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FUNCTIONAL DATA ANALYSIS WITH INCREASING NUMBER OF

PROJECTIONS

STEFAN FREMDT, LAJOS HORVÁTH, PIOTR KOKOSZKA, AND JOSEF G. STEINEBACH

Abstract. Functional principal components (FPC’s) provide the most important and

most extensively used tool for dimension reduction and inference for functional data.

The selection of the number, d, of the FPC’s to be used in a specific procedure has

attracted a fair amount of attention, and a number of reasonably effective approaches

exist. Intuitively, they assume that the functional data can be sufficiently well approxi-

mated by a projection onto a finite–dimensional subspace, and the error resulting from

such an approximation does not impact the conclusions. This has been shown to be a

very effective approach, but it is desirable to understand the behavior of many inferen-

tial procedures by considering the projections on subspaces spanned by an increasing

number of the FPC’s. Such an approach reflects more fully the infinite–dimensional

nature of functional data, and allows to derive procedures which are fairly insensitive

to the selection of d. This is accomplished by considering limits as d → ∞ with the

sample size.

We propose a specific framework in which we let d → ∞ by deriving a normal

approximation for the partial sum process

⌊du⌋∑

j=1

⌊Nx⌋∑

i=1

ξi,j , 0 ≤ u ≤ 1, 0 ≤ x ≤ 1,

where N is the sample size and ξi,j is the score of the ith function with respect to

the jth FPC. Our approximation can be used to derive statistics that use segments of

observations and segments of the FPC’s. We apply our general results to derive two

inferential procedures for the mean function: a change–point test and a two–sample test.

In addition to the asymptotic theory, the tests are assessed through a small simulation

study and a data example.

Key words and phrases. Functional data, change in mean, increasing dimension, normal approxima-

tion, principal components.
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1. Introduction

Functional data analysis has grown into a comprehensive and useful field of statistics

which provides a convenient framework to handle some high–dimensional data structures,

including curves and images. The monograph of Ramsay and Silverman (2005) has

done a lot to introduce its ideas to the statistics community and beyond. Several other

monographs and thousands of papers followed. This paper focuses on a specific aspect

of the mathematical foundations of functional data analysis, which is however of fairly

central importance. We first describe the contribution of this paper in broad terms, and

provide some more detailed background and discussion in the latter part of this section.

Perhaps the most important, and definitely the most commonly used, tool for dimension

reduction of functional data is the principal component analysis. Suppose we observe a

sample of functions, X1, X2, . . . , XN , and denote by

η̂i,j =

∫ (
Xi(t)− X̄N(t)

)
v̂j(t)dt, i = 1, 2, . . . , N, j = 1, 2, . . . , d,

the scores of the Xi with respect to the estimated functional principal components v̂j.

The scores η̂i,j depend on two variables i and j, and to reflect the infinite–dimensional

nature of the data, it may be desirable to consider asymptotics in which both N and

d increase. This paper establishes results that allow us to study the two–dimensional

partial sum process

⌊du⌋∑

j=1

⌊Nx⌋∑

i=1

∫
(Xi(t)− µX(t)) vj(t)dt, 0 ≤ u ≤ 1, 0 ≤ x ≤ 1.

More specifically, we derive a uniform normal approximation and apply it to two prob-

lems related to testing the null hypothesis that all observed curves have the same mean

function. We obtain new test statistics in which the number of the functional princi-

pal components, d, increases slowly with the sample size N . We hope that our general

approach will be used to derive similar results in other settings.

Statistical procedures for functional data which use functional principal components

(FPC’s) often depend on the number d of the components used to compute various sta-

tistics. The selection of an optimal d has received a fair deal of attention. Commonly

used approaches include the cumulative variance method, the scree plot, and several

forms of cross–validation and pseudo information criteria. By now, most of these ap-

proaches are implemented in several R packages and in the Matlab package PACE. A

related direction of research has focused on the identification of the dimension d assum-

ing that the functional data actually live in a finite–dimensional space of this dimension,

see Hall and Vial (2006) and Bathia et al. (2010). The research presented in this paper

is concerned with functional data which cannot be reduced to finite–dimensional data in

an obvious and easy way. Such data are typically characterized by a slow decay of the

eigenvalues of the empirical covariance operator. Figure 1 shows the eigenvalues of the

empirical covariance operator of the annual temperature curves obtained over the period

1856–2011 in Melbourne, Australia, while Figure 2 shows the cumulative variance plot

for the same data set. It is seen that the eigenfunctions decay at a slow rate, and neither
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Figure 1. Melbourne temperature data: eigenvalues λ̂2, . . . , λ̂49.
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Figure 2. Melbourne temperature data: percentage of variance explained

by the first k eigenvalues, i.e. fk =
∑k

i=1 λ̂i/
∑N

j=1 λ̂j, k = 1, 2, . . . , 49.
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their visual inspection nor the analysis of cumulative variance provide a clear guidance

on how to select d. This data set is analyzed in greater detail in Section 5.

In situations when the choice of d is difficult, two approaches seem reasonable. In the

first approach, one can apply a test using several values of d in a reasonable range. If the

conclusion does not depend on d, we can be confident that it is correct. This approach

has been used in applied research, see Gromenko et al. (2012) for a recent analysis of this

type. The second approach, would be to let d increase with the sample size N , and derive

a test statistic based on the limit. In a sense, the second approach is a formalization of the

first one because if a limit as d → ∞ exists, then the conclusions should not depend on

the choice of d, if it is reasonably large. In the FDA community there is a well grounded

intuition that d should increase much slower than N , so asymptotically large d need not

be very large in practice. It is also known that the rate at which d increases should

depend on the manner in which the eigenvalues decay. We obtain specific conditions

that formalize this intuition in the framework we consider. In more specific settings,

contributions in this directions were made by Cardot et al. (2003) and Panaretos et al.

(2010). The work of Cardot et al. (2003) is more closely related to our research: as part

of the justification of their testing procedure, they establish conditions under which a

limiting chi–square distribution with d degrees of freedom can be approximated by a

normal distribution as d = d(N) → ∞. Panaretos et al. (2010) are concerned with a test

of the equality of the covariance operators in two samples of Gaussian curves. In the

supplemental material, they derive asymptotics in which d is allowed to increase with

the sample size. Our theory is geared toward testing the equality of mean functions,

but we do not assume the normality of the functional observations, so we cannot use

arguments that use the equivalence of independence and zero covariances. We develop

a new technique based on the estimation of the Prokhorov–Lévy distance between the

underlying processes and the corresponding normal partial sums.

The paper is organized as follows. In Section 2, we set the framework and state a general

normal approximation result in Theorem 2.1. This result is then used in Sections 3 and

4 to derive, respectively, change–point and two–sample tests based on an increasing

number of FPC’s. Section 5 contains a small simulation study and an application to the

annual Melbourne temperature curves. All proofs are collected in the appendices.

2. Uniform normal approximation

We consider functional observations Xi(t), t ∈ I, i = 1, 2, . . . , N, defined over a com-

pact interval I. We can and shall assume without loss of generality that I = [0, 1].

Throughout the paper, we use the notation
∫
=
∫ 1

0
and

〈f, g〉 =
∫

f(t)g(t)dt, ||f ||2 = 〈f, f〉.

All functions we consider will be elements of the Hilbert space L2 of square integrable

functions on [0, 1].
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In the testing problems that motivate this research, under the null hypothesis, the ob-

servations follow the model

(2.1) Xi(t) = µ(t) + Zi(t), 1 ≤ i ≤ N,

where EZi(t) = 0 and µ(t) is the common mean. We impose the following standard

assumptions.

Assumption 2.1. Z1, Z2, . . . , ZN are independent and identically distributed.

Assumption 2.2.
∫
µ2(t)dt < ∞ and E||Z1||2 < ∞.

Under these assumptions, the covariance function

c(t, s) = EZ1(t)Z1(s),

is square integrable on the unit square and therefore it has the representation

c(t, s) =
∞∑

k=1

λkvk(t)vk(s),

where λ1 ≥ λ2 ≥ . . . are the eigenvalues and v1, v2, . . . are the orthonormal eigenfunctions

of the covariance operator, i.e. they satisfy the integral equation

(2.2) λjvj(t) =

∫
c(t, s)vj(s)ds.

One of the most important dimension reduction techniques of functional data analysis

is to project the observations X1(t), . . . , XN(t) onto the space spanned by v1, . . . , vd, the

eigenfunctions associated with the d largest eigenvalues. Since the covariance function

c, and therefore v1, . . . , vd, are unknown, we use the empirical eigenfunctions v̂1, . . . , v̂d
and eigenvalues λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂d defined by

(2.3) λ̂j v̂j(t) =

∫
ĉN(t, s)v̂j(s)ds,

where

ĉN(t, s) =
1

N

N∑

i=1

(
Xi(t)− X̄N(t)

) (
Xi(s)− X̄N(s)

)

with X̄N (t) = N−1
∑N

i=1Xi(t).

In this section, we require only two more assumptions, namely

Assumption 2.3. λ1 > λ2 > . . .

Assumption 2.4. E||Z1||3 < ∞.

Assumption 2.3 is needed to ensure that the FPC’s vj are uniquely defined. In Theo-

rem 2.1 it could, of course, be replaced by requiring only that the first d eigenvalues are

positive and different, but since in the applications we let d → ∞, we just assume that

all eigenvalues are positive and distinct. If λd∗+1 = 0 for some d∗, then the observations

are in the linear span of v1, . . . , vd∗ , i.e. they are elements of a d∗–dimensional space,
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so in this case we cannot consider d = d(N) → ∞. Assumption 2.3 means that the

observations are in an infinite–dimensional space. Assumption 2.4 is weaker than the

usual assumption E||Z1||4 < ∞. As will be seen in the proofs, subtle arguments of the

probability theory in Banach spaces are needed to dispense with the fourth moment.

To state the main result of this section, define

ξi = (ξi,1, . . . , ξi,d)
T and ξi,j = λ

−1/2
j 〈Zi, vj〉, 1 ≤ i ≤ N, 1 ≤ j ≤ d,

where ·T denotes the transpose of vectors and matrices. Set

(2.4) Sj,N(x) =
1

N1/2

⌊Nx⌋∑

i=1

ξi,j, 0 ≤ x ≤ 1, 1 ≤ j ≤ d.

We now provide an approximation for the partial sum processes Sj,N(x) defined in (2.4)

with suitably constructed Wiener processes (standard Brownian motions).

Theorem 2.1. If Assumptions 2.1, 2.3 and 2.4 hold, then for every N we can define

independent Wiener processes W1,N , . . . ,Wd,N such that

P

{
max
1≤j≤d

sup
0≤x≤1

|Sj,N(x)−Wj,N(x)| ≥ N1/2−1/80

}
(2.5)

≤ c∗N
−1/80

{
d1/12

( d∑

ℓ=1

1/λℓ

)1/8

+
d∑

j=1

1/λ
3/2
j

}
,

where c∗ only depends on λ1 and E||Z1||3.

The constant 1/80 in (2.5) is not crucial, it is a result of our calculations. Theorem 2.1

is related to the results of Einmahl (1987, 1989) who obtained strong approximations for

partial sums of independent and identically distributed random vectors with zero mean

and with identity covariance matrix. In our setting, for any fixed d, the covariance matrix

is not the identity, but this is not the central difficulty. The main value of Theorem 2.1

stems from the fact that it shows how the rate of the approximation depends on d; no

such information is contained in the work of Einmahl (1987, 1989), who did not need to

consider the dependence on d. The explicit dependence of the right hand side of (2.5) on

d is crucial in the applications presented in the following sections in which the dimension

of the projection space depends on the sample size N .

Very broadly speaking, Theorem 2.1 implies that in all reasonable statistics based on

averaging the scores, even in those based on an increasing number of FPC’s, the partial

sums of scores can be replaced by Wiener processes to obtain a limit distribution. The

right hand side of (2.5) allows us to derive assumptions on the eigenvalues required to

obtain a specific result. Replacing the unobservable scores ξi,j by the sample scores η̂i,j
is relatively easy. We will illustrate these ideas in Sections 3 and 4.

3. Change–point detection

Over the past four decades, the investigation of the asymptotic properties of partial sum

processes has to a large extent been motivated by change–point detection procedures, and
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this is the most natural application of Theorem 2.1. The research on the change–point

problem in various contexts is very extensive, some aspects of the asymptotic theory are

presented in Csörgő and Horváth (1997). Detection of a change in the mean function

was studied by Berkes et al. (2009) who considered a procedure in which the number of

the FPC’s, d, was fixed, and the asymptotic distribution of the test statistic depended

on d. We show in this section that it is possible to derive tests with a standard normal

limiting distribution by allowing the d to depend on the sample size N .

We want to test whether the mean of the observations remained the same during the

observation period, i.e. we test the null hypothesis

H0 : EX1(·) = EX2(·) = · · · = EXN (·)
(“=” means equality in L2). Under the null hypothesis, the Xi follow model (2.1) in

which µ(·) is an unknown common mean function under H0. The alternative hypothesis

is

HA : there is k∗ ∈ [1, 2, . . . , N) such that

EX1(·) = · · · = EXk∗(·) 6= EXk∗+1(·) = · · · = EXN(·).
Under HA the mean changes at an unknown time k∗.

To derive a new class of tests, we introduce the process

ẐN(u, x) =
1

d1/2

⌊du⌋∑

j=1

{
1

N

[
Ŝj(⌊Nx⌋) − xŜj(N)

]2
− x(1− x)

}
, 0 ≤ u, x ≤ 1,

where

Ŝj(k) =
1

λ̂
1/2
j

k∑

i=1

η̂i,j .

The process ẐN(u, x) contains the cumulative sums Ŝj(⌊Nx⌋) − xŜj(N) which measure

the deviation of the partial sums from their “trend” under H0, and a correction term

x(1− x) needed to ensure convergence as d → ∞.

To obtain a limit which does not depend on any unknown quantities, we need to impose

assumptions on the rate at which d = d(N) increases with N . Intuitively, the assump-

tions below state that d is much smaller than the sample size N , the d largest eigenvalues

are not too small, and that the difference between the consecutive eigenvalues tends to

zero slowly. Very broadly speaking, these assumptions mean that the distribution of the

observations must sufficiently fill the whole infinite–dimensional space L2.

Assumption 3.1. d = d(N) → ∞
Assumption 3.2. (d logN)1/2N−1/80 → 0,

Assumption 3.3. d1/12N−1/80

( d∑

j=1

1/λj

)1/8

→ 0.

Assumption 3.4. N−1/80

d∑

j=1

1/λ
3/2
j → 0.
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Assumption 3.5.

1

d1/2N1/3

d∑

j=1

1

λjζj
→ 0,

where ζ1 = λ2 − λ1, ζj = min(λj−1 − λj, λj − λj+1), j ≥ 2.

With these preparations, we can state the main result of this section.

Theorem 3.1. If Assumptions 2.1–2.3 and 3.1–3.5 are satisfied, then

ẐN(u, x) → Γ(u, x) in D[0, 1]2,

where Γ(u, x) is a mean zero Gaussian process with

E[Γ(u, x)Γ(v, y)] = 2ux2(1− y)2, 0 ≤ u ≤ v ≤ 1, 0 ≤ x ≤ y ≤ 1.

One can verify by computing the covariance functions that

(3.1) {Γ(u, x), 0 ≤ u, x ≤ 1} D
= {

√
2(1− x)2W (u, x2/(1− x)2), 0 ≤ u, x ≤ 1},

where {W (v, y), v, y ≥ 0} is a bivariate Wiener process, i.e. W (v, y) is a Gaussian process

with EW (v, y) = 0 and E[W (v, y)W (v′, y′)] = min(v, v′)min(y, y′). Representation

(3.1) means that continuous functionals of the process Γ(·, ·) can be simulated with

arbitrary precision, so Monte Carlo tests can be used. One would choose the number of

projections in the CUSUM procedure such that the test would give the largest rejection

if the alternative holds. The statistic maxumaxx |ẐN(u, x)| is maximizing the CUSUM

statistics maxx |ẐN(k/d, x)|, where k = 1, 2, . . . , d projections are used. It is however

possible to obtain a number of simple asymptotic tests by examining closer the structure

of the process Γ(·, ·). We list some of them in Corollary 3.1, and we will see in Section 5

that the Cramér-von-Mises type tests have very good finite sample properties. Let B

denote a Brownian bridge and define

µ0 = E

(
sup

0≤x≤1
B2(x)

)
and σ2

0 = var

(
sup

0≤x≤1
B2(x)

)
.

Corollary 3.1. If the assumptions of Theorem 3.1 are satisfied, then

(3.2)
1

d1/2σ0

{
d∑

j=1

sup
0≤x≤1

1

N

(
Ŝj(⌊Nx⌋) − xŜj(N)

)2
− dµ0

}
D→ N(0, 1),

(3.3)
1

(d/45)1/2

{
d∑

j=1

1

N

∫
(Ŝj(⌊Nx⌋) − xŜj(N))2dx− d

6

}
D→ N(0, 1),

(3.4)
1

(d/8)1/2

{
sup

0≤x≤1

d∑

j=1

1

N
(Ŝj(⌊Nx⌋) − xŜj(N))2 − d

4

}
D→ N(0, 1),

where N(0, 1) stands for a standard normal random variable.

We conclude this section with two examples which show that Assumptions 3.2–3.5 hold

under both power law and exponential decay of the eigenvalues.
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Example 3.1. If the eigenvalues satisfy

λj =
c1

(j − c2)α
+ o

(
1

jα+1

)
, as j → ∞,

with some c1 > 0, 0 ≤ c2 < 1 and α > 0, then Assumptions 3.2–3.5 hold if d/(logN)β →
0 with some β > 0.

Under the conditions of Example 3.1, one could choose dN = O(N ζ), where ζ depends

on α. In case of a fixed samplle size N , the power of the test would decrease if dN is

too large. Hence we recommend choosing dN ≈ (logN)β, where β > 0 can be arbitrarily

chosen.

Example 3.2. If the eigenvalues satisfy

λj = c0e
−αj + o(e−αj), as j → ∞,

with some c0 > 0 and α > 0, then Assumptions 3.2–3.5 hold if d/(log logN)β → 0 with

some β > 0.

4. Two–sample problem

The two–sample problem for functional data was perhaps first discussed in depth by

Benko et al. (2009) who were motivated by a problem related to implied volatility

curves. It has recently attracted a fair amount of attention motivated by problems

arising in space physics, see Horváth et al. (2009), genetics, see Panaretos et al. (2010),

and finance, see Horváth et al. (2012). The above list does not include many other

important contributions. In its simplest, but most important form, it is about testing if

curves obtained from two populations have the same mean functions. The most direct

approach, developed into a bootstrap procedure by Benko et al. (2009), is to look at the

norm of the difference of the estimated mean functions. In this section, we show that the

normal approximation of Section 2 leads to an asymptotic test whose limit distribution

is standard normal.

Suppose we have two random samples of functions: X1, . . . , XN and Y1, . . . , YM . We

assume the X sample satisfies (2.1) and Assumptions 2.1, 2.2 and 2.4. Similarly, the Y

sample is a location model given by

(4.1) Yi(t) = µ∗(t) +Qi(t), 1 ≤ i ≤ M,

where µ∗(t) is the common mean of the Y sample and EQi(t) = 0. As in the case of the

X sample, the Y sample satisfies the following conditions:

Assumption 4.1. Q1, Q2, . . . , QM are independent and identically distributed.

Assumption 4.2.
∫
µ2
∗(t)dt < ∞ and E||Q1||3 < ∞.

Assumption 4.2 yields that

c∗(t, s) = EQ1(t)Q1(s)
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is a square integrable function on the unit square.

In this section we are interested in testing the null hypothesis

H∗
0 : µ(·) = µ∗(·).

The statistical inference to test H0 is based on the difference X̄N − ȲM , where X̄N and

ȲM denote the sample means. We assume

Assumption 4.3.

N

M
= λ+O(N−1/4) as min(M,N) → ∞

with some 0 < λ < ∞.

Now we define the pooled covariance function

cP (t, s) = c(t, s) + λc∗(t, s).

Since cP (t, s) is a positive–definite, symmetric, square integrable function, there are real

numbers κ1 ≥ κ2 ≥ . . . and orthonormal functions u1, u2, . . . satisfying

κiui(t) =

∫
cP (t, s)ui(s)ds, i = 1, 2, . . . .

We wish to project X̄N−ȲM into the space spanned by u1, . . . , ud, where d = d(N) → ∞,

so similarly to Assumption 2.3 we require

Assumption 4.4. κ1 > κ2 > κ3 > . . .

Assumption 4.5.

N−3/32d1/4

(
d∑

ℓ=1

1/κℓ

)3/8

→ 0.

Our test statistic is

DN,M =

d∑

i=1

N〈X̄N − ȲM , ui〉2/κi.

As in Section 3, we need additional assumptions balancing the rate of growth of d = d(N)

and the rate of decay of the κℓ and the differences between them.

Assumption 4.6.

1

d1/2N1/4

d∑

ℓ=1

1

κ2
ℓ

→ 0 and
1

d1/2N1/4

d∑

ℓ=1

1

κℓιℓ
→ 0,

where ι1 = κ2 − κ1, ιℓ = min(ιℓ−1 − ιℓ, ιℓ − ιℓ+1), ℓ ≥ 2.

Since u1, u2, . . . are unknown, we replace them with the corresponding empirical eigen-

functions û1, û2, . . . defined by the integral operator

κ̂iûi(t) =

∫
ĉP (t, s)ûi(s)ds, i = 1, 2, . . . ,
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α 0.01 0.05 0.10

0.109256 0.0726292 0.0578267

Table 5.1. Critical values for the distribution of (5.3).

where κ̂1 ≥ κ̂2 ≥ . . . and

ĉP (t, s) = ĉN(t, s) +
N

M
ĉ∗M(t, s),

with

ĉ∗M(t, s) =
1

M

M∑

ℓ=1

(Yℓ(t)− ȲM(t))(Yℓ(s)− ȲM(s)).

The empirical version of DN,M is

D̂N,M =

d∑

i=1

N〈X̄N − ȲM , ûi〉2/κ̂i.

Theorem 4.1. If H∗
0 , Assumptions 2.1, 2.2 and 4.1–4.6 hold, then

(2d)−1/2(D̂N,M − d)
D→ N(0, 1),

where N(0, 1) stands for a standard normal random variable.

5. A small simulation study and a data example

The main contribution of this paper lies in the statistical theory, but it is of interest to

check if the new tests derived in Sections 3 and 4 perform well in finite samples. We

report the results for the test based on Theorem 3.1 in some detail, as it utilizes the

convergence of the two–parameter process in full force, and such an approach has not

been used before. We also comment on the tests based on Corollary 3.1 and Theorem 4.1.

We conclude this section with an illustrative data example.

The simulated data which satisfy the null hypotheses of Sections 3 and 4 are generated

as independent Brownian motions on the interval [0, 1]. We generate them by using iid

normal increments on 1,000 equispaced points in [0, 1] (random walk approximation).

(Example 3.1 shows that for the Brownian motion the assumptions of Theorem 3.1 are

satisfied.) Alternatives are obtained by adding the curve at(1 − t) after a change–point

or to the observations in the second sample. The parameter a regulates the size of the

change or the difference in the means in two samples.

Many tests can be obtained from Theorem 3.1 by applying functionals continuous on

D[0, 1]2. It is not our objective to provide a systematic comparison, we consider only the

test based on the weak convergence

(5.1)

∫ 1

0

∫ 1

0

Ẑ2
N(u, x)dudx →

∫ 1

0

∫ 1

0

Γ2(u, x)dudx.
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N = 100

α = 0.05 α = 0.1

d p̂ [a, b] p̂ [a, b]

2 0.047 [0.0360,0.0580] 0.058 [0.0458,0.0702]

3 0.056 [0.0440,0.0680] 0.074 [0.0604,0.0876]

4 0.060 [0.0476,0.0724] 0.081 [0.0668,0.0952]

5 0.059 [0.0467,0.0713] 0.089 [0.0742,0.1038]

6 0.057 [0.0449,0.0691] 0.089 [0.0742,0.1038]

7 0.056 [0.0440,0.0680] 0.089 [0.0742,0.1038]

8 0.059 [0.0467,0.0713] 0.091 [0.0760,0.1060]

9 0.051 [0.0396,0.0624] 0.090 [0.0751,0.1049]

10 0.050 [0.0387,0.0613] 0.082 [0.0677,0.0963]

11 0.054 [0.0422,0.0658] 0.083 [0.0687,0.0973]

12 0.057 [0.0449,0.0691] 0.079 [0.0650,0.0930]

13 0.059 [0.0467,0.0713] 0.075 [0.0613,0.0887]

14 0.057 [0.0449,0.0691] 0.076 [0.0622,0.0898]

15 0.056 [0.0440,0.0680] 0.075 [0.0613,0.0887]

N = 200

α = 0.05 α = 0.1

d p̂ [a, b] p̂ [a, b]

2 0.039 [0.0289,0.0491] 0.055 [0.0431,0.0669]

3 0.048 [0.0369,0.0591] 0.070 [0.0567,0.0833]

4 0.049 [0.0378,0.0602] 0.075 [0.0613,0.0887]

5 0.053 [0.0413,0.0647] 0.076 [0.0622,0.0898]

6 0.057 [0.0449,0.0691] 0.085 [0.0705,0.0995

7 0.057 [0.0449,0.0691] 0.085 [0.0705,0.0995]

8 0.053 [0.0413,0.0647] 0.085 [0.0705,0.0995]

9 0.051 [0.0396,0.0624] 0.083 [0.0687,0.0973]

10 0.051 [0.0378,0.0602] 0.081 [0.0668,0.0952]

11 0.054 [0.0496,0.0624] 0.083 [0.0687,0.0973]

12 0.052 [0.0405,0.0635] 0.086 [0.0714,0.1006]

13 0.050 [0.0387,0.0613] 0.087 [0.0723,0.1017]

14 0.054 [0.0422,0.0658] 0.086 [0.0714,0.1006]

15 0.052 [0.0405,0.0635] 0.079 [0.0650,0.0930]

Table 5.2. Empirical sizes and 90% confidence intervals for the proba-

bility of rejection for the change–point test based on convergence (5.1).
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Figure 3. Left panel: 20 realizations of the Brownian motion; Right

panel: independent 20 realizations of the Brownian motion with the curve

at(1− t), a = 1.5 added.

To compute the critical values, we use the following representation of the limit
∫ 1

0

∫ 1

0

Γ2(u, x)dudx
D
=

∑

1≤k,ℓ<∞

λkνℓN
2
k,ℓ.(5.2)

In (5.2), the λk = (π(k − 1/2))−2 are the eigenvalues of the Wiener process, the νℓ are

the eigenvalues of the covariance operator with kernel 2(min(s, t) − st)2, and {Nk,ℓ} is

an array of independent standard normal random variables. The critical values were

determined for a truncated version of the right–hand side of (5.2) with truncation level

49, i.e. for
∑

1≤k,ℓ≤49

λkνℓN
2
k,ℓ.(5.3)

Since the eigenvalues νℓ are difficult to determine explicitly, they were calculated numer-

ically using the R package fda, cf.Ramsay et al. (2009). The simulated critical values

based on 100,000 replications of (5.3) are provided in Table 5.1.

Table 5.2 shows the empirical sizes p̂, i.e. the fraction of rejections, as well as asymptotic

90% confidence intervals
[
p̂− 1.654

√
p̂(1− p̂)

R
, p̂+ 1.654

√
p̂(1− p̂)

R

]
.(5.4)
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N = 100

a = 1 a = 1.5

d α = 0.05 α = 0.10 α = 0.05 α = 0.10

2 0.168 0.192 0.356 0.398

3 0.456 0.517 0.819 0.851

4 0.501 0.564 0.843 0.875

5 0.496 0.564 0.855 0.887

6 0.481 0.552 0.847 0.883

7 0.473 0.543 0.843 0.881

8 0.465 0.530 0.834 0.874

9 0.461 0.519 0.823 0.870

10 0.453 0.504 0.812 0.859

11 0.441 0.501 0.802 0.853

12 0.431 0.496 0.793 0.844

13 0.420 0.484 0.791 0.834

14 0.400 0.472 0.782 0.822

15 0.388 0.467 0.767 0.817

N = 200

a = 1 a = 1.5

d α = 0.05 α = 0.10 α = 0.05 α = 0.10

2 0.327 0.370 0.620 0.660

3 0.784 0.814 0.984 0.991

4 0.808 0.849 0.988 0.994

5 0.823 0.860 0.992 0.994

6 0.825 0.863 0.991 0.996

7 0.819 0.864 0.992 0.994

8 0.814 0.859 0.990 0.994

9 0.802 0.846 0.990 0.993

10 0.791 0.837 0.990 0.993

11 0.766 0.830 0.988 0.992

12 0.754 0.821 0.987 0.992

13 0.740 0.800 0.987 0.991

14 0.734 0.794 0.987 0.991

15 0.726 0.787 0.986 0.990

Table 5.3. Power of the test based on convergence (5.1). The change–

point is at k∗ = ⌊N/2⌋.
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for the probability p of rejection. The entries are based on R = 1, 000 replications. The

table shows that the test based on convergence (5.1) has correct empirical size at the

5% level and is a bit too conservative at the 10% level. However even at the 10% level

the empirical sizes for d ≥ 3 are not significantly different; they all fall into each others

90% confidence intervals. This illustrates the main point that for the tests that use

the asymptotics with d → ∞ developed in the paper, selecting d is not essential; every

sufficiently large d gives the same conclusion on the significance.

The empirical power of the test is reported in Table 5.3. Again, for d ≥ 3, the power

remains statistically the same. We note that the change in mean equal to the function

at(1− t) with a = 1.5 is fairly small if the “noise curves” are Brownian motions. This is

illustrated in Figure 3 which shows 20 Brownian motions in the left panel and another

independent sample of 20 Brownian motions with the curve at(1 − t), a = 1.5 added. If

one knows that this curve was added, one can discern it in the plot in the right panel,

but the difference would have been much less obvious if individual curves were observed,

as in the change–point setting relevant to Table 5.3.

Regarding Corollary 3.1, we found out that the test based on convergence (3.3) has

empirical size only slightly higher than nominal (about 1% at 5% level). For d ≥ 3, the

empirical size does not depend on d. The test based on (3.4) severely overrejects for

N = 100, and we do not recommend it. The test based on Theorem 4.1 overrejects by

about 2% at the 5% level, and by about 1% at the 10% level. The power of the test is

above 95% for N,M = 100 and a = 1.0, and practically 100% for larger a or N,M . For

d ≥ 2, the rejection probabilities do not depend on d.

Change–point analysis of annual temperature profiles. The goal of this section is

to illustrate the application of the change–point test based on convergence (5.1). Change–

point analysis is an important field of statistics with a large number of applications,

the recent monographs of Chen and Gupta (2011) and Basseville et al. (2012) provide

numerous references. The change–point problem in the context of functional data has

also received some attention, we refer to Horváth and Kokoszka (2012) for the references,

Aston and Kirch (2012) report some most recent research.

The data set we study consists of 156 years (1856-2011) of minimum daily temperatures

in Melbourne. These data are available at www.bom.gov.au (the Australian Bureau of

Meteorology website). The original data can be viewed as 156 curves with 365 measure-

ments on each curve. We converted them to functional objects in R using 49 Fourier

basis functions. Five consecutive functions are shown in Figure 4. It is important to

emphasize the difference between the data we use and the Canadian temperature data

made popular by the books of Ramsay and Silverman (2005) and Ramsay et al. (2009).

The Canadian temperature curves are the curves at 35 locations in Canada obtained

by averaging annual temperature over forty years. Since each such curve is an average

of forty curves like those shown in Figure 4, those curves are much smoother, and the

first two FPC’s are sufficient to describe their variability. Even after smoothing with 49

Fourier functions, the annual temperature curves exhibit noticeable year to year vari-

ability, and a larger number of FPC’s is needed to capture it, see Table 5.4. The goals
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Figure 4. Five annual temperature curves represented as functional objects.

of our analysis are also different from those of Ramsay and Silverman (2005). We are in-

terested in detecting a change in the mean function using a sequence of noisy curves; the

examples in Ramsay and Silverman (2005) used the averaged curves to describe static

regression type dependencies between climatic variables.

The analysis proceeds through the usual binary segmentation procedure. The test is first

applied to the whole data set. If the P–value is small, the change–point is estimated as

θ̂N = inf{k : IN(k) = sup
1≤j≤N

IN(j)},

where

IN(ℓ) =
1

d2

d−1∑

i=1

(
i∑

j=1

{
1

N

[
Ŝj(ℓ)−

ℓ

N
Ŝj(N)

]2
− ℓ

N

(
N − ℓ

N

)})2

.

(IN is a discretization of ẐN .) The test is then applied to the two segments, and the

procedure continues until no change–points are detected. In practice, a procedure of this

type detects only a few change–points (four in our case), so the problems of multiple

testing are not an issue. We applied the test using many values of d, and we were

pleased to see that the final segmentation does not depend on d. Table 5.5 shows the

outcome. The estimated change–points are the years 1892, 1960, 1967, 1996. It is

clear that the change–point model is not an exact climatological model for the evolution

of annual temperature curves, but it is popular in climate studies, see e.g. Gallagher

et al. (2012), as it allows us to attach statistical significance to conclusions and provides
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Figure 5. Average temperature functions in the estimated partition segments.

periods of approximately constant mean temperature profiles. In this light, the weak

evidence for a change–point in 1967 could be viewed as indicating an accelerated change

in the period 1960–1995. The estimated mean temperature curves over the segments of

approximately constant mean are shown in Figure 5. An increasing pattern of the mean

temperature is seen; the mean curve shifted upwards by about two degrees Celsius over

the last 150 years. This could be due to the conjectured global temperature increase or

the urbanization of the Melbourne area, or a combination of both. A discussion of such

issues is however beyond the intended scope of this paper.
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k 1 2 3 4 5 6 7 8

λ̂k 0.7151 0.1469 0.1295 0.1154 0.1046 0.1021 0.0944 0.0868

fp 0.2248 0.2711 0.3118 0.3480 0.3809 0.4130 0.4427 0.4700

k 9 10 11 12 13 14 15 16

λ̂k 0.0845 0.0833 0.0758 0.0732 0.0726 0.0687 0.0661 0.0641

fp 0.4966 0.5228 0.5466 0.5696 0.5925 0.6141 0.6349 0.6550

k 17 18 19 20 21 22 23 24

λ̂k 0.0620 0.0586 0.0559 0.0559 0.0534 0.0508 0.0472 0.0463

fp 0.6745 0.6930 0.7105 0.7281 0.7449 0.7609 0.7757 0.7903

k 25 26 27 28 29 30 31 32

λ̂k 0.0440 0.0427 0.0426 0.0400 0.0377 0.0367 0.0359 0.0325

fp 0.8041 0.8175 0.8309 0.8435 0.8553 0.8669 0.8782 0.8884

k 33 34 35 36 37 38 39 40

λ̂k 0.0320 0.0299 0.0281 0.0274 0.0252 0.0248 0.0228 0.0211

fp 0.8985 0.9079 0.9167 0.9253 0.9332 0.9410 0.9482 0.9548

k 41 42 43 44 45 46 47 48

λ̂k 0.0207 0.0201 0.0188 0.0171 0.0166 0.0163 0.0129 0.0114

fp 0.9614 0.9677 0.9736 0.9790 0.9842 0.9893 0.9934 0.9969

Table 5.4. Eigenvalues and percentage of variance explained by the first

k eigenvalues, i.e. fk =
∑k

i=1 λ̂i/
∑N

j=1 λ̂j , for k = 1, 2, . . . , 49.
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It. Segment Estimated P-value

change–point d = 3 d = 4 d = 5 d = 6

1 1856-2011 1960 0.0000 0.0000 0.0000 0.0000

2 1856-1959 1892 0.0000 0.0000 0.0000 0.0000

3 1856-1891 — 0.1865 0.2323 0.3524 0.4822

4 1892-1959 — 0.9522 0.9690 0.9256 0.6561

5 1960-2011 1996 0.0000 0.0000 0.0000 0.0000

6 1960-1995 1967 0.0013 0.0011 0.0025 0.0017

7 1960-1966 — 0.9568 0.9549 0.9818 0.9935

8 1967-1995 — 0.2927 0.4305 0.1786 0.1348

9 1996-2011 — 0.4285 0.5345 0.6413 0.7365

It. Segment Estimated P-value

change–point d = 7 d = 8 d = 9 d = 10

1 1856-2011 1960 0.0000 0.0000 0.0000 0.0000

2 1856-1959 1892 0.0000 0.0000 0.0000 0.0000

3 1856-1891 — 0.4235 0.4325 0.4901 0.5667

4 1892-1959 — 0.4646 0.4348 0.4696 0.5068

5 1960-2011 1996 0.0000 0.0000 0.0000 0.0000

6 1960-1995 1967 0.0026 0.0038 0.0058 0.0067

7 1960-1966 — 0.9992 — — —

8 1967-1995 — 0.1245 0.0690 0.0571 0.0586

9 1996-2011 — 0.8243 0.9118 0.9618 0.9779

Table 5.5. Segmentation procedure of the data into periods with con-

stant mean function
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Appendix A. Proof of Theorem 2.1

We start with some elementary properties of the projections ξi,j. Let | · | denote the

Euclidean norm of vectors.

Lemma A.1. If Assumptions 2.1, 2.3 and 2.4 hold, then

(A.1) Eξ1 = 0,

(A.2) Eξ1ξ
T
1 = Id,

where Id is the d× d identity matrix. Moreover,

(A.3) E|ξ1|3 ≤ E||Z1||3
(

d∑

j=1

1/λj

)3/2

and for all 1 ≤ j ≤ d

(A.4) E|ξ1,j|3 ≤ E||Z1||3/λ3/2
j .

Proof. Since EZ1(t) = 0, the relation in (A.1) is obvious. The orthonormal functions vk
and vℓ satisfy (2.2), so we get

Eξi,kξi,ℓ =
1

(λkλℓ)1/2

∫∫
c(t, s)vk(s)vℓ(s)dtds =

{
0, if k 6= ℓ

1, if k = ℓ,

proving (A.2). Using the definition of the Euclidean norm and the Cauchy–Schwarz

inequality we conclude

|ξ1|3 =
(

d∑

j=1

〈Z1, vj〉2/λj

)3/2

≤
(

d∑

j=1

||Z1||2||vj||2/λj

)3/2

= ||Z1||3
(

d∑

j=1

1/λj

)3/2

,

since ||vj || = 1. Taking the expected value of the equation above we obtain (A.3). Clearly,

E|ξ1,j|3 = λ
−3/2
j E|〈Z1, vj〉|3 ≤ λ

−3/2
j E||Z1||3.

�

The next lemma plays a central role in the proof of Theorem 2.1.

Lemma A.2. If Assumptions 2.1, 2.3 and 2.4 hold, then for all n we can define inde-

pendent identically distributed standard normal vectors γ1, . . . ,γn in Rd such that

P

{∣∣∣∣∣

n∑

i=1

ξi −
n∑

i=1

γi

∣∣∣∣∣ ≥ cn3/8d1/4(E|ξ1|3 + E|γ1|3)1/4
}

≤ cn−1/8d1/4(E|ξ1|3 + E|γ1|3)1/4,

where c is an absolute constant.

Proof. The result is a consequence of Theorem 6.4.1 on p. 207 of Senatov (1998) and the

corollary to Theorem 11 in Strassen (1965). �
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We note that

(A.5) (E|ξ1|3 + E|γ1|3)1/4 ≤ (E|ξ1|3)1/4 + (E|γ1|3)1/4.

Also, since |γ1|2 is the sum of the squares of d independent standard normal random

variables, Minkowski’s inequality implies

(A.6) E|γ1|3 ≤ c1d
3/2,

with some constant c1, and clearly

(A.7) d3/2 ≤ λ
3/2
1

(
d∑

ℓ=1

1/λℓ

)3/2

.

Combining Lemma A.2 with (A.5)–(A.7), we conclude that

P

{∣∣∣∣∣

n∑

i=1

ξi −
n∑

i=1

γi

∣∣∣∣∣ ≥ c2n
3/8d1/4

(
d∑

j=1

1/λj

)3/8}
≤ c2n

−1/8d1/4

(
d∑

j=1

1/λj

)3/8

,(A.8)

where c2 does not depend on d.

In the next lemma we provide an upper bound for the variance of
∑n

i (ξi,j − γi,j), where

γi = (γi,1, . . . , γi,d)
T is defined in Lemma A.2.

Lemma A.3. If Assumptions 2.1, 2.3 and 2.4 hold, then for any 1 ≤ j ≤ d we get

E

(
n∑

i=1

ξi,j −
n∑

i=1

γi,j

)2

≤ c3n
23/24 1

λj


d1/4

(
d∑

ℓ=1

1/λℓ

)3/8



1/3

,

where c3 does not depend on d.

Proof. Let

Un(j) = n−1/2

n∑

i=1

(ξi,j − γi,j) and rn = c2n
−1/8d1/4

(
d∑

ℓ=1

1/λℓ

)3/8

.

First we write

EU2
n(j) = E[U2

n(j)I{|Un(j)| ≤ rn}] + E[U2
n(j)I{|Un(j)| > rn}]

≤ r2n +
2

n
E

[( n∑

i=1

ξi,j

)2

I{|Un(j)| > rn}
]
+
2

n
E

[( n∑

i=1

γi,j

)2

I{|Un(j)| > rn}
]
.

Using Hölder’s inequality we get that

E

[( n∑

i=1

ξi,j

)2

I{|Un(j)| > rn}
]
≤ E

[∣∣∣∣
n∑

i=1

ξi,j

∣∣∣∣
3]2/3[

P{|Un(j)| > rn}
]1/3

≤ E

[∣∣∣∣
n∑

i=1

ξi,j

∣∣∣∣
3]2/3

r1/3n
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by (A.8). Applying now Rosenthal’s inequality (cf. Petrov (1995), p. 59) we obtain

E

∣∣∣∣
n∑

i=1

ξi,j

∣∣∣∣
3

≤ c4

{ n∑

i=1

E|ξi,j|3 +
( n∑

i=1

Eξ2i,j

)3/2}
,

where c4 is an absolute constant. Hence

E

∣∣∣∣
n∑

i=1

ξi,j

∣∣∣∣
3

≤ c5{nλ−3/2
j + n3/2} ≤ c6(n/λj)

3/2

and therefore

E

[( n∑

i=1

ξi,j

)2

I{|Un(j)| > rn}
]
≤ c7(n/λj)r

1/3
n

≤ c8n
23/24 1

λj

(
d1/4

( d∑

ℓ=1

1/λℓ

)3/8)1/3

.

Following the previous arguments one can show that

E

[( n∑

i=1

γi,j

)2

I{|Un(j)| > rn}
]
≤ c9n

23/24 1

λj

(
d1/4

( d∑

ℓ=1

1/λℓ

)3/8)1/3

.

The constants c8 and c9 do not depend on d. Since in view of Assumption 3.3, nr2n is

smaller than the latter rates, this completes the proof of Lemma A.3. �

Proof of Theorem 2.1. We use a blocking argument to construct a Wiener process

which is close to the partial sums
∑

1≤i≤k ξi,j, 1 ≤ k ≤ N, 1 ≤ j ≤ d. Let K be the

length of the blocks to be chosen later. Let M = ⌊N/K⌋. For k = ℓM, 1 ≤ ℓ ≤ K we

write
k∑

i=1

ξi,j =
ℓ∑

v=1

( vM∑

i=(v−1)M+1

ξi,j

)
.

Using the γi,j’s, the independent standard normal random variables constructed in

Lemma A.2, we define

(A.9) Wj(k) =
k∑

i=1

γi,j, 1 ≤ j ≤ d, 1 ≤ k ≤ N.

By Lemma A.3 we get for any 0 < δ < 1/2 and 1 ≤ j ≤ d via Kolmogorov’s inequality

(cf. Petrov (1995)), p. 54)

P

{
max
1≤ℓ≤K

∣∣∣∣
ℓM∑

i=1

ξi,j −Wj(ℓM)

∣∣∣∣≥ N1/2−δ

}
(A.10)

= P

{
max
1≤ℓ≤K

∣∣∣∣
ℓ∑

v=1

( vM∑

i=(v−1)M+1

(ξi,j − γi,j)

)∣∣∣∣≥ N1/2−δ

}

≤ 1

N1−2δ

K∑

v=1

E

( vM∑

i=(v−1)M+1

(ξi,j − γi,j)

)2
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≤ c3
N1−2δ

KM23/24 1

λj

(
d1/4

( d∑

ℓ=1

1/λℓ

)3/8)1/3

≤ c3N
2δ−1/24K1/24 1

λj

(
d1/4

( d∑

ℓ=1

1/λℓ

)3/8)1/3

.

One can define independent Wiener processes (standard Brownian motions) Wj(x), x ≥
0, 1 ≤ j ≤ d such that (A.9) holds. We obtained approximations for the partial sums

of the ξi,j’s at the points k = ℓM, 1 ≤ ℓ ≤ K. Next we show that neither the partial

sums of the ξi,j’s nor the Wiener processes Wj(x) can oscillate too much between ℓM

and (ℓ+ 1)M .

Using again Rosenthal’s inequality (cf. Petrov (1995), p. 59) we obtain for all 1 ≤ j ≤ d

that

E

∣∣∣∣
M∑

i=1

ξi,j

∣∣∣∣
3

≤ c10

{ M∑

i=1

E|ξi,j|3 +
( M∑

i=1

Eξ2i,j

)3/2}
(A.11)

≤ c11{M/λ
3/2
j +M3/2}

≤ c11(1 + λ
3/2
1 )(M/λj)

3/2

on account of Lemma A.1. Combining the Marcinkiewicz–Zygmund inequality (cf. Petrov

(1995), p. 82) with (A.11) we conclude

(A.12) E

(
max

1≤h≤M

∣∣∣∣
h∑

i=1

ξi,j

∣∣∣∣
)3

≤ c12(M/λj)
3/2.

Applying (A.12) we get

P

{
max

0≤ℓ≤K+1
max

1≤h≤M

∣∣∣∣
ℓM∑

i=1

ξi,j −
ℓM+h∑

i=1

ξi,j

∣∣∣∣≥ N1/2−δ

}
(A.13)

≤ (K + 2)P

{
max

1≤h≤M

∣∣∣∣
h∑

i=1

ξi,j

∣∣∣∣> N1/2−δ

}

≤ c13
N3/2−3δ

K(M/λj)
3/2

≤ c13N
3δK−1/2λ

−3/2
j .

Lemma 1.2.1 of Csörgő and Révész (1981) yields

P

{
max
0≤ℓ≤K

sup
|h|≤M

|Wj(ℓM)−Wj(ℓM + h)| ≥ c14M
1/2(logN)1/2

}
≤ c15

N2
.(A.14)

Now choosing δ = 1/80 and K = ⌊Nβ⌋ with β = 1/10, it follows from (A.10), (A.13)

and (A.14) for all 1 ≤ j ≤ d that

P

{
sup

0≤y≤N

∣∣∣∣
∑

1≤i≤y

ξi,j −Wj(y)

∣∣∣∣> N1/2−δ

}
(A.15)
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≤ c15N
−δ

{
1

λj

(
d1/4

( d∑

ℓ=1

1/λℓ

)3/8)1/3

+
1

λ
3/2
j

}
.

The result now follows from (A.15) with Wj,N(x) = N−1/2Wj(Nx), 0 ≤ x ≤ 1. �

Appendix B. Proofs of the results of Section 3

We first investigate the weak convergence of the process

ZN(u, x) =
1

d1/2

⌊du⌋∑

j=1

{
(Sj,N(x)− xSj,N(1))

2 − x(1 − x)
}
, 0 ≤ u, x ≤ 1,

with Sj,N(x) given by (2.4). The difference between ẐN(u, x) and ZN(u, x) is that ẐN is

computed from the empirical projections v̂1, . . . , v̂d, while ZN is based on the unknown

population eigenfunctions v1, . . . , vd.

Theorem B.1. If Assumptions 2.1, 2.3, 2.4 and 3.1–3.4 hold, then

ZN(u, x) → Γ(u, x) in D[0, 1]2,

where the Gaussian process Γ(u, x) is defined in Theorem 3.1.

To prove Theorem B.1, we need several lemmas and some additional notation.

Let

Vj,N(x) = Sj,N(x)− xSj,N(1) and Bj,N(x) = Wj,N(x)− xWj,N(1),

where Sj,N is defined in (2.4) and the Wj,N ’s are the Wiener processes of Theorem 2.1. It

follows from the definition that for each N the processes Bj,N , 1 ≤ j ≤ d, are independent

Brownian bridges.

Lemma B.1. If Assumptions 2.1, 2.3 and 2.4 hold, then

P

{
sup

0≤x≤1

d∑

j=1

∣∣V 2
j,N(x)− B2

j,N(x)
∣∣≥ 20dN−1/80(logN)1/2

}

≤ c∗N
−1/80

{
d1/12

( d∑

ℓ=1

1/λℓ

)1/8

+
d∑

j=1

1/λ
3/2
j

}
+c∗∗dN

−2,

where c∗ and c∗∗ only depend on λ1 and E||Z1||3.

Proof. First we write

V 2
j,N(x)− B2

j,N(x) = (Vj,N(x)− Bj,N(x))
2 + 2Bj,N(x)(Vj,N(x)− Bj,N(x)).

Since the Bj,N ’s are Brownian bridges, the distribution of the supremum functional of

the Brownian bridge (cf. Csörgő and Révész (1981)) gives

P

{
max
1≤j≤d

sup
0≤x≤1

|Bj,N(x)| ≥ 4(logN)1/2
}
≤ c∗∗

d

N2
,

where c∗∗ is an absolute constant. Now the result follows immediately from Theorem

2.1. �
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Now we prove the weak convergence of the partial sums of the squares of independent

Brownian bridges. Let B1, B2, . . . , Bd be independent Brownian bridges.

Lemma B.2. As d → ∞, we have that

1

d1/2

⌊du⌋∑

j=1

(
B2

j (x)− x(1 − x)
)
→ Γ(u, x) in D[0, 1]2,

where the Gaussian process Γ(u, x) is defined in Theorem 3.1.

Proof. The proof is based on Theorem 2 of Hahn (1978). Let B denote a Brownian

bridge and θ1 = sup0≤t≤1 |B(t)|. It is clear that Eθm1 < ∞ for all m ≥ 1. According to

Garsia (1970), there is a random variable θ2 such that Eθm2 < ∞ for all m ≥ 1 and

|B(t)− B(s)| ≤ θ2(|t− s| log(1/|t− s|))1/2, 0 ≤ t, s ≤ 1.

Let V (t) = B2(t)− t(1− t). We note

|V (t)− V (s)| ≤ 2θ1θ2(|t− s| log(1/|t− s|))1/2 + |t− s|.

Thus we get

(B.1) E(V (t)− V (s))2 ≤ c16|t− s| log(1/|t− s|) for all 0 ≤ t, s ≤ 1

and

E[(V (t)− V (z))2(V (z)− V (s))2] ≤ c17(|t− s| log(1/|t− s|))2(B.2)

for all 0 ≤ s ≤ z ≤ t ≤ 1. The estimates in (B.1) and (B.2) yield that the conditions of

Theorem 2 of Hahn (1978) are satisfied, completing the proof Lemma B.2. �

Proof of Theorem B.1. It follows immediately from Lemmas B.1 and B.2. �

The transition from Theorem B.1 to Theorem 3.1 is based on the following lemma, in

which the norm is the Hilbert–Schmidt norm.

Lemma B.3. If Assumptions 2.1, 2.2 and 2.3 hold, then

(B.3) |λj − λ̂j| ≤ ||c− ĉ||

and

(B.4) ||vj − ĉj v̂j || ≤
2
√
2

ζj
||c− ĉ||,

where ĉj = sign(〈v̂j , vj〉) are random signs, and ζ1, ζ2, . . . are defined in Assumption 3.5.

Proof. Inequality (B.3) can be deduced from the general results presented in Section VI.1

of Gohberg et al. (1990) or in Dunford and Schwartz (1988). These results are presented

in a convenient form in Lemma 2.2 in Horváth and Kokoszka (2012). Finally Lemma

2.3 in Horváth and Kokoszka (2012) gives (B.4). �
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Proof of Theorem 3.1. Introducing

UN(x) = UN(x, t) =
1

N1/2

{⌊Nx⌋∑

i=1

Zi(t)− x

N∑

i=1

Zi(t)

}

we can write

ẐN(u, x) =
1

d1/2

⌊du⌋∑

j=1

{
1

λ̂j

〈UN(x), v̂j〉2 − x(1− x)

}
.

Elementary arguments give

⌊du⌋∑

j=1

1

λ̂j

〈UN(x), v̂j〉2 =
⌊du⌋∑

j=1

1

λj
〈UN(x), ĉjvj〉2 +

⌊du⌋∑

j=1

{
1

λ̂j

− 1

λj

}
〈UN (x), v̂j〉2

+

⌊du⌋∑

j=1

1

λj
(〈UN(x), v̂j〉2 − 〈UN(x), ĉjvj〉2).

By the Cauchy–Schwarz inequality we have

(B.5)
1

d1/2

d∑

j=1

∣∣∣∣
1

λ̂j

− 1

λj

∣∣∣∣〈UN(x), v̂j〉2 ≤ ||UN(x)||2
1

d1/2

d∑

j=1

|λj − λ̂j|
λ̂jλj

and since |a2 − b2| = |a+ b||a− b|,

(B.6)
1

d1/2

d∑

j=1

1

λj
(〈UN(x), v̂j〉2 − 〈UN(x)− ĉjvj〉2) ≤ ||UN(x)||2

2

d1/2

d∑

j=1

1

λj
||v̂j − ĉjvj ||2.

It follows from the results of Kuelbs (1973) (for a shorter proof we refer to Theorem 6.3

in Horváth and Kokoszka (2012)) that

sup
0≤x≤1

||UN(x)||2 = OP (1).

Due to Assumption 2.4 we can use a Marcinkiewicz–Zygmund type law of large numbers

for sums of independent and identically distributed random functions in Banach spaces

(cf., e.g., Woyczynski (1978) or Howell and Taylor (1980)) to conclude

||c− ĉ|| = OP (N
−1/3).

Assumption 3.4 gives that N−1/120/λd → 0 and therefore by Lemma B.3

max
1≤i≤d

λi

λ̂i

= OP (1).

So by Lemma B.3 and (B.5) we have

1

d1/2

d∑

j=1

∣∣∣∣
1

λ̂j

− 1

λj

∣∣∣∣〈UN(x), v̂j〉2 = OP (1)
1

d1/2N1/3

d∑

i=1

1/λ2
i

= OP (1)
d1/2

N1/3

1

λ2
d
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= OP (1)
N1/80

N1/3
N1/60

= oP (1)

on account of Assumptions 3.2 and 3.4. Similarly, (B.6) and Assumption 3.5 yield

1

d1/2

d∑

j=1

1

λj

〈UN(x), v̂j − ĉjvj〉2 = OP (1)
1

d1/2N1/3

d∑

j=1

1

λjζj
= oP (1).(B.7)

Theorem 3.1 now follows from Theorem B.1. �

Proof of Corollary 3.1. By Lemma B.1 and (B.7), relation (3.2) is proven if we show

that

(B.8)
1

d1/2σ0

{
d∑

i=1

sup
0≤x≤1

B2
i (x)− dκ0

}
D→ N(0, 1),

where B1, B2, . . . , Bd are independent Brownian bridges. Clearly, (B.8) is an immediate

consequence of the central limit theorem. Similarly, to establish (3.3), we need to show

only that

1

(d/45)1/2

{
d∑

i=1

∫
B2

i (x)dx− d

6

}
D→ N(0, 1).

The above result is known, see Remark 2.1 in Aue et al. (2009). The same argument

can be used to prove (3.4). �

Appendix C. Proofs of the results of Section 4

We note that under the null hypothesis X̄N − ȲM = Z̄N − Q̄M . Define

FN,M =
N∑

j=1

Zj −
N

M

M∑

j=1

Qj.

The proof of Theorem 4.1 is based on Lemma A.2, we need to write FN,M as a single

sum of independent identically distributed random processes and an additional small

remainder term. Let K be an integer and define the integers R = ⌊N/K⌋ and L =

⌊M/K⌋. Next we define

Ai =

iR∑

ℓ=R(i−1)+1

Zℓ −
iL∑

ℓ=L(i−1)+1

N

M
Qℓ, i = 1, 2, . . . , K.

Clearly,

FN,M =
K∑

i=1

Ai + Ã,

where

Ã =
N∑

ℓ=KR+1

Zℓ −
N

M

M∑

ℓ=KL+1

Qℓ.
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We will show first if v is a function with ||v|| = 1, then for every n

(C.1) E

∣∣∣∣∣

n∑

ℓ=1

〈Zℓ, v〉
∣∣∣∣∣

3

≤ c1n
3/2

and

(C.2) E

∣∣∣∣∣

n∑

ℓ=1

〈Qℓ, v〉
∣∣∣∣∣

3

≤ c2n
3/2,

where c1 and c2 only depends on E||Z1||3 and E||Q1||3, respectively. Using Rosenthal’s

inequality (cf. Petrov (1995), p. 59) we get

E

∣∣∣∣
n∑

ℓ=1

〈Zℓ, v〉
∣∣∣∣
3

≤ c3
{
nE|〈Z1, v〉|3 + (nE〈Z1, v〉2)3/2

}
,

where c3 is an absolute constant. It is easy to see that

|〈Z1, v〉| ≤ ||Z1||,
which implies (C.1). The same argument can be used to prove (C.2).

Next we define the function

cN,M(t, s) = c(t, s) +
N2L

M2R
c∗(t, s).

It is clear that cN,M is a covariance function and therefore we can find κ̄1 = κ̄1(N,M) ≥
κ̄2 = κ̄2(N,M) ≥ . . . and orthonormal functions ū1(t) = ū1(N,M), ū2(t) = ū2(N,M), . . .

satisfying

κ̄iūi(t) =

∫
cN,M(t, s)ūi(s)ds, 1 ≤ i < ∞.

Now we define the vector

ψi = (〈Ai, ū1〉/(Rκ̄1)
1/2, 〈Ai, ū2〉/(Rκ̄2)

1/2, . . . , 〈Ai, ūd〉/(Rκ̄d)
1/2)T , 1 ≤ i ≤ K.

It is easy to see that ψi, 1 ≤ i ≤ K, are independent and identically distributed random

vectors with mean 0 and Eψ1ψ
T
1 = Id, where Id is the d×d identity matrix. Also, (C.1)

and (C.2) imply that

E|ψ1| ≤ c4

(
d∑

ℓ=1

1/κ̄ℓ

)3/2

,

where c4 only depends on E||Z1||3 and E||Q1||3. Using Lemma A.2 we obtain similarly to

(A.8) that there are independent standard normal random vectors γi = γi(N,M), 1 ≤
i ≤ K, in Rd such that

P

{∣∣∣∣
K∑

i=1

ψi −
K∑

i=1

γi

∣∣∣∣≥ c5K
3/8d1/4

( d∑

ℓ=1

1/κ̄ℓ

)3/8}
(C.3)

≤ c5K
−1/8d1/4

(
d∑

ℓ=1

1/κ̄ℓ

)3/8

,
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where c5 does not depend on d. Let

ψ̃ = (〈Ã, ū1〉/
√
κ̄1, 〈Ã, ū2〉/

√
κ̄2, . . . , 〈Ã, ūd〉/

√
κ̄d)

T .

It follows from (C.1) and (C.2) that with some constant c6, not depending on d we have

E|ψ̃|3 ≤ c6K
3/2

(
d∑

ℓ=1

1/κ̄ℓ

)3/2

and therefore by Markov’s inequality for every x > 0

(C.4) P

{
N−1/2|ψ̃| > x

}
≤ c7

K3/2

x3N3/2

(
d∑

ℓ=1

1/κ̄ℓ

)3/2

.

Let

κN,M = (〈FN,M , ū1〉/
√
κ̄1, 〈FN,M , ū2〉/

√
κ̄2, . . . , 〈FN,M , ūd〉/

√
κ̄d)

T .

Next we choose K = ⌊N3/4⌋ in (C.3), (C.4) and x = K−1/8(
∑d

ℓ=1 1/κ̄ℓ)
3/8 in (C.4) to

conclude that there is γN,M , a standard normal random vector in Rd such that

P

{∣∣∣∣
1√
N∗
κN,M − γN,M

∣∣∣∣ ≥ c8N
−3/32d1/4

(
d∑

ℓ=1

1/κ̄ℓ

)3/8}
(C.5)

≤ c8N
−3/32d1/4

(
d∑

ℓ=1

1/κ̄ℓ

)3/8

,

where N∗ = ⌊N/⌊N3/4⌋⌋⌊N3/4⌋. Using the definitions of cP and cN,M , together with

Assumption 4.3, we conclude

(C.6) ||cP − cN,M || = O(N−1/4),

so by Lemma 2.3 of Horváth and Kokoszka (2012), cf. Lemma B.3, we have

(C.7) |κi − κ̄i| ≤ c9 ||cP − cN,M || = O(N−1/4).

Using Assumption 4.5 we conclude that

d∑

ℓ=1

1/κ̄ℓ = O

(
d∑

ℓ=1

1/κℓ

)
.

Hence it follows from (C.5) and Assumption 4.5 that

1

N
|κN,M |2 − N∗

N
|γN,M |2 = oP (d

1/2).

Since |γN,M |2 is a χ2 random variable with d degrees of freedom, Assumption 4.5 yields

that ∣∣∣∣
N∗

N
− 1

∣∣∣∣ |γN,M |2 = oP (d
1/2).
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It is well known that (|γN,M |2−d)/(2d)1/2 converges in distribution to a standard normal

random variable, and therefore

1√
2d

{
1

N
|κN,M |2 − d

}
D→ N(0, 1),

where N(0, 1) stands for a standard normal random variable.

The difference between |κN,M |2/N and D̂N,M is that the projections are done into the

direction of different functions (ūi’s and ûi’s, respectively) and the normalizations (κ̄i’s

and κ̂i’s, respectively) are also different. However, using the Marcinkiewicz–Zygmund

law of large numbers in a Banach space together with (C.6) and Assumption 4.5, we

obtain that

||̂cP − cN,M || = OP (N
−1/4).

Hence, in view of (C.7), also

sup
i

|κ̂i − κ̄i| = OP (N
−1/4),

and there are random signs d̂i such that

sup
i

(
i∑

ℓ=1

1/ιℓ

)−1

||ûi − d̂iūi|| = OP (N
−1/4).

So repeating the arguments used in the proof of Theorem 3.1, we get
∣∣∣∣D̂N,M − 1

N
|κN,M |2

∣∣∣∣ = oP (d
1/2),

completing the proof.
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