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Abstract

For the statistical analysis of microarray gene expression data, the clustering of short time

series is an important objective in order to identify subsets of genes sharing a temporal ex-

pression pattern. An established method, the Short Time Series Expression Miner (STEM)

by Ernst et al. ([Erns 05]), assigns time series data to the closest of suitably selected proto-

types followed by the selection of significant clusters and eventual grouping. This algorithm

identifies each time series by a corresponding vector in R
d which contains the data expressions

at d ∈ N not necessarily equidistantly distributed points in time. In order to qualify for the

term “short” time series, the number d is supposed to be small, e.g. d ≤ 12.

For the clustering of normalized d-dimensional data Y = {yj}j=1,...,N we propose to minimize

the Penalized Frame Potential

Fα(Θ, Y ) = TFP(Θ) − α
m
∑

ℓ=1

max
j=1,...,N

〈yj , θℓ〉 (1)

on the m-fold unit sphere for the regularization parameter α ≥ 0. The functional contains

the “Total Frame Potential” (TFP) whose minimizers are exactly the Finite Unit Norm Tight

Frames (FUNTFs), see Benedetto and Fickus ([Bene 03]), and includes a data-driven com-

ponent for the selection of prototypes. We show that the solution of the corresponding con-

strained optimization problem is naturally connected to the spherical Dirichlet cells

Dj =

{

v ∈ R
d : ‖v‖2 = 1, yj = argmax

1≤k≤N
〈 yk, v 〉

}

of the given normalized data. Furthermore, the minimizers of Fα are, given that α > 0, in the

interior of the Dirichlet cells and the objective function Fα is differentiable in the minimum

with the extremal condition

4TT ∗T + 2TΛ = αYs

where T , Ys ∈ R
d have normalized columns and Λ = diag(λ1, . . . , λm) contains the Lagrange

multipliers from a corresponding constrained minimization problem.

The general problem is closely related to the search for point configurations on the unit sphere

like in Tammes’ ([Tamm 30]) or Thomson’s Problem ([Thom 04]). Moreover, the minimization
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of (1) (subject to the constraint that the solution is normalized) contains connections to

problems in matrix completion (see e.g. Candès and Tao in [Cand 10] or Mazumder, Hastie

and Tibshirani in [Mazu 10]).

The idea of using the frame potential in combination with a data-dependent term for opti-

mization was originally proposed by Benedetto, Czaja and Ehler ([Bene 10]) for finding sparse

coefficient representations. First results of our proposed method were published by Springer,

Ickstadt and Stöckler ([Spri 11]).

The thesis presents the motivation of our approach by introducing the STEM algorithm for

data clustering and outlining the connection to a proposal in [Bene 10]. We give an overview

over the development in the theory of Finite Unit Norm Tight Frames. Moreover, we analyze

the features of the Penalized Frame Potential and illustrate relations to other well-known

optimization problems in the theory of Compressive Sensing. Finally, we present numerical

results on the implementation of the functional by application on real and simulated data.
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Chapter 1

Introduction

In a variety of fields, such as biology, economy or social sciences, time series are necessary to

express characteristic features of underlying processes over time. For example, in the analysis

of microarray gene expression data, the clustering of time series is an important objective

in order to identify subsets of genes sharing a temporal expression pattern (see Figure 1.1).

According to Ernst et al. ([Erns 05]), more than 80% of the time series in the Stanford

Microarray Database consist of the values measured at eight time points or less. That leads

to a large number of data in a low-dimensional space ([Spri 11]).

Since most methods for analyzing long time series are not well-suited or not even applicable for

short time series, different approaches and algorithms have to be developed. Many established

methods for the analysis of short time series consider the behavior of biological data only in

the phase of the modeling of cluster prototypes. In [Spri 11], Springer, Ickstadt and Stöckler

proposed a new method based on the minimization of the non-convex functional

Fα(Θ, Y ) =
d

m2
TFP(Θ) + α

(

m+ 1−
m
∑

ℓ=1

max
j=1,...,N

〈yj , θℓ〉
)

, (1.1)

which also takes the actual (normalized) data Y = {yj}j=1,...,N into account. It combines the

“Total Frame Potential” (TFP) from [Bene 03] with a data-dependent penalty term. This

technique of obtaining a tradeoff between regularization and minimizing cost imposed by a

loss function is common in Statistics and Machine Learning Theory.

In this thesis, we analyze this functional on a mathematical basis, including an introduction
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CHAPTER 1. INTRODUCTION
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Figure 1.1: Sample data (left) and two groups of included short time series sharing similar expression patterns

(middle and right)

into the necessary framework, and discuss the position of our method in the family of cluster

algorithms as well as the relation of the inherent optimization to other problems in learning

theory. Our central Theorem (Theorem 4.8) shows that for a positive regularization parameter

α the minimizing family θ1, . . . , θm of vectors on the unit sphere cannot be located on the

spherical boundaries of the data-generated Dirichlet cells

Dj = {v ∈ R
d : ‖v‖2 = 1, 〈yj , v〉 = max

k=1,...,N
〈yk, v〉} .

Then it follows immediately that for each θℓ there exists a unique ys(ℓ) such that

max
j=1,...,N

〈yj , θℓ〉 =
〈

ys(ℓ), θℓ
〉

holds in (1.1). This feature is the basis for a proposal of a group of related minimization

problems which lead to further features of minimizers of the stated functional.

The outline is as follows. In Chapter 2, we introduce the basic theory of frames including the re-

cent development on finite frames. We cite major results by Benedetto and Fickus ([Bene 03])

and Goyal et al. ([Goya 98]). The Total Frame Potential from [Bene 03] is considered from

a linear algebra perspective and as an optimization problem with quadratic constraints us-

ing Lagrange multipliers. As will be shown, the objective function can be formulated in the

eigenvalues of a Gramian matrix leading to a polynomial problem of total degree four. Fur-

thermore, we extend existing results on the minimizers of the TFP to all extrema and show

that every local maximum is also global (Theorem 2.14).

Chapter 3 gives a short overview on cluster algorithms in general. The focus lies on the so-

called STEM algorithm by Ernst et al. ([Erns 05]), which contains connections to optimization
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on unit spheres. Furthermore, a brief discussion on an inherent relation to classical problems by

Tammes ([Tamm 30]) and Thomson ([Thom 04]) arising in biology and physics, respectively,

is included. The basic idea is to generalize an approach by Benedetto, Czaja and Ehler

from [Bene 10] in order to motivate the construction of the Penalized Frame Potential as a

data-dependent version of the TFP whose minimizers serve as cluster centers (prototypes).

In Chapter 4 we analyze the behavior of the Penalized Frame Potential and extract simple

characteristic features. Moreover, we characterize the minimizers in terms of Dirichlet cells of

a certain subfamily of the underlying data on a unit sphere. This leads us to introduce mild

relaxations of the given optimization problem in Chapter 5. We consider the minimization

problem from the perspective of nonlinear optimization using the primal and their Lagrangian

dual problems. For example, the optimization problem

(P2∗)











min
T∈Rd×m

‖T ∗T‖2F + α ‖T − Ys‖2F
s.t. trace (T ∗T ) = m.

constitutes a mild relaxation where the primal objective function and the corresponding dual

are equal in their respective optimal values, i.e. (P2∗) does not possess a duality gap. In

this context, tools from matrix analysis such as the Wielandt-Hoffman-Theorem for singular

values will be introduced. We also discuss the relation to other optimization problems in the

field of Compressive Sensing and formulate a heuristic method based on the relaxations for

computing minimizers of the PFP.

Chapter 6 evaluates the performance of the proposed method compared to standard cluster

algorithms such as STEM ([Erns 05]), DIB-C ([Kim 07]) and the well-known k-means algo-

rithm. For the evaluation, simulated and real data from biological experiments will be used.

Necessary tools for the evaluation such as permutation-based significance testing or the Ad-

justed Rand Index are introduced. We further present an example showing the applicability

of our PFP-based algorithm in feature recognition in multispectral data. Finally, Chapter 7

serves as a brief overview on open problems which will be dealt with in future work.
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Chapter 2

Frames

Frames were first introduced in 1952 by Duffin and Schaeffer in their work on non-harmonic

Fourier series ([Duff 52]). Later, during the rise of wavelets and the corresponding applications

in Signal Processing Theory, they drew attention due to ground-breaking works like the ones

by Daubechies ([Daub 92]), Chui ([Chui 92]) or Hernández and Weiss ([Hern 96]).

The reason for the increased interest in frames in signal processing is mainly based on their

ability in extracting and stressing characteristic features from signals compared to using stan-

dard orthonormal decompositions, e.g. wavelet bases. In contrast to bases, frames can be

linearly dependent. The inherent redundancy leads to decompositions that are more stable

against errors by corrupted or missing coefficients. A summary on the developments in frame

theory and an overview on certain special cases can be found in the articles by Kovačević and

Chebira ([Kova 07a, Kova 07b]).

Finite Unit Norm Tight Frames (FUNTFs) started attracting interest in the end of the 1990’s

and the beginning of the following decade due to publications by Goyal et al. ([Goya 98,

Goya 01]) or Benedetto and Fickus ([Bene 03]). Goyal et al. ([Goya 98]) proved that randomly

distributing m points independently and identically with a uniform distribution on the unit

sphere asymptotically leads to FUNTFs asm→ ∞. In 2003, Benedetto and Fickus ([Bene 03])

characterized the class of FUNTFs as vectors in K
d which are exactly the minimizers of the

(Total) Frame Potential, a functional that we introduce in Section 2.1. Minimization of the

frame potential corresponds to finding configurations of m unit norm vectors which are in
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CHAPTER 2. FRAMES

equilibrium under the underlying (frame) force. The article initiated a fast development in

this area whereas one has to admit that the theory basically rests on simple linear algebra

due to the finite dimensionality. As we will show in the following chapters, many results on

finite frames can be re-formulated using the singular value decomposition which simplifies the

proofs as well.

Another reason for the increased consideration of FUNTFs was, for example, the optimality

of analysis and synthesis of data in terms of a general quantization model ([Goya 01]). Shortly

after the article by Benedetto and Fickus, Casazza generalized the frame potential approach

by introducing the weighted frame potential distributingm vectors in K
d on arbitrary centered

spheres with radii r1, . . . , rm ([Casa 04]). Together, Casazza and Fickus extended the frame

potential concept even further to fusion frames ([Casa 09]).

In the theory of Compressed Sensing, where one is often interested in finding spanning sys-

tems in which the given data has a sparse coefficient representation, FUNTFs have also been

studied ([Dono 06]). Ehler ([Ehle 12a]), Ehler and Okoudjou ([Ehle 12b]) created probabilistic

versions of the frame potential, and Ehler and Galanis ([Ehle 11a]) showed their applicability

in directional statistics. An exhaustive view on the recent development in the theory of finite

frames is given by Casazza and Kutyniok in [Casa 13].

Later on, in Section 3.3, we adapt a functional proposed by Benedetto et al. in [Bene 10], by

generating a weighted mean of the frame potential and a data-fitting term. This already lead us

to introduce the Penalized Frame Potential in [Spri 11] for the selection of cluster prototypes,

which we will analyze and discuss for both theoretical and practical purposes in this thesis.

The primal objective will consist of the clustering of real-valued data vectors projected onto

the unit sphere. This modeling justifies the concentration on FUNTFs which will be regarded

primarily throughout this thesis after a general introduction into frame theory.

Definition 2.1. Let H be a Hilbert space and I an index set. A family of vectors Θ = {θk}k∈I
in H constitutes a frame, if constants 0 < A ≤ B exist, such that for all y ∈ H the frame

condition

A ‖y‖2 ≤ ∑

k∈I
|〈y, θk〉|2 ≤ B ‖y‖2 (2.1)

holds. A and B denote the frame bounds.
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In the case of equal frame bounds A = B, the family {θk}k∈I is called tight. Duffin and

Schaeffer ([Duff 52]) defined frames for the Hilbert space H = L2([0, 1]). In wavelet theory

and signal processing, most results are formulated for the space of square-integrable functions

over the real line, i.e. H = L2(R).

In general, a family {θk}k∈I forms by definition a Bessel sequence, if there exists a Bessel

bound B > 0, such that the upper bound condition in (2.1) holds. It is easy to see that the

corresponding operator

T ∗ : H → ℓ2(I)

y 7→ (〈y, θk〉)k∈I

is bounded with ‖T ∗‖ ≤
√
B. In functional analysis, T ∗ is often denoted as Bessel operator

whereas the wavelet community commonly uses the terms analysis or decomposition operator.

The adjoint operator T is called synthesis or reconstruction operator and given by

T : ℓ2(I) → H
(ck)k∈I 7→ ∑

k∈I
ckθk .

If the lower bound condition in (2.1) also applies, i.e. {θk}k∈I being a frame, the composition

S = TT ∗ : H → H defines the frame operator. Furthermore, S is self-adjoint, positive,

invertible and the inverse S−1 becomes itself a frame operator with bounds 0 < B−1 ≤ A−1.

The corresponding family {θ̃k}k∈I with θ̃k = S−1θk for all k ∈ I defines the canonical dual

frame satisfying the identities

y =
∑

k∈I
〈y, θk〉 θ̃k =

∑

k∈I
〈y, θ̃k〉 θk (2.2)

with unconditional convergence of both series for all y ∈ H ([Chri 08], Theorem 5.1.7). Note

that one is often interested in finding other dual frames with certain features that are generally

not satisfied by the canonical dual. For example, if H = L2(R), compactness of the support

is a common objective.

In the case of A = B, i.e. {θk}k∈I constituting a tight frame, we have S = A · Id where Id

denotes the identity on H. Hence, (2.2) reduces to

y = A−1
∑

k∈I
〈y, θk〉 θk ∀y ∈ H (2.3)

7



CHAPTER 2. FRAMES

and the frame condition (2.1) becomes the Parseval-type identity

A‖y‖2 =
∑

k∈I
|〈y, θk〉|2 ∀y ∈ H .

If A = 1, the frame {θk}k∈I is also often referred to as a Parseval frame. By Casazza and

Kovačević ([Casa 03]), the following theorem on Parseval frames is known as Naimark’s theo-

rem in operator theory and was first published by Akhiezer and Glazman in [Akhi 66]. Later

on, the theorem was rediscovered and reformulated in the frame theoretical framework by Han

and Larson in [Han 00a].

Theorem 2.2 (Naimark [Akhi 66], Han and Larson [Han 00a]). The family {θk}k∈I con-

stitutes a Parseval frame of the Hilbert space H if and only if there exists a Hilbert space

H0 ⊇ H with orthonormal basis {ϕk}k∈I such that the orthogonal projection P : H0 → H
satisfies Pϕk = θk for all k ∈ I.

Note that if the elements of a Parseval frame are unit vectors, i.e. ‖θk‖ = 1 for k = 1, . . . ,m,

the family is an ONB of H and vice versa.

2.1 Finite Frames

Throughout the following chapters we will use the finite-dimensional Hilbert spaces H = K
d

(K = C or R) and the index set I = {1, . . . ,m} where d,m ∈ N. Unless stated otherwise,

‖ · ‖ denotes the Euclidean norm induced by the inner product 〈x, y〉 = y∗x where y∗ is the

transposed complex conjugate of y ∈ K
d. It is a well-known fact (and easy to verify) that

the finite family Θ = {θk}k=1,...,m is a frame of H if and only if it spans K
d. Note that we

use { }-braces both for sets and for families of vectors like in [Bene 03]. Families are allowed

to contain multiplicities of single elements whereas sets are not. However, the meaning will

become clear from the context.

With column vectors θk ∈ Sd−1, where

Sd−1 = {v ∈ K
d | ‖v‖ = 1} (2.4)

denotes the unit sphere in K
d, the matrix

T = [θ1, . . . , θm] ∈ K
d×m (2.5)

8



2.1. FINITE FRAMES

defines the Frame Matrix

S = TT ∗ =
m
∑

k=1

θkθ
∗
k ∈ K

d×d

and the Gramian Matrix

G = T ∗T = (〈 θk, θℓ 〉)k,ℓ=1 ...,m ∈ K
m×m .

Obviously, since θk ∈ Sd−1, the diagonal entries of G satisfy gk,k = 1. In the following, let

(Sd−1)m = Sd−1 × . . .× Sd−1 denote the m-fold Cartesian product of the unit sphere.

Example 2.3. The simplest FUNTFs in R
2 are given by the real and imaginary parts of the

mth complex roots of unity, e.g. for m = 3 we get the frame

Θ =
{

(1, 0)T , (−1/2,
√
3/2)T , (−1/2, −

√
3/2)T

}

with corresponding Frame Matrix

S =











1 −1
2 −1

2

0
√
3
2 −

√
3
2





















1 0

−1
2

√
3
2

−1
2 −

√
3
2











= 3/2 I2

where I2 stands for the 2× 2 identity matrix. Furthermore, the Gramian matrix is given by

G =























1 −1
2 −1

2

−1
2 1 −1

2

−1
2 −1

2 1























.

Remark 2.4. (1) Note that the real and imaginary parts of the roots of unity form Grass-

mannian frames in R
2: FUNTFs are called equiangular, if | 〈θk, θℓ〉 | = c for all 1 ≤ k < ℓ ≤ m

and some constant c > 0, i.e. the non-diagonal entries of the Gramian G are equal in absolute

value. In general, the maximal frame correlation defined by Strohmer and Heath in [Stro 03]

M(Θ) = max
1≤k<ℓ≤m

|〈θk, θℓ〉| (2.6)

satisfies the lower bound condition

M(Θ) ≥
√

m− d

d(m− 1)
(2.7)

9



CHAPTER 2. FRAMES

for all families Θ ∈ (Sd−1)m. Grassmannian frames are defined as the minimizers of (2.6).

The right-hand side of (2.7) is a Welch bound ([Welc 74]). It constitutes a sharp bound

since equality holds if and only if Θ is equiangular and tight ([Stro 03]). If furthermore all

elements θk are normalized, Θ is an optimal Grassmannian frame. The problem of finding or

constructing equiangular frames is closely related to arrangingm linear subspaces of dimension

n < d in R
d such that the angles between the normal vectors are as large as possible, a problem

which has been addressed by Conway et al. in [Conw 96] as a minimization problem in the

Grassmannian space

G(d, n) =
{

U � R
d | dim(U) = n

}

.

(2) The special class of harmonic frames is generated by taking d ≤ m rows of a discrete

Fourier transform matrix M of size m ×m and letting θ1, . . . , θm ∈ K
d denote the columns

of that matrix. It is easy to see that {θk}k=1,...,m constitute an equal-norm Parseval frame

for K
d with ‖θk‖ =

√

d
m for k = 1, . . . ,m and normalization by

√

m
d leads to a FUNTF. An

example for a real-valued version of such a matrix of size 3×3 was constructed by Zimmermann

([Zimm 01]):

M =











1/
√
2 1/

√
2 1/

√
2

1 cos(2π3 ) cos(4π3 )

0 sin(2π3 ) sin(4π3 )











is already normalized appropriately and taking the last d = 2 rows implies that the frame in

Example 2.3 also is harmonic. Note that in the case K = R the choice of the d rows is not

arbitrary.

Hochwald et al. ([Hoch 00]) propose the usage of harmonic tight frames in antenna array design

which, interestingly enough, is again closely related to packings in Grassmannian spaces. The

article also states that the construction of harmonic tight frames has been used earlier by

Balan or Daubechies without publication.

(3) Multiplication of the frame elements in Example 2.3 by
√
A−1 =

√

2/3 leads to the

Parseval frame

Θ̃ =
{

(
√

2/3, 0)T , (−1/
√
6, 1/

√
2)T , (−1/

√
6, −1/

√
2)T
}

.
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Figure 2.1: Example for Naimark’s Theorem from Remark 2.4.3 with a Parseval frame for R
2 (red) being the

orthogonal projection of an orthonormal basis in R
3 (black)

Identifying H = R
2 with the (x, y)-plane in H0 = R

3 and letting P : H0 → H the orthogonal

projection, the family {ϕ1, ϕ2, ϕ3} with

ϕ1 =











√

2/3

0

1/
√
3











, ϕ2 =











−1/
√
6

1/
√
2

1/
√
3











, ϕ3 =











−1/
√
6

−1/
√
2

1/
√
3











is an orthonormal basis of R3 and satisfies Pϕk = θk for k = 1, 2, 3 in the sense of Naimark’s

Theorem (Theorem 2.2). Figure 2.1 presents the ONB consisting of ϕ1, ϕ2, ϕ3 ∈ R
3 and the

corresponding vectors θ1, θ2, θ3 ∈ R
2 which constitute a Parseval frame. △

Example 2.3 underlines the following important property of FUNTFs:

Lemma 2.5 ([Goya 98]). Let Θ = {θk}k=1,...,m ∈ (Sd−1)m be a family of m ≥ d unit vectors.

Θ is an A-FUNTF, if and only if S = AId ∈ K
d×d and A = m/d.

The value m/d is often referred to as the measure of redundancy of the frame. Whereas all

orthonormal bases Θ ∈ in K
d have A = 1, an increase of A shows the additional computational

cost as well as redundancy in the information contained in representation (2.3).

Probably the most important characterization of FUNTFs for given dimension d and cardinal-

ity m was developed by Benedetto and Fickus in [Bene 03]. The idea is to define a repelling

force between the frame elements leading to an equilibrium.

11



CHAPTER 2. FRAMES

Definition 2.6 ([Bene 03]). For a family Θ = {θk}k=1,...,m ∈ (Sd−1)m, the (Total) Frame

Potential is defined as the mapping TFP : (Sd−1)m → R,

TFP (Θ) =
m
∑

k,ℓ=1

|〈θk, θℓ〉|2 .

Using the above notations, the TFP can be calculated by

TFP (Θ) = ‖G‖2F = trace
(

(T ∗T )2
)

= ‖S‖2F

with ‖.‖F denoting the Frobenius norm on K
m×m. Moreover, if T = UΣV ∗ denotes the

singular value decomposition (SVD) of T , where U ∈ U(d), V ∈ U(m) are unitary matrices

and Σ = diag(σ1, . . . , σmin{d,m}) ∈ R
d×m with singular values σj ≥ 0 for all j, the frame

potential reads as

TFP(Θ) = ‖ΣTΣ‖2F =

min{d,m}
∑

j=1

σ4j .

Furthermore, the constraint that the trace of the Gramian G equals the cardinality of the

family Θ can also be formulated in terms of the SVD by

m =
m
∑

k=1

‖θk‖2 = ‖T‖2F = ‖Σ‖2F =

min{d,m}
∑

j=1

σ2j .

Hence, using this relaxation, the TFP can be considered as a quartic polynomial under

quadratic constraints. It is easy to see that the TFP under the given constraint is minimized

by σ1 = . . . = σd =
√

m/d if m ≥ d and σ1 = . . . = σm = 1 otherwise.

According to the following theorem, FUNTFs can be regarded as generalizations of the or-

thonormal sequences in K
d. It also connects the frame potential to the FUNTFs and orthonor-

mal sequences, respectively.

Theorem 2.7 (Theorem 7.1 in [Bene 03]).

(i) Every local minimizer of TFP is also a global minimizer.

(ii) If m ≤ d, then

min
Θ∈(Sd−1)m

TFP (Θ) = m (2.8)

and the minimizers are the orthonormal m-sets in K
d, i.e. 〈 θk, θl 〉 = δk,ℓ for all k, ℓ =

1, . . . ,m.

12



2.2. CRITICAL POINTS OF THE FRAME POTENTIAL

(iii) If m > d, then

min
Θ∈(Sd−1)m

TFP (Θ) = m2/d (2.9)

and the minimizing families with m elements are the (m/d)-FUNTFs in K
d.

Note that for the FUNTF Θ in example 2.3 we have

TFP (Θ) = 9/2 (2.10)

and the singular values satisfy σ1 = σ2 =
√

3/2.

A method for generating FUNTFs {θk}k=1,...,m in R
d for m ≥ d can be derived from Casazza’s

and Leon’s algorithm in [Casa 02a] and [Casa 02b]. The main idea here is to construct the

orthogonal matrix V ∈ O(m) such that for V ∗ = [v1, . . . , vm] it holds that ‖ṽ1‖ = . . . =

‖ṽm‖ =
√

d/m, where ṽk = (vk,1, . . . , vk,d)
T for k = 1, . . . ,m are generated by omitting the

last m − d rows of V ∗. Using U ∈ O(d) and Σ = diag(
√

m/d, . . . ,
√

m/d) ∈ R
d×m it follows

that T = UΣV ∗ has unit vectors as columns and satisfies the constraints for the singular

values for minima of the frame potential.

Remark 2.8. (1) In [Casa 04], Casazza et al. gave an alternative proof for Theorem 2.7,

by formulating a generalization for the eigenspaces of the frame operator S. We will adapt

this concept in the following section for a characterization of all critical points of the frame

potential.

(2) Goyal et al. define in [Goya 01] the equivalence relation

T1 ∼ T2 ⇔ ∃U ∈ U(d), ∆ = diag(δ1, . . . , δd), δk = ±1 : T2 = ∆UT1 ,

where U(d) is the group of unitary matrices in C
d×d. If m = d + 1, all FUNTFs are in the

same equivalence class. For example, the frame from example 2.3 is a representative of the

class containing all other FUNTFs with three elements. △

2.2 Critical Points of the Frame Potential

In the following, Θ denotes the family of unit norm vectors θ1, . . . , θm and we concentrate on

the case K = R since it is quite illuminating. According to [Bene 03] and [Absi 08], we apply

13
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the following definition:

Definition 2.9. The finite family Θ = {θk}k=1,...,m ∈ (Sd−1)m is called (TFP-)critical, if all

θk for k = 1, . . . ,m are eigenvectors of the corresponding frame matrix S = TT ∗. In addition,

if Θ is critical, we also call T = [θ1, . . . , θm] critical. In the case, that a critical Θ is neither

a local minimizer nor a local maximizer of TFP, Θ is called saddle point.

By Theorem 2.7, local minima of TFP are global. Furthermore,

min
Θ

TFP(Θ) = m ·max{1,m/d} .

Applying the classical Lagrange approach for constrained minimization of the Frame Potential

on the m-fold unit sphere in R
d gives the Lagrange function

L(Θ, λ) = TFP(Θ) +
m
∑

j=1

λj
(

‖θj‖2 − 1
)

=
m
∑

k,ℓ=1

|〈θk, θℓ〉|2 +
m
∑

j=1

λj
(

‖θj‖2 − 1
)

where ‖ · ‖ is the euclidean norm. The m equality constraints

gj(Θ) = ‖θj‖2 − 1, j = 1, . . . ,m,

describe the non-convex feasible set

(Sd−1)m = Sd−1 × . . .× Sd−1 = {Θ | gj(Θ) = 0, j = 1, . . . ,m} .

Since the Jacobian matrix of the mapping F : Rdm → R
m, F (Θ) = (g1(Θ), . . . , gm(Θ))T is

DF (Θ) =

















2θT1

2θT2
. . .

2θTm

















∈ R
m×dm ,

the full rank condition rank(DF )(Θ) = m is satisfied for all Θ ∈ (Sd−1)m, which is necessary

for the application of the Lagrange approach to the problem at hand, see e.g. [Rock 93].

For the derivative of the TFP let j ∈ {1, . . . ,m} and θ1, . . . , θj−1, θj+1, . . . , θm ∈ Sd−1. Define

the functions hj : R
d → R by

hj(θ) =
∑

k,ℓ6=j

〈θk, θℓ〉2 + 2
∑

k 6=j

〈θk, θ〉2 + 〈θ, θ〉2 .

14



2.2. CRITICAL POINTS OF THE FRAME POTENTIAL

Then, hj is a quartic polynomial in the components of θ and the total derivative in θ is

∇hj(θ) = 4
∑

k 6=j

〈θk, θ〉 θTk + 4 〈θ, θ〉 θT

which, with θ = θj , leads to

∇hj(θj) = 4
m
∑

k=1

〈θk, θj〉 θTk ,

or, equivalently,

∇hj(θj)T = 4Sθj .

Therefore it holds that

∇TFP(Θ)T = 4ST . (2.11)

Analogously, the total derivative of L in Θ and λ leads to the system of extremal conditions






























4Sθ1 + 2λ1θ1
...

4Sθm + 2λmθm

‖θ1‖2 − 1
...

‖θm‖2 − 1































!
= 0 ∈ R

(d+1)m ,

or, with Λ = diag(λ1, . . . , λm) denoting the diagonal matrix containing the Lagrange multi-

pliers,

4ST + 2TΛ = 0 ∈ R
d×m, (2.12)

‖θj‖2 = 1, j = 1, . . . ,m .

Note that (2.12) is equivalent to Sθk = −λk

2 θk, k = 1, . . . ,m. This implies that the Lagrange

multipliers λ1, . . . , λm satisfy an eigenvalue equation and by denoting the spectrum of S by

spec(S) we have {−λ1/2, . . . ,−λm/2} ⊆ spec(S). Hence, (−λk

2 , θk) are eigenpairs of S and

only critical Θ are candidates for extrema of TFP.

Since every FUNTF Θ satisfies S = m
d Id, it follows from Eig(S,m/d) = R

d that Θ is critical.

However, Benedetto and Fickus show in [Bene 03] that critical Θ exist which do not constitute

a FUNTF:

15
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Example 2.10 ([Bene 03]). Let N = {ν1, . . . , ν5] ∈ R
4×5 with

ν1 =

















1

0

0

0

















, ν2 =

















−1/2
√
3/2

0

0

















, ν3 =

















−1/2

−
√
3/2

0

0

















, ν4 =

















0

0

1

0

















, ν5 =

















0

0

0

1

















.

Then the frame matrix SN is given by

SN =

















3/2 0 0 0

0 3/2 0 0

0 0 1 0

0 0 0 1

















and it is easy to see that ν1, ν2, ν3 ∈ Eig(S, 3/2) and ν4, ν5 ∈ Eig(S, 1).

Theorem 2.11 ([Bene 03]). A finite sequence of unit vectors Θ = {θk}k=1,...,m is critical if

and only if the sequence may be partitioned into a collection of mutually orthogonal vectors,

each of which is a FUNTF for its span. Furthermore, the partition may be chosen explicitly

to be {Eµ} where Eµ = {θk : Sθk = µθk}. Also, the frame constant of Eµ is µ, and the spans

of the {Eµ} are precisely the non-trivial eigenspaces of S.

Consider µ1 > µ2 > . . . > µs ≥ 0 as the pairwise distinct eigenvalues of S. Analogously to the

proof of Theorem 7.4 in [Bene 03] we define for j = 1, . . . , s the index sets

Ij = {k ∈ {1, . . . ,m} : Sθk = µjθk},

which build a partition of {1, . . . ,m} (with Is = ∅, if S is not regular, i.e. µs = 0). By

Theorem 2.11, the families {θk}k∈Ij build frames of the eigenspaces if Θ is critical. Due to

the symmetry of S and the orthogonality of the eigenspaces in that case, the map TFP can

be decomposed into the restrictions on its eigenspaces:

TFP(Θ) =
m
∑

k,ℓ=1

|〈 θk, θℓ 〉|2 =
s
∑

j=1

∑

k,ℓ∈Ij
|〈 θk, θℓ 〉|2 =:

s
∑

j=1

TFPj(Θ) .

Using the notations mj = |Ij | and dj = dimEig(S, µj), Theorem 2.11 immediately leads to

the following conclusion.
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2.2. CRITICAL POINTS OF THE FRAME POTENTIAL

Corollary 2.12. If Θ is critical, the restrictions on the eigenspaces of S satisfy

TFPj(Θ) =
∑

k,ℓ∈Ij
|〈 θk, θℓ 〉|2 = µjmj , j = 1, . . . , s .

Furthermore, µj = 1 if {θk}k∈Ij is ONB of Eig(S, µj) and µj =
mj

dj
if the family is a frame.

Proof. Theorem 2.11 shows that TFPj(Θ) = mj = dj if {θk}k∈Ij is an ONB of Eig(S, µj) and

TFPj(Θ) =
m2

j

dj
if it is a FUNTF. Then for v ∈ Eig(S, µj) it follows that

µjv = Sv =

m
∑

k=1

〈v, θk〉 θk =
∑

k∈Ij
〈v, θk〉 θk

which is v in the case of an ONB or
mj

dj
v otherwise.

The matrix S = TT ∗ with T = [θ1, . . . , θm] has only non-negative eigenvalues due to positive

semi-definiteness. Since it holds that

‖Sθk‖2 = ‖
m
∑

ℓ=1

〈 θk, θℓ 〉θℓ‖2

= ‖θk +
∑

ℓ6=k

〈 θk, θℓ 〉θℓ‖2

= ‖θk‖2 + 2Re 〈 θk,
∑

ℓ6=k

〈 θk, θℓ 〉θℓ 〉+ ‖
∑

ℓ6=k

〈 θk, θℓ 〉θℓ‖2

= 1 + 2
∑

ℓ6=k

|〈 θk, θℓ 〉|2 + ‖
∑

ℓ6=k

〈 θk, θℓ 〉θℓ‖2 ≥ 1 , (2.13)

the (normalized) column vectors of critical T are eigenvectors of S with eigenvalues greater or

equal 1. Moreover, equality holds if and only if θk ⊥ span{θ1, . . . , θk−1, θk+1, . . . , θm}.

Lemma 2.13. If Θ is critical, then spec(S) ⊂ ({0} ∪ [1,m]) and the Lagrange multipliers

satisfy −2m ≤ λk ≤ −2, k = 1, . . . ,m.

Proof. For the verification of the upper bound consider the singular value decomposition

T = UΣV ∗. As seen before

m =
d
∑

j=1

σ2j ,

with σ2j being the eigenvalues of S. If an eigenpair (µ, v) with v /∈ span{θ1, . . . , θm} exists,

it follows that µ = 0 since R
d = span{θ1, . . . , θm} ⊕ ker(S) is an orthogonal sum. Together

17
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with (2.13) it can be concluded that spec(S) is in {0}∪ [1,m]. Finally, the extremal condition

Sθk = −λk

2 θk gives 1 ≤ −λk

2 ≤ m for all k = 1, . . . ,m which completes the proof.

In [Bene 03], Benedetto and Fickus consider only minima of the frame potential for the char-

acterization of the FUNTFs. From

TFP(Θ) =
m
∑

k,ℓ=1

|〈 θk, θℓ 〉|2 ≤
m
∑

k,ℓ=1

‖θk‖2‖θℓ‖2 = m2 ,

we also get that Θ is a global maximum of the function TFP if and only if c1, . . . , cm ∈ C exist

with |ck| = 1 and c1θ1 = . . . = cmθm. In that case the entries of the Gramian matrix satisfy

|gk,ℓ| = 1. Thus, in R
d, these are exactly the subsets of the unit sphere consisting of antipodal

vectors. The following theorem states that also every local maximum of TFP is global.

Theorem 2.14. Let m, d ∈ N and µ1, . . . , µs ∈ {0} ∪ [1,m] with µ1 > µ2 > . . . > µs ≥ 0

denoting the pairwise distinct eigenvalues of S. The critical family Θ = {θk}k=1,...,m is a

saddle point of TFP, if and only if one of the following holds:

(i) µ2 ≥ 1,

(ii) µ2 = 0 and the multiplicity d1 of µ1 satisfies 1 < d1 < min{d,m}.

Proof. A local and global minimum can be ruled out by Theorem 2.7, since these do only have

the (min{d,m})-fold eigenvalue µ1 = max{1,m/d}. Hence, it suffices to show that no local

maximum can exist under the assumptions.

By Corollary 2.12, the restrictions on the eigenspaces take their global minima in Θ:

TFPj(Θ) =
∑

k,ℓ∈Ij
|〈 θk, θℓ 〉|2 = µj |Ij | , j = 1, . . . , s.

If µ2 ≥ 1, it holds that µ1 > 1 and the family {θk}k∈I1 therefore is a FUNTF of Eig(S, µ1)

by Theorem 2.11. Thus, a small perturbation on θk0 , k0 ∈ I1, in Eig(S, µ1), such that the

FUNTF-condition is not satisfied, enlarges the function value of TFP1 and the function value

of TFP =
∑s

j=1TFPj increases in the corresponding direction. If µ2 = 0 ∈ spec(S), almost

the same argument can be used. In that case, Rd = Eig(S, µ1) ⊕ Ker(S) is an orthogonal

sum where dimKer(S) > 0. Since Θ is critical, the family {θk}k∈I1 builds a FUNTF or
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orthonormal system of Eig(S, µ1). If dimEig(S, µ1) > 1, perturbations on θk0 in Eig(S, µ1)

revoke the minimality condition which, again, is equivalent to the existence of an ascend

direction in Θ.

The only case which is open is µ2 = 0 and d1 = 1. In that case it holds that TFP(Θ) = m2,

which corresponds to a global maximum. The equivalence follows directly from the fact, that

no other cases are possible.

The only case which has not been regarded in the proof is µ2 = 0 and dimEig(S, µ1) = 1

which is only possible if rank(T ) = dim span{(θ1, . . . , θm)} = 1. In that case Θ is critical with

the single positive eigenvalue µ1 = m of S.

Corollary 2.15. Let Θ be a critical family. Then Θ is a global maximum, if and only if

µ2 = 0 and µ1 = m is an eigenvalue of S with multiplicity 1.

If two distinct eigenvalues µ1 > µ2 > 1 of S exist, directions of increase or decrease of the

TFP can be constructed directly with the method of Benedetto and Fickus in the proof of

Theorem 7.4 in [Bene 03]. The vectors θk, k ∈ I2, are a frame of Eig(S, µ2). Due to the linear

dependence, there exist βk ∈ C, k ∈ I2, satisfying
∑

k∈I2 βkθk = 0. Without any restriction,

βk can be chosen such that |βk|2 < 1/2. Let ε > 0, (µ1, θ) eigenpair with normalized θ and

Θ̃ = {θ̃k}k=1,...,m with

θ̃k =







√

1− ε2|βk|2 θk + εβkθ, k ∈ I2

θk, k /∈ I2.

Then

TFP(Θ̃) = TFP(Θ) + 2(µ1 − µ2)ε
2





∑

k∈I2
|βk|2



+R(ε)ε4 ,

where R(ε) is bounded in magnitude and therefore TFP(Θ̃) > TFP(Θ).

Thus, the restriction µ2 > 1 guarantees the existence of the linear coefficients βk as described.

For µ2 = 1 the construction from the proof of Theorem 2.14 can be used. On the other hand,

we receive a decrease in function value, if instead of the elements in Eig(S, µ2) the elements

of the spanning frame of Eig(S, µ1) are altered by the construction by Benedetto and Fickus.
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Example 2.16. Let N = (ν1, . . . , ν5) be defined as in Example 2.10. Then

S =

















3/2 0 0 0

0 3/2 0 0

0 0 1 0

0 0 0 1

















and TFP(N) = ‖S‖2F = 13/2.

The vectors ν1, ν2, ν3 constitute a FUNTF of Eig(S, 3/2) and ν4, ν5 are ONB of Eig(S, 1).

Hence, N is critical and the partition of the index set {1, . . . , 5} according to the proof of

Theorem 2.14 is I1 = {1, 2, 3} and I2 = {4, 5}. For β1 = β2 = β3 =: β ∈ R we get
∑

k∈I1 βνk =

0. Let γ := ε|β| and define according to the construction ν̂4 = ν4, ν̂5 = ν5 and

ν̂1 =
√

1− γ2

















1

0

0

0

















+

















0

0

γ

0

















=

















√

1− γ2

0

γ

0

















,

ν̂2 =
1

2

















−
√

1− γ2

√

3− 3γ2

2γ

0

















,

ν̂3 =
1

2

















−
√

1− γ2

−
√

3− 3γ2

2γ

0

















.

Then the new frame matrix Ŝ = T̂ T̂ ∗ is

Ŝ = diag

(

3

2
(1− γ2),

3

2
(1− γ2), 3γ2 + 1, 1

)

and therefore

TFP(N̂) = ‖Ŝ‖2F = 9
2(1− γ2)2 + (3γ2 + 1)2 + 1

= 13
2 + 27

2 γ
4 − 3γ2

= TFP(N) + g(γ)

with g(γ) := 27
2 γ

4 − 3γ2 < 0 for 0 < γ <
√
2/3 and g strictly decreasing on [0, 1/3]. For

γ = 1/3 we have Ŝ = diag(43 ,
4
3 ,

4
3 , 1). Furthermore, {ν̂1, . . . , ν̂4} constitutes a FUNTF of

Eig(S, 4/3) and ν̂5 is ONB of Eig(S, 1).
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2.3 Spectrum and Non-Tightness

In this last section on the introduction of Frames, we define the Non-Tightness as a means in

order to measure “how far away” from a FUNTF a family of vectors in Sd−1 is.

Definition 2.17. Let m ≥ d, Θ = {θk}k=1,...,m ⊂ Sd−1 be a finite family of (not necessarily

pairwise distinct) normalized vectors, T = [θ1, . . . , θm] ∈ C
d×m and S = TT ∗. Then the

mapping NT : Sd−1 × . . .× Sd−1 → R,

NT(Θ) =
∥

∥

∥
S − m

d
Id

∥

∥

∥

2

F

defines the Non-Tightness of the family Θ.

Obviously, the Non-Tightness is closely connected to the frame potential which satisfies

TFP(Θ) = ‖S‖2F . However, as we will see in Chapter 4, the Non-Tightness works as a

helpful tool in the analysis of the asymptotic behavior of certain functionals used for the data

clustering approach, which we introduce in Chapter 3.

It is easy to see from (2.1) that the eigenvalues µj = σ2j of an arbitrary frame operator are

located in the interval [A,B] where 0 < A ≤ B < ∞, which already implies the regularity of

S. As stated in Lemma 2.5, if the columns of T constitute a FUNTF, then A = B = m/d. Let

T = UΣV ∗ be again the singular value decomposition of T with Σ = diag(σ1, . . . , σd) ∈ R
d×m

and unitary matrices U ∈ U(d) and V ∈ U(m). By definition, NT is zero if and only if Θ is a

FUNTF. Furthermore, by the symmetry of S, NT can be written as TFP−m2/d since

NT(Θ) = trace
(

(S − m

d
Id)

2
)

= ‖S‖2F − 2m

d
trace (TT ∗) +

m2

d2
trace (Id)

= TFP(Θ)− m2

d
.

The following proposition shows that the Non-Tightness has a natural interpretation as the

variance of the spectrum of the frame matrix S.

Proposition 2.18. Let µ1 ≥ µ2 ≥ . . . ≥ µd ≥ 0 denote the eigenvalues of the frame matrix

S. Then µ̄ = m
d is the mean of the eigenvalues and the sample variance σ̂µ satisfies

(d− 1)σ̂µ = NT(Θ) . (2.14)
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Proof. µ̄ = m
d follows directly from the fact that

m =
d
∑

j=1

σ2j =
d
∑

j=1

µj .

Then, due to the unitary invariance of the Frobenius norm,

NT(Θ) =
∥

∥

∥
S − m

d
Id

∥

∥

∥

2

F

=
∥

∥

∥
diag(σ21, . . . , σ

2
d)−

m

d
Id

∥

∥

∥

2

F

=
d
∑

j=1

(µj − µ̄)2

which establishes (2.14).
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Chapter 3

Cluster Algorithms for Short Time

Series

Clustering real data describes the attempt to identify groups whose members are similar

in terms of a predefined measure. This rather old problem affects many fields in science

and a vast number of approaches exist in the literature. Nowadays, the clustering prob-

lem is commonly dealt with in Data Mining and Machine Learning Theory. A classification

of different cluster algorithms into five major categories can be found, e.g., in the book of

Han and Kamber ([Han 00b]). Based on this classification, various examples for partitioning

(e.g. k-means, k-medoids, fuzzy c-means), hierarchical (agglomerative/ bottom-up, divisive/

top-down), density-based (DBSCAN, OPTICS), grid-based (STING) and model-based (Auto-

Class, ART) methods are described in Liao’s exhaustive survey ([Liao 05]), where the problem

of choosing appropriate distance or dissimilarity measures for the clustering process is also ad-

dressed.

The major part of the following chapter has already been published in [Spri 11]. However, the

analysis and the evaluation including numerical results, which follow in Chapters 4, 5 and 6,

have not been included in the mentioned contribution.

Classical methods for the analysis of long time series are based on principal component analysis

and discrete wavelet transforms ([Hast 01], [Qu 03]). A feature-based incremental clustering
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method is described by Vlachos et al. ([Vlac 03]) where the multilevel resolution capability of

Haar wavelets is combined with a coarse-to-fine selection of centers for the k-means clustering

algorithm. More recently, dimension reduction methods by kernel eigenmap methods like

Laplacian ([Belk 03], [Ehle 11b]) and Schroedinger eigenmaps ([Czaj 13]) project the data into

lower-dimensional subspaces with as little distortion as possible. In contrast, in most cases of

microarray analysis, the lengths of the time series are rather small. For example, according to

Ernst et al. ([Erns 05]), more than 80% of the time series in the Stanford Microarray Database

(http://smd.princeton.edu, accessed November 28, 2013) consist of the values measured at

eight time points or less. That leads to a large number of data in a low-dimensional space.

Since most methods for analyzing long time series are not well-suited or even applicable for

short time series, different approaches and algorithms have to be developed.

In some applications, data-dependent frames are computed in order to generate sparse co-

efficient representations of the given data. The advantage rests on the fact that frames as

redundant spanning systems – sometimes also denoted as overcomplete dictionaries – allow

for different choices of these representations. In the clustering problem for short time series we

deal with the problem of determining cluster prototypes. These prototypes are in a sense also

supposed to represent the expansion of the data, which is why we propose a frame theoretic

approach in this thesis.

Prototype selection is typical in partitioning methods. Approaches for the application on data

from short time series include the Short Time Series Expression Miner (STEM) developed by

Ernst et al. ([Erns 05]) and Difference-Based Clustering (DIB-C) by Kim and Kim ([Kim 07]).

In the following, we primarily concentrate on the STEM algorithm.

The first step of the STEM approach consists in constructing model profiles (cluster specific

prototypes of time series) p1, . . . , pm such that

min
j 6=k

dis(pj , pk)

is maximized, where dis is an appropriate dissimilarity measure.

Section 3.1 gives a geometric interpretation of the dissimilarity measure in the STEM algo-

rithm, justifying the application of frame theoretic tools. Afterwards, in Section 3.2, we show

that the main problem in the STEM algorithm has a natural connection to some classical prob-
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3.1. ON THE SHORT TIME SERIES EXPRESSION MINER

lems in distributing points on unit spheres ([Thom 04, Tamm 30]). Finally, we introduce the

Penalized Frame Potential in Section 3.3, a data-driven functional based on a frame theoretic

approach introduced by Benedetto et al. in [Bene 10] for sparse coefficient representations.

3.1 On the Short Time Series Expression Miner

The Short Time Series Expression Miner (STEM) by Ernst et al. ([Erns 05]) provides an

algorithm for clustering short time series. Suppose, we are given N discrete time series

(sj,t)t=0,...,d = (sj,0, . . . , sj,d) of length (d + 1) where N ≫ d and d small (usually less than

twelve). Firstly, a log-normalization transforms each time series (sj,t) into points

(xj,t)t=0,...,d = (log(sj,t/sj,0))t=0,...,d ∈ R
d+1. (3.1)

Note that xj,0 = 0. This is only a preliminary step. It presupposes positive data sj,t and is a

useful normalization of raw data of an exponential growth or decay phase, e.g. measurements

from short-time biological processes. In the following, we assume that all time series are in

log-normalized representation.

The first step of the STEM algorithm defines a large set P = {p1, . . . , pM} of synthetic model

profiles (interpreted as cluster-specific prototype time series), with pℓ ∈ R
d+1 and largeM ∈ N.

For specifying P , the user defines a control parameter c ∈ N which is supposed to represent

approximately the maximum change in values between successive time points of the time

series. As the log-transformed data satisfies xj,0 = 0, each model profile pℓ ∈ P is required

to satisfy pℓ,0 = 0. Moreover, from time t to t + 1, the model profiles can only increase or

decrease by an integer less than or equal to c, i.e.

pℓ,t+1 − pℓ,t ∈ {0,±1, . . . ,±c} .

As the set P of all possible profiles is large (|P | = (2c+ 1)d for time series of length d+1), the

next step of the algorithm reduces P to a subset R of m profiles where m should be chosen

moderately. Small m leads to the representation of separate clusters by the same prototype

whereas large m causes higher computational cost.
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Ernst et al. propose to solve

R∗ = argmax
R⊂P,|R|=m

min
p,q∈R,p 6=q

dis(p, q) , (3.2)

where dis is an appropriate dissimilarity measure. In other words, R∗ is chosen such that the

minimal inherent dissimilarity in the profile set is maximized.

In the following we use

dis(p, q) = 1− ρ(p, q)

with Bravais-Pearson correlation coefficient ρ; see (3.5) for a mathematical definition. Note

that non-integer values for the control parameter c in (3.2) could also be considered for generat-

ing the set P . However, scaling the profiles by positive constants does not bias the dissimilarity

measure dis, i.e. dis(αp, q) = dis(p, q) for α > 0 and profiles p, q.

Since the optimization problem of finding R∗ is NP-hard, a greedy algorithm is proposed

by Ernst et al. in order to find an approximate solution R̃ for the problem in (3.2). It

starts with R̃ containing only the model profile that decreases by c at each time point, i.e.

p1 = (0,−c,−2c, . . . ,−dc). After that, in each of the remaining m− 1 steps, the profile p that

meets

p = argmax
q∈P\R̃

min
r∈R̃

dis(q, r) (3.3)

is added to R̃. Obviously, for the chosen dissimilarity in (3.3), due to perfect negative corre-

lation, the second profile will always be p2 = (0, c, 2c, . . . , dc).

Note that greedy techniques for maximizing intercluster distances often lead to satisfying

prototype configurations with reasonable calculational effort, see, e.g., the algorithm proposed

by Batchelor and Wilkins in [Batc 69].

The second step of the STEM algorithm consists in assigning each observed time series

(xj,t)t=0,...,d to the closest prototype in terms of the given dissimilarity measure. For more

details, we refer to Ernst et al. ([Erns 05]). Since we focus on proposing an alternative

method for finding prototypes, we will solely concentrate on the first step here.

As already seen in [Spri 11], we present our interpretation of the dissimilarity measure and
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Figure 3.1: Intersection of sphere S2 and plane H (left), Euclidean distance ax,y = ‖θx − θy‖2 (right)

the optimization in (3.2) from a geometric perspective involving the (real) unit sphere

Sd−1 =
{

v ∈ R
d | ‖v‖2 = 1

}

⊂ R
d. (3.4)

Let x = (x0, . . . , xd), y = (y0, . . . , yd) ∈ R
d+1 be two vectors representing the values of two real-

valued time series in log-ratio normalization and let x̄ = (d+1)−1
∑d

k=0 xk and ȳ be the mean

values of x and y, respectively. Remember that the log-transformation causes x0 = y0 = 0.

According to the definition of the proposed dissimilarity measure in (3.3) we get

dis(x, y) = 1− ρ(x, y) = 1−
∑d

k=0(xk − x̄)(yk − ȳ)
√

∑d
k=0(xk − x̄)2

√

∑d
k=0(yk − ȳ)2

. (3.5)

Furthermore, we define in R
d+1 the (d-dimensional) hyperplane

H =

{

v ∈ R
d+1

∣

∣

∣

∣

∣

d
∑

k=0

vk = 0

}

(3.6)

containing all vectors in R
d+1 having coordinate sums equal to zero. Then the orthogonal

projection of Rd+1 onto the linear subspace H is given by

PH : R
d+1 → H

x 7→ PH(x) = (x0 − x̄, . . . , xd − x̄)T .

Moreover, the point θx = PH(x)/ ‖PH(x)‖2 is in the intersection H ∩ Sd. Using the standard
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inner product 〈·, ·〉 in R
d+1, we observe that the correlation coefficient ρ can be expressed as

ρ(x, y) =

∑

k(xk − x̄)(yk − ȳ)
√
∑

k(xk − x̄)2
√
∑

k(yk − ȳ)2

=
〈PH(x),PH(y)〉

‖PH(x)‖2 ‖PH(y)‖2
= 〈 θx, θy 〉 .

It is well known that H ∩ Sd is isomorphic to the (d− 1)-dimensional unit sphere Sd−1 ⊂ R
d.

Using this geometric identification, we denote the corresponding points on Sd−1 again by θx

and θy. Note that, for (d+ 1) = 3, H ∩ Sd is a Riemannian circle (see Figure 3.1).

Application of the cosine formula leads to

dis(x, y) = 1− 〈 θx, θy 〉 = 1− cosα = a2x,y/2

with α and ax,y as in Figure 3.1.

Hence, the dissimilarity of the two time series can be interpreted as half the squared Euclidean

distance between their projections onto the unit sphere Sd−1. For example, two perfectly

negatively correlated time series x, y ∈ R
d+1 have dis(x, y) = 2, their projections θx, θy are

antipodal on Sd−1 with ax,y = 2.

3.2 A Note on Tammes’ Problem

We return to the interpretation using the set of profiles R and the Euclidean distance ap,q =
√

2 dis(p, q) = ‖θp − θq‖2. For d = 3 (i.e., with observed time series at 4 time points), the

problem of finding the m most distinct profiles

R∗ = argmax
R⊂P,#R=m

min
p,q∈R,p 6=q

ap,q (3.7)

is related to Tammes’ problem ([Tamm 30]) of finding

Θm = argmax
{θ1,...,θm}⊂S2

min
1≤j<k≤m

‖θj − θk‖2 , (3.8)

which was proposed in order to simulate the distribution of pores on pollen grains. Note that

the main difference consists in relaxing the restriction in (3.2).
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A similar and even older problem has been considered by Thomson in [Thom 04] and is given

by application of a certain heterogeneity measure instead of the Euclidean distance:

Φm = argmin
{φ1,...,φm}⊂S2

E(φ1, . . . , φm) (3.9)

where

E(φ1, . . . , φm) =
∑

1≤j<k≤m

‖φj − φk‖−1
2 (3.10)

denotes the associated energy on the sphere. For example, the Fekete points ([Saff 97]) solve

Thomson’s problem; for a more exhaustive presentation of related problems and their solutions

we refer to Conway and Sloane ([Conw 93]).

3.3 Motivation of the Penalized Frame Potential

In [Spri 11], we proposed a new method for the choice of the set of cluster prototypes R =

{pℓ | 1 ≤ ℓ ≤ m}, viz. the first step of the STEM algorithm. More precisely, a replacement of

the optimization criterion in problem (3.2) by a new criterion is applied, where the new one is

based on the frame potential and a data-dependent penalty term. We assume that no further

dimension reduction is applicable without changing the geometry of the data, therefore we

only deal with the case m > d.

First of all, we recall, that the given time series (sj,t)t=0,...,d, j = 1, . . . , N , are log-transformed

and projected onto Sd−1 ⊂ R
d. For the sake of consistency with the terminology used in other

related work, we denote the matrix containing these projections by Y ∈ R
d×N with normalized

column vectors yj ∈ Sd−1.

Benedetto, Czaja and Ehler proposed in [Bene 10] to solve the minimization problem

min
Θ∈(Sd−1)m

TFP(Θ) + P(Θ, Y ) (3.11)

for finding sparse coefficient representations for retinal data. P(·, Y ) in (3.11) stands for a data-

dependent penalty term, its choice depends on the given problem. The argument of choosing

a criterion based on the frame potential is, that its minimization leads to point configurations

on Sd−1 which are “as orthogonal to each other as possible” ([Bene 03]). So the first part of
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the criterion is responsible for the coverage of all dimensions of our data space. The remaining

objective for choosing good candidates for cluster prototypes is to define a penalty term that

guarantees approximation of the data.

In our case, we use the penalty term

P(Θ, Y ) = m+ 1−
m
∑

k=1

max
1≤j≤N

〈yj , θk〉

and minimize the α-weighted (normalized) optimality criterion

Fα(Θ, Y ) =
d

m2
· TFP(Θ) + α · P(Θ, Y ), (3.12)

with α ∈ [0,∞). Our objective is to find the minimizing families Θ = {θk}k=1,...,m ⊂ Sd−1 of

the optimization problem

min
Θ∈(Sd−1)m

Fα(Θ, Y ).

Both components are normalized such that their respective minimal values are 1. Thus, both

expressions d
m2 · TFP(Θ) and P(Θ, Y ) are real numbers greater or equal to 1. Indeed, the

data-independent (first) part of the criterion (3.12) takes its minimum value, if and only if Θ

is a FUNTF. Hence, the minimizers in (3.12) for α = 0 are exactly the FUNTFs, which agrees

with the characterization in Chapter 2.

On the other hand, minimizing P enforces maximal correlation of each prototype θk with at

least one data vector yj . Therefore,

P(Θ, Y ) ≥ 1 ,

and equality holds if Θ ⊂ Y . In the extreme case α → ∞, the minimizer Θα of (3.3)

corresponds to a subset of Y (a feature which will be further investigated in Chapter 4). For

the case “α = ∞” even repetitions of the same unit vector θ1 = θ2 = · · · = θm = yi ∈ Sd−1

give a minimal solution. However, this “collapse” of the prototypes θj to only one point is

prohibited by the influence of the data-independent frame potential TFP in (3.12).

Remark 3.1. (1) Using polarization and given that θk, yj ∈ Sd−1 for all j and all k, the

penalty term P can be rewritten as

m+ 1−
∑

ℓ

max
j

〈 yj , θℓ 〉 = 1 +
1

2

∑

ℓ

min
j

‖yj − θℓ‖2 . (3.13)
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Hence, minimizing P is equivalent to minimizing the Euclidean distances between the data

and the prototypes which stresses the objective of approximating (single) data points.

(2) The proposal by Benedetto et al. ([Bene 10]) uses a different penalty term than the one

in [Spri 11]. Their original objective was to find sparse coefficient representations of retinal

data. Using

p(θk) =
N
∑

j=1

|〈yj , θk〉| , k = 1, . . . ,m,

and the total separation TS defined as

TS(Θ, Y ) = min
1≤k<ℓ≤m

|p(θk)− p(θℓ)| ,

the applied penalty term is

P1(Θ, Y ) = TS(Θ, Y )−1 .

Alternatively, the proposed method also contains the term

P2(Θ, Y ) =

m
∑

k=1

N
∑

j=1

|〈yj , θk〉| , (3.14)

which corresponds to the minimization of the ℓ1-norm of the coefficient vectors of the data in

the representation of the frame Θ. Candès and Tao showed in their renowned contribution

considering data recovery from corrupted measurements ([Cand 05]), that under “suitable

conditions” ([Bene 10]) ℓ1-minimization becomes equivalent to finding sparse representations.

Even if these conditions are hard to satisfy in practice, the ℓ1-approach is a common means

in compressive sensing.

However, P1 measures the distance to the whole data set. On the other hand, minimizing P2

leads to configurations θℓ that are as orthogonal to the data as possible. Both approaches are

unrewarding in specifying cluster prototypes. △
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Chapter 4

Analysis of the Penalized Frame

Potential

In [Spri 11], the applicability of the Penalized Frame Potential in data clustering was pointed

out on the basis of experimental data. However, an extensive analysis of the minimizers has

not been included. Since the minimizers for α = 0 are exactly the FUNTFs, the following

chapter addresses the problem of characterizing the minimizers for a positive parameter α > 0.

The Sections are arranged in the following way: Section 4.1 deals with the case α→ ∞. The

core statement is that the minimizer converges towards the most frame-like subfamily of the

data. The applied techniques are adapted from the analysis of similar problems. The main

Theorem in Section 4.2 shows that each vector θℓ in the minimizing family Θ corresponds to

exactly one vector ys(ℓ) in the data Y . This feature enables us to reformulate the functional

by replacing the maximization in the data-dependent part and builds the basis for different

simplifications which are introduced in Chapter 5. For the understanding of the minimizers,

the notion of spherical Dirichlet cells will prove helpful, the necessary definitions will be given.

Finally, Section 4.3 shortly characterizes the maximizers of the Penalized Frame Potential.
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4.1 Asymptotic Behavior

In the following let α ∈ (0,∞) and Y = {yj ∈ Sd−1 | 1 ≤ j ≤ N} be a family of normalized

data vectors. Furthermore, let Y m = Y × . . .× Y denote the m-fold Cartesian product of the

data. As mentioned, the technique that will be applied in the following for the analysis of the

behavior of the Penalized Frame Potential for α → ∞ is common in approximation theory

(see [Boor 01]).

Firstly, define the function

Φ : R → R (4.1)

α 7→ min
Θ∈(Sd−1)m

Fα(Θ, Y )

with Fα(·, Y ) : Sd−1 × . . .× Sd−1 → R defined as in (3.12):

Fα(Θ, Y ) =
d

m2
TFP(Θ) + αP(Θ, Y ) .

In the following, we use the abbreviating representation

Θα = argmin
Θ∈(Sd−1)m

Fα(Θ, Y ) , (4.2)

which allows Φ from (4.1) to be expressed by Φ(α) = (d/m2)TFP(Θα) + αP(Θα, Y ). Again,

as before in Chapter 3, we focus on the data-approximating penalty term

P(·, Y ) : Sd−1 × . . .× Sd−1 → R

Θ 7→ P(Θ, Y ) = (m+ 1)−
m
∑

ℓ=1

max
1≤j≤N

〈 yj , θℓ 〉 .

According to Theorem 2.7 and the Cauchy-Schwarz inequality, 1 ≤ d

m2
TFP(Θ) ≤ d with

d

m2
TFP(Θ) =











1 ⇔ Θ FUNTF

d ⇔ σ1θ1 = . . . = σmθm, |σ1| = . . . = |σm| = 1 .

Furthermore, 1 ≤ P(Θ, Y ) ≤ 2m + 1 where equality for the lower bound holds if and only

if Θ is a subfamily of Y . The upper bound applies only in the case y1 = . . . = yN = −θℓ,
1 ≤ ℓ ≤ m. Hence, Φ(α) = 1 + α is obviously only possible, if a FUNTF is contained in the

data Y .
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Using the set

S0 = {Θ ∈ (Sd−1)m | TFP(Θ) = m2/d ∨ Θ ∈ Y m} ⊂ (Sd−1)m ,

simple calculations yield

g1(α) := 1 + α = min
Θ∈(Sd−1)m

d

m2
TFP(Θ) + α min

Ψ∈(Sd−1)m
P(Ψ, Y )

≤ min
Θ∈(Sd−1)m

d

m2
TFP(Θ) + αP(Θ, Y ) = Φ(α)

≤ min
Θ∈S0

d

m2
TFP(Θ) + αP(Θ, Y )

≤ min{1 + α(2m+ 1), d+ α}.

Since d+ α < 1 + α(2m+ 1) for α > d−1
2m (which is less than 1

2 in the general case m > d), we

consider the linear function gd(α) := d+ α as a first upper bound which leads to

g1(α) ≤ Φ(α) ≤ gd(α) ∀α ≥ 0 . (4.3)

Let

Ψ̃ = argmin
Ψ∈Y m

TFP(Ψ) (4.4)

denote the most “frame-like” subfamily in terms of the frame potential of exactly m (not

necessarily pairwise distinct) data vectors, then the following theorem improves this upper

bound:

Theorem 4.1. Let Y be a family of vectors y1, . . . , yN ∈ R
d satisfying ‖yj‖ = 1 for j =

1, . . . , N and let Φ, Ψ̃ and Θα as defined above. Then

lim
α→∞

TFP(Θα) = TFP(Ψ̃)

and

lim
α→∞

P(Θα, Y ) = 1 ,

with TFP(Θα) monotonously increasing and P(Θα, Y ) monotonously decreasing.

In other words, Φ converges asymptotically towards the linear function

g∗ : R → R (4.5)

α 7→ g∗(α) =
d

m2
TFP(Ψ̃) + α .

The proof will be given in separate steps and results from the following lemmata.
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Lemma 4.2. For ε > 0 let Ψ,Θ ∈ (Sd−1)m be two families with ‖ψℓ−θℓ‖ < ε for ℓ = 1, . . . ,m.

Then

|TFP(Ψ)− TFP(Θ)| < 4m(m− 1)ε(ε+ 1) .

Proof. For k, ℓ = 1, . . . ,m, k 6= ℓ, let ck,ℓ := 〈 θk − ψk, θℓ 〉 + 〈ψk, θℓ − ψℓ 〉. Then |ck,ℓ| < 2ε

and

∣

∣

∣
|〈ψk, ψℓ 〉|2 − |〈 θk, θℓ 〉|2

∣

∣

∣
=

∣

∣

∣
|〈ψk, ψℓ 〉|2 − |ck,ℓ + 〈ψk, ψℓ 〉|2

∣

∣

∣

=
∣

∣2ck,ℓ 〈ψk, ψℓ 〉+ c2k,ℓ
∣

∣

< 4ε+ 4ε2 ,

which leads to

|TFP(Ψ)− TFP(Θ)| ≤
m
∑

k,ℓ=1

∣

∣

∣
|〈ψk, ψℓ 〉|2 − |〈 θk, θℓ 〉|2

∣

∣

∣

< 4m(m− 1)ε(ε+ 1).

Lemma 4.3. Let m ≥ d. The function Φ is concave, monotonously increasing and satisfies

(i) Φ(0) = 1, lim
α→∞

Φ(α) = ∞,

(ii) Φ(α) ≤ d

m2
TFP(Ψ̃) + α for all α ≥ 0 with Ψ̃ from (4.4),

(iii) Φ(α) =
d

m2
TFP(Ψ̃)+α = 1+α for α > 0 if and only if a subfamily of Y is a FUNTF.

Proof. For the concavity let 0 ≤ α < β and t ∈ [0, 1]. Then

Φ(tα+ (1− t)β)

= min
Θ∈(Sd−1)m

d

m2
TFP(Θ) + (tα+ (1− t)β) P(Θ, Y )

= min
Θ∈(Sd−1)m

t

(

d

m2
TFP(Θ) + αP(Θ, Y )

)

+ (1− t)

(

d

m2
TFP(Θ) + βP(Θ, Y )

)

≥ t min
Θ∈(Sd−1)m

(

d

m2
TFP(Θ) + αP(Θ, Y )

)

+ (1− t) min
Ψ∈(Sd−1)m

(

d

m2
TFP(Ψ) + βP(Ψ, Y )

)

= tΦ(α) + (1− t)Φ(β) .
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Now suppose there exist 0 ≤ α1 < α2 satisfying Φ(α1) ≥ Φ(α2). Due to the concavity of Φ, it

follows that Φ(α2) ≥ Φ(α) for all α ≥ α2 which, by (4.3), leads to the contradiction

1 + (α2 + d) ≤ Φ(α2 + d) ≤ Φ(α2) ≤ α2 + d .

(i) is obvious since Φ(α) ≥ 1 + α for all α ≥ 0 and

Φ(0) = min
Θ∈(Sd−1)m

d

m2
TFP(Θ) = 1.

(ii) follows from

Φ(α) = min
Θ∈(Sd−1)m

Fα(Θ, Y ) ≤ min
Ψ∈Y m

Fα(Ψ, Y ) =
d

m2
TFP(Ψ̃) + α .

(iii) has already been shown in the beginning of this section.

If Y does not contain a FUNTF (which will be most likely the case for real data), the inequality

in Lemma 4.3 (ii) becomes strict, i.e. Φ(α) <
d

m2
TFP(Ψ̃) + α for all α ∈ [0,∞).

Proof of Theorem 4.1. Firstly, we show by contradiction that the penalty term P decreases

monotonously in α. Suppose that 0 ≤ α1 < α2 exist with P(Θα2 , Y ) > P(Θα1 , Y ) where Θα1

and Θα2 are the minimizers in α1 and α2, respectively, according to the definition in (4.2).

For the sake of simplicity, denote P(Θj) = P(Θαj
, Y ) for j = 1, 2. Define the linear functions

h1, h2 : R → R,

hj(α) =
d

m2
TFP(Θj) + αP(Θj), j = 1, 2.

Then the optimality of Θ2 in α2 leads to

h2(α2) =
d

m2
TFP(Θ2) + α2P(Θ2)

≤ d

m2
TFP(Θ1) + α2P(Θ1) = h1(α2) .

It follows from P(Θ1) < P(Θ2) that

h2(0) =
d

m2
TFP(Θ2) <

d

m2
TFP(Θ1) = h1(0)

which gives

h2(α) < h1(α) ∀α ∈ [0, α2) .
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Figure 4.1: Generic plots of Φ, penalty term and frame potential for sample data AAS.txt with N = 700, d = 5

and m = 25 (for details, see Section 6.1)

Then h2(α1) < h1(α1) leads to the contradiction. The monotonicity of TFP can be seen from

h1(α1) =
d

m2
TFP(Θ1) + α1P(Θ1) ≤

d

m2
TFP(Θ2) + α1P(Θ2) = h2(α1)

with P(Θ1) ≥ P(Θ2). Hence, P(Θα) decreases and TFP(Θα) increases monotonously in α.

By Lemma 4.3 and (4.3), Φ converges for α→ ∞ to a linear function g : R → R, g(α) = c+α,

c ∈ [1, d], which implies P(Θα) → 1 (α→ ∞).

For α ≥ 0 let y
(α)
s(ℓ) ∈ Y , ℓ = 1, . . . ,m, satisfy

y
(α)
s(ℓ) = argmax

1≤j≤N
〈yj , θ(α)ℓ 〉 (4.6)

and define the families

Y (α)
s = {y(α)s(ℓ) | ℓ = 1, . . . ,m} . (4.7)

Then (4.4) implies

TFP(Ψ̃) ≤ TFP(Y (α)
s ) .
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Moreover, the convergence of P(Θα) shows that for every ε > 0, there exists α0 ≥ 0 satisfying

the inequality 〈y(α)s(ℓ), θ
(α)
ℓ 〉 > 1− ε2/2 for α > α0 and ℓ = 1, . . . ,m. Then, by polarization,

‖y(α)s(ℓ) − θ
(α)
ℓ ‖2 < ε2 ∀α > α0 ,

which, by Lemma 4.2, completes the proof of Theorem 4.1.

Remark 4.4. (1) Figure 4.1 shows the behavior of Φ for the sample data from [Spri 11]. The

upper plot contains the concave function Φ and the linear function g1, which bounds Φ from

below. The difference Φ−g1 in the second plot is a strictly increasing concave function. Using

the notion of the Non-Tightness from Section 2.3, the difference between the lower bound and

g∗ from (4.5) is

d

m2
TFP(Ψ̃) + α− g1(α) =

d

m2
TFP(Ψ̃)− 1 =

d

m2
NT(Ψ̃) ,

which acts as an asymptotic upper bound. Finally, the third plot gives an example for the

convergence results in Theorem 4.1, showing that P (Θα) decreases monotonously towards 1

whereas TFP(Θα) is increasing in α.

(2) Suppose Ψ̃ from (4.4) consists of m distinct vectors denoted by ψ̃1, . . . , ψ̃m ∈ Y m. Then

GΨ̃ = [ψ̃1, . . . , ψ̃m]∗ · [ψ̃1, . . . , ψ̃m] ∈ R
m×m is the sub-Gramian of size m×m of the Gramian

GY = [y1, . . . , yN ]∗ · [y1, . . . , yN ] ∈ R
N×N with minimal Frobenius norm. Furthermore, by

Proposition 2.18, the corresponding frame matrix SΨ̃ has minimal spectral variance. △

4.2 Minimal Property and Spherical Dirichlet Cells

One of the major challenges in analyzing the continuous function Fα(·, Y ) from (3.12),

Fα(Θ, Y ) =
d

m2
TFP(Θ) + α

(

m+ 1−
m
∑

ℓ=1

max
1≤j≤N

〈 yj , θℓ 〉
)

(4.8)

under the constraints that θℓ ∈ Sd−1 is, that the penalty term prevents global differentiability

of Fα(·, Y ) on Sd−1. However, as we will show in this paragraph, the function is differentiable

in an open neighborhood around the minimum. This allows to omit the max-term under

suitable conditions and specify certain subfamilies as in (4.7) of the data Y in order to express

the penalty term P in a simpler form. An important means is introduced by the following

definition.

39



CHAPTER 4. ANALYSIS OF THE PENALIZED FRAME POTENTIAL

Definition 4.5. Let {yj}j=1,...,N ⊂ Sd−1 be a family of (pairwise distinct) vectors in R
d. Then

Dk = {v ∈ Sd−1 : ‖yk − v‖2 = min
j=1,...,N

‖yj − v‖2}

denotes the (spherical) Dirichlet (or Voronoi) cell of the data vector yk.

It is easy to see that the Dirichlet cells can be alternatively characterized by

Dk = {v ∈ Sd−1 : 〈v, yk〉 = max
j=1,...,N

〈v, yj〉} . (4.9)

Furthermore, according to [Saff 97],

N
⋃

k=1

Dk = Sd−1 and int(Dj ∩Dk) = ∅ for j 6= k

which is quite obvious. It follows that Sd−1 can be partitioned (with respect to the overlapping

boundaries) into the N Dirichlet cells and ∂Dk = Dk ∩
⋃

j 6=kDj in the standard topology of

Sd−1.

Proposition 4.6. Let {yj}j=1,...,N ⊂ Sd−1 be a family of (pairwise distinct) vectors in R
d.

Then for j 6= k and Uj,k = span{yj − yk}⊥ the following holds:

(i) The boundaries of the Dirichlet cells satisfy ∂Dj ∩ ∂Dk ⊂ Uj,k.

(ii) Let Pj,k : Rd → Uj,k denote the orthogonal projection onto Uj,k. If vj,k =
yj + yk
‖yj + yk‖

exists with vj,k ∈ ∂Dj ∩ ∂Dk, then

vj,k =
Pj,k(yj)

‖Pj,k(yj)‖
=

Pj,k(yk)

‖Pj,k(yk)‖

and it holds that

‖yj − vj,k‖ = ‖yk − vj,k‖ = min
w∈∂Dj∩∂Dk

‖yk − w‖ = min
w∈∂Dj∩∂Dk

‖yj − w‖ .

Proof. If ∂Dj ∩ ∂Dk = ∅, (i) holds by definition. Now let w ∈ ∂Dj ∩ ∂Dk 6= ∅. Then from

(4.9) we get 〈w, yj〉 = 〈w, yk〉 and it follows that w ∈ span{yj − yk}⊥ = Uj,k.

Now, for the proof of (ii), let u1, . . . , ud−1 be an orthonormal basis of U := Uj,k. Then

〈u, yj〉 = 〈u, yk〉 for all u ∈ U and therefore Pj,k(yj) =
∑

ℓ 〈yj , uℓ〉uℓ = Pj,k(yk). Moreover,
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ξ := 1
2(yj + yk) satisfies ξ ∈ U , ξ 6= 0 and

Pj,k(yj) =
∑

ℓ

〈yj , uℓ〉uℓ

=
∑

ℓ

(

1

2
〈yj , uℓ〉+

1

2
〈yk, uℓ〉

)

uℓ

=
∑

ℓ

1

2
〈yj + yk, uℓ〉uℓ = ξ .

It follows that

vj,k =
ξ

‖ξ‖ =
Pj,k(yj)

‖Pj,k(yj)‖
=

Pj,k(yk)

‖Pj,k(yk)‖
. (4.10)

For w ∈ ∂Dj ∩ ∂Dk it is easy to see by ‖w‖ = 1 and (4.10) that

‖w − ξ‖2 = 1− 2〈w, ξ〉+ ‖ξ‖2 ≥ 1− 2‖ξ‖+ ‖ξ‖2 = ‖vj,k − ξ‖2 . (4.11)

Since (i) implies w − ξ ∈ U , the fact that ξ − yj ∈ U⊥ and (4.11) lead to

‖w− yj‖2 = ‖w− ξ+ ξ− yj‖2 = ‖w− ξ‖2 + ‖ξ− yj‖2 ≥ ‖vj,k − ξ‖2+ ‖ξ− yj‖2 = ‖vj,k − yj‖2 ,

where we used vj,k − ξ ∈ U in the last equality.

In the special case d = 3, the proposition shows that the boundaries of the Dirichlet cells are

subsets of great circles on the sphere. Note that it is possible that vj,k /∈ ∂Dj ∩ ∂Dk despite

∂Dj ∩ ∂Dk 6= ∅.

Now, for the following, suppose that y1, . . . , yN ∈ Sd−1 with yj 6= yk for 1 ≤ j < k ≤ N .

Otherwise remove all replicates from the data until the vectors are pairwise distinct and call

the new set of data vectors Y . As we will see, the Dirichlet cells D1, . . . , DN of the data Y

are of major importance for the differentiability of the function Fα(·, Y ). As in Chapter 2, let

T = [θ1, . . . , θm] ∈ R
d×m.

Lemma 4.7. If θℓ ∈ Sd−1 \
N
⋃

j=1
∂Dj for all ℓ = 1, . . . ,m, then the functional Fα(·, Y ) :

Sd−1 × . . .× Sd−1 → R with

Fα(Θ, Y ) =
d

m2
TFP(Θ) + α (m+ 1−

m
∑

ℓ=1

max
j=1,...,N

〈yj , θℓ〉)

is differentiable in Θ for α ≥ 0 and the derivative of Fα(·, Y ) in Θ satisfies

∇Fα(Θ, Y )T =
4d

m2
TT ∗T − αYs (4.12)

with Ys = [ys(1), . . . , ys(m)] ∈ R
d×m and ys(1), . . . , ys(m) as in (4.6).
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Figure 4.2: Sample data points and their Dirichlet cells on S2

Proof. If θℓ /∈ ∂Dj , there is exactly one data point ys(ℓ) for each θℓ with

〈yk, θℓ〉 <
〈

ys(ℓ), θℓ
〉

= max
j=1,...,N

〈yj , θℓ〉 .

Hence, with Θ denoting the family θ1, . . . , θm, the objective function reads as

Fα(Θ) =
d

m2
TFP(Θ) + α (m+ 1−

m
∑

ℓ=1

max
j=1,...,N

〈yj , θℓ〉)

=
d

m2
TFP(Θ) + α (m+ 1−

m
∑

ℓ=1

〈

ys(ℓ), θℓ
〉

)

=
d

m2
TFP(Θ) + α(m+ 1− trace (Y ∗

s T )) .

This expression obviously shows the differentiability of Fα in T or, respectively, Θ and (4.12)

follows from (2.11).

Thus, if θℓ ∈ intDs(ℓ) for ℓ = 1, . . . ,m, Fα is differentiable in Θ ∈ (Sd−1)m with

∇Fα(Θ, Y )T =
4d

m2
TT ∗T − αYs .

The following theorem connects the minimizers of the PFP functional to the Dirichlet cells

D1, . . . , DN of the data Y . In fact, it shows that the minimizers of the penalized frame

potential cannot be located on the boundaries of the Dirichlet cells generated by the data in

the case of strictly positive α > 0.
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Theorem 4.8. Let α > 0 and m > d. If the family of vectors Θ = {θ1, . . . , θm} ⊂ Sd−1

represents a local minimum of Fα(·, Y ), then θℓ /∈ ∂Dj for ℓ = 1, . . . ,m and j = 1, . . . , N .

Proof. Suppose there is a θℓ ∈ ∂Dj , i.e. there exists k ∈ {1, . . . , N} \ {j} such that

〈yj , θℓ〉 = 〈yk, θℓ〉 = max
1≤µ≤N

〈yµ, θℓ〉

or, equivalently, θℓ ∈ ∂Dj ∩ ∂Dk.

Using the auxiliary function g : Sd−1 → R, g(θ) =
d

m2
TFP(θ1, . . . , θℓ−1, θ, θℓ+1, . . . , θm), define

the two functions f1,α, f2,α : Sd−1 → R with

f1,α(θ) = g(θ) + α (m+ 1− 〈yj , θ〉 −
m
∑

ν=1
ν 6=ℓ

max
1≤µ≤N

〈yµ, θν〉)

= g(θ) + α (m+ 1− 〈yj , θ〉 −
m
∑

ν=1
ν 6=ℓ

〈

ys(ν), θν
〉

)

and

f2,α(θ) = g(θ) + α (m+ 1− 〈yk, θ〉 −
m
∑

ν=1
ν 6=ℓ

〈

ys(ν), θν
〉

) ,

where ys(ν) are from (4.6). Then obviously f1,α(θ) = f2,α(θ) for θ ∈ ∂Dj ∩ ∂Dk and

Fα ((θ1, . . . , θℓ−1, θ, θℓ+1, . . . , θm), Y ) =







f1,α(θ), θ ∈ Dj ,

f2,α(θ), θ ∈ Dk .

Moreover, by Lemma 4.7, both functions are differentiable with

∇f1,α(θ)T =
4d

m2
TT ∗θ − αyj and ∇f2,α(θ)T =

4d

m2
TT ∗θ − αyk .

Since θℓ ∈ ∂Dj∩∂Dk, there exists ys ∈ {yj , yk} such that η := 4d
m2TT

∗θℓ−αys /∈ span{θℓ}. Let
T = span{θℓ}⊥ denote the (d−1)-dimensional linear hyperplane which is parallel to the tangent

plane to Sd−1 at θℓ. Then the orthogonal projection PT of η onto T satisfies v := PT (η) 6= 0

and 〈v, η〉 = 〈v, η − v〉+ 〈v, v〉 = ‖v‖2. For ε > 0 let w := ‖θℓ − εv‖−1(θℓ − εv) ∈ Sd−1 which

satisfies w = θℓ − εv +O(ε2). Letting

fs,α =







f1,α, ys = yj ,

f2,α, ys = yk ,
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the second-order Taylor expansion of fs,α can be written as

fs,α(w) = fs,α(θℓ) + 〈w − θℓ, η〉+O(ε2)

= fs,α(θℓ)− ε 〈v, η〉+O(ε2) (4.13)

= fs,α(θℓ)− ε‖v‖2 +O(ε2) .

Hence, there exists a w ∈ Sd−1 such that the family Θw = {θ1, . . . , θℓ−1, w, θℓ+1, . . . , θm}
satisfies Fα(Θ) > Fα(Θw) and therefore Θ cannot be a local minimum of Fα.

The crucial point in the proof is that for θℓ ∈ ∂Dj ∩∂Dk, there exists a ys ∈ {yj , yk} such that

η /∈ span{θℓ}. Otherwise the inner product 〈v, η〉 in (4.13) would be zero since v = PT (η) = 0

and the existence of a descent direction could not be guaranteed.

Note that the family Θ depends on the choice of the given regularization parameter α > 0.

Therefore θ1, . . . , θm should also be subscripted with an additional α. However, for ease of

notation, we skip the parameter for the single elements. The following corollaries conclude

the differentiability of the PFP functional from (3.12) in its minimum.

Corollary 4.9. If the family of normalized vectors Θα = {θ1, . . . , θm} represents a local

minimum of Fα(·, Y ) for α > 0, then for every θℓ there is exactly one

ys(ℓ) = argmax
j=1,...,N

〈θℓ, yj〉 .

Corollary 4.10. If the family of normalized vectors Θα = {θ1, . . . , θm} represents a local

minimum of Fα(·, Y ) for α > 0, then Fα(·, Y ) is differentiable in an open neighborhood of Θα.

4.3 Global Maxima of the Penalized Frame Potential

To complete the chapter on the analysis of the PFP functional Fα(·, Y ) from (3.12), we give

a short note on the maxima. As shown in Section 4.2, the minima of Fα(·, Y ) on Sd−1 lie,

for α > 0, in the interior of the data-generated Dirichlet cells D1, . . . , DN . Furthermore,

we know from Chapter 2 that the Total Frame Potential TFP gets maximized by a family

Θ = {θ1, . . . , θm}, whenever it holds that θ1, . . . , θm ∈ span{θ} for some θ ∈ Sd−1.
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On the other hand, the penalty term P takes its maximal value when θ1, . . . , θm are located

as far away from the data Y as possible. So the maximizer has to be on the boundary of a

Dirichlet cell. Otherwise the objective value could always be increased. Thus, the maximizers

of F(·, Y ) are generally multiplicities of a single vector on a boundary of some Dirichlet cell.

Proposition 4.11. If θ ∈ Sd−1 satisfies θ = argmin
v∈Sd−1

max
1≤j≤N

〈yj , v〉, then θ ∈ span{yj − yk}⊥

for some data vectors yj , yk ∈ Sd−1 with j 6= k and the family Θ = {θℓ}ℓ=1,...,m with θ1 =

. . . = θm = θ maximizes Fα(·, Y ) for all α ≥ 0.

The number of Dirichlet cells that intersect at θ from the Proposition does not depend on

the dimension d. Figure 4.3 shows a global maximum which is located in the intersection of

three Dirichlet cells. Note that θ1, . . . , θm are perpendicular to a face of the convex hull of the

data. Figure 4.4 contains an example where the maximizers lie in an intersection of only two

Dirichlet cells on S2 and θ1, . . . , θm are perpendicular to an edge of the convex hull.

Figure 4.3: Dirichlet cells and convex hull generated by 25 data points (green), θ1 = . . . = θm = θ (black

diamond) in the intersection of three Dirichlet cells
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Figure 4.4: Dirichlet cells and convex hull generated by four data points (green), θ1 = . . . = θm = θ (black

diamond) in the intersection of two Dirichlet cells
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Chapter 5

The PFP from a Perspective in

Nonlinear Programming

As mentioned, global minimization of the penalized frame potential is in general hard to

achieve due to the presence of many saddle points. For the characterization of minima of the

total frame potential as in Chapter 2, simple techniques from linear algebra are sufficient. On

the other hand, in Chapter 4 we showed that the minimizers of the penalized frame potential

in (3.12) for positive α are located in the interior of the spherical Dirichlet cells

Dj =

{

v ∈ Sd−1 : yj = argmax
1≤k≤N

〈 yk, v 〉
}

generated by the given data Y . For α → ∞, the penalty term dominates the total frame

potential and the minimum converges towards the most frame-like subfamily Ψ̃ of Y . Both

proofs are rather based on arguments from calculus. The purpose of this chapter is to formulate

the minimization in terms of optimization theory in order to qualify for the application of

methods in this framework.

The outline of the chapter is as follows: we first deal with a formulation of the problem in the

terminology of nonlinear programming. In section 5.1 we introduce alternative representations

as well as relaxations in order to derive further properties of the penalized frame potential.

The relaxations enable us to propose a heuristic method to approximate local minimizers

with reasonable computational cost. Section 5.2 provides appropriate dual problems for the
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nonlinear problems defined in Section 5.1. Furthermore, we show that under suitable mild

relaxations, the minimizer can be computed analytically via the singular values and analyze the

duality gaps between the given primal problems and the corresponding dualizations. Section

5.3 deals with the choice of data subsets. We provide an example implying that the optimal

subset of the data which generates the Dirichlet cells containing the minimizers depends in

general on the regularization parameter α. Section 5.4 reformulates the main problem into

a polynomial problem based on a proposal by Lasserre ([Lass 12]). However, it can be seen

easily that the number of variables increases heavily in the context of polynomial optimization

and it becomes unfeasible to handle the computational effort properly. Finally, Section 5.5

relates the relaxed problems to other well-known problems in the literature.

Throughout this chapter, for ease of notation we concentrate on the case m ≥ d (especially in

the context of singular values), remarking that most results also cover or are easily transferable

to the case m < d. First of all, using the notation from Chapter 2, the main problem of

minimizing the data-driven penalized frame potential reads as

(P)















min
T∈Rd×m

d

m2
‖T ∗T‖2F + α

(

m+ 1−
m
∑

ℓ=1

max
1≤j≤N

〈 yj , θℓ 〉
)

s.t. diag(T ∗T ) = (1, . . . , 1) .

One of the major challenges for finding the solution stems from the fact that the unit sphere

Sd−1 is not convex in R
d. This makes the feasible set (Sd−1)m = Sd−1 × . . . × Sd−1 also a

non-convex set. Hence, many classical techniques in nonlinear programming do not apply.

However, by the compactness of Sd−1 and continuity of the objective function

F(Θ, Y ) =
d

m2
‖T ∗T‖2F + α

(

m+ 1−
m
∑

ℓ=1

max
1≤j≤N

〈 yj , θℓ 〉
)

,

existence of extrema is guaranteed. In contrast to the main theorem on the total frame

potential in [Bene 03], most extrema are local in the case α > 0 as can be seen by simple

examples. Figure 5.1 provides such an example with generic data for the case α = 5, d = m = 2

and N = 10. Obviously, the influence of the data permits the existence of minima that are

non-global.

A necessary condition for local minima of the penalized frame potential can be formulated

again by a Lagrangian approach.
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Figure 5.1: Upper left: negative function values of F for α = 5 and data y1, . . . , y10 ∈ S1; Lower left: contour

plot of F and indicators for the arguments of the global minimum; Right: data vectors (blue), the (unique)

global minimizers θ1, θ2 ∈ S1 (circles) and boundaries of the Dirichlet cells (dashes)

Theorem 5.1. Let Y = {y1, . . . , yN} ⊂ Sd−1 be a family of normalized data vectors. If

T0 = [θ1,0, . . . , θm,0] is a minimizer of (P), there exist Λ = diag(λ1, . . . , λm) ∈ R
m×m and

Ys = [ys(1), . . . , ys(m)] ∈ R
d×m with ys(ℓ) = argmin

j=1,...,N
‖θℓ,0 − yj‖2, ℓ = 1, . . . ,m, such that

4d

m2
T0T

∗
0 T0 + 2T0Λ = αYs . (5.1)

Proof. For α = 0, it holds that S0 = T0T
∗
0 = m

d Id and therefore Λ = −2
m Im satisfies (5.1). If

α > 0, the matrix Ys as defined above exists by Corollary 4.9. Analogously to Section 2.2, we

define the Lagrange function

L(T,Λ) =
d

m2
‖T ∗T‖2F − α

m
∑

ℓ=1

max
1≤j≤N

〈yj , θℓ〉+
m
∑

k=1

λk(‖θk‖2 − 1) ,

which can be expressed in T0 according to Corollary 4.10 by the identity

L(T0,Λ) =
d

m2
‖T ∗

0 T0‖2F − α
m
∑

ℓ=1

〈

ys(ℓ), θℓ,0
〉

+
m
∑

k=1

λk(‖θk,0‖2 − 1) . (5.2)

Using the trace operator, (5.2) is equivalent to

L(T0,Λ) = trace

(

d

m2
(T ∗

0 T0)
2 − αT ∗

0 Ys + (T ∗
0 T0 − Im)Λ

)

. (5.3)
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Again, according to (2.12) and Lemma 4.7, differentiation leads to the extremal condition in

(5.1).

The (m×m)-matrix Λ = diag(λ1, . . . , λm) consists of the Lagrange multipliers. Theorem 5.1

shows again that for α = 0 it holds that λ1 = . . . = λm = − 2
m . We call the matrix T ∈ R

d×m

α-critical if it satisfies (5.1).

Example 5.2. Let d = 2, m = N = 3 and

Y =





1 0 −1/
√
2

0 1 −1/
√
2



 ∈ R
d×N .

Considering the Lagrange function

L(T,Λ) = ‖T ∗T‖2F + α‖T − Y ‖2F +
m
∑

k=1

λk(‖θk‖2 − 1)

= trace
(

(T ∗T )2
)

+ α ‖T − Y ‖2F + trace ((T ∗T − I) Λ) , (5.4)

where Λ = diag(λ1, λ2, λ3) contains the Lagrange multipliers, leads to the extremal condition

2TT ∗T + TΛ = α (Y − T ) . (5.5)

Note that the penalty term is replaced by ‖ ·−Y ‖2F which is due to m = N and the equivalence

of minimization in the norm and maximization of inner products. Moreover, this term can be

expressed in terms of the trace operator using the identity 〈A,B〉F = trace (B∗A) for A,B ∈
R
d×m and 〈A,A〉F = ‖A‖2F .

For α = 0, it is easy to see that η1, η2, η3 ∈ R
2 with

η1 =





cos(−π/12)
sin(−π/12)



 , η2 =





cos(7π/12)

sin(7π/12)



 and η3 =





cos(5π/4)

sin(5π/4)





constitute a FUNTF. Therefore, the minimizer of

F(T ) = ‖T ∗T‖2F + α‖T − Y ‖2F

is given by T0 = [η1, η2, η3] or, equivalently, with c = cos(γ) and s = sin(γ) for γ = −π/12 by

T0 =





c s −1/
√
2

s c −1/
√
2



 . (5.6)
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Figure 5.2: Data Y from Example 5.2 (green) and FUNTF η1, η2, η3 (black)

On the other hand, for α→ ∞, the matrix T0 = Y minimizes F, i.e. T0 takes again the form

in (5.6) where γ = 0.

Let T0 from (5.6) with γ ∈ I = [−π/12, 0]. Then the first two columns in (5.5) read as





3c+ (4cs+ 1)s

3s+ (4cs+ 1)c



 + λ1





c

s



 = α





1− c

−s



 and





3s+ (4cs+ 1)c

3c+ (4cs+ 1)s



 + λ2





s

c



 = α





−s
1− c



 ,

implying that λ1 = λ2 is feasible. The corresponding system of linear equations





1− c −c
−s −s









α

3 + λ1



 = (4cs+ 1)





s

c





is solved by λ1 = (4c+s−1)(2c2−c−1)−3 and α = (4c+s−1)(1−2c2). Note that λ1(−π/12) =
−3, limγ→0 λ1(γ) = −3 and λ1(γ) ∈ [−3,−2.9) for γ ∈ I. Furthermore, the third column in

(5.5) leads to λ3 = −4(1 + cs) = −s(4c + s−1) − 3, which is monotonously decreasing on I

with λ3(−π/12) = −3 and λ3(0) = −4 (see Figure 5.3).

Hence, for fixed γ ∈ I we find a matrix Λ and α ≥ 0 such that T0 from (5.6) satisfies the

extremal condition in (5.5). Since the constraints ‖θℓ‖2 = 1 are satisfied for ℓ = 1, 2, 3, the
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Figure 5.3: λ1 = λ2 (left), λ3 (middle) and α (right) from Example 5.2 for γ ∈ [−π/12, 0]

function value L(T0,Λ) of the Lagrange function equals

F(T0) =
9

2
+ 2

(

2cs+
1

2

)2

+ 2α
(

(c− 1)2 + s2
)

= 5 + 4cs+ 8(cs)2 + 4(4c+ s−1)(1− 2c2)(1− c) .

Note that for x ≥ 0 and fixed γ ∈ I it holds that L(T0,(·),Λ) : R+ → R+ with

L(T0,x,Λ) = ‖T ∗
0,xT0,x‖2F + α‖T0,x − Y ‖2F + 2λ1(x

2 − 1)

and

T0,x =





cx sx −1/
√
2

sx cx −1/
√
2





can be identified by a quartic polynomial ϕγ = L(T0,(·),Λ) with the unique minimum in x = 1

(see Figure 5.4).

In the example, the Lagrange multipliers λℓ are in [−4,−2.9) for ℓ = 1, . . . ,m. However,

using the objective function from the main problem (P) leads to the extremal condition in

(5.1), which is different from the condition in (5.5). Furthermore, the Lagrange multipliers

are generally not bounded as the following Corollary shows.

Corollary 5.3. The Lagrange multipliers from Theorem 5.1 satisfy λℓ → ∞ for α → ∞ and

ℓ = 1, . . . ,m.

Proof. Let T satisfy (5.1). Usingm vector-valued equations instead of one single matrix-valued

equation, the necessary condition reads as

4d

m2
TT ∗θℓ + 2λℓθℓ = α ys(ℓ) , ℓ = 1, . . . ,m.
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Multiplication on both sides by θ∗ℓ shows that

4d

m2
‖T ∗θℓ‖2 + 2λℓ = α

〈

ys(ℓ), θℓ
〉

= α max
j=1,...,N

〈yj , θℓ〉 .

Now by max
j=1,...,N

〈yj , θℓ〉 → 1 for α→ ∞ and ‖T ∗θℓ‖2 ≤ m is bounded, the proof is complete.

5.1 Relaxations of the Main Problem

Since constants do not affect the minimization process, and by using the polarization identity

or (3.13), we simply formulate the main primal problem as

(P1)















min
T∈Rd×m

‖T ∗T‖2F + α
m
∑

ℓ=1

min
1≤j≤N

‖θℓ − yj‖2

s.t. diag(T ∗T ) = (1, . . . , 1) .

Note that the equality constraints

gk : R
d×m → R

T = [θ1, . . . , θm] 7→ gk(T ) = ‖θk‖2 − 1 , k = 1, . . . ,m,

are continuously differentiable in T . By writing gk(T ) = θ∗kθk − 1, it is easy to see that the

gradients ∇g1(T ), . . . ,∇gm(T ) are linearly independent for all feasible T . Furthermore, note
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that (P1) does not contain any inequality constraints, which reduces the Karush-Kuhn-Tucker

conditions to the classical Lagrange approach.

One of the major challenges in solving (P1) arises from the min-term in the sum in the objective

function. According to Theorem 2.7, the solutions for α = 0 are exactly the FUNTFs. On

the other hand, Theorem 4.1 shows that for α→ ∞ the solution becomes

Ψ̃ = argmin
Ψ∈Y m

TFP(Ψ) . (5.7)

In order to simplify the problem (P1), we first consider a fixed data matrix Ys ∈ R
d×m with

normalized columns, i.e. yj ∈ Sd−1 for all j, and propose the alternative problem

(P2)











min
T∈Rd×m

‖T ∗T‖2F + α ‖T − Ys‖2F
s.t. diag(T ∗T ) = (1, . . . , 1) ,

where we also used the fact that

‖T − Ys‖2F =
m
∑

k=1

‖θk − ys(k)‖2 .

Note that there exists α0 > 0 such that the columns of the optimal Ys contain the vectors of

the family Ψ̃ for all α > α0, which makes (P2) equivalent to (P1) for α sufficiently large.

Furthermore, in order to admit even more freedom on the constraints, we replace the require-

ment that θℓ ∈ Sd−1 for ℓ = 1, . . . ,m in (P1) and (P2) by the weaker version trace (T ∗T ) = m

and introduce the two relaxed problems

(P1∗)















min
T∈Rd×m

‖T ∗T‖2F + α

m
∑

ℓ=1

min
1≤j≤N

‖θℓ − yj‖2

s.t. trace (T ∗T ) = m,

and

(P2∗)











min
T∈Rd×m

‖T ∗T‖2F + α ‖T − Ys‖2F
s.t. trace (T ∗T ) = m.
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(P1)











min
T∈Rd×m

‖T ∗T‖2F + α
∑

ℓ

min
j

‖θℓ − yj‖2

s.t. diag(T ∗T ) = (1, . . . , 1)

(P2)











min
T∈Rd×m

‖T ∗T‖2F + α ‖T − Ys‖2F
s.t. diag(T ∗T ) = (1, . . . , 1)

(P1∗)











min
T∈Rd×m

‖T ∗T‖2F + α
∑

ℓ

min
j

‖θℓ − yj‖2

s.t. trace (T ∗T ) = m

(P2∗)











min
T∈Rd×m

‖T ∗T‖2F + α ‖T − Ys‖2F
s.t. trace (T ∗T ) = m

diag(T ∗T ) = (1, . . . , 1)

; trace (T ∗T ) = m

fix Ys

fix Ys

diag(T ∗T ) = (1, . . . , 1)

; trace (T ∗T ) = m

Figure 5.5: Primal problems (P1) and (P2) with relaxations including their respective relations

The diagram in Figure 5.5 visualizes the relations between the four stated optimization prob-

lems.

As we will see, (P2∗) is much easier to solve than the first problem (P1) is. Furthermore, in

Section 5.2 we characterize the solutions of (P2∗) in terms of the singular values. There is

also a strong connection between the dualizations of (P2∗) and (P2). We will use the primal

problems in order to formulate an algorithm in order to compute an approximate solution of

(P1).

The following theorem is known as the Wielandt-Hoffman-Theorem for singular values and

works as a key ingredient for the characterization of minima of (P2∗). The other central

aspect will be that the problem (P2∗) can be separated into two consecutive minimization
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steps. Further versions of the Wielandt-Hoffman-Theorem exist in the literature, e.g. for the

eigenvalues of normal or Hermitian matrices ([Horn 96] Theorem 6.3.5 and Corollary 6.3.8).

Theorem 5.4 (Wielandt-Hoffman, [Horn 96] Corollary 7.3.8). Let d,m ∈ N, d ≤ m, and

A,B ∈ C
d×m with singular values σ

(A)
1 ≥ . . . ≥ σ

(A)
d ≥ 0 and σ

(B)
1 ≥ . . . ≥ σ

(B)
d ≥ 0,

respectively. Then

d
∑

j=1

∣

∣

∣σ
(A)
j − σ

(B)
j

∣

∣

∣

2
≤ ‖A−B‖2F . (5.8)

Since the Frobenius- (or Hilbert-Schmidt-) Norm is invariant under orthogonal transforma-

tions, equality in (5.8) holds if UA = UB and VA = VB where A = UAΣAV
∗
A and B = UBΣBV

∗
B

are the SVDs of A and B, respectively.

For the following lemma, define for λ ∈ R the cubic polynomial pλ : R → R by

pλ(x) = x3 + λx , x ∈ R, (5.9)

and denote ξ(λ) as the largest real root of pλ. More precisely,

ξ(λ) =







0, λ ≥ 0 ,
√
−λ, λ < 0 .

(5.10)

Lemma 5.5. Given m > 0 and c1 ≥ c2 ≥ . . . ≥ cd ≥ 0 there exist λ ∈ R and x1 ≥ x2 ≥ . . . ≥
xd ≥ ξ(λ) solving the interpolation problem pλ(xj) = cj and

∑d
j=1 x

2
j = m with pλ and ξ(λ)

from (5.9) and (5.10), respectively.

Moreover, if cd > 0, the sequence x1, . . . , xd and the parameter λ are unique.

Proof. For λ ∈ R, the cubic polynomial pλ from (5.9) satisfies pλ(0) = 0 and p′λ(0) = λ.

Furthermore, pλ is strictly increasing on [ξ(λ),∞). By the intermediate value theorem, there

exists a non-increasing sequence of real numbers x1(λ) ≥ . . . ≥ xd(λ) ≥ ξ(λ) with pλ(xj(λ)) =

cj . Note that xj(λ) = ξ(λ) if and only if cj = 0.

For λ > 0, it holds that ξ(λ) = 0 and p′λ(0) → ∞ as λ→ ∞. It follows that
∑d

j=1 xj(λ)
2 → 0

since xj(λ) → 0, j = 1, . . . , d. On the other hand, we have ξ(λ) → ∞ for λ → −∞, which

implies xj(λ) → ∞ and therefore
∑d

j=1 xj(λ)
2 → ∞. Again, by the intermediate value

theorem, λ ∈ R with pλ(xj) = cj and
∑d

j=1 x
2
j = m exists where xj = xj(λ).
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Figure 5.6: Interpolating polynomials pλ : R → R, pλ(x) = x3 + λx, with pλ(x
(r)
j ) = c

(r)
j from Lemma 5.5 for

two pairwise distinct sequences c
(r)
1 ≥ . . . ≥ c

(r)
d > 0, λ = λ(r) for r = 1, 2; note that ξ(λ(1)) = 0 in (5.10) and

λ(1) > 0 (left) whereas ξ(λ(2)) > 0 and λ(2) < 0 (right)

In order to show that the solution is unique for c1 ≥ . . . ≥ cd > 0, suppose there exist

two distinct solutions (x, λ)T ∈ R
d+1 with x1 ≥ . . . ≥ xd > 0 and (z, γ)T ∈ R

d+1 with

z1 ≥ . . . ≥ zd > 0 where cj = pλ(xj) = pγ(zj) for j = 1, . . . , d. Since xν > zν for some

ν ∈ {1, . . . , d} and m = ‖x‖2 = ‖z‖2, there exists µ 6= ν with xµ < zµ. By x
3
ν > z3ν and

0 < cν = x3ν + λxν = z3ν + γzν ,

it follows that λ < γ. However, in that case,

cµ = x3µ + λxµ < z3µ + γzµ = cµ ,

which is a contradiction.

It follows from the proof that the solution for the interpolation problem in Lemma 5.5 can be

computed by solving the system of d+ 1 nonlinear equations

x3j + λxj = cj , j = 1, . . . , d

d
∑

j=1

x2j = m,

containing the d + 1 variables λ, x1, . . . , xd. For numerical computations, Newton’s method

can be applied, which has also been used for the solutions of the two different interpolation

problems in Figure 5.6.
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Lemma 5.6 ([Herm 00], Theorem 7.3). Let x, y, z ∈ R
d with zj = yτ(j), j = 1, . . . , d, where τ

is a permutation of {1, . . . , d}. Then 〈x, z〉 is maximized (over all permutations of {1, . . . , d}),
if x and z have the same ordering, i.e.

(xj − xk)(zj − zk) ≥ 0 , j, k = 1, . . . , d .

Lemma 5.7. Let x, y ∈ R
d with x1 ≥ . . . ≥ xd and y1 ≥ . . . ≥ yd. Furthermore, let zj = yτ(j),

j = 1, . . . , d, where τ is a permutation of {1, . . . , d}. Then ‖x− z‖22 is minimized in the sense

of Lemma 5.6, if τ = id or, equivalently, zj = yj, j = 1, . . . , d.

Proof. The statement follows from ‖x− z‖22 = ‖x‖22 + ‖z‖22 − 2〈x, z〉 and Lemma 5.6.

Accordingly, by the Wielandt-Hoffman-Theorem (Theorem 5.4) and Lemma 5.5, the solution

of (P2∗) can be characterized in the following way.

Theorem 5.8. Let α > 0 and let Ys = Û Σ̂V̂ ∗ denote the SVD of Ys ∈ R
d×m. Then there

exists λ ∈ R and a matrix of singular values Σ = diag(σ1, . . . , σd) ∈ R
d×m with σ1 ≥ . . . σd ≥ 0

satisfying

σ3j +
α+ λ

2
σj =

α

2
σ̂j , j = 1, . . . , d, (5.11)

d
∑

j=1

σ2j = m,

such that T0 = ÛΣV̂ ∗ minimizes (P2∗). Furthermore, if rank(Ys) = d, i.e. σ̂d > 0, the matrix

Σ is uniquely determined and it holds that rank(T0) = d.

Proof. Firstly, the constraint in (P2∗) can be formulated in terms of the singular values as

m = trace (T ∗T ) = ‖T‖2F =
∑

j σ
2
j . Furthermore, the objective function is equal to

‖Σ∗Σ‖2F + α ‖UΣV ∗ − Û Σ̂V̂ ∗‖2F ,

where the regularization term ‖Σ∗Σ‖2F is also independent of U and V . Now the choice of

U = Û and V = V̂ for the minimizer follows from the Wielandt-Hoffman-Theorem 5.4.

Thus, the problem can be reduced to a problem on the singular values














min
σ1≥...≥σd≥0

d
∑

j=1
σ4j + α (σj − σ̂j)

2

s.t.
d
∑

ν=1
σ2ν = m,

(5.12)
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where the objective function equals ‖Σ∗Σ‖2F+α‖Σ−Σ̂‖2F . Using the single-constraint Lagrange
function

L̂(Σ, λ) =
d
∑

j=1

σ4j + α (σj − σ̂j)
2 + λ

(

d
∑

ν=1

σ2ν −m

)

, (5.13)

which satisfies

∇L̂(Σ, λ) =

(

(4σ3j + 2α(σj − σ̂j) + 2λσj)j=1,...,d ,
d
∑

ν=1

σ2ν −m

)

,

it holds that (5.11) is necessary for a critical point. Since
∑

j σ
2
j = m describes the compact

sphere

B√
m(0) = {v ∈ R

d | ‖v‖ =
√
m} ⊂ R

d ,

the continuous objective function in (5.12) takes its minimum and its maximum under the

constraint. Suppose, the global minimizer (ξ1, . . . , ξd)
T ∈ B√

m(0) lies in an orthant other

than the one described by the cone

R
d
+ = {v ∈ R

d | vj ≥ 0, j = 1, . . . , d} . (5.14)

Then the objective value in (5.12) can be reduced by taking (|ξ1|, . . . , |ξd|)T without violating

the constraint. Therefore the global minimizer of the objective function has to be in R
d
+.

Furthermore, it holds that the coordinates of the minimizer have to be in non-increasing

order, otherwise rearranging would also decrease the function value in (5.12) by Lemma 5.7

since σ̂1 ≥ . . . ≥ σ̂d ≥ 0.

Now, if σ̂d > 0, according to Lemma 5.5 there exists unique λ ∈ R such that the system of

nonlinear equations in (5.11) has unique solutions σ1 ≥ . . . ≥ σd > 0 satisfying
∑

j σ
2
j = m.

Remark 5.9. By application of the Wielandt-Hoffman-Theorem 5.4, the relaxation (P2∗)
can be regarded as a separation of the minimization over Σ and V . In general, this separation

is not permissible for the minimization of (P) and (P1), respectively.

Note that by letting α → 0 in (P2∗), the singular values will satisfy σj →
√

m/d for j =

1, . . . , d. Since the columns of V ∗ will in general not provide that ΣV ∗ has columns with norm

equal to one, the columns of T0 = [θ̃
(0)
1 , . . . , θ̃

(0)
m ] do not constitute a FUNTF. However, it is

easy to see by
m

d
‖y‖2 = 〈T0T ∗

0 y, y〉 =
m
∑

k=1

∣

∣

∣

〈

y, θ̃
(0)
k

〉∣

∣

∣

2
∀ y ∈ R

d,
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that T0 constitutes at least a tight frame in the case of α = 0. On the other hand, (5.12) again

underlines that T0 becomes Ys as α→ ∞. △

Remark 5.10. (1) In personal communication, Shen proposed to solve problem (P1) by an

alternating method ([Shen 13]). For fixed α > 0, start with a matrix Y
(0)
s containingm vectors

from the given data Y . Now, minimization of (P2) with Ys = Y
(0)
s leads to a matrix T

(0)
0 whose

column vectors are located in the Dirichlet cells of some subfamily Ψ1 of the data. Compute

this family, let Y
(1)
s be generated by arranging the elements of Ψ1 as its columns and solve (P2)

computationally for a new minimizer T
(1)
0 using Ys = Y

(1)
s . Iterative application of these steps

leads to an approximate minimizer of (P1). However, convergence of this method towards a

minimum of (P1) is not easy to verify. Stop the algorithm, when Y
(k)
s equals Y

(k−1)
s for the

first time during the iteration. Note that the subfamilies Ψk need not necessarily contain m

distinct vectors and therefore the data matrices are allowed to contain multiple columns.

(2) For a direct implementation of the problem (P1), it is possible to use path following

strategies ([Meye 12]). Begin with large α(0) ≫ 0 and let the starting configuration Ys for

the optimizer of (P1) be the matrix containing the family Ψ̃ from (5.7). Then compute

the minimizer T̃
(0)
0 , replace α(0) by α(1) < α(0) and start the optimizer again with starting

configuration T̃
(0)
0 in order to get a new minimizer T̃

(1)
0 . Repeat this step until α(k) = α and

set T0 = T̃
(k)
0 .

(3) In practice, the requirement of the existence of a full-rank matrix Ys can always be

guaranteed. If the data was located in a subspace of Rd with dimension less than d, dimension

reduction methods could be applied in advance. △

As mentioned previously, by using the primal problems (P2∗) and (P2), we are able to formu-

late a heuristic method in order to approximate a solution of the main problem (P1).

Algorithm 5.11. Let d,m ∈ N and a family Y = {y1, . . . , yN} ⊂ R
d×N with yj ∈ Sd−1,

j = 1, . . . , N , where N ≫ m > d.

1. Start with Y
(0)
s = [y

(0)
s(1), . . . , y

(0)
s(m)] ∈ R

d×m where the vectors y
(0)
s(ℓ) are also in Y for

ℓ = 1, . . . ,m and where the frame potential ‖Y (0)∗
s Y

(0)
s ‖2F is “small”.

Let q = 0.
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2. Compute the SVD of Y
(q)
s , i.e. Y

(q)
s = Û (q)Σ̂(q)V̂ (q)∗.

3. Solve the system of nonlinear equations

σ3j +
λ+ α

2
σj =

α

2
σ̂
(q)
j , j = 1, . . . , d,

d
∑

j=1

σ2j = m

by Newton’s method in order to get the solution σ1,q ≥ . . . ≥ σd,q ≥ 0 and λq ∈ R.

Denote T
(q)
0 = Û (q)ΣqV̂

(q)∗ = [θ̃
(q)
1 , . . . , θ̃

(q)
m ] as the solution of (P2∗) with Ys = Y

(q)
s .

4. Compute T
(q)
1 = [θ

(q)
1 , . . . , θ

(q)
m ] where θ

(q)
k =

1

‖θ̃(q)k ‖
θ̃
(q)
k , k = 1, . . . ,m.

5. Compute Y
(q+1)
s = [y

(q+1)
s(1) , . . . , y

(q+1)
s(m) ] ∈ R

d×m with y
(q+1)
s(k) = argmin

1≤j≤N
‖θ(q)k − yj‖2.

6. If Y
(q)
s = Y

(q+1)
s , then stop and return T

(q)
1 . Otherwise increment q and go back to 2.

The output T
(q)
1 is an approximate solution of (P1). The algorithm computes the solution of

(P2∗), normalizes it to Sd−1 and updates the optimal data. The loop structure corresponds

with the alternating method mentioned in Remark 5.10 in order to solve the main problem

(P1).

Remark 5.12. In several fields of application it has become a common technique to minimize

combinations of a data-dependent loss or penalty term and a regularization term. Several

examples including a classification of the problems stated in the current section will be given

in Section 5.5. Note that the stated optimization problems (P1), (P2), (P1∗) and (P2∗) are

formulated in this manner, all consisting of the total frame potential as regularization term and

differing in their penalty terms. In the standard form, the regularization term gets controlled

by a parameter α ≥ 0 which is followed by the summation with the unscaled penalty term.

Obviously, controlling the frame potential in our formulations by the adjusted parameter 1/α

for α > 0 leads to the same results as before. However, we want to preserve the relation to the

FUNTFs. This goal is obtained by weighting the penalty terms instead of the regularization

term which is the reason for the formulations we chose. △
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5.2 Dualizations

In this section, we formulate appropriate dualizations for the problems given in Section 5.1 in

order to establish further properties. As seen before, for positive α, the problem (P2∗) has a
solution of the form T0 = ÛΣV̂ ∗ where Ys = Û Σ̂V̂ ∗ and rank(T0) ≥ rank(Ys).

The standard form of a nonlinear problem over a set X is

(P0)



















min
x∈X

f(x)

s.t. gk(x) = 0, k = 1, . . . ,m ,

hℓ(x) ≤ 0, ℓ = 1, . . . , n ,

where the functions g1, . . . , gm : X → R describe the equality constraints and, accord-

ingly, the functions h1, . . . , hn : X → R stand for the inequality constraints. For ease of

notation, we simply write g : X → R
m, g(x) = (g1(x), . . . , gm(x))T and h : X → R

n,

h(x) = (h1(x), . . . , hn(x))
T . Following [Baza 06], the most common dualization for the primal

problem (P0) is the corresponding Lagrangian dual problem, which is given by

(D0)











sup
λ∈Rm, µ∈Rn

L(λ, µ)

s.t. µ1, . . . , µn ≥ 0

with the Lagrangian dual function

L(λ, µ) = inf
x∈X

f(x) +
m
∑

k=1

λkgk(x) +
n
∑

ℓ=1

µℓhℓ(x) . (5.15)

Note that there is no restriction on the signs of λ whereas µ has to be nonnegative, i.e. µ ∈ R
n
+

with R
n
+ as in (5.14). The following property of the Lagrangian dual is quite easy to verify.

Nevertheless, it implies that the dual can at most have one maximum.

Proposition 5.13 ([Baza 06] Theorem 6.3.1). Let X 6= ∅ be compact in R
d and let g : X → R

and h : X → R be continuous. The Lagrangian dual function L of a primal problem (P0) is

concave.

For further simplification, by letting λ = (λ1, . . . , λm)T ∈ R
m, µ = (µ1, . . . , µn)

T ∈ R
n, the
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dual function can be written shortly as

L(λ, µ) = inf
x∈X

f(x) + 〈λ, g(x)〉+ 〈µ, h(x)〉 (5.16)

with the standard inner products for the respective spaces.

Theorem 5.14 (Weak Duality Theorem, [Baza 06] Theorem 6.2.1). Let x ∈ X be feasible for

(P0) and let (λ, µ) ∈ R
m × R

n
+ be feasible for (D0). Then f(x) ≥ L(λ, µ).

Corollary 5.15 ([Baza 06] Corollaries 6.2.1(1, 2)). It holds that

inf{f(x) : x ∈ X, g(x) = 0, h(x) ≤ 0} ≥ sup{L(λ, µ) : (λ, µ) ∈ R
m × R

n
+} . (5.17)

Furthermore, if f(x0) = L(λ0, µ0) for feasible x0 ∈ X and (λ0, µ0) ∈ R
m × R

n
+, then x0 and

(λ0, µ0) solve (P0) and (D0), respectively.

Thus, the optimal objective value of the primal problem is bounded from below by the optimal

objective value of the dual problem and vice versa. If both values exist in R with strict

inequality in (5.17), then the difference is denoted as the duality gap.

Considering the primal problems (P2) and (P2∗) from Section 5.1, let

F2,α : R
d×m → R

T 7→ F2,α(T ) = ‖T ∗T‖2F + α‖T − Ys‖2F

denote the objective function. Then the corresponding dualizations are given by

(D2) sup
Λ=diag(λ1,...,λm)

λ1,...,λm∈R

L2(Λ) and (D2∗) sup
λ∈R

L2∗(λ) (5.18)

with dual objective functions

L2(Λ) = inf
T∈Rd×m

F2,α(T ) + trace ((T ∗T − Im)Λ) , (5.19)

L2∗(λ) = inf
T∈Rd×m

F2,α(T ) + λ(trace (T ∗T )−m)

= inf
T∈Rd×m

F2,α(T ) + trace ((T ∗T − Im)λIm) . (5.20)

From the fact that λIm ∈ {Λ = diag(λ1, . . . , λm) ∈ R
m×m : λ1, . . . , λm ∈ R}, the representa-

tions in (5.19) and (5.20) imply that

sup
λ∈R

L2∗(λ) ≤ sup
Λ=diag(λ1,...,λm)

λ1,...,λm∈R

L2(Λ) , (5.21)
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showing that the optimal objective value of (D2) is also bounded from below by the optimal

objective value of (D2∗).

The well-known Strong Duality Theorem (e.g. Theorem 6.2.4 in [Baza 06]) states that under

certain constraint qualifications and complexity assumptions there is no duality gap. Since

the requirements are not met for the problems (P2) and (P2∗), the Strong Duality Theorem

in its classical form does not apply. However, as Theorem 5.16 shows, the duality gap of (P2∗)
is zero nonetheless.

Theorem 5.16. Let α > 0 and Ys = Û Σ̂V̂ ∗ with columns yj ∈ Sd−1, j = 1, . . . ,m. For the

problem (P2∗) exists no duality gap, i.e. the objective values of (P2∗) and its dual (D2∗) are

identical.

Proof. By Theorem 5.8, a solution of (P2∗) is given by T0 = ÛΣV̂ ∗. The matrix Σ and

the optimal Lagrange multiplier λ0 can be computed from (5.11) satisfying the constraint

‖Σ‖2F = m. For the dual problem (D2∗), it is easy to see by the Wielandt-Hoffman-Theorem

(Theorem 5.4) that

sup
λ∈R

L2∗(λ) ≥ L2∗(λ0) = inf
T∈Rd×m

F2,α(T ) + λ0(trace (T
∗T )−m)

= inf
T∈Rd×m

‖T ∗T‖2F + α‖T − Ys‖2F + λ0‖T‖2F − λ0m

= inf
δ1,...,δd∈R

(

d
∑

j=1
δ4j + α(δj − σ̂j)

2 + λ0δ
2
j

)

− λ0m,

where δ1, . . . , δd denote the singular values of T . Note that an ordering of the form δ1 ≥ . . . ≥ δd

follows from Lemma 5.7 and by the ordering σ̂1 ≥ . . . ≥ σ̂d. Minimization of the quadratic

distances (δj − σ̂j)
2, j = 1, . . . , d, also implies the non-negativity δd ≥ 0. Furthermore,

separability of the problem in δ1, . . . , δd gives

L2∗(λ0) =





d
∑

j=1

inf
δj≥0

δ4j + α(δj − σ̂j)
2 + λ0δ

2
j



− λ0m. (5.22)

Minimization of the inner expressions in (5.22) leads to the system of equations

δ3j +
α+ λ0

2
δj =

α

2
σ̂j , j = 1, . . . , d. (5.23)

Now if σ̂d > 0, the solution coincides with the unique solution σ1 ≥ . . . ≥ σd > 0 from the
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system in (5.11), also satisfying
∑

j σ
2
j = trace (T ∗T ) = m. This leads to the identity

L2∗(λ0) =





d
∑

j=1

σ4j + α(σj − σ̂j)
2 + λ0σ

2
j



− λ0m

=

d
∑

j=1

σ4j + α(σj − σ̂j)
2 = F2,α(T0) .

Therefore, applying Corollary 5.15, it holds that

F2,α(T0) = inf
T∈Rd×m

trace(T∗T )=m

F2,α(T ) ≥ sup
λ∈R

L2∗(λ) ≥ L2∗(λ0) = F2,α(T0) ,

which completes the proof for the case rank(Ys) = d.

For rank-deficient Ys, suppose σ̂ℓ+1 = . . . = σ̂d = 0 for some ℓ ∈ {1, . . . , d− 1} and let

µ0 =
α+ λ0

2
.

Then, if µ0 ≥ 0, the solution in (5.23) has to satisfy σℓ+1 = . . . = σd = 0, since ξ(µ0) = 0 is

the only real root of pµ0 from (5.9) and it holds again that
∑

j σ
2
j = m.

On the other hand, if µ0 < 0, then the largest real root ξ(µ0) from (5.10) is positive and σk

can be chosen either as zero or ξ(µ0) for k = ℓ+ 1, . . . , d in order to satisfy (5.23). However,

if we let σℓ+1 = . . . = σr = ξ(µ0) > 0 = σr+1 = . . . = σd for some r ∈ {ℓ, . . . , d− 1}, then

d
∑

j=1

σ2j =
ℓ
∑

j=1

σ2j + (r − ℓ) ξ(µ0)
2

<

ℓ
∑

j=1

σ2j + (d− ℓ) ξ(µ0)
2 ,

where the last expression equals m by Lemma 5.5. Furthermore, µ0 < 0 implies λ0 < 0 and

λ0





d
∑

j=1

σ2j − m



 > 0 .

Hence, for the minimization in (5.22), the solution σℓ+1 = . . . = σd = ξ(µ0) has to be chosen.

So the minimizer in the case σ̂d = 0 also satisfies
∑

j σ
2
j = m leading again to the equality

L2,∗(λ0) = F2,α(T0).
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5.3 Influence of α on the Choice of Optimal Data

As stated previously in Section 4.1, there exists α0 ≥ 0 such that for all α > α0, the minimizers

of (P1) are located in the Dirichlet cells of the the subfamily Ψ̃ from 5.7 satisfying

Ψ̃ = argmin
Ψ∈Y m

TFP(Ψ) .

In that case, solving (P1) is equivalent to solving (P2), where the matrix Ys ∈ R
d×m contains

the elements of Ψ̃ as column vectors. In general, Ys depends on α and the transition from (P1)

to (P2) becomes more difficult. A natural question is, if α0 might be zero for all possible data

sets Y , which would allow to formulate (P1) directly as (P2) independent of the regularization

parameter.

In Example 5.17 we propose two problems in the form of (P2∗) which differ in the singular

value matrices of the respective data. We consider the difference function of the two functions

that represent the optimal objective values in α and show that there exists a change of sign

for this function. From there it can be concluded that in general α0 > 0.

Remember firstly, that by application of the Wielandt-Hoffman-Theorem 5.4, the problem

(P2∗) can be reduced to a constrained minimization on the singular values (5.12):















min
σ1≥...≥σd≥0

d
∑

j=1
σ4j + α (σj − σ̂j)

2

s.t.
d
∑

ν=1
σ2ν = m

with σ̂1 ≥ . . . ≥ σ̂d ≥ 0 denoting the singular values of the given data matrix Ys in (P2∗).

Example 5.17. For d = 3, m = 9 define the singular value matrices

Σ̂γ =











2 0 0

0 2− γ 0 03×6

0 0
√

5− (2− γ)2











with parameter γ ∈ [0, δ], δ = 2−
√

5/2, and

Σ̂ =











√
5 0 0

0
√
2 0 03×6

0 0
√
2
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where 03×6 is a block of size 3× 6 containing only zeros.

For ease of notation, identify Σ̂γ , Σ̂ by their “diagonal” entries, i.e.

Σ̂γ =
(

2, 2− γ,
√

5− (2− γ)2
)T

,

Σ̂ =
(√

5,
√
2,

√
2
)T

and let

D = {v ∈ R
d : v1 ≥ . . . ≥ vd ≥ 0 } ,

which is isomorphic to the cone C of singular value matrices in R
d

C = {A ∈ R
d×m : a1,1 ≥ . . . ≥ ad,d ≥ 0 and aj,k = 0 ∀ j 6= k } .

Using the frame potential function f : D → R, f(Σ) = ‖ΣTΣ‖2 and the penalty functions

gγ , g : D → R with

gγ(Σ) = ‖Σ− Σ̂γ‖2 ,

g(Σ) = ‖Σ− Σ̂‖2 ,

define the objective functions hγ,α, hα : D → R by

hγ,α(Σ) = f(Σ) + α gγ(Σ) and

hα(Σ) = f(Σ) + α g(Σ).

Note that ‖Σ̂γ‖2 = ‖Σ̂‖2 = m for all γ ∈ [0, δ]. The frame potential of Σ̂γ satisfies

f(Σ̂γ) = 33 + 2γ
(

γ3 − 8γ2 + 19γ − 12
)

, (5.24)

which is monotonously decreasing on [0, δ] with maximal value f(Σ̂0) = f(Σ̂) = 33 and the

minimal value f(Σ̂δ) = 57/2.

For the minimization of the objective functions, consider the functions φγ , φ : R → R,

φγ(α) = min
Σ∈D

‖Σ‖2=m

hγ,α(Σ) , φ(α) = min
Σ∈D

‖Σ‖2=m

hα(Σ) (5.25)

and let

Σ⋆
γ,α = argmin

Σ∈D
‖Σ‖2=m

hγ,α(Σ) , Σ⋆
α = argmin

Σ∈D
‖Σ‖2=m

hα(Σ)
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be the corresponding minimizers depending on α ∈ [0,∞). Now, for α → ∞, the minimizers

Σ⋆
γ,α,Σ

⋆
α converge to the corresponding data matrices Σ̂γ and Σ̂, respectively. On the other

hand, for α→ 0, the minimization of f becomes dominant, leading to the (FUNTF-) case

Σ⋆
γ,0 = Σ⋆

0 =
(√

3,
√
3,

√
3
)T

. (5.26)

Consideration of the gradient

∇f(Σ) = 4(σ31, σ
3
2, σ

3
3)

gives ∇f(Σ̂γ) = 4(8, (2− γ)3, (5− (2− γ)2)3/2) and ∇f(Σ̂) = 4(5
√
5, 2

√
2, 2

√
2).

Furthermore, the Taylor expansion of f at Σ̂ can be written as

f(Σ̂ + ε) = f(Σ̂) +∇f(Σ̂) · ε+O(‖ε‖2) , ‖ε‖ → 0 .

The goal is to minimize the product term ∇f(Σ̂) · ε under the constraint that ‖ε‖2 = 1 and ε

lies in the tangent plane TΣ̂S of the sphere S = ∂B3(0) = {v ∈ R
d | ‖v‖ = 3} at Σ̂.

Applying the Lagrange approach for constrained optimization using the function

L(ε, µ) = ∇f(Σ̂) · ε+ µ1(‖ε‖2 − 1) + µ2〈 ε, Σ̂ 〉

yields the minimizers

ε⋆ =
1

3











−2
√

5/2
√

5/2











with µ⋆ = −4





√
5

11/3



 .

The same calculation for Σ̂γ with γ = 0 leads to ∇f(Σ̂0) = 4(8, 8, 1) and the minimizers of

the corresponding Lagrange function are given by

ε⋆γ =
1√
18











−1

−1

4











with µ⋆γ = −4





√
2

11/3



 . (5.27)

Hence,

∇f(Σ̂γ) · ε⋆γ = −8
√
2 > −8

√
5 = ∇f(Σ̂) · ε⋆ , (5.28)
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implying that there exists a direction at Σ̂ where f descends faster than at Σ̂0.

Now, choosing 0 < γ ≪ δ in order to cause only a small decrease of f in (5.24) preserves the

inequality in (5.28). For example, letting γ = 1/100, the frame potential of Σ̂γ is f(Σ̂γ) ≈
32.7638 < 33 = f(Σ̂) and the minimizers in (5.27) become

ε⋆γ ≈











−0.2550

−0.2256

0.9403











with µ⋆γ ≈





−5.6407

−14.5617





which still satisfies the inequality in (5.28) with ∇f(Σ̂γ) · ε⋆γ ≈ −11.2814 > −8
√
5.
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0.8
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α

 

 
φγ − φ

f(Σ̂γ )− f(Σ̂) ≈ -0.24

Figure 5.7: Difference function φγ −φ with φγ , φ from (5.25) for γ = 1/100 (red) and lower bound f(Σ̂γ)−f(Σ̂)

(blue)

The result of the minimization for α ∈ [0, 1000] can be seen in Figure 5.7, showing that for

large α

Σ̂γ = argmin
S∈{Σ̂γ ,Σ̂}

min
Σ∈D

‖Σ‖2=m

f(Σ) + α‖Σ− S‖2F

and, on the other hand, for small α > 0,

Σ̂ = argmin
S∈{Σ̂γ ,Σ̂}

min
Σ∈D

‖Σ‖2=m

f(Σ) + α‖Σ− S‖2F .
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Note that the value of the difference function φγ−φ is zero for α = 0 which agrees with (5.26).

For α→ ∞, we see that (φγ(α)− φ(α)) → (f(Σ̂γ)− f(Σ̂)).

Remark 5.18. Let γ = 1/100 and Σ̂, Σ̂γ from Example 5.17. Via a system of nonlinear

equations, an orthogonal matrix V ∈ O(9) can be constructed numerically, such that the two

data matrices Yγ , Y ∈ R
3×9, Yγ = Σ̂γV

∗ and Y = Σ̂V ∗ with Yγ ≈










0.7253 −0.7723 −0.5350 0.8054 0.7476 −0.5261 −0.2078 0.7464 0.7119

−0.6335 0.6065 0.7177 0.5857 0.6211 0.7208 0.7940 0.6217 0.6407

0.2696 −0.1889 0.4457 −0.0909 −0.2355 −0.4512 0.5712 −0.2375 0.2878











and Y ≈










0.8109 −0.8635 −0.5982 0.9005 0.8358 −0.5882 −0.2324 0.8344 0.7959

−0.4502 0.4310 0.5100 0.4162 0.4414 0.5123 0.5643 0.4418 0.4553

0.3739 −0.2620 0.6181 −0.1261 −0.3266 −0.6258 0.7922 −0.3294 0.3991











have unit norm columns. △

5.4 Formulation as a Polynomial Optimization Problem

In the following section, we show briefly how the problem (P1) can be transferred into the

field of polynomial optimization. The procedure is the result of personal communication with

Jean-Bernard Lasserre ([Lass 12]). An exhaustive discussion on the theory of polynomial

optimization and applications can be found in [Lass 10].

Writing the penalty term in (P1) using inner products, we have

(P1)















min
θ1,...,θm∈Rd

m
∑

k,ℓ=1

| 〈θk, θℓ〉 |2 − α
m
∑

ℓ=1

max
1≤j≤N

〈 yj , θℓ 〉

s.t. ‖θℓ‖2 = 1, ℓ = 1, . . . ,m.

Let F : Rd × . . .× R
d → R with

F (Θ) = TFP(Θ)− α
m
∑

ℓ=1

max
1≤j≤N

〈 yj , θℓ 〉
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denote the objective function. The major idea is to repeatedly use the identity

max{a, b} =
a+ b

2
+

|a− b|
2

to eliminate the max-term from the objective function by using additional constraints. As

we will see, the formulation as a polynomial problem leads to a large number of additional

variables.

Firstly, introduce for ℓ = 1, . . . ,m the variables z1,ℓ ≥ 0 with

z21,ℓ = (〈θℓ, y2〉 − 〈θℓ, y1〉)2

so that z1,ℓ = |〈θℓ, y2〉 − 〈θℓ, y1〉|. Then define the polynomials q1,ℓ by the identity

q1,ℓ(θℓ, z1,ℓ) =
1

2
(〈θℓ, y2〉+ 〈θℓ, y1〉+ z1,ℓ) ,

which stand for max{〈θℓ, y1〉 , 〈θℓ, y2〉}.

Afterwards, introduce successively for ν = 2, . . . , N − 1 the variables zν,ℓ with the polynomial

constraints

z2ν,ℓ = (〈θℓ, yν+1〉 − qν−1,ℓ(θℓ, z1,ℓ, . . . , zν−1,ℓ))
2 , (5.29)

zν,ℓ ≥ 0 .

The variables zν,ℓ describe the term | 〈θℓ, yν+1〉−qν−1,ℓ(θℓ, z1,ℓ, . . . , zν−1,ℓ)| and the polynomials

qν,ℓ(θℓ, z1,ℓ, . . . , zν,ℓ) =
1

2
(〈θℓ, yν+1〉+ zν,ℓ + qν−1,ℓ(θℓ, z1,ℓ, . . . , zν,ℓ))

represent max{〈θℓ, y1〉 , . . . , 〈θℓ, yν+1〉}.

Finally, after N − 1 steps, the additional variables z1,ℓ, . . . , zN−1,ℓ with the corresponding

polynomial constraints from (5.29) give a polynomial representation of the functions

hℓ(Θ) = max
1≤j≤N

〈θℓ, yj〉

by the m polynomials qN−1,ℓ ∈ R[θℓ, z1,ℓ, . . . , zN−1,ℓ].

Hence, by [Lass 12], the problem (P1) becomes in the context of polynomial optimization

problem the following problem:
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(P1)



























































































min F (Θ) =
m
∑

k,ℓ=1

〈θk, θℓ〉2 − α
m
∑

ℓ=1

qN−1,ℓ(θℓ, z1,ℓ, . . . , zN−1,ℓ)

s.t. ‖θℓ‖2 = 1, ℓ = 1, . . . ,m,

q0,ℓ(θℓ) = 〈θℓ, y1〉 , ℓ = 1, . . . ,m,

zν,ℓ ≥ 0, ℓ = 1, . . . ,m; ν = 1, . . . , N − 1,

z2ν,ℓ = (〈θℓ, yν+1〉 − qν−1,ℓ(θℓ, z1,ℓ, . . . , zν−1,ℓ))
2 ,

ℓ = 1, . . . ,m; ν = 1, . . . , N − 1,

qν,ℓ(θℓ, z1,ℓ, . . . , zν,ℓ) = 1
2 (〈θℓ, yν+1〉+ zν,ℓ + qν−1,ℓ(θℓ, z1,ℓ, . . . , zν−1,ℓ)) ,

ℓ = 1, . . . ,m; ν = 1, . . . , N − 1.

Note that it is possible to eliminate the polynomials qν,ℓ from the problem by replacing them

directly by their expressions in the variables θℓ, z1,ℓ, . . . , zν,ℓ. However, the problem still con-

sists of m ·d variables characterizing the vectors θℓ ∈ Sd−1 and (N−1) ·m variables zν,ℓ ∈ R≥0.

In chapter 5 of [Lass 10], Lasserre proposes methods to solve classes of problems in polynomial

optimization by moment-SOS (sums of squares) relaxations. A condensed description of the

technique how to handle such semi-definite programming relaxations can be found in [Lass 11].

In our case even the first relaxation is already a large sized SDP. Since the objective function

F has a representation as a quartic polynomial in m((N −1)+d) variables, this SDP becomes

unfeasible to solve for large N or m ([Lass 12]).

5.5 Related Problems

As mentioned previously in Remark 5.12, the technique of combining regularization terms

and loss terms in order to create a tradeoff between approximation and smoothing is often

applied in data analysis. One of the earlier examples led to the smoothing splines which were

introduced by Schoenberg and Reinsch for the cubic case ([Scho 64, Rein 67]) and are often

used in data regression. An excellent generalization for all degrees can be found in de Boor’s

contribution ([Boor 01]). Technical aspects on this topic can today be found in numerous

other publications and academical textbooks, e.g. Section 5.4 in [Hast 01].

For the sparse eigenvalue problem in principal component analysis, d’Aspremont et al. use

the common Rayleigh quotient for positive semidefinite matrices as regularization term. The
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penalty term is chosen as the negative ℓ0-norm and the combined functional gets maximized

over the unit sphere ([dAsp 08]):

max
‖x‖2=1

xTΣx − α‖x‖0 .

Other similar functionals in data representation are applied in statistical shrinkage methods

and coefficient selection such as ridge regression (Section 3.4 in [Hast 01]) or the lasso by

Tibshirani ([Tibs 94]) which differ in the choice of the penalty term. Note that several modi-

fications of the lasso have been proposed, an overview can be found in [Tibs 11]. One of the

modifications refers to the field of matrix completion theory in compressive sensing, where

Candès et al. [Cand 10], Cai et al. [Cai 10] and Mazumder et al. [Mazu 10] propose to solve

min
X̂

α‖X̂‖∗ + ‖X − X̂‖2F , α ≥ 0, (5.30)

for a given matrix X of size d × m with ‖X‖∗ =
∑d

j=1 σj denoting the nuclear norm of

X = UΣV ∗.

In this context, ‖ · ‖∗ works as the regularization functional whereas ‖X − ·‖2F is the loss term

depending on the given data in X. The objective functional in (5.30) consists of the same

quadratic loss term ‖X − X̂‖2F as in the problems (P2) and (P2∗). Only the regularization

term ‖X̂‖∗ = ‖(σ1, . . . , σd)T ‖1 differs from the one in (P2), where
∑

j σ
4
j is considered.

The solution of the problem in (5.30) is based on the following lemma:

Lemma 5.19 ([Cai 10]). Suppose W ∈ C
d×m is of rank r. Then the solution to

min
Z∈Cd×m

α‖Z‖∗ +
1

2
‖W − Z‖2F

is given by Ẑ = Sα(W ) = UΣαV
∗ where Σα = diag((σ1−α)+, . . . , (σd−α)+), t+ = max{t, 0}

and UΣV ∗ is the singular value decomposition of W .

Sα stands for the shrinkage operator performing a soft thresholding on the singular values of

W ([Dono 94]). In [Mazu 10], Mazumder et al. present an alternative proof to the one stated

in [Cai 10]. However, under application of the Wielandt-Hoffman theorem even this proof can

be further condensed:
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Proof. Since the objective function is obviously strictly convex, there exists a unique mini-

mizer ([Cai 10]). Moreover, the regularization term depends only on the singular values of

Z. Hence, Theorem 5.4 justifies the choice of U and V from the SVD of W as stated in the

lemma. So the problem becomes

min
D

1

2
‖Σ−D‖2F + α

∑

j

δj

where D is diagonal with diagonal elements δj ≥ 0. Since there are no restrictions on the

δj (except for the non-negativity), the problem can be separated into d problems like in

[Mazu 10]:

min
δj≥0

1

2
(σj − δj)

2 + αδj .

It is easy to see that for σj ≥ α the minimum is δj = σj − α and δj = 0 otherwise.
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Chapter 6

Numerical Results

Finally, we evaluate the performance of the Penalized Frame Potential in terms of the clustering

of real data. The algorithm is implemented in Matlab R©, the minimization of the function

Fα(·, Y ) uses the built-in routine fmincon from the Optimization Toolbox.

We evaluate the clustering results for both simulated and real data by using tools such as

innercluster variance or t- and F -statistics ([Cali 74]). The outline of the last chapter is as

follows. Section 6.1 deals with the performance of our method compared with the STEM

algorithm from [Erns 05]. In Section 6.2 we apply our method to an example from [Kim 07],

which was generated in order to stress characteristic features of the DIB-C algorithm. We

introduce this algorithm in a few words. As we will see, our proposed method shows good

performance when applied on the mentioned example. Furthermore, we evaluate our method

in terms of the Adjusted Rand Index (ARI) which we introduce briefly. The well-known k-

means clustering approach showed good performance in terms of the ARI in [Kim 07]. A

comparison to the k-means results will be included. Afterwards, we apply modifications of

the PFP algorithm in Section 6.3 which have proven useful in the application on real data,

especially in gene expression data. In Section 6.4, we extend the proposed method in order to

extract features from multispectral data and also include a short example.

We start with a short description of our algorithm that is based on minimization of the

Penalized Frame Potential from the previous chapters. The method is realized in the following

way. Firstly, we project the given data onto the sphere Sd−1 as described in Chapter 3
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and call these projections Y . Minimization of Fα(·, Y ) on Sd−1 leads to (possibly local)

minimizers θ1, . . . , θm where m and α have to be chosen a priori. Let D̂1, . . . , D̂m ⊂ Sd−1

denote the Dirichlet cells of those minimizers. We assign a given time series to cluster Cℓ if its

corresponding projection satisfies yj ∈ D̂ℓ. Furthermore, since the projection Q : H ∩ Sd →
Sd−1 from Chapter 3 is orthogonal, we call QT θ1, . . . , Q

T θm ∈ R
d+1 cluster prototypes from

the PFP algorithm.

In addition, we count the number of data in each cluster and apply a significance test including

Bonferroni’s correction for multiple testing as in [Erns 05]. Remember that for α > 0 by

Theorem 4.8, θℓ /∈ ∂Dj for ℓ = 1, . . . ,m and j = 1, . . . , N where D1, . . . , DN ⊂ Sd−1 are the

Dirichlet cells of the data projections. However, it is obviously still possible that a projection

yj belongs to nj > 1 Dirichlet cells generated by the minimizers. In that case we proceed by

assigning the corresponding time series to all nj nearest clusters and count the assignments

by n−1
j as in STEM.

6.1 Performance of the Penalized Frame Potential

One of our major motivations was to create a data-driven method since other algorithms

are often data-independent. However, note that the model profiles in STEM ([Erns 05]) or

the templates in DIB-C ([Kim 07]) also take some data-specific features into account. In

STEM, the model profiles are not allowed to change by more than c ∈ N (in general c = 2)

units between adjacent time points. Since the first value of all models is zero, the extremal

values are −dc and dc for time series of length d + 1. This restricted behavior simulates

real data recorded from biological processes. So there exists a model-based relation of the

prototypes from STEM to biological data. Therefore the data-independent solutions from the

PFP algorithm with α = 0 should not be interpreted as equivalent to the STEM solutions.

However, note that in real data the time points at which samples are taken are often not

distributed equidistantly which is not considered in the STEM setting.

For our experiments in this section we use the yeast amino acid starvation data from [Gasc 00],

available at http://www.benoslab.pitt.edu/astro/Amino Acid Starvation.txt (accessed

July 16, 2013) and filtered the data as described in [Spri 11]:
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*

153 (ID4)

*

90 (ID39)

*

50 (ID20)

*

49 (ID36)

*

37 (ID31)

*

36 (ID19)

*

34 (ID32)

*

29 (ID5)

*

27 (ID22)

*

27 (ID40)

17 (ID9) 15 (ID1) 13 (ID13) 11 (ID21) 10 (ID2)

10 (ID17) 9 (ID12) 8 (ID10) 8 (ID27) 7 (ID23)

Figure 6.1: 20 largest clusters from PFP clustering with m = 40, α = 2.0 for AAS example (ten significant

clusters, indicated by “∗”); prototypes (black), data (cyan)

7 (ID33) 6 (ID8) 6 (ID15) 6 (ID37) 5 (ID18)

4 (ID30) 3 (ID3) 3 (ID7) 3 (ID24) 3 (ID26)

2 (ID6) 2 (ID16) 2 (ID28) 2 (ID34) 1 (ID11)

1 (ID14) 1 (ID25) 1 (ID29) 1 (ID35) 1 (ID38)

Figure 6.2: 20 smallest clusters from PFP clustering with m = 40, α = 2.0 for AAS example; prototypes

(black), data (cyan), significant clusters indicated by “∗”

The table contains logarithmic values of responses of 6152 genes to stress by amino acid

starvation (AAS) at time points 0.5h, 1h, 2h, 4h and 6h, where we leave out the time point

t = 0. So the time series have length d + 1 = 5. The data are filtered by removing all genes

with missing values and genes whose expression levels vary by less than ε = 2 over the whole

time interval, giving a total of N = 700 short time series for our analysis.

Figures 6.1 and 6.2 show the results of the PFP clustering using m = 40 and α = 2.0, the
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*

157 (ID22)

*

143 (ID29)

*

49 (ID1)

*

42 (ID39)

*

36 (ID11)

*

34 (ID18)

*

32 (ID2) 27.5 (ID25) 18 (ID3) 15 (ID23)

13 (ID36) 12 (ID14) 12 (ID17) 10 (ID19) 9 (ID28)

8 (ID31) 7 (ID7) 7 (ID15) 6 (ID9) 6 (ID10)

Figure 6.3: 20 largest clusters from STEM clustering with m = 40, c = 2 for AAS example (seven significant

clusters, indicated by “∗”); prototypes (black), data (cyan)

6 (ID12) 5 (ID24) 5 (ID40) 4 (ID20) 4 (ID27)

4 (ID32) 4 (ID33) 4 (ID38) 3 (ID8) 3 (ID21)

2 (ID13) 2 (ID16) 2 (ID30) 2 (ID35) 2 (ID37)

1.5 (ID6) 1 (ID4) 1 (ID26) 1 (ID34) 0 (ID5)

Figure 6.4: 20 smallest clusters from STEM clustering with m = 40, c = 2 for AAS example; prototypes (black),

data (cyan), significant clusters indicated by “∗”

corresponding statistics are presented in Table 6.1. In the example, the dominant clusters from

PFP and STEM (see Figure 6.3) are almost of the same size (153 in PFP and 157 in STEM),

whereas the second-largest clusters differ in size (90 in PFP and 143 in STEM). However,

Table 6.1 shows that the two largest clusters calculated with PFP are also their respective

nearest neighbors which indicates concentration of the data. The corresponding statistics for

the STEM results can be found in Table 6.2.
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For the evaluation of the clusters, Table 6.1 also gives information on the innercluster variances

as well as on t- and F -statistics. For identifying significant clusters we apply a permutation-

based test which is also used in [Erns 05]. After calculating all possible (d+ 1)! permutations

of the data, we assign these permutations to the prototypes and count the number of total

assignments. If s
(k)
ℓ denotes the number of data which are assigned to cluster ℓ in permutation

k, then, according to [Erns 05], the expected number of data in cluster Cℓ becomes

Eℓ =
1

(d+ 1)!

(d+1)!
∑

k=1

s
(k)
ℓ , ℓ = 1, . . . ,m .

The number of data in Cℓ is treated as a binomial random variable X with parameters N and

Eℓ/N and the Bonferroni-corrected p-value becomes P (X ≥ s
(1)
ℓ ), where s

(1)
ℓ is the number of

original assignments. Finally, Cℓ is called significant, if P (X ≥ s
(1)
ℓ ) < λ/m with λ denoting

the level of significance. In our examples, we only consider λ = 0.05.
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Figure 6.5: Mean innercluster variances of the results from clustering the AAS data with PFP where m =

25, 30, 35, . . . , 75, 80 and α = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 3.0

A natural question that arises is how to choose the input parametersm and α. For this purpose,

we propose to apply a method that is also common in order to calculate an appropriate number

of clusters for the k-means approach. After clustering and significance testing for different m

and α, compute the innercluster variances for the significant clusters. Figure 6.5 presents the
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mean values of the innercluster variances of the significant clusters from the AAS data. As can

be seen, the values are essentially identical for α ≥ 1. Furthermore, from m = 35 to m = 45

there is a strong decrease for all positive α visible, leading to the conclusion that α = 1.5

and m = 45 represents a good choice of parameters for the given data. Note that the value

increases for m = 45 from α = 1.5 to α = 2.0. The reason is that for α = 2.0 there is one

more significant cluster than for α = 1.0. Besides the mean value one could also take, e.g.,

the maximal innercluster variance of the significant clusters into consideration.

Ernst et al. propose a greedy algorithm for grouping clusters when the distance of the respec-

tive prototypes is below a threshold τ > 0 ([Erns 05]). In our method we adapt this procedure

to reduce the effect of overestimating m without giving further results here.

6.2 On an Example for DIB-C

In this section, we apply our method on an example provided by Kim and Kim in [Kim 07] for

stressing the performance of the DIB-C algorithm. The DIB-C method is primarily formulated

for the clustering of gene expression data. The algorithm classifies the different time series by

a certain pattern which relies on the first- and second-order differences between adjacent time

points. Note that it is actually capable of considering replicates in gene experiments by using

t-statistics for the coding of the data in terms of the classification pattern.

Suppose, we consider N not necessarily normalized data series yj ∈ R
d, j = 1, . . . , N , which

may be in the log-ratio form described in Chapter 3. In a nutshell, every element of the

first-order difference y
(1)
j ∈ R

d−1 of yj is classified by the symbols D, I and N . The symbol

D indicates that there exists a decrease in the data values between two adjacent time-points.

Correspondingly, I stands for an increase and N is used if there is no significant change

present. In a similar way, the symbols A, V and N encode the second-order differences where

A and V denote concavity and convexity, respectively. The symbolic pattern for yj consists

of the d− 1 symbols for the first order differences and the d− 2 symbols for the second-order

differences. Finally, all time series sharing the same symbolic pattern are grouped together

building a cluster. For an exhaustive description of the method we refer to [Kim 07].
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6.2. ON AN EXAMPLE FOR DIB-C

The first example in [Kim 07] for the performance of the DIB-C algorithm consists of N = 180

time series with d = 4 time points. We create r = 18 template time series (see Figure 6.6)

with integer data values in [−6, 6] by combining only the first-order differences (DDD) and

(III ) with all possible second-order differences ((AA), (AN ), (AV ), (NA), (NN ), (NV ), (VA),

(VN ) and (VV )). For example, (0, 1, 3, 6) builds a template for ((III ), (VV )), (0, 1, 3, 5) for

((III ), (VN )) and so forth. Now, reproducing the templates ten times and applying uniform

noise in [−0.015, 0.015] as described in [Kim 07] generates the test data. Note that the original

approach also considers the cluster generated by the null template ((NNN ), (NN )) which leads

to a total of 190 time series. However, since this cluster does not serve any practical purpose,

we omit this class.

10 (ID1) 10 (ID2) 10 (ID3) 10 (ID4) 10 (ID5)

10 (ID6) 10 (ID7) 10 (ID8) 10 (ID9) 10 (ID10)

10 (ID11) 10 (ID12) 10 (ID13) 10 (ID14) 10 (ID15)

10 (ID16) 10 (ID17) 10 (ID18)

((DDD),(VV))((DDD),(AA))

((DDD),(VA))

((DDD),(VN))

((DDD),(NV)) ((DDD),(AN)) ((DDD),(NA))

((DDD),(NN))

((DDD),(AV))((III),(AA))

((III),(AN))

((III),(AV))

((III),(NA))

((III),(NN))

((III),(NV))

((III),(VA))

((III),(VN))

((III),(VV))

Figure 6.6: Results for the clustering of the experimental data from the DIB-C example using PFP with m = 18

and α = 3.0; prototypes (black), data (cyan)

Figure 6.6 presents the results of the clustering with the PFP algorithm for the number of

clusters m = 18 and the regularization parameter α = 3.0. As can be seen, the number of

time series in each cluster is ten, which agrees with the number of noisy reproductions of the

templates. Furthermore, no misclassification occurred since all time series are almost identical

with the calculated cluster prototypes.

Due to the relatively low noise, the example becomes very restrictive. However, taking a closer

look at the projections of the data onto the sphere in the left chart in Figure 6.7 shows that

the data are concentrated in terms of the dissimilarity measure from Chapter 3. It can be seen

that by minimization of the PFP it is actually possible to capture the different data clusters.
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Figure 6.7: Projections onto S2 of the low-noised data (black) and the prototypes (green) from Figure 6.6

calculated with PFP using α = 3.0 (left) and with α = 0.3 (right)

The right chart in Figure 6.7 shows the projections of the prototypes calculated with α = 0.3.

Obviously, the lower weight on the penalty term causes the total frame potential to dominate

in the minimization process leading to less data-oriented prototypes. Some prototypes and

the other half of the data are essentially located antipodal to the visible points.

As mentioned, the DIB-C algorithm is capable to consider replicates in gene experiments.

In order to process replicates in the PFP algorithm, we simply calculate the median over

the replicates in each time point which gives the new data. For our second experiment, we

generated eight replicates for each of the 180 time series from above and added normal noise

using N (0, σ2) with σ ∈ {0.06, 0.12, 0.3, 0.6}. Since the correct classification is known in

advance, the Adjusted Rand Index (ARI) by Hubert and Arabie ([Hube 85]) can be used for

the evaluation of the performance of an algorithm:

ARI =
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, (6.1)

where n =̂ number of total objects ,

njk =̂ number of objects from class Kj in cluster Ck ,

nj· =̂ number of objects in class Kj ,

n·k =̂ number of objects in cluster Ck .

In practice, these numbers are often listed in a contingency table:
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Class / Cluster C1 C2 · · · Cm
∑

K1 n11 n12 · · · n1m n1·

K2 n21 n22 · · · n2m n2·
...

...
...

...
...

Kr nr1 nr2 · · · nrm nr·
∑

n·1 n·2 · · · n·m n

The maximum ARI is one, its expected value is zero. Therefore, in contrast to the classical

Rand Index, negative values are possible. However, a negative ARI indicates “less agreement

than expected by chance” ([Frit 10]).
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Figure 6.8: ARI for the noise levels σ ∈ {0.06, 0.12, 0.3, 0.6} of the replicates for PFP (green circles) and

k-means (yellow diamonds) clustering results including indicators for the respective maxima (red/cyan)

In [Kim 07], clustering results of DIB-C, k-means, STEM and Self-Organizing Maps (SOM)

for the given example are compared. For low noise levels, DIB-C identifies the correct number

of classes and has an ARI of almost one. However, with increasing noise, the DIB-C results

deteriorate. The only algorithm that shows constantly good performance over all noise levels

is k-means, which is why we compare our method to this algorithm here. The AR indices for

the results using k-means and PFP for m = 6, . . . , 28 and the four different noise levels are

presented in Figure 6.8. For the lowest noise level σ = 0.06, the ARI of the PFP clustering

peaks with a maximal value of exactly one form = 18, which agrees with the correct number of

simulated clusters and is higher than the DIB-C result in [Kim 07]. Note that the AR indices
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computed on basis of the PFP results for σ ∈ {0.06, 0.12} dominate the ones from k-means.

However, in the presence of higher noise levels, identification of the correct classification via

the PFP method is obviously not possible.

6.3 Modifications

The key ingredient of our method for computing data-dependent cluster prototypes is the

control parameter α. In this section, we present the influence of changes in α on the results.

Furthermore, for the application in the clustering of real data we also include additional

features which will also be presented in the following.

*

274 (ID4)

*

72 (ID5)

*

68 (ID16)

*

52 (ID20)

*

33 (ID11)

26 (ID18)

*

23 (ID21) 16 (ID30) 15 (ID23) 10 (ID24)

8 (ID1) 8 (ID13) 7 (ID19) 7 (ID29) 6 (ID2)

6 (ID10) 5 (ID34) 5 (ID35) 4 (ID3) 4 (ID12)

Figure 6.9: 20 largest clusters from PFP clustering with m = 40, α = 0 for AAS example (six significant

clusters, indicated by “∗”); prototypes (black), data (cyan)

Figure 6.9 presents the twenty largest clusters from the AAS data computed with the data-

independent version of the PFP functional. Compared to the results in Figure 6.1 it be-

comes obvious that the size of the largest cluster increases whereas most of the other clusters

shrink. Moreover, the number of significant clusters decreases. Further experiments show

that small α > 0 already reduces the size of the dominating clusters. However, the matrix
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Figure 6.10: 20 largest clusters from PFP clustering with m = 80, α = 2.0 for AAS example (13 significant

clusters, indicated by “∗”); prototypes (black), data (cyan)

T = [θ1, . . . , θ40] ∈ R
4×40 with

T =

















−0.4057 0.4142 0.3513 −0.8591 0.7255 · · · −0.6346 0.6854

−0.2902 0.4165 −0.5665 −0.2171 0.4227 · · · −0.6897 0.1629

0.8546 −0.7868 0.0146 −0.3783 0.1113 · · · −0.2554 0.6939

0.1443 −0.1895 −0.7453 0.2677 0.5316 · · · −0.2375 0.1490

















satisfies ‖θℓ‖2 = 1, ℓ = 1, . . . , 40. Moreover, the numerical values of the corresponding frame

matrix are

S(0) =

















10.0000 −0.0000 −0.0000 0.0000

−0.0000 10.0000 0.0000 −0.0000

−0.0000 0.0000 10.0000 0.0000

0.0000 −0.0000 0.0000 10.0000

















,

which is approximately m/d Id. Thus, θ1, . . . , θ40 constitute a FUNTF in R
4 by Lemma 2.5.

Compared to that, the solution with α = 2.0 from Figures 6.1 and 6.2 is, of course, not a

FUNTF. In that case, the frame matrix is

S(2) =

















12.3593 0.8440 0.2668 −0.3999

0.8440 10.0584 −0.3908 −0.7798

0.2668 −0.3908 8.7939 0.7866

−0.3999 −0.7798 0.7866 8.7884
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162 (ID20) 161 (ID4) 80 (ID5) 65 (ID19) 34 (ID15)
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6 (ID3) 4 (ID7) 4 (ID14) 3 (ID6) 1 (ID11)

Figure 6.11: 20 largest clusters from PFP clustering with m = 20, α = 2.0 for AAS example using the

assignment rule in (6.2); prototypes (black), data (cyan)

and the frame potential becomes ‖S(2)‖2F ≈ 413.14 > 400 ≈ ‖S(0)‖2F .

The second parameter that has strong influence on the solutions is the number of prototypes

m. In Figure 6.10 we see that for m = 80 the sizes of the clusters decrease. However, many

of the prototypes are similar which can be seen by the smaller distances between neighboring

prototypes in Table 6.3 compared to the last column in Table 6.1.

In biological applications it is sometimes of interest to identify data that react contrarily to

each other over time. In order to address this problem, we alter the step where the clusters

are built. Instead of assigning a given time series to cluster Cℓ if the corresponding projection

satisfies

yj ∈ D̂ℓ =

{

v ∈ Sd−1 : θℓ = argmax
1≤k≤m

〈v, θk〉
}

,

we assign it to cluster Cℓ if

θℓ = argmax
1≤k≤m

|〈yj , θk〉| . (6.2)

The clustering for m = 20 using the assignment rule from (6.2) can be seen in Figure 6.11.

Note that in this application one is often interested in the rather small clusters.
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6.4 Feature Recognition in Multispectral Data

In the final section, we briefly show how the PFP algorithm can be applied to extract certain

features from multispectral data. The idea of extending our method to this field was origi-

nally suggested by Martin Ehler in personal conversation at the International Conference on

Multivariate Approximation in Hagen, Germany, in 2011.

According to Jain, “in multispectral imaging there is a sequence of I images Ui(m,n), i =

1, 2, . . . , I, where the number I is typically between 2 and 12. It is desired to combine these

images to generate a single or a few display images that are representative of their features”

([Jain 89]). For the sake of consistency with the previous chapters, we use the variables d and

k instead of I and m, respectively.

Multispectral data occurs for example in aerial scanning of landscapes using a small number

of different frequency bands. The recorded data U1, . . . , Ud are stored in a three-dimensional

array, which is commonly denoted as a multispectral cube. The objective is to gain information

on soil composition or agricultural land use, among others. Each slice of the cube Ui(k, n),

where k = 1, . . . , N1 and n = 1, . . . , N2, contains the spatial information of the measuring

with the same frequency band. Thus, cutting the cube vertically along the frequency domain

leads to a large number of N1 ·N2 vectors

U(1, 1), U(2, 1), . . . , U(N1, 1), U(1, 2), . . . , U(N1, 2), . . . , U(1, N2), . . . , U(N1, N2)

with U(k, n) = (U1(k, n), . . . , Ud(k, n))
T in the low-dimensional space R

d. Clustering with

respect to the spatial position allows to extract certain features from the image.

The left picture in Figure 6.12 presents an aerial image of central Paris, France, produced by

RGB visualization of three slices of a seven-layered multispectral cube of size 512 × 512 × 7.

Cutting the cube vertically leads to 218 vectors in R
7. The right picture is a colored image

of the PFP-clustering using m = 25 and α = 8.0. Each color represents one cluster. Several

features in the landscape become prominent. For example, one can clearly identify the Seine

(dark blue) or divide the downtown area (red) from the less-populated suburbs (cyan). Also

bridges and larger outbound streets are recognized as similar objects and clearly visible.

It should be mentioned that standard algorithms in multispectral data processing provide
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further features and options for this specific problem such as onboard-processing for satellites.

The Multispec package (https://engineering.purdue.edu/∼biehl/MultiSpec/, accessed

July 21, 2013) offers a broad variety of applications. However, note that for comparative

purposes the current implementation of the PFP method is capable of giving a solution to the

feature extraction problem.
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Chapter 7

Brief Discussion and Outlook

As seen in this thesis, the applied methods provide insight into different features of the Pe-

nalized Frame Potential. Compared to the first proposal in [Spri 11], we characterized the

functional in terms of extremal cases of the regularization parameter α and showed the con-

nection to the spherical Dirichlet cells of the normalizations of the given data. Furthermore,

the thorough discussion in the framework of optimization theory proved that under mild re-

laxations the minimization can be transformed into a problem on the singular values with

unique solution under suitable conditions.

However, a number of questions is still open and demands answers in future work:

(Q1) We formulated the PFP for the penalty term that looks for the maximal inner product

between the given data and the minimizer Θ. Are there other penalty terms with

similar features and reasonable calculational effort for the clustering problem? How can

the penalty term be altered in order to adapt the basic concept of penalizing the frame

potential to other problems?

(Q2) Chapter 5 showed that for the relaxed problem (P2∗) there exists no duality gap. More-

over, Example 5.2 provides data on S1 for which we can characterize the minimizer and

the Lagrange multipliers in (P2) and (P1) in terms of a single scalar. We also intro-

duced a class of matrices that are similar to the given minimizer with larger objective

values. Therefore, the question remains whether the corresponding optimization prob-
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lems contain a duality gap. This question is closely connected to the problem of globally

minimizing the PFP.

(Q3) The advantages of the problem (P2∗) are that one only has to consider a single constraint

and that the Wielandt-Hoffman-Theorem 5.4 provides a reduction to an optimization on

the singular values. In all other stated problems, the left and right singular matrices of

the minimizer T have to be taken into account as well, which in general heavily increases

the difficulty of solving it. Is there a possibility to simplify or to find (approximate)

solutions for the extremal condition

4TT ∗T + 2TΛ = αY

for general Y ?

Note that there exist iterative methods to approximate solutions for the algebraic Riccati

Equation

XDX +XA+BX + C = 0

with real or complex coefficient matrices A,B,C,D, which appears in filter design and

control theory. However, Riccati-type equations are only of quadratic polynomial degree

and formulated for quadratic X ([Lanc 95]).

In addition to these mathematical problems, the clustering results from Chapter 6 can be

further extended. Even if we provided some practical aspects of the minimization of the PFP

for real data, more evaluations with different data sets should be conducted. A future step of a

more extensive performance evaluation should include an analysis of the clusters via software

tools such as Prima, which is part of the so-called Expander package. It can support more

elaborate research by identifying relevant connections within the clustering results of biological

data.
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