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Abstract

We determine optimal crossover designs for the estimation of direct treatment
effects in a model with mixed and self carryover effects. The model also
assumes that the errors within each experimental unit are correlated following
a stationary first-order autoregressive process. The paper considers situations
where the number of periods for each experimental unit is at least four and
the number of treatments is greater or equal to the number of periods.

Key words: Carryover effects, Optimal design, Correlated errors

1 Introduction

In crossover designs experimental units are exposed to a number of treat-
ments, one after the other. We consider the situation that treatments are
liable to have a carryover effect on the measurement in the next period.
[Afsarinejad and Hedayat(2002)] suggested a model with partial interaction
between direct effects and carryover effects. In this model, each treatment
has two types of carryover effects. If the treatment in the present period is
the same as in the preceding period, the measurement is influenced by the
self carryover effect, if the treatment is different, the mixed carryover effect
appears. These authors considered designs with two periods for each expe-
rimental unit and determined optimal designs for direct treatment effects.
[Kunert and Stufken(2002)] and [Kunert and Stufken(2008)] considered de-
signs with more than two periods. In all three papers, the model assumed
that the errors are independent. An extension of the model, assuming with
correlated errors, was considered by [Hedayat and Yan(2008)]. They investi-
gated designs where the number p of periods equals three and the number t
of treatments is at least three. They also gave a numerical investigation of
the case t ≥ p = 4.
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In what follows, we consider the same model. We extend the work by
[Hedayat and Yan(2008)] to the case t ≥ p ≥ 4 and give a closed soluti-
on for that case. The proof uses the approach of [Kushner(1997)], see also
[Kunert and Martin(2000)] and [Kunert and Stufken(2002)].

2 Notations and a tool for finding good desi-

gns

The model which we consider is exactly the model studied in [Hedayat and
Yan(2008)]. The response on period j of unit i can be written as

yij =

{
αi + βj + τd(i,j) + ρd(i,j−1) + εij, if d(i, j) 6= d(i, j − 1),

αi + βj + τd(i,j) + γd(i,j−1) + εij, if d(i, j) = d(i, j − 1),
(1)

where d(i, j) ∈ {1, ..., t} is the treatment applied to unit i in period j. The
unknown fixed parameters αi, βj, τd(i,j), ρd(i,j−1) and γd(i,j−1) are the effect
of unit i, the effect of period j, the direct effect of treatment d(i, j), the
mixed carryover effect of treatment d(i, j− 1) and the self carryover effect of
treatment d(i, j−1), respectively. Since the first observation of any unit is not
affected by a carryover effect, we define ρd(i,0) = 0 and γd(i,0) = 0. Further, we
assume that the errors within any unit are correlated following a stationary
first-order autoregressive process with known correlation parameter λ. Errors
from different units are independent from each other. Thus Cov(εij1 , εij2) =
σ2λ|j1−j2|/(1−λ2) with variance σ2 > 0 and correlation parameter λ ∈ (−1, 1)
and Cov(εi1j1 , εi2j2) = 0 for i1 6= i2.

The class of all designs with t treatments, n experimental units and p
periods for each unit is denoted by Ωt,n,p. We restrict attention to the case
t ≥ p ≥ 4.

Using matrix notation the model becomes

Y = Uα + Pβ + Tdτ +Mdρ+ Sdγ + ε (2)

where Y = [y11, y12, . . . , ynp]
T . The covariance matrix of ε is given by Cov(ε)
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= σ2(In ⊗ Λ), where ⊗ denotes the Kronecker product and

Λ =
1

1− λ2


1 λ λ2 . . . λp−1

λ 1 λ . . . λp−2

λ2 λ 1 . . . λp−3

...
...

...
. . .

...
λp−1 λp−2 λp−3 . . . 1

 .

The matrices U = In⊗ 1p, P = 1n⊗ Ip, Td, Md and Sd are the design matri-
ces of the unit, period, direct treatment, mixed carryover and self carryover
effects, respectively.

We assume that the parameter λ ∈ (−1, 1) is known. As in [Kunert(1985)],
we can determine a matrix Vλ such that VλΛλV

T
λ = Ip and transform model

(2) to

(In ⊗ Vλ)Y = (In ⊗ Vλ)Uα + (In ⊗ Vλ)Pβ + (In ⊗ Vλ)Tdτ
+(In ⊗ Vλ)Mdρ+ (In ⊗ Vλ)Sdγ + ε̃,

where Cov(ε̃) = σ2Inp. Then the information matrix for the estimation of
direct effects becomes

Cd = T Td (In ⊗ Vλ)ω⊥((In ⊗ Vλ)[P,U,Md, Sd])(In ⊗ Vλ)Td,

where ω⊥(A) = I−A(ATA)−AT for a matrix A and (ATA)− is the generalized
inverse of ATA.

As in [Kunert and Stufken(2002)] we can see that the information matrix
Cd of any design d must have row and column sums zero. It was shown by
[Kiefer(1975)] that then a design is universally optimal if the corresponding
information matrix is completely symmetric and has maximal trace among
the information matrices of all designs in Ωt,n,p. Complete symmetry means
that the matrix can be written as aIt+b1t1

T
t where a and b are real numbers.

An upper bound of Cd in the Loewner ordering is

Cd ≤ T Td (In ⊗ Vλ)ω⊥((In ⊗ Vλ)[U,Md, Sd])(In ⊗ Vλ)Td

with equality if and only if

T Td (In ⊗ Vλ)ω⊥((In ⊗ Vλ)[U,Md, Sd])(In ⊗ Vλ)P = 0, (3)

see [Kunert(1983)].
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To continue, we define the matrix

Wλ = Λ−1 − (1Tp Λ−11p)
−1Λ−11p1

T
p Λ−1, (4)

where

Λ−1 =



1 −λ 0 . . . . . . 0

−λ 1 + λ2 −λ . . .
...

0 −λ 1 + λ2
. . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . 1 + λ2 −λ
0 . . . . . . 0 −λ 1


is the inverse of Λ. We then can write

T Td (In ⊗ Vλ)ω⊥((In ⊗ Vλ)[U,Md, Sd])(In ⊗ Vλ)Td
= Cd11 − Cd12C−d22C

T
d12 − (Cd13 − Cd12C−d22Cd23)

× (Cd33 − CT
d23C

−
d22Cd23)

−(Cd13 − Cd12C−d22Cd23)
T ,

where Cd11 = T Td (In⊗Wλ)Td, Cd12 = T Td (In⊗Wλ)Md, Cd13 = T Td (In⊗Wλ)Sd,
Cd22 = MT

d (In⊗Wλ)Md, Cd23 = MT
d (In⊗Wλ)Sd, and Cd33 = STd (In⊗Wλ)Sd,

see [Kunert and Martin(2000)].
Now define cdij = tr(BtCdij), the trace of BtCdij, with Bt = It − 1

t
1t1

T
t .

From [Kunert and Martin(2000)], we have

tr(T Td (In ⊗ Vλ)ω⊥((In ⊗ Vλ)[U,Md, Sd])(In ⊗ Vλ)Td) ≤ q∗d, (5)

where q∗d is defined as follows.

1. If cd22cd33− c2d23 > 0, then q∗d = cd11−
c2d12cd33 − 2cd12cd13cd23 + c2d13cd22

cd22cd33 − c2d23
.

2. If cd22cd33 − c2d23 = 0 and cd22 > 0, then q∗d = cd11 −
c2d12
cd22

.

3. If cd22 = 0 and cd33 > 0, then q∗d = cd11 −
c2d13
cd33

.

4. If cd22 = cd33 = 0, then q∗d = cd11.
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In (5) we have equality, if all matrices Cdij are completely symmetric.
Combining what we have seen so far, we get

tr(Cd) ≤ q∗d (6)

with equality holding iff (3) holds and all matrices Cdij are completely sym-
metric.

We want to find designs with a maximum value of q∗d where equality holds
in (6). It then is useful to split up the design matrices into the contributions
from each unit, that is, we write

Td =


Td1
Td2
...
Tdn

 ,Md =


Md1

Md2
...

Mdn

 and Sd =


Sd1
Sd2

...
Sdn

 ,

where the (p× t)-matrices Tdu, Mdu and Sdu correspond to unit u, 1 ≤ u ≤ n.
Further define

c
(u)
d11 = tr[Bt(T

T
duWλTdu)],

c
(u)
d12 = tr[Bt(T

T
duWλMdu)],

c
(u)
d13 = tr[Bt(T

T
duWλSdu)],

c
(u)
d22 = tr[Bt(M

T
duWλMdu)],

c
(u)
d23 = tr[Bt(M

T
duWλSdu)],

c
(u)
d33 = tr[Bt(S

T
duWλSdu)].

Then we get cdij =
∑n

u=1 c
(u)
dij , 1 ≤ i ≤ j ≤ 3. Observe that c

(u1)
dij = c

(u2)
dij

if unit u1 receives the same sequence of treatments as u2. This equality re-
mains true if the sequence of unit u1 can be transformed to the one of unit
u2 by relabeling the treatments. We thus can merge the sequences into K
equivalence classes. Each equivalence class ` can be identified by a represen-
tative sequence. For example, the equivalence class with the representative
sequence [1112] contains, among others, the sequences [1112], [2223], [4441].
For class `, we define

cij(`) = c
(u`)
dij
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where u` is an unit receiving the representative sequence for class `. With
this notation we have

cdij = n(
K∑
`=1

πd`cij(`))

where πd` is the proportion of units in the design receiving sequences from
class `. This implies that q∗d depends on the design only through the πd`.
So if we want to maximize q∗d we have to find appropriate values for πd`.
The determination of the appropriate πd` is made a lot easier by Kushner’s
method.

We define the bivariate function

qd(x, y) = cd11 + 2xcd12 + x2cd22 + 2ycd13 + y2cd33 + 2xycd23.

Then qd(x, y) ≥ q∗d for all x, y and there is at least one point (x∗, y∗) such
that qd(x

∗, y∗) = q∗d, see [Kunert and Martin(2000)]. Defining

h`(x, y) = c11(`) + 2xc12(`) + x2c22(`) + 2yc13(`) + y2c33(`) + 2xyc23(`),

for 1 ≤ ` ≤ K, we have qd(x, y) = n
∑K

`=1 πd`h`(x, y). Hence qd(x, y) can be
derived from the weighted mean of the sequence classes. In particular, we get

q∗d ≤ n min
x,y

max
`

h`(x, y) (7)

for all designs d ∈ Ωt,n,p.

3 Results

In this section we derive the form of the optimal designs for the cases that
t ≥ p ≥ 4. For that we consider all K equivalence classes ` with their
representative sequences [s`1, s

`
2, . . . , s

`
p]. Of particular interest is the class 1

with sequence [s11, s
1
2, . . . , s

1
p] = [1, 2, . . . , p]. For λ not too small, we show

that only class 1 is needed for the optimal designs. In particular, this implies
that each treatment should appear at most once within each unit. Our main
proposition identifies the upper bound in (7).

Proposition 3.1. For t ≥ p ≥ 4 define

λ∗(p) = (p− 2−
√
p2 − 8)/(2(p− 3)).
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If we assume that λ ∈ [λ∗(p), 1) then

h1(x
∗, 0) = min

x,y
max
`

h`(x, y). (8)

Here x∗ = arg minx h1(x, 0) = −c12(1)/c22(1).

Beweis. If unit u receives a sequence from the equivalence class 1, then Sdu =
0. Therefore, c13(1) = c23(1) = c33(1) = 0. Hence, the minimum of h1(x, y)
does not depend on y. We conclude that h1(x, y) attains its minimum if

x = −c12(1)

c22(1)
,

that is, if x = x∗, see Lemma A.5. Therefore, it holds for all x and y that

max
`

h`(x, y) ≥ h1(x, y) ≥ h1(x
∗, 0). (9)

On the other hand, we show in the appendix for any ` and x ∈ [0, 1] that

h1(x, 0) ≥ h`(x, 0),

see Lemma A.6. Since x∗ ∈ [0, 1], see Lemma A.5, this implies that

h1(x
∗, 0) ≥ h`(x

∗, 0).

Thus
h1(x

∗, 0) = max
`

h`(x
∗, 0) ≥ min

x,y
max
`

h`(x, y). (10)

Combining (9) and (10) we get equation (8).

An example of a design d∗ such that Cd∗ is completely symmetric and
tr(Cd) = n h1(x

∗, 0) is given by any OAI(n, p, t, 2), that is by any type I
orthogonal array of strength 2. An OAI(n, p, t, 2) is a p × n matrix with
entries from the set {1, . . . , t}, such that the columns of any 2 × n sub-
matrices contain all t(t − 1) ordered pairs of treatments i and j with i 6= j
equally often. For more details, see e.g. [Hedayat and Yan(2008)].
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4 Examples

Now we present some examples with a focus on A-optimality which is inclu-
ded in universal optimality. The A-criterion of a design d is given by

A(d) =
tr(C+

d )

t− 1
,

where C+
d denotes the Moore-Penrose inverse of the information matrix Cd.

In our situation, it describes the average variance of all pairwise comparisons
of direct treatment effects.

Either the following designs are universally optimal or we give lower
bounds for their A-efficiencies which depend on λ. The A-efficiency of a
design d can be defined by the quotient

eA(d) =
A(d∗)

A(d)
,

where d∗ is the A-optimal design. If we do not know the A-optimal design,
we use the lower bound

(t− 1)2

nh1(x∗, 0)

for tr(C+
d∗), see [Kunert and Martin(2000)]. We get a lower bound for the

A-efficiency of a design d which is given by

ẽA(d) =
(t− 1)2

tr(C+
d )nh1(x∗, 0)

. (11)

Example 1: t = 4, p = 4, n = 12

d1 =


1 2 3 4 1 2 3 4 1 2 3 4
2 1 4 3 3 4 1 2 4 3 2 1
3 4 1 2 4 3 2 1 2 1 4 3
4 3 2 1 2 1 4 3 3 4 1 2


Design d1 is an OAI(12, 4, 4, 2). It is universally optimal for λ ∈ [1−

√
2, 1).

Example 2: t = 4, p = 4, n = 4

d2 =


1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
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Design d2 is universally optimal for λ = 0, see [Kunert and Stufken(2002)].
Taking account of (11), the A-efficiency of d2 is at least 0.90508 for any
λ ∈ [0, 1). If we restrict attention to designs where each treatment appears
at most once within each unit, then a numerical evaluation shows that d2 is
A-optimal within this class of designs for all λ ∈ (0, 1).

Example 3: t = 5, p = 5, n = 10

d3 =


1 2 3 4 5 4 5 1 2 3
2 3 4 5 1 3 4 5 1 2
5 1 2 3 4 5 1 2 3 4
3 4 5 1 2 2 3 4 5 1
4 5 1 2 3 1 2 3 4 5


Design d3 is a Williams-Design. It is optimal for λ = 0. Taking account of
(11) again, its A-efficiency is at least 0.85590 for all λ ∈ (0, 1).

A Proofs

Lemma A.1. Consider the matrix Wλ, defined in (4). Assume p ≥ 4 and
λ ∈ [λ∗(p), 1) with λ∗(p) as in Proposition 3.1. We then get for the entries
wij of Wλ that wii > 0 for 1 ≤ i ≤ p and wij ≤ 0 for 1 ≤ i 6= j ≤ p.

Beweis. It was shown by [Kunert(1985)] for λ ∈ [λ∗(p), 1) that wij ≤ 0 for
i 6= j and wii ≥ 0.

To see that the diagonal elements are in fact positive, define (1−λ)k =: Lk.
We observe 1Tp Λ−1 = [L1, L2, . . . , L2, L1] and 1Tp Λ−11p = L1(p−λ(p−2)) = zp,
say. For 2 ≤ i ≤ p− 1 the substitution p = v + 4 yields

wii = 1 + λ2 − L4

zp
=

(1− λ)(1 + λ2)v − λ3 + λ2 + λ+ 3

(1− λ)v − 2λ+ 4

which is positive for v ≥ 0 and therefore also for p ≥ 4.
The entries w11 and wpp are positive because, using the substitution p =

v + 4 again, we have

w11 = wpp = 1− L2

zp
=

(1− λ)v − λ+ 3

(1− λ)v − 2λ+ 4

which is positive.
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Lemma A.2. For t ≥ p ≥ 4 and λ ∈ [λ∗(p), 1) consider an arbitrary se-
quence class `. Then c11(1) ≥ c11(`) and c11(1) + 2c12(1) ≥ c11(`) + 2c12(`).

Beweis. Assume u is a unit receiving a sequence s = [s1, ..., sp] from class `.
Then

c11(`) = tr(BtT
T
duWλTdu)

and
c12(`) = tr(BtT

T
duWλMdu).

Since Wλ has column-sums zero and since Tdu1t = 1p, it follows that

c11(`) = tr(T TduWλTdu) and c12(`) = tr(T TduWλMdu).

For 1 ≤ i ≤ t denote the i-th column of Tdu by t
(i)
du and the i-th column of

Mdu by m
(i)
du. Observe that

• the j-th entry of t
(i)
du is 1 if sj = i and 0 otherwise,

• the j-th entry of m
(i)
du is 1 if j ≥ 2, sj−1 = i and sj−1 6= sj. In all other

cases it is 0.

For any given i it follows that

t
(i)T
du Wλt

(i)
du =

p∑
j=1

I(sj = i)

p∑
r=1

wjrI(sr = i),

where I(statement) is 1 if statement is true and 0 otherwise. Hence,

c11(`) =
t∑
i=1

t
(i)T
du Wλt

(i)
du

=
t∑
i=1

(
p∑
j=1

p∑
r=1

wjrI(sj = sr = i)

)
=

p∑
j=1

p∑
r=1

wjrI(sj = sr)

=

p∑
j=1

wjj + 2

p−1∑
j=1

p∑
r=j+1

wjrI(sj = sr) (12)

≤
p∑
j=1

wjj,
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because all wjr ≤ 0 if j 6= r. It is easy to see that c11(1) =
∑p

j=1wjj and,
therefore, we have proved that

c11(`) ≤ c11(1).

We can also use equation (12) to derive the slightly sharper bound

c11(`) ≤
p∑
j=1

wjj + 2

p−1∑
j=1

wj,j+1I(sj = sj+1). (13)

On the other hand,

t
(i)T
du Wλm

(i)
du =

p∑
j=1

I(sj = i)

p∑
r=2

wjrI(sr 6= sr−1 = i).

Therefore,

c12(`) =
t∑
i=1

(
p∑
j=1

p∑
r=1

wjrI(sj = i, sr 6= sr−1 = i)

)

=

p∑
j=1

p∑
r=1

wjrI(sj = sr−1 6= sr)

=

p∑
j=1

∑
r 6=j

wjrI(sj = sr−1 6= sr),

because sj = sr−1 6= sr can never hold for r = j. On the other hand, if
r = j + 1, then sj = sr−1 6= sr becomes sj 6= sj+1. Making use of the fact
that all wjr ≤ 0 for all r 6= j, we conclude that

c12(`) ≤
p−1∑
j=1

wj,j+1I(sj 6= sj+1).

Combining this with equation (13), we conclude that

c11(`)+2c12(`) ≤
p∑
j=1

wjj +2

p−1∑
j=1

wj,j+1I(sj = sj+1)+2

p−1∑
j=1

wj,j+1I(sj 6= sj+1).
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Since it is easy to see that

c12(1) =

p−1∑
j=1

wj,j+1, (14)

we have proved that c11(`) + 2c12(`) ≤ c11(1) + 2c12(1).

Lemma A.3. Under the conditions of Lemma A.2 we have c22(1) ≥ c22(`).

Beweis. If Mdu is as in the proof of Lemma A.2, then

c22(`) = tr(BtM
T
duWλMdu) = tr(MT

duWλMdu)−
1

t
1Tt M

T
duWλMdu1t.

Observe that Mdu1t is a p-dimensional vector with entries 1 or 0. The first
element of Mdu1t is always 0, the j-th element, for j ≥ 2, is 0, if sj−1 = sj,
and 1, otherwise. Hence,

1Tt M
T
duWλMdu1t =

p∑
j=2

p∑
r=2

wjrI(sj−1 6= sj)I(sr−1 6= sr)

=

p∑
j=2

wjjI(sj−1 6= sj)

+2

p−1∑
j=2

p∑
r=j+1

wjrI(sj−1 6= sj)I(sr−1 6= sr).
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Defining m
(i)
du as in the proof of Lemma A.2, we get

tr(MT
duWλMdu) =

t∑
i=1

m
(i)T
du Wλm

(i)
du

=
t∑
i=1

(
p∑
j=2

p∑
r=2

wjrI(sj 6= sj−1 = i = sr−1 6= sr)

)

=

p∑
j=2

p∑
r=2

wjrI(sj 6= sj−1 = sr−1 6= sr)

=

p∑
j=2

wjjI(sj 6= sj−1)

+2

p−1∑
j=2

p∑
r=j+1

wjrI(sj 6= sj−1 = sr−1 6= sr)

≤
p∑
j=2

wjjI(sj 6= sj−1).

Combining the two parts, we get

c22(`) ≤
p∑
j=2

wjjI(sj 6= sj−1)

−1

t

( p∑
j=2

wjjI(sj 6= sj−1)

+2

p−1∑
j=2

p∑
r=j+1

wjrI(sj−1 6= sj)I(sr−1 6= sr)
)

=
t− 1

t

p∑
j=2

wjjI(sj 6= sj−1)

−2

t

p−1∑
j=2

p∑
r=j+1

wjrI(sj−1 6= sj)I(sr−1 6= sr)

≤ t− 1

t

p∑
j=2

wjj −
2

t

p−1∑
j=2

p∑
r=j+1

wjr,
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where the last inequality made use of the fact that all wjj > 0 and all wjr ≤ 0,
for j 6= r. It is easy to see that this bound for c22(`) equals c22(1).

Lemma A.4. Under the conditions of Lemma A.2 consider an x ∈ [0, 1].
We than have that

c11(1) + 2xc12(1) ≥ c11(`) + 2xc12(`).

Beweis. Define f(`)(x) := c11(`)+2xc12(`). Due to the linearity of the function
f(`)(x), it is sufficient to show that f(1)(0) ≥ f(`)(0) and f(1)(1) ≥ f(`)(1),
1 ≤ ` ≤ K. The inequalities are valid because of Lemma A.2.

Lemma A.5. Under the conditions of Lemma A.2, we have that c22(1) > 0
and the function h1(x, 0) has an unique minimum at

x∗ = −c12(1)

c22(1)
∈ [0, 1].

Beweis. It follows from the proof of Lemma A.3 that

c22(1) =
t− 1

t

p∑
j=1

wjj −
2

t

p−1∑
j=2

p∑
r=j+1

wjr.

Making use of Lemma A.1, we see that c22(1) > 0. This implies that h1(x, 0) =
c11(1) + 2xc12(x) + x2c22(x) has a unique minimum at the point x∗. It only
remains to show that 0 ≤ x∗ ≤ 1.

For each j, it holds that
∑p

r=1wjr = 0. This implies that

t− 1

t

p∑
j=2

wjj = −t− 1

t

p∑
j=2

(
j−1∑
r=1

wjr +

p∑
r=j+1

wjr

)

= −t− 1

t

p∑
j=2

j−1∑
r=1

wjr −
t− 1

t

p−1∑
j=2

p∑
r=j+1

wjr.

We therefore can rewrite c22(1) as

c22(1) = −t− 1

t

p∑
j=2

j−1∑
r=1

wjr −
t+ 1

t

p−1∑
j=2

p∑
r=j+1

wjr.
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Since all wij in this sum are non-positive, we get

c22(1) ≥ −t− 1

t
w21 −

t+ 1

t

p−1∑
j=2

wj,j+1

≥ −t− 1

t
w21 −

p−1∑
j=2

wj,j+1 −
1

t
wp−1,p.

Observing that wp−1,p = w21 = w12, we conclude that

c22(1) ≥ −
p−1∑
j=1

wj,j+1.

Equation (14) then shows that 0 ≤ −c12(1) ≤ c22(1). This completes the
proof.

Lemma A.6. Under the conditions of Lemma A.2 we get for any x ∈ [0, 1]
that

h1(x, 0) ≥ h`(x, 0).

Beweis. Making use of Lemma A.3 and A.4 we observe that

h1(x, 0) = c11(1) + 2xc12(1) + x2c22(1)

≥ c11(`) + 2xc12(`) + x2c22(`)

= h`(x, 0).
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