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Abstract

In a variety of different settings cumulative sum (CUSUM) procedures have been applied for
the sequential detection of structural breaks in the parameters of stochastic models. Yet their
performance depends strongly on the time of change and is best under early-change scenarios. For
later changes their finite sample behavior is rather questionable. We therefore propose modified
CUSUM procedures for the detection of abrupt changes in the regression parameter of multiple
time series regression models, that show a higher stability with respect to the time of change
than ordinary CUSUM procedures. The asymptotic distributions of the test statistics and the
consistency of the procedures are provided. In a simulation study it is shown that the proposed
procedures behave well in finite samples. Finally the procedures are applied to a set of capital
asset pricing data related to the Fama-French extension of the capital asset pricing model.

Keywords: CUSUM, Linear model, Change-point, Sequential test, Asymptotic distribution, In-
variance principle, CAPM, Fama-French model.

Abbreviated Title: Page’s sequential procedure in time series regression

AMS subject classification: Primary 62J05; secondary 62L99

1. Introduction

Linear regression models are among the most widely applied stochastic models. The spectrum of their
application ranges from purely scientific to practical problems across all disciplines. It is therefore
quite obvious how important statistical procedures are which reliably monitor the validity of such
models. One example that shows impressively how exogenious shocks may lead to model misspec-
ifications is the recent worldwide economical crisis and its aftermath. Here, shocks in the financial



markets led to mispricing of assets and risks due to structural changes in the underlying stochastic
models, with fatal consequences for the global economy. A fast detection of such misspecifications
is therefore doubtlessly crucial. To achieve such a fast detection, we propose sequential tests which
are designed to be less sensitive to the time of change compared to already existing cumulative sum
procedures.
Like in many other scientific disciplines, linear regression in the pricing of assets is one of the most
common approaches to explain the (linear) relationship between the model variables. E.g., such a
linear relation can be used to explain the behavior of an asset price by factors that explain a major
part of its variation. Examples for such an approach include the famous and still widely applied
capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965) and its extension proposed
by Fama and French (1993). This multifactor extension, in contrast to the one-factor CAPM, uses
two factors in addition to the market excess return to explain a higher proportion of the variation of
the asset price. It will be investigated as a data example in Section 4.
In the literature the change-point problem for linear models has been discussed extensively. While
most of the contributions are made from an a-posteriori point of view (we refer to, e.g., Bai (1997),
Perron (2006) and Csörgő and Horváth (1997)), recently the sequential or on-line change-point de-
tection has received more and more attention. Antoch and Jarušková (2002) give a bibliographical
overview of the field of on-line statistical process control. A recent review on the detection of struc-
tural breaks in time series, with particular emphasis on CUSUM-type procedures, is given in Aue and
Horváth (2013).
The basis for this work is given in the articles of Chu, Stinchcombe and White (1996), Horváth,
Hušková, Kokoszka and Steinebach (2004) and Aue, Horváth, Hušková and Kokoszka (2006b) who
suggest cumulative sum (CUSUM) procedures in different stochastic models. CUSUM procedures
work best for relatively early changes but show a slower reaction the later the change occurs. Aue,
Horváth and Reimherr (2009) provided the asymptotic normality of the suitably normalized stopping
time of the CUSUM procedure in a similar setting as will be considered in this work but only in
a relatively small range after the start of the monitoring. The procedures that will be developed
here found on an idea of Page (1954) and should give a higher stability with respect to the time of
change. Other approaches that tackle this task are so-called moving sum (MOSUM) procedures that
were studied by, e.g., Aue, Horváth, Kühn and Steinebach (2012) and Chu, Hornik and Kuan (1995).
Their drawback is a strong dependence on the choice of the parameters, in particular the right choice
of the window size by the statistician.
For the applicability to, e.g., financial problem settings we want to explicitly allow for certain de-
pendencies, i.e. we will include many of the commonly applied time series models for the error terms
as well as for the regressors in our setting. Other contributions assuming dependencies are given by,
e.g., Schmitz and Steinebach (2010) who considered strongly mixing error terms in a linear model
or Hušková, Prášková and Steinebach (2007) who studied autoregressive time series in a closed-end
setting.
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The paper is organized as follows. In Section 2 the linear model and the underlying assumptions
are introduced. Section 3 contains the definition of the detectors and stopping times as well as the
results on the asymptotic distribution under the null hypothesis and the asymptotic consistency of
the procedures. In Section 4 we will present a simulation study and the results of an application of
the procedures to the aforementioned Fama-French model. We conclude the paper with the proofs of
our main results in Section 5.

2. Model description and assumptions

Consider the linear model:

yi = xTi βi + εi, 1 ≤ i <∞, (2.1)

where xi is a p× 1 random vector and βi ∈ Rp.
We assume that for the first m observations the so-called “noncontamination assumption” (cf. Chu
et al. (1996)) holds, i.e.

βi = β0, 1 ≤ i ≤ m. (2.2)

As mentioned before, the constancy of the regression parameters βi in time should be tested which
leads to the null hypothesis

H0 : βi = β0, i = m+ 1,m+ 2, . . . .

We consider alternatives of one abrupt change in the regression parameter at an unknown change-
point, i.e.

HA : there is k∗ ≥ 1 such that βi = β0, m < i < m+ k∗

and βi = β∗, i = m+ k∗,m+ k∗ + 1, . . . with ∆ = β∗ − β0 6= 0.

The detection procedures to be presented here will be defined via stopping times τ(m) (the detailed
definition is postponed to Section 3 of this article) chosen in such a way that under the null hypothesis:

lim
m→∞

P (τ(m) <∞) = α, 0 < α < 1 (2.3)

and under the alternative

lim
m→∞

P (τ(m) <∞) = 1. (2.4)

We assume the following conditions on the regressors and the error terms:

{xi} is a stationary sequence. (A.1)

xTi = (1, x2i, . . . , xpi), 1 ≤ i <∞, (A.2)
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{εi, 1 ≤ i <∞} and {xi, 1 ≤ i <∞} are independent. (A.3)

There exist a p-dimensional vector d = (d1, . . . , dp)
T and constants K > 0,

ν > 2 such that

E

∣∣∣∣∣
k∑
i=1

(xi,j − dj)

∣∣∣∣∣
ν

≤ K kν/2, 1 ≤ j ≤ p. (A.4)

For every m there are independent Wiener processes {W1,m(t) : t ≥ 0} (A.5)

and {W0,m(t) : t ≥ 0} and a constant σ > 0 such that

sup
1≤k<∞

1

kξ

∣∣∣∣∣
m+k∑
i=m+1

εi − σW1,m(k)

∣∣∣∣∣ = OP (1) (m→∞) (2.5)

and
m∑
`=1

ε` − σW2,m(m) = OP
(
mξ
)

(m→∞), (2.6)

with some ξ < 1/2.

The above stated assumptions on the regressors and error terms are satisfied for a variety of important
stochastic models. For examples we refer to Aue et al. (2009) who showed that (A.1) and (A.4)
are satisfied for, e.g., i.i.d. sequences, linear processes or augmented GARCH sequences. The latter
were introduced by Duan (1997) and include most of the conditionally heteroskedastic models used
in practice. For a collection of examples belonging to this class we suggest the papers of Aue, Berkes
and Horváth (2006a) and Carrasco and Chen (2002). Concerning the error terms Aue et al. (2006b)
provided the proof of (A.5) again for augmented GARCH sequences under appropriate assumptions,
Aue and Horváth (2004) give further examples, besides the i.i.d. case, including martingale difference
sequences and stationary mixing sequences.
All procedures treated in this work are based on the behavior of the residuals of the model

ε̂i = yi − xTi β̂m, i = 1, 2, . . . ,

where β̂m denotes a
√
m-consistent estimator for β from the data (y1,x1), . . . , (ym,xm). In the sequel

we will by σ̂m denote a weakly consistent estimator for the parameter σ from Assumption (A.5).
The estimation of this parameter will be discussed later in detail.

3. Sequential testing procedures and asymptotic results

Many sequential detection procedures in the literature are constructed as first passage times of a
so-called detector over a certain boundary function. For example Horváth et al. (2004) proposed as
a detector the (ordinary) CUSUM of the residuals, i.e.

Q̂(m, k) =
∑

m<i≤m+k

ε̂i, k = 1, 2, . . . , and Q̂(m, 0) = 0,
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and as a boundary function

hα,γ(m, k) = c g(m, k) = cm1/2

(
1 +

k

m

)(
k

k +m

)γ
, (3.7)

with

0 ≤ γ < 1/2 (3.8)

and c = c(α, γ) such that (2.3) holds. It should be noted that in the sequel of this article we use the
convention

∑b
i=a ci = 0 for a > b and all real ci. The first procedure we want to introduce goes back

to an idea of Page (1954) and we define the detector

Q̂P (m, k) = max
0≤i≤k

∣∣∣Q̂(m, k)− Q̂(m, i)
∣∣∣ = max

{
Q̂uP (m, k), Q̂dP (m, k)

}
, (3.9)

where

Q̂uP (m, k) = Q̂(m, k)− min
0≤i≤k

Q̂(m, i) and

Q̂dP (m, k) = max
0≤i≤k

Q̂(m, i)− Q̂(m, k).

The corresponding stopping time is then given by

τPage
α,γ (m) = inf

{
k ≥ 1 : Q̂P (m, k) > hα,γ(m, k)

}
where inf ∅ =∞ and the constant c = c(α, γ) in the definition of hα,γ can be derived from Theorem
1 below.

Theorem 1. Assume that (2.2), (A.1) – (A.5) and (3.8) hold. Then under the null hypothesis we
have, for c ∈ R,

lim
m→∞

P

(
1

σ̂m
sup

1≤k<∞

Q̂P (m, k)

g(m, k)
≤ c

)
= P

(
sup

0<t<1
sup
0≤s≤t

1

tγ

∣∣∣∣W (t)− 1− t
1− s

W (s)

∣∣∣∣ ≤ c) ,
where {W (t) : t ≥ 0} is a standard Wiener process.

Page (1954) proposed a detector of the type Q̂uP (m, k) for one-sided change-in-the-mean alternatives.
In the case of a linear model this detector is appropriate for alternatives with ∆Td > 0, where the
vector d was introduced in (A.4). The corresponding asymptotic result under the null hypothesis for
these one-sided detectors is given in Theorem 2.

Theorem 2. Assume that (2.2), (A.1) – (A.5) and (3.8) hold. Then under the null hypothesis we
have, for c ∈ R,

lim
m→∞

P

(
1

σ̂m
sup

1≤k<∞

Q̂uP (m, k)

g(m, k)
≤ c

)
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= lim
m→∞

P

(
1

σ̂m
sup

1≤k<∞

Q̂dP (m, k)

g(m, k)
≤ c

)

= P

(
sup

0<t<1

1

tγ

(
W (t)− inf

0≤s≤t

1− t
1− s

W (s)

)
≤ c
)
,

where {W (t) : t ≥ 0} is a standard Wiener process.

From this result again the critical value c(α, γ) can be derived for the two one-sided detectors. We
will denote this critical value by c1 = c1(α, γ) and for the two-sided detector by c2 = c2(α, γ). Under
the alternative hypothesis the detectors diverge as the following theorem shows.

Theorem 3. Assume that (2.2), (A.1) – (A.5) and (3.8) hold.

a) Then under HA and if dT∆ > 0 we have

1

σ̂m
sup

1≤k<∞

Q̂uP (m, k)

g(m, k)

P−→∞ as m→∞,

b) Then under HA and if dT∆ < 0 we have

1

σ̂m
sup

1≤k<∞

Q̂dP (m, k)

g(m, k)

P−→∞ as m→∞,

c) Then under HA and if dT∆ 6= 0 we have

1

σ̂m
sup

1≤k<∞

Q̂P (m, k)

g(m, k)

P−→∞ as m→∞.

Theorem 3 gives a sufficient condition that guarantees (2.4). In Section 4 tables with simulated critical
values for selected values of α and γ can be found for the functionals

sup
0<t<1

1

tγ

(
W (t)− inf

0≤s≤t

1− t
1− s

W (s)

)
and

sup
0<t<1

sup
0≤s≤t

1

tγ

∣∣∣∣W (t)− 1− t
1− s

W (s)

∣∣∣∣ .
By construction, the Page CUSUM detector should be less sensitive to the time of change compared
to the ordinary CUSUM detector. This stability can be achieved for other CUSUM-type detectors by
applying the construction principle from above. In the sequel of this section we will illustrate this in
the context of the latter linear model for the CUSUM of squared residuals. Their use is motivated by
the additional assumptions on the magnitude of change (i.e. dT∆ ≷ 0 resp. dT∆ 6= 0) for the above
developed procedures. These guarantee their consistency but are quite restrictive. Under additional
assumptions on the error terms we can modify the presented procedures which allows to drop these
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assumptions on the magnitude of change. In this context we want to refer to the work of Hušková and
Koubková (2005) who with the same intention developed monitoring procedures based on quadratic
forms of weighted cumulative sums.
Aside from the linear model, CUSUMs of squared residuals are of use in other situations as well.
E.g., Aue, Dienes, Fremdt and Steinebach (2013) show their applicability to the detection of general
parameter changes in autoregressive moving average time series where ordinary CUSUM procedures
may only be used to detect changes in the mean of such time series.
We analogously define the Page detectors based on the cumulative sum of squared residuals via

ŜP (m, k) = max
0≤i≤k

∣∣∣ŜR(m, k)− ŜR(m, i)
∣∣∣

and

ŜuP (m, k) = max
0≤i≤k

(
ŜR(m, k)− ŜR(m, i)

)
,

where

ŜR(m, k) =
m+k∑
i=m+1

ε̂2i −
k

m

m∑
`=1

ε̂2` , k = 1, 2, . . . , and ŜR(m, 0) = 0.

Aue et al. (2006b) showed similar results on the squared prediction errors using the following additional
assumptions:

{εi} is an orthogonal martingale difference sequence with respect to a

filtration {Gi} with Eε2i = σ2, 0 < κ = Eε4i <∞ (i ≥ 1) (A.6)

η2 = Var(ε20) + 2
∞∑
i=1

Cov(ε20, ε
2
i ) > 0 (A.7)

There exist a positive definite matrix C and a constant κ > 0 such that∣∣∣∣∣ 1n
n∑
i=1

xix
T
i −C

∣∣∣∣∣ = O
(
n−κ

)
a.s. (n→∞) (A.8)

and under HA

1

ν − k∗
m+ν∑

i=m+k∗+1

xix
T
i → C a.s. as min{ν − k∗,m} → ∞. (A.9)

Furthermore, they assumed that for every m there exist independent Wiener processes

{W3,m(t) : t ≥ 0} and {W4,m(t) : t ≥ 0},

such that

sup
1≤k<∞

1

kζ

∣∣∣∣∣
m+k∑
i=m+1

(ε2i − σ2)− ηW3,m(k)

∣∣∣∣∣ = OP (1) (m→∞) (3.10)
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and

m∑
i=1

(ε2i − σ2)− ηW4,m(m) = OP
(
mζ
)

(m→∞) (3.11)

with some ζ < 1/2 and η from (A.7). Combining the techniques of Aue et al. (2006b) and from the
proof of Theorem 1 it is obvious that similar asymptotic results hold for these procedures:

Theorem 4. Assume that (2.2), (A.1) – (A.3), (3.8), (A.6) – (A.8) as well as (3.10) and (3.11)
hold. Then under the null hypothesis we have, for a real number c and a standard Wiener process
{W (t) : t ≥ 0},

lim
m→∞

P

(
1

η
sup

1≤k<∞

ŜR(m, k)

g(m, k)
≤ c

)
= P

(
sup

0<t<1

W (t)

tγ
≤ c
)
,

lim
m→∞

P

(
1

η
sup

1≤k<∞

|ŜR(m, k)|
g(m, k)

≤ c

)
= P

(
sup

0<t<1

|W (t)|
tγ

≤ c
)

and

lim
m→∞

P

(
1

η
sup

1≤k<∞

ŜP (m, k)

g(m, k)
≤ c

)
= P

(
sup

0<t<1
sup
0≤s≤t

1

tγ

∣∣∣∣W (t)− 1− t
1− s

W (s)

∣∣∣∣ ≤ c) .
The parameter η in the statement of Theorem 4 can be replaced by a weakly consistent estimator
η̂m. Aue et al. (2006b) pointed out that the Bartlett estimator η̂2B,m for η2 under the conditions of
Theorem 4 satisfies η̂2B,m → η2 (in probability) and can therefore be applied in the general setting of
this section. The same arguments hold for the estimation of σ. However, it should be noted that the
quality of the estimators affects the finite sample behavior of the procedures. This will be discussed
in Section 4.
Under the alternative hypothesis without additional assumptions on the magnitude of the change we
again have the desired divergence.

Theorem 5. Assume that (2.2), (A.1) – (A.3), (3.8), (A.6) – (A.9) as well as (3.10) and (3.11)
hold. Then under HA we have

1

η̂m
sup

1≤k<∞

|ŜR(m, k)|
g(m, k)

P−→∞ as m→∞

and

1

η̂m
sup

1≤k<∞

ŜP (m, k)

g(m, k)

P−→∞ as m→∞.

Analogous results to those of Theorems 4 (with the corresponding limit distributions from Theorem
2) and 5 hold for the detectors ŜuP (and ŜR). However, as we will see in Section 4, these show a poorer
finite sample behavior than the detectors ŜP and |ŜR|.
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One drawback of the detectors ŜP , |ŜR|, ŜuP and ŜR is that the assumption on the existence of a
constant σ is crucial to the testing procedure. It can be seen easily that, due to its construction, the
procedure is also sensitive towards changes in σ, i.e. in case of constant βi but a change in σ(= σi)

the testing procedure would decide that there has been a change in the βi with probability one. This
sensitivity exists as well for the further introduced procedures, although in a weaker sense, i.e. in the
derivation of the critical values which is also strongly dependent on the assumption of a constant
σ. But, since in general practitioners are concerned with the validity of their underlying model, the
detection of a switch in the regime, including βi as well as σ, is of great interest to them.

4. Simulations and an application to asset pricing data

In this section the results of a simulation study are presented that was performed to confirm the
theoretical results from Section 3. Furthermore it should show that the proposed monitoring proce-
dures have the desired properties. With regard to the application to the Fama-French model and its
financial context the carried out simulations will focus on GARCH regressors. We will first consider
the asymptotic results from Section 3 and provide the empirical sizes under the null hypothesis. A
comparison of the detection properties of the different procedures in finite samples concludes the
simulation study and highlights the advantages of the newly developed sequential tests. The last part
of this section will then contain the results of an application of our monitoring procedures to a data
set made publically available by Kenneth R. French on his website (cf. French (2011)).
To establish (2.3) for the suggested procedures it is necessary to determine the critical values from
the definition of hα,γ in (3.7) using the statements of Theorems 1, 2 and 4. The critical values c1(γ, α)

and c2(γ, α) for the functionals

sup
0<t<1

1

tγ

(
W (t)− inf

0≤s≤t

1− t
1− s

W (s)

)
and

sup
0<t<1

sup
0≤s≤t

1

tγ

∣∣∣∣W (t)− 1− t
1− s

W (s)

∣∣∣∣ ,
for selected values of α and γ, can be found in Table 1 and Table 2, respectively. These were
simulated with 100,000 replications of an approximation of a Wiener process generated on a grid
of 100,000 points. Horváth et al. (2004) provided the simulated critical values for the functional
sup0<t<1 |W (t)|/tγ . For γ = 0 we calculated these critical values numerically using the series repre-
sentation

P

(
sup

0<t<1
|W (t)| ≤ c

)
=

4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−π2(2k + 1)2/8c2

)
,

from, e.g., Csörgő and Révész (1981), Theorem 1.5.1, to find:

α 0.010 0.025 0.050 0.100 0.250

c(0, α) 2.8070 2.4977 2.2414 1.9600 1.5341
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α

γ 0.010 0.025 0.050 0.100 0.250

0.00 2.5955 2.2564 1.9897 1.6924 1.2474
0.15 2.6632 2.3341 2.0757 1.7915 1.3671
0.25 2.7372 2.4206 2.1686 1.8992 1.4887
0.35 2.8691 2.5684 2.3273 2.0757 1.6817
0.45 3.1712 2.9224 2.6976 2.4592 2.0932
0.49 3.5385 3.2791 3.0640 2.8225 2.4391

Table 1: Critical values c1 = c1(γ, α) simulated on a grid of 100,000 points with 100,000 replications.

α

γ 0.010 0.025 0.050 0.100 0.250

0.00 2.8262 2.5188 2.2599 1.9914 1.5918
0.15 2.8925 2.5925 2.3416 2.0803 1.6976
0.25 2.9638 2.6707 2.4296 2.1758 1.8063
0.35 3.0857 2.8041 2.5758 2.3339 1.9839
0.45 3.3817 3.1259 2.9241 2.7002 2.3685
0.49 3.7357 3.4903 3.2848 3.0603 2.7178

Table 2: Critical values c2 = c2(γ, α) simulated on a grid of 100,000 points with 100,000 replications.

10



γ = 0 γ = 0.25 γ = 0.49

m α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

Q̂P 100 0.0298 0.0698 0.0390 0.0802 0.0168 0.0334
200 0.0294 0.0646 0.0364 0.0760 0.0194 0.0382
500 0.0286 0.0682 0.0368 0.0812 0.0248 0.0470

1000 0.0300 0.0704 0.0408 0.0842 0.0272 0.0554

Q̂uP 100 0.0354 0.0770 0.0438 0.0818 0.0166 0.0364
200 0.0338 0.0720 0.0418 0.0806 0.0194 0.0382
500 0.0342 0.0752 0.0430 0.0880 0.0256 0.0466

1000 0.0350 0.0766 0.0432 0.0852 0.0256 0.0510

Table 3: Empirical sizes of the Page CUSUM procedures for 5000 replications with a monitoring horizon of N = 5m.

4.1. Simulation results

The simulations were performed for a selection of the above mentioned models satisfying our assump-
tions (cf. Aue et al. (2009), Aue and Horváth (2004)), but since all gave similar results, we only
present the results for our model (2.1) with p = 2, x2,i according to a GARCH(1,1) model and inde-
pendent normally distributed errors εi with σ2 = 0.5 (in this specification σ = η to achieve a better
comparability of the procedures based on ordinary and squared residuals under the alternative). We
followed Aue et al. (2009) and chose the specification of the GARCH(1,1) model as

x2,i = d2 + σ̄izi, with σ̄ given as solution of σ̄2i = ω̄ + ᾱz2i−1 + β̄σ̄2i−1,

where {zi} are iid standard normally distributed and (ω̄, ᾱ, β̄) = (0.5, 0.2, 0.3). From the decom-
position (5.22) in the proof of Theorem 3 and a similar decomposition for the procedure based on
the squared residuals we find that for this model the drift in case of a change is determined by
dT∆ for the ordinary residuals and for the squared residuals (asymptotically) via ∆2

2 + (dT∆)2.
For the simulations we chose d2 = 1 and used the OLSE to estimate β0. Due to the uncor-
related error terms in this model, the OLSE for the parameter σ from Assumption (A.5), i.e.,√
σ̂2m =

(
1

m−p
∑m

i=1

(
ε̂i − 1

m

∑m
`=1 ε̂`

)2)1/2
, and the corresponding estimator for η could be utilized

as well. As mentioned above, in the general setting of this paper the Bartlett estimator is a con-
sistent estimator in the case of correlated error terms. However, simulations have shown that due
to a slower convergence of the estimator, size distortions can be observed under the null hypothesis.
Consequently, larger training samples are needed to achieve satisfying results.
The length of the training period m was chosen as m = 100, 200, 500 and 1000, the number of repli-
cations as 5000. For the tuning parameter γ the values were set to γ = 0.00, 0.25, 0.49.
Table 3 shows the empirical sizes of the testing procedures based on the detectors Q̂P and Q̂uP under
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γ = 0 γ = 0.25 γ = 0.49

m α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

ŜP 100 0.0890 0.1358 0.1072 0.1624 0.1130 0.1408
200 0.0598 0.0976 0.0718 0.1210 0.0912 0.1190
500 0.0416 0.0804 0.0548 0.0998 0.0826 0.1152

1000 0.0392 0.0794 0.0520 0.0958 0.0856 0.1178

|ŜR| 100 0.0826 0.1246 0.1014 0.1504 0.1122 0.1408
200 0.0550 0.0888 0.0676 0.1118 0.0898 0.1176
500 0.0396 0.0756 0.0526 0.0916 0.0784 0.1112

1000 0.0358 0.0748 0.0488 0.0908 0.0788 0.1152

ŜuP 100 0.1292 0.1932 0.1570 0.2172 0.1404 0.1836
200 0.0898 0.1516 0.1142 0.1814 0.1174 0.1560
500 0.0676 0.1222 0.0852 0.1416 0.1124 0.1514

1000 0.0604 0.1094 0.0760 0.1326 0.1116 0.1578

ŜR 100 0.1196 0.1832 0.1452 0.2082 0.1410 0.1812
200 0.0812 0.1426 0.1066 0.1702 0.1162 0.1574
500 0.0636 0.1178 0.0792 0.1334 0.1100 0.1492

1000 0.0566 0.1016 0.0708 0.1222 0.1074 0.1520

Table 4: Empirical sizes of the procedures based on the squared residuals for 5000 replications with a monitoring
horizon of N = 5m.

12



the null hypothesis with β0 = (1, 1)T taking N = 5m observations after the end of the training
period. It can be seen that for all parameter combinations the sizes remain conservative for short
as well as long training periods. A similar behavior was observed for the procedures based on the
ordinary CUSUM and the corresponding results are therefore omitted here.
The conservative nature of the empirical sizes from Table 3 cannot be found for the procedures based
on the squared residuals. In Table 4 the corresponding empirical sizes are displayed which show a
reasonable behavior for small values of γ. With increasing γ the size of the training period has to
increase as well to find satisfactory results. This can again be explained by the estimation error for the
parameter η and the higher sensitivity of the boundary functions at the beginning of the monitoring
for larger values of γ. For γ close to 1/2 the empirical sizes exceed the significance levels even for the
larger sample sizes. This effect of a slower convergence should be taken into account by practitioners
choosing the value of γ and an adaptation of the procedure to include the variation of the estimator
for small samples may be considered. The detectors ŜP and |ŜR| show a nicer behavior for small
samples compared to ŜuP and ŜR (which once more is due to the estimation error mentioned above).
On the other hand we will see later that these procedures provide better behavior regarding the speed
of detection.
To investigate the behavior of the proposed procedures under the alternative hypothesis, extensive
simulations were performed for a collection of different parameter settings. We will again only give
a selection of the obtained results. Since we are interested mainly in the comparison of the speed of
detection of the Page CUSUM procedures with the ordinary CUSUM procedures we will comment
only briefly on the power properties of the proposed procedures. The question whether a change is de-
tected by these procedures in this open-end setting is not as interesting with regard to the comparison
of ordinary and Page CUSUM. To explain this, we again refer to the construction of the procedures.
The drift induced by a change is similar for both types of procedures and the boundary functions
only differ by a constant. Therefore, due to the infinite monitoring horizon, the power will be similar
for both types of procedures. The results of our simulations confirm this and in this matter we refer
to the literature on ordinary CUSUM procedures. We will therefore continue with the comparison of
the speed of detection.
Changes occurring at k∗ = 1,m, 5m were considered and the monitoring was terminated at the latest
after N = k∗ + 2000 observations (which guarantees the detection of the change in all cases). The
model setting under the null hypothesis described above was used and with regard to Theorems 3
and 5 we chose two types of changes, ∆1 = (0, 0.5)T and ∆2 = (−0.8, 0.8)T , and will denote the
corresponding alternative hypothesis by H1 and H2. With the specification of H1 the above men-
tioned drift terms for ordinary and squared residuals are equal and a better comparability of these
procedures is achieved. H2 was chosen to satisfy dT∆ = 0 and therefore shows that the procedures
based on squared residuals perform well in this case while the procedures based on ordinary residuals
are not able to detect the change. However, the differences in the performance and applicability of the
testing procedures based on ordinary residuals and those based on squared residuals should also be
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discussed briefly. We want to make clear that the performance strongly depends on the magnitude of
change. For example due to their construction it can be seen from the respective drift terms that the
procedures based on quadratic residuals show a slower reaction under slight changes with dT∆ 6= 0

than the procedures based on ordinary residuals whereas under larger changes for the same reason
the opposite is true. In addition, the influence of the parameters σ and η on the drift has to be taken
into account. Depending on the application in practice a combination of the two procedures may be
considered to balance the advantages and disadvantages of the two types of procedures.
We now want to illustrate that the procedures based on the Page CUSUM show a higher stability
regarding the time of change than those based on the ordinary CUSUM. Additionally, the influence of
the tuning parameter γ on the speed of detection should be examined. Figures 1 and 2 show density
estimations of the delay times (excluding false alarms) under the alternative H1 for α = 0.1. In
Figure 1 a training period of length m = 100 was used, in Figure 2 the length was set to m = 1000.
The rows correspond from top to bottom to very early (k∗ = 1), intermediate (k∗ = m) and late
(k∗ = 5m) changes. The left columns show the density estimates for Q̂P (black) and |Q̂| (gray), the
right columns show the estimates for ŜP (black) and |ŜR| (gray), in both columns for the different
values of γ. Tables containing the five number summaries of the data used for the density estimation
can be found in the appendix (cf. Tables 7 – 10).
The density estimates show clearly that for a change immediately after the end of the training period,
as could be expected, there is only a slight difference between the procedures based on Page’s CUSUM
and those based on the ordinary CUSUM. In this case, a choice of γ close to 1/2 gives the best results.
For intermediate changes it is obvious that the Page CUSUM procedures show a better behavior than
the ordinary CUSUM procedures for both ordinary and squared residuals. This effect gets stronger
the later the change occurs as can be seen in the bottom rows. For intermediate changes a choice
of γ = 0.25 gave the best results, for late changes γ = 0 is the appropriate choice. This observation
which reflects the role of the parameter γ has already been discussed in, e.g., Horváth et al. (2004).
As mentioned before, the procedures based on ordinary residuals are not applicable under the alter-
native H2. We will therefore only present the density estimates for the procedures based on squared
residuals which can be found in Figure 3. The obtained results are similar to the results under H1

regarding the comparison of Page and ordinary cumulative sums for all sample sizes. Therefore we
only present these for m = 1000 and γ = 0 (where a reasonable behavior under the null hypothesis for
all detectors was observed). The density estimates show that the detectors ŜR and ŜuP detect changes
faster than |ŜR| and ŜP . However, due to the slower convergence to the asymptotic distribution
under the null hypothesis (cf. Table 4), their application on the basis of smaller training periods is
not recommended.
As a conclusion of this small simulation study, we find that the proposed procedures in early-change
scenarios show a similar behavior to ordinary CUSUM procedures. Yet, their advantage lies in the
behavior in scenarios that include a later change. In this case the Page CUSUM procedures detect
changes faster and therefore overall show a higher stability regarding the time of change. The pro-
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Figure 1: Estimated density plots for the delay times under H1 for m = 100 and γ = 0.00, 0.25, 0.49. Black lines
represent Page CUSUM procedures, gray lines ordinary CUSUM procedures. The left column shows the densities of
Q̂P and |Q̂|, the right column of ŜP and |ŜR|. The rows from top to bottom represent early (k∗ = 1), intermediate
(k∗ = m) and late (k∗ = 5m) changes.
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Figure 2: Estimated density plots for the delay times under H1 for m = 1000 and γ = 0.00, 0.25, 0.49. Black lines
represent Page CUSUM procedures, gray lines ordinary CUSUM procedures. The left column shows the densities of
Q̂P and |Q̂|, the right column of ŜP and |ŜR|. The rows from top to bottom represent early (k∗ = 1), intermediate
(k∗ = m) and late (k∗ = 5m) changes.
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Figure 3: Estimated density plots for the delay times under H2 for m = 1000 and γ = 0.00 for the procedures based on
squared residuals. Black lines represent Page CUSUM procedures, gray lines ordinary CUSUM procedures. Solid lines
correspond to the procedures ŜP and |ŜR|, dashed lines correspond to Ŝu

P and ŜR. The rows from top to bottom again
represent early (k∗ = 1), intermediate (k∗ = m) and late (k∗ = 5m) changes.
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cedures based on squared residuals need stronger moment assumptions but they work in contrast to
the procedures based on ordinary residuals even under orthogonal changes. The Page CUSUM shows
for these a similar behavior and can therefore be recommended. Nevertheless the procedures based
on ordinary residuals in general detect small, non-orthogonal changes faster and can therefore still be
of great use in practice.

4.2. Data application: The Fama-French asset pricing model

In this subsection, we first want to briefly describe the asset pricing model of Fama and French (1993).
This model tries to explain a higher proportion of the variation in the prices of asset portfolios by
introducing additional factors to the capital asset pricing model of Sharpe (1964) and Lintner (1965).
For illustration purposes, we will then apply the monitoring procedures introduced in Section 3 to
a data set consisting of daily data for 2 asset portfolios considered by Fama and French (1993) and
the corresponding factors in the economic crisis of the years 2007 and 2008. The economic context of
the latter asset pricing model may be found in Fama and French (1996), Kothari, Shanken and Sloan
(1995) and MacKinlay (1995). For further discussion of the testing of asset pricing models for the
constancy of their parameters, we want to refer, e.g., to Garcia and Ghysels (1998) or Aue, Hörmann,
Horváth, Hušková and Steinebach (2012).
Fama and French (1993) investigated the influence of risk factors besides the market excess return on
an empirical basis to explain the cross-section of average returns. As a consequence, they formulated
the three-factor model for the excess return of a portfolio i via

Ri −Rf = αi + bi(RM −Rf ) + siSMB + hiHML + εi, (4.12)

where Rf is the one month Treasury bill rate, RM is the return on the market (calculated as the
value-weight return on all NYSE, AMEX and NASDAQ stocks), SMB and HML are the so called size
and book-to-market factors. For a complete description of the derivation of these factors and how
they are calculated we refer to Fama and French (1993), Fama and French (1996) and the website
of Kenneth R. French (cf. French (2011)) where the underlying data set can also be found. For our
analysis we use the data of the time period June 9, 2004, to March 16, 2009 (1200 observations).
As responses of this regression model we will exemplarily consider two portfolios out of a set of 25
portfolios formed according to a categorization by size and book-to-market. For the construction
of these portfolios we again refer to Fama and French (1996). Fama and French (1993) claim that
the excess returns of these portfolios over the market are well explained by (4.12). For our concerns
the categorization underlying the construction is not of importance, we will consequently denote the
portfolios by Portfolio 1 and Portfolio 2. In Figure 4 the time series plots of the responses R1 − Rf
and R2 − Rf can be seen. Figure 5 contains the corresponding plots for the regressors RM − Rf ,
SMB and HML, showing obviously conditionally heteroskedastic patterns. The stopping times of
detectors Q̂P , |Q̂|, ŜP , |ŜR|, ŜuP and ŜR are displayed in Table 5. For the tests we used α = 0.1 and
γ = 0.25. The length of the training period was set to m = 600 (i.e. until October 24, 2006, which is
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Portf. No. Q̂P |Q̂| ŜP |ŜR| ŜuP ŜR

1 30/10/07 03/12/07 06/08/07 07/08/07 02/08/07 06/08/07
255 278 195 196 193 195

2 16/03/09 16/03/09 02/01/08 01/02/08 06/12/07 23/01/08
600 600 298 319 281 312

Table 5: Stopping times of the procedures for the Fama-French Portfolios (Dates given as dd/mm/yy in upper rows
and values of the stopping times in lower rows).

Portf. No. Period αi bi si hi

1 09/06/04 – 24/07/07 0.0213 0.7637 0.8191 0.3707
24/07/07 – 16/03/09 -0.0753 0.9125 1.0623 0.5622

2 09/06/04 – 25/10/07 0.0090 0.9982 0.3032 -0.3709
25/10/07 – 16/03/09 0.0168 0.9712 0.2552 -0.1620

Table 6: Estimated regression parameters for the two Fama-French portfolios in the segments derived from the change-
point estimation (Dates given as dd/mm/yy).

a relatively stable period at the markets).
For Portfolio 1 all procedures detect a change in the regression parameter. The stopping times of
all detectors lie between August and December 2007 and thus at the beginning of the crisis. As
already observed in the simulations, the Page CUSUM detectors perform superior to their ordinary
CUSUM counterparts for all types of procedures. In Portfolio 2 we find a different scenario. While
the procedures based on squared residuals again detect a change in the model, the procedures Q̂P
and |Q̂| do not react. With respect to the theory developed in the previous sections, this suggests
either an orthogonal change or a change in the variance of the residuals. To further investigate this,
we consider the corresponding a-posteriori CUSUM tests for the combined training and monitoring
period to estimate the time of change. Table 6 shows the segment estimates for the two portfolios.
For Portfolio 1 the estimates support the result of the test and show a considerable difference. For
Portfolio 2 the difference of the estimates is rather small, which points to a change in the variance.
This is underlined by the residual time series plot in Figure 6 where an elevated variation can be seen
in the second segment.
As a conclusion we find that these real life data confirm our observations from the simulation study.
The Page CUSUM procedures show a superior behavior to the ordinary CUSUM procedures. With
the findings of the simulation study we therefore in general suggest the use of the Page procedures.
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Figure 4: Time series plot of the excess returns of Portfolio 1 (upper panel) and Portfolio 2 (lower panel) for the time
period June 9, 2004 to March 16, 2009. The end of the training period is indicated by a dotted vertical line.
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Figure 5: Time series plot of the, market excess return (upper panel), size factor (middle panel) and book-to-market
factor (lower panel) for the time period June 9, 2004 to March 16, 2009. The end of the training period is indicated by
a dotted vertical line.
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Figure 6: Time series plot of the model residuals of Portfolio 2 for the time period June 9, 2004 to March 16, 2009.
The end of the training period is indicated by a gray dotted vertical line, the estimated change-point by a gray solid
vertical line.

5. Proofs

5.1. Proof of Theorem 1

Because of the similarity of the arguments in the proofs of Theorems 1 and 2 we only provide the
proof of Theorem 1. The proof is based on a stepwise approximation of the detector Q̂P (m, k) from
(3.9) via

QP (m, k) = max
0≤i≤k

|Q(m, k)−Q(m, i)| , where (5.13)

Q(m, k) =
∑

m<i≤m+k

εi − kεm, k = 1, 2, . . . , and εm =
1

m

m∑
`=1

ε`,

in the first step and for every m via the following functional of independent Wiener processes
{W1,m(t) : t ≥ 0} and {W0,m(t) : t ≥ 0} in the second step:

WP (m, k) = max
0≤i≤k

∣∣∣∣W1,m(k)−W1,m(i)− k − i
m

W0,m(m)

∣∣∣∣ . (5.14)

If not stated otherwise the asymptotics in the proofs are always assuming m→∞.

Lemma 1. If the conditions of Theorem 1 are satisfied then

sup
1≤k<∞

1

g(m, k)

∣∣∣Q̂P (m, k)−QP (m, k)
∣∣∣ = oP (1),

where QP was defined in (5.13).
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Proof: We have∣∣∣∣max
0≤i≤k

∣∣∣Q̂(m, k)− Q̂(m, i)
∣∣∣− max

0≤i≤k
|Q(m, k)−Q(m, i)|

∣∣∣∣
≤
∣∣∣Q̂(m, k)−Q(m, k)

∣∣∣+ max
0≤i≤k

∣∣∣Q̂(m, i)−Q(m, i)
∣∣∣ .

Now because g(m, k) increases monotonically in k

sup
1≤k<∞

1

g(m, k)

∣∣∣Q̂P (m, k)−QP (m, k)
∣∣∣

≤ sup
1≤k<∞

1

g(m, k)

∣∣∣Q̂(m, k)−Q(m, k)
∣∣∣+ sup

1≤k<∞
max
0≤i≤k

1

g(m, i)

∣∣∣Q̂(m, i)−Q(m, i)
∣∣∣

=2 sup
1≤k<∞

1

g(m, k)

∣∣∣Q̂(m, k)−Q(m, k)
∣∣∣ .

It is therefore sufficient to show

sup
1≤k<∞

1

g(m, k)

∣∣∣Q̂(m, k)−Q(m, k)
∣∣∣ = oP (1).

Using the identities

Q̂(m, k) =
m+k∑
i=m+1

εi −
m+k∑
i=m+1

xTi (β̂m − β0)

and

0 =

m∑
`=1

ε̂` =

m∑
`=1

ε` −
m∑
i=1

xTi (β̂m − β0), (5.15)

with d from (A.4) we get

∣∣∣Q̂(m, k)−Q(m, k)
∣∣∣ =

∣∣∣∣∣
(
k

m

m∑
i=1

(xi − d)T −
m+k∑
i=m+1

(xi − d)T

)
(β̂m − β0)

∣∣∣∣∣ .
In (5.15) the first equality follows from the definition of ε̂i and (A.2).
First the term

∑m
i=1(xi − d) is considered. By Markov’s inequality and (A.4) it is clear that we can

find 1/2 ≤ ρ < 1 such that∣∣∣∣∣
m∑
i=1

(xi − d)

∣∣∣∣∣ = OP (mρ) . (5.16)

For the term
∑m+k

i=m+1(xi−d) the same arguments used to show (5.16) apply. Then the Borel-Cantelli
Lemma combined with the stationarity of the regressors yield that there exists 1/2 > δ > 0 such that∣∣∣∣∣

m+k∑
i=m+1

(xi − d)

∣∣∣∣∣ = O
(
k1−δ

)
a.s., as k →∞, uniformly in m. (5.17)
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The
√
m-consistency of β̂m together with

lim
m→∞

sup
1≤k<∞

kmρ−1 + k1−δ√
mg(m, k)

= 0

as well as (5.16) and (5.17) conclude the proof of Lemma 1. �

Lemma 2. If the conditions of Theorem 1 are satisfied then for each m there are two independent
Wiener processes {W1,m(t) : t ≥ 0}, {W0,m(t) : t ≥ 0} such that

sup
1≤k<∞

1

g(m, k)
|QP (m, k)− σWP (m, k)| = oP (1),

where QP and WP are as defined in (5.13) and (5.14), respectively.

Proof: By similar estimations as in the proof of Lemma 1

|QP (m, k)− σWP (m, k)|

≤ max
0≤i≤k

∣∣∣∣∣∣
∣∣∣∣∣∣

m+k∑
j=m+i+1

εj − (k − i)εm

∣∣∣∣∣∣− σ
∣∣∣∣W1,m(k)−W1,m(i)− k − i

m
W0,m(m)

∣∣∣∣
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
m+k∑
j=m+1

εj − σW1,m(k)

∣∣∣∣∣∣+ max
0≤i≤k

∣∣∣∣∣∣
m+i∑

j=m+1

εj − σW1,m(i)

∣∣∣∣∣∣+
k

m

∣∣∣∣∣
m∑
`=1

ε` − σW0,m(m)

∣∣∣∣∣
and hence with assumption (A.5)

sup
1≤k<∞

1

g(m, k)
|QP (m, k)− σWP (m, k)|

≤ sup
1≤k<∞

1

g(m, k)

∣∣∣∣∣∣
m+k∑
j=m+1

εj − σW1,m(k)

∣∣∣∣∣∣
+ sup

1≤k<∞

1

g(m, k)
max
0≤i≤k

∣∣∣∣∣∣
m+i∑

j=m+1

εj − σW1,m(i)

∣∣∣∣∣∣
+ sup

1≤k<∞

1

g(m, k)

k

m

∣∣∣∣∣
m∑
`=1

ε` − σW0,m(m)

∣∣∣∣∣
= OP (1) sup

1≤k<∞

kξ

g(m, k)
+OP (1) sup

1≤k<∞

kmξ−1

g(m, k)

= oP (1),

where the last equality was shown in the proof of Lemma 3 of Aue et al. (2006b). �

Proof of Theorem 1

The distribution of {(W1,m(t),W0,m(t)) : t ≥ 0} does not depend on m and therefore the index can
be omitted, i.e. we write {(W1(t),W0(t)) : t ≥ 0} instead. Due to the scaling property of the Wiener
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process we have

sup
1≤k<∞

WP (m, k)

g(m, k)

D
= sup

1≤k<∞
max
0≤i≤k

|W1 (k/m)−W1 (i/m)− ((k − i)/m)W0(1)|
(1 + k/m) (k/(k +m))γ

.

Define

RP (m, k) = max
0≤i≤k

|W1 (k/m)−W1 (i/m)− ((k − i)/m)W0(1)|
(1 + k/m) (k/(k +m))γ

and together with u(t) = (1 + t) (t/(1 + t))γ the following functionals of the Wiener processes W0

and W1:

RP (t) =
1

u(t)
sup
0≤s≤t

|W1 (t)−W1 (s)− (t− s)W0(1)| ,

RP (m, t) =
1

u(t/m)
sup
0≤s≤t

|W1 (t/m)−W1 (s/m)− ((s− t)/m)W0(1)| ,

R̃P (m, dte) =
1

u(dte/m)
sup

0≤s≤dte
|W1 (dte/m)−W1 (dse/m)− ((dte − dse)/m)W0(1)| .

Note that

sup
1≤k<∞

RP (m, k) = sup
0<t<∞

R̃P (m, dte).

The next step is to show:

sup
1≤k<∞

RP (m, k)
(m→∞)−→ sup

0<t<∞
RP (t) a.s.. (5.18)

We divide the proof of (5.18) into two steps and show

(i) For any T > 0:

max
1≤k≤mT

RP (m, k)
(m→∞)−→ sup

0<t≤T
RP (t) a.s.

and

(ii) For almost every ω ∈ Ω there exists a positive integer T = T (ω) such that

sup
mT≤k<∞

RP (m, k)
(m→∞)−→ sup

T≤t<∞
RP (t).

The first claim is immediate from the a.s. continuity of RP (t) on [0, T ] (with RP (0) = 0). For the
second claim we get for any T > 0

sup
mT≤t<∞

∣∣∣R̃P (m, dte)−RP (m, t)
∣∣∣

≤ sup
mT≤t<∞

∣∣∣∣W1 (dte/m)

u(dte/m)
− W1 (t/m)

u(t/m)

∣∣∣∣+ sup
mT≤t<∞

sup
0≤s≤t

∣∣∣∣W1 (dse/m)

u(dte/m)
− W1 (s/m)

u(t/m)

∣∣∣∣
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+ sup
mT≤t<∞

sup
0≤s≤t

∣∣∣∣ t− su(t/m)
− dte − dse
u(dte/m)

∣∣∣∣ |W0 (1)|
m

≤ 2 sup
mT≤t<∞

sup
0≤s≤t

∣∣∣∣W1 (dse/m)

u(dte/m)
− W1 (s/m)

u(t/m)

∣∣∣∣
+ sup
mT≤t<∞

sup
0≤s≤t

∣∣∣∣ t− su(t/m)
− dte − dse
u(dte/m)

∣∣∣∣ |W0 (1)|
m

= 2A1 +A2.

For A1 we have for any T > 0

sup
mT≤t<∞

sup
0≤s≤t

∣∣∣∣W1 (dse/m)−W1 (s/m)

u(dte/m)
− W1 (s/m)

u(t/m)
+
W1 (s/m)

u(dte/m)

∣∣∣∣
≤ sup

mT≤t<∞
sup
0≤s≤t

∣∣∣∣W1 (dse/m)−W1 (s/m)

u(dte/m)

∣∣∣∣
+ sup
mT≤t<∞

sup
0≤s≤t

|W1 (s/m)|
∣∣∣∣ 1

u(dte/m)
− 1

u(t/m)

∣∣∣∣
= sup

mT≤t<∞
sup
0≤s≤t

A3(t, s) + sup
mT≤t<∞

sup
0≤s≤t

A4(t, s).

By Theorem 1.2.1 of Csörgő and Révész (1981) for all ε > 0 there exists a T = T (ω) > 0 independent
of m such that

sup
mT≤t<∞

sup
0≤s≤t

sup
0≤r≤1

|W1 ((s+ r)/m)−W1 (s/m)|
u(t/m)

< ε a.s..

Consequently for almost every ω ∈ Ω there exists a T1 = T1(ω) > 0 with

sup
mT1≤t<∞

sup
0≤s≤t

A3(t, s)

≤ sup
mT1≤t<∞

sup
0≤s≤t

|W1 (dse/m)−W1 (s/m)|
u(t/m)

≤ sup
mT1≤t<∞

sup
0≤s≤t

sup
0≤r≤1

∣∣W1

(
s+r
m

)
−W1 (s/m)

∣∣
u(t/m)

<
ε

8
.

For A4 with Theorem 1.3.1* of Csörgő and Révész (1981) we get similarly that for almost every ω ∈ Ω

there exists T2 = T2(ω) > 0 (again independent of m) such that

sup
mT2≤t<∞

sup
0≤s≤t

A4 ≤ sup
mT2≤t<∞

sup
0≤s≤t

∣∣∣∣W1 (s/m)

u(t/m)

∣∣∣∣ < ε

8
.

For A2 we find that for any T > 0:

sup
mT≤t<∞

sup
0≤s≤t

∣∣∣∣ dte − dseu(dte/m)
− t− s
u(t/m)

∣∣∣∣ |W0 (1)|
m

≤ sup
mT≤t<∞

sup
0≤s≤t

∣∣∣∣dte − t− (dse − s)
u(dte/m)

+ (t− s)
(

1

u(dte/m)
− 1

u(t/m)

)∣∣∣∣ |W0 (1)|
m

≤ sup
mT≤t<∞

1

m

|W0 (1)|
u(dte/m)

+ sup
mT≤t<∞

t

m

∣∣∣∣ 1

u(t/m)
− 1

u(dte/m)

∣∣∣∣ |W0 (1)|
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=A5.

From (3.8) and because

(mu(dte/m))−1 ≤ (mu(t/m))−1 , (5.19)

we have∣∣∣∣ t/m

u(t/m)
− t/m

u(dte/m)

∣∣∣∣ ≤ ( t

t+m

)1−γ
− t

(t+m+ 1) ((t+ 1)/(t+m+ 1))γ

≤ 1−
(

t+m

t+m+ 1

)1−γ ( t

t+ 1

)γ
. (5.20)

This follows since the right-hand sides of (5.19) and (5.20) are both monotonically decreasing in t.
Now

A5 ≤
|W0 (1)|

m(1 + T ) (T/(T + 1))γ
+

[
1−

(
T + 1

T + 1 + 1/m

)1−γ ( T

T + 1/m

)γ]
|W0 (1)|

≤ |W0 (1)|

{
(1 + T )γ−1T γ +

[
1−

(
T + 1

T + 2

)1−γ ( T

T + 1

)γ]}
.

Therefore for almost every ω ∈ Ω there exists a T3 = T3(ω) > 0 and independent of m such that

sup
mT3≤t<∞

sup
0≤s≤t

∣∣∣∣ t− su(t/m)
− dte − dse
u(dte/m)

∣∣∣∣ |W0 (1)|
m

<
ε

2
.

Finally we have for almost every ω ∈ Ω and with T := max(T1, T2, T3) that∣∣∣∣∣ sup
mT≤k<∞

RP (m, k)− sup
T≤t<∞

RP (t)

∣∣∣∣∣ < ε,

since clearly supmT≤t<∞RP (m, t) = supT≤t<∞RP (t) for every m. Putting these together we get

sup
1≤k<∞

RP (m, k)
(m→∞)−→ sup

0<t<∞
RP (t) a.s.

and thus

sup
1≤k<∞

1

g(m, k)
max
0≤i≤k

∣∣∣∣W1,m(k)−W1,m(i)− k − i
m

W0,m(m)

∣∣∣∣ D−→ sup
0<t<∞

RP (t).

By computing the covariance functions it can be shown that

{W1 (t)− tW0 (1) , 0 ≤ t <∞} D= {(1 + t)W (t/(1 + t)) , 0 ≤ t <∞} ,

where {W (t), 0 ≤ t <∞} is again a Wiener process (cf. Horváth et al. (2004)). We conclude

sup
0<t<∞

RP (t)
D
= sup

0<t<∞
sup
0≤s≤t

|(1 + t)W (t/(1 + t))− (1 + s)W (s/(1 + s))|
(1 + t) (t/(1 + t))γ

= sup
0<t<∞

sup
0≤s≤t

|W (t/(1 + t))− ((1 + s)/(1 + t))W (s/(1 + s))|
(t/(1 + t))γ

= sup
0<t<1

sup
0≤s≤t

1

tγ
|W (t)− ((1− t)/(1− s))W (s)|.

The proof can now be completed by taking the weak consistency of the estimator σ̂m into account. �
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5.2. Proof of Theorem 3

We only prove part a) of Theorem 3, parts b) and c) then follow immediately. Since

min
0≤i≤k

m+i∑
j=m+1

ε̂j ≤ 0,

we have

Q̂(m, k) =
m+k∑
i=m+1

ε̂i ≤
m+k∑
i=m+1

ε̂i − min
0≤i≤k

m+i∑
j=m+1

ε̂j = Q̂uP (m, k).

Consequently it is sufficient to show that under HA and dT∆ > 0 we have

1

σ̂m
sup

1≤k<∞

Q̂(m, k)

g(m, k)

P−→∞. (5.21)

First note that, for k ≥ k∗,

Q̂(m, k) =

m+k∑
i=m+1

εi +

(
m+k∑
i=m+1

xi

)T
(β0 − β̂m) (5.22)

+

(
m+k∑

i=m+k∗

(xi − d)

)T
∆ + (k − k∗ + 1)dT∆.

From the proof of Theorem 1 we get

sup
1≤k<∞

1

g(m, k)

∣∣∣∣∣∣
m+k∑
i=m+1

εi +

(
m+k∑
i=m+1

xi

)T
(β0 − β̂m)

∣∣∣∣∣∣ = OP (1).

Now because of (5.17),(
m+k∑

i=m+k∗

(xi − d)

)T
∆ = o(k − k∗) as k →∞, a.s., uniformly in m.

As a consequence the drift term sup
1≤k<∞

(k−k∗+1)dT∆/g(m, k) is the dominating term and it clearly

diverges as m→∞. �

5.3. Proofs of Theorems 4 and 5

Aue et al. (2006b) showed similar results for the squared prediction errors. In case of a one-step
prediction, the prediction errors are the recursive residuals, i.e. in the notation of Aue et al. (2006b),
yi − ŷi = yi − xTi β̂i−1 = ε̃i. These results hold as well when the recursive residuals are replaced by
the ordinary residuals ε̂i. Therefore the proofs are a combination of the proofs in Aue et al. (2006b)
with the arguments in the proofs of Theorems 1 and 3. It should be mentioned that the drift term
under HA is determined by ∆TC∆ and therefore positive even under dT∆ = 0.
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k∗ = 1 m = 200 m = 1000

γ = 0.00 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 15 39 48 60 159 48 84 96 110 191
|Q̂| 14 39 48 60 159 48 84 95 109 189

Q̂uP 11 31 39 49 142 38 70 80 92 179
Q̂u 11 31 39 49 143 38 68 79 91 177

ŜP 3 32 46 68 558 22 76 96 120 256
|ŜR| 3 32 47 69 558 22 75 96 120 263

ŜuP 3 25 38 56 449 11 62 80 102 251
ŜR 3 25 38 57 451 11 61 80 101 251

γ = 0.25 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 4 20 28 38 144 12 35 44 56 146
|Q̂| 4 20 28 39 144 11 34 44 55 148

Q̂uP 4 16 22 31 108 9 28 37 47 135
Q̂u 3 15 22 31 107 8 27 36 46 135

ŜP 1 14 26 44 558 1 28 44 64 216
|ŜR| 1 15 27 46 558 1 29 44 64 217

ŜuP 1 11 21 37 451 1 22 36 54 202
ŜR 1 11 22 38 451 1 22 35 53 196

γ = 0.49 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 1 9 17 29 148 1 9 16 26 135
|Q̂| 1 9 17 28 148 1 9 16 26 133

Q̂uP 1 8 14 24 137 1 8 13 22 124
Q̂u 1 7 14 24 144 1 7 13 22 117

ŜP 1 6 15 33 1888 1 6 14 30 211
|ŜR| 1 6 16 35 1460 1 6 15 32 200

ŜuP 1 5 13 29 1269 1 5 12 27 197
ŜR 1 5 13 30 838 1 5 13 28 190

Table 7: Five number summary under H1 with an early-change k∗ = 1 for α = 0.1.
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k∗ = m m = 200 m = 1000

γ = 0.00 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 1 59 79 101 289 4 126 159 189 318
|Q̂| 1 66 95 131 443 9 143 193 248 476

Q̂uP 1 45 63 82 261 1 98 129 157 263
Q̂u 2 51 78 110 450 1 113 160 214 558

ŜP 1 46 75 112 2200 2 114 156 200 467
|ŜR| 1 53 90 141 2200 6 130 188 258 767

ŜuP 1 36 60 91 1593 1 90 127 165 403
ŜR 1 41 74 117 1595 1 103 157 222 650

γ = 0.25 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 2 54 73 96 289 3 113 145 175 305
|Q̂| 1 61 89 124 423 2 129 177 231 451

Q̂uP 1 43 62 80 290 1 93 124 150 256
Q̂u 1 49 75 108 464 1 107 153 206 556

ŜP 1 43 71 107 2200 3 104 143 186 436
|ŜR| 1 49 85 136 2200 3 118 175 242 731

ŜuP 1 36 60 91 1644 1 87 122 159 380
ŜR 1 41 73 117 1726 1 99 151 215 648

γ = 0.49 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 3 77 103 133 490 14 153 189 223 386
|Q̂| 2 81 115 160 658 15 162 214 273 526

Q̂uP 2 67 91 119 430 6 136 170 202 342
Q̂u 1 71 103 144 569 7 144 196 254 631

ŜP 2 63 100 155 2200 1 140 187 237 641
|ŜR| 1 67 111 181 2200 5 151 212 288 890

ŜuP 1 55 90 138 2200 2 125 169 217 522
ŜR 1 59 100 163 2200 3 135 194 267 826

Table 8: Five number summary under H1 with k∗ = m for α = 0.1 .
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k∗ = 5m m = 200 m = 1000

γ = 0.00 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 2 182 256 313 550 11 382 506 581 785
|Q̂| 2 191 293 412 933 6 404 577 777 1436

Q̂uP 3 152 212 259 489 5 319 425 490 666
Q̂u 2 158 252 366 1199 2 340 503 700 1826

ŜP 2 150 234 331 3000 6 352 492 601 1074
|ŜR| 1 158 263 418 3000 1 369 566 777 1817

ŜuP 1 126 198 278 1634 13 296 414 511 1027
ŜR 1 133 225 366 3000 5 311 491 696 1938

γ = 0.25 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 7 199 276 335 608 8 411 537 613 826
|Q̂| 3 205 310 432 1035 8 427 601 801 1471

Q̂uP 2 172 236 288 604 2 357 466 533 713
Q̂u 2 176 273 391 1248 9 372 536 737 1857

ŜP 3 166 255 361 3000 11 384 523 638 1228
|ŜR| 1 172 280 443 3000 15 395 593 808 1895

ŜuP 2 142 221 311 3000 15 333 456 555 1123
ŜR 3 149 247 395 3000 3 343 527 733 1977

γ = 0.49 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 1 326 430 526 1089 34 638 785 876 1203
|Q̂| 23 315 450 610 1577 17 622 819 1049 1898

Q̂uP 12 292 386 469 977 30 578 715 802 1085
Q̂u 13 278 402 553 1679 19 558 746 975 7000

ŜP 11 268 399 574 3000 36 595 766 912 1584
|ŜR| 3 256 407 641 3000 22 580 808 1059 7000

ŜuP 1 239 356 508 3000 6 537 700 833 1468
ŜR 6 226 363 575 3000 3 516 736 977 7000

Table 9: Five number summary under H1 with k∗ = 5m for α = 0.1 .
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min 1stQ med 3rdQ max

k∗ = 1 ŜP 10 58 75 94 235
|ŜR| 10 58 75 94 235

ŜuP 8 48 63 80 178
ŜR 8 47 62 79 178

k∗ = m ŜP 2 86 119 155 353
|ŜR| 2 98 144 196 537

ŜuP 1 68 98 129 293
ŜR 1 78 121 169 493

k∗ = 5m ŜP 4 271 376 461 823
|ŜR| 4 287 435 590 1345

ŜuP 7 228 317 392 676
ŜR 6 243 380 532 1526

Table 10: Five number summary under H2 for α = 0.1, γ = 0.00 and m = 1000.
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