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Abstract

In the framework of jump detection in stochastic volatility models the Gumbel test based on
extreme value theory has recently been introduced. Compared to other jump tests it possesses the
advantages that the direction and location of jumps may also be detected. Furthermore, compared
to the Barndorff-Nielsen and Shephard test based on bipower variation the Gumbel test possesses a
larger power. However, so far one assumption was that the volatility process is Hölder continuous,
though there is empirical evidence for jumps in the volatility as well. In this paper we derive that
the Gumbel test still works under the setting of finitely many jumps not exceeding a certain size.
Furthermore, we show that the given bound on the jump size is sharp.
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Keywords: jump test, stochastic volatility model, volatility process with jumps, Gumbel distribution,
extreme value theory, high-frequency data

1 Introduction

In the last years the detection of jumps in stochastic volatility models based on high-frequency data has
attained much attention, since this is an important task for modeling, risk assessment and statistical
inference of the integrated volatility or volatility process itself, cf. [1], [3]. Recently Lee and Mykland [7]
and Palmes and Woerner [9] proposed the Gumbel test, i.e. a test relying on extreme value theory, namely
that a certain test statistics based on the maximum of increments of the log-price process converges to the
Gumbel distribution under the null hypothesis of no additive jump component and to infinity otherwise.
Palmes and Woerner [9] derived that this test compared to other tests based on power and multipower
variation has the advantages that both the direction and the location of the jumps may be inferred.
Furthermore, compared to the Barndorff-Nielsen and Shepard test based on bipower variation the Gumbel
test possesses a larger power. However, so far it has only been shown that the Gumbel test works under
the assumption of a continuous volatility process, though there is some empirical evidence that also
volatility processes might possess jumps, cf. Jacod and Todorov [6]. Concerning the volatility process
Lee and Mykland [7] need the assumption that it is α-Hölder continuous for any α   1{2, whereas Palmes
and Woerner [9] relaxed the assumption to a general pathwise Hölder-continuous volatility process.

In this paper we show that the Gumbel test still works for a volatility process with finitely many jumps
not exceeding a certain bound depending on the minimal attained volatility. Furthermore, we show that
the derived bound on the jump size is sharp.

The outline of the paper is the following, in the next section we provide the necessary definitions and
notation. In section 3 we prove the convergence of our test statistics under the new assumptions on the
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volatility process and show that the bound on the size of the jumps in the volatility process is sharp. In
section 4 we provide a small simulation study.

2 Definitions and Notation

Let pΩ,F , pFtqtPr0,1s, P q be a filtered probability space, which we assume to fulfill the usual conditions.
In the following we consider as model for log-prices the following stochastic volatility models, which are
Itô semimartingales of the form

Yt �
» t
0

σs dWs, qYt � » t
0

σs dWs �
» t
0

dsds �
» t
0

σs dWs �Dt, 0 ¤ t ¤ 1,

where W denotes a standard Brownian motion, σ the volatility process and d the drift coefficient. All
processes are pFtq-adapted. With qY we want to emphasize that this process has a possibly non vanishing
drift term. Without loss of generality we consider as time interval the unit interval r0, 1s instead of an
interval r0, T s for some T ¡ 0.

In Palmes and Woerner [9] we considered the following conditions which are a generalization of the
conditions in Lee and Mykland [7].

Assumptions 2.1. Let the volatility σ be pathwise Hölder continuous, strictly positive and let the drift
d be pathwise bounded. This means that there are two functions

α : Ω Ñ p0, 1s and K : Ω Ñ p0,8q

such that
|σtpωq � σspωq| ¤ Kpωq|t� s|αpωq, 0 ¤ s, t ¤ 1, ω P Ω (1)

and
|σtpωq| _ |dtpωq| ¤ Kpωq, 0 ¤ t ¤ 1, ω P Ω. (2)

Furthermore, we claim t ÞÑ dtpωq to be Lebesgue measurable for all ω P Ω.

In the following we draw statistical inference with the sampling scheme of high frequency data or the
infill asymptotics, i.e. we consider observations at the time-points 0, 1

N , . . . , 1. However, for our analysis
we need a two scale grid which we define as follows. We set N � n2 for n P N and obtain as sampling
times l

n2 , l � 0, . . . , n2 � 1 with

l

n2
� kn� j

n2
� tk,j , 0 ¤ k, j   n. (3)

Hence, the grid on the unit interval separates in two scales. The coarse one, which is indexed by k, and
the finer one, which is indexed by j.

Regarding the increments of the finer scale we define

∆Wk,j �Wtk,j�
1
n2
�Wtk,j , ∆Yk,j � Ytk,j� 1

n2
� Ytk,j , ∆qYk,j � qYtk,j� 1

n2
� qYtk,j

Setting Zk,j � n∆Wk,j , pZk,jq0¤k,j n is a family of i.i.d. Np0, 1q (standard normal) distributed random
variables, since W is a Brownian motion. Finally, we define some abbreviations concerning the volatility:

σk,j � σtk,j , σk � σk,0.

The idea of the Gumbel test is that the increments of the log-price process normed with an estimate of
the spot volatility behave approximately as i.i.d. standard normal random variables and hence classical
extreme value theory may be used.
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Theorem 2.2. [Palmes and Woerner [9]] Set

aN �
a

2 logN, bN � aN � logplogNq � logp4πq
2
?

2 logN
, N P N (4)

and define a statistics Tn by

Tn � n max
0¤k,j n

�
∆qYk,jqσk

�
, n P N (5)

with qσ2
k �

πn2

2pn� 1q
n�2̧

j�0

|∆qYk,j ||∆qYk,j�1| (6)

Then, under the Assumptions 2.1 we obtain for the model with no additive jump component

an2pTn � bn2q dÑ G, nÑ8

where G denotes the Gumbel distribution with the cumulative distribution function x ÞÑ e�e
�x

, x P R. If
the model has an additive jump component J of possibly infinite jump activity and if we replace qY in (5)

by qY � J , we obtain for γ   1
2

n�γan2pTn � bn2q Ñ 8 P -stoch. on Λ, (7)

with
Λ � tω P Ω : Dt0 P p0, 1s : Jt0pωq � Jt0�pωq ¡ 0u.

Moreover, in the case of a finite jump activity the divergence rate of (7) can be improved from
?
n to n.

Remark 2.3. Theorem 2.2 applies the bipower variation estimator (6). However, in order to keep the
technicalities in this paper as small as possible, we will make use of the quadratic variation estimator
in (11). Note that there is no need to distinguish between these estimators if we are not concerned with
external jumps, cf. Barndorff-Nielsen and Shephard [3]. Merely the divergence rate of n in the case of
external jumps with finite activity holds only for the bipower estimator (6). Compare also the results in
Palmes and Woerner [9][Section 5] for further details.

The Assumptions 2.1 allow for a fairly general continuous volatility process, namely possible short- and
long-range dependence, but jumps in the volatility process are excluded. In the following we will show
that the Gumbel test still works under the following condition, i.e. finitely many bounded jumps. Since we
are mainly interested in the influence of the jumps in the volatility process we consider the simplifications
that the drift d vanishes, α is constant and W and σ are independent.

Assumptions 2.4. Let the volatility σ ¡ 0 and the Brownian motion W be independent. Set further
d � 0 and assume

V pωq � inf
0¤t¤1

σtpωq ¡ 0, ω P Ω.

Furthermore, fix 0 ¤ ε   1 and 0   α ¤ 1 and let t ÞÑ σtpωq be càglàd with, at most, finitely many jumps
of size not larger than εp?2� 1qV pωq and α-Hölder continuous between the jumps for every path ω P Ω.
This means that there is a function N : Ω Ñ N0 and a sequence pSlql¥0 of stopping times with S0 � 0,#

Slpωq   Sl�1pωq, 1 ¤ l ¤ Npωq,
Slpωq � 8, l ¡ Npωq,

such that
|σspωq � σtpωq| ¤ Kpωq|t� s|α

holds for all

ps, tq P
Npωq¤
l�0

pSlpωq, Sl�1pωq ^ 1s2, ω P Ω.
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Here, N denotes the number of jumps in the respective path and pSlq1¤l¤N are the jump positions.
Furthermore, we claim

0   |∆σSlpωq| � |σSlpωq � σSl�pωq| ¤ εp
?

2� 1qV pωq, 1 ¤ l ¤ N, ω P Ω

and assume as usual
|σtpωq|   Kpωq, 0 ¤ t ¤ 1, ω P Ω.

In general, the Assumptions 2.4 say that sufficiently small jumps with finite activity in the volatility
process are allowed. It turns out that the bound of the jump size p?2 � 1qV is sharp in the sense of
Corollary 3.5 in the following section.

For completeness, a formal proof is provided in the Appendix that such a sequence of stopping times
pSlql¥0 as stated in the Assumptions 2.4 exists,N is measurable and thatK can be chosen as a measurable
function. This is also important for the proof of Theorem 3.2.

3 The Gumbel test with jumps in the volatility process

In this section we will show that under the Assumptions 2.4, i.e. finitely many sufficient small jumps,
the Gumbel test is still applicable. Furthermore, we will construct a counter example demonstrating
that the bound on the size of the jumps is sharp. We start with a Lemma that builds a bridge between

volatility processes with and without jumps. Now we assume w.l.o.g. P pS1 � 0q � 0 and set Kl,n
def�

prnSls� 1q1tl¤Nu�n1tl¡Nu, l, n ¥ 1.

Lemma 3.1. Under the Assumptions 2.4, we obtain for every γ   α

nγ max
k1,j

|n∆Yk1,j � σk1Zk1,j | Ñ 0, nÑ8, P -a.s. (8)

where k1 in the above maximum runs over all positions of the coarser scaled grid in between the volatility
does not possess a jump, i.e.

k1 P t0, 1, . . . , n� 1u �
N¤
l�1

tKl,nu

and j P t0, . . . , n� 1u. Hence, the above index set is a random subset of t0, 1, . . . , n� 1u2. If in addition
γ   α^ 1

2 , we obtain

nγ max
k1

|pσ2
k1 � σ2

k1 | Ñ 0, nÑ8, P -a.s. (9)

and

nγ max
k1,j

����n∆Yk1,jpσk1 � Zk1,j

����Ñ 0, nÑ8, P -a.s. (10)

with the spot volatility estimator

pσ2
k � n

n�1̧

j�0

|∆Yk,j |2, 0 ¤ k   n. (11)

Proof. Set

τt �
�

1�
8̧

l�1

|∆σSl |
�
�

8̧

l�1

∆σSl 1pSl,1sptq, 0 ¤ t ¤ 1. (12)

The first term in (12) guarantees that τ is positive and the second term subtracts all jumps within a

path. Thus, ϕt
def� σt� τt is a positive α-Hölder continuous process that is independent of W . Set further

Xt �
» t
0

ϕs dWs, Ct �
» t
0

τs dWs.
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Since the volatility σ and the Brownian motion W are independent according to the Assumptions 2.4,
we can assume w.l.o.g.

∆Yk,j �
�» tk,j� 1

n2

tk,j

σ2
s ds

� 1
2

Zk,j , 0 ¤ j, k   n, (13)

cf. Palmes [8][p. 26] for a formal justification.

We start with the proof of (8) : Using

∆Yk1,j � ∆Xk1,j �∆Ck1,j � ∆Xk1,j � τk1∆Wk1,j , σk1 � ϕk1 � τk1 ,

we have
|n∆Yk1,j � σk1Zk1,j | � |n∆Xk1,j � ϕk1Zk1,j |,

which implies

nγ max
k1,j

|n∆Yk1,j � σk1Zk1,j | ¤ nγ max
0¤k,j n

|n∆Xk,j � ϕkZk,j | Ñ 0, P -a.s.

Here, the latter convergence holds, since we can apply Palmes and Woerner [9][Proposition 3.3, eq. (12)]
to the process X.

Next we turn to the proof of (9) : Set

pϕ2
k � n

n�1̧

j�0

|∆Xk,j |2, pτ2k � n
n�1̧

j�0

|∆Ck,j |2, 0 ¤ k   n

and consider

pσ2
k1 � pϕ2

k1 � pτ2k1 � 2n
n�1̧

j�0

∆Xk1,j∆Ck1,j

� pϕ2
k1 � τ2k1

1

n

n�1̧

j�0

Z2
k1,j � 2nτk1

1

n

n�1̧

j�0

∆Xk1,jZk1,j .

Next, decompose the last term in

�2τk1ϕk1
1

n

n�1̧

j�0

Z2
k1,j � 2τk1Rk1

with

Rk1
def� 1

n

n�1̧

j�0

Zk1,jpn∆Xk1,j � ϕk1Zk1,jq.

Then, we have

pσ2
k1 � σ2

k1 � pσ2
k1 � pϕk1 � τk1q2 � ppϕ2

k1 � ϕ2
k1q � pτ2k1 � 2τk1ϕk1q

�
1

n

n�1̧

j�0

Z2
k1,j � 1

�
� 2τk1Rk1 .

Again, an application of Palmes and Woerner [9][Propositon 3.3, eq. (13)] to X and W yields

nγ max
k

|pϕ2
k � ϕ2

k| Ñ 0, max
k

����� 1n
n�1̧

j�0

Z2
k,j � 1

�����Ñ 0, nÑ8, P -a.s. (resp.) (14)

Note that [9][eq. (13)] is proven for the bipower variation estimator. However, a simple check of the
respective proofs in [9] yields that [9][eq. (13)] still remains valid in the case of the quadratic variation
estimator, cf. Palmes [8][Theorem 1.4.2] for more details.
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Note that every path of τ and ϕ is bounded. Thus, it remains to estimate the residual term Rk1 :

nγ max
k

|Rk| ¤ max
k

1

n

�����n�1̧

j�0

Zk,j

�����nγ max
k,j

|n∆Xk,j � ϕkZk,j |.

The second factor converges P -a.s. to zero due to Palmes and Woerner [9][Proposition 3.3 eq. (12)]. Note
for the first factor �

1?
n

n�1̧

j�0

Zk,j

�
k�0,...,n�1

� pZ0,jqj�0,...,n�1,

so we have for every N P N together with the Markov inequality

P

�
max
k

1

n

�����n�1̧

j�0

Zk,j

����� ¥ ε

�
� P

�
max
j
|Z0,j | ¥

?
nε



¤ Epmaxj |Z0,j |N q

n
N
2 εN

� Opn�N�1
2 qε�N ,

where the last equality follows immediately from Palmes and Woerner [8][Proposition A.3]. Hence, a
standard Borel-Cantelli argument yields that also the first factor converges P -a.s. to zero and, therefore,
(9) is proven.

Having proven (8) and (9), the proof of (10) is the same as the proof of the analogue statement in
Palmes and Woerner [9][Proposition 4.1] in the case of no jumps in the volatility process. It is therefore
omitted.

Theorem 3.2. Theorem 2.2 holds under the Assumptions 2.4 with the spot volatility estimator given by
(11).

Proof. Note that the interesting part of the proof is the convergence to the Gumbel distribution, since
the other part of the convergence to infinity is not influenced by the conditions on the volatility process.

Hence we prove

an2pTn � bn2q dÑ G, nÑ8.
Lemma 3.1, (10) and����max

k,j

n∆Yk,jpσk �max
k,j

Zk,j

����
¤ max

k1,j

����n∆Yk1,jpσk1 � Zk1,j

����� �max
k,j

n∆Yk,jpσk �max
k1,j

n∆Yk1,jpσk1


�
�

max
k,j

Zk,j �max
k1,j

Zk1,j



, n P N

implies that it suffices to establish the following two convergence results:

P

�
max
k,j

n∆Yk,jpσk �max
k1,j

n∆Yk1,jpσk1 ¡ 0



Ñ 0, nÑ8 (15)

and

P

�
max
k,j

Zk,j �max
k1,j

Zk1,j ¡ 0



Ñ 0, nÑ8. (16)

The following proof is divided into three steps. The first two steps prove (15). The first step simplifies the
claim to a more elementary result which involves only the maximum of i.i.d. Np0, 1q random variables.
This simplified result is proven in the second step. Finally, in the third step, the first two steps are used
in order to prove (16).

step 1. Simplification of the claim. Set

ηk � pσk � σk
σk

, ζk,j � n∆Yk,j � σkZk,j , 0 ¤ k, j   n
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and define for any fixed 0   γ   α^ 1
2

An �
N�1£
l�0

"
Sl�1 � Sl ¡ 1

n

*
X
!
V ¡ �2Kn�α

2

�_ n�
γ
2

)
,

Bn �
#

max
k

����� 1n
n�1̧

j�0

Z2
k,j � 1

����� ¤ 1

nγ
, max

k1
|ηk1 | ¤ 1

ηγ
, max

k1,j
|ζk1,j | ¤ 1

nγ
, max

k,j
Zk,j ¡ 0

+
,

with the notation tM1,M2u def� M1 XM2 for any sets M1,M2. Furthermore, we have with

rk P N¤
l�1

tKl,nu

the inequality

P

�
max
k,j

n∆Yk,jpσk �max
k1,j

n∆Yk1,jpσk1 ¡ 0



(17)

¤ P

�
max
rk,j

n∆Y
rk,jpσ

rk

¡ max
k1,j

n∆Yk1,jpσk1 , An, Bn

�
� P pAcnq � P pBcnq.

Lemma 10, (9), (10) and (14) yield P pBcnq Ñ 0, nÑ8. Note also

lim supP pAcnq ¤ P plim supAcnq � P pplim inf Anqcq � P pHq � 0,

i.e. P pAcnq Ñ 0, n Ñ 8. Set Gl,n
def� tpg1, . . . , glq P t0, 1, . . . , n � 1ul : g1   g2   . . .   glu, 1 ¤ l ¤ n.

Since we aim to verify (15), the above yields that it is sufficient to prove that

ņ

l�1

¸
gPGl,n

P

�
max
rk,j

n∆Y
rk,jpσ

rk

�max
k1,j

∆Yk1,jpσk1 ¡ 0, pK1,n, . . . ,Kl,nq � g, N � l, An, Bn

�

tends to zero, if n tends to infinity. Define

λk � inf
t kn¤s¤

k�1
n u

σs, 0 ¤ k   n,

δ � sup
l¥1

|∆σSl |1tSl¤1u ¤ εp
?

2� 1qV.

Then we have for ω P An and every 0 ¤ k   n, i.e. in particular for rk
λkpωq ¤ σspωq ¤ λkpωq � 2Kpωqn�α � δpωq def� λkpωq � δnpωq, k

n
¤ s ¤ k � 1

n
.

This yields the estimates

λ2k
1

n

n�1̧

j�0

Z2
k,j ¤ pσ2

k ¤ pλk � δnq2 1

n

n�1̧

j�0

Z2
k,j , ω P An,

since pσ2
k � n

n�1̧

j�0

p∆Yk,jq2 � n
n�1̧

j�0

» tk,j� 1
n2

tk,j

σ2
s dsZ

2
k,j ,

cf. (13). Using this we obtain with Cn
def� An XBn, n P N the inequalities

P

�
max
rk,j

n∆Y
rk,jpσ

rk

¡ max
k1,j

n∆Yk1,jpσk1 , pK1,n, . . . ,Kl,nq � g, N � l, Cn

�
(18)
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¤ P

���max
rk,j

n
�

1
n2 pλrk � δnq2

� 1
2 Z

rk,j�
λ2
rk

�
1� 1

nγ

�	 1
2

¡ max
k1,j

σk1Zk1,j � ζk1,j
σk1p1� ηk1q , pK1,n, . . . ,Kl,nq � g, N � l, Cn

��

¤ P

��max
rk,j

λ
rk � δn

λ
rk

Z
rk,j�

1� 1
nγ

� 1
2

¡ max
k1,j

Zk1,j

1� 1
nγ

�
1
nγ

V
�
1� 1

nγ

� , pK1,n, . . . ,Kl,nq � g, N � l, Cn

�
.
We have on An for n large enough

λ
rk � δn

λ
rk

¤ 1� n�
α
2 V � εp?2� 1qV

V
�
?

2� n�
α
2 � p

?
2� 1qp1� εq ¤ ?

2� κ

for some constant κ ¡ 0. Hence, if g P Gl,n, l ¤ n, (18) is not larger than

P

�� ?
2� κ�

1� 1
nγ

� 1
2

max
rk,j

Z
rk,j ¡

1

1� 1
nγ

max
k1,j

Zk1,j � 2

n
γ
2

�
P ppK1,n, . . . ,Kl,nq � g, N � lq

where the maxima run over

rk P l¤
j�1

tgju and k1 P t0, 1, . . . , n� 1u �
l¤

j�1

tgju,

respectively. Here, we used the independence of Z and σ. Define

Dg
l,n �

$&%
?

2� κ�
1� 1

nγ

� 1
2

max
rk,j

Z
rk,j ¡

1

1� 1
nγ

max
k1,j

Zk1,j � 2

n
γ
2

,.- , l ¤ n, g P Gl,n.

It suffices to prove P pDπ
l,nq Ñ 0, n Ñ 8 with π � p0, 1, . . . , l � 1q P Gl,n for every fixed l ¤ n, since we

have

ņ

l�1

¸
gPGl,n

P pDg
l,nqP ppK1,n, . . . ,Kl,nq � g, N � lq

�
ņ

l�1

P pDπ
l,nq

¸
gPGl,n

P ppK1,n, . . . ,Kl,nq � g, N � lq

¤
ņ

l�1

P pDπ
l,nqP pN � lq

and

P pDπ
l,nq ¤ 1,

8̧

l�1

P pN � lq ¤ 1   8.

Hence, a dominated convergence argument, (17) and the results proven so far yield the desired conver-
gence (15).

step 2. Convergence of pDπ
l,nqn. We know that

αl,n
def� max

rk,j
Z
rk,j � bln Ñ 0, βl,n

def� max
k1,j

Zk1,j � bpn�lqn Ñ 0, nÑ8 P -stoch.

Due to

P pDπ
l,nq

� P

�� ?
2� κ�

1� 1
nγ

� 1
2

pαl,n � blnq ¡ 1

1� 1
nγ

pβl,n � bpn�lqnq �
2

n
γ
2

�
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� P

�� ?
2� κ�

1� 1
nγ

� 1
2

αl,n � 1

1� 1
nγ

βl,n ¡ 1

1� 1
nγ

bpn�lqn �
?

2� κ�
1� 1

nγ

� 1
2

bln � 2

n
γ
2

�

and the stochastic convergence of pαl,nqn and pβl,nqn to zero, it suffices to show

1

1� 1
nγ

bpn�lqn �
?

2� κ�
1� 1

nγ

� 1
2

bln Ñ8, nÑ8. (19)

Substituting (4) in (19) yields

1

1� 1
nγ

a
2 logppn� lqnq �

d
2� κ

1� 1
nγ

a
2 logplnq � op1q, nÑ8

�
gffe2 log

�
ppn� lqnq

1

p1� 1
nγ q2

�
�
d

2 log

�
plnq

2�κ

1� 1
nγ



� op1q.

Since
1�

1� 1
nγ

�2 Ñ 1,
2� κ

1� 1
nγ

Ñ 2� κ   2, nÑ8,

step 2 is completed.

step 3. Proof of (16). Write as at the end of step 1

P

�
max
k,j

Zk,j �max
k1,j

Zk1,j ¡ 0, An



¤

ņ

l�1

¸
gPGl,n

P

�
max
rk,j

Z
rk,j ¡ max

k1,j
Zk1,j , pK1,n, . . . ,Kl,nq � g, N � l

�

�
ņ

l�1

¸
gPGl,n

P

�
max
rk,j

Z
rk,j ¡ max

k1,j
Zk1,j

�
P ppK1,n, . . . ,Kl,nq � g, N � lq.

Again it suffices to establish

P

�
max
rk,j

Z
rk,j ¡ max

k1,j
Zk1,j

�
Ñ 0, nÑ8 (20)

for every fixed l P N and g P Gl,n. Note that the proof of (20) is a simpler version of what was performed
for the second step, namely set κ � 1.

Next we turn to the question, whether the bound on the size is optimal or if it might be chosen larger.
In the following, we demonstrate that the bound p?2 � 1qV is sharp. Our main result in this context
is Corollary 3.5 which is a stochastic generalization of the following Proposition 3.4. We illustrate that
the convergence to the Gumbel distribution does not have to hold, if there is an oversized jump in the
volatility process at some irrational position. Such an irrational jump position causes some problems
since our grid consists of equidistant rational points. We start with the following preparatory lemma:

Lemma 3.3. Fix any 0   c, r   1 and let c be an irrational number, then there are sequences pnlq and
pklq of natural numbers with the properties

nl Ò 8, 0 ¤ kl   nl

and
kl
nl
� r

2nl
  c   kl

nl
� r

nl
, l ¥ 1. (21)
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Proof. Consider the function
g : NÑ r0, 1s, n ÞÑ nc� tncu.

gpNq is a dense subset of r0, 1s. This is due to the irrationality of c and can be proven by the pigeon-hole
principle, c.f. Arnold [2][§24, page 222]. Observe that (21) is the same as claiming

nlc� kl P
�r

2
, r
	
, l ¥ 1. (22)

Since
�
r
2 , r
� � r0, 1s is open and gpNq is dense in r0, 1s, it follows that

gpNq X
�r

2
, r
	
� r0, 1s

consists of infinite many points. So we can choose a sequence nl Ò 8 of natural numbers such that

gpnlq P
�r

2
, r
	
, l ¥ 1 (23)

holds. Finally, we set

0 ¤ kl
def� tnlcu   nl, l ¥ 1

and observe that this choice yields the equivalence of (22) and (23) which proves this lemma.

Using this, we can prove the following main result in this context:

Proposition 3.4. Let h and c be two numbers, such that h ¡ ?
2 and 0   c   1 is an irrational number.

Set
σt � h1r0,csptq � 1pc,1sptq, 0 ¤ t ¤ 1

and dt � 0. Then, there is a sequence pnlql of natural numbers, such that nl Ò 8 and

P pTnl � bn2
l
¥ εq Ñ 1, lÑ8 (24)

for all ε ¡ 0. This implies in particular

an2pTn � bn2q �Ñ G, nÑ8.

Proof. We use the fact that the spot volatility estimator pσk estimates the average value of the spot
volatility in the interval

�
k
n ,

k�1
n

�
. Thus, if the spot volatility jumps in this interval, we make obviously

an error depending on the jump size and position. Our intention in the following is to make this error as
large as possible to get the negative convergence result (24).

The proof is divided into two steps. Similar to the proof of Theorem 3.2, the first step simplifies our
claim, so that it remains to prove a more elementary result which involves only the maximum of i.i.d.
Np0, 1q random variables. We prove this result in the second step.

step 1. Simplification of the claim. We have

Yt �
» t
0

σs dWs �
#
hWt, t ¤ c

Wt �Wc � hWc, t ¡ c.

Let
fnptq � tn2tu� ntntu, 0   t   1

denote the fine scale position of t and choose 0 ¤ k   n, such that c P � kn , k�1
n

�
. Then we can write

pσ2
k � n

fnpcq�1¸
j�0

p∆Yk,jq2 � εk,n � n
n�1̧

j�fnpcq�1

p∆Yk,jq2, 0 ¤ εk,n ¤ h2

n
Z2
k,fnpcq

10



� h2

n

fnpcq�1¸
j�0

Z2
k,j �

1

n

n�1̧

j�fnpcq�1

Z2
k,j � εk,n.

Next set

r
def� h�?

2

4ph2 � 1q P p0, 1q (25)

and note that by Lemma 3.3 we have two sequences pnlql and pklql of natural numbers, such thatYr
2
nl

]
¤ fnlpcq ¤ trnlu, c P

�
kl
nl
,
kl � 1

nl



, l P N

and nl Ò 8. This implies together with the weak law of large numbers

pσ2
kl
¤ h2

nl

trnlu¸
j�0

Z2
kl,j

� 1

nl

nl�1¸
j�trnlu�1

Z2
kl,j

Ñ rh2 � p1� rq, lÑ8 (P -stoch.)

which yields

P
�pσ2
kl
¥ 1� 2rph2 � 1q� ¤ P

��������h
2

nl

trnlu¸
j�0

Z2
kl,j

� 1

nl

nl�1¸
j�trnlu�1

Z2
kl,j

� 1� rph2 � 1q
������ ¥ rph2 � 1q

�

Ñ 0, lÑ8. (26)

Next define

λ � h

1� 2rph2 � 1q ¡
?

2,

cf. (25) and

rl �
X
r
2nl
\

nl
¥ r

2
� 1

nl
, l ¥ 1.

Furthermore, note that for arbitrary ε ¡ 0 we have the inequalities

P
�
Tnl � bn2

l
¥ ε

	
¥ P

�
nl max

0¤j t r2nlu

∆Ykl,jpσkl � bn2
l
¥ ε

�

¥ P

�
λ max

0¤j rlnl
Zkl,j � bn2

l
¥ ε, pσ2

kl
¤ 1� 2rph2 � 1q



.

Thus regarding (26), it suffices to establish

P

�
λ max

0¤j rlnl
Zkl,j � bn2

l
¥ ε



Ñ 1, lÑ8,

which we will show in the second step.

step 2. Convergence to infinity of a λ-scaled partial-maximum. Crucial in what follows is that we have
the lower bound λ ¡ ?

2, which is due to the choice of r. The notations

Ml
def� max

0¤j rlnl
Zkl,j , Al

def� arlnl pMl � brlnlq , l ¥ 1

are used in the following. We know that Al
dÑG, l Ñ 8, cf. Lemma 1.1.7 in Haan and Ferreira [4], and

write

P pλMl � bn2
l
¥ εq � P pλpAl � arlnlbrlnlq � arlnlbn2

l
¥ arlnlεq

� P

�
Al ¥ 1

λ

�
arlnlbn2

l
� arlnlε

	
� arlnlbrlnl



.
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Obviously it suffices to establish
1

λ
bn2
l
� brlnl Ñ �8, lÑ8.

This follows after a substitution of (4), i.e.

bn2
l
� λbrlnl �

b
2 log n2l � λ

a
2 logprlnlq � op1q, lÑ8

� 2
a

log nl �
?

2λ
a

log rl � log nl � op1q

� 2
a

log nl

�����1� λ?
2loomoon

¡1

d
log rl
log nl

� 1loooooomoooooon
Ñ1

����
� op1q

Ñ �8, lÑ8.

Corollary 3.5. Let pΩ,F , pFtq0¤t¤1, P q be a filtered probability space. Furthermore, assume that W is
a pFtq-adapted Brownian motion on this space and that there are two random variables S,H : Ω Ñ R,
such that pS,Hq is F0 measurable and independent of W . Next assume that the distribution of pS,Hq
has an atom at some point pc, hq. To be more precise, let

P ppS,Hq � pc, hqq ¡ 0

for some pair pc, hq with
0   c   1, c R Q, h ¡

?
2.

Further set

σ
pS,Hq
t

def� H 1r0,Ssptq � 1pS,1sptq,

Y
pS,Hq
t

def�
» t
0

σpS,Hqs dWs, 0 ¤ t ¤ 1

and define
�
T
pS,Hq
n

	
n

analogue to pTnqn as a function of
�
Y
pS,Hq
t

	
t
. Then there is a sequence pnlq of

natural numbers with nl Ò 8, such that

P
�
T pS,Hqnl

� bn2
l
¥ ε

	
Ñ 1, lÑ8

for all ε ¡ 0. This implies in particular

an2pT pS,Hqn � bn2q �Ñ G, nÑ8. (27)

Remark 3.6. The assumptions of Corollary 3.5 basically state that the volatility jumps at the position
S with the jump size H � 1 if 0   S ¤ 1 and H � 1. Furthermore, there is a positive probability that σ
jumps at some irrational position with a jump size larger than

?
2� 1. Note also that the existence of a

filtration as stated in Corollary 3.5 does not cause any problems. This is due to the fact that if H � F
is a sub-σ-algebra, which is independent of F1, then

pWt,Htq0¤t¤1, Ht
def� σpHY Ftq, 0 ¤ t ¤ 1

is also a Brownian motion. We have to consider such sophisticated technicalities since the construction
of the Itô integral requires σ to be pFtqt adapted.

Proof of Corollary 3.5. Using the independence of pS,Hq and W , P ppS,Hq � pc, hqq ¡ 0 and the state-
ment of Proposition 3.4 we can write for any ε ¡ 0

P
�
T pS,Hqn � bn2 ¥ ε

	
�

»
R2

P
�
T pS,Hqn � bn2 ¥ ε

��� pS,Hq � ps, uq
	
dP pS,Hqps, uq
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¥ P ppS,Hq � pc, hqqP
�
T pS,Hqn � bn2 ¥ ε

��� pS,Hq � pc, hq
	

� P ppS,Hq � pc, hqqP
�
T pc,hqn � bn2 ¥ ε

	
.

This implies with the same sequence pnlql as in Proposition 3.4 the convergence

P
�
T pS,Hqnl

� bn2
l
¥ ε

	
Ñ 1, lÑ8.

Furthermore, (27) follows from Slutsky’s theorem together with an2 Ò 8 as nÑ8.

4 Simulation study

Theorem 3.2 claims that our scaled test statistics (5) still converges to the Gumbel distribution in
the presence of sufficiently small jumps, not larger than the bound V p?2 � 1q, cf. Assumptions 2.4.
Furthermore, Corollary 3.5 states that this bound is sharp, i.e. it is the lowest possible bound.

In this section, we investigate the convergence respectively divergence properties of the scaled statistics
(5) by numerical simulations in the case that the volatility process possesses jumps of the critical size.
Our simulations clearly confirm the existence of such a critical jump size. Hence, the simulations coincide
with our theoretical investigations of the previous section.
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Figure 1: A sharp bound concerning the jump size of the volatility process

In what follows, we construct a suitable volatility process. Fix n P N and 0   p   1 and let X0, . . . , Xn�1

be a family of i.i.d. Bernoulli distributed random variables with success probability p. Moreover, let
U0, . . . , Un�1 be i.i.d. and uniformly distributed on r0, 1s and let B and W be two standard Brownian
motions, such that X,U,B,W are independent. Set further

τt � 1� |1�Bt|, 0 ¤ t ¤ 1, λk � inf
k
n¤s¤

k�1
n

τs, 0 ¤ k   n,
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γ
pnq
t �

tntu�1¸
k�0

λk 1t1upXkq � λtntu 1t1u�p0,nt�tntuqpXtntu, Utntuq, γ
pnq
1 � 0, 0 ¤ t   1,

σ
pc,nq
t � τt � cp

?
2� 1qγpnqt , 0 ¤ t ¤ 1, c ¡ 0 (28)

and

Y
pc,nq
t �

» t
0

σpc,nqs dWs, 0 ¤ t ¤ 1.

τ is a reflected Brownian motion with starting point τ0 � 2 and reflection barrier 1. Further, t ÞÑ γ
pnq
t is

a step function that jumps on every subinterval Ik
def� �

k
n ,

k�1
n

�
with probability p, i.e. iff Xk � 1. In this

case, the jump position is uniformly distributed on Ik according to Uk, and the jump size is the infimum
of τ in Ik. Thus, (28) adds on τ on every coarse grid position with probability p a jump of the critical
size cV p?2� 1q. Therefore, every path of σpc,nq has a Binpn, pq distributed number of jumps.

We used in our simulations the grid-size 1
n2 with n � 200 and simulated Y pc,nq with c � 1, 2, 3, 4 and

p � 0.1, i.e. every volatility path possesses on average np � 20 jumps. The scaled test statistics (5) was
evaluated 5000 times for each c and the resulting empirical distribution functions are plotted together with
the Gumbel distribution in Figure 1. The divergence (to infinity) away from the the Gumbel distribution
is clearly observed in the cases c � 2, 3, 4. Otherwise, the resulting plot of c � 1 is close to the plot of
the Gumbel distribution. This confirms our theoretical result that there exists such a jump size bound
of the volatility process.

Appendix

For completeness, we provide a proof that a sequence of stopping times pSlql¥0 as stated in the Assump-
tions 2.4 exists, N is measurable and that K can be chosen as a measurable function. Assume for this
purpose that the Assumptions 2.4 hold and set for l ¥ 1

Slpωq �
#

Position of the l-th jump in σpωq, σpωq has at least l jumps,

8, else

and set S0 � 0. To understand that each Sl is a stopping time, an inductive argument is provided. Firstly,
define for r, s, u, v P Q and m,n P N the sets

Iu,v,n �
"
pr, sq P Q2 : u   r, s   v and |r � s|   1

n

*
,

Ar,s,m �
"
ω P Ω : |σrpωq � σspωq| ¡ 1

m

*
.

S0 is obviously a stopping time. Assume for the induction step that Sl is also a stopping time for some
l P N. Observe, furthermore, for t ¡ 0 and

Cu,v �
¤
mPN

£
nPN

¤
pr,sqPIu,v,n

Ar,s,m P Fv, 0   u, v   1

the relation
tSl�1   tu �

¤
0 s t,
sPQ

tSl   su X Cs,t P Ft

which proves that Sl�1 is a stopping time due to the right continuity of the filtration pFtq. Next

tN � nu � tSn   8u X tSn�1 � 8u P F , n P N0

yields that N is measurable. It remains to establish that K can be chosen as a measurable function. To
understand this, set

ψt � σt �
8̧

l�1

∆σSl 1pSl,1sptq, 0 ¤ t ¤ 1, ∆σ8
def� 0
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and observe that ψ is pFtq adapted since σ is pFtq adapted and pSlq are stopping times as proven
previously. Note that ψ is simply σ without jumps. Since ψ is pathwise α-Hölder continuous, we can
define

Kpωq �
�� sup

0¤s t¤1,
s,tPQ

|ψtpωq � ψspωq|
|t� s|α

�
_ sup
0¤t¤1,
tPQ

|σtpωq|   8, ω P Ω.

K is obviously measurable and fulfills the requirements of the Assumptions 2.4. Compare for similar
results in this context also Chapter I, Proposition 1.32 in Jacod and Shiryaev [5].
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