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Abstract

We consider the problem of estimating the bispectrum of a locally stationary process. A non-

parametric, lag-window type estimator is considered and its asymptotic properties are investigated.

As a possible application, a test for linearity in the framework of locally stationary processes is

discussed.
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1 Introduction

Although the assumption of covariance-stationarity is extremely popular in the analysis of discrete

time series (because it allows for an elegant asymptotic theory), it is usually not justified in practise.

In the reality most processes change their second-order structure over time and one concept, which

incorporates this feature, is that of locally stationary processes. A triangular array {XT , T = 1, 2, . . .}
of stochastic processes XT = {Xt,T , t = 1, 2, . . . , T} is called locally stationary if it possesses a time

varying MA(∞)-representation

Xt,T =
∞∑
l=0

ψt,T,lZt−l, t = 1, . . . , T,(1)

where the random variables Zt are assumed to be independent and identically distributed with mean 0

and variance 1. To make the class XT of processes mathematically tractable, it is commonly assumed

that Xt,T can be locally approximated by a stationary process, that is that there exist functions ψl :
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[0, 1]→ R such that the time varying coefficients ψt,T,l are close enough to some functions ψl(t/T ), i.e.,

that
∞∑
l=0

sup
t=1,...,T

|ψt,T,l − ψl(t/T )| = O(1/T ).(2)

The process

Xt(u) :=
∞∑

l=−∞

ψl(u)Zt−l

which is obtained by replacing ψt,T,l by ψl(t/T ) is called the locally approximating stationary process,

that is the stationary process that approximates Xt,T locally at the rescaled time point t/T . The above

class of stochastic processes was introduced by Dahlhaus (1997) and became quite popular in recent

years.

Consider now a locally stationary process as defined in (1) and assume that all moments of the in-

novations Zt exist and that the locally approximating functions ψl : [0, 1] → R from (2) are twice

continuously differentiable and satisfy the following conditions,

∞∑
l=−∞

sup
u∈[0,1]

|ψl(u)||l|2 <∞,(3)

∞∑
l=−∞

sup
u∈[0,1]

|ψ′l(u)||l| <∞,(4)

∞∑
l=−∞

sup
u∈[0,1]

|ψ′′l (u)| <∞.(5)

Then a time varying spectral density of XT exists, is unique and it is given by

f(u, λ) :=
1

2π

∞∑
l=−∞

E(Xt(u)Xt+l(u)) exp(−iλl), u ∈ [0, 1], λ ∈ IR,

[see Dahlhaus (1997)]. Notice that under the assumptions made

sup
t,λ

∣∣∣(2π)−1|Ψt,T (e−iλ)|2 − f(u, λ)
∣∣∣ = O(T−1),

where for z ∈ C, Ψt,T (z) =
∑

l ψt,T,lz
l. Similarly, we define the time varying bispectrum of the locally

stationary process X through

f(u, λ1, λ2) :=
1

(2π)2

∞∑
l1,l2=−∞

E(Xt(u)Xt+l1(u)Xt+l2(u)) exp(−i(λ1l1 + λ2l2)).

This definition is justified by the following, easily established property

sup
t,λ1,λ2

∣∣∣(2π)−2E(Z3
1)Ψt,T (e−iλ1)Ψt,T (e−iλ2)Ψt,T (e−i(λ1+λ2))− f(u, λ1, λ2)

∣∣∣ = O(T−1).
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In this note we consider the problem of estimating the bispectrum f(u, λ1, λ2) based on an observed

time series X1,T , X2,T , . . . , XT,T of the locally stationary process. For this, a lag-window estimator is

considered and its asymptotic properties are derived. As an application, a test of linearity is discussed.

2 A Lag-Window Estimator and its Properties

In order to estimate the bispectrum f(u, λ1, λ2), we choose a window length N such that N = o(T )

holds, and define an estimator of the time-varying bispectrum through

f̂(u, λ1, λ2) =
1

(2π)2

∞∑
k1,k2=−∞

w(k1/B, k2/B)γ̂N(u, k1, k2) exp(−iλ1,Nk1 − iλ2,Nk2),(6)

where w : IR2 → IR+
0 is a continuously differentiable function with compact support, λN = 2πN−1b(2π)−1Nλc

and

γ̂N(u, k1, k2) :=
1

N

N−1∑
p=0

XbuT c−N/2+1+pXbuT c−N/2+1+p+k1XbuT c−N/2+1+p+k2 ,

[we have set Xt,T = 0 for t /∈ {1, ..., T}]. We assume that N,B →∞ and state the following assumptions

on the weight function w.

Assumption 2.1 w(·, ·) has the compact support [0, 1]2 with w(0, 0) being equal to one, is twice con-

tinuously differentiable, and the first derivates vanish at the origin.

The following theorem summarizes the asymptotic properties of the estimator (6).

Theorem 2.2 Let Assumption 2.1 be true, assume that infu,λ f(u, λ) ≥ c > 0 and that

N/B2 →∞, N5/2/(BT 2)→ 0

as T →∞. . Then,

(i) E(f̂(u, λ1, λ2)) = f(u, λ1,N , λ2,N) +O(1/B2 +N2/T 2 + 1/T ),

(ii)
√
NB−1V ar(f̂(u, λ1, λ2)) = σBf(u, λ1)f(u, λ2)f(u, λ1 + λ2) + o(1),

and

(iii)
√
NB−1

(
f̂(u, λ1, λ2)− f(u, λ1,N , λ2,N)

) D−−→ N
(
0, σBf(u, λ1)f(u, λ2)f(u, λ1 + λ2)

)
with σB := (2π)−1ωB and ωB :=

∫∞
−∞

∫∞
−∞w

2(x, y)dydx.

As it is seen from this theorem, the lag window estimator (6) is a mean square consistent estimator of

the bispectrum f(u, λ1, λ2) which appropriate centered has an asymptotic Gaussian distribution.

3



3 A Test for Linearity

It is well known that, under the assumption of covariance stationarity, a linear model is very often not

able to capture all stylized facts of a given time series dataset. If we look, for example, at financial

time series, then days with either small or large movements are likely to be followed by days with

similar fluctuation. This effect, called ’volatility clustering’, can not be explained by a standard linear

model like, for instance, an ARMA(p, q) one. One example to resolve this issue (which became particular

famous during the last decades) is to employ GARCH(p, q) processes which are stationary under certain

regularity conditions, but do not lie in the class of linear models anymore. It is obvious, however, that

the effect of clustered volatility also occurs if we employ the simple locally stationary process

Xt,T = σ(t/T )Zt t = 1, . . . , T,(7)

where σ(·) : [0, 1] → IR+ is a non parametric function and Zt is some independent and identically

distributed random variable. In fact, many authors have pointed out that most of the stylized facts

which are observed for financial return data can be explained by using the model (7); see for example

Starica and Granger (2005), Fryzlewicz et al. (2006). The local bispecrtum discussed in the previous

section can be used to develop a test for linearity.

To motivate our proposal, recall that every zero mean covariance-stationary time series Xt with a purely

continuous spectral density can be represented as

Xt =
∞∑
l=0

ψlZt−l(8)

where Zt is a white noise process (see Priestley (1983), Chapter 10). If the Zt in (8) are independent

and identically distributed, the process is called linear. If the underlying process is linear then the time

varying bispectrum is equal to

E(Z3)

(2π)2
H(u,−λ1 − λ2)H(u, λ1)H(u, λ2)

with

H(u, λ) :=
∞∑

l=−∞

ψl(u) exp(−iλl).

Because f(u, λ) = 1
2π
|H(u, λ)|2 we obtain for a linear process that

|f(u, λ1, λ2)|2 =
E(Z3)2

(2π)σ6
f(u, λ1)f(u, λ2)f(u, λ1 + λ2).(9)

and

|f(u, λ1, λ2)|2 ≡ 0(10)

4



if the process is Gaussian.

A global measure for linearity/Gaussianity is then obtained by dividing X1,T , ..., XT,T into M segments

of length N , setting uj (j = 1, ...,M) as the midpoints of the corresponding interval in rescaled time

and considering

1

M

M∑
j=1

|f̂(uj, λ1, λ2)|2

f̂(uj, λ1)f̂(uj, λ2)f̂(uj, λ1 + λ2)

where

f̂(u, λ) :=
1

2π

∞∑
k=−∞

w(k/B)γ̂N(u, k) exp(−iλNk),

w : IR→ IR+
0 is a continuously differentiable function with compact support and

γ̂N(u, k) :=
1

N

N−1−k∑
q=0

XbuT c−N/2+1+qXbuT c−N/2+1+q+k.

Then for different λ1, λ2, [as it is formally proved in Theorem 3.2] this expression converges in probability

to
∫ 1

0
|f(u, λ1, λ2)|2f−1(u, λ1)f−1(u, λ2)f−1(u, λ1 + λ2)du which equals (2π)−1E(Z3)2 if the process is

linear and equals zero in the Gaussian case [cf. (9), (10)].

To derive the asymptotic distribution of our test statistic, the following set of additional conditions is

required.

Assumption 3.1 Let N ∼ Tα and B ∼ T β for some α, β > 0. Suppose that one of the following two

conditions holds:

i) It is E(Z3
t ) = 0, α ∈ (0, 1) and

max(1/2− α/2, 5/4α− 3/4, 2α/5) < β < α/2 or

ii) It is E(Z3
t ) 6= 0, α ∈ (1/2, 1) and

max(2α− 3/2, 1/6) < β < α/2.

The range of allowed values for (α, β) is illustrated in Figure 1 and the following theorem establishes

the limiting distribution of the test statistic under the null hypothesis of linearity.

Theorem 3.2 Let Assumption 2.1 and 3.1 be fulfilled and assume that infu,λ f(u, λ) ≥ c > 0. Then we

have

ĜT (λ1, λ2) :=

√
M

Σ̂B,N

( 1

M

M∑
j=1

√
N

B

( |f̂(uj, λ1, λ2)|2

σB f̂(uj, λ1)f̂(uj, λ2)f̂(uj, λ1 + λ2)
− D̂T (uj)

)
− B√

N

)
D−−→ N (0, 1)
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Figure 1: Range for (α, β) if E(Z3
t ) = 0 (left panel) and E(Z3

t ) 6= 0 (right panel).

with

D̂N(u) :=
1

2πσB

(∑
|k|<N

1
N

∑N−1
q=0 X

2
buT c−N/2+1+qXbuT c−N/2+1+q+k

)2
(γ̂(u, 0))32πf̂(u, 0)

Σ̂B,N :=
4

M

M∑
j=1

D̂N(uj) + 2B2/N

and σB being defined in Theorem 2.2. In addition we have

lim
T→∞

Cov(ĜT (λ
(1)
1 , λ

(1)
2 ), ĜT (λ

(2)
1 , λ

(2)
2 )) = 0(11)

if (λ
(1)
1 , λ

(1)
2 ) 6= (λ

(2)
1 , λ

(2)
2 ).

Note that the proof of the above theorem reveals that D̂N(u) converges in probability to D :=

(2πσB)−1E(Z3)2 for every u, i.e. based on the above theorem, a formal level-α test for linearity can be

obtained by calculating ĜT (λ1, λ2) for m different pairs

(λ
(1)
1 , λ

(1)
2 ), ..., (λ

(m)
1 , λ

(m)
2 )

[cf. Berg et al. (2010)]. The null hypothesis is then rejected if the absolute value of the sum over all

ĜT (λ
(i)
1 , λ

(i)
2 ) is larger than

√
m times the 1 − α/2 quantile of the standard normal distribution. The

assumption of Gaussianity can be verified in the same way if D̂T (u) in ĜT (λ1, λ2) is replaced by zero.

Acknowledgements. This work has been supported in part by the Collaborative Research Center

“Statistical modeling of nonlinear dynamic processes” (SFB 823, Teilprojekt C1) of the German Re-

search Foundation (DFG).
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4 Appendix: technical details

Proof of Theorem 2.2: (i) By using (2) and a second order Taylor expansion similar to Dette et al.

(2011) we obtain

E(f̂(u, λ1, λ2)) =
1

(2π)2

∞∑
k1,k2=−∞

w(k1/B, k2/B)
1

N

N−1∑
p=0

∞∑
l,m,n=−∞

ψl(u)ψm(u)ψn(u)

×E(ZbuT c−N/2+1+p−lZbuT c−N/2+1+p+k1−mZbuT c−N/2+1+p+k2−n)

× exp(−iλ1,Nk1 − iλ2,Nk2) +O(N2/T 2 + 1/T ).

Since the innovations Zt are independent and have mean zero, we obtain that the conditions k1 = m− l
and k2 = n− l must hold for the corresponding sum not to vanish. This yields

E(f̂(u, λ1, λ2)) =
1

(2π)2

∞∑
l,m,n=−∞

w((m− l)/B, (n− l)/B)E(Z3
1)ψl(u)ψm(u)ψn(u)

× exp(−iλ1,N(m− l)− iλ2,N(n− l)) +O(N2/T 2 + 1/T )

= f(u, λ1,N , λ2,N) +O(1/B2 +N2/T 2 + 1/T ),

where the last equality follows with a second order Taylor expansion of w around zero in combination

with Assumption 2.1 and (3).

(ii) It is

N/B2Var(f̂(u, λ1, λ2)) = N/B2cum(f̂(u, λ1, λ2), f̂(u, λ1, λ2)
∗)

=
N

B2(2π)4

B∑
k1,k2,k3,k4=−B

w(k1/B, k2/B)w(k3/B, k4/B)
1

N2

N−1∑
p1,p2=0

∞∑
l0,l1,l2,m0,m1,m2=−∞

× ψl0(u)ψl1(u)ψl2(u)ψm0(u)ψm1(u)ψm2(u)

× cum(ZbuT c−N/2+1+p1−l0ZbuT c−N/2+1+p1+k1−l1ZbuT c−N/2+1+p1+k2−l2 ,

ZbuT c−N/2+1+p2−m0ZbuT c−N/2+1+p2+k3−m1ZbuT c−N/2+1+p2+k4−m2)

× exp(−iλ1,N(k1 − k3)− iλ2,N(k2 − k4)) +O(N2/T 2 + 1/T ).

We denote the six innovations Z above with Y1, ..., Y6 and by using the product theorem for cumulants

[cf. Theorem 2.3.2 in Brillinger (1981)] we obtain

cum(Y1Y2Y3, Y4Y5Y6) =
∑
ν

cum(Ya; a ∈ ν1) · · · cum(Ya; a ∈ νl),

where the sum runs over all indecomposable partitions ν = (ν1, ..., νl) of

Y1 Y2 Y3

Y4 Y5 Y6.
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The only partition which is not vanishing in the limit is ν∗ = ((1, 4), (2, 5), (3, 6)). In this case we obtain

(due to the independence of the Zt) the conditions

p1 = p2 + l0 −m0

k3 = k1 + l0 −m0 +m1 − l1
k4 = k2 + l0 −m0 +m2 − l2

and the corresponding summand in the covariance is therefore equal to

1

B2(2π)4

B∑
k1,k2,k3,k4=−B

w(k1/B, k2/B)w((k1 + l0 −m0 +m1 − l1)/B)w((k2 + l0 −m0 +m2 − l2)/B)

∞∑
l0,l1,l2,m0,m1,m2=−∞

ψl0(u)ψl1(u)ψl2(u)ψm0(u)ψm1(u)ψm2(u)

exp(−iλ1,N(m0 − l0 + l1 −m1)− iλ2,N(m0 − l0 + l2 −m2))

=
1

2πB2

B∑
k1,k2=−B

w(k1/B, k2/B)2f(u, λ1,N)f(u, λ2,N)f(u, λ1,N + λ2,N) +O(1/B)

which yields the claim by approximating the integral by the corresponding Riemann sum.

(iii) By proceeding as in the proof of Theorem 1 in Dette et al. (2011) we obtain

N l/2/Blcuml(f̂(u, λ1, λ2)) = o(1) for l ≥ 3

which directly yields the claim with (i), (ii) and the grow assumptions on N,B, T . 2

Proof of Theorem 3.2: We start by showing that it suffices to prove√
M

ΣB,N

( 1

M

M∑
j=1

√
N

B

( |f̂(uj, λ1, λ2)|2

σBf(uj, λ1)f(uj, λ2)f(uj, λ1 + λ2)
−D

)
− B√

N

)
D−−→ N (0, 1),(4.1)

where

D :=
E(Z3)2

2πσBσ6
and ΣB,N := 4D + 2B2/N.

This is ensured by the following two claims:√
M/ΣB,N

√
N

B
(

1

M

M∑
j=1

D̂N(uj)−D)
P−−→ 0,(4.2) √

M

ΣB,N

1

M

M∑
j=1

√
N

B

|f̂(uj, λ1, λ2)|2

σB f̂(uj, λ1)f̂(uj, λ2)f̂(uj, λ1 + λ2)
(4.3)

=

√
M

ΣB,N

1

M

M∑
j=1

√
N

B

|f̂(uj, λ1, λ2)|2

σBf(uj, λ1)f(uj, λ2)f(uj, λ1 + λ2)
+ oP (1).
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Proof of (4.2): It is straightforward to show that 1
M

∑M
j=1 D̂N(uj) converges to

∫ 1

0

1

2πσB

(∑∞
h=−∞Cov(X2

t (u), Xt+h(u)
)3

Var(Xt(u))32πf(u, 0)
du

in probability and a simple calculation yields that this quantity already equals D. By using (2) and a

second order Taylor expansion similar to Dette et al. (2011) we obtain

E(f̂(u, λ)) =
1

2π

B∑
k=−B

w(k/B)
1

N

N−1∑
p=0

∞∑
l,m=−∞

ψl(u)ψm(u)E(ZbuT c−N/2+1+p−mZbuT c−N/2+1+p+k−l) exp(−iλNk)

+O(N2/T 2 + 1/T )

=
1

2π

∞∑
l,m=−∞
|l−m|≤B

w((l −m)/B)ψl(u)ψm(u) exp(−iλN(l −m)) +O(N2/T 2),

where the last equality is due to the independence of the innovations. By using a second order Taylor

expansion of w around zero in combination with Assumption 2.1 and (3) it follows that

E(f̂(u, λ)) = f(u, λ) +O(N2/T 2 + 1/B2 + 1/T )

and a straightforward calculation yields Var(f̂(u, λ)) = O(B/N). So we have

f̂(u, λ)− f(u, λ) = OP (
√
B/N +N2/T 2 + 1/T + 1/B2) = OP (N2/T 2 +

√
B/N)(4.4)

and similarly we obtain

γ̂(u, k)− γ(u, k) = OP (1/
√
N +N2/T 2)(4.5)

for every fixed k ∈ IN . (4.4), (4.5) and a second order Taylor expansion now imply

1

M

M∑
j=1

D̂N(uj) =
1

2πσBM

M∑
j=1

(∑
|k|<N

1
N

∑N−1
q=0 X

2
btjc−N/2+1+qXbtjc−N/2+1+q+k

)2
Var(Xt(uj))32πf(uj, 0)

(4.6)

+OP (
1

M

M∑
j=1

C1(uj)(f̂(uj, 0)− f(uj, 0))) +OP (
1

M

M∑
j=1

C2(uj)(γ̂(uj, 0)2 − Var(Xt(uj))
2))

+OP (B/N +N4/T 4 +B1/2N3/2/T 2)

with

C1(u) := −3(
∑

h Cov(Xt(u)2, Xt+h(u)))2

Var(Xt(u))42πf(u, 0)
, C2(u) := −(

∑
h Cov(Xt(u)2, Xt+h(u)))2

Var(Xt(u))32πf(u, 0)2
.
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If E(Z3) = 0 we have C1(u) = C2(u) = 0 for all u, so we now assume that E(Z3) 6= 0 holds. Analogously

to the calculation of E(f̂(u, λ)) we obtain

E(
1

M

M∑
j=1

C1(uj)f̂(uj, 0)) =
1

M

M∑
j=1

C1(uj)f(uj, 0) +O(N2/T 2 + 1/B2)

and we next examine the variance of 1/M
∑M

j=1C1(uj)f̂(uj, 0). It is

Var(
1

M

M∑
j=1

C1(uj)f̂(uj, 0))

=
1

(2πM)2

M∑
j1,j2=1

C1(uj1)C1(uj2)
B∑

k1,k2=−B

w(k1/B)w(k2/B)
1

N2

N−1∑
p1,p2=0

∞∑
li,mi=−∞

ψt,T,l1ψt,T,m1ψt,T,l2ψt,T,m2

Cov(Ztj1−N/2+1+p1−l1Ztj1−N/2+1+p1+k1−m1 , Ztj2−N/2+1+p2−l2Ztj2−N/2+1+p2+k2−m2).

Because of

Cov(Ztj1−N/2+1+p1−l1Ztj1−N/2+1+p1+k1−m1 , Ztj2−N/2+1+p2−l2Ztj2−N/2+1+p2+k2−m2)

= Cov(Ztj1−N/2+1+p1−l1 , Ztj2−N/2+1+p2+k2−m2)Cov(Ztj1−N/2+1+p1+k1−m1 , Ztj2−N/2+1+p2−l2)

+Cov(Ztj1−N/2+1+p1−l1 , Ztj2−N/2+1+p2−l2)Cov(Ztj1−N/2+1+p1+k1−m1 , Ztj2−N/2+1+p2+k2−m2)

+cum(Ztj1−N/2+1+p1−l1Ztj1−N/2+1+p1+k1−m1 , Ztj2−N/2+1+p2−l2Ztj2−N/2+1+p2+k2−m2)

[cf. Brillinger (1981)] the variance splits into three summands and we restrict ourselves to the first

one, because the remaining expressions are treated analogously. In this case we obtain the conditions

k1 = m1 − l2 + p2 − p1 + tj2 − tj1 , k2 = l1 −m2 + p1 − p2 + tj2 − tj1 due to the independence of the Zt,

thus the first considered term equals

1

(2πM)2

M∑
j1=1

∞∑
li,mi=−∞

1

N2

N−1∑
p1,p2=0

C1(uj1)C1(uj2)
M∑
j2=1

−B≤m1−l2+p2−p1+tj2−tj1≤B
−B≤l1−m2+p1−p2+tj2−tj1≤B

w((m1 − l2 + p2 − p1 + tj2 − tj1)/B)w(l1 −m2 + p1 − p2 + tj2 − tj1)/B)ψt,T,l1ψt,T,m1ψt,T,l2ψt,T,m2 .

The conditions on j2 and β < α imply that, if j1, li,mi, pi are chosen and T is sufficiently large, there

is at most one possible choices for j1 such that the corresponding term does not vanish. Since

1

B

N−1∑
p1=0

w(m1 − l2 + p2 − p1 + tj2 − tj1)/B)w(l1 −m2 + p1 − p2 + tj2 − tj1)/B) ≤ C <∞

uniformly in p2,mi, li, tji , we then obtain

Var(
1

M

M∑
j=1

C1(uj)f̂(uj, 0)) = O(B/T ),
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thus the second summand in (4.6) is of order OP (
√
B/T + N2/T 2 + 1/B2). So, roughly speaking, by

taking the sample-mean of (C1(uj)f̂(uj, 0)))j=1,?,M , we get an ’additional’ 1/
√
M which becomes

√
B/T

after multiplication with the rate
√
B/N of f̂(u, λ). In the same way it can be shown that the third

term in (4.6) is a OP (1/
√
T +N2/T 2), thus altogether we get

1

M

M∑
j=1

D̂T (uj) =
1

2πσBM

M∑
j=1

(∑
|k|<N

1
N

∑N−1
q=0 X

2
btjc−N/2+1+qXbtjc−N/2+1+q+k

)2
Var(Xt(uj))32πf(uj, 0)

+OP (
√
B/T +N2/T 2 + 1/B2)× 1{E(Z3) 6= 0}+OP (B/N +N4/T 4 +B1/2N3/2/T 2).

Using the same arguments as above it follows that the first summand in this expression equals D plus

an error term of order OP (1/
√
T +N2/T 2). This in combination with Assumption 2.1 yields (4.2).

Proof of (4.3): We start with the case whereE(Z3) = 0. Because of Theorem 2.2 we have f(uj, λ1, λ2)|2 =

OP (B2/N), which combined with a Taylor expansion yields

|f̂(uj, λ1, λ2)|2

f̂(uj, λ1)f̂(uj, λ2)f̂(uj, λ1 + λ2)

=
|f̂(uj, λ1, λ2)|2

f(uj, λ1)f(uj, λ2)f(uj, λ1 + λ2)
+OP (B2/N)OP

(
(f̂(uj, λ1)− f(uj, λ1)) + (f̂(uj, λ2)− f(uj, λ2))

+(f̂(uj, λ1 + λ2)− f(uj, λ1 + λ2))
)
.

Analogously to the treatment of 1
M

∑M
j=1C1(uj)f̂(uj, 0) it can be shown that

1/M
M∑
j=1

(f̂(uj, λ1)− f(uj, λ1)) = OP (
√
B/T +N2/T 2 + 1/B2)

and since the last two summands in the OP (·)-term are treated in the same way the claim follows for

E(Z3) = 0. If E(Z3) 6= 0 we have

|f̂(uj, λ1, λ2)|2 − |f(uj, λ1, λ2)|2 = OP (B/
√
N)

[this is shown analogously to the proof of Theorem 2.2] and the claim then follows with a Taylor

expansion analogously to the case E(Z3) = 0.
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Proof of (4.1): We obtain as in the proof of Theorem 2.2 (i) that it is

E(|f̂(u, λ1, λ2)|2)

=
1

(2π)4

B∑
k1,k2,k3,k4=−B

w(k1/B, k2/B)w(k3/B, k4/B)
1

N2

N−1∑
p1,p2=0

∞∑
l0,l1,l2,m0,m1,m2=−∞

× ψl0(u)ψl1(u)ψl2(u)ψm0(u)ψm1(u)ψm2(u)

×E(ZbuT c−N/2+1+p1−l0ZbuT c−N/2+1+p1+k1−l1ZbuT c−N/2+1+p1+k2−l2

ZbuT c−N/2+1+p2−m0ZbuT c−N/2+1+p2+k3−m1ZbuT c−N/2+1+p2+k4−m2)

× exp(−iλ1,N(k1 − k3)− iλ2,N(k2 − k4)) +O(N2/T 2 + 1/T ).(4.7)

We denote the six innovations Z above with Y1, ..., Y6 and by using the product theorem for cumulants

[cf. Theorem 2.3.2 in Brillinger (1981)] we obtain

E(Y1 · · ·Y6) =
∑
ν

cum(Ya; a ∈ ν1) · · · cum(Ya; a ∈ νl),

where the sum runs over all indecomposable partitions ν = (ν1, ..., νl) of 1 2 · · · 6. The only two

partitions which do not vanish in the limit are ν∗1 = ((1, 2, 3), (4, 5, 6)) and ν∗2 = ((1, 4), (2, 5), (3, 6))

and we denote the corresponding summands in (4.7) with Eν∗1 and Eν∗2 , respectively. Concerning ν∗1
we obtain with the independence of the innovations that the relations k1 = l1 − l0, k2 = l2 − l0,

k3 = m1−m0 and k4 = m2−m0 have to hold, which, with a second order Taylor expansion of w around

zero in combination with Assumption 2.1 and (3), yields

Eν∗1 =
E(Z3)2

2πσ6
f(u, λ1,N)f(u, λ2,N)f(u, λ1,N + λ2,N) +O(1/B2).

As in the proof of Theorem 2.2 (ii), we additionally obtain

Eν∗2 = B2/NσBf(u, λ1,N)f(u, λ2,N)f(u, λ1,N + λ2,N) +O(1/B2)

and therefore E(ĜT,2(λ1, λ2)) = o(1). By employing the exact same arguments one obtains

Var(ĜT,2(λ1, λ2)) = 1 + o(1), cuml(ĜT,2(λ1, λ2)) = o(1) for l ≥ 3 and (11). 2
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