axis is chosen to be parallel to the z-axis of
the Cartesian coordinate system. This choice is in accordance with Birss' notation:
[0001] ‖ z, [2110] ‖ x, and [0110] ‖ y [22]. The �rst-order crystallographic SHG
polarization P2ω is written as

P 2ω
i = ε0χ

cryst
ijl (ω, ω, 2ω)Eω

j E
ω
l , (2.4)

where i, j, l are Cartesian indices, ε0 is the vacuum permittivity, χcrystijl are the crys-
tallographic contributions to the optical susceptibility χ(2), and Eω

j(l) are components
of the light �eld Eω. In the electric-dipole approximation and absence of external
�elds, group theory predicts for bulk ZnO the following nonzero components of
the crystallographic nonlinear optical susceptibility χcrystijl : χxxz = χxzx = χyyz =
χyzy, χzxx = χzyy, and χzzz [1, 21]. The values of the tensor components dependent
on energy and vary most strongly for di�erent valence bands.

Figures 2.4 (a) and (b) show typical anisotropies for the parallel (I‖) and crossed
(I⊥) con�gurations in representative measurement geometries; the tensor compo-
nents are assumed to be real for simplicity. The modeling illustrates that the shapes
of anisotropies directly re�ect the orientation of the crystal. The clubs in the par-
allel con�guration are always oriented along the z-direction, while the signal is zero
perpendicular to the z-direction1. In the perpendicular con�guration the reversed
is valid. The shape of the polarization emission in the parallel con�guration can
be understood on the basis of symmetry considerations as follows: For θ = 0◦,
the Γ1 excitons formed from the C valence band can be excited by two photons

1z-direction denotes the projection of the z-axis onto the rotation plane.
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(0001)

x

y

z

Figure 2.3: A sketch demonstrating the measurement geometry: θ is the tilting angle
of the sample around [0110], ϕ is the turning angle of Eω around k. Static electric and
magnetic �elds are perpendicular to each other and to the propagation direction of the
light (k ⊥ E, k ⊥ B).

(Γ1 ⊗ Γ1 = Γ1) and emit simultaneously one photon (Γ1). For θ = 90◦, excitation
(Γ5 ⊗ Γ5 = Γ1 ⊕ Γ2 ⊕ Γ6) and emission (Γ5) of the same state are not feasible and
signals are zero. For intermediate orientations 0◦ ≤ θ ≤ 90◦ the Γ5 states originating
from the A, B valence bands are active for SHG (two photons Γ1 ⊗ Γ5 = Γ5, one
photon Γ5), as well as the C valence band states. In the perpendicular con�gura-
tion signals of the C valence band dominate the pattern. For θ = 90◦, excitation
(Γ5 ⊗ Γ5 = Γ1 ⊕ ...) of the Γ1 states is possible and the Γ1 emission is detected. In
the con�guration θ = 0◦, selected excitation (Γ1 ⊗ Γ1 = Γ1) and detected emission
(Γ5) do not allow the observation of any signal. The other shown model anisotropies
can be explained accordingly.
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Figure 2.4: Model anisotropies of SHG in ZnO with full C6v symmetry for di�erent
geometries and di�erent ratios of the tensor components (only real components are assumed
for simplicity). Blue and red lines illustrate the parallel (I‖) and crossed (I⊥) measurement
con�gurations respectively. (a) Crystallographic SHG for k ‖ x. (b) Crystallographic SHG
for k ⊥ x, k 6‖ z, and k 6‖ y. (c) Blue and red lines illustrate the parallel and crossed
measurement con�gurations respectively. (c) Magnetic �eld induced SHG for k ‖ z.
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However, the SHG process in a more general case can involve electric-quadrupole
(EQ) and magnetic-dipole (MD) contributions which, therefore, have to be taken
into account. They become important, especially when the outgoing SHG is in res-
onance, e.g., with the exciton energy Eexc. As second step, higher-order contributions
are considered. The incoming fundamental electric �eldEω(r, t) = Eω exp[i(kr− ωt)]
generates an e�ective polarization inside the semiconductor at the double frequency
[20]:

P 2ω
eff,i(Eexc,kexc) = ε0χ

cryst
ijl (Eexc,kexc)E

ω
j E

ω
l , (2.5)

where the nonlinear optical susceptibility χcrystijl (Eexc,kexc) describes the spatial-dispersion
phenomena, i.e., the EQ and MD contributions. kexc = 2nk is the exciton-polariton
wave vector, n is the refractive index at the fundamental energy ~ω, and k is the
wave vector of the incoming light.

A further step includes the in�uence of external �elds on the e�ective polarization
inside ZnO:

P 2ω
eff,B,E,i(Eexc,kexc,B,E) = ε0χ

ind
ijl (Eexc,kexc,B,E)Eω

j E
ω
l , (2.6)

where the nonlinear optical susceptibility χindijl (Eexc,kexc,B,E) accounts for phenom-
ena induced by external magnetic B and electric E �elds. A group theoretical
analysis predicts for external electric or magnetic �elds additional nonzero tensor
components of the nonlinear optical susceptibility χ(2); see, e.g., Refs. [21,22]. These
become interesting particularly in the geometry kω ‖ z, where crystallographic SHG
is forbidden. When the susceptibility depends linearly on the external �eld, group
theoretical considerations provide for k ‖ z the following nonzero tensor components:
χyyx = χyxy, χxxy = χxyx, χyyy = 2χxxy + χyxx, and χxxx = 2χyyx + χxyy. Figure 2.4
(c) illustrates the induced SHG polarization anisotropies for χ ∝ B, B ‖ x, and
k ‖ z:

I2ω
‖ ∝ χyyy cos2 ϕ, (2.7)

I2ω
⊥ ∝ χyyy sin2 ϕ. (2.8)

Symmetries of exciton states can be modi�ed by electric and magnetic �elds enabling
the mixing of states. Later it will be shown that the application of a magnetic
or electric �eld perpendicular to the hexagonal z-axis may reduce symmetries of
the exciton states so that the �eld dependence is nonlinear and the relation either
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χyyy = χyxx + 2χxxy or χxxx = 2χyyx +χxyy is violated depending on the orientation
of the perturbation:

I2ω
⊥B ∝ [χyyy cos2 ϕ+ χyxx sin2 ϕ]2, (2.9)

I2ω
‖B ∝ [χxxy sinϕ]2, (2.10)

I2ω
‖ ∝ cos2 ϕ[χyyy cos2 ϕ+ (χyxx + 2χxxy) sin2 ϕ]2, (2.11)

I2ω
⊥ ∝ sin2 ϕ[(χyyy − 2χxxy) cos2 ϕ+ χyxx sin2 ϕ]2. (2.12)

The polarization selection rules for THG (χ(3)) in the con�guration k ‖ z without
external perturbations are rather simple. The one independent tensor component
χxyxy = χyxyx = χxxyy = χyyxx = χxyyx = χyxxy, χxxxx = χyyyy = 3χxyxy gives rise
to isotropic emission of THG light polarization in the parallel con�guration and no
THG is seen in the crossed con�guration.

2.4 Samples

ID Thickness (µm) Orientation Growing Method Substrate Origin
TD1a 500 (0001) hydrothermal bulk TokyoDenpa Co., Ltd.
TD1b 500 (0001) hydrothermal bulk TokyoDenpa Co., Ltd.
TD2 4 500 (0001) hydrothermal bulk TokyoDenpa Co., Ltd.
EN73.2 3000 (0001) - bulk D. Fröhlich (Dortmund)

No13,15,39,... 273-1090 (0001) MBE Al2O3 C. Meier (Paderborn)
Pl199 1.3 (0001) MBE GaN(2µm)/saphire A. Bakin (Braunschweig)
Crys-m 435 (4132) hydrothermal bulk CrysTec GmbH
Crys-a 284 (1120) hydrothermal bulk CrysTec GmbH

Table 2.1: List of ZnO samples.

Many ZnO samples from various sources grown by di�erent methods were stud-
ied. The bulk samples grown hydrothermally by TokyoDenpa (TD) have proven
to be the most suitable for the investigation of SHG in ZnO due to their strong
signals. Figure 2.5 illustrates that the TD samples show high SHG intensities, and
the most pronounced features, while the o�-resonant SHG is weak. For the study of
electric-�eld-induced SHG it was necessary to anneal the samples which results in
an increase in resistivity; e.g., the sample with label EN73.2 was annealed at 700 ◦C
for 20 hours, and showed an increase of resistivity from 106 Ohm to 109 Ohm. All
further measurements shown in this work were performed on the sample TD1a for
the just mentioned reasons, except for the electric �eld measurements, which were
performed on the sample EN73.2 having the highest resistivity. The orientations of
the samples TD1a, TD1b, TD2 4, and EN73.2 were checked by Laue diagrams and
with a polarization microscope.
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Figure 2.5: Crystallographic spectra of various ZnO samples for E2ω ‖ Eω in the range
of 3.30 eV≤ E ≤ 3.45 eV at T = 1.6 K.

2.5 Power Dependence of SHG in ZnO

The nonlinear nature of the observed signals is exemplary shown in Figure 2.6. The
crystallographic and induced signals in ZnO show the expected quadratic depen-
dence on the incident light power; compare with Eq. (1.19).
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intensity of ZnO at 2~ω = 3.4254 eV.
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2.6 Crystallographic Contributions to χ(2)

Figure 2.7 (a) shows the crystallographic SHG spectrum of ZnO for E2ω ‖ Eω

and ϕ = 90◦. The sample is tilted2 by θ = 49◦. In this con�guration both the
fundamental and harmonic electric-�eld polarizations lie in the (z, x)-plane. All
three nonzero tensor components χxxz, χzxx, and χzzz of χcryst are addressed. Two-
photon excitation is feasible for Γ1,Γ2, and Γ6, and emission visible for Γ1 and Γ5.
The light line crosses the modeled mixed-mode-polariton-dispersion curves several
times in the investigated region. In the following the observed spectral features will
be matched with these intersections.

The �rst feature is observed at 3.3788 eV, which corresponds energetically to the
middle 1S(A,B) extraordinary polariton branch; see �rst intersection of the light
line with the dispersion curves in Fig. 2.2 (c). They are referred to as A,B branches
although being mixed-mode polaritons, because the in�uence of the C-valence band
is small [52]. The relative sharp spectral shape can be understood qualitatively by
two arguments: The intersection between the light line and the dispersion curve is
almost at a right angle and the damping of the 1S(A) exciton is small≈ 0.1 meV [56].
The second feature around 3.3918 eV lies in the vicinity of the longitudinal 1SL(B)
exciton energy. The shape is rather broad and it is not a sharp line like it was the case
for the �rst feature. It appears to stem from the intersection with the upper 1S(A,B)
extraordinary polariton branch, since its anisotropies show the same pattern as the
intersection with the middle A,B extraordinary polariton branch; compare Figs. 2.8
(b) and (c). Qualitative explanations are again given by the relative small angle at
which the light line intersects the polariton branch, and the strong 1S(B) damping
of about 2 meV [56].

Around 3.407 eV a further feature having a high SHG intensity is observed. Its
intensity is �ve times stronger than the peaks linked to the mixed-mode polaritons.
It lacks a partner in literature and is therefore referred to as X-line. In a previous
work by Kaminski [57], this line was attributed to the upper mixed-mode polariton
branch. The following arguments raise doubts about that interpretation: (a) The
intensity is much stronger than that for the middle branch. A respective strong
oscillator strength indicates that the C valence band is involved in the SHG process.
(b) The polarization anisotropies are very similar to those of the 1S(C) exciton
polariton. But Fiebig [58] has seen that the C valence band has no remarkable
in�uence on the L− T splitting of the B polariton which dominates the attributes
of the upper A,B mixed-mode branch. (c) A dependence on the tilting angle θ is
expected for the upper 1S(A,B) polariton branch, nevertheless it was not observed.
(d) The spectral asymmetry of the strong signal seems to originate from interference
with another broader SHG signal, which is here linked to the upper 1S(A,B) polari-
ton branch. An interference is only expected between signals governed by A,B and

2The tilting angle θ is derived by �tting the crystal orientation; see Eq. (5.2).



2.6. Crystallographic Contributions to χ(2) 33

 

T  =  1 . 6  K

 SH
G 

int
en

sity
 (a

rb.
 un

its)

E 2 ω | |  E �

�  =  4 9 °

1
 ( b )

0

3 . 2 0 3 . 2 5 3 . 3 0 3 . 3 5 3 . 4 0 3 . 4 5 3 . 5 0
  

 S H G  e n e r g y  ( e V )

0
�  =  0 °

0 . 1

3 . 3 7 3 . 3 8 3 . 3 9 3 . 4 0 3 . 4 1 3 . 4 2 3 . 4 3 3 . 4 4
�  =  4 9 °

 

X

 SH
G 

int
en

sity
 (a

rb.
 un

its)
1

  S H G  e n e r g y  ( e V )( a )

0

1S
L(B)1S

T(A) 2P
x,y

(B) 1S
L(C

)

2P
x,y

(A)

E 2 ω | |  E �

Figure 2.7: Crystallographic SHG spectra of ZnO for E2ω ‖ Eω and ϕ = 90◦ (compare
with anisotropies in Fig. 2.8) measured at T = 1.6 K. (a) Enlargement of the exciton region
3.37-3.44 eV for θ = 49◦. Arrows mark exciton energies taken from literature [52]. (b)
Wide-range spectra 3.2-3.5 eV for θ = 49◦ (blue circles) and 0◦ (green circles). No SHG is
detected for k ‖ z (θ = 0◦). Red dashed lines are Lorentz curves as guides for the eye.

C valence bands. This asymmetry related to interference is absent for a geometry
where signals of the A,B bands are suppressed (analyzer 0◦ and polarizer 90◦). We
propose that the X-line belongs to a bound C exciton. Further features are observed
for 3.4254 eV and 3.4304 eV, which are linked to the 2Px,y(A) and 2Px,y(B) excitons.
These states will dominate the magnetic �eld induced signals for normal incidence as
it will be shown in following paragraphs. The highest energy feature is seen around
3.4338 eV and is explained by the intersection of the light line with the mixed-mode
polariton branch closest to the 1SL(C) exciton energy. It is more intense than the
other features linked to intersection points, because the oscillator strength of the
C(Γ1) exciton is larger (about 4 times) than that of the A(Γ5) exciton [56]. The
broad peak structure can be understood by the large damping of ≈ 2 meV [56]. The
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Figure 2.8: Angular distributions of the crystallographic SHG polarization measured
at θ = 49◦ for di�erent energies. Blue and red circles show the geometries I2ω

‖ and I2ω
⊥ ,

respectively. Lines and shaded areas show best �ts according to Eq. (2.4). (a) O�-resonant
signals at 2~ω = 3.361 eV. (b) Middle 1S(A,B) extraordinary polariton branch at 2~ω =
3.378 eV. Signals are scaled up by a factor of 2. (c) Upper 1S(A,B) extraordinary polariton
branch at 2~ω = 3.392 eV. Signals are scaled up by a factor of 2. (d) X-line at 2~ω =
3.407 eV. Signals are scaled down by a factor of 2. (e) 2Px,y(A) exciton line at 2~ω =
3.425 eV. Signals are scaled up by a factor of 1.5. (f) Mixed-mode polariton at 2~ω =
3.434 eV close to 1SL(C) exciton energy.

intersections for 2~ω > 3.45 eV are not observed leading to the conclusion that their
attributes are governed by the 2S states and their oscillator strengths are too weak.
However, around 3.472 eV an additional feature is vaguely perceptible and it may
be linked to the intersection with the polariton branch closest to the 2S(C) exciton
energy.

With the light wave vector k ≈ 3.37× 107 1/m the lowest polariton branch cannot
be reached (the light line does not cross the lower polariton branch; see Fig. 2.7).
Nevertheless, it can contribute to the o�-resonant SHG background at lower energies
shown in the wide range spectrum in Fig. 2.7 (b). Its anisotropies, demonstrated
in Fig. 2.8 (a), show that the o�-resonant SHG at low energies is determined by
the A,B valence bands. For k ‖ z no SHG is observed; see Fig. 2.7 (c). In this
measurement geometry (Fig. 2.3) crystallographic SHG is symmetry forbidden; see
Sec. 2.3. This orientation is chosen, because it allows the sole study of the generation
of second harmonic induced by external magnetic and electric �elds.
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2.7 SHG of 1S Exciton-Polaritons in Magnetic

Fields

Blatter et al. have studied the e�ects of magnetic �elds on the 1S(A,B) exciton
polaritons in detail in Ref. [59]. They have shown that in this spectral region the
diamagnetic shift, pure k-dependent terms, and higher-order contributions are neg-
ligible compared to the spin Zeeman e�ect. The following chapter will discuss how
the o�-diagonal element in the Hamiltonian due to the spin Zeeman e�ect can be
used to generate SHG of 1S paraexcitons and orthoexcitons in ZnO, which would
not contribute to SHG without a magnetic �eld for k ‖ z.

2.7.1 Theoretical Considerations

The transformation properties of a static magnetic �eld B ⊥ z are represented by Γ5

in C6v. In ZnO it couples AΓ5 and AΓ1,2 1S states for the A-series, while for the B-
series the BΓ5 and BΓ6 1S states are coupled (Γ1⊗Γ5 = Γ5,Γ2⊗Γ5 = Γ5,Γ6⊗Γ5 =
Γ5 ⊕ ...) [59, 60]. Coupling only among orthoexcitons or only among paraexcitons
would be feasible for B ‖ z (Γ2). In the considered con�guration B ‖ x the states
AΓ5y and AΓ1, and BΓ5y and BΓ6 become mixed [59]. The Γ5 states of the A and B
polaritons in ZnO couple and form three joint polariton branches, which is shown in
Sec. 2.2. This coupling will be neglected in the following calculations, but included
in their discussion afterwards. The mixed states for B ‖ x ⊥ k can be derived
approximately by diagonalizing the 2× 2 Hamiltonians

ĤA
Γ5y/Γ1

=

(
EΓ1 µBgexcBx/2

µBgexcBx/2 EΓ5

)
, (2.13)

ĤB
Γ5y/Γ6

=

(
EΓ6 µBgexcBx/2

µBgexcBx/2 EΓ5

)
, (2.14)

where EΓ1,5,6 are zero-�eld energies of the respective states. gexc = |g⊥h − g⊥e | is the
exciton e�ective g-factor for B ⊥ z. In ZnO the electron and hole g-factors are
g⊥e ≈ 1.95, gA⊥h ≈ 0.7, and gB⊥h ≈ 0 [59]. In Ref. [49] gA⊥h ≈ 0 is published, but this
di�erence has no qualitative consequences for the mechanism. As long as the hole
and electron g-factors do not compensate each other, para- and orthoexcitons get
mixed and can contribute to SHG. The energies of the coupled states in an external
magnetic �eld Bx are given by

EA±Γ5y/Γ1
=

1

2

(
EΓ1 + EΓ5 ±

√
∆2

1−5 + (µBgexcBx)2

)
, (2.15)

EB±Γ5y/Γ6
=

1

2

(
EΓ6 + EΓ5 ±

√
∆2

6−5 + (µBgexcBx)2

)
, (2.16)
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where ∆X−Y = |EX−EY | is the respective energy splitting. EΓ5 are approximated by
the respective longitudinal exciton energies E1SL

. The wave functions are obtained
by

ΨA
Γ5y/Γ1

= CΓ5y(Bx)Ψ
A
Γ5y

+ CΓ1(Bx)Ψ
A
Γ1,2

(2.17)

ΨB
Γ5y/Γ6

= CΓ5y(Bx)Ψ
B
Γ5y

+ CΓ6(Bx)Ψ
B
Γ6
, (2.18)

with coe�cients

CΓ5y(Bx) =
2(EA,BΓ5y

− EA,B±)√
(µBgexcBx)2 + 4(EA,BΓ5y

− EA,B±)2
, (2.19)

CΓ1(Bx) = − µBgexcBx√
(µBgexcBx)2 + 4(EAΓ5y

− EA±)2
, (2.20)

CΓ6(Bx) = − µBgexcBx√
(µBgexcBx)2 + 4(EBΓ5y

− EB±)2
. (2.21)

Figure 2.9 shows the mixing coe�cients CA
Γ5y

, CA
Γ1
, CB

Γ5y
, and CB

Γ6
for 0 T< B < 10 T.

For a su�ciently strong mixing, SHG will be possible because the Γ5 part is ED al-
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Figure 2.9: Mixing coe�cients of the 1S(A,B) para- and orthoexcitons in ZnO due to
the spin Zeeman e�ect following Eqs. (2.19)-(2.21).

lowed for one-photon emission, while the Γ1, or Γ6 part can be excited in two-photon
processes. The magnetic-�eld-induced nonzero susceptibilities χyyy = χyxx depend
on the product of the mixing coe�cients for the A- and B-series, respectively:

χyyy(E±Γ5y/Γ1,6
, kexc, Bx, 0) ∝ CΓ5(Bx)CΓ1,6(Bx). (2.22)
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When the spin Zeeman energy |µBgexcBx| is much smaller than the zero-�eld splitting
of the respective exciton-polariton states (being the case for the 1S states in ZnO),
then the susceptibilities depend linear on Bx, i.e., the SHG intensity follows B2, and
the spatial wurtzite symmetry is not violated. The magnetic �eld breaks the time
reversal symmetry, and the spin is not a good quantum number anymore.

The zero-�eld splittings |E(1SL(AΓ5))− E(1S(AΓ1))| ≈ 2.6 meV for the A-series
and |E(1SL(BΓ5))− E(1S(BΓ6))| ≈ 11.8 meV for the B-series neglect the coupling
between them. This leads qualitatively to stronger SHG for the A-series than for the
B-series. In fact, the paraexcitons lie in vicinity of the middle 1S polariton branch.
When the intersection of the light-line with the middle polariton branch is assumed
for EA,BΓ5y

the splittings are about ∆A ≈ 4.7 meV and ∆B ≈ 1.1 meV, and SHG for
the B-series is stronger than for the A-series. Experimental results will show that
the observed signals for the A-series are in fact stronger, and neglecting the coupling
between A and B states is a justi�ed approximation. For more accurate descriptions
an advanced theory is needed, which accounts for the coupling between A and B
states, and the coupling to the photon �eld simultaneously.

For the parallel P2ω
eff ‖ Eω and crossed P2ω

eff⊥Eω geometries one can predict SHG
signals with the same amplitude, and their anisotropies are described by I2ω

‖ ∝
|χyyy|2 cos2 ϕ and I2ω

⊥ ∝ |χyxx|2 sin2 ϕ; see Eqs. (2.7) and (2.8). Further, for B ‖ x
the SHG signal polarized perpendicular to the magnetic �eld direction I2ω

⊥B ∝ |χyyy|2
does not depend on the excitation polarization direction, while the signal polarized
parallel to the magnetic �eld vanishes I2ω

‖B ∝ |χyxy|2 = 0.

2.7.2 Experimental Results

Figure 2.10 (a) shows three lines in the region of the 1S(A) exciton emerging in
magnetic �elds B ‖ x, with k ‖ z, and E2ω/ω ‖ y. The strongest line at 3.3754 eV
corresponds energetically to the degenerated 1S(AΓ1,2) paraexcitons [50, 58]. Their
very small magnetic-�eld-induced splitting cannot be resolved. The second line at
3.3780 eV is linked to the middle polariton branch of the Γ5(A,B) dispersion, as
has been shown in Fig. 2.2 (a). The third and weakest line at 3.3811 eV coincides
with the energy of the 1S(BΓ6) paraexciton [58,59]. It is seen for B > 7 T, which is
apparently the approximate �eld, where Blattner et al. have seen the B paraexciton
in transmission measurements [59]. It is possible that the mixing mechanism is not
su�ciently strong in �elds < 7 T for the B-series and the induced signals are too
weak: Fig. 2.9 shows that the mixing coe�cients of the A-series are larger than those
of the B-series. The integrated intensities depend quadratically on the �eld strength;
see Fig. 2.13 (a). It is in accordance with the theoretical model given in Eqs. (2.17)
and (2.18). The rotational anisotropies given in Fig. 2.10 (c) are well described
by ∝ cos2 ϕ for E2ω ‖ Eω and ∝ sin2 ϕ for E2ω ⊥ Eω, and both con�gurations
have the same amplitude. Hence, modeling the shapes is possible following the
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Figure 2.10: (a) Pure magnetic-�eld-induced SHG signals in vicinity of the 1S(A) exciton-
polariton for B = 0, 4, 6, and 10 T. Measurements were performed for E2ω ‖ Eω ⊥ B
at T = 1.6 K. (b) Peak energy vs. magnetic �eld: a magnetic �eld dependence of the
peak energies is not resolved. Dotted lines follow Eqs. (2.15) and (2.16). (c) Rotational
polarization anisotropies of the SHG intensity of the strongest line at B = 5 T being
exemplary for all measured lines and �elds. Green circles represent the con�guration
E2ω ‖ Eω and orange circles show E2ω ⊥ Eω. Black lines give �ts according to Eqs. (2.7)
and (2.8).

predictions in Eqs. (2.7) and (2.8). The emission I2ω ‖ x ‖ B vanishes for all
incoming polarizations, whereas the detected signals I2ω ‖ y ⊥ B are independent
of the fundamental polarization. It follows that the emission stems from the Γ5y

parts of the wave functions. No emission from the Γ5x is observed and contributions
from AΓ2 can be excluded. All lines are not expected to shift in magnetic �elds,
which was indeed observed (see Fig. 2.10 (b)).

The temperature dependence measured at B = 7 T shows a rapid decrease for in-
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creasing temperature; see Fig. 2.20 (a). Temperature dependencies will be discussed
separately in a later section (Sec. 2.10).

The observed magnetic-�eld-induced lines are fully explained by the mixing of strong
one-photon-allowed orthoexcitons and two-photon-allowed paraexcitons. Note, that
this allows magnetic-�eld-induced SHG spectroscopy to measure ortho- and paraex-
citons in a single spectroscopic run. This mechanism is also valid for 2S states, but
as their oscillator strengths are ∼ 1

22
smaller, no detectable signals can be expected.

Although, it shall be kept in mind in case it is subject to possible enhancement by
interference with stronger contributions.
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2.8 SHG of 2S/2P Exciton-Polaritons in Magnetic

Fields

In contrast to the n = 1 exciton region of ZnO, the in�uence of magnetic �elds on its
n = 2 region has not been explored in detail. Investigations of 2P magneto-excitons
in ZnO are scarce. One example is the work of Dinges et al., who have investi-
gated the Zeeman splitting of the 2P exciton states in the Faraday con�guration
by two photon absorption [61]. Our investigation by SHG spectroscopy in trans-
mission geometry shows that the �eld-induced mixing of exciton wave functions has
a remarkable in�uence on the nonlinear susceptibility χ(2)(ω, ω, 2ω) in the n = 2
exciton region. Studies of 2P excitons without external �elds are found, e.g., in
Refs. [52, 62].
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Figure 2.11: Magnetic-�eld-induced SHG is observed in ZnO in the range of 1S and
2P excitons. The wide-range spectrum (3.35 − 3.45 eV) is measured for E2ω ‖ Eω ⊥ B,
B = 5 T, and θ = 0◦ at T = 1.6 K. The inset shows the SHG of 1S excitons enhanced by
a factor of 20. Integration time for data shown by the orange line is tripled compared to
data shown by the green line.

Figure 2.11 demonstrates strong-magnetic-�eld induced SHG signals, which are sur-
prisingly observed in vicinity of the 2S/2P (A,B) excitons. In the chosen exper-
imental geometry (θ = 0◦), no crystallographic SHG is allowed, but a magnetic
�eld applied perpendicular to the z-axis (B ⊥ k ‖ z) leads to two strong lines. A
comparison of the signal strength with the discussed 1S lines points out the high
e�ciency of the underlying mechanisms. The n = 2 signals are about 60 times
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stronger than those of the 1S states, although the absorption of SHG light in the 1S
range is only 5− 7 times stronger [63]. This behavior is very unexpected, because it
di�ers from the observations in GaAs and CdTe, where the 1S exciton line always
dominates magnetic-�eld-induced SHG spectra [12, 13, 26, 64]. In the following the
2S/2P (A,B) exciton energy range will be studied, analyzed, and discussed in detail.
An early stage of this investigation is discussed in the dissertation by Kaminski [57],
where the magneto-Stark e�ect is proposed as mechanism3. In the following, this
assumption is veri�ed by new and extensive data, especially in Section 2.9, by the
analysis of its interference with a static electric �eld. Furthermore, the development
of a microscopic theory and a thorough analysis of the new results reveal numerous
other mechanisms that contribute to χ(2) in this region. In addition, the tempera-
ture dependence of resonant SHG of excitons is shown in Sec. 2.10 to be governed
by their damping.

2.8.1 Experimental Results

Figure 2.12: Magnetic-�eld-induced SHG spectra in the range of 2S/2P exciton states
measured at T = 1.6 K. (a) E2ω ‖ Eω ⊥ B. (b) E2ω ‖ B and ϕ = 45◦. Dashed lines give
solutions of the model calculation given in Eq. (2.28).

The double-peak structure observed in low magnetic �elds B ≤ 6 T, as shown,e.g.,
in Figs. 2.11 and 2.12, has its maxima around 3.425 eV and 3.431 eV. These en-
3The magneto-Stark e�ect as mechanism for magnetic-�eld-induced SHG was published in 2013
in Phys. Rev. Lett. by Lafrentz, et al. [27].



42 Chapter 2. Second Harmonic Generation of Exciton-Polaritons in ZnO

0 2 4 6 8 1 0 0 2 4 6 8 1 0 0 2 4 6 8 1 0

2 S / 2 P ( A , B ) ,   
2 � ω =  3 . 4 2 0  -  3 . 4 3 9  e V

ϕ =  4 5 ° ,  E 2 ω ||  B

1 S ( A ) ,  
2 � ω =  3 . 3 7 5 4  e V

E 2 � | |  E � � � B

( a )

 

 
Int

eg
rat

ed
 SH

G 
int

en
sity

M a g n e t i c  f i e l d  ( T )

T  =  1 . 6  K
0

( b )

 

 

Int
eg

rat
ed

 SH
G 

int
en

sity

M a g n e t i c  f i e l d  ( T )

T  =  1 . 6  K
0

2 S / 2 P ( A , B ) ,   
2 � ω =  3 . 4 2 0  -  3 . 4 3 9  e V

E 2 � | |  E � � � B

( c )

 

 

Int
eg

rat
ed

 SH
G 

int
en

sity

M a g n e t i c  f i e l d  ( T )

T  =  1 . 6  K
0

Figure 2.13: (a) Integrated SHG intensity for the strongest 1S line, 2~ω = 3.3754 eV, [see
Fig. 2.10 (a)] as a function of magnetic �eld (symbols). Line is a �t with I2ω

‖ ∝ B2. (b)

Integrated SHG intensity in the spectral range of 2S/2P (A,B) excitons, 23.420 ≤ ~ω ≤
3.439 eV, (full spectral range of Fig. 2.12) as a function of magnetic �eld (symbols). Line
is a model calculation for 2~ω = 3.4254 eV (the energy of the strongest peak in the SHG
spectra) and Γ = 1.2 meV. (c) Integrated SHG intensity as a function of magnetic �eld
(symbols) in the same spectral range as (b), but for a di�erent measurement geometry
(see Fig. 2.12). Line is again model calculation exemplarily done for 2~ω = 3.4254 eV and
Γ = 1.2 meV.

ergies correspond well to the energies of the two-photon-allowed 2Px,y(A,B) exci-
tons [52,61]. In strong magnetic �elds exceeding 6 T, these peaks evolve into complex
structures, which are investigated in six di�erent polarization con�gurations: (c1)
E2ω ‖ Eω ⊥ B, (c2) E2ω ‖ Eω ‖ B, (c3) E2ω ⊥ B, ϕ = 45◦, (c4) E2ω ‖ B, ϕ = 45◦,
(c5) E2ω ⊥ Eω ⊥ B, and (c6) E2ω ⊥ Eω ‖ B. Peak positions and signal strengths
vary strongly for di�erent con�gurations. Fig. 2.12 shows exemplarily two con�g-
urations (c1) and (c4): (a) E2ω ‖ Eω ⊥ B and (b) E2ω ‖ B, ϕ(Eω) = 45◦. Their
direct comparison leads to the conclusion that signals from the various n = 2 states
originate from di�erent microscopic mechanisms possessing dinstinct symmetries.
As a consequence, the 2S, 2Px, 2Py, or 2Pz states become selectively pronounced
by the choice of incoming and outgoing polarizations. SHG rotational anisotropies
are measured at various energies, �elds, and con�gurations (see Sec. 2.3). Figs. 2.14
and 2.15 display selected anisotropies to illustrate the most dominant attributes.
Fig. 2.14 shows anisotropies at 2~ω = 3.424 eV detected in di�erent geometries,
and measured at B = 10 T and T = 1.6 K. The orientation of clubs is governed
by the direction of the magnetic �eld. Strongest signals are observed perpendicular
to the �eld direction (I2ω ∝ P2ω ⊥ B). Anisotropies of further spectral maxima
are given in Fig. 2.15. Apparently, they show di�erent patterns depending on the
exciton states involved. The amplitude ratios between di�erent con�gurations vary
strongly for di�erent energies, for example, compare ratios of parallel (blue) and
crossed (red) con�gurations in Fig. 2.15. The shapes in the perpendicular geometry
I2ω
⊥ are readily energy dependent; compare red shapes in Figs. 2.15 (b), (d), and
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Figure 2.14: Angular dependences of the magnetic-�eld-induced SHG intensity at
3.424 eV for di�erent geometries and B = 10 T. Open circles represent the measured
data and lines show �ttings following Eqs. (2.7)-(2.12) using the suitable relations from
Tab. 2.2. Interference among di�erent mechanisms is taken into account according to
Eq. (1.23). (a) E2ω ‖ Eω; �t according to Eq. (2.7). (b) E2ω ⊥ Eω; �t according to

I2ω ∝
(
a sinϕ+ b sinϕ cos2 ϕ

)2
with a/b = 1/2. (c) E2ω ‖ B; �t according to Eq. (2.8).

(d) E2ω ⊥ B; �t according to I2ω ∝ cos4 ϕ.

(f). A more detailed discussion of the SHG polarization properties will follow in the
Sec. 2.8.4, after the development of a microscopic theory in Sec. 2.8.2.

The magnetic-�eld dependence of the spectral-integrated SHG intensity shows a
quadratic increase in low �elds B < 6 T for all con�gurations, but with individual
curvatures. In magnetic �elds exceedingB > 6 T, this dependence becomes complex,
too. For example, the con�guration E2ω ‖ B with ϕ = 45◦ leads to a saturation
behavior, whereas the overall signal in the con�guration E2ω ‖ Eω ⊥ B shows a
step at around B = 7 T and increases further afterwards; compare Figs. 2.13 (b)
and (c). These behaviors, which are not observed for 1S states, point out that the
dominant mechanisms for the magnetic-�eld-induced SHG di�er for the n = 1 and
n = 2 states in ZnO.

The temperature dependence of the 2S/2P SHG intensity will be discussed in detail
in Sec. 2.10, where it will be given in Fig. 2.20 (a). Here, it is only mentioned for
completness, that it shows a similar, though, slightly faster decrease compared to
that of the n = 1 states.
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Figure 2.15: Angular dependences of the induced SHG intensity for di�erent energies and
B = 10 T. Open blue circles represent the measured intensity I2ω

‖ for E2ω ‖ Eω, and open

red circles represent the measured intensity I2ω
⊥ for E2ω ⊥ Eω. Solid lines show �ttings

with I2ω
‖ ∝ cos2 ϕ and I2ω

⊥ ∝
(
a sinϕ+ b sinϕ cos2 ϕ

)2
; according to Eqs. (2.11) and (2.12).

a and b take into account interference between spin Zeeman e�ects on S and P envelopes,
respectively, following Eq. (1.23). (a) and (b) 2~ω = 3.427 eV; I2ω

‖ /I2ω
⊥ ≈ 40/1; I2ω

⊥ with

a/b ≈ 3/4. (c) and (d) 2~ω = 3.429 eV; I2ω
‖ /I2ω

⊥ ≈ 14/1; I2ω
⊥ with a/b ≈ 1/1. (e) and (f)

2~ω = 3.432 eV; I2ω
‖ /I2ω

⊥ ≈ 3/1; I2ω
⊥ with a/b ≈ 2/1.
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2.8.2 Theoretical considerations

Interpretation of the observed SHG of n = 2 states in ZnO requires a microscopic
theory focused on their speci�c properties. Although theoretical publications on
harmonics generation are numerous, e.g., [65�75], and SHG was suggested to selec-
tively probe excitons [76, 77], the role of excitons in harmonics generation has not
been discussed theoretically, yet. In the following section, an applicable theory is
developed in two steps. First, energies and wave functions of exciton and polariton
states in ZnO are analyzed in electric and magnetic �elds. Remember that S states
in ZnO are polaritons, and P states are not. However, when they become mixed,
all resulting states are coupled to the light �eld. Due to the interaction of the 2S
states with photons two polariton branches for each of the 2S/2P mixed states are
formed [78]. For the energies of the polariton branches the interaction of the mixed
excitons with photons, and their respective contribution to the dielectric function
has to be evaluated. However, the energies of the lower polariton branch (LPB)
and upper polariton branch (UPB) can be approximated by considering the ener-
gies E(2ST ) and E(2SL) for the 2S polariton energy, respectively [78]. The mixing
of states and their consequent symmetry reduction will be of particular interest in
later discussions. Second, magnetic and electric e�ects will be analyzed with regard
to how they induce new contributions to χ(2 ). Afterwards, the observations are
interpreted in Sec. 2.8.4 based on the deduced mechanisms.

In analogy to the experiments, the same geometry kexc ‖ k ‖ z, B ‖ x, and E ‖ y is
theoretically analyzed, where crystallographic SHG is forbidden.

2S/2P States in an Electric Field

In C6v a static electric �eld E ⊥ z is represented by Γ5. Its Stark e�ect (see
Sec. 1.1.5) couples 2S(Γ5) and 2P (Γ1,6) states for the A- and B-series in ZnO [60].
The n = 2 states of the C-series are not investigated and therefore not discussed.
The couplings are described by the 2× 2 Hamiltonian

Ĥ2S/2Py =

(
E2S 3eEyaB

3eEyaB E2Py

)
. (2.23)

where aB is the exciton Bohr radius, E2S is the zero-�eld energy of the 2S polariton,
and E2Py is the zero-�eld energy of the 2Py exciton state. Its solutions are the
coupled states

E±2S/2Py
=

1

2

[
E2S + E2Py ±

√
(E2Py − E2S)2 + 36(eEyaB)2

]
. (2.24)
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Their wave functions are obtained by

Ψ2S/2Py = C2S(Ey)Ψ2S + C2Py(Ey)Ψ2Py , (2.25)

with

C2S(Ey) =
E2Py − E±2S/2Py√

(3eEyaB)2 + (E2Py − E±2S/2Py
)2
, (2.26)

C2Py(Ey) = − 3eEyaB√
(3eEyaB)2 + (E2Py − E±2S/2Py

)2
. (2.27)

2S/2P States in a Magnetic Field

A magnetic �eld perpendicular to the principle axis transforms like Γ5, too. In
contrast to an electric �eld of odd parity, a magnetic �eld is in �rst order of even
parity. But, similar to the just considered e�ect of the electric �eld, the e�ective
electric �eld Eeff = ~

Mexc
kexcBx of the magneto-Stark e�ect (see Sec. 1.1.5) may mix

the envelope functions of 2S and 2Py states of di�erent parity. At the same time, a
magnetic �eld mixes 2Pz and 2Py states of same parity due to the orbital Zeeman
e�ect. The 2S/2Pz/2Py mixed states E i2S/2Pz/2Py

are obtained as eigenenergies of the
Hamiltonian4

Ĥ±2S/2Pz/2Py
=

 E±2S(Bx) 0 3eEeffaB

0 E±2Pz
(Bx) gorbµBBx

3eEeffaB gorbµBBx E±2Py
(Bx)

 . (2.28)

The diagonal terms can take into account the diamagnetic shift and spin splitting:

E±2S(Bx) = E2S(B = 0) + 14CdB
2
x ± µBBxg

⊥
e /2 , (2.29)

E±2Pz
(Bx) = E2Pz(B = 0) + 12CdB

2
x ± µBBxg

⊥
e /2 , (2.30)

E±2Py
(Bx) = E2Py(B = 0) + 12CdB

2
x ± µBBxg

⊥
e /2 . (2.31)

Here, Cd describes the diamagnetic shift, and gorb the orbital g-factor. Expressions
for Cd and gorb are given in Ref. [31]. The o�-diagonal perturbations in the Hamil-
tonian (2.28) mix states of same spin state and polariton branch only. In fact, it is
su�cient to consider solely the mixing of envelope functions, although there are in

4The electron-hole short-range exchange splitting is assumed to be zero for all 2S and 2P states.
All states are two-fold degenerate with respect to their hole spin projection, because the hole
g⊥h -factor is assumed to be zero, too; see Ref. [49].



2.8. SHG of 2S/2P Exciton-Polaritons in Magnetic Fields 47

principle 24 mixed A and B polariton states each. Nevertheless, the 2S parts lead
to the formation of LPB and UPB for each mixed state.

Their energies E i2ST/2Pz/2Py
(i = 1, 2, 3 describing the new solutions of Eq. (2.28))

of the LPB and E i2SL/2Pz/2Py
of the UPB are found as roots of the characteristic

equation:

(E i−E±2S)(E i−E±2Pz
)(E i−E±2Py

)−(3eEeffaB)2(E i−E±2Pz
)−(gorbµBBx)

2(E i−E±2S) = 0,

(2.32)

with E2S = E2ST
for LPB and E2S = E2SL

for UPB. Their eigenfunctions are built
according to

Ψi
2S/2Pz/2Py

= Ci
2S(Bx)Ψ2S + Ci

2Pz
(Bx)Ψ2Pz + Ci

2Py
(Bx)Ψ2Py , (2.33)

with coe�cients

Ci
2S =

3eEeffaB(E i − E±2Pz
)

ξ
, (2.34)

Ci
2Pz

=
gorbµBBx(E i − E±2S)

ξ
, (2.35)

Ci
2Py

=
(E i − E±2S)(E i − E±2Pz

)

ξ
. (2.36)

The denominator ξ is given by

ξ =
√

(E i − E±2S)2(E i − E±2Pz
)2 + (3eEeffaB)2(E i − E±2Pz

)2 + (gorbµBBx)2(E i − E±2S)2.

(2.37)

The Hamiltonian (2.28) can take into account e�ects of a static electric �eld Ey, as
well, when Eeff is replaced with Eeff±Ey. The ± sign shows their relative alignment;
parallel and antiparallel, respectively.

In addition, the spin Zeeman e�ect of a magnetic �eld Bx lifts the degeneracy of the
2Px and 2Py states reducing their symmetries. Nevertheless, the 2Px state does not
become mixed with other 2P or 2S states. Its energy is calculated by:

E±2Px
(Bx) = E2Px + 6CdB

2
x ± µBBxg

⊥
e /2 (2.38)
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2.8.3 Mechanisms

The newly derived states demand to discuss selection rules and polarization de-
pendences once more. The optical nonlinear susceptibility χijl(Eexc,kexc,B,E) in
vicinity of an exciton resonance Eexc = 2~ω can be written microscopically in the
general form:

χij l(Eexc,kexc,B,E) ∝
∑
v

〈
G|V̂ 2ω

i |Ψexc

〉〈
Ψexc|V̂ ω

j |ψv
〉〈

ψv|V̂ ω
l |G

〉
(Eexc − 2~ω − iΓexc)(Ev − ~ω)

≈ i

Γexc

〈
G|V̂ 2ω

i |Ψexc

〉
M2ph

exc,G. (2.39)

|G〉 denotes the unperturbed ground state with zero energy, |ψv〉 represents inter-
mediate virtual states, |Ψexc〉 is the exciton wave function, and Γexc its damping
constant. Eq. (2.39) has to be summed up over all intermediate states that satisfy
the symmetry selection rules for the two-photon (2ph) transition from ground to
exciton state described by the matrix element M2ph

exc,G. The perturbations V̂
ω of the

incoming light �eld Eω = (Eω
x , E

ω
y , 0) can be expanded in a Taylor series:

V̂ ω
x(y) =

ie

m0ω
p̂x(y) exp(ikzrz) ≈

ie

m0ω
p̂x(y)(1 + ikzrz + ....) , (2.40)

Here, e is the electron charge and p̂x(y) the projections of the momentum oper-
ator p̂ onto the direction of light polarization (x or y, respectively). For V̂ 2ω

x(y),
kz and ω have to be replaced by 2kz and 2ω. The analysis will be limited to
the two terms of lowest order in the expansion of exp(ikr) and consider the ma-
trix elements V̂ ω(2ω)

x(y) = D̂
ω(2ω)
x(y) + Q̂

ω(2ω)
x(y)z . The �rst term D̂ω

x(y) = (ie/m0ω)p̂x(y)

corresponds to the electric-dipole (ED) approximation. The operator Q̂ω
x(y)z =

−(ekz/m0ω)p̂x(y)rz includes the electric-quadrupole (EQ) and magnetic-dipole (MD)
contributions and its matrix elements can be replaced by the sum of matrix elements
of the electric-quadrupole operator Q̂ω,q

x(y)z = −(iekz/2)rx(y)rz and magnetic-dipole

operator Q̂ω,m
x(y)z = ±(e~kz/2m0ω)L̂y(x); see for example in Ref. [24]. Here L̂ is the

orbital momentum operator. Depending on the perturbations V̂ ω or V̂ 2ω involved in
the two-photon absorption or one-photon emission, we denote the resulting three-
photon SHG process as X2wY ωZω, where X, Y, Z are either electric-dipole D, or
electric-quadrupole/magnetic-dipole Q transitions. We note, that the presence of
an EQ or MD transition for one of the steps either in excitation or in emission leads
to a linear dependence of the susceptibility on kz. Thus, they will be much weaker
than the ED transtions.

Resonant SHG will be possible for states being simultaneously one- and two-photon
allowed. In case of mixed states, where one part is one-photon allowed and another
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part is two-photon allowed, the susceptibility will be proportional to the product of
the respective mixing coe�cients.

In ZnO, the direct ED transitions between the valence- and conduction-band states
are allowed. The strongest one-photon process for k ‖ z is the excitation of (or the
emission from) the Γ5 states with the S envelope. The respective matrix elements
can be written as Dω,a or D2ω,a, where the index a denotes the "allowed" transition
within the ED approximation according to the notation of R. J. Elliot [79]. In
contrast, the one-photon electric-dipole "forbidden" transitions to the 2P excitons in
the noncentrosymmetric wurtzite semiconductors, such as ZnO, may occur because
the valence- and conduction-band states are not of pure even or odd parities. These
transitions are much weaker compared to the S exciton transitions, and can be
described by the matrix elements Dω,f or D2ω,f , where the index f denotes the
"forbidden" transitions within the ED approximation [79]. In the given geometry,
such "forbidden" transitions are theoretically possible only for the 2Px,y states, and
not for the 2Pz state. Alternatively, the one-photon emission from all three 2Px,
2Py, and 2Pz states may occur due to the magnetic-dipole transition described by
the matrix element Q2ω,m.

The strongest two-photon process in ZnO is the excitation of 2P exciton states. They
are electric-dipole allowed and use intermediate states in the valence- or conduction-
band. Such process consists of one transition between valence and conduction band
states and one transition between s and p envelopes in the same energy band. The
relevant two-photon matrix element is M2ph

2P,G ∝ Dω,aDω,f . On the other hand,
the direct two-photon absorption by the S exciton states in non-centrosymmetric
semiconductors may occur within ED approximation via the intermediate virtual
states in remote bands [80]. In this case the two-photon matrix element is M2ph

S,G ∝
Dω,aDω,a. However, such processes are much weaker than those for the 2P exciton
states [81]. Alternatively, the S states can be excited in the two-photon process when
the �rst transition is a MD transition (or ED transition of "forbidden" character)
to the 2Px,y states and the second one is a ED transition of "forbidden" character
between the S and the P envelopes. In this case the two-photon matrix element is
M2ph

S,G ∝ Dω,fQω,m (or M2ph
S,G ∝ Dω,fDω,f , respectively).

Although parity is in principle not a good quantum number in hexagonal ZnO,
this symmetry is important for the permissiveness of exciton-(polariton) transitions.
Mechanisms mixing spin wave functions of states of the same envelope function,
i.e., same parity, will be discussed �rst. Afterwards mechanisms mixing di�erent
envelope functions will be analyzed.
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Magnetic-Field-Induced SHG of S Excitons due to the Spin Zeeman

E�ect

Remember from the discussion about 1S excitons in Sec. 2.7, that in the chosen ge-
ometry the S(AΓ5, BΓ5) states are one-photon allowed and form polariton branches.
The S(AΓ1) and S(BΓ6) are two-photon allowed. Their two-photon processes in-
volve either a quadrupole excitation or use intermediate virtual states in remote
bands [80]. It is convenient to consider a two-photon excitation QωDω including
one quadrupole to underline the high order of this process. The spin Zeeman e�ect
mixes the Γ5y and Γ1,6 states leading to the observed SHG signals of 1S(A,B) exciton
states. The same mechanism can also work for the 2S(A,B) and 1S(C) states. The
respective SHG process D2ωDωQω,m is listed in the third row of Table 2.2. In the
chosen geometry (B ‖ x) only the S(Γ5y) wave functions become mixed and no emis-
sion in x-direction is possible, i.e., χxxy = 0. The nonzero magnetic-�eld-induced
susceptibilities χyyy = χyxx are

χyyy(E±Γ5y/Γ1,6
, kexc, Bx, 0) ∝ CΓ5(Bx)CΓ1,6(Bx)(kza0) (2.41)

=
2µBgexcBx(EΓ5 − E±Γ5y/Γ1,6

)(kza0)

(µBgexcBx)2 + 4(EΓ5 − E±Γ5y/Γ1,6
)2
.

Here, gexc is the exciton g-factor, a0 the lattice constant, and EΓ5 the zero-�eld energy
of the respective polariton. The factor a0kz is a consequence of the quadrupole
excitation.

Magnetic-Field-Induced SHG of P Excitons due to the Spin Zeeman

E�ect

Envelope orbitals parallel and perpendicular to the magnetic �eld orientation have
to be discussed separately as their degeneracy is lifted.

a. The Px state. Similar to the mechanism for the S states, the Γ5 and Γ1 spin
states of the Px excitons can become mixed due to the spin Zeeman e�ect. Their
excitation is possible by two photons for polarizations Eω

x 6= 0 via dipole perturba-
tions V̂ ω

x(y) = D̂ω
x(y) of the �rst photon and V̂ ω

x = D̂ω
x of the second photon or vice

versa. The emission is possible due to the quadrupole perturbation V̂ 2ω
x = Q̂2ω

xz .
The corresponding process Q2ω,mDωDω is listed in the fourth row of Table 2.2. The
fundamental mechanism is the same as for S states, but in di�erent limits. The
nonzero components χxxy = χxyx are

χxxy(E2Px) ∝ 1

2
(kza0). (2.42)
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The susceptibility has no explicit magnetic �eld dependence, but the mechanism
requires a �nite magnetic �eld Bx for the mixing. The dependence on Bx is not
seen in Eq. (2.42), because the exchange splitting of mixed states is neglected. As
their energy is degenerated, already a very weak magnetic �eld is able to mix them
in equal proportions. This mechanism can also be seen as "a phase transition": no
�eld, no e�ect whereas a �eld B > 0 induces contributions independent of the �eld
strength.

This mechanism is not linear in B and violates the relation χyyy = χyxx + 2χxxy.
Rotational anisotropy patterns for induced SHG of 2Px states are: I2ω

⊥B = 0, I2ω
‖B =

|χxxy|2 sin2 2ϕ, I2ω
‖ ∝ |χxxy|2 sin2 2ϕ sin2 ϕ, and I2ω

⊥ ∝ |χxxy|2 sin2 2ϕ cos2 ϕ. Another
picture to understand this mechanism phenomenologically is based on the degener-
acy lifting of 2Px and 2Py by the magnetic �eld, which is the same as a symmetry
reduction.

b. The Py state. The same symmetry reduction induces contributions of the 2Py
states. They lead to one nonzero susceptibility:

χ2Py
yyy (E i2S/2Pz/2Py

, kexc, Bx, 0) ∝ 1

2
kza0C

i
2Py

(Bx), . (2.43)

This process Q2ωDωDω is listed in the fourth row in Table 2.2. For the rota-
tional anisotropies of 2Py follows: I2ω

⊥B ∝ |χyyy|2 cos4 ϕ, I2ω
‖ ∝ |χyyy|2 cos6 ϕ, I2ω

⊥ ∝
|χyyy|2 cos4 ϕ sin2 ϕ, and I2ω

‖B = 0. Its e�ect is reduced by the magnetic �eld mixing
of the 2S/2Pz/2Py envelopes that will be discussed next.

Electric-Field-Induced SHG due to the Stark E�ect

In addition to the mixing of di�erent spin states of the same envelope state, electric
and magnetic �elds mix di�erent envelope states. Envelopes of di�erent parity
(although parity is in principle not a good quantum number in ZnO, the parity
of envelope states is important for permissiveness) are mixed by a perturbation of
odd parity, e.g., the electric �eld. An electric �eld Ey of odd parity mixes 2S and
2Py states of opposite parity due to the Stark e�ect for A and B series. Matrix
elements for excitation (2Py) and emission (2S) in Eq. (2.39) are allowed in the ED
approximation. The corresponding process D2ωDωDω is listed in the �rst row in
Table 2.2. Corresponding SHG signals are only observed for incoming light with a
nonzero component Eω

y 6= 0, which is necessary for the excitation of the 2Py state,
because χyxx = 0. Resulting electric �eld-induced-contributions χyyy = 2χxxy =
2χxyx are:

χyyy(E±2s/2Py
, kexc, 0, Ey) ∝ C2s(Ey)C2Py(Ey) (2.44)

=
3eEyaB(E2Py − E±2s/2Py

)

(3eEyaB)2 + (E2Py − E±2s/2Py
)2
. (2.45)
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The energy correction due to the electric �eld is much smaller than the zero-�eld
splitting of the exciton states |eEyaB| � |E2P − E2ST(L)

|. Hence, the susceptibilities
depend linearly on the electric (magnetic) �eld Ey (Ee�). In the opossite case a
saturation is expected.

Magnetic-Field-Induced SHG of Mixed 2S/2P Excitons due to the

Magneto-Stark and Orbital Zeeman E�ects

The e�ective electric �eld due to the magneto-Stark e�ect (see Sec. 1.1.5) mixes
2S and 2Py envelope functions of opposite parities similar to the Stark e�ect of an
electric �eld. Furthermore, the orbital Zeeman e�ect couples (in analog to the spin
Zeeman e�ect mixing spin states) 2Py and 2Pz envelopes of same parity. The wave
functions of the resulting states E i2S/2Pz/2Py

(i = 1, 2, 3) are constructed from all three
unperturbed states with coe�cients Ci

2S(2Pz ,2Py)(Bx).

There are three possible mechanisms generating second harmonic of these states,
all of them excite the Ψ2Py component via the ED perturbations D̂ω

x(y)D̂
ω
y , where

one photon has to possess a nonzero polarization component perpendicular to the
magnetic �eld. Their di�erence lies in the emission: (i) emission due to the Ψ2S

component via ED dipole perturbation D̂2ω
x(y); (ii) emission due to the Ψ2Pz com-

ponent via the quadrupole perturbation Q̂2ω
x(y)z; and (iii) emission due to the Ψ2Py

component via the quadrupole perturbation Q̂2ω
yz (or via remote states D̂2ω,f

yz ).

(i) The magneto-Stark e�ect : The e�ective �eld Eeff = ~
Mexc

kexcBx on exciton states
coupling 2S and 2Py envelopes via the magneto-Stark e�ect enables the process
D2ωDωDω, which is listed in the second row of Table 2.2. Its magnetic-�eld-induced
nonzero susceptibilities χyyy = 2χxxy = 2χxyx are:

χ2S/2Py
yyy (E i2S/2Pz/2Py

, kexc, Bx, 0) ∝ Ci
2S(Bx)C

i
2Py

(Bx). (2.46)

The susceptibilities depend both on the magnetic �eld and the wave vector only
because of the e�ective electric �eld Eeff = ~

Mexc
kexcBx. This dependence is linear

when the energy of the e�ective electric �eld is smaller than the zero �eld splitting
of the states and it saturates in the opposite case.

(ii) The orbital Zeeman e�ect : Mixing of 2Pz and 2Py envelopes induces the SHG
process Q2ωDωDω. It is listed in the �fth row of Table 2.2. The magnetic-�eld-
induced nonzero susceptibilities χyyy = 2χxxy = 2χxyx are:

χ2Py/2Pz
yyy (E i2S/2Pz/2Py

, kexc, Bx, 0) ∝
kzaBC

i
2Pz

(Bx)C
i
2Py

(Bx) (2.47)
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This dependence on B is linear when the energy split due to the orbital Zeeman
e�ect is smaller than the zero �eld splitting of the states. In the opposite case,
the mixing and consequent SHG signal is saturated. Its signals are expected to be
much weaker than those induced by the magneto-Stark e�ect and not important at
energies where the 2S component is dominant.

(iii) Spin Zeeman E�ect : See the discussion on 1S excitons.

The rotational anisotropy patterns for the SHG polarization for both the magneto-
Stark and the orbital Zeeman e�ect processes look the same. Signals vanish in the
crossed geometry E2ω⊥Eω because I2ω

⊥ (E i2S/2Pz/2Py
) ∝ |χyxx|2 = 0 for any polariza-

tion direction of the excitation light Eω. The SHG signal in the parallel geometry
E2ω ‖ Eω can be modeled as I2ω

‖ ∝ |χyyy|2 cos2 ϕ, while the signal polarized along
the magnetic �eld direction varies as I2ω

x ∝ |χxxy|2 sin2 2ϕ. Signals polarized perpen-
dicular to the magnetic �eld direction can be modeled as I2ω

y ∝ |χyyy|2 cos4 ϕ since
χyxx = 0.

Summary

Mechanisms 1s, 2s 2s/2py 2Pz/2Py 2Py 2Px

Stark e�ect χyyy = 2χxxy 6= 0,
D2ω
i D

ω
j D

ω
l

Ey 6= 0, Bx = 0 χyxx = 0 ♠
Magneto-Stark e�ect χyyy = 2χxxy 6= 0,
D2ω
i D

ω
j D

ω
l

Ey = 0, Bx 6= 0 χyxx = 0 ♠
Spin Zeeman e�ect χyyy = χyxx 6= 0,
D2ω
i D

ω
j Q

ω,m
l

Ey = 0, Bx 6= 0 χxxy = 0 �
Spin Zeeman e�ect χyyy 6= 0, F χxxy 6= 0, ♣
Q2ω,m
i Dω

j D
ω
l

Ey = 0, Bx 6= 0 χxxy = χyxx = 0 χyyy = χyxx = 0
Orbital Zeeman e�ect χyyy = 2χxxy 6= 0,
Q2ω,m
i Dω

j D
ω
l

Ey = 0, Bx 6= 0 χyxx = 0 ♠

Table 2.2: List of induced contributions to χ(2) due to di�erent mechanisms in external
electric and magnetic �elds acting on 1S(A,B,C), 2S(A,B,C) and 2P (A,B) exciton(-
polariton) states in ZnO. Tensor components are given for the experimental geometry
k ‖ z, E = (0, Ey, 0), and B = (Bx, 0, 0). χxxy = χxyx, because the incoming photons are
indistinguishable.

All mechanisms considered above for �eld induced SHG signals of S and P excitons(-
polaritons) in ZnO are summarized in Table 2.2. Their model polarization anisotropy
patterns are displayed in Fig. 2.16. Although, this theoretical analysis is performed
for wurtzite ZnO, the theoretical approach and its derived mechanisms can be carried
forward to exciton structures of other semiconductors.

Without going into details, the considered mechanisms do not work in the Faraday
geometry B ‖ k ‖ z, i.e., a magnetic �eld applied along the hexagonal z-axis does
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not mix Γ5 and Γ1 states. The orbital Zeeman term LzBz does not lead to an
admixture of 2Pz, and the e�ective electric �eld Eeff vanishes for B ‖ k.
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Figure 2.16: Theoretical predictions for rotational anisotropies of induced contributions
for I‖ 7→ Eω ‖ E2ω, I⊥ 7→ Eω ⊥ E2ω, I‖B 7→ E2ω ‖ B, and I⊥B 7→ E2ω ⊥ B according to
Eqs. (2.7)-(2.12), respectively, obeying the relations summarized in Tab. 2.2: (a)-(d) Spin
Zeeman e�ect for S �. (e)-(h) Stark e�ect / magneto-Stark e�ect / orbital Zeeman e�ect
♠. (i)-(l) Spin Zeeman e�ect for 2Py F. (m)-(p) Spin Zeeman e�ect for 2Px ♣.
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2.8.4 Discussion

In the following section, �eld induced mechanisms on exciton(-polaritons) presented
in Sec. 2.8.2 are used to explain the experimental observations of Sec. 2.8.1. As a
general rule, the mixing of states with di�erent symmetries points out to be the key
to induce resonant nonlinear susceptibilities, whereas the spin Zeeman, the orbital
Zeeman, the magneto-Stark, and the Stark e�ect show distinct types of symme-
try breaking. It will be shown that the nonlinear interaction of light and matter
goes beyond the ED approximation in ZnO. Rotational anisotropy measurements
of SHG signals give comprehensive information on the symmetry of involved non-
linear susceptibilities and underlying processes. Thus, they distinguish nonlinear
optical mechanisms of di�erent nature, which is especially important and helpful
when more than one mechanism may be involved. Consequently, a thorough com-
parison of measured and predicted rotational anisotropies of the SHG intensity is
performed. In addition, energy shifts in magnetic �elds and �eld dependences of the
SHG intensity are shown to be in accordance with the linked mechanisms.
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Figure 2.17: Magnetic �eld dependence of the 2S/2P states of A and B series. Lines plot
the solutions of Eq. (2.28). Symbols display experimental data. Their circle size scales with
the observed peak intensity. Blue and red circles represent the geometries E2ω ‖ Eω ⊥ B
and E2ω ‖ B with ϕ(Eω) = 45◦, respectively. Labels on left side indicate the zero-�eld
exciton energies, whereas labels on the right hand illustrate the dominant wave function
character of the mixed states at 10 T. Solid and dashed lines plot results for the UPB and
LPB, respectively.

Modeled energies (see lines in Fig. 2.17) depend strongly on the input parameters,
which are the zero-�eld exciton energies, and electron and hole e�ective masses.
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Calculations use zero-�eld exciton energies from Refs. [52,58]; see Table 5.1. Electron
e�ective mass me = 0.27m0 and hole e�ective mass are adopted from �rst principle
calculations [49]: m‖ = 2.74m0, m⊥ = 0.54m0 for A series and m‖ = 3.03m0,
m⊥ = 0.55m0 for B series. Static dielectric constants ε‖ = 8.49 and ε⊥ = 7.40 are
taken from Ref. [54]. Spin Zeeman splittings are not included in the calculations
for the mixed 2S/2Pz/2Py states. The contributions to χ(2) due to the spin Zeeman
e�ect will be considered for rotational anisotropies, but its energies are neglected.
When including the spin Zeeman splittings the number of lines in Fig. 2.17 would
increase, which would disturb a comprehensive view, and the qualitative picture for
the magnetic �eld dependences would not be improved.

Figure 2.17 shows the experimentally observed SHG peak energies and the theo-
retically modeled energies of contributing exciton(-polariton) states for �elds up to
B = 10 T. The radii of displayed experimental data scale with their respective peak
intensities. The strongest SHG signals are observed for I2ω

‖ and their spectral max-
ima follow the modeled states with dominant proportions of 2Py and 2S; see blue
circles in Fig. 2.17.

Anisotropies measured at 2~ω = 3.424 eV and 3.429 eV correspond to states with a
dominant 2S(A), 2S(B) part; see Fig. 2.14 and Figs. 2.15 (a) and (b). Anisotropies
measured at 2~ω = 3.427 and 2~ω = 3.432 re�ect states with a dominant 2Py(A),
2Py(B) part; see Fig. 2.15 (c) and Fig. 2.15 (d). These energies show at �rst glance
the same anisotropy patterns. Thus, the main attributes will be discussed for 2~ω =
3.424 eV with a dominant 2S part �rst.

The spin Zeeman e�ect, which delivered the explanation for the observed phenom-
ena for n = 1 states, is valid for 2S(A) polaritons, too. However, a comparison
of Fig. 2.10 (c) and Figs. 2.14 (a) and 2.14 (b) shows that the observed SHG
anisotropies of 2S states are di�erent from those of the 1S: For the 2S(A) po-
lariton the shape of I2ω

⊥ cannot be described by sin2 ϕ, and I2ω
‖ and I2ω

⊥ do not have
the same amplitude. These anisotropies need to be explained in �rst order by other
mechanisms than the spin Zeeman e�ect. Already in Sec. 2.8, the by very strongr
SHG intensities of n = 2 states implied a more e�cient mechanism than for the
n = 1 states. The magneto-Stark e�ect is the �rst mechanism to consider, as it
is assumed to be the dominant mechanism for the 2S/2P (A,B) exciton(-polariton)
region [27,57]. Indeed, it is able to explain the main appearances shown in Figs. 2.14
(a), 2.14 (c), and 2.14 (d), which resemble the predicted shapes for the magneto-
Stark e�ect shown in Figs. 2.16 (e), (g), and (h), respectively. But a closer look at
the non vanishing I2ω

⊥ reveals that the spin Zeeman e�ect on both the 2S(A) and
2Py(A) states adds a very small contribution. The complex shape of I2ω

⊥ presented
in Fig. 2.14 (b) can only be explained by a combination of magneto-Stark and spin
Zeeman e�ects on the 2S(A) and 2Py(A) parts; their predicted shapes are shown in
Figs. 2.16 (b) and (j). The adherence of spin Zeeman contributions to I2ω

⊥ can be
estimated to be of about 5% of the peak intensity of I2ω

‖ (remember that no SHG sig-
nals due to the mixing of envelopes is seen in this con�guration): However, it follows
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from the �t in Fig. 2.14 (b) that the spin Zeeman contribution from the 2Py(A) is
twice as strong as from the 2S(A) part. As a consequence, the SHG induced by the
magneto-Stark e�ect involving only ED excitation as well as ED emission processes
is about 40 times more e�cient than the SHG due to a spin Zeeman induced process
based on ED excitation processes and a QD emission process. The orbital Zeeman
e�ect cannot be distinguished from the magneto-Stark e�ect via anisotropies (see
Table 2.2) and might be of importance, too, due to the 2Py/2Pz mixing. Especially
it is true for the 2S(A) region, where the 2Pz(A) exciton lies energetically very close
and within our spectral resolution. However, the probability of the quadrupole emis-
sion from the 2Pz state is very low in comparison with the probability of the dipole
emission from the 2S state. Thus, we assume that the orbital Zeeman e�ect does not
play a leading role and the magneto-Stark e�ect provides the dominant contribution
to the SHG signal at 2S/2P excitons. This assumption would also explain that for
high �elds > 6 T the discrepancy between the energetically higher peak positions
and calculated contributing polariton energies increases for both series.

Further, the weak nonzero signals in the crossed geometry, that do not follow from
the magneto-Stark e�ect, are more pronounced in the range of the B-series. The
anisotropy shapes for the B-series presented in Figs. 2.15 (c), (d), (e) and (f) show
many similarities to those of the discussed A-series: Strongest signals are observed
for I2ω

‖ , and I2ω
‖ has a twofold cos2 ϕ pattern, whereas I2ω

⊥ is a mixture of a fourfold
sin2 ϕ cos4 ϕ and a twofold sin2 ϕ pattern. The stronger in�uence of 'S'-type spin
Zeeman e�ect might stem from induced signals of 1S(C) or 3S(A) states lying in
the same energy region. The 3S(A) polariton is a rather improbable explanation,
because of its larger main quantum number, which reduces its oscillator strength
drastically in comparison to 1S and 2S exciton states. By contrast, the 1S(C) is
also seen to be strong and broad in the crystallographic SHG spectra; see Fig. 2.7.
An additional contribution from the 1S(C) exciton would explain why we have
observed a stronger in�uence of the `S'-type spin Zeeman e�ect on the shape of
the anisotropies of the B-series compared to those of the A-series, especially for
2~ω = 3.432 eV where the ratio of I2ω

‖ /I
2ω
⊥ ≈ 3/1 is smallest; compare the relatively

strong SHG signals for ϕ ≈ 90◦ in Fig. 2.15 (b) with those for ϕ ≈ 90◦ in Fig. 2.14 (b).
Besides the 2S(B) region, this in�uence was also larger for the 2Py(B) dominated
states than for the 2Py(A) dominated states; compare Figs. 2.15 (b) and 2.15 (d).
The fact that this stronger in�uence is seen over a broad spectral range relates to a
broad line width and, thus, to the 1S(C) state as well.

Contributions from the spin Zeeman e�ect on 2Px states are best seen for I2ω
‖B in the

geometry ϕ(Eω) = 45◦ and E2ω ‖ B, see Fig. 2.12 (b). The spectral maxima follow
the calculated energies of the mixed 2Px(A,B) exciton states; compare 2Px lines and
red circles in Fig. 2.17. Furthermore, the ratio of the spectral integrated intensities
I2ω
‖B/I

2ω
‖ should be 1/4 or less without the contribution from the spin Zeeman e�ect

at the 2Px states. While we have observed a ratio of about 1/3, that clearly shows
the importance of this spin Zeeman mechanism for the 2Px orbitals oriented parallel
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to the magnetic �eld. Nevertheless, contributions from this mechanism to I2ω
‖ are

not noticed and the main part of the integrated SHG intensity in the I2ω
‖B spectra

stems from 2S/2Pz/2Py mixed states due to the magneto-Stark e�ect.

The developed theory describes well the measured angular dependences of SHG
intensities and it is in reasonable accordance to the energy shifts of the exciton
states ensuring the validity of the presented SHG mechanisms. The theory may not
predict absolute values of the susceptibilities, but a comparison of the measured
crystallographic and induced SHG signals shows that they are of the same order of
magnitude. Accurate measurements of the second-order-susceptibility components
can be found in Ref. [82,83].

Another very intriguing feature of the discovered mechanisms is the complex be-
havior of the integrated SHG intensity; see Figs. 2.13 (b) and (c). SHG from the
magneto-Stark and orbital Zeeman e�ects are expected to saturate when their en-
ergies become larger than the zero �eld splitting of the involved states. The typical
values of the |2ST − 2Py| exciton splitting is about 3 meV for A and B excitons
in ZnO. While the longitudinal-transverse splitting of the 2S(A) exciton is about
0.5 meV, the respective splitting for the B exciton is about 3 meV. Thus, the satura-
tion condition is reached for the orbital Zeeman e�ect (gorbµBBx) around B ≈ 8 T,
but it is not ful�lled for the magneto-Stark e�ect [3eEe�(B)aB] for B ≤ 10 T. The
spin Zeeman e�ect for the 2Px state is independent of the magnetic �eld, whereas
the susceptibility decreases with the fraction of C2Py for the 2Py state. Due to the
line width of the exciton resonances, we are not able to resolve individual lines in
Fig. 2.13, but rather observe a complex interplay of these contributions from di�er-
ent energies leading to the observed complex behavior in the integrated intensity.
For the geometry, shown in Fig. 2.13 (b), we take into account the magneto-Stark
and orbital Zeeman e�ects to model the SHG intensity dependency.

ISHG(B,E) ∝ Abs

[
2∑
j=1

3∑
i=1

1

E i(B)− E − ıΓi
(χmagneto-Stark(B) + χorbital Zeeman(B))

]2

.

(2.48)

Here, the sum over j accounts for the upper and lower polariton branches, and
the sum over i for the three mixed states 2S/2Pz/2Py. A model calculation for
the strongest peak 2~ω = 3.4254 eV assuming Γ = 1.2 meV and χmagneto-Stark :
χorbital Zeeman ≈ 100 : 1 is able to reproduce the observed dependence quite well.
Slight deviations are expected, since in the experiment the data was spectrally in-
tegrated. If the spin Zeeman e�ect is taken into account withΓ = 1.2 meV and
χmagneto-Stark : χorbital Zeeman : χspin Zeeman ≈ 100 : 1 : 1 in Eq. (2.48), the model
calculations lead to a dependence with a shoulder shown in Fig. 2.13 (c).
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2.9 SHG in Crossed Electric and Magnetic Fields

Electric �elds are another promising option for the SHG spectroscopy. In contrast
to a magnetic �eld of even parity, the electric �eld is of odd parity and expected to
mix exciton wave functions of opposite parity. Furthermore, a static electric �eld
should enhance for parallel or compensate for antiparallel orientation the e�ective
electric �eld due to the magneto-Stark e�ect; see remark to Eq. (2.28)5.

To obtain a preferably homogeneous electric �eld inside the sample, gold contacts
on a titanium basis are thermally evaporated onto the ZnO edges, and the brazen
contacts of the custom sample holder are attached with very little pressure. Low
resistivity and photoconductivity made these experiments extremely challenging.
Best results were obtained for the strongly Lithium-doped ZnO sample EN73.2.

2.9.1 Experimental Results

Fig. 2.18 (b) demonstrates the e�ect of a static electric �eld on an SHG spectrum in
bulk ZnO. In the absence of an electric �eld residual SHG signals (∼ 1% of previously
discussed crystallographic amplitudes) are caused by the custom sample holder.
The electrical contacts, which were applied with very small pressure to the sample
probably induce small strains. The presence of an electric �eld perpendicular to the
z-axis (here E ‖ y ⊥ k ‖ z) induces further SHG signals. Note that the electric �eld
strength inside the crystal has to be corrected for the static dielectric permittivity
perpendicular to the hexagonal z-axis ε⊥ = 7.40 [54]. When electric and magnetic
�elds are applied simultaneously and perpendicular to each other the e�ect of the
electric �eld is more visible. Their interference is readily illustrated in Fig. 2.18
(a). The inset shows that the SHG amplitude is increased for E ↑↑ (k × B) and
decreased for E ↓↑ (k × B). On the other hand, the electric �eld does not change
the rotational anisotropies. The resistivity measured drops about three orders of
magnitude for 2~ω reaching the energies of 2Px,y(A,B) excitons. After switching o�
the laser, the system relaxes within seconds.

2.9.2 Discussion

To verify the magneto-Stark e�ect as dominant source of the observed SHG signals,
it is instructive to discuss a joint action of external magnetic and electric �elds.
The developed theory predicts that an external electric �eld produces the same
type of symmetry breaking as the e�ective electric �eld induced by an external

5The Hamiltonian (2.28) can take into account e�ects of a static electric �eld Ey as well, when Eeff

is replaced by Eeff ± Ey. The ± sign shows their relative alignment; parallel and antiparallel,
respectively.
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magnetic �eld. This is proven by the fact that the anisotropy of magnetic-�eld-
induced signals is not changed by an additionally applied electric �eld. Nevertheless,
the applied electric �eld acts experimentally very di�erently in comparison to the
application of an magnetic �eld. The e�ective electric �eld acts on exciton levels
only, whereas the electric �eld creates an electric potential throughout the crystal.
Figure 2.18 (b) shows that an electric �eld of 550 V/cm has only a weak e�ect.
The interference of its impact with the e�ective electric �eld induced by a magnetic
�eld of 1 T shows that the electric �eld has indeed a surprisingly small contribution.
The magnitude of the e�ective electric �eld can be estimated as Ee� = ~

Mexc
kexcBx.

The theoretical estimation of the exciton translation mass in ZnO is about 3m0 [49]
and kexc = nEexc/~c ≈ 0.03 nm−1 for Eexc = 3.425 eV and respective refractive
index n ≈ 1.97 [53, 54]. Thus, Ee� ≈ 12 V/cm for a �eld of 1 T. Consequently,
a = 1

12[V/cm]ε⊥
≈ 1.13 × 10−2 T/V, where ε⊥ is the relative dielectric permittivity)

would be the expected value for the �tting function I2ω ∝ (±B± aE)2. Instead the
best �t of the data, shown in the inset of Fig. 2.18 (a), is achieved for a value that
is 50 times smaller. Resistivity measurements shown that the incident laser beam
reduces the sample resistivity enormously (several orders of magnitude), when the
doubled photon energy 2~ω comes close to the 2P exciton states, see Fig. 2.18 (c).
As the resistivity is not instantaneously restored when the laser is switched o�, we
assume that carriers become trapped in deep centers. We suggest that the screening
of the external �eld by these carriers is responsible for the observed discrepancy.
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Figure 2.18: (a) SHG spectra in the range of 2S/2P (A,B) excitons of ZnO in electric and
magnetic �elds with E2ω ‖ Eω ‖ E ⊥ B measured at B = ±1 T, −550 ≤ E ≤ +550 V/cm,
and T = 1.6 K. An applied electric �eld corresponds to Ey/ε

⊥ inside the crystal. Inset
gives the integrated intensity for 3.417 − 3.438 eV as a function of the electric �eld at
B = +1 and −1 T illustrating the interplay of magnetic and electric �eld. Symbols are
experimental data and lines show �ts giving I2ω ∝

(
±B + 2.5× 10.4−4E

)2
. (b) Electric-

�eld-induced SHG spectrum in the range of 2S/2P (A,B) excitons. Red line demonstrates
the electric �eld e�ect. Black line shows residual crystallographic signals observed only
for the custom sample holder. Intensity is increased by a factor of 4 compared to (a). (c)
Measured resistivity of the ZnO sample at B = 0 T. Inset magni�es the 2P (A,B) exciton
region by a factor of ∼ 103.
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2.10 Temperature Dependence of SHG

Figure 2.19 compares the crystallographic SHG intensities I2ω at low 1.6 K and high
128 K temperatures. While the o�-resonant signal is stable, the resonant signals of
excitons show a strong decrease with rising temperature. A closer look at the detailed
evolutions of the peak intensities shows that all 1S states and the X-line decrease
slower than the 2Px,y(A) states; compare results shown in Fig. 2.20 (a). At the same
time, the full width at a half maximum of the 2Px,y(A) line increases much faster than
those of the 1SL(C) state and the X-line; see Fig. 2.20 (b). As the induced signals
show a similar behavior, we conclude that the signal decays are rather independent
of the underlying mechanism. The temperature dependence of the integrated SHG
intensity can be qualitatively understood in a simple consideration. Eq. (2.39) shows
that the susceptibility depends inverse linear on the exciton damping Γexc. This
damping consists of the inhomogeneous and the homogeneous broadening of the
exciton. The inhomogeneous broadening in the studied sample does not exceed
1 meV, which is seen in Fig. 2.10 (a), where the line width is limited by the spectral
width of the laser. Therefore, the exciton line width at temperatures ≤ 10− 20 K is
controlled by the homogeneous broadening due to scattering by acoustic phonons.
A process which is more likely for the n = 2 states than for the n = 1 states.
The SHG peak intensity, proportional to the susceptibility, then depends inverse
quadratically on the line width I2ω ∝ Γ−2

exc. The presented dependencies are spectral
integrated, which gives in principle a multiplication with the line width leading to the
integrated SHG being proportional to Γ−1

exc. In contrast, the crystallographic SHG
signal measured in the nonresonance region is stable with increasing temperature;
compare blue and red curve in the lower energy region in Fig. 2.19.
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Figure 2.19: Wide range crystallographic SHG spectra at low (blue) and high (red)
temperatures measured for E2ω ‖ Eω ‖ y and θ = 49◦.
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3 Third Harmonic Generation in

Magnetic Semiconductors EuTe

and EuSe

Applications of the rare earth compounds europium chalcogenides (EuX, X=O,
S, Se, Te) are specialized and mainly based on their phosphorescence properties.
Europium oxide is commonly used for red or blue colors in televisions and lamps,
or in addition with other phosphors to gain di�erent types of white light. Latest
scienti�c interest in this material class is motivated by their proposed value for
magneto optic devices.

Recently, spin induced SHG contributions were discovered, that are governed by the
spin structures in magnetic EuX [14,15]. Their second order susceptibilities dictated
by magnetic dipole transitions, which are usually low in e�ciency. In contrast, ED
transitions of high e�ciency are allowed for THG processes. Thus, it is convenient
to investigate the electronic and spin structure of centrosymmetric EuX by means
of THG spectroscopy. In Ref. [57] preliminary data is presented, where THG signals
could be linked to the 5d conduction bands by their energy position, and in�uences
of magnetic �elds were reported.

In the next chapter new experimental results are presented, that allow the sepa-
ration of crystallographic and magnetic �eld induced THG contributions. Signals
in EuTe are discussed on the basis of a microscopic theory developed for THG in
EuTe. The deduced interpretations are also transfered to the THG studies in EuSe,
because the EuX have strong similarities in their electronic con�gurations. The
THG studies in magnetic �elds resolve various magnetic phases. In addition, the
interference of crystallographic and magnetic �eld induced contributions to THG
will be examined1.

3.1 Band Structure and Electronic Con�guration

EuX are magnetic semiconductor compounds. Their divalent Eu2+ and X2− ions
form centrosymmetric cubic rock salt structures; see Figure 3.1 (a). Each ion is

1The presented results are already published in Refs. [85] and [86].
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Figure 3.1: (a) Cubic crystal structure of EuX, exemplarily shown for EuTe. (b) Elec-
tronic structure of EuTe around the band gap at Γ point (k = 0). Circles represent
measurements of the imaginary part of the dielectric function from Ref. [88]. Odd number
photon transitions are allowed from 4f7 states to 5d bands, and forbidden to the 6s band.

surrounded by six of the other kind forming an octahedron. Lattice constants depend
mainly on the group period of the chalcogen; values are a0 = 6.598 Å for EuTe and
a0 = 6.195 Å for EuSe.

The direct band gap is formed by localized states, because of the strong ionic bond-
ing. Figure 3.1 shows the energy scheme of EuTe, which is exemplary for all EuX.
It its generally accepted [15, 88], that the 4f 7 electrons and the empty 5d orbitals
of Eu ions constitute the valence and conduction bands, respectively. The broad np
orbitals of the chalcogen (n = 2, 3, 4, 5 for O, S, Se, Te) lie directly underneath the
4f 7 states. The 6s orbitals of Eu2+ ions overlap energetically with the 5d orbitals,
but their ED matrix elements from 4f 7 states are zero and the 6s band can generally
be neglected for the discussion of optical transitions in vicinity of the band gap. The
strongly localized 4f 7 states can be treated as atomic states. Their ground state
has spin S = 7/2 denoted as 4f 7(8S7/2). The 5d orbitals are commonly treated by a
tight-binding model [15]. The octahedral crystal �eld splits them into the sub bands
5d(t2g) and 5d(eg).

One photon (Γ−4 ) and consequently odd number photon transitions from the odd
parity 4f 7(8S7/2) valence band states (Γ−2 ⊕ Γ−4 ⊕ Γ−5 ) to the even parity 5d(t2g/eg)
bands (Γ+

5 /Γ
+
3 ) are generally allowed. Therefore, group theory anticipates THG

contributions of electric dipole type.
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3.2 Magnetic Properties

The magneto-optical properties of the europium chalcogenides are striking, and some
of them are unmatched by any other magnetic semiconductor. When subject to an
external magnetic �eld, EuTe exhibits a giant low-energy shift of 15 meV/T of the
optical absorption threshold [89, 90]. The Faraday e�ect is also extraordinary large
with Verdet constants as high as 106 deg/cm [91�96]. Due to the giant Faraday
rotation EuX �lms can be applied for high resolution magneto-optical imaging of
the �ux distribution in superconductors [97].

The magnetic properties of the europium chalcogenides are determined by the large
S = 7/2 spin of the 4f 7 electrons in the ground state of the Eu2+ ions [89, 90, 98].
The EuX are classical Heisenberg magnets where the magnetic phase is governed
by the competing exchange integrals of the nearest neighbor (NN) exchange J1,
which provides a ferromagnetic interaction, and the next-nearest neighbor (NNN)
exchange J2 providing an antiferromagnetic interaction. The resulting magnetic
phase diagrams may include antiferromagnetic (AFM), ferrimagnetic (FIM), and
ferromagnetic (FM) ordering, as well as a paramagnetic phase at elevated tempera-
tures in EuTe and EuSe [90, 99]. The unique magnetic properties and complicated
magnetic phase diagrams of EuX are caused by the varying ratios of the J1 and J2

integrals and by their competition with an external magnetic �eld.

EuTe

In EuTe the antiferromagnetic exchange integral J2 is larger than the ferromagnetic
exchange integral | J2 |>| J1 | and the compound shows antiferromagnetic ordering
of its spin sublattices below the Néel temperature TN = 9.58 K [90]. Eu2+ spins align
parallel within the (111) planes. Adjacent planes show alternating spin orientations
[↑↓↑↓]. For lattice temperatures T < 2 K and magnetic �elds exceeding B′c = 7.2 T
a high �eld paramagnetic phase is reached, where the magnetization is saturated
and oriented along the magnetic �eld direction.

Below TN the magnetic ordering in EuTe can be characterized by magnetic mo-
mentsm1 andm2 of the two sublattices with |m1| = |m2|. To describe the magnetic
behavior in magnetic �elds the ferromagnetic vector F = m1 + m2 and the antifer-
romagnetic vector A = m1 −m2 are de�ned. An external magnetic �eld B induces
a magnetization that is described by increasing F.

EuSe

Ferromagnetic and antiferromagnetic exchange integrals J1 and J2 are of comparable
magnitude in EuSe leading to several magnetic states; see Fig. 3.2. Such richness in
possible magnetic phases is called metamagnetic. EuSe is antiferromagnetic below
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Figure 3.2: Magnetic phase diagram of metamagnetic EuSe taken from Ref. [99].

TN = 4.6 K with adjacent spin planes aligned as [↑↑↓↓]. From TC = 3.6 K to
2.8 K the spin plane structure is ferrimagnetic [↑↑↓]. For temperatures lower than
TN = 2.8 K another antiferromagnetic phase is found with the plane alignment
[↑↓↑↓]. Already a weak magnetic �eld switches the two antiferromagnetic phases
into a ferrimagnetic phase and the ferrimagnetic phase into a ferromagnetic phase.
For a detailed discussion of its magnetic phases see Ref. [99]

3.3 Polarization Selection Rules

Figure 3.3 illustrates the measurement geometry kω ‖ [111]. Polarizer and analyzer
are turned around the [111]-axis by the angle ϕ. A static magnetic �eld B will be
applied only perpendicular to [111]. To account for possible sample tilting around
the [111]-axis, the relative angle α is introduced. In the following, this measurement
geometry is analyzed.

The face-centered-cubic crystal lattices of EuX belong to the point group m3̄m.
Group theoretical considerations yield four independent tensor components to their
crystallographic third order optical susceptibility χcrystijkl in the electric dipole approx-
imation [21]:

χxyyx = χxzzx = χyxxy = χyzzy = χzxxz = χzyyz,

χxyxy = χxzxz = χyxyx = χyzyz = χzxzx = χzyzy,

χxxyy = χxxzz = χyyxx = χyyzz = χzzxx = χzzyy,

χxxxx = χyyyy = χzzzz. (3.1)

Incoming photons are indistinguishable and therefore the last three indices permute
reducing the number of independent components to χxxyy and χxxxx. Crystallo-
graphic contributions to the third order nonlinear optical polarization P3ω

i are (the
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Figure 3.3: A sketch demonstrating the measurement geometry: ϕ is the turning angle
of Eω around k. Measurements are performed either for E3ω ‖ Eω or E3ω ⊥ Eω. Static
magnetic �elds are perpendicular to the propagation direction of the light B ⊥ k ‖ [111].

notation is explained in Sec. 2.3)

P 3ω
‖, i =

1

2
(χcrystxxxx + 3χcrystxxyy). (3.2)

P 3ω
⊥, i = 0. (3.3)

Thus, no polarization anisotropy is expected for I3ω
‖ and in the crossed geometry

crystallographic signals vanish.

Application of a static magnetic �eld B ⊥ [111] reduces the symmetry and new con-
tributions χindijklm to the third order nonlinear optical polarization P3ω are induced:

χzyyxy = χxzzyz = −χzxxyx = χyxxzx = −χyzzxz = −χxyyzy,
χzyyyx = χxzzzy = −χzxxxy = χyxxxz = −χyzzzx = −χxyyyz,
χzzzyx = χxxxzy = −χzzzxy = χyyyxz = −χyyyzx = −χxxxyz. (3.4)

The induced polarization P 3ω, ind
i is then given by

P 3ω, ind
i = χindijklmE

ω
j E

ω
kE

ω
l Mm. (3.5)

Here, M is the component of the magnetization in direction of the magnetic �eld
B. The consequent anisotropies of the magnetic �eld induced THG are expected to
follow

P 3ω, ind
i,‖ =

√
2

12
(χzzzyx − χzyyyx)[cos (2ϕ− 3α) + cos (4ϕ− 3α)], (3.6)

P 3ω, ind
i,⊥ =

√
2

12
[(2χzyyxy + χzzzyx + χzyyyx) sin (2ϕ− 3α)

+(χzzzyx − χzyyyx) sin (4ϕ− 3α)]. (3.7)
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In the case crystallographic and induced contributions are present at the same time,
the interference has to be taken into account according to Eq. (1.19)

I3ω ∝ |P3ω,cryst|2 + |P3ω,ind|2 ± 2|P3ω,cryst||P3ω,ind| cos θ, (3.8)

θ is the relative phase between crystallographic and induced contributions.

3.4 Samples

Several EuTe and EuSe samples grown by molecular beam epitaxy on BaF2 sub-
strates in [111] direction were investigated [100,101]. Samples of the same kind show
the same qualitative results, but the presented measurements are given for one sam-
ple of each kind only: the 1µm layer EuTe 9002 and the 0.5µm layer EuSe Va495.
Samples are capped with a 40 nm protection layer BaF2 to prevent oxidation. BaF2

is transparent in the region of interest, and the substrates did not show any THG.
Di�erent thermal expansion coe�cients and the lattice mismatch between sample
structures and substrate (EuTe 6.598 Å, EuSe 6.195 Å, BaF2 6.200 Å) leads to a
small trigonal strain in the [111] direction for EuTe, whereas no visible in�uence is
expected for EuSe structures.
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3.5 THG in EuTe

In this section, the crystallographic contributions to THG are presented, �rst. Sec-
ond, pure magnetic-�eld-induced contributions are discussed. Thirdly, the interfer-
ence of crystallographic and induced contributions is analyzed.

3.5.1 Crystallographic Contributions to χ(3)
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Figure 3.4: Wide-range crystallographic THG spectra of EuTe for E3ω ‖ Eω measured at
T = 5, 200, and 300 K (blue data). The high-energy range E ≥ 3.4 eV is enhanced by a
factor of 2. Left inset shows the temperature dependence of the integrated THG intensity
(3.0 − 3.4 eV). Right inset illustrates the angular distribution of THG light polarization
exemplarily for the strongest peak 3~ω = 3.15 eV at 5 K. The line gives the �tted value
in accordance with Eq. (3.2). The red data demonstrates for T = 5 K that no THG is
observed for E3ω ⊥ Eω.

The propagation of third-harmonic-light waves is allowed in EuTe and several fea-
tures over a broad spectral range (2.1−3.9 eV) are observed in its THG spectra; see
Figure 3.4. Given spectra are recorded at T = 5, 200 and 300 K for E3ω ‖ Eω. These
spectra do not show a signi�cant change with increasing temperature; illustrated by
the left inset in Figure 3.4. This stability emphasizes that harmonic generation
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~2.4 eV (t2g)

~3.2 eV (eg)

4f 7/5p

4f 65d 1/6s

Figure 3.5: A visualization of identi�ed THG processes in EuTe. The observed features
around 2.4 eV and 3.15 eV are clearly assigned to the 5d subbands. Two more THG bands
are observed around 2.75 eV and 3.7 eV. The background displays the T = 200 K spectrum
from Fig. 3.4.

spectroscopy of band to band transitions is applicable far above liquid-nitrogen
temperature and even at room temperature, where no sophisticated cryogenic envi-
ronments are required. The electronic structure of EuTe leads to four major bands
around 2.4, 2.75, 3.15, and 3.7 eV in its THG spectrum. Figure 3.5 schematically
draws assignments. The �rst and lowest energy band around 2.4 eV corresponds to
the optical transitions 4f 7 → 4f 65d1(t2g). These transitions are also responsible for
observed SHG and absorption spectra [15,102]. The second band around 2.75 eV lies
in between the spectral ranges of optical transitions to the two lowest conduction
bands 5d(t2g/eg). Possible explanations are that excitonic states below the band
gap serve as resonant intermediate states, or that the feature is a consequence of the
constructive interference of signals from both 5d bands. The band around 3.15 eV is
associated to the 4f 7 → 4f 65d1(eg) transitions. The high energy band around 3.7 eV
may be assigned most likely to a four-photon process in which the 4f 65d1(t2g) states
act as resonant intermediate states, and whose �nal state lying in the continuum of
the 5d/6s states is nonresonant.

All bands show isotropic rotational diagrams for I3ω
‖ : E3ω ‖ Eω. The right inset

of Fig. 3.4 illustrates such a diagram exemplarily for the strongest signals at 3~ω =
3.15 eV. The isotropic third-harmonic-polarization emission is characteristic for the
crystallographic contribution of (111) oriented EuX ; see Eq. (3.2).

No crystallographic signals are detected for crossed incoming and outgoing polariza-
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tions E3ω ⊥ Eω exempli�ed by the red data in Fig. 3.4. This is in accordance with
the symmetry considerations for crystallographic contributions given in Eq. (3.3).

3.5.2 Magnetic-Field Induced-Contributions to χ(3)
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Figure 3.6: Magnetic-�eld-induced THG signals in EuTe measured for E3ω ⊥ Eω ⊥ B.
(a) The wide-range THG spectra measured at B = 7 T and for T = 5 K. Inset shows
the rotational anisotropy for the observed induced peak at 3~ω = 2.4 eV. Points represent
experimental data and the line shows the model anisotropy according to Eq. (3.7). (c)
Magnetic �eld dependence of the integrated THG intensity for the observed peak (2.2 −
2.5 eV) at T = 5 K. Points represent experimental data and the dashed line gives the
squared magnetization M2(B) taken from Ref. [103]. (c) Temperature dependence of the
integrated THG intensity for the peak 2.2− 2.5 eV at B = 4 T.

The crossed geometry E3ω ⊥ Eω, where crystallographic signals are absent, is chosen
for the examination of induced contributions to χ(3) of EuTe. Figure 3.6 displays
respective results: (a) In the wide spectral range 2.1 − 3.9 eV, one feature around
2.4 eV is observed, which was previously linked to the transitions 4f 7 → 4f 65d1(eg).
The inset displays its rotational anisotropy for I3ω

⊥ . The shape with its minima at
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the axis of the magnetic �eld is dominated by the predicted shape given in Eq. (3.7).
The deviations might stem from either not pure band function symmetries, or the
interference with higher order contributions. (b) The integrated induced THG in-
tensity of EuTe follows in principle its squared magnetization; compare data points
and dashed line in Fig. 3.6 (b). In lower �elds, the signals scale with B2 and, in
higher �elds B > 6 T, a saturation is reached. (c) The induced signals decrease
signi�cantly with increasing temperature and vanish for T > 30 K.

The distinct polarization anisotropy, the strong dependence on temperature, and the
clear correlation to the magnetization allow the separation of these magnetic-�eld-
induced signals from the reported crystallographic signals. Further, these induced
signals can be linked to the ferromagnetic component of the magnetization, like it
was also done for SHG [15].

3.5.3 Interference of Crystallographic and Induced Signals
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Figure 3.7: A direct comparison of THG spectra of EuTe measured at B = ±7 T and
0 T in the energy range 2.2− 3.3 eV. All spectra are measured for E3ω ‖ Eω at T = 5 K.
The magnetic-�eld B ⊥ k is applied perpendicular to E3ω/ω.

It has been shown in the past that allegedly small contributions are enhanced and
unveiled when interfering with stronger contributions; see, e.g., Ref. [15]. In the
con�guration E3ω ‖ Eω ⊥ B crystallographic and magnetic �eld induced contribu-
tions are allowed in EuX. Figure 3.7 demonstrates their interference. Switching the
magnetic �eld direction from B = −7 T to +7 T doubles the peak intensity around
3~ω ≈ 2.4 eV. Apparently, this switch corresponds to a θ = π phase shift in Eq. (3.8)
changing the destructive interference to be constructive.

More detailed measurements are presented in Fig. 3.8. The comparison of wide range
spectra measured at di�erent magnetic �elds in the con�guration E3ω ‖ Eω ⊥ B
shows, on the one hand, the strong in�uence of the observed magnetic �eld induced
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Figure 3.8: (a) Wide range THG spectra of EuTe measured for E3ω ‖ Eω ⊥ B in various
magnetic �elds B ≤ 7 T at T = 5 K. The inset illustrates the magnetic �eld dependence
of the integrated THG intensity for three di�erent bands. (b) and (c) display rotational
diagrams for I3ω

‖ at 3~ω = 2.43 eV and 3.11 eV, respectively. Green data is measured at

B = 7 T and orange data at B = 0 T (green data is enhanced by a factor of 4 for 3~ω).
The �lled areas give �ttings following Eqs. (3.2) and (3.6), while in magnetic �elds their
interference is considered according to Eq. (1.19).

signals for the lowest conduction band and, on the other hand, discloses interference
e�ects for other bands as well. The inset in Fig. 3.8 (a) shows the integrated THG
intensity for di�erent bands demonstrating the interference e�ects not only for the
2.4 eV peak, but also for the bands 3.05−3.15 eV and 3.65−3.75 eV. Although, mod-
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i�cations of the signal strength is much weaker for the high energy bands, they allow
to conclude magnetic �eld induced signals in these regions as well. Further proof for
the interference of crystallographic and magnetic �eld induced signals is given by the
induced anisotropy of emitted third harmonic light polarization. Figs. 3.8 (b) and
(c) display rotational diagrams for 3~ω = 2.43 eV and 3.11 eV. From B = 0 T to 7 T
the isotropic shape of pure crystallographic THG becomes distorted and can then
be modeled by the interference (Eqs. (1.19) and (3.8)) of crystallographic (Eq. (3.2))
and magnetic �eld induced (Eq. (3.6)) contributions.

3.5.4 Discussion
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Figure 3.9: The results of model calculations taken from [85]. (a) Theoretically estimated
THG spectra for E3ω ‖ Eω ⊥ B, E3ω/ω ‖ [112], k ‖ [111], and B ‖ [110] for B =
0, 2, 4, 6, and 8 T. (b) and (c) display theoretically estimated rotational anisotropies with
and without a magnetic �eld.
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In the course of collaboration Prof. A. B. Henriques has performed model calcula-
tions to theoretically estimate spectra and rotational anisotropies of THG in EuTe
for magnetic �elds 0 T≤ B ≤ 8 T. Figure 3.9 summarizes parts of his results taken
from [85]. Appendix 5.3 brie�y summarizes the main ideas and limits of the model;
for more detail descriptions see Refs. [85].

A comparison of calculated (Fig. 3.9) and measured (Fig. 3.8) THG spectra un-
derlines that the emission around 2.4 eV and 3.15 eV is governed by the optical
transitions 4f 7 → 4f 65d1(t2g) and 4f 7 → 4f 65d1(eg). The model based on these
transitions reproduces the redshift and the narrowing of the lower energy THG peak
with increasing magnetic �eld strength. The induced anisotropy of third harmonic
light polarization by a static magnetic �eld is predicted by the model as well; com-
pare Figs. 3.9 (b), (c) and 3.8 (b), whereas no anisotropy is predicted and measured
without a magnetic �eld.

In contrast to the good agreement between the model and the experimental results
around 2.4 eV, the theoretical description of the higher energy band shows some
discrepancies. Calculations always predict smaller THG signals for the eg band
than for the t2g band. In contrast, the measured THG signals for eg band are larger
than for the t2g band in low magnetic �elds. They are smaller only in high magnetic
�elds. The theory is based on tight-binding approximations being more appropriate
for lower energetic states. Further, only the 8S7/2 and 7FJMX electronic levels
with identical broadening are taken into account by the model. Although these
approximations are apparently acceptable to describe the lower energy conduction
band, higher energy states need a more advanced model.

The model also lacks the description of interference. It does not separate crystallo-
graphic and induced contributions. Despite these limitations, the theoretical model
describes reasonably well many of the observed THG characteristics and consolidates
the conclusion, that THG in EuTe is associated with its direct band gap states.

Comparison of THG and SHG Spectra

Figure 3.10 (a) displays THG and SHG spectra measured on the same EuTe sample
for B = 7 T at T = 5 K. Both measurements are performed in the con�guration
E3ω/2ω ‖ E ⊥ B for maximum signals. The ED allowed four photon process THG
is much more e�cient than the MD contributions to SHG despite its higher order
susceptibility. Thus, the dominant emission bands are more pronounced and visi-
ble in the THG spectra showing a better signal to noise ratio. In addition, with
THG spectroscopy higher energy bands are uncovered. In centrosymmetric EuTe,
THG spectroscopy re�ects the electronic con�guration even without a magnetic �eld.
Nevertheless, the importance of spin induced contributions to THG is reported as
well.
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Figure 3.10: (a) THG and SHG spectra of EuTe measured for E3ω/2ω ‖ E ⊥ B at
B = T and T = 5 K. The SHG signals are enhanced by a factor of 2. (b, c) Rotational
anisotropies of the second harmonic light polarization shown exemplarily for 2~ω = 2.4 eV.
Points resemble measurements and areas give �ttings following Eqs. (12)-(16) from [15].

Theory predicts zero �eld contribution stemming from the antiferromagentic order-
ing of the spin lattices. Extensive temperature dependency measurements did not
resolve any results pointing at pure antiferromagnetic contributions. These signals
would be expected to vanish for T > TN in the paramagnetic phase abruptly. But
no change in intensity could be linked to this temperature. Therefore, the theoret-
ical model is able to give a qualitative understanding, but it is insu�cient to draw
deeper conclusions on quantitative mechanisms.



3.6. THG in EuSe 79

3.6 THG in EuSe

In this chapter, the THG in the metamagnetic EuSe will be discussed. THG spec-
troscopy is able to resolve the various magnetic phases of EuSe as well as it was done
with SHG spectroscopy [15], but the dominant features of its electronic structure
are already resolved without magnetic �elds, which was not within the reach of SHG
spectroscopy.

3.6.1 Crystallographic Contributions to χ(3)
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Figure 3.11: Wide-range crystallographic THG spectra of EuSe for E3ω ‖ Eω and E3ω ⊥
Eω measured at T = 1.6 K (blue and red data). Solid lines are guides for the eye. Left
inset shows the temperature dependence of the THG intensity and right inset illustrates
the angular distribution of the THG light polarization; both are exemplarily shown for
3~ω = 3.24 eV. The line gives the �tted value in accordance with Eq. 3.2.

The wide-range crystallographic THG spectra of EuSe given in Fig. 3.11 show the
same principle features as that of EuTe displayed in Fig. 3.4. In the parallel con-
�guration E3ω ‖ Eω the THG signals can be linked to transitions from 4f 7 states
to the 5d(t2g) and 5d(eg) bands. The 1.2 eV splitting between these bands in EuSe
is about ∼ 0.4 eV larger than in EuTe due to its stronger crystal �eld [87]. The
inset of Fig. 3.11 illustrates that the observed THG intensity I3ω

‖ does not depend
on the temperature, at least up to 50 K. The rotational diagram of I3ω

‖ is isotropic
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and in accordance with Eq. (3.2). In contrast to EuTe residual signals are observed
for E3ω ⊥ Eω in EuSe, although no crystallographic signals are predicted in this
con�guration. Their overall strength is very weak I3ω⊥

I3ω‖
≈ 1% and they show the

same temperature and angle dependencies as signals measured in the parallel con-
�guration pointing at possible leakage as an explanation for these residual THG
signals. The observed THG signals without a magnetic �eld have shown pure crys-
tallographic character and no contributions from the anti-ferromagnetic ordering of
the spin lattices could be resolved.

3.6.2 Magnetic-Field-Induced Contributions to χ(3)

Figures 3.12 and 3.13 display the results of THG spectroscopy in static magnetic
�elds for the high 5d(eg) and low 5d(t2g) bands in EuSe, respectively. The induced
e�ects are studied in the con�guration E3ω ⊥ Eω ‖ B, where crystallographic signals
are forbidden; see Eq. (3.3). The signals of both bands depend on the magnetic phase
determined by the magnetic �eld; compare with Fig. 3.2.

On the one hand, the THG spectrum of the high-energy range does not change sig-
ni�cantly, when the magnetic �eld is increased from B = 0 T to −0.12 T, and the
magnetic phase is switched from AFM to FIM; compare orange and blue spectra in
Fig. 3.12 (a). The intensity increases slightly, but the spectral shape is unchanged.
On the other hand, a further increase in magnetic �eld strength to B = −2 T
switches the magnetic phase to FM and new features show up; see green spectrum
in Fig. 3.12 (a). These features stem from the complicated electronic structure of the
excited states f 65d1(eg), which are not discussed in detail here. The magnetic-�eld
dependence of the integrated intensity of the spectral range 3.1 − 3.7 eV is given
in Fig. 3.12 (b). THG signals increase from AFM over FIM phases to FM phases.
They reach a saturation level in the FM phase for B > 1 T. It is already known
from a Faraday e�ect study (see Ref. [94]) that in EuSe the internal alignment of
spins reaches 80% of its saturation value at magnetic �elds of about 1 T, and it is
only weakly increased in higher �elds up to 7 T. A good approximation for this be-
havior gives the dependence [a + bM(B)]2 with a ≈ 1.3b and M(B) after Ref. [99].
The parameters a and b are almost equal demonstrating that in the perpendicu-
lar con�guration I3ω

⊥ the magnetic-�eld-induced and residual crystallographic THG
intensities are comparable strong.

On the other hand, in the low-energy region a feature appears around 2.35 eV already
in the FIM phase; compare blue and orange spectra in Fig. 3.13.Its intensity increases
further with growing �eld strength, reaching a saturation level in the FM phase for
B > 1 T. The inset in Fig. 3.13 illustrates that the integrated magnetic-�eld-induced
THG intensity is well approximated by the dependence [a+ bM(B)]2 with a ≈ 1.3b
and M(B) after Ref. [99], which gives a good description for the high-energy band
5d(eg) as well. The microscopic origin of this feature remains unclear.
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Figure 3.12: (a) THG spectra of EuSe in the energy range 3.1−3.7 eV for E3ω ⊥ Eω ‖ B
at T = 1.6 K. Green, orange, and blue spectra display THG signals measured at B = −2 T,
−0.12 T, and 0 T. Solid lines are guides for the eye, and dashed lines indicate zero levels.
(b) Magnetic-�eld dependence of the THG intensity integrated over the spectral range
3.1− 3.7 eV. The solid line shows the normalized function [a+ bM(B)]2 with a = 1.3b and
M(B) after Ref. [99].

Magnetic-�eld-induced THG signals show polarization anisotropies as depicted in
Fig. 3.14. Their shapes for the parallel I3ω

‖ [see Fig. 3.14 (a)] and crossed I3ω
⊥

[see Fig. 3.14 (a)] con�gurations are in accordance with Eqs. (3.2) and (3.6), and
Eqs. (3.3) and (3.7), respectively. It is important to take into account the interference
of crystallographic and magentic-�eld-induced signals according with Eqs. (1.19) and
(3.8).
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Figure 3.13: (a) THG spectra of EuSe in the energy range 2.1−2.7 eV for E3ω ⊥ Eω ‖ B
at T = 1.6 K. Green, orange, and blue spectra display THG signals measured at B = 2 T,
0.12 T, and 0 T, respectively. Solid lines are guides for the eye, and dashed lines indicate
zero levels. Inset shows the magnetic-�eld dependence of the THG intensity integrated over
the spectral range 2.1− 2.7 eV. The solid line shows the normalized function [a+ bM(B)]2

with a = 1.3b and M(B) after Ref. [99].

3.6.3 Discussion

Comparison of THG and SHG Spectra

A direct comparison of wide-range THG and SHG spectra presented in Fig. 3.15
con�rms that both are governed by the same speci�c electronic properties of EuX.
The given data is mostly measured for E3ω,2ω ⊥ Eω ‖ B except the SHG signals for
the higher band 3.2− 3.6 eV, which are only seen for E2ω ‖ Eω ‖ B. SHG and THG
spectroscopy deliver in principle the same spectral results, but THG signals are an
order of magnitude stronger. Signals due to electric-dipole contributions to χ(3) can
be as strong and even stronger than signals due to magnetic-dipole contributions
to χ(2). Therefore, the THG spectroscopy seems to be the more suitable tool for
studies of centrosymmetric materials.
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Figure 3.14: Rotational anisotropies of the third-harmonic-light polarization in EuTe
measured for the strongest peak at 3~ω = 3.27 eV for B = −0.5 T at T = 1.6 K. Circles
in (a) and (b) display parallel I3ω

‖ and perpendicular I3ω
⊥ con�gurations, respectively. The

areas give �ttings following (a) Eqs. (3.2) and (3.6), and (b) Eqs. (3.3) and (3.7), while the
interference of crystallographic and magentic-�eld-induced signals is considered according
to Eqs. (1.19) or (3.8).
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4 Summary

For resonant SHG, the responsible state needs to ful�ll the selection rules for one-
and two-photon transitions simultaneously. The thorough analyses of the spectral,
polarization, temperature, magnetic �eld, and electric �eld dependences of the ob-
served SHG signals and the consequent theoretical discussion of excitations reveal
four distinct mechanisms, which enable the emission of SHG resonant to the en-
ergy levels of Wannier excitons. All of them have in common that they enable
the coherent three photon process by the �eld-induced mixing of one-photon and
two-photon allowed exciton(-polariton) states. First, an electric �eld leads to the
mixing of states with envelope wave functions of even and odd parity, e.g., S and P .
This mechanism enables the three-photon process via three electric dipole transi-
tions. Second, a comparable e�ect is observed, when the exciton exhibits an external
magnetic �eld. The e�ective electric �eld due to the magneto-Stark e�ect leads to
a mixing of states with odd and even parity, which results in the e�cient SHG.
Thirdly, exciton states with di�erent spin wave functions, but with the same main
quantum number n, can become mixed as a consequence of the spin Zeeman e�ect
in magnetic �elds. Thus, states that are spin forbidden for either one- or two-photon
transitions can form new states that are active for the SHG. Forthly, the mixing of
di�erent orbital wave functions for states of the same main quantum number n ≥ 2
by the orbital Zeeman e�ect in magnetic �elds can lead to new states that allow the
SHG. All mechanisms lead to signi�cant SHG signals, although their microscopic
explanations go beyond the electric dipole approximation. The unveiled microscopic
mechanisms are speci�c to excitons. SHG signals were not induced by external �elds
neither o�-resonant nor above the band gap at all.

This variety of mechanisms may help to understand the microscopic origin of previ-
ously reported optical harmonics generation in vicinity of exciton resonances, e.g.,
in GaAs and CdTe [12], or (Cd,Mn)Te [13]. The simultaneous application of electric
and magnetic �elds forti�ed the proposed mechanism based on the magneto-Stark
e�ect. Therefore, this technique is suggested to clarify, if the magneto-Stark ef-
fect is the main mechanism for the magnetic-�eld-induced SHG of excitons in other
semiconductors, e.g., GaAs, too.

The study of the THG in centrosymmetric EuX allows the separation of the crys-
tallographic and the magnetic-�eld-induced THG signals. The main characteristics
of the observed THG is explained by the speci�c electronic structure of these mag-
netic materials, i.e., their strongly localized ground states, which give rise to their
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distinct magnetic properties, too. The theoretically predicted pure antiferromag-
netic contributions to THG could not be observed. Nevertheless, the THG is able
to resolve antiferro-, ferri-, and ferromagnetic phases. This can be used to surveil
the magnetic structure for example during growth processes. The comparison of
spectroscopic SHG and THG studies in EuX leads to the recommendation of the
THG spectroscopy for the investigation of centrosymmetric materials.



5 Appendix

5.1 Modeling of Polarization Anisotropies

For simplicity the basis of the laboratory system is de�ned by:

 1 0 0
0 1 0
0 0 1


An Euler-matrix SampleTilt accounts for the arbitrary sample orientation, where
n is the rotation axis and α the rotation angle for a rotation, that transforms the
laboratory axes to the intrinsic crystal axes:

SampleTilt(n, α) = (5.1) cosα+ n2
1(1− cosα) n1n2(1− cosα)− n3 sinα n2 sinα+ n1n3(1− cosα)

n1n2(1− cosα) + n3 sinα cosα+ n2
2(1− cosα) −n1 sinα+ n2n3(1− cosα)

−n2 sinα+ n1n3(1− cosα) n1 sinα+ n2n3(1− cosα) cosα+ n2
3(1− cosα)


The basis of the crystallographic system can therefore be written as the matrix
product:

CrystalBasis = SampleTilt(n, α)

 1 0 0
0 1 0
0 0 1

 (5.2)

The complex tensor components of the crystallographic susceptibility χ are de�ned
according to the symmetry group of the crystal under investigation, e.g., ZnO [21,
22]:

χ1,1,3 = χ2,2,3 = χ1,3,1 = χ2,3,2 = xxz + ixxz′ (5.3)

χ3,1,1 = χ3,2,2 = zxx + izxx′

χ3,3,3 = zzz + izzz′

all other elements = 0
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To calculate the rotational anisotropy of the emitted SHG light, ϕ is the turning
angle of the incoming polarization around the direction of light propagation (here
the z-axis):

Eω =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 (5.4)

Now it is possible to transform the incoming light polarization into the basis of the
crystal system, calculate the polarization of the outgoing light in the basis of the
crystal system (for which the symmetry relations can be looked up, for example
in [21,22]), and then transform it back into the basis of the laboratory system:

Eω ′ = CrystalBasisTEω (5.5)

E2ω ′ =


∑3

i=1

∑3
j=1 χ1,i,jE

ω ′
iE

ω ′
j∑3

i=1

∑3
j=1 χ2,i,jE

ω ′
iE

ω ′
j∑3

i=1

∑3
j=1 χ3,i,jE

ω ′
iE

ω ′
j

 (5.6)

E2ω = CrystalBasisE2ω ′ (5.7)

The measured con�gurations I2ω
‖ and I2ω

⊥ correspond to the respective projection of
the outgoing light polarization:

I2ω
‖ ∝= E2ω

 cosϕ
sinϕ

0

 , I2ω
⊥ = E2ω

 − sinϕ
cosϕ

0

 (5.8)

If, for example, the dependence on an external magnetic �eld B can be extracted
from the susceptibility, Eq. (5.6) can be written as 1 :

E2ω ′ =


∑3

i=1

∑3
j=1

∑3
k=1

∑3
l=1 χ1,i,j,k,lE

ω ′
iE

ω ′
jB
′
kl∑3

i=1

∑3
j=1

∑3
k=1

∑3
l=1 χ2,i,j,k,lE

ω ′
iE

ω ′
jB
′
kl∑3

i=1

∑3
j=1

∑3
k=1

∑3
l=1 χ3,i,j,k,lE

ω ′
iE

ω ′
jB
′
kl

 , (5.9)

1 Please note that the magnetic �eld is represented by a third rank tensor rather than a pseudo
vector:

B =

 0 −Bz By

Bz 0 −Bx

−By Bx 0


Bkl directly re�ects the transformation properties of the magnetic �eld and there is no need to
distinguish between vectors and pseudo vector nor c and i tensors [104].
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where χo,i,j,k,l re�ects the reduced symmetry of the crystal, when the external per-
turbation is present.

The obtained function of such a model calculation can be used to �t the introduced
parameters (n, α) describing the sample orientation with respect to the direction of
light propagation z, and the tensor components of χ. The �tting results can be used
to draw qualitative conclusions to discuss the nature of the involved processes and
states.

5.2 Polariton Parameters in ZnO

Fiebig (eV) Wrzensinski (ev)
T1S(A) 3.3759 3.37599
L1S(A) 3.3778 3.37741
T1S(B) 3.3816 3.38256
L1S(B) 3.3929 3.39253
T2S(A) 3.4227
L2S(A) 3.4232
T2S(B) 3.4276
L2S(B) 3.4304
Tb1 4.4396 3.527
Lb1 4.4405 3.647
Tb2 4.5
Lb2 5.9274
ε⊥,b 2.0484 3.658

T1S(C) 3.4209 3.42162
L1S(C) 3.4327 3.43264
T2S(C) 3.4664
L2S(C) 3.4678
Tb1 4.4723 3.561
Lb1 4.4790 3.683
Tb2 4.5
Lb2 5.8658
ε‖,b 2.1171 3.754

Table 5.1: Polariton parameters for the 1S excitons in ZnO according to Fiebig [52] and
Wrzesinski [50] (energies are given in eV and at k = 0).
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5.3 Theoretical Model of THG in EuTe

The quantum mechanical model of the THG in EuTe provided by A. B. Henriques
is based on certain assumptions made on the electronic structure of EuTe, which
led to a successful description of the dichroic band-edge optical absorption (see
Refs. [100, 102, 105]) as well as the SHG in EuTe [106]. This section gives a brief
summary of his model; for a more detailed description see Ref. [85].

3ω ω 

ω 

ω 

ED 

ED 

ED 

ED 

7FJ´M´X´ 
(t2g / eg) 

7FJMX 
(t2g / eg) 

8S7/2 

8S7/2 

Figure 5.1: A Scheme of the four-photon process, which is used for the theoretical model
of the THG in EuTe described in Ref. [85].

The model considers the four-photon process illustrated in Fig. 5.1. It is assumed
that the three-photon transition is resonant with the energy of the 8S7/2 ←→7 FJ ′M ′X

′

energy gap (this energy is approximately the band gap of EuTe). The solid line at
the bottom represents the ground state, 8S7/2 of the seven f -electrons localized at
an Eu2+ lattice site; see Fig. 3.1 (b). The solid line at the top represents an excited
state 7FJ ′M ′X

′, which is formed by six localized electrons at an Eu3+ site and one
electron in the 5d(t2g) or 5d(eg) conduction bands; see Fig. 3.1 (b). The dashed
lines illustrate the two intermediate states. They are virtual excitations to which
one-photon transitions are electric-dipole (ED) allowed. It must be emphasized that
in order to keep the model tractable, the following simpli�cations were made: (1)
Only the 8S7/2 and 7FJMX electronic levels were assumed to be optically active;
(2) The tight-binding approximation with a common broadening parameter for all
levels was used. Although these approximations can be quite acceptable to describe
the t2g conduction band, they can only provide a very crude description of the more
energetic eg states. The contribution of the considered four-photon process to the
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third order polarization P3ω is approximated by

P 3ω ∝
∑
JMX,
J ′M ′X′

E2
JEJ ′

∣∣〈8S7/2

∣∣∑7
i=1 xi |8FJMX〉

∣∣2 ∣∣〈8S7/2

∣∣∑7
i=1 xi |8FJ ′M ′X ′〉

∣∣2
(EJ ′X′ − ~ω)(0− 2~ω)(EJX − 3~ω)

. (5.10)

Here, xi denotes the i-th electron position vector projected onto the polarization
vector of the exciting light.

The model uses a limited set of electronic states that includes the 4f 7
(

8S7/2

)
ground

state, and the excited states contained in the 4f 65d1 con�guration, i.e., one electron
is excited from the 4f 7 states to a state of the 5d subbands; see Figure 10 Ref. [85].
Thus, an excited state consists of six electrons in the 4f shell at an Eu3+ site (denoted
as 7FJM) and an electron in a Bloch state X. It is assumed that X and X ′ belong
to the same crystal �eld split conduction band, i.e., either 5d(t2g) or 5d(eg). In the
tight-binding scheme X is given by

X(k, r) =
1√
N

∑
R

eiR·kφ(r−R), (5.11)

where φ(r) represents one of the three 5d(t2g) europium orbitals (dxy, dyz or dzx), or
one of the two 5d(eg) europium orbitals (dz2 or dx2−y2 ). R is the position vector of
an Eu atom in the lattice, and N is the number of lattice sites inside the Born-von
Karmán volume.

The Zeeman energies of the Eu2+ ions are disregarded, because they are negligi-
ble compared to the energy shift associated with the d − f exchange interaction.
Consequently, the 7FJM levels have a 2M + 1-fold degeneracy, and the energy of an
electronic excitation, EJX , depends only on the quantum numbers J and X:

EJX = EG + ∆X +
1

2
λ4fJ(J + 1) + εX(k),

J = 0, . . . , 6, (5.12)

where λ4f = 9.6 meV is the spin-orbit interaction constant for electrons in the 4f
orbital of the Eu2+ ion, [102] and εX(k) is the energy dispersion of the 5d(t2g) or
5d(eg) conduction band; ∆X is given by

∆X =

{
0 if X belongs to a 5d(t2g) band

∆CF if X belongs to a 5d(eg) band.
(5.13)

EG is the magnetic-�eld-dependent energy band gap of the EuX system, which for
EuTe is given by [100]:

EG = EG(0)− JdfS ×

{ (
B
Bsat

)2

if B < Bsat

1 if B ≥ Bsat,
(5.14)



92 Chapter 5. Appendix

where EG(0) = 2.321 eV is the zero-�eld band gap, and JdfS is the d-f exchange
constant, taken to beJdfS=130 meV [106].

We shall use two characteristics of the above described electronic energy level scheme:

(i) the energy spread of the excited states is much smaller than the band gap, i.e.,
EG � λ4f , and EG is much larger than the energy width of εX(k);

(ii) all excited states have the same parity, which is opposite to the parity of the
ground state.

From the �rst property, it can be concluded that the dominant third-order in-
duced polarization will be strongly resonant when the photon energy is about ~ω ∼
1
3

(EG + ∆X). Therefore, we may discard the anti-resonant contributions [1, 2] to
the induced third-order dipole moment. From the second property, electric-dipole
matrix elements between excited states vanish.

The matrix elements given in Eq. (5.10) involve seven electrons, but they can be
rewritten to computable one electron matrix elements by a Clebsch-Gordon expan-
sion of the 7FJM states. To obtain the THG spectrum, the conduction band disper-
sion is ignored, and the one electron matrix elements are calculated using transition
between the orbital functions of 5d(t2g) or 5d(eg) and the 4f orbitls; for details see
Ref. [106]. The width of the conduction band energy is taken into account by con-
volving the third order polarization with a sum of Gaussian functions centered at
the energies EJX (Eq. (5.12)). For simplicity, their the full widths are assumed as
constant.

Further, it is necessary to make assumptions on the spatial orientation of the Eu2+

spins [107]. Naturally at B = 0, the Eu2+ spins lie in the (111) planes. It is known
that epitaxial layers of EuTe grown by MBE contain only one single T -domain, i.e.,
all spins align in one type of the four equivalent (111) planes [108].

Values and dependences of the THG intensity in a magnetic �eld are determined
by the transitions between 4f and 5d orbitals. These matrix elements dependent
strongly on the spatial orientation of these orbitals, which is determined by the
modulus of the magnetic �eld, as well as its direction with respect to the crystal-
lographic axes. However, the model does not change the calculated THG intensity,
when the the magnetic �eld direction is inverted.

The characteristic values used for the parameters to calculate the THG spectra for
EuTe can be found in Ref. [106].

Comparison Between Modeled SHG and THG

An external magnetic �eld has a fundamental e�ect on the SHG and THG e�cien-
cies in EuX, because its strength and direction determines the orientation of the
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Figure 5.2: An illustration of the modeled SHG and THG polarizations in EuTe at (a)
B = 0 and B = Bsaturation.

Eu2+ spins [107]. Fig. 5.2 illustrates the role of the spin orientation in the genera-
tion of second and third harmonics. On the one hand at B = 0, the spin sublattices
are oriented antiparallel. SHG orginates from the magnetic dipole coupling between
excited states, [14, 15, 106] and the polarization waves arising from both magnetic
sublattices pointing in opposite directions. Thus, their interference leads to a zero
net polarization, and no SHG occurs without an external �eld. In contrast, the
third-order polarizations originating from electric-dipole coupling between 4f and
5d orbitals are in phase with one another, regardless of the orientation of the sub-
lattices. Thus, their amplitudes add up and crystallographic THG is allowed. On
the other hand at B = Bsaturation (the �eld in which all spins are alligned parallel to
the external magnetic �eld direction), the ferromagnetic alignment, where only one
single magnetic sublattice remains, leads to SHG as well as to THG.
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