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Abstract

Nowadays, embedded and cyber-physical systems are utilized in nearly all opera-
tional areas in order to support and enrich peoples’ everyday life. To cope with the
demands imposed by modern embedded systems, the employment of Multiprocessor
System-on-Chip (MPSoC) devices is often the most profitable solution. However,
many embedded applications are still written in a sequential way. In order to ben-
efit from the multiple cores available on those devices, the application code has
to be divided into concurrently executed tasks. Since performing this partitioning
manually is an error-prone and also time-consuming job, many automatic paral-
lelization approaches were developed in the past. Most of these existing approaches
were developed in the context of high-performance and desktop computers so that
their applicability to embedded devices is limited. Many new challenges arise if
applications should be ported to embedded MPSoCs in an efficient way. Therefore,
novel parallelization techniques were developed in the context of this thesis that are
tailored towards special requirements demanded by embedded multi-core devices.

All approaches presented in this thesis are based on sophisticated parallelization
techniques employing high-level cost models to estimate the benefit of parallel ex-
ecution. This enables the creation of well-balanced tasks, which is essential if ap-
plications should be parallelized efficiently. In addition, several other requirements
of embedded devices are covered, like the consideration of multiple objectives si-
multaneously. As a result, beneficial trade-offs between several objectives, like, e.g.,
energy consumption and execution time can be found enabling the extraction of
solutions which are highly optimized for a specific application scenario.

To be applicable to many embedded application domains, approaches extracting
different kinds of parallelism were also developed. The structure of the global par-
allelization approach facilitates the combination of different approaches in a plug-
and-play fashion. Thus, the advantages of multiple parallelization techniques can
easily be combined. Finally, in addition to parallelization approaches for homoge-
neous MPSoCs, optimized ones for heterogeneous devices were also developed in this
thesis since the trend towards heterogeneous multi-core architectures is inexorable.

To the best of the author’s knowledge, most of these objectives and especially their
combination were not covered by existing parallelization frameworks, so far. By
combining all of them, a parallelization framework that is well optimized for em-
bedded multi-core devices was developed in the context of this thesis.
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Introduction

Contents
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1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

The importance and pervasiveness of embedded and cyber-physical systems have
significantly increased in the last two decades. Like defined in [Mar11], embedded
systems are information processing systems that are embedded into enclosing prod-
ucts. Already in 2008 the number of sold smart phones reached 50% of the amount
of desktop computer devices sold [Bus09]. Only three years later, in 2011, smart
phone shipments surpassed the number of sold PCs [Bus11]. This statistic peaks in
numbers which show that the smart phone shipments grew by 87% year over year
while the number of sold PCs only grew by 3%, which highlights the increasing im-
portance of embedded devices. But besides obvious devices like smart phones, most
people do not recognize or even know when and with how many embedded systems
they get into touch every day. Nowadays, a large number of areas of life are difficult
or nearly impossible to cope without the help of embedded or cyber-physical de-
vices. For example, traffic would collapse without the help of traffic lights especially
in large cities. Also many means of transportation, like, e.g., cars, railways or air-
planes are based on several distributed embedded controllers like anti-lock braking
systems (ABS), electronic stability protection systems (ESP), airbags or collision
avoidance systems. In addition, many people have to rely on their pacemakers to
continue their lives in a regular way. These examples cover only a minor part of the
enormous number of application domains of embedded systems that can be found in
areas like automotive electronics, avionics, railways, telecommunication, the health
sector, security, consumer-electronics, fabrication equipment, smart buildings, logis-
tics, robotics, military applications, and many more [Mar11].

To solve the requirements of these examples, highly specialized embedded sys-
tems are required. Such systems, in contrast to desktop or high-performance archi-
tectures, underlie specific characteristics and resource limitations. These limitations
have to be taken into account when embedded systems are designed and optimized.
Certainly, one of the most significant aspects is the limited supply of energy caused
by battery-driven devices. Other limitations, like, e.g., less computational power,
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small memories, and limited package space for the designed devices apply to many
embedded systems, as well. Consequently, dependability, efficiency and real-time
behavior are highly important due to the restrictions and safety-critical application
domains mentioned.

Besides these indispensable systems, many other embedded systems exist which
try to make the peoples’ everyday life more pleasant with multi-media, mobile and
other services from the consumer electronics area. Especially for this application
domain, an enormous alteration of the devices available on the market could be
observed in the last two decades. Simple mobile phones with b/w screens and low
resolution displays were replaced by powerful smart phone devices. A study [ITF12]
from 2012 has recently shown that 49.7% of all American citizens already exchanged
their ordinary mobile phones for such smart phone devices. High-resolution photos
and videos are taken via mobile tablet PCs or smart phone devices before they are
sent to friends all around the world via E-Mail or Messaging Services. In the home
entertainment area, tube televisions were substituted by feature rich smart TVs en-
abling additional multi-media services like browsing, gaming and social networking
while watching a movie. In the domain of automotive systems, not only luxury
cars are nowadays equipped with a large network of sensors and embedded proces-
sors observing and steering the car while providing the occupants with music, video
and navigation services. These examples cover only a minor part of the enormous
changes that happened in the domain of multi-media rich embedded systems.

However, to be able to provide all these feature-rich services on mobile embed-
ded devices, the complexity of the employed embedded software has also drastically
increased. To fulfill the performance requirements imposed by today’s embedded
software, the performance of the underlying hardware has to scale, as well. In con-
trast to desktop and high-performance architectures, most embedded devices are
battery-driven. This discourages the solution of just further increasing the cores’
frequencies since higher clock frequencies generally lead to higher energy consump-
tion. The last years have shown that the trend towards multi-core architectures
seems to be the most promising solution to gain more performance while maintain-
ing energy efficiency. In contrast to the desktop and high-performance community,
embedded designers had to draw their conclusions in a much shorter period so that
today’s embedded systems often benefit from multi-core architectures. The trend
towards multi-core architectures is also reflected in Figure 1.1 which compares per-
formance and energy efficiency characteristics of ARM’s most popular embedded
processors. As can be seen, the shaded single-core processors ARM7 and ARM9 as
well as most processors belonging to the Cortex-M and Cortex-R series are located
at the bottom left to bottom central-position of the diagram denoting few features,
low performance and low energy efficiency. In contrast, the shown multi-core pro-
cessors ARM11 and the processors of the Cortex-A series are located at a position
of the diagram which denotes higher energy efficiency and more performance. How-
ever, the performance of the presented single-core processors is also often increased
by combining them to form multi-processor architectures. Especially the combina-
tion of different and specialized processing units to heterogeneous Multiprocessor
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Figure 1.1: Comparison of Performance and Energy Efficiency of Single- and Multi-Core
ARM Processors (Based on Figure from [ARM13c])

System-on-Chip (MPSoC) devices revealed gainful trade-offs between performance,
energy consumption, and other objectives, which are hard to obtain by homoge-
neous multi-core devices. The diagram emphasizes that the current state-of-the-art
approach to provide feature-rich embedded systems with enough performance lies
in the utilization of embedded MPSoC devices. Up to now, this technology has not
reached an insurmountable limitation. Hence, it can be assumed that this trend will
continue in the future, as well.

1.1 Motivation

By providing multiple, less complex cores on one device, performance can be in-
creased with a lower energy consumption compared to a platform containing only
one core operating at a high CPU frequency. As a consequence, Multiprocessor
System-on-Chip devices replace traditional embedded single-core architectures wher-
ever more computational power is required. Unfortunately, the benefits of MPSoCs
imply additional effort. A single application has to be partitioned into concur-
rently executed tasks to benefit from the multiple cores available on an MPSoC.
Approaches developed earlier, extracting Instruction Level Parallelism for Very Long
Instruction Word (VLIW) machines or superscalar processors, are not well appli-
cable to multi-processor systems. Instruction Level Parallelism is too fine-grained
since it executes only single statements in parallel. For MPSoC architectures, task
creation and communication overhead is too high to use this kind of parallelism.
Instead, Thread-Level Parallelism (TLP) is much more coarse-grained so that, in
spite of the additional overhead introduced by task creation and communication
primitives, this kind of parallelism can still lead to performance gains on multi-core
architectures.
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Recent surveys, as well as online articles, like, e.g., [TIO13], [Won12], and
[Mer07], state that most software – especially for embedded systems – is still devel-
oped by using the sequential programming language C. This is not surprising since C
compilers exist for a large amount of architectures which eases portability of highly
optimized low-overhead application code. Moreover, the C language supports direct
access to various hardware components and can be compiled into efficient machine
code without the need for runtime interpreters. However, the sequential mindset of
this programming language makes it difficult to extract Thread-Level Parallelism
to exploit the performance provided by current MPSoCs. Traditionally, one of the
following approaches can be used to exploit TLP:

• Re-Design in High-Level MoC: In early design phases of embedded sys-
tems high-level Models of Computation (MoCs), like, e.g., Kahn Process Net-
works [Kah74] or State Charts [Har87], are often applied. Many high-level
MoCs inherently express parallelism by, e.g., concurrent states or services
connected via explicit communication channels. This eases the step of im-
plementing parallelism in later phases. Unfortunately, as already stated, most
embedded software was developed in sequential C for decades. Thus, millions
of lines of legacy code have to be ported to one of the considered MoCs to ben-
efit from the proposed advantages. Most companies will not invest the large
amount of time and money required to port existing functionality. Hence,
high-level MoCs may better be applied for new software projects instead of
existing ones.

• Manual Parallelization: Manual parallelization of existing legacy code
seems to be less time consuming than re-designing entire applications in high-
level MoCs. Several libraries and language extensions, like, e.g., PThreads
[NBF96] and OpenMP [DM98], have been proposed for the C language en-
abling the extracting of parallelism for sequentially written C-applications.
However, the task of manually parallelizing an application for MPSoCs is a
particularly error-prone and also time consuming job. The application de-
signer has to deliver the expected functionality of the designed software in an
efficient and portable way, optimized for a specific hardware platform, and
validated against hundreds of test cases. Besides this time consuming and
complicated job, the application designer has to extract and balance tasks as
well as to insert communication and synchronization primitives manually. If
one of these primitives is missed or placed at a wrong position, the applica-
tion might get invalid or end up in a deadlock. This is a challenging problem
which gets even more complicated if the targeted architecture is equipped with
heterogeneous cores with differing performance characteristics.

• Automatic Parallelization: Automatic parallelization seems to be the most
promising solution since existing legacy code can be divided into concurrently
executed tasks automatically. In addition, tasks can be balanced for the avail-
able processing units and communication as well as synchronization primitives
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can be inserted in a correct manner to avoid deadlock scenarios in an auto-
mated way. Furthermore, applications just have to be re-compiled by such
tools to port them to various hardware platforms efficiently. Fortunately, many
researchers invented a large amount of parallelization techniques in the last
decades with a focus on desktop- and high-performance architectures. How-
ever, the problem of extracting efficient parallelism from sequentially written
applications still remains unsolved and many limitations, especially for embed-
ded systems, are not considered, as will be discussed in the following section.

1.2 Automatic Parallelization for Embedded Systems

By combining multiple cores on embedded MPSoCs, new possibilities arise in the
context of embedded computing due to the increased performance provided by these
devices. However, existing applications have to be parallelized to benefit from the
additionally available cores. In an optimal way, this parallelization step should
be automated as stated in the previous section. But even though a large amount
of parallelization approaches already exists, most of them are optimized for high-
performance architectures and are hence not well applicable to resource-restricted
embedded MPSoCs. The reason for this limitation is the rise of rather new require-
ments for embedded multi-core systems, which were hard to foresee from the per-
spective of the high-performance community. Therefore, new and highly-optimized
parallelization techniques are indispensable to utilize embedded MPSoCs efficiently,
which was the ambitioned idea for this thesis.

From an embedded perspective, for example, less parallelism and thus less per-
formance is often more. An application which runs several times faster than its
given deadline consumes an unnecessarily large amount of energy. As soon as the
given deadline is still met, less parallelism may be extracted so that an architecture
with fewer and less performant cores can be used which drastically reduces the over-
all energy consumption. These energy savings lead to a higher battery service life
and are important for embedded systems that are often applied in a mobile context.
Moreover, due to the simplicity of many embedded devices – in contrast to high-
performance architectures – overhead introduced by parallelism (e.g., task creation
and communication overhead) is often costly. Accordingly, techniques are necessary
to weigh whether parallel execution really accelerates the application. Misjudgment
may directly lead to lower performance and higher energy consumption. These and
also other requirements and characteristics, like, e.g., heterogeneity of the employed
processing units, are mostly not considered by existing parallelization approaches
so far. Therefore, the parallelization approaches presented in this thesis were de-
signed to fill this desideratum of missing parallelization tools tailored towards special
requirements of embedded MPSoCs.

The most important aspects, which have to be taken into account if applications
should be parallelized for embedded MPSoCs, are discussed from a more technical
perspective in the following:
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Task Balancing: In order to profit most from multi-processor platforms created
tasks should be balanced so that all tasks finish nearly at the same time. Other-
wise, much performance and also energy may be lost since some of the cores wait
for completion of other ones leading to an unbalanced execution behavior. For em-
bedded devices, task balancing is even more complicated and also more important.
In contrast to desktop and high-performance architectures, most embedded systems
are not constructed as an Unified Memory Architecture (UMA) where each core can
access all memory locations. In the case of embedded systems, memory hierarchies
are often employed, providing fast and low-energy private memories. Since these
memory locations can neither be accessed nor cached by other processing units,
communication is often much more expensive for most considered objectives. This
even increases the gap between communication and computation costs for embed-
ded systems. As a consequence, extracted parallelism has to be much more coarse-
grained for many embedded devices, and it should be clearly deliberated whether
parallelization really accelerates the performance of the application. Otherwise, too
expensive task creation and communication costs may shadow the benefits of the ex-
tracted parallelism and may even lead to a decrease of the application’s performance
in the worst case.

Multiple Optimization Objectives: Most existing parallelization tools focus
on the optimization of the execution time as their only optimization objective. This
is, in general, acceptable for desktop and high-performance architectures since large
memories and – spoken from an embedded perspective – a nearly unlimited amount
of energy are available. The situation changes if parallelization tools focus on embed-
ded devices. Here, multiple objectives should be taken into account simultaneously.
It may, for example, be beneficial to reduce the amount of extracted parallelism to
put some of the cores into idle mode or to move to an architecture with less provided
cores if a given timing criterion is still met. This can reduce the system’s energy
consumption, heating problems, and can also save chip area.

Online vs. Offline Decisions: Additional overhead for runtime decisions should
be avoided as much as possible due to lower computational power of embedded
devices and the demand for timing predictability. OpenMP, for example, observes
the number of executed tasks to decide at runtime how many tasks will be created
if a new parallel region is reached. This behavior is not well suitable for embedded
systems. Here, the number of created tasks should be determined off-line at compile
time. As a result, the number and computational complexity of the extracted tasks
can be optimized for a given architecture.

Type of Parallelism: Applications often profit differently from the available par-
allelization strategies. This makes it hard to find an optimal parallelization type
for various application domains. However, many embedded applications have a
streaming-oriented structure and profit from pipeline parallelism [TF10]. In ad-



1.3. Contribution of this Work 7

dition, other parallelization strategies, like, e.g., task- and data-level parallelism,
should be combined with pipeline parallelism to profit from different parallelization
strategies and also a combination of them. Most existing parallelization frameworks
focus only on the extraction of one kind of parallelism so that they are not well
suitable for a wide range of application domains.

Heterogeneity: The advantages of heterogeneity in type and performance char-
acteristics of the employed processing units are often utilized in embedded MPSoCs.
By combining cores with different performance characteristics, less computational
intensive tasks can, for example, be mapped to less performant processing units
which consume less energy. However, the task of extracting and balancing paral-
lelism for a heterogeneous MPSoC is much more complicated than for homogeneous
ones but should also be considered by parallelization tools that are optimized for
embedded systems.

1.3 Contribution of this Work

Even though automatic parallelization has been an active research area for decades,
existing approaches are not well applicable to parallelize sequentially written ap-
plications for embedded MPSoCs. In order to overcome this limitation, this thesis
presents a new framework including several novel approaches tailored towards limi-
tations and special requirements that have to be taken into account if applications
should be efficiently parallelized for embedded MPSoCs.

As already discussed in the previous section, automatic balancing of extracted
tasks is an important aspect to parallelize embedded software efficiently (cf. Task
Balancing). To achieve this, sophisticated parallelization approaches based on Inte-
ger Linear Programming and Genetic Algorithms are proposed and integrated into
the presented framework of this thesis. All approaches employ high-level cost mod-
els to evaluate the benefit of different parallel solution candidates. The cost models
contain information about task creation, execution, and communication costs for
multiple objectives to steer the granularity of the extracted parallelism automati-
cally. Integer Linear Programming is NP-complete in the general case but can be
solved efficiently for small or medium-sized problems. Therefore, the framework
presented in this thesis employs a hierarchical parallelization approach using an
Augmented Hierarchical Task Graph (AHTG) as central intermediate representa-
tion. The hierarchical structure of the graph directly correlates to the hierarchical
structure of the application’s source code. Only a small number of statements are
processed at once, due to the segmentation into different hierarchical levels. This
enables the use of the sophisticated parallelization algorithms presented in this the-
sis.

To extract parallelism from applications of different application domains, the
framework presented in this thesis combines three different parallelization types,
namely, task-level parallelism, loop-level parallelism and pipeline parallelism (cf.
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Type of Parallelism). The considered applications can profit either from one or
also from a combination of the presented parallelization types. All parallelization
extraction techniques are integrated into the hierarchical parallelization approach.
By combining different approaches on several hierarchical levels, parallelism with
different granularities can be extracted to find solutions optimized for various ap-
plications. The framework can also be easily extended by additional parallelization
approaches, due to its hierarchical structure.

In contrast to many existing parallelization approaches, this thesis also presents
parallelization techniques considering multiple optimization objectives at the same
time (cf. Multiple Optimization Objectives). In this way, energy consumption and
communication overhead can be optimized in addition to the execution time. The
presented techniques return a front of Pareto-optimal solutions to the application
designer so that the solution fitting best to a particular application scenario can
be chosen as final solution. All considered parallelization types (task-level, loop-
level and pipeline parallelism) are developed as multi-objective aware parallelization
techniques.

The parallelization techniques presented in this thesis also make use of platform
specific information of the target architecture (cf. Online vs. Offline Decisions). This
enables platform specific optimizations, taken at compile-time, which are directly in-
tegrated into the parallelization process. One example for these offline optimizations
is the limitation of the maximum number of extracted tasks. For each presented
approach, the upper bound of extractable tasks is set to the number of available
processing units by default. Then, the hierarchical approach determines the best
combination of different solution candidates which do not exceed the upper task
boundary. As a consequence, additional scheduling overhead at runtime can be
avoided.

Heterogeneity is one key aspect for current and future embedded MPSoCs (cf.
Heterogeneity). By combining cores with different performance characteristics, per-
formance increases can be achieved with lower energy consumption and less heat
dissipation issues compared to homogeneous MPSoCs. Unfortunately, the com-
plexity of the parallelization problem drastically increases since these performance
variances have to be taken into account if the extracted tasks should be automati-
cally balanced. Therefore, the presented framework also contains novel approaches
extracting the considered parallelization types for single and also multiple objectives
simultaneously. The approaches optimize tasks for specific processing units and take
care that these tasks are mapped to the corresponding cores by processor class pre-
mappings. This makes the presented framework also able to utilize heterogeneous
multi-core architectures in an efficient way.

To summarize, this thesis presents and combines the following novel aspects:

• Exploitation of platform specific information, like estimated execution and
task creation costs

• Automatic balancing of tasks by all presented approaches
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• Integration of cost models into sophisticated Integer Linear Programming and
Genetic Algorithm-based approaches instead of applying simple heuristics

• Multiple objectives are considered at the same time instead of just optimizing
execution time

• Support for homogeneous and heterogeneous architectures

• Combination of several parallelization types with different granularities opti-
mized for embedded applications

• Many decisions are taken offline at compile-time to avoid additional runtime
overhead

• Use of a hierarchical divide-and-conquer based parallelization approach to
prune the vast solution space of the complex parallelization problem for so-
phisticated algorithms

1.4 Author’s Contribution to this Dissertation

According to §10(2) of the “Promotionsordung der Fakultät für Informatik der Tech-
nischen Universität Dortmund vom 29. August 2011”, a dissertation within the con-
text of doctoral studies has to contain a separate list that highlights the author’s
contributions to research and results obtained in cooperation with other researchers.
Even though, the approaches presented in this thesis were entirely envisioned and
developed by the author of this thesis, Prof. Dr. Peter Marwedel contributed
the generalized idea to develop parallelization approaches that are optimized for
resource-restricted embedded systems. He also gave useful advices, like, e.g., ex-
tending the framework to parallelization approaches for heterogeneous architectures.
Thus, the author of this thesis would like to thank him, here, once again. Besides
these advices, the following list describes the author’s contribution to publications
leading to the chapters of this thesis in more detail:

Chapter 3: Chapter 3 presents internals of the parallelization framework and
additional tools which are used to map the parallelized applications to an embedded
MPSoC. A brief overview of the parallelization framework’s internals is also given
in [CMM10]. The integration of the parallelization approaches into the framework
developed in the European FP7 project MNEMEE was described in [BPS+10].
Several authors cooperated in writing this publication. The author of this thesis
provided the text for Chapter II.C in [BPS+10] describing the first parallelization
approach developed in the context of thesis. The remainder of Chapter 3 describes
the target platforms used for simulation-based evaluations in Chapters 5-8. The
employed simulators are the MPARM [BBB+05] and Synopsis’s CoMET [Syn13a],
which is more recently know as the Virtualizer tool suite [Syn13b]. The provision
and adaptation of the platforms were mostly done by Andreas Heinig and was only
assisted by the author of this thesis.
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Chapter 4: General concepts of the parallelization framework including the em-
ployed intermediate representation are presented in Chapter 4. The general idea
described in this chapter was briefly published in [CMM10] and [CHM+11] but
was also summarized in other publications of the author for comprehensiveness.
Chapter 4 of this thesis contains also many unpublished details about the employed
hierarchical parallelization approach. The presented Augmented Hierarchical Task
Graph (AHTG) is based on the Hierarchical Task Graph (HTG) presented in [GP94].
The changes made to the graph intermediate representation and the way how to use
it to extract parallelism with the sophisticated parallelization techniques presented
in this thesis were completely developed by the author of this thesis. However, the
author was inspired by many technical discussions with Prof. Dr. Peter Marwedel,
members of the department, and participants of the MNEMEE project. Nonethe-
less, the publications in [CMM10] and [CHM+11] were entirely designed by the
author of this thesis. The co-authors of the publications, as well as other members
of the department, assisted the author in various ways.

Chapter 5: Two Integer Linear Programming-based parallelization approaches
extracting task-level and pipeline parallelism for homogeneous architectures are pre-
sented in Chapter 5. Both approaches were entirely designed and developed by the
author of this thesis. The corresponding publications [CMM10] and [CHM+11] are
entirely based on the author’s work. The co-authors of the publications, as well as
other members of the department, assisted the author in technical and conceptual
discussions especially how to structure the publications. Additionally, many parts
were intensively revised by the co-authors.

Chapter 6: Chapter 6 describes multi-objective aware approaches for homoge-
neous MPSoCs. It is based on the publications presented in [CM12] and [CEM+12].
Both approaches, as well as the publications, were completely designed, developed
and mostly written by the author of this thesis. The co-authors, as well as other
members of the department, assisted the author in proof-reading, providing small
text fragments, and various technical as well as methodological discussions.

Chapter 7: This chapter presents two ILP-based parallelization approach for het-
erogeneous embedded MPSoCs, which are based on the homogeneous ones pre-
sented in Chapter 5. The developed approaches were published in [CEN+13c]
and [CEN+13b]. The co-authors of the publications assisted the author of this thesis
in writing the introduction of the papers, proof-reading and technical discussions.

Chapter 8: This chapter finally presents the last developed parallelization ap-
proaches focusing on multi-objective aware parallelization approaches for heteroge-
neous MPSoCs, which were published in [CEN+13a]. The co-authors of the pub-
lication assisted the author of this thesis in writing the introduction of the paper,
proof-reading and technical discussions.
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Figure 1.2: Structure of Thesis and Contributions of Dissertation

1.5 Outline

This section gives an overview about the remaining structure of this thesis. The
tree visualized in Figure 1.2 shows the developed parallelization approaches and the
corresponding sections describing them. In detail, the following content is described
in this thesis:

Chapter 2: A survey of related work is presented in Chapter 2. The approaches
selected for discussion are the most relevant ones for the work presented in this thesis.
The presented publications are grouped into categories reflecting the different key
concepts considered by the approaches of this thesis.

Chapter 3: The internal structure of the parallelization framework with all its
sub-tools and its integration into larger projects, like, e.g., the MNEMEE European
FP 7 project, is described in Chapter 3. Furthermore, the chapter also presents the
target platforms used for evaluation purposes in the remainder of this thesis.

Chapter 4: This chapter presents the general idea and the techniques used to
divide the large search space of the parallelization problem into manageable sub-
problems. These sub-problems can later be processed by the sophisticated paral-
lelization approaches presented in Chapters 5-8. In more detail, the chapter defines
the employed intermediate representation and gives an overview about the structure
of the general parallelization algorithm.

Chapter 5: The first parallelization approaches developed within this thesis focus
on the extraction of parallelism for homogeneous architectures. They are presented
in Chapter 5 and extract task-level, loop-level and pipeline parallelism on basis of
Integer Linear Programming (cf. Homogeneous Single-Objective Parallelization in
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Figure 1.2). All approaches use high-level cost models to be able to evaluate and
balance extracted tasks automatically.

Chapter 6: The parallelization techniques presented in Chapter 6 extract the
different parallelization types in a multi-objective aware manner for homogeneous
architectures (cf. Homogeneous Multi-Objective Parallelization in Figure 1.2). They
are based on Genetic Algorithms and also employ high-level cost models to evaluate
the different parallelization candidates.

Chapter 7: Heterogeneous architectures are first considered by the parallelization
approaches presented in Chapter 7 (cf. Heterogeneous Single-Objective Paralleliza-
tion in Figure 1.2). The presented ILP-based techniques are based on the ones
presented in Chapter 5. However, the newly presented techniques are extended to,
e.g., distinguish between different performance characteristics of the available pro-
cessing units and to perform a pre-mapping of extracted task to processor classes.

Chapter 8: The parallelization approaches presented in Chapter 8 are a conse-
quent combination of the techniques presented in Chapters 6 and 7. Multi-objective
aware parallelization approaches, which are able to extract and balance tasks fully
automatically for heterogeneous architectures, are presented there (cf. Heteroge-
neous Multi-Objective Parallelization in Figure 1.2).

Chapter 9: Finally, Chapter 9 concludes this thesis and provides possible direc-
tions for future research.
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Parallel architectures have been invented decades ago. As a consequence, a lot of
research effort was invested to utilize those platforms efficiently. Even though many
high-level programming languages or extensions to existing ones have been proposed,
like PThreads [NBF96], MPI [SOHL+98], OpenMP [DM98], OpenCL [SGS10], X10
[CGS+05], StreamIt [TKA02], UPC [EGCS+03], Cilk [BJK+95], and many oth-
ers, most of them are not prevalent to parallelize applications in the domain of
embedded systems. A different strategy for implementing parallel embedded ap-
plications, suggested in the last years, was to model those applications by high-
level Models of Computation (MoCs). MoCs, like State Charts [Har87], Petri
Nets [Pet66], Specification and Description Language (SDL) [RS82], Kahn Process
Networks (KPNs) [Kah74], and Synchronous Data Flow (SDF) [LM87], to mention
only some of them inherently express parallelism. However, most existing legacy
code for embedded devices is written in sequential C code and most companies are
not willing to invest a huge budget to rewrite existing, comprehensive application
code in another programming language or to transform it to one of the mentioned
MoCs. Hence, the demand for automatic parallelization frameworks was created
and increased over the last decades in order to be able to reuse already existing
functionality.

Since the research work of this thesis presents approaches which extract coarse-
grained Thread-Level Parallelism (TLP) in an automatic fashion, this chapter gives
a brief overview about related frameworks and critically discusses the approaches
presented in this area. The primary objective of this chapter is to compare func-
tionalities and limitations of existing approaches, which are most relevant to the
techniques presented in this thesis. Therefore, those approaches are discussed in
more detail instead of aspiring completeness over all presented approaches. The ap-
proaches are grouped into different categories in the following sections. Of course,
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some approaches may be mapped to more than one category since they extract dif-
ferent types of parallelism. In this case, they are placed into the category matching
their main contribution.

The structure of this chapter is as follows: Section 2.1 presents approaches
extracting coarse-grained task-level parallelism, followed by a discussion of finer
grained data-level parallelization techniques in Section 2.2. Pipeline parallelism is
highly effective for many embedded applications. Therefore, Section 2.3 opposes
different approaches extracting this kind of parallelism. Parallelization techniques
considering multiple objectives and heterogeneous architectures are rarely new re-
search topics. Sections 2.4 and 2.5 give a brief overview about the work done in
these areas. Finally, Section 2.6 discusses some approaches which go beyond the ex-
traction of TLP before Section 2.7 summarizes features and limitations of existing
approaches.

2.1 Task-Level Parallelism

Task-Level parallelism is a coarse-grained kind of Thread-Level Parallelism. Large
independent blocks of an application are processed by concurrently executed tasks.
These blocks may consist of functions, basic blocks or also single statements, depend-
ing on the desired level of granularity (for more details see Section 5.2). Task-Level
parallelism can be employed in the context of embedded systems efficiently since
in many cases only few data has to be communicated between the different tasks.
Therefore, the approaches presented in Section 5.2, Section 6.2, Section 7.1 and Sec-
tion 8.2.1 propose techniques extracting this kind of parallelism for homogeneous
and heterogeneous embedded MPSoCs for one and also for multiple objectives. In
the following, the most relevant existing approaches extracting this kind of paral-
lelism are discussed.

Sarkar: The approaches presented by Sarkar et al. in [Sar91a] are most relevant
to the task-level parallelization approaches presented in this thesis. They are based
on the previous publications in [SH86] and [Sar89] and were integrated into IBM’s
PTRAN compiler [Sar91b]. Their approaches extract coarse-grained task-level par-
allelism combined with the extraction of DoAll loops (running independent loop
iterations in parallel) from sequential applications written in Fortran. The em-
ployed Program Dependence Graph (PDG) is augmented with estimated execution
times and transformed into a Forward Control Dependence Graph (FCDG) which is
similar to the Augmented Hierarchical Task Graph (AHTG) used as central inter-
mediate representation in this thesis. Both graph representations have in common
that backward-dependence edges (pointing in the opposite direction of the regular
control flow) are redirected to special exit (or communication-out) nodes. This en-
sures that the entire graph is cycle-free, enabling the calculation of execution times
based on high-level models. Even though the employed intermediate representation
and the calculation of estimated execution times are comparable to the ones used in
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this thesis, Sarkar only exerts a simple greedy-based partitioning heuristic which is
applied to one procedure at a time. The approaches presented in this thesis apply so-
phisticated Integer Linear Programming (ILP) and Genetic Algorithm (GA)-based
approaches to extract task-level parallelism from sequential applications. This is
only possible since the approaches divide an application into finer-grained chunks
based on the hierarchical structure of the given source code. In this way, only a small
portion of the application is considered at the same time which drastically reduces
the vast solution space of the complex parallelization problem. The approaches pre-
sented in this thesis are able to balance the extracted tasks automatically, which is
hard to achieve with the greedy heuristics proposed by Sarkar.

Polychronopoulos: Polychronopoulos and Girkar presented automatic schedul-
ing techniques [Pol91] based on Hierarchical Task Graphs (HTGs) [GP94]. The
approaches presented in this thesis are based on an Augmented Hierarchical Task
Graph (AHTG) and differs from the original HTG representation published in [GP94]
in three points. First, the approaches presented by Polychronopoulos et al. only
create new hierarchical levels for nested loops of the original application. In con-
trast, the approaches presented in this thesis create new hierarchical nodes for all
hierarchical levels present in the original application. Thus, the hierarchical struc-
ture of the graph directly correlates to the hierarchical structure of the application.
In addition, the hierarchical granularity is more fine grained in the approach pre-
sented in this thesis which enables more sophisticated parallelization algorithms.
The second difference to the original presentation in [Pol91] is that the approach
presented here adds two new node types to the AHTG, namely communication in-
and communication out-nodes. These nodes encapsulate the communication in each
hierarchical level. A third difference is that the approach presented in [Pol91] only
deliberates about whether it makes sense to generate more tasks for the next hierar-
chical level based on architectural properties like the number of available processing
units. Instead, the approaches presented in this thesis employ the AHTG as a layer
to reduce the number of nodes which have to be processed at the same time while
parallelizing the application. This means that the approach is also able to group
some of the nodes on each hierarchical level to tasks instead of either executing all
of them in parallel or executing all of them sequentially.

SUIF: Hall et al. presented coarse-grained thread-level parallelization techniques
for C and Fortran applications in, e.g., [HAM+95] and [HAA+96], integrated in the
Stanford University Intermediate Format Compiler Framework (SUIF) [WFW+94].
Their techniques employ interprocedural analyses to spawn threads spanning func-
tion boundaries. The presented framework is also able to apply analyses and op-
timization techniques, like, e.g., scalar privatization, reduction recognition, array
analyses, and cache optimizations. As a target platform, Hall has chosen an eight-
core Digital Alpha Server 8400 which was a high-performance architecture in 1995.
Additional work on this framework was presented by, e.g., Sungdo et al. in [MSH00]
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who evaluated the absent performance gain due to missing data-level paralleliza-
tion support. Compared to the work presented in this thesis, Hall did not provide
any information on cost models which are necessary to balance the created tasks.
Moreover, the target architecture was a homogeneous high-performance one which
is very different to embedded (heterogeneous) MPSoCs.

MAPS: A more recent task-level parallelization approach was presented by Ceng
et al. in [CCS+08]. Their approach is integrated in the MPSoC Application Pro-
gramming Studio (MAPS) and performs a semi-automatic parallelization technique
in which the user can manually steer the granularity of the extracted parallelism.
MAPS uses the Tightly-Coupled-Thread framework (TCT) [ZIU+08] as a backend
for implementation and simulation of the extracted parallelism. MAPS combines
static and dynamic profiling-based information to extract a Weighted Statement
Control Data Flow Graph (WSCDFG) annotated with cost information. This cost
information is based on a simple multiplication of a configurable execution cost with
the number of executions per statement. Based on the WSCDFG, a heuristic clus-
tering algorithm is applied to group statements subsequently to coarse-grained tasks.
The heuristic of the original approach was further optimized in [LC10]. Later, C for
Process Networks was presented in [CSL11] which allows an application designer to
describe parallelism manually through Kahn Process Networks (KPNs) directly in
C. Compared to the work presented in this thesis, MAPS extracts a similar kind of
parallelism. In contrast to many other approaches, the authors use cost models to
balance the extracted tasks. However, the precision of cost information is not very
accurate, and the clustering algorithm is based on a simple heuristic compared to
the novel sophisticated ILP-based approaches.

2.2 Data-Level Parallelism

Data-level parallelism was not a main focus of this thesis. Only a simple approach is
employed extracting data-level parallelism from loops without loop-carried depen-
dencies. Therefore, a direct comparison to the approaches presented in this thesis
is omitted in this section. However, many techniques that are able to extract fine-
grained data-level parallelism from loops of sequentially written applications have
been proposed in the past.

PIPS: The Parallélisation interprocédurale de programmes scientifiques project
(PIPS) was first published in [IJT91] representing a modularly source-to-source
parallelization framework. Initially, PIPS concentrated on DoAll parallelism by ex-
tracting tasks from loops of sequentially written Fortran 77 applications. PIPS’s
approach employs a Hierarchical Structured Control-Flow Graph (HSCG) as inter-
mediate representation and was designed modular so that it could be extended by
other parallelization approaches. Today, over 20 years later, the project is still active
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and has been extended to, e.g., support the C language and polytope-based paral-
lelization extraction techniques by various approaches like [KAC+96] and [KAI11].

Polaris: The Polaris parallelization compiler was presented in [BEF+95] target-
ing at the automatic extraction of DoAll parallelism in Fortran 77 applications. To
be able to extract parallelism from loops with loop-carried dependencies, optimiza-
tions like, e.g., symbolic analysis, induction and reduction variable recognition and
array privatization are applied to remove those dependencies. Polaris also contains
speculative parallelization for loops whose dependencies could not be determined at
compile time. However, such a parallelization technique is often unacceptable for
embedded systems since predictability is important for many embedded devices. In
addition, Polaris implements function inlining to circumvent inter-procedure anal-
ysis techniques. This is also not applicable for embedded devices since it increases
the code size and the amount of available memory is often limited. The framework
was also extended by other researchers in, e.g., [PE95] and [VE99].

Cetus: The Cetus parallelization compiler was presented in several publications,
like, e.g., [LJE04] and [DBM+09]. The framework was written in Java and the source
code was published as a freely available research compiler. The authors have taken
the Polaris compiler as an inspiring example and tried to create a similar framework
for C programs and other target languages instead of Fortran 77. The framework
also contains several analysis and code optimization techniques, like, e.g., privatiza-
tion, reduction variable recognition, and induction variable substitution. However,
the framework focuses on data-level parallelism only, and does not apply any cost
models to weigh the granularity of parallelism. This can also be seen in their eval-
uation, where the authors claim that their parallelization tool flow performs better
than Intel’s icc compiler and the COINS framework [SFF+05]. This comparison is
only based on the number of successfully parallelized loops without measuring the
performance gain. In reality, many loops may reduce the overall performance if
the benefit from parallelization is lower than the required communication and task-
creation costs. This is not considered or at least not mentioned in their publications.

Polytope-based approaches: Polytope-based parallelization approaches like the
one presented in [Fea96] are favored for extracting data-level parallelism. The iter-
ation space of sequential loop(-nest)s including data- and control flow dependencies
is transformed into a form of linear inequalities. Based on this mathematical de-
scription, loops can be parallelized in an automated way. Another work in this area
was presented in [VNS07] and is based on results of the Compaan project [BRD00;
RDK00; TK04]. It extracts Process Networks (PNs) from sequential C applications
and is integrated in the MADNESS project’s tool flow [CDF+11]. Process Networks
can then be efficiently mapped to multiprocessor platforms. Verdoolaege et al. also
tried to optimize communication and to determine FIFO buffer sizes. However, their
work does not evaluate the speedup of an extracted PN and is limited to static affine
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nested loop programs so that it can, in general, not be applied to existing applica-
tions without manual transformations. Furthermore, no performance estimation is
applied to deliberate about the granularity of the extracted parallelism. This may
lead to an unbalanced execution behavior which drastically reduces the applications’
performance. Their tool was also used in the Daedalus project [NTS+08] to extract
the required KPNs for the succeeding optimizations for multiprocessor architec-
tures. Additional polytope-based parallelization frameworks were, e.g., presented in
LooPo [GL97] and PLUTO [BHR+08].

Franke: Franke et al. also aim at the extraction of data-level parallelism in [FO05].
The difference to the other presented approaches is that their work focuses on spe-
cific issues, which have to be solved if applications are parallelized for embedded
multi-core Digital Signal Processor (DSP) platforms. Particular program recovery
techniques like array recovery and modulo removal are applied before data-level
parallelism is extracted. Moreover, their approach also performs memory optimiza-
tions, which use Direct Memory Access (DMA) transfers to optimize the overall
performance further for DSP architectures.

Li: Li et al. presented an approach in [LPC12] which extracts data-flow threads
from sequentially written imperative programming languages. Therefore, a Program
Dependence Graph (PDG) is transformed into SSA form (SSA-PDG) to ease the
definition of dependencies. This SSA-PDG is coarsened in the following by several
coalescing techniques. The merged nodes of the final graph represent data-flow tasks,
which are implemented by a GCC compiler [The13] extension. Unfortunately, the
presented approach is only able to exploit data dependencies for scalar variables,
which limits its applicability to real world applications. The approach was neither
evaluated for embedded applications nor embedded devices.

Pouchet: Pouchet et al. published a framework combining different multi-di-
mensional loop optimization techniques in [PBC+08]. Their framework was later
extended in [PBB+10] to support the extraction of loop-level parallelism. The
complexity of their optimization problem as well as the employed optimization al-
gorithms are comparable to the ones used in the context of this thesis. In both
cases, a large optimization space is present so that smart optimization techniques
had to be chosen. Therefore, Pouchet et al. used an iterative model-driven Genetic
Algorithm-based approach in [PBC+08] with specialized mutation and cross-over
operators. They have shown that this technique is able to find very good solution
candidates in a short amount of time. Similar results could also be observed for the
GA-based approaches presented later in the context of this thesis.

Benoit: The dissertation of Benoit [Ben11] describes a source-to-source paral-
lelism adaption tool which is integrated into the GCC Compiler. It combines static
and dynamic analysis techniques to detect and describe parallelism opportunities at



2.3. Pipeline Parallelism 19

several hierarchical levels. However, the thesis concentrates on defining a suitable
intermediate representation and does not focus on the extraction of parallelism in
an automated way like done in this thesis.

2.3 Pipeline Parallelism

Pipeline parallelism is the third kind of thread-level parallelism discussed in this
chapter. It can be used to extract efficient parallelism from many embedded ap-
plications, especially those which are written in a streaming-oriented structure.
Pipeline parallelism can often be applied even if ordinary data-level parallelism (e.g.
DoAll loops) cannot be extracted due to loop-carried dependencies. The statements
contained in a loop’s body are partitioned into disjunctive pipeline stages which
execute in an overlapping, pipelined manner on different cores (for more details
see Section 5.3). Since pipeline parallelism is often hidden in embedded applica-
tions, this thesis also presents different approaches in Section 5.3, 6.3, 7.2, and 8.2.2
which extract this kind of parallelism in an automated fashion for homogeneous and
heterogeneous embedded MPSoCs. In the following, the most important existing
approaches extracting pipeline parallelism are discussed.

Rangan: Decoupled Software Pipelining (DSWP) was first introduced by Ran-
gan et al. in [RVV+04]. The proposed approach focuses on loops operating on
recursive data structures. Rangan et al. manually extracted extremely fine-grained
pipeline stages and recognized that the communication delay on a Pentium 4 Xeon
Processor is too high to benefit from DSWP. Therefore, they proposed low-latency
synchronization arrays for communication between different cores. Compared to the
approaches presented in this thesis, Rangan et al. manually applied DSWP to the
chosen benchmarks.

Ottoni: Ottoni et al. based their DSWP approach [ORS+05] on the one proposed
by Rangan et al. in [RVV+04]. In contrast to the work of Rangan et al., Ottoni et
al. extract DSWP fully automatically and integrated their approach into the IM-
PACT compiler back-end [ACM+98]. Moreover, they have shown that DSWP can
be applied efficiently to various loops, even if they are not operating on recursive
data structures. Ottoni’s approach employs message passing to communicate data
between producing and consuming tasks. The algorithm operates on a program
dependence graph (PDG) [KA02] which is transformed into a directed acyclic graph
(DAG) [Tar72] by clustering the strongly connected components formed by data-
and control dependencies. The extracted pipeline stages are balanced by a greedy
heuristic which merges the node with the highest estimated cycles (extracted by
profiling in the compiler back-end) to the currently processed pipeline stage. This
step is repeated until the estimated cycles of the current partition reaches the over-
all estimated cycles divided by the number of extracted stages. Compared to the
approaches presented in this thesis, Ottoni’s DSWP approach has some disadvan-
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tages. First, even though it extracts pipeline parallelism – which is efficient for
many embedded applications – the approach was not optimized nor evaluated for
embedded or at least heterogeneous architectures. Second, their approach only ex-
tracts disjunctive pipeline stages which are not replicated to further increase the
overall performance. And, finally, it operates on assembler level which drastically
limits portability, readability and the possibility to present the extracted results to
the application designer in a comprehensible form.

Raman: Parallel-Stage Decoupled Software Pipelining (PS-DSWP) was proposed
by Raman et al. in [ROR+08] and subsequently continues the work of Ottoni
et al. [ORS+05]. Raman has observed that the number of extractable tasks with
DSWP is limited by the number of strongly connected components in a loop’s body.
To increase the amount of extracted parallelism their approach replicates stateless
pipeline stages without loop-carried dependencies. Some of the stages are split into
concurrently executed sub-tasks, like performed by traditional DoAll loop paral-
lelization methods. Raman’s approach is integrated into the VELOCITY research
compiler [TBR+06]. Since the pipeline parallelization approaches presented in this
thesis are also able to extract pipeline stages, which can also be replicated, the work
of Raman et al. is most relevant to this work. However, compared to the approaches
presented in this thesis, PS-DSWP is only able to replicate pipeline stages which
are stateless, which means that no loop-carried dependencies exist for the stage to
be split. In contrast, the pipeline parallelization approaches presented in this thesis
are also able to duplicate stages with loop-carried dependencies if the iteration level
(the minimum distance of loop iterations between producing and consuming the
data) is greater than one. Additionally, Raman’s approach employs only a simplis-
tic greedy heuristic to extract the tasks. Only one stateless pipeline stage, the one
with the highest estimated execution costs, is replicated at most which drastically
reduces the solution quality. Like DSWP, PS-DSWP also employs a platform with
multiple high-performance Itanium 2 cores and a low-latency synchronization array
for evaluation purposes, which is not comparable to an embedded device.

Tournavitis: Tournavitis et al. presented a profiling-based parallelization frame-
work in [TF09]. Their framework extracts data and control dependencies dynami-
cally by annotating and executing a medium-level Intermediate Representation in
the CoSy compiler. The profiling-based approach was later used in [TWF+09] to
extract loop level parallelism annotated with OpenMP pragmas automatically. In-
stead of employing accurate high-level models, the authors used machine learning to
decide whether a loop may increase the overall program performance by paralleliza-
tion. The machine learning-based approach also specifies the iteration scheduling
policy used by OpenMP. Their approach seems to be promising, but the evaluation
was performed on a workstation equipped with two Intel Dual-Core Xeon 5160 pro-
cessors, running at 3 GHz and 16 GB of main memory. A second evaluation was
performed on a Cell Blade with two 3.2 GHz processors. Both platforms are applied
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in high-performance computing and it is not clear whether their approaches perform
well on embedded devices. Another restriction of the presented work is that it is only
able to extract DoAll parallelism from for-loops. This restriction was removed by
their following publication in [TF10] which extracts pipeline parallelism from nested
loops of streaming applications. Compared to the pipelining-based approaches pre-
sented in this thesis, the work of [TF10] is only able to replicate stateless pipeline
stages like [ORS+05]. In addition, the work of Tournavitis employs only a simple
parallelization heuristic based on a fixed threshold. Also here, the Xeon architecture
is used for evaluation.

Thies: The approach presented by Thies et al. [TCA07] assists the programmer
in extracting pipeline parallelism by a semi-automatic profiling-based technique. In
a first step, the programmer has to group statements of the applications’ outer
loop to pipeline stages manually. Afterwards, a profiling run is started to extract
data and control-flow dependencies. Those are finally visualized in a stream graph
with additional profiling-based performance information per pipeline stage. If the
programmer is not satisfied with the extracted speedup, he has to redefine pipeline
boundaries over several steps. Communication and synchronization directives are
finally inserted by the parallelization framework, based on the profiling information.
Compared to the approaches presented in this thesis, the work of Thies is not able to
extract parallelism fully automatically and only assists the programmer in extracting
pipeline parallelism. Also here, the evaluation was performed on a high-performance
architecture equipped with two AMD Opteron 270 dual-core processors and 8 GB
main memory.

Gordon: Another interesting approach was presented by Gordon et al. in [GTA06].
The authors present an approach combining task, data, and pipeline parallelism into
one framework. However, compared to the framework presented in this thesis, the
programmer has to rewrite the application in the StreamIt [TKA02] language where
parallelism has to be modeled manually by independent actors that use explicit
data channels for communication and synchronization. Based on this description,
the proposed approach automatically reduces synchronization and communication
overhead by splitting tasks at the necessary granularity level. The approach was
integrated into the stream compiler presented in [GTK+02].

Wang: The original version of the StreamIt compiler contains only very simplistic
greedy-based optimization techniques to find, e.g., good partitionings of a given task
graph structure. Therefore, Wang et al. developed a more sophisticated partition-
ing approach in [WO10] and [Wan11]. This approach is based on machine-learning
to estimate the execution time of a solution candidate by finding a comparable
parallelized application for which this objective is known. Therefore, a costly simu-
lation of each solution candidate can be omitted which makes the complexity of the
large solution space manageable. In this thesis, costly simulations are also avoided
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by employing high-level cost models. But, unfortunately, Wang’s approach is not
optimized for embedded applications nor evaluated on embedded architectures.

Pop: Pop et al. recently presented OpenStream in [PC13] based on their former
publication in [PC11]. Even though OpenStream is not able to extract parallelism
in an automatic fashion (like done by the approaches presented in this thesis), it
is mentioned here since it extends the OpenMP API [DM98] such that streaming
applications can easily be parallelized by using high-level annotations (C pragmas).
OpenMP is the de-facto standard in the high-performance community so that its
use in the domain of embedded systems would be desirable, as well. However, in
its original form, OpenMP does not support explicit communication in its shared
memory model. This is altered by the new annotations provided by OpenStream
so that, among others, streaming-based pipeline parallelism can now be expressed
efficiently. The authors implemented compilation strategies for the newly inserted
pragmas as front and middle-end extensions into the GCC compiler [The13]. Since
the proposed techniques of OpenStream are orthogonal to the ones presented in
this thesis, OpenStream could also be employed in the future to implement the
applications parallelized by the approaches of this thesis. However, the applicability
of OpenStream to embedded target architectures has not been evaluated so far.

2.4 Multi-Objective Aware Extraction

In contrast to high-performance architectures, embedded ones are usually battery-
driven, contain smaller memories, and miss high-performance communication struc-
tures, to mention only some of their limitations. Hence, to parallelize applications
efficiently for embedded devices new parallelization approaches need to be developed.
One way to achieve this is to find efficient trade-offs between multiple objectives.
Most existing approaches try to extract as much parallelism as possible to minimize
the execution time as their only optimization objective. However, it could also make
sense to reduce the amount of extracted parallelism to move to an architecture pro-
viding less processing units if the specified application deadlines are met. In this
way, a lot of energy can be saved and the communication overhead is also decreased.
This section provides a brief overview about parallelization approaches considering
more than only one objective like done in the multi-objective aware parallelization
techniques presented in Chapters 6 and 8 of this thesis.

Kadayif: The publication [KKS02] presented by Kadayif et al. is interesting for
both, the ILP-based and GA-based approaches presented in this thesis. Kadayif
employed Integer Linear Programming to determine the best amount of allocated
processing units while considering both, execution time and energy consumption.
His approach operates in two steps. In the first one, already parallelized loops of the
given application are simulated for one up to eight processing units in isolation to
determine profiling-based execution times and energy values. Afterwards, an ILP is
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applied which can optimize either execution time or energy consumption. However,
compared to the ILP-based approaches presented in this thesis, Kadayif’s formu-
lations can only determine the best number of processing units used per loop for
manually parallelized loop-nests instead of automatically extracting and balancing
tasks from sequentially written applications. The GA-based approaches presented
in this thesis are also able to extract a front of Pareto-optimal solutions for multi-
ple objectives and are not limited to return just one solution optimized for either
execution time or energy consumption.

Qiu: Qui et al. presented an energy-aware parallelization approach for embedded
DSP architectures in [QNY+10]. Their Energy-Aware Loop Parallelism Maximiza-
tion (EALPM) approach has some similarities to the multi-objective aware paral-
lelization approaches presented in Chapter 6 and 8. All approaches try to reduce the
system’s energy consumption while extracting parallelism. Qiu’s approach employs
a two phase strategy. First, their approach extracts task- and data-level parallelism
before the energy consumption is reduced by Dynamic Voltage Scaling (DVS). This
two phase strategy may lead to suboptimal results since the DVS technique relies on
the task structure, extracted in the first step. In contrast, the approaches presented
in this thesis extract task-, data- and pipeline-parallelism for multiple objectives at
the same time by using Genetic Algorithms. In addition, the approaches presented
in this thesis also try to reduce the amount of extracted parallelism and also of
the allocated processing units to reduce the overall energy consumption. Finally,
the Intel Core 2 Quad processor used for evaluation purposes in [QNY+10] is not
an embedded MPSoC so that the applicability to embedded devices must still be
shown.

Wang: The approach presented by Wang et al. in [WLL+11] is perhaps most
relevant to the multi-objective aware parallelization approaches presented in Chap-
ters 6 and 8. However, Wang also employs a two phase strategy like Qiu [QNY+10]
which may lead to suboptimal results. In the first phase, a so called RDAG algo-
rithm is employed to optimize coarse-grained pipeline parallelism by re-timing tech-
niques [LS91]. Afterwards, a Genetic Algorithm-based scheduling approach, namely
GeneS, is applied to optimize the system’s energy consumption by using Dynamic
Voltage Scaling and Dynamic Power Management techniques. The multi-objective
aware approaches presented in this thesis also employ Genetic Algorithms. But com-
pared to the work proposed by Wang, the approaches presented in this work extract
parallelism in a multi-objective aware manner. Wang only optimizes pipeline paral-
lelism by re-timing techniques in a first step followed by a reduction of the energy
consumption afterwards in a single objective fashion. Moreover, Wang only tries
to map extracted tasks to available processing units in combination with Dynamic
Voltage Scaling (DVS). The approaches presented in Chapters 6 and 8 combine
the extraction of parallelism with mapping and iteration scheduling techniques in
one algorithmic step while considering multiple objectives at the same time. Other
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approaches comparable to Wang were, e.g., presented in [LSW+08] and [ZHC02].

Cho: Cho et al. presented an analytical model similar to Amdahl’s Law [Amd67]
to evaluate the interplay of parallelization, program performance and energy con-
sumption for multi-core architectures in [CM10]. The models assist to determine the
maximum reduction of execution time and energy consumption (both, dynamic and
static energy) by Dynamic Voltage and Frequency Scaling (DVFS) techniques and
the capability to turn off processors completely. However, the paper just presents
a simplistic model for evaluation purposes which neglects important parts, like,
e.g., inter-processor communication costs. The publication in [CM10] further just
presents analytical models and relies on “perfectly parallelized” applications.

2.5 Extraction for Heterogeneous Architectures

Heterogeneity has proven to be the most promising alternative to reduce the energy
consumption and costs of homogeneous MPSoCs. By combining processing units
with different performance characteristics on one device, applications can be accel-
erated by parallel execution with reduced energy consumption compared to homoge-
neous multi-core architectures. However, new problems arise if applications should
be efficiently parallelized for heterogeneous architectures. While the automatic ex-
traction of parallelism for homogeneous architectures is still a challenging research
problem, the complexity further increases for heterogeneous ones. The extracted
tasks have to be balanced automatically even though their performance character-
istics vary on the available processing units. While heterogeneity is considered for a
long time as a key aspect in mapping, scheduling, and design-exploration tools, like,
e.g., [TBH+07], [KSS+09], [SGB10], and [JMB+12], only a few publications exist
considering heterogeneity in the parallelism extraction domain. These approaches
will be discussed and compared to the parallelization approaches for heterogeneous
architectures presented in this thesis in Chapter 7 and Chapter 8.

MAPS: The MAPS framework was already discussed in the section presenting
related task-level parallelization approaches. However, the work on MAPS was
continued until today and in the most recent version presented in [SSO+13] the
framework was extended to support heterogeneous architectures. The authors have
extended the C programming language to C Process Networks (CPN) which inte-
grate KPN annotations in C. With the help of these annotations, the user has to
specify parts of the applications as concurrently executed processes manually. In
the current version, no parallelization tools are integrated which extract parallelism
automatically for heterogeneous systems. But at least a good basis for new tools is
now available. In contrast, the approaches presented in Section 7.1, Section 7.2, Sec-
tion 8.2.1 and Section 8.2.2 extract parallelism fully automatically from sequentially
written applications for heterogeneous MPSoCs.
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HELIX: The Helical Execution of Loop Iterations across cores (HELIX) paral-
lelization framework was presented by Campanoni et al. in, e.g., [CJH+12b] and
[CJH+12a]. HELIX concentrates on the extraction of simple data-level parallelism
to be able to predict and automatically balance the parallel execution behavior by an
extension of Amdahl’s Law [Amd67]. The authors also claim in [CJH+12b] that their
approach can be used to parallelize applications for heterogeneous architectures.
However, the supported heterogeneity consists of a fast core which can only be used
to execute the sequential parts of the application and a homogeneous block of equal,
slower cores for parallel execution. In contrast, the heterogeneous parallelization ap-
proaches presented in this thesis also support architectures with arbitrary different
cores and all of them can be used for parallel execution. Moreover, the approaches
of this thesis focus on embedded MPSoCs and do not require a high-performance
Intel Core i7 architecture for evaluation purposes as used in [CJH+12b].

AHP: The Automatic Heterogeneous Pipelining Framework (AHP) was presented
by Pienaar et al. in [PCR12] and is based on the previous work in [PRC11]. AHP
is able to exploit pipeline parallelism from annotated C++ code and maps it to
heterogeneous architectures with different processing units. A Parallel Operator
Directed Acyclic Graph (PO-DAG) annotated with profiled execution times of all
tasks on various processing units is employed to express pipeline parallelism. Even
though AHP’s algorithm optimizes and maps various pipeline stages by heuristically
merging different nodes to stages, the user has to annotate and thereby extract the
different pipeline stages manually. This distinguishes it from the heterogeneous
pipeline parallelization approaches presented in this thesis. The approaches pre-
sented here extract this kind of parallelism fully automatically for single and also
multiple objectives at the same time. In addition, task-level, (simple) data level
and pipeline parallelism can be extracted at the same time. Similar approaches
to the one presented by Pienaar depending on manually extracted parallelism were
published in, e.g., [LCW+08], [LHK09], and [ATN+11].

2.6 Additional Approaches

The approaches and frameworks discussed so far should only provide an overview
about the most relevant publications in the wide area of thread-level parallelization
frameworks relevant for the approaches presented in this thesis. A complete list of
all approaches goes beyond the scope of this thesis. Among others, Par4All [Par13],
Open64 [CGC+08], and Intel Parallel Studio [Int13] are also able to semi or fully
automatically parallelize sequentially written applications to mention only some of
them. Nevertheless, the following section briefly mentions related topics, which go
beyond the scope of thread level parallelization approaches.

Instruction Level Parallelism: The research discipline of automatically extract-
ing Instruction Level Parallelism started decades ago and is much older than the
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research area of Thread-Level Parallelism (TLP). While TLP executes large blocks
of the application in parallel on various processing units, Instruction Level Paral-
lelism was employed to execute single instructions in parallel on, e.g., Very Long
Instruction Word (VLIW) machines or superscalar processors. As a consequence, In-
struction Level Parallelism approaches are more fine-grained than TLP approaches
so that different techniques have to be used for both research problems. Early ap-
proaches of Instruction Level Parallelism extraction were published in, e.g., [Fis81],
[CNO+88], and [HMC+93] and are, in general, orthogonal to TLP approaches.

Speculative Parallelization: Speculative parallelization executes parts of the
application speculatively in parallel and is also interesting in the context of TLP.
However, it was not considered in this thesis since speculative execution can often
not be applied to embedded devices. Timing predictability is crucial for many
embedded systems. Unfortunately, it is hard to guarantee timing constraints for
applications applying speculative parallelization. Representative approaches in this
area were presented in, e.g., [BF02], [JEV04], and [ZS02].

Parallelization Implementation: Many parallelization approaches presented so
far concentrate on the extraction of parallelism. The implementation is afterwards
done by a tool specialized for implementation issues of parallel applications. This
separation was also employed in the approaches presented in this thesis. Recent
parallelization implementation tools or parallel languages were presented in, e.g.,
[BBW+09], [DM98], and [SGS10].

Mapping Applications to MPSoCs: The extraction and implementation of
parallelism are only the first steps which have to be applied if applications should be
efficiently ported to Multi-Processor System on Chip (MPSoC) devices. Afterwards,
among others, scheduling, mapping, memory optimizations and also design-space
exploration should be applied. Many research projects faced these research topics in
recent years. Some of them can be found in, e.g., [BPS+10], [CDF+11], [TBH+07],
[KSS+09], [SGB10], [NTS+08], and [JMB+12].

2.7 Summary

As shown in this chapter, a lot of research had been done in the last decades to
develop approaches which are able to extract thread-level parallelism from sequen-
tially written applications in an automated way. However, limitations could be
observed for most of them: To summarize, the majority of the previously published
approaches ...

• ... are designed for high-performance architectures and are hence not well
applicable for resource restricted embedded devices. Some of the presented
approaches even require special communication structures since the through-
put of their high-performance unified memory architecture (UMA) was not
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high enough. Instead, the approaches should cautiously trade-off parallel ex-
ecution versus task-creation and communication overhead. This is even more
important for embedded devices since communication is, in general, much
more expensive for these systems.

• ... extract as much parallelism as possible without validating whether parallel
execution really leads to the desired speedup. The usage of high-level cost
models for these purposes could be a promising solution.

• ... are evaluated on high-performance architectures even if they demonstrate
parallelization approaches for embedded architectures. Instead, those ap-
proaches should be evaluated on at least a simulated embedded platform.

• ... extract only one kind of parallelism (e.g., data-level parallelism) without
combining the advantages of several parallelization types (like, e.g., task-level
and pipeline parallelism).

• ... focus on the optimization of execution time as their only optimization
objective at the expense of other resources, like, e.g., energy consumption or
communication overhead. For resource restricted embedded devices, it makes
more sense to reduce the amount of extracted parallelism and move to an
architecture with fewer cores to save energy if a given speedup is sufficient.

• ... are optimized for homogeneous architectures even though the pervasive-
ness of heterogeneous MPSoCs significantly increased in the last years. These
approaches do not distinguish between different performance characteristics
of the available processing units. This is indispensable since tasks should be
balanced automatically to utilize heterogeneous architectures efficiently.

As already exposed in Chapter 1, the parallelization approaches presented in this
thesis try to fill the existing desideratum by considering the aforementioned points to
form a parallelization framework which is tailored towards the special requirements
of embedded systems.
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Motivated by the observations which have been made while examining the exist-
ing state-of-the-art parallelization approaches discussed in the related work section,
a new parallelization framework was developed in the context of this thesis. This
framework contains and combines several parallelization approaches, presented later
in this thesis, which are tailored towards special requirements imposed by resource-
restricted embedded systems. The demands claimed by these newly developed par-
allelization approaches, comprise, e.g., execution time estimation, a new hierarchi-
cal divide-and-conquer-based parallelization approach, and specialized intermediate
representations. These demands required the development of a completely new par-
allelization framework. Before the different developed parallelization techniques and
the global parallelization approach are presented in detail in Chapters 4 - 8, this
chapter describes the main components of the new parallelization framework and
the framework’s integration into two research tool flows in Section 3.1. This sec-
tion also presents the tools employed to evaluate the presented approaches in the
remainder of this thesis.

The internal structure of the developed parallelization framework with all its
components is presented in Section 3.2. This section also gives a brief overview
of the employed dependence extraction techniques, as well as objective estimations
performed, like, e.g., execution time estimation. These parts are fundamental for
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the high-level models integrated into the approaches presented in the remainder of
this thesis. Finally, Section 3.3 describes the embedded target platforms which are
used for evaluation purposes for the novel parallelization approaches.

3.1 Integrated Parallelization Tool Flows

The parallelization framework presented in this thesis was initially developed in the
context of the MNEMEE (Memory Management Technology for Adaptive and Ef-
ficient Design of Embedded Systems) European Union FP7 project [BPS+10]. As
a result, it was part of MNEMEE’s optimization tool flow and was responsible to
extract tasks from sequentially written embedded applications. Later, the devel-
oped parallelization framework was also integrated into a second internal project
called PA4RES (Parallelization for Resource Restricted Embedded Systems). The
integration of the developed parallelization framework into both research tool flows
is presented in the following Sections 3.1.1 and 3.1.2, respectively.

3.1.1 MNEMEE Tool Flow

The first two approaches presented in this thesis (cf. Chapter 5) as well as the overall
parallelization approach with its divide-and-conquer-based parallelization technique
(cf. Chapter 4) were developed in the context of the MNEMEE European Union
FP7 project [BPS+10]. The focus of the MNEMEE project was the development of
scientific approaches which should be able to map and optimize sequentially writ-
ten C applications to embedded multi-core platforms. Therefore, parallelization
approaches, static and dynamic data allocation techniques as well as mapping ap-
proaches were developed and finally implemented in several optimization tools. All
tools can be executed in isolation or also in a combined tool flow in a transparent
way. Each tool is designed to perform source-to-source transformations so that the
application designer can easily observe the results of each optimization step. Most
tools, including the parallelization framework presented in this thesis, are based on
an intermediate representation called ICD-C IR [Inf13] which facilitates the design
and development of source code analysis and optimization techniques while staying
as close as possible to the original source code representation.

The resulting tool flow of the MNEMEE project is depicted in Figure 3.1. As
can be seen, the parallelization approaches developed in the context of this thesis
(Parallelizer) are executed in the second position of MNEMEE’s tool flow. They are
started as soon as the Dynamic Data Type Refinement tool (DDTR) [BRMA+09]
has optimized and re-allocated dynamic data structures to, e.g., scratchpad mem-
ories. The parallelization approaches, developed in the context of this thesis, also
perform source-to-source transformations (more information is given in Section 3.2).
They take the sequential application code optimized by DDTR as input, extract par-
allelism by one or also by a combination of the different developed parallelization
techniques, and annotate the final results to the source code of the application.
These annotations are compliant to the input specifications of the MPSoC Paral-



3.1. Integrated Parallelization Tool Flows 31

Platform
DB

MACC

M
N

EM
EE Tool flow

MPMH

DMMR

Parallelizer

DDTR

Scenario 
Mapping

SPM optimization

RTLIB

Round R. 
Mapping

Memory 
Mapping

Figure 3.1: Tool Flow Developed in the Context of the MNEMEE European FP7 Project

lelization and Memory Hierarchy tool (MPMH) [IMM+10]. MPMH is used in the
following step to implement the extracted parallelism exploited by the approaches
presented in this thesis. Among other optimizations, the MPMH tool also optimizes
large data structures by splitting them into smaller parts so that they can be placed
in smaller and more efficient memories.

The parallelized application is now further optimized by the Dynamic Memory
Management Methodology tool (DDMR) before the extracted tasks are mapped to
the available processing units of the targeted MPSoC. Therefore, multiple mapping
tools were developed in the context of this project. The first two ones are either
scenario based [SGB10] or memory aware [JMB+12] and combine the mapping of
tasks with additional optimization techniques. The third mapping tool is a trivial
one which just maps the tasks in a round-robin fashion to the available processing
units. This tool was initially developed for debugging purposes but was also used
in the context of this thesis to be able to create a mapping without additional
optimizations. The mapped application is further linked against a runtime library
(RTLIB) implementing, among others, task creation and communication directives.
Finally, a scratchpad memory optimization tool (SPM optimization) allocates static
data objects to scratchpads or other efficient memories in the memory hierarchy of
the targeted embedded MPSoC.

All tools are based on the MACC framework [PKM+10] which is used to fa-
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cilitate communication between all optimization steps provided by the MNEMEE
tool flow. In addition, the MACC framework models the target architecture so that
platform-dependent information, like, e.g., the amount and clock frequencies of the
available processing units can be inquired by the different optimization approaches.

To be able to evaluate solutions generated by the parallelization approaches
presented in Chapters 4 - 8, some of the tools of the MNEMEE tool flow were
used. Those tools are highlighted in Figure 3.1 by blue shapes. More details on the
interconnection of these tools for the evaluation tool flow used in this thesis are later
given in Section 3.2. Results obtained by the whole MNEMEE tool flow, as well as
more details on the specific optimization techniques and their integration into the
combined tool flow, are presented in [BPS+10].

3.1.2 PA4RES Tool Flow

The PA4RES tool flow (cf. Figure 3.2) is the second one which employs the novel
parallelization approaches developed in this thesis to extract parallelism from se-
quentially written embedded applications. The tool flow also uses some of the other
tools which were developed in the context of the MNEMEE European FP7 project.
Accordingly, the developed parallelization approaches (Parallelizer), MPA (the par-
allelization part of MPMH), the round robin mapping tool as well as the RTLIB
are used in the tool flow of the PA4RES project as well. Besides MPA, a second
parallelization implementation tool, namely, PICO (Parallelization Implementation
and Communication Optimization), is available in the PA4RES tool flow.

To support the use of both parallelization implementation tools, the paralleliza-
tion framework of this thesis was extended to be able to annotate the extracted
solutions for the PICO tool as well. Fortunately, both input specifications of MPA
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and PICO do not exclude each other. While MPA expects sequential source code
annotated with label statements mapped to tasks by a separate parallel specifi-
cation file, PICO expects C statements annotated with pragmas. Therefore, the
parallelization framework developed in this thesis annotates both, label statements
as well as pragmas to the applications’ source code to describe the extracted parallel
solutions. Thus, both tools can parse and optimize the same output generated by
the novel parallelization extraction approaches.

Up to now, results could not be obtained by the PA4RES tool flow using the
PICO tool for parallelization implementation since the tool is still under develop-
ment at the time this thesis was finalized. In the future, it is planned to tightly
couple the parallelization approaches developed in this thesis with the ones of the
PICO implementation tool to further optimize the quality of the parallelized appli-
cations.

3.2 Parallelization Framework

So far, the integration of the developed parallelization framework into two research
projects was presented. This section will further describe the internal structure
of the developed parallelization framework and the employed subset of MNEMEE
tools used for evaluation purposes in the remainder of this thesis. Both parts are
visualized in Figure 3.3.

The global perspective of the employed evaluation tool flow is visualized in Fig-
ure 3.3(a). As shown, the tool flow expects sequential ANSI C code together with a
platform description (based on the MACC framework) of the targeted heterogeneous
architecture as input. Compared to many other parallelization tool flows, the one
presented here directly operates on sequentially written ANSI C source code. Thus,
many embedded applications can be parallelized without manual transformations
into other programming languages or Models of Computation. The parallelization
framework developed in the context of this thesis automatically parallelizes the
given application with the approaches presented in Chapters 5 - 8 while considering
architectural properties of the given embedded target platform. As a result, the
parallelization tool annotates the source code of the application to describe the ex-
tracted parallelism. Figure 3.3(a) shows the tool flow which is used if the MPA tool
is employed to implement the extracted parallelism. Here, a parallel specification
that maps labeled statements of the application to tasks, is also created by the par-
allelization framework. With both inputs, the MPA tool automatically implements
the extracted parallelism which is further processed by a mapping tool. The pre-
sented parallelization framework of this thesis optimizes the extracted tasks so that
they are automatically balanced even for processing units of heterogeneous architec-
tures with different performance characteristics. Therefore, depending on the given
target architecture, a pre-mapping specification can be generated which is passed to
the mapping tool. This specification contains information about the extracted task-
to-processor class mapping (only for heterogeneous target architectures) to ensure
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that tasks are mapped to processing units for which they are optimized.
All tools described so far perform source-to-source transformations. This has

the advantage that the designer can observe the applied code modifications after
each step. In addition, a standard compiler can be used to compile the parallelized
source code into binary files, which are linked against a library that implements task
creation and synchronization primitives (RTLIB). The developed tool flow also con-
tains links to the cycle-accurate Vast [Syn13b] and MPARM [BBB+05] simulators,
so that the sequentially written applications can fully automatically be parallelized,
mapped and evaluated on several architectures without manual intervention.

The internal tool flow of the parallelization framework developed in the context
of this thesis is shown in Figure 3.3(b). All tools shown in this figure can be executed
in a combined fashion or as stand-alone tools, which enables an easy exchange of the
tools. A code optimization tool is executed first to enable an easier code analysis for
the succeeding parallelization steps (cf. Section 3.2.2). The optimized code is then
analyzed to extract data and control flow dependencies (cf. Section 3.2.2) as well as
objective values, like, e.g., execution time and energy consumption required by the
statements of the application (cf. Section 3.2.3). Finally, the global parallelization
approach extracts the Augmented Hierarchical Task Graph (AHTG) as described
in Chapter 4 before it starts to extract parallelism from the AHTG.

The following subsections describe the developed tools in more detail.

3.2.1 Code Optimization

The code optimization tool performs simple code transformations, like, e.g., constant
propagation, constant folding, dead code elimination, and other standard compiler
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optimizations described in [Muc97]. These optimizations enable an easier code anal-
ysis for the different parallelization approaches executed later in the internal tool
flow. The code optimizations are provided by the ICD-C framework [Inf13]. Besides
these standard optimizations, the code optimization tool also analyses the loops of
the application to be parallelized and unrolls a few iterations. This helps the task-
level parallelization approach to extract parallelism from loops of the application to
be parallelized. This unrolling transformation is only performed temporarily and
finally reverted before the parallelized application code is written out.

3.2.2 Dependency Analyzer

The dependency analyzer developed in the context of this thesis expects the interme-
diate representation of the optimized source code as input to extract all data depen-
dencies of the application to be parallelized. This information is required to build
the Augmented Hierarchical Task Graph. Therefore, a profiling-based approach was
developed here1. Of course, parallelization hints might ignore dependencies which
are not manifested in the profiling run, due to profiling driven analysis. This does
not harm the correctness of the developed parallelization tool flow since MPA and
PICO are employed to implement the extracted parallel solutions. Both tools are
based on safe static analysis techniques and introduce synchronization and commu-
nication directives if necessary. Hence, an extracted solution may be less performant
than expected but is always valid. Nevertheless, for none of the evaluated bench-
marks, it could be observed that the parallelization approaches extracted parallelism
where non-detected data dependencies prevented parallel execution.

The profiling-based approach also has some advantages compared to a static
analysis. For example, it delivers extremely detailed information about access pat-
terns and very fine-grained dependency information. By using the profiling-based
approach, it is possible to identify, for example, that loop iterations modifying ar-
rays or pointers are independent and therefore possible parallelization candidates.
Usually, this is particularly hard to detect via static analysis techniques. These ob-
servations are also reported in [TF09], where another profiling driven parallelization
approach was presented.

1The author of this thesis focused on the development of new parallelization techniques for
embedded systems. Since a dependency analysis was indispensable but not available, this solution
seemed to be a good trade-off between effort and applicability. However, the dependency analyzer
is implemented by a separate tool and can be exchanged as soon as a static analyzer is available.
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The structure of the developed profile-driven data dependency analysis is visual-
ized in Figure 3.4. In a first step, function calls are added to the given application’s
source code tracking read and write operations to variables (i.e., memory locations).
Also the entrances to basic blocks are annotated to register dependencies crossing
function boundaries. All inserted function calls write an unique statement id, an
unique expression id, and the size of the read or written memory locations to a trace
file. The annotated source code is compiled in the next step and linked against a
library implementing the inserted function calls. The compiled and annotated appli-
cation is executed in the following by the analysis tool to generate trace files covering
all memory accesses of the application to be analyzed. Since those trace files often
get extremely large, the developed approach communicates with the annotated ap-
plication’s executable via Unix Sockets. As a result, only a manageable small trace
file is generated (e.g., 200MB), first. Afterwards, the annotated application passes
the filename to the analyzer so that a simulation of accessed memory locations is
started. In the meanwhile, a second trace file is generated by the annotated appli-
cation. Since the memory simulation of the dependency analyzer takes significantly
longer than the trace file generation, the latter one is paused until the analyzer
starts to simulate the next trace file. By using this handshake model, trace files
of enormous sizes are avoided so that the approach can – in theory – analyze large
applications. As a result of the analysis, dependencies between different statements
as well as their expressions are annotated to the IR so that they can be used for the
creation of the Augmented Hierarchical Task Graph in the following.

3.2.3 Objective Estimation

The parallelization approaches presented later in this thesis employ high-level cost
models to evaluate the benefit of a parallelized part of the application. Therefore,
cost information for the different objective values, like, e.g., execution time and
energy consumption, are extracted for each statement of the application.

The structure of the developed objective estimator is visualized in Figure 3.5.
Each statement of the application is copied to a new source code file and startSim
and stopSim function calls are added surrounding each statement. The augmented
source code file is then processed by a cross-compiler generating target code for the
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considered architecture. This application is linked with a library implementing the
inserted function calls for the employed simulator to start and stop the measurement
before and after each statement, respectively. The generated output of the simulator
contains results for the considered objectives (only the execution time is visualized
in Figure 3.5 to ease comprehensiveness) which are parsed by the objective analyzer.
These values are then annotated to the application’s IR so that they can be attached
to the AHTG in the following. The tool supports the cycle-accurate Vast [Syn13b]
and MPARM [BBB+05] simulator. As a result, objective values for all considered
target platforms (cf. Section 3.3) can be evaluated.

3.2.4 Parallelization Approaches

The global parallelization approach with its divide-and-conquer-based paralleliza-
tion technique (Chapter 4) is started as soon as the Augmented Hierarchical Task
Graph (AHTG) is extracted based on the gathered information. The global ap-
proach iterates through the hierarchy of the AHTG and tries to extract parallelism
for the nodes of the graph in isolation (cf. Chapter 4). For these, one or also a
selected set of parallelization techniques presented in Chapters 5 - 8 is executed.
Most of these approaches create Integer Linear Programming (ILP) or Genetic Al-
gorithm (GA)-based problem descriptions which are solved by different external
tools. To solve, e.g., created ILP systems, IBM’s CPLEX [IBM13] or also the
freely available lp_solve [BKP13] can be used. For Genetic Algorithms, the PISA
framework [BLT+03] is connected with the different approaches containing several
variators, like, e.g., SPEA2 [ZLT01] (cf. Figure 3.3(b)). As soon as the entire ap-
plication is processed, the extracted tasks are annotated to the application’s source
code and a parallel specification file is created describing the structure of the created
parallel sections.

3.3 Target Platforms

Three different target platforms are employed in the context of this thesis to evaluate
efficiency and portability of the developed approaches. They are presented in the
remainder of this chapter. The author of this thesis could benefit of earlier developed
platforms and did not have to contribute in their development.

3.3.1 MPARM Platform

MPARM [BBB+05] is the cycle-accurate simulator for the first supported target ar-
chitecture. It was also used in the MNEMEE European Union FP7 project [BPS+10]
to evaluate the efficiency of the presented tool flow. The structure of the simulated
target architecture is visualized in Figure 3.6. Up to four ARM7M single-core pro-
cessors [ARM13c] can be added to the simulated target architecture. All cores are
enriched with small scratchpad memories as well as data and instruction caches
connected via a fast local bus. Each processor operates on its own private memory
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Figure 3.6: MPARM Platform Configured with four Processing Units

with 12 MB size each which is available through a shared bus. The architecture also
contains a 16 MB DRAM which can be accessed by all processors. This memory is
especially used for communication between the available cores.

Communication and synchronization are expensive on this architecture since the
available processors are only accelerated by level one caches without cache coherency
mechanisms. Thus, only the content of the local DRAMs can be loaded into the
cache. The shared DRAM has to be excluded since the level one caches cannot
recognize if another core has written to the shared memory. Therefore, each access
to the shared memory causes read or write operations on the slow DRAM memory.
Bus contention can further slow down these accesses. Hence, the granularity of the
extracted tasks has to be considered carefully for this target platform.

However, MPARM has a big advantage compared to the other considered target
architectures. It is enriched with an energy model called MEMSIM [Kat08] which is
based on [WM06]. This energy model is directly integrated into the simulator and
is therefore used to evaluate the multi-objective aware parallelization approaches in
the remainder of this thesis (cf. Chapters 6 and 8). Both, energy values and access
delays for the available memories are set to the default values of MPARM [BBB+05]
and MEMSIM [Kat08].

3.3.2 ARM11QuadProc Platform

The ARM11QuadProc platform (cf. Figure 3.7) is the second one used to evaluate
the different parallelization approaches developed in the context of this thesis. It
is simulated by Synopsis’s cycle-accurate CoMET simulator [Syn13a] which is part
of the Vast framework. Compared to the MPARM platform, it contains up to four
ARM1176 single-core processors [ARM13a] of the ARM11 processor family. The
ARM1176 processors are more recent than the earlier employed ARM7M processors
and contain separate Tightly Coupled Memories (TCM)2 for data and instructions
directly integrated on the processors’ die. Moreover, the level one caches for data
and instructions are also directly integrated on the processors’ die.

Also here, no cache coherency unit could be added to be able to cache the shared

2TCM memories and scratchpad memories are the same.
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Figure 3.7: ARM11QuadProc Platform Configured with four Processing Units

memory in the level one caches. Instead, a level two cache based on ARM’s L220
cache controller is connected via a fast, tightly coupled bus. Since all processors
are connected to this level two cache, it can cache all memories behind it, includ-
ing both private and also shared memories. In contrast to the MPARM platform,
the ARM11QuadProc architecture contains only one private memory which is par-
titioned into parts of equal size for all processors. Both, the private, as well as the
shared memories, are connected to the bus by a DRAM controller. Two additional
smaller memories are added to this platform, namely a boot ROM memory and a
level two SRAM. The boot ROM contains the application code which should be
executed by the architecture while the level two SRAM is used to accelerate the
employed operating system.

This platform does not provide an energy model so that it cannot be used to eval-
uate the multi-objective aware approaches presented later in this thesis. However,
it is possible to clock the processors with different core frequencies so that the plat-
form can be used to evaluate both, homogeneous and heterogeneous single-objective
aware approaches (cf. Chapters 5 and 7).

3.3.3 Arm11MPCore Platform

The previously presented target platforms are multi-processor architectures since
they combine several single-core processors. In contrast, the ARM11MPCore plat-
form (cf. Figure 3.8) contains one ARM11MPCore multi-core processor [ARM13b]
providing up to four cores in one processor. Thereby, the processors are tighter cou-
pled which often decreases synchronization and communication costs. The ARM11-
MPCore platform is also simulated by the cycle-accurate CoMET simulator [Syn13a]
of the Vast framework.

Multi-core processors are usually simpler in their structure. The ARM11MPCore
processor does, e.g., not contain fast TCM memories. But in contrast to the single-
core processors described above, the ARM11MPCore processor employs a cache
snoop unit which takes care that the caches of the different cores are automatically
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updated if one of the cores writes to one of the available memories. Therefore, also
data which is allocated to the shared memory can be cached here, which significantly
improves the performance of accesses to such memory locations.

This platform neither provides an energy model nor is it possible to clock the
cores with different CPU frequencies. This makes this platform not applicable to
evaluate the multi-objective aware parallelization approaches, as well as the hetero-
geneous ones. Therefore, it is used to evaluate the single-objective aware homoge-
neous parallelization approaches presented in Chapter 5 only. However, for such
approaches the ARM11MPCore platform is representative since the used processor
can often be found in embedded multi-core architectures.

3.4 Summary

This chapter presented technical details about the parallelization framework devel-
oped in the context of this thesis. With its designed structure, the framework builds
a basis to easily integrate the different parallelization approaches presented in the
remainder of this thesis into one parallelization framework. Therefore, a basis for a
parallelization framework which is optimized for embedded systems is created. This
chapter further presented the integration of the parallelization framework into two
research tool flows of the MNEMEE and PA4RES projects.

In addition, three target architectures were presented in this chapter which are
used to evaluate the approaches presented later in this thesis. They employ three
different processors (ARM7M, ARM1176 and ARM11MPCore) in multi-processor
and also multi-core architectures. Some of them employ scratchpad memories as
well as cache hierarchies or cache snoop units to accelerate memory accesses for
parallelized applications. These performance variances have to be considered by
the developed parallelization approaches to create solutions which are well tailored
towards the considered target architectures.
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The major challenge that has to be addressed if sequentially written applications
should be parallelized in an efficient way is the complexity of the vast solution space.
Among others, the parallelization approaches, presented later in this thesis, have to
map statements of the application to be parallelized to newly extracted tasks. Since
all statements can be mapped to various tasks, an immense amount of solution
candidates exists even for small applications. All possible mappings of statements
to tasks represent solutions with different objective values regarding execution time,
energy consumption, and other objectives. To make things worse, dependencies
between statements require communication and synchronization directives if the
statements are mapped to different tasks. This forms a series of predecessor and
successor relationships between the extracted tasks causing additional delays, which
are hard to foresee. However, this has to be considered in the evaluation process, as
well. To cap it all, the extracted tasks optimized for one architecture may perform
worse on another one since task creation, task execution, and communication costs
may vary with respect to the employed processing units and the utilized memory
subsystems.

Based on these observations, Sarkar has proven that finding an optimal parti-
tion of the statements of an application into concurrently executed tasks is an NP-
complete problem [Sar89]. As already shown in the related work Chapter 2, this has
led to the development of various inaccurate parallelization methodologies. Some of
the previously published approaches disregard the evaluation of the found parallel
solution candidates completely and just extract as much parallelism as possible (e.g.,
[VNS07]). Other approaches employ high-level cost models but rely on simplistic
greedy heuristics merging, e.g., the two statements with the highest communication
costs into the same task (e.g., [CCS+08]).
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The approaches presented in Chapters 5 - 8 of this thesis are designed to pro-
vide solutions avoiding these limitations by employing sophisticated parallelization
techniques. All presented techniques include high-level cost models to evaluate the
benefit of a parallel solution candidate and to balance the extracted tasks auto-
matically. A smart reduction of the solution space is indispensable but should
not prevent the extraction of efficient parallelism. Therefore, the presented paral-
lelization techniques of this thesis partition the application in a divide-and-conquer
fashion into several hierarchical levels to reduce the number of statements processed
at the same time. A suitable structure for the hierarchical segmentation is already
given by the hierarchical structure of the application’s source code. Often, efficient
parallelism can be extracted from parts of the application which are close to each
other with respect to the control flow. As a consequence, e.g., a loop’s body can be
divided into concurrently executed tasks or two function calls which are executed
consecutively can be evaluated simultaneously by parallel execution. In contrast,
there is, in general, no profit in extracting two tasks from the if- and else-part of a
conditional statement since those tasks would never be executed concurrently. This
information is implicitly given in the hierarchy of the application’s source code and
should therefore be used to reduce the search space of the parallelization problem.

Many previously published parallelization approaches employ a flat Program
Dependence Graph (PDG) or an alteration of it as intermediate representation.
Unfortunately, no hierarchical structures are present in this representation so that
the entire program has to be processed simultaneously. This led to the described
limitations of currently available parallelization heuristics. To circumvent these
limitations, a hierarchical parallelization approach is presented in this thesis. It
splits the complex parallelization problem into smaller subproblems, which can be
solved efficiently. An intermediate representation called Augmented Hierarchical
Task Graph (AHTG) is employed in this work which is capable of dividing the in-
termediate representation into different hierarchical levels. The AHTG combines
control- and data-flow dependencies with annotated performance characteristics in
one graph representation. An earlier version of an HTG was presented by Girkar and
Polychronopoulos in [GP94] which was used for scheduling optimizations in [Pol91].
The approaches presented in this thesis adapt the HTG to an AHTG and employ
it to extract parallelism from sequentially written applications. Therefore, the orig-
inally presented HTG is modified in a way that the different hierarchical levels can
be processed in isolation. This leads to a significant reduction of the parallelization
problem since only a few statements are processed in one step enabling more com-
plex parallelization approaches. The intermediate representation is also designed in
a way that each hierarchical sub-graph is acyclic, enabling the evaluation of high-
level cost models. The extracted parallelism found on one hierarchical level is further
combined with parallelism found on other hierarchical levels if it increases the over-
all performance. By applying this hierarchical approach, different granularities of
extracted parallelism from various parallelization types can easily be combined to
find well suited solutions for embedded MPSoCs.

The rest of this chapter is structured as follows: First, the Augmented Hierar-
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chical Task Graph is described and defined in more detail in Section 4.1. The de-
veloped hierarchical parallelization approach used by all parallelization techniques
of this thesis is presented from a global perspective in Section 4.2. This section
also describes the integration of the different parallelization techniques presented in
Chapters 5 - 8 into the global parallelization approach.

4.1 Augmented Hierarchical Task Graph (AHTG)

The Augmented Hierarchical Task Graph (AHTG) is used as central intermediate
representation within the parallelization framework presented in this thesis. By par-
titioning the graph structure into different hierarchical levels in a divide-and-conquer
fashion, the vast solution space of the parallelization problem can be drastically re-
duced. This enables complex parallelization approaches which have to search for
parallelism only on a small portion of the application at the same time. Each hi-
erarchical level should also be self-contained and acyclic so that it is possible to
evaluate the impact of parallelism for each node in isolation.

4.1.1 Structure and Components of the AHTG

A simplistic example of an AHTG as shown in Figure 4.1 shall be used to introduce
the components of the graph. The right-hand side of this figure shows the tree
structure of the hierarchy (cf. Figure 4.1(b)) of the graph shown on the left-hand
side (cf. Figure 4.1(a)). The example presented in Figure 4.1 is arranged in four
hierarchical levels and contains several node types, edges between the nodes, and also
cost information added to both, nodes and edges of the graph. These components, as
well as the most important properties of the AHTG, are introduced in the following.

As depicted in Figure 4.1(a), the graph contains the following node types:

• Simple nodes:
Simple nodes correspond to a basic statement in the original source code with-
out any further hierarchical structures. Such a statement could be, e.g., an
assignment (expression) statement like ’a = b;’. By construction all leaves of
the hierarchical structure of the graph (cf. Figure 4.1(b)) are represented by
simple nodes.

• Hierarchical nodes:
Hierarchical nodes correspond to statements providing a hierarchical structure,
like, e.g., loops or function bodies in the original source code. All hierarchical
nodes contain a communication in-node, a communication out-node and an
arbitrary number of child nodes. These child nodes can be either simple nodes
or additional hierarchical nodes.

• Communication in-nodes:
Communication in-nodes are part of every hierarchical node. Communica-
tion from a node not contained in the hierarchical node to any inner node is
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Figure 4.1: Simplified Example of an Augmented Hierarchical Task Graph (AHTG) Struc-
tured in four Hierarchical Levels.

redirected through these communication in-nodes. Moreover, communication
in-nodes are single-entry nodes and are hence a predecessor of all other nodes
contained in the same hierarchical node.

• Communication out-nodes:
Communication out-nodes are also part of every hierarchical node. Commu-
nication from a child node of the hierarchical node to any node not contained
in the hierarchical node is redirected through this communication out-node.
Moreover, the communication-out nodes are single-exit nodes of the hierarchi-
cal nodes and are successors of all other nodes contained in the hierarchical
node, accordingly.

By introducing the new communication nodes as single-entry and single-exit
points of a hierarchical node and by redirecting the communication between differ-
ent hierarchical levels over the communication nodes (which was not done in this
way by [GP94]), each hierarchical node is self-contained and can be processed in
isolation. The communication nodes also redirect communication which points in
the opposite direction to the regular control flow and create acyclic sub-graphs for
each hierarchical node. Both properties are essential for the employed paralleliza-
tion algorithms presented later in this thesis. More information on the way edges
are redirected is given in the following subsection.

By construction, all nodes of the graph with the exception of the communication
nodes directly correlate to statements of the application to be parallelized. There-
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fore, this relationship is also preserved to easily convey transformations done in the
graph representation to the source code and vice versa. Another profitable char-
acteristic of the presented Augmented Hierarchical Task Graph is that the control
flow is already expressed by the hierarchical structure of the graph. Control-flow
back edges for, e.g., loops are implicitly modeled by the hierarchy of the nodes and
must not explicitly be added. Only explicit jump statements like break, return, or
goto (for imperative programming languages like C) require additional control flow
edges. Besides control flow edges, the AHTG contains Read-after-Write (RAW),
Write-after-Read (WAR) and Write-after-Write (WAW) data-dependencies. With
this distinction of dependence types, the parallelization algorithms are flexible since
not all dependence types automatically enforce a sequentialized execution of the
extracted tasks in all situations.

However, information extracted from the graph structure containing nodes and
edges itself is insufficient to generate well-balanced tasks from sequentially written
applications. The high-level cost models employed in the parallelization approaches
of this thesis require additional estimated information about, e.g., execution costs
and communication overhead, which has to be inserted if two statements are ex-
ecuted in different tasks. Therefore, the nodes of the graph are augmented with
additional cost information (cf. Node Info in Figure 4.1(a)):

• Iteration count:
The iteration count of the node is equal to the iteration count of the state-
ment represented by the node and is extracted by the framework presented in
Section 3.

• Objective values:
The objective values contain estimated cost information for the optimization
objectives considered by the parallelization approaches presented in Chapters 5
- 8. Execution costs in CPU cycles and the energy consumption in pJ are
automatically extracted (cf. Section 3.2.3) and annotated to the nodes of
the graph. Additional objectives can easily be added if they are required by
new parallelization techniques, due to the transparent structure of the AHTG.
If the chosen parallelization technique considers heterogeneous architectures
(like the ones presented in Chapters 7 and 8), the objectives are added once
for each processing unit to enable a consideration of performance variations
depending on the executing core.

• Reference to Statement:
The relationship of nodes to the intermediate representation’s statement is also
stored to be able to adapt changes from the graph to the original application
code and vice versa.

It is also essential to possess knowledge about the communication costs, which
have to be taken into account if the statements of two nodes are executed in different
tasks. Therefore, additional information is also added to the edges of the graph (cf.
Edge Info in Figure 4.1(a)):



46 Chapter 4. Parallelization Methodology

• Edge type:
Each edge belongs to one of the dependence types mentioned earlier (like, e.g.,
Read-after-Write data dependencies) and is annotated to the edges to be later
accessible by the parallelization approaches.

• Communication costs:
The communication delay in CPU cycles, if the source and target node of
the edge are executed in different tasks. It is estimated by multiplying the
amount of communicated bytes with a platform-dependent communication
factor. Other objective values, like, e.g., the energy required to communicate
the data, are also annotated to the edges.

• Communicated data:
The symbols or expressions that have to be communicated are also annotated
to the edges to be later accessible by the parallelization approaches.

• Iteration count:
The iteration count reflects the number of times the communication takes
place.

The Augmented Hierarchical Task Graph as well as the attached node and edge
information is extracted automatically from sequential ANSI-C code to enable an au-
tomatic parallelization flow. While the extraction of the estimated objective values
is presented in the framework chapter (cf. Section 3.2.3), the following subsection
focuses on the extraction of the graph structure. A more complex example of an
AHTG is also presented in the Appendix in Chapter A.1. The figures depict dif-
ferent screen shots of the graphs generated by the parallelization framework for the
spectral benchmark [Lee13].

4.1.2 Extraction of the AHTG

Since most embedded applications are written in sequential C, the parallelization
framework presented in this thesis focuses on the extraction of parallelism from pro-
grams written in this programming language. However, most techniques presented
in this chapter may also be adaptable to other programming languages.

Algorithm 1 Extraction Algorithm of the Augmented Hierarchical Task Graph
1: function ExtractAhtg(IR ir)
2: rootNode← CreateHTGStructure(ir)

3: AddDependenceEdges(rootNode)

4: AugmentAHTG(rootNode)

5: end function

Algorithm 1 shows the structure of the main function extracting an Augmented
Hierarchical Task Graph from given sequential application code. The function
ExtractAhtg expects an intermediate representation (IR) of the application’s
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source code as input. The intermediate representation employed here is called ICD-
C IR [Inf13]. In a first step, the nodes of the graph are created and arranged in
the hierarchical structure by a call to the function CreateHTGStructure in line
2. Afterwards, data dependence and control flow edges for jump statements are
created by a call to the function AddDependenceEdges in line 3. The insertion
of control flow edges for jump statements follows the same rules as the insertion
of data-flow edges and is therefore not considered separately. Finally, the func-
tion AugmentAHTG is called in line 4 which augments the created nodes and
edges with cost information extracted by the corresponding objective estimation
pre-processing tool (cf. Section 3.2.3)1.

4.1.2.1 Extraction of Nodes

The general structure of the CreateHTGStructure function extracting the nodes
of the graph is summarized by the pseudo-code shown in Algorithm 2.

Algorithm 2 Root Structure Creation of the AHTG.
1: function CreateHTGStructure(IR ir)
2: rootNode← CreateHierarchicalNode()

3: for f ∈ ir.getFunctions() do
4: fNode← CreateHierarchicalNode(f)

5: rootNode.addChildNode(fNode)

6: fNode.setParentNode(rootNode)

7: CreateNodes(fNode, f)

8: end for
9: end function

10:
11: function CreateNodes(HierarchicalNode parentNode, Statement s)
12: if s ∈ {ExpStmt, JumpStmt, TargetStmt} then
13: node← CreateSimpleNode(s)

14: else
15: node← CreateHierarchicalNode(s)

16: for childStmt ∈ s.getChildStatements() do
17: CreateNodes(node, childStmt)

18: end for
19: end if
20: parentNode.addChildNode(node)

21: node.setParentNode(parentNode)

22: end function

As depicted in line 2, the function first creates a new hierarchical node for the
root of the graph representing the entire application. Afterwards, a new hierarchi-
cal node is created for each function in line 4. To enable the navigation in both
directions, upwards and downwards through the hierarchy of the graph, the func-
tion node is added as a child node of the root node and vice versa in lines 5 and 6.

1More details on the AugmentAHTG function are omitted due to its simplicity. The function
just adds the estimated cost information to the nodes and edges of the graph.
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Figure 4.2: Example for Communication within the same Hierarchical Node (Local Com-
munication).

Next, CreateNodes is called for each function, so that child nodes are added for
all statements belonging to the corresponding function.

The structure of the CreateNodes function is also depicted in Algorithm 2.
It is recursively called for each statement of the current function and creates ei-
ther a simple or a hierarchical node, depending on the statement’s type. If the
statement contains further hierarchical structures expressed by compound state-
ments, the function CreateNodes is recursively called until all statements are
processed. After the recursive call returns, the hierarchical relationship between the
newly created node and its parent node is created in lines 20 and 21. As soon as
CreateNodes was called for all functions of the application, nodes are created for
all statements, arranged in the desired hierarchical structure. Since the function
nodes are added as child nodes of the root node of the graph, all nodes can be
reached through the hierarchy starting from the root node.

4.1.2.2 Creation of Dependence Edges

Two properties should be provided by the graph intermediate representation: (a)
all sub graphs have to be cycle-free and (b) all communication passes through sin-
gle entry- and single exit-nodes so that the nodes can be processed in isolation.
Therefore, the following four scenarios for adding edges to the graph have to be
considered:

Local Communication: Communication between two nodes belonging to the
same hierarchical parent node is called local communication and is the simplest
form of communication. Figure 4.2 shows an appropriate example containing three
nodes which are part of the same hierarchical parent node. For this communication
type, two scenarios must be distinguished. In the first one, the dependence edge
points in the same direction as the control flow. An example for such an edge can
be found for the nodes representing the statements k = i * i and a[i] = k. The
data of variable k is computed and communicated in the control flow’s direction.
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Figure 4.3: Communication Example for Statements in the same Function (Global Com-
munication)

To represent this dependency, a new edge is directly added to the graph between
both nodes. In the second scenario, source and target nodes still belong to the
same hierarchical parent node, but the communication would insert a back-edge in
the opposite direction of the control-flow. The statement i = i + 1, for example,
computes the value of variable i for the next iteration of the loop. The new value
is not read in the current iteration any more but would insert a cycle if a new edge
would directly be added to k = i * i. To circumvent this problem, the data of
variable i is first communicated from the source- to the communication out-node.
A second communication edge is then inserted from the communication in-node
to the target node. Thus, the data of variable i is implicitly communicated from
the communication out- to the communication in-node of the hierarchical node.
Hence, the data of i is available for the next execution of the node, but no cyclic
dependencies are added to the graph.

Global Communication: Figure 4.3(a) presents an example of a communica-
tion edge which has to be inserted between nodes belonging to different hierarchical
nodes (global communication). If the edge would be directly added as depicted
in Figure 4.3(a), the single-entry and single-exit property would be violated. In
addition, it is not clear if any dependencies between the parent hierarchical nodes
would prevent parallel execution on higher hierarchical levels. Therefore, the first
common ancestor node (upwards in the hierarchy) of the source and target nodes is
determined, like depicted in Figure 4.3(b). The source node communicates the data
via communication out-nodes until this first common ancestor node is reached. Af-
terwards, the data is further communicated via additional communication in-nodes
until it reaches the hierarchical level of the target node and finally the node itself.
This takes care that the single entry- and single exit-node property is retained, and
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the influence of dependencies over various hierarchical levels is explicitly expressed.
If, for example, the two parent hierarchical nodes shown in Figure 4.3 are loops, both
loops cannot be executed in separate tasks fully in parallel because of the depen-
dency contained deeper in the loops’ bodies prevents it. This can directly be derived
from the structure of the presented AHTG due its communication redirection like
shown in Figure 4.3(b), but would not be obvious if the redirection techniques were
not applied, like shown in Figure 4.3(a).

Function Communication: The situation gets even more complicated if the
source and target node of a dependency are part of different functions, like depicted
in the example shown in Figure 4.4. There, function foo_a (shown in Figure 4.4(a))
writes to a variable a which is consumed by one of the nodes of function foo_b
(shown in Figure 4.4(b)). Analogously to the previous communication example, the
data is first communicated from the source node via several hierarchical levels to the
communication out-node of function foo_a. Afterwards, the data is communicated
through several hierarchical levels from the communication in-node of foo_b to the
target node. However, the dependency also exists between nodes of the function foo,
calling foo_a and foo_b as depicted in Figure 4.4(c). Therefore, new dependency
edges have to be added between those nodes as well since the dependence between
the nodes of foo_a and foo_b also sequentializes the execution of both functions on
the outer hierarchical level. If additional functions are called between source and
target node, all of them are treated like function foo.

The three presented examples cover all cases for which edges have to be added to
the AHTG. Pseudo-code describing the edge creation algorithms for all cases in more



4.1. Augmented Hierarchical Task Graph (AHTG) 51

Algorithm 3 Creation of dependence edges for the AHTG.
1: function AddDependenceEdges(Node n)
2: for dep ∈ n.getStmt().getDependencies() do
3: n2← dep.getTargetNode()

4: if n.getParent() = n2.getParent() ∧ not isBackEdge(dep) then
5: CreateNewEdge(dep, n, n2) // cf. Figure 4.2
6: else if n.getParent() = n2.getParent() ∧ isBackEdge(dep) then
7: // cf. Local Communication (Figure 4.2)
8: CreateNewEdge(dep, n, n.getParent().getOutNode())

9: CreateNewEdge(dep, n2.getParent().getInNode(), n2)

10: else if n.getFunctionNode() = n2.getFunctionNode() then
11: // cf. Global Communication (Figure 4.3(b))
12: CreateRedirectedEdge(dep, n, n2)

13: else// cf. Function Communication (Figure 4.4)
14: CreateCallEdge(dep, n, n2)

15: end if
16: end for
17: if n ∈ HierarchicalNode then
18: for cnode ∈ n.getChildNodes() do
19: AddDependenceEdges(cnode)

20: end for
21: end if
22: end function
23:
24: function CreateRedirectedEdge(Dependency dep, Node source, Target target)
25: cpnode← GetFirstCommonParent(source, target)

26: node← source

27: while node.getParent() �= cpnode do
28: CreateNewEdge(dep, node.getOutNode(), node.getParent().getOutNode())

29: node← node.getParent()

30: end while
31: node← target

32: while node.getParent() �= cpnode do
33: CreateNewEdge(dep, node.getParent().getInNode(), node.getInNode())

34: node← node.getParent()

35: end while
36: end function
37:
38: function CreateCallEdge(Dependency dep, Node source, Target target)
39: node← source

40: while node.getParent() �= source.getFunctionNode() do
41: CreateNewEdge(dep, node.getOutNode(), node.getParent().getOutNode())

42: node← node.getParent()

43: end while
44: node← target

45: while node.getParent() �= target.getFunctionNode() do
46: CreateNewEdge(dep, node.getParent().getInNode(), node.getInNode())

47: node← node.getParent()

48: end while
49: CreateCallEdges(...) // Continue in call hierarchy...
50: end function
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detail can be found in Algorithm 3. The function AddDependenceEdges is re-
cursively called for each node of the graph and determines the kind of dependency to
call the appropriate function for the edge creation. The function CreateNewEdge

creates a new direct edge between two nodes if both nodes belong to the same
hierarchical parent node and the new edge does not form a back-edge. If both
nodes belong to the same hierarchical parent node but the new edge would form a
back-edge, two edges communicating via the communication out and communication
in-node are created by two calls to the function CreateNewEdge, respectively. In
contrast, if both nodes are part of the same function but belong to different parent
hierarchical nodes, the function CreateRedirectedEdge is called creating edges
like discussed and shown in Figure 4.3. Finally, if both nodes are part of different
functions, CreateCallEdge is called operating like depicted in Figure 4.4. The
function getInNode() returns the communication in-node for a hierarchical node.
Otherwise (e.g., for simple nodes), it returns the node itself since these nodes do not
contain communication nodes. The function getOutNode() returns the communi-
cation out-node for a hierarchical node or the node itself otherwise, respectively.

As soon as the graph is extracted from the source code with all its nodes and
dependence edges it gets augmented with additional cost information as shown in
Figure 4.1. Based on this intermediate representation, the hierarchical paralleliza-
tion approach employed in this thesis is presented in the following section.

4.2 Global Hierarchical Parallelization Approach

This section presents the global parallelization approach developed to combine the
novel parallelization techniques presented later in this thesis. This section also
explains the integration and interaction of the different parallelization techniques,
described in Chapters 5 - 8 into the global parallelization approach. The central in-
termediate representation used is the Augmented Hierarchical Task Graph (AHTG)
which was described in detail in the previous section. By exploiting the advantages
provided by the AHTG, it is possible to search for parallelism only in a small portion
of the application at the same time. Compared to approaches which have to con-
sider the whole application at a time, the global parallelization approach presented
in this thesis drastically reduces the size of the vast solution space. This is crucial
for the sophisticated parallelization approaches presented later in this thesis.

4.2.1 Overview of the Parallelization Approach

The global structure of the employed parallelization approach is visualized in Fig-
ure 4.5. Eight fundamental steps are performed to extract parallelism from sequen-
tially written applications. In detail, these steps behave as follows:

1. Extract the ICD-C IR and the Augmented Hierarchical Task Graph:
The parallelization framework and its different approaches presented in this
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Figure 4.5: Global Perspective on the presented Parallelization Approach.

thesis are designed to extract parallelism from applications written in sequen-
tial ANSI-C code. Therefore, the application’s source code is first transformed
into a high-level intermediate representation. The source-code intermediate
representation employed in this work is called ICD-C IR [Inf13] and has the
advantage that its internal structure directly correlates to the structure and
components of the application without lowering the source code. This eases
the implementation of the extracted parallelism in the final step. Based on
the ICD-C IR, the AHTG is extracted as presented in the previous section.

2. Process nodes bottom-up:
Each hierarchical node can be processed in isolation which enables the usage of
complex parallelization techniques, due to the hierarchical segmentation of the
graph. This advantage is exploited by the presented parallelization approach
which extracts parallelism in a depth-first-search manner. Therefore, the al-
gorithm starts with one of the innermost nodes of the graph. By construction,
these nodes are either simple or communication nodes (cf. Section 4.1.1). Since
it makes no sense to move a single statement into a task and wait for its com-
pletion, only the original sequential solution represented by a so-called solution
candidate is created for these nodes. All leaves of the graph are augmented
with cost information for the considered objectives, like, e.g., execution time
and energy consumption so that this cost information can directly be used as
objective values for the created sequential solution candidates. As soon as all
child nodes are processed, and a set of parallel solution candidates is created
for all of them, the parallelization approach continues to search for parallelism
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upwards in the hierarchy. If the algorithm reaches a hierarchical node, one of
the parallelization approaches presented in Chapters 5 - 8 or a combination
of them is applied to extract parallelism there. Therefore, child nodes can
be moved to newly extracted tasks and can be recombined with parallelism
which was extracted deeper in the hierarchy (the creation and combination of
parallel solution candidates is described in detail in Section 4.2.2). From the
perspective of the global parallelization approach, all available parallelization
techniques operate in a black-box fashion. The approaches extract parallelism
and return objective values for the extracted solution candidates. As a con-
sequence, the global approach and the other techniques do not need to know
any details about the extracted solutions since they can rely on these objective
values. The following steps 3-5 are now processed for each hierarchical node
in isolation in a bottom-up search manner. As soon as all nodes are processed
and the root node of the graph is reached, the algorithm continues with step
six.

3. Apply sophisticated parallelization approaches:
All child nodes of the node to be parallelized are already processed and a set
of parallel solution candidates exists for all of them, due to the bottom-up
direction of the parallelization approach. The presented framework of this
thesis contains a couple of sophisticated parallelization approaches extracting
different kinds of parallelism (task-, loop-, and pipeline-parallelism) in single-
and multi-objective aware manners for homogeneous and heterogeneous em-
bedded architectures as presented later in Chapters 5 - 8. Depending on the
target platform, the application designer can choose one approach or also a
combination of them. All selected parallelization approaches first determine
if they are applicable for the specific part of the application which should be
processed. For example, the pipeline-parallelization approaches presented in
this thesis can only be applied to nodes representing a loop-statement while
task-level parallelism can be applied to all hierarchical nodes. If the specific
approach is able to extract solutions for the considered node, it is executed
once or multiple times with different input parameters (e.g. for the ILP-based
approaches) to extract different solution candidates representing parallelized
versions of the considered part of the application.

4. Create a front of Pareto-optimal solution candidates with different
approaches:
All solution candidates generated by the selected parallelization approaches for
the processed node are collected and evaluated for the considered optimization
objectives. Afterwards, the front of Pareto-optimal solution candidates is de-
termined so that this front is used as the final solution for the processed node.
At this step, no final decision is taken which solution candidate should be
used. To be most flexible, all these solutions are offered as solution candidates
for this node when the parent node is processed. Thereby, new parallelism can
be combined with different solution candidates from the child nodes.
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5. Attach solution candidates and continue with other nodes:
The solution candidates of the Pareto-frontier of the node to be parallelized
are now attached to the node of the Augmented Hierarchical Task Graph
as solution candidates. Afterwards, steps 2-5 can be performed for the next
nodes on the same hierarchical level. As soon as all nodes on the same level are
processed, the algorithm continues the parallelization process upwards in the
hierarchy. Steps 3 and 4 are repeated until the root node of the graph is reached
and a set of Pareto-optimal solutions is created containing a combination of
solution candidates for all child nodes.

6. Select (best) solution candidate as final result:
If the application designer has chosen a combination of techniques focusing
on single-objective aware optimization techniques only, the best solution with
respect to this objective is automatically chosen as the final solution candidate.
Otherwise, the front of Pareto-optimal solutions is presented by the framework
so that the application designer can choose the solution which fits best to a
specific application scenario as the final solution.

7. Annotate Source Code:
The presented parallelization framework finally annotates the application’s
source code according to the selected final solution. Here, the application
designer can choose between one of two different annotation types. The
first one is based on a separate parallel specification file which maps la-
beled statements to tasks according to the input specification of the MPA
framework [BBW+09]. The second supported code annotation is based on an
OpenMP extension, which was specifically developed for usage with embedded
devices (cf. PICO in Section 3.1.2).

8. Implement parallelism:
Depending on the chosen output-format, either MPA [BBW+09] or PICO
(cf. Section 3.1.2) is chosen for an automatic implementation of the extracted
parallelism. Since the application code is only slightly modified by inserted
labels or pragma statements, it may also be possible to adapt the generated
solutions for other implementation tools easily.

The hierarchical approach also enables an easy integration of additional paral-
lelization approaches in the future. As long as an approach returns a node-to-task
mapping for the created solution candidates and evaluation functions for the con-
sidered optimization objectives, it can be directly added as one of the available
parallelization approaches applied in step 3. The new solution candidates are com-
bined with solution candidates of the existing approaches and – if they optimize at
least one objective – they are added to the front of Pareto-optimal solution candi-
dates for the considered node. In this way, an arbitrary number of approaches can
easily be combined in a plug-and-play fashion.

The global parallelization algorithm is also visualized in Algorithm 4. It is fre-
quently referenced in the remainder of this thesis to explain the integration of the
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Algorithm 4 Pseudo Code of Global Parallelization Algorithm
1: function Main(IR ir, Platform pf , int maxTasks)
2: ahtg ← ExtractAhtg(ir) // cf. Algorithm 1
3: solutions← ParallelizeAhtg(ahtg.getRootNode(), pf,maxTasks)

4: ImplementBestSolution(ahtg, pf, solutions)

5: end function
6:
7: function ParallelizeAHTG(Node n, Platform pf , int maxTasks)
8: // Parallelize bottom-up in hierarchy, first.
9: for all c ∈ n.getChildNodes() do

10: cnoderesults← ParallelizeAHTG(c, pf,maxTasks)

11: AttachSolutionCandidates(c, cnoderesults)

12: end for
13: // Add the sequential solution for all processing units.
14: results← n.getSequentialSolutions(pf)

15: // Apply all activated approaches of Chapters 5-8 and collect results.
16: for all approach ∈ ParallelizationApproaches do
17: if IsEnabled(approach) ∧ IsApplicable(approach, n) then
18: r ← Parallelize(approach, n, pf,maxTasks)

19: results← results ∪ {r}
20: end if
21: end for
22: // Only store Pareto-optimal solution candidates for node n.
23: optresults← CreateParetoFrontier(results)

24: // Return all found solutions for current node.
25: return optresults

26: end function

different parallelization approaches into the global parallelization framework. The
Augmented Hierarchical Task Graph is extracted in line 2 of the Main function.
Afterwards, the global parallelization algorithm extracts parallelism in a bottom-up
search strategy by calling the function ParallelizeAhtg in line 3. The function
expects the root node of the Augmented Hierarchical Task Graph, platform infor-
mation including, e.g., the number and performance characteristics of the available
processing units, and an upper bound for the number of concurrently executed tasks,
which can be defined by the application designer as arguments. As soon as the func-
tion ParallelizeAhtg returns, the whole Augmented Hierarchical Task Graph is
processed and a set of Pareto-optimal parallel solutions is returned from which one
solution is finally implemented in line 4.

The function ParallelizeAhtg is called recursively for all child nodes of node
n in line 10 first to ensure the bottom-up parallelization methodology. The solution
set for node n is initialized with the sequential versions of node n executed on the
available processing units in line 14. As a consequence, the parallelization tool
flow can always fall back to the sequential version of this node if more efficient
parallelism is found upwards in the hierarchy. Afterwards, all enabled and applicable
parallelization approaches integrated into the global parallelization tool flow are
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called one after the other and all generated solution candidates are collected in lines
16-21. Finally, the front of Pareto-optimal solution candidates is determined in line
23 and returned as the result for node n in line 25.

4.2.2 Parallel Solution Candidates

All parallelization techniques presented in this thesis extract one or more so-called
parallel solution candidates which are finally combined to a front of Pareto-optimal
solutions. Such a front is created for all nodes of the graph. Upwards in the hi-
erarchy, new parallel solution candidates are created and combined with parallel
solution candidates of the child nodes deeper in the hierarchy. Each solution can-
didate contains information about the extracted node-to-task mapping of its direct
child nodes as well as cost information for all considered optimization objectives.
This cost information is either taken from the augmented cost information of the
graph (for sequentially executed nodes) or is estimated by high-level cost models
presented later in this thesis. If the considered parallelization approaches are ap-
plicable to heterogeneous architectures, they also add information about the deter-
mined task-to-processor-type mapping. Since all parallelization techniques annotate
cost information to the solution candidates, it is unnecessary for the parallelization
techniques upwards in the hierarchy to possess detailed knowledge about the kind of
exploited parallelism. This enables a plug-and-play fashion of different paralleliza-
tion techniques operating as black-boxes in the presented framework.

Figure 4.6 presents a detailed example of the global parallelization approach
with respect to the creation and combination of parallel solution candidates. In this
example, the focus does not lay on the parallelization approaches and the different
extraction and evaluation techniques. The number of extracted tasks, execution
times, etc., are only exemplarily chosen and may not necessarily be reasonable. The
hierarchical structure of the Augmented Hierarchical Task Graph (AHTG) can also
be seen as a tree structure as shown on the right-hand side of this figure. Some of
these nodes are omitted to improve readability (further nodes are implied by ’...’).
The combination of solution candidates through the hierarchy is exemplarily high-
lighted for two solutions which finally run two and four extracted tasks in parallel
(red and blue shapes and edges). As already stated, the parallelization approach
starts to extract parallelism using a bottom-up search strategy. The different hierar-
chical levels are surrounded by dotted shapes and labeled “Level 0” to “Level 3”. As
shown in Figure 4.6, the leaves of the graph are located at hierarchical level zero and
are invariably simple nodes like, e.g., assignment statements which do not contain
any inner structures to be parallelized. Therefore, a parallel set is created for all
of them containing only a single sequential solution by taking the objectives values
from the augmented information provided by the AHTG. Sequential solutions con-
tain only one (main-)task like shown in the corresponding table depicting the nodes’
solution candidates. If the approach extracts parallelism for heterogeneous archi-
tectures, more than one sequential solution might be created since the performance
of the node’s statements may vary on different heterogeneous processing units. For
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Figure 4.6: Extraction and Combination of Parallel Solution Candidates.

simplicity reasons, a homogeneous architecture is assumed in Figure 4.6.

As soon as the sequential solution sets are created on the lowest hierarchical
level, the parallelization approach moves upwards in the hierarchy to level one and
reaches the first hierarchical node N3. Here, one of the approaches presented in
Chapters 5 - 8 or also a combination of them can be used to extract new parallel
solution candidates for this node (cf. Algorithm 4 in line 18). Each returned solution
candidate is evaluated by high-level cost models and – if it is Pareto-optimal –
added to the parallel solution set of node N3. The different approaches try to
extract new parallelism by moving direct child nodes (N4, N5, and N6) of N3 into
concurrently executed tasks and have the possibility to combine these solutions with
parallelism which was found deeper in the hierarchy. Therefore, one solution of each
child node’s solution set (nodes from level zero) is selected for each newly created
solution candidate. This combination is depicted by the arrows on the left-hand side
of Figure 4.6. Making this decision is trivial on this hierarchical level, since all child
nodes (N4, N5, and N6) of N3 only contain one (sequential) solution. In the given
example, three solutions with one, two and three concurrently executed tasks of all
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extracted solutions remain in the front of Pareto-optimal solutions for node N3 and
are placed in the set of Pareto-optimal solution candidates of this node. Note that
hierarchical level one may contain more nodes to be parallelized as indicated by the
three dots on the right-hand side of the graph. These nodes have to be processed
first before the parallelization approach continues with hierarchical level two.

As soon as all child nodes of hierarchical level one are processed, the algorithm
continues with level two which contains hierarchical node N2. Also here, new tasks
can be extracted by parallel executing the child nodes (N3 and the ones implied by
’...’). Furthermore, these tasks can be combined with parallelism which was found
deeper in the hierarchy. Therefore, each solution candidate selects the solution
candidates of hierarchical level one which should be used like denoted by the edges
on the left-hand side of Figure 4.6. In the example shown, the solution with four
parallel tasks for node N2 is based on the solution with three parallel sub-tasks of
node N3 (highlighted by red shapes and edges). In contrast, the solution creating
two concurrently executed tasks is based on the solution with two sub-tasks of node
N3 (highlighted by blue shapes and edges). Since the hierarchical solutions from the
child nodes’ level are also linked to solutions deeper in the hierarchy, a new solution
candidate implicitly contains extracted parallelism for all nodes which are processed
so far. Besides node N3, node N2 also has to choose hierarchical solution candidates
for the out-faded node of hierarchical level one (’...’). This step is repeated until the
root node of the graph is reached. The four extracted solutions are based on different
solution candidates deeper in the hierarchy. One solution, e.g., the highlighted
red one implementing four concurrently executed tasks, is finally returned for code
annotation and implementation. As can be seen, each solution of the root node
implicitly contains one parallel solution candidate for all child nodes.

An approach which directly determines one solution candidate for each node
as soon as it is processed would be much easier to implement since each child node
would have only one fixed value for each considered objective. Instead, the approach
presented here extracts a front of Pareto-optimal solutions for each child node. This
makes the extraction step more complicated since the approaches which extract new
parallelism also have to decide which hierarchical solutions to select. Depending on
the selected solutions the objective values, like, e.g., the execution time of the child
nodes, may vary. Nonetheless, the presented approach provides large flexibility on
each hierarchical level which is crucial if applications should be efficiently paral-
lelized. By using the proposed approach, the extraction techniques can always fall
back to solutions with less or even no parallelism deeper in the hierarchy if more
efficient parallelism can be extracted on the current hierarchical level. Vice versa,
the algorithms can omit the extraction of new parallelism if, e.g., task-creation and
communication-overhead prevent parallel execution on the current hierarchical level
and therefore fully or partially rely on parallelism which was extracted deeper in the
hierarchy. Of course, also a combination of new and previously extracted parallelism
is feasible which highlights the flexibility of the proposed approach.
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4.3 Summary

By combining the benefits provided by the Augmented Hierarchical Task Graph
(AHTG) with the extraction and combination of Pareto-optimal solution candidates
for each node of the graph, a good basis is created enabling complex parallelization
techniques, like the ones presented in the following chapters. The AHTG facilitates
an infrastructure for an easy combination of multiple parallelization techniques in
a black-box fashion extracting different types of parallelism on various granularity
levels. Moreover, due to the self-contained, acyclic structure of each hierarchical
node, the size of the solution space of the parallelization problem is drastically
reduced. This enables complex parallelization techniques which can evaluate the
benefit of the extracted parallelism locally.

The front of Pareto-optimal solution candidates created for each node of the
graph enables great flexibility on each hierarchical level and allows a combination
of new and previously extracted parallelism in a well-balanced fashion. In addition,
the structure of the parallelization framework allows an easy integration and com-
bination of new parallelization techniques with existing ones. All techniques can be
enabled and disabled in a plug-and-play fashion to extract efficient parallelism for
multiple application domains for homogeneous and heterogeneous architectures.
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This chapter presents the first parallelization approaches developed in the con-
text of this thesis. They are tailored towards the special requirements imposed
by embedded MPSoCs. Both approaches, one extracting task-level parallelism and
another one extracting pipeline parallelism, focus on the reduction of an applica-
tion’s execution time by partitioning the application into concurrently executed
tasks. The parallelization approaches introduced in this chapter are optimized for
homogeneous architectures providing multiple processing units with identical per-
formance characteristics. To be able to utilize the targeted MPSoCs efficiently, the
presented approaches employ high-level cost models to evaluate and optimize the
benefit obtained by parallel execution. The approaches integrate task creation and
communication costs which can be configured with respect to the targeted MPSoC
architecture. Moreover, processor-specific execution times of individual statements
are also integrated into the considered high-level cost models based on high-level
simulation (cf. Section 3.2.3). This enables an estimation of the execution time of
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statements grouped to tasks for various target platforms. The models also support
avoiding the creation of tasks for which the benefits achieved by parallel execution
are diminished by too expensive communication overhead. To cope with the com-
plexity of the proposed parallelization techniques, the approaches are integrated into
the hierarchical parallelization tool flow based on the Augmented Hierarchical Task
Graph (AHTG) as described in the previous Chapter 4.

As already discussed, finding an optimal partition of the statements of an ap-
plication into concurrently executed tasks is an NP-complete problem [Sar89]. As a
consequence, no efficient algorithm exists which can be used to solve this problem.
But instead of employing inaccurate approximations based on simple heuristics like
done in many previously published parallelization approaches, the ones presented in
this thesis are based on accurate high-level cost models. One approach that is often
used in such a situation is Integer Linear Programming (ILP). Even though ILP has
proven to be an excellent optimization technique for many real-world problems like,
e.g., partitioning issues, it has not been applied to extract parallelism from sequen-
tially written applications so far. Besides the advantage that ILP defines a clear
mathematical problem description, the feasibility of integrating high-level cost mod-
els directly in the optimization process seems to be promising to apply it to extract
parallelism. Another beneficial property of ILP solvers is that they can determine
whether they have found the optimal solution for a given optimization problem.
Hence, the optimization process can stop as soon as the solution is found. This is
not possible for many heuristic-based optimization techniques, like, e.g., Simulated
Annealing (SA) [KGV83]. Such heuristics do not have detailed knowledge about the
explored solutions space. Therefore, they only try to generate new solution candi-
dates until a given criterion is met. In addition, ILP solvers guarantee to find the
optimal solution – with respect to the applied model – if enough time is given and
such a solution exists. Many open-source as well as commercial ILP solvers, like,
e.g., lp_solve [BKP13] or IBM’s CPLEX [IBM13] exist. Thus, the optimization
designer can focus on modeling the ILP system and integrating it into the tool flow
and rely on the already existing, highly optimized solvers.

Taking all these things together, ILP is a promising optimization technique which
could be applied to extract parallelism from sequentially written applications. The
complexity of the created ILPs can be significantly reduced by the hierarchical
parallelization approach presented in the previous section. This is substantial if
ILPs are to be applied since they are NP-complete in the general case [Mar11]. By
using the proposed hierarchical approach, only a small amount of statements are
processed at the same time which reduces the ILP systems’ problem size to a degree
that they can be solved efficiently. Therefore, the approaches presented in this
chapter employ ILP to extract parallelism from sequentially written applications.
The approaches extract different kinds of parallelism on various granularity levels
starting from single-statements over loops to complete function bodies by utilizing
high-level cost models for evaluation purposes.

The fundamental concepts of ILP are shortly summarized in Section 5.1, be-
fore the first ILP-based parallelization approach extracting task-level parallelism is
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presented in Section 5.2. Afterwards, Section 5.3 explains the second ILP-based par-
allelization technique for homogeneous architectures, extracting pipeline parallelism,
which is extremely efficient for many embedded applications. Finally, Section 5.4
summarizes the approaches presented in this chapter. Approaches for heterogeneous
MPSoCs will be discussed in Chapter 7 onwards.

5.1 Integer Linear Programming

Integer Linear Programming (ILP) is a special form of Linear Programming (LP)
forming an optimization technique which is often applied if no efficient algorithms are
known to solve a specific optimization problem. By using ILP, a linear optimization
function is either minimized or maximized by respecting a set of linear equalities
and inequalities. From a geometrical perspective, the ILP system spawns a convex
polyhedron and is therefore a special case of a convex optimization. Solving ILP
systems is a NP-complete problem [Mar11]. Nevertheless, many small or medium-
sized problems can be solved efficiently by commercial as well as open-source solvers.

More formally, the objective function of an ILP has the following form:

f (x0, x1, .., xn) =
n∑

i=0

ai ∗ xi → min with ai ∈ R, xi ∈ N0 (5.1)

While the set of constraints J is represented by:

∀j ∈ J :

n∑
i=0

bi,j ∗ xi ≥ cj with bi,j , cj ∈ R, xi ∈ N0 (5.2)

The minimization of the objective function f (x0, x1, .., xn) shown in Equation 5.1
can also be changed to a maximization by converting all positive constants ai to
negative ones and vice versa. Constraints shown in Equation 5.2 with ’≥’ operators
can be expressed with ’≤’ operators in the same way. In addition, a constraint with
an ’=’ operator can be substituted by two constraints using a ’≤’ and a ’≥’ operator.
A subtraction of decision variables xi is also possible, by a multiplication of their
constants with -1. More details on ILP can be found in various books, like [Neu79].

5.2 ILP-based Task-Level Parallelization Approach

One kind of Thread-Level Parallelism which is efficient and often extracted by par-
allelization frameworks (which do not only extract parallelism from loops of the
targeted application) is task-level parallelism. Usually, task-level parallelism divides
the statements of the application into coarse-grained, disjunctive tasks operating on
preferably independent data sets. In contrast, data-level parallelism tries to dupli-
cate the statements of a loop’s body to execute the same task on several processing
units. Task-level parallelism often benefits from, e.g., concurrently executed func-
tion calls or the parallel execution of several independent loops. The granularity of
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int main() {
    // Initialize temporary image buffers
    for (i = 0; i < N; i++) {
        for (j = 0; j < N; ++j) {
            image_buffer2[i][j] = 0;
            image_buffer3[i][j] = 0;            
        }
    }
    // Initialize filter[]
    convolve2d(image_buffer1, filter, image_buffer3);

    // Initialize filter2[]
    convolve2d(image_buffer3, filter2, image_buffer1);

    // Initialize filter3[]
    convolve2d(image_buffer3, filter3, image_buffer2);

    // Combine gradiants and apply threshold
    for (i = 0; i < N; i++) {
        for (j = 0; j < N; ++j) {
            temp1 = abs(image_buffer1[i][j]);
            temp2 = abs(image_buffer2[i][j]);
            temp3 = (temp1 > temp2) ? temp1 : temp2;
            image_buffer3[i][j] = (temp3 > T) ? 255 : 0;
        }
    }
}
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Figure 5.1: Task-Level Parallelization Example: Edge Detect Benchmark [Lee13]

the extracted tasks often depends on the targeted application and the parallelization
tool itself. Most tools start with basic blocks as their smallest possible paralleliza-
tion candidates to handle the complexity of the vast solution space. However, due
to the employed hierarchical approach, the task-level parallelization technique pre-
sented in this section is able to deal with single statements as the most fine-grained
task granularity. This ensures great flexibility in the parallelization process.

The rest of this section is structured as follows: First, Section 5.2.1 explains
task-level parallelism in more detail and introduces its key properties with a moti-
vating example. Afterwards, Section 5.2.2 shows how the presented parallelization
technique is integrated into the global parallelization approach. The parallelization
model is explained in Section 5.2.3 before details of the ILP-based extraction tech-
nique are presented in Section 5.2.4. Finally, the efficiency of the proposed approach
is evaluated in Section 5.2.5.

5.2.1 Motivating Example for Task-Level Parallelism

The example code shown in Figure 5.1 presents the main function of the edge detect
benchmark from the UTDSP benchmark suite [Lee13]. It detects edges from a 256
level gray-scale image by applying 2D-convolution routines to convolve the image
with Sobel operators that expose horizontal and vertical edges. This benchmark was
chosen as an example since it is real-world code, which is often applied in embedded
systems. In addition, it is useful to present the most important aspects of the
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presented task-level parallelization approach without being too complex.
As shown on the right-hand side of Figure 5.1, the application can be func-

tionally divided into six phases. The first one is located between lines 2 and 8 and
initializes two temporary buffers image_buffer2 and image_buffer3 (the input im-
age is stored in image_buffer1). The employed hierarchical task graph divides this
part of the application into at least three hierarchical levels spawned by the outer
loop in line 3, the inner loop in line 4, and the loop body containing the two state-
ments image_buffer2[i][j]=0 and image_buffer3[i][j]=0. The parallelization
approach presented in this section tries to extract parallelism in a bottom-up search
strategy and has the following options for phase 1:

1. Create two concurrently executed tasks for the statements in line 5 (image_-
buffer2[i][j]=0) and line 6 (image_buffer3[i][j]=0) every time the body
of the inner loop in line 4 is reached.

2. Extract tasks for the inner loop in line 4 (for(j=0;j<N;++j)) executing the
iterations of the inner loop in parallel.

3. Extract tasks for the outer loop in line 3 (for(i=0;i<N;i++)) executing the
iterations of the outer loop in parallel.

In this example, multiple options exist even for the first few lines of the ap-
plication. Of course, also a combination of parallelism extracted from different
hierarchical levels is possible. To be able to determine the best combination of
parallelism, high-level cost models are applied. However, since the statements in
lines 2-8 only write zero values into temporary buffers, the overhead of task creation
and communication may overshadow the benefit of parallel execution. In the worst
case, this may lead to a solution which even reduces the performance of the whole
application. This should be avoided by the models used.

The last two functional phases of the application (step 5 and step 6 from line 18
up to 26) combine the calculated gradients and apply the specified threshold. They
are structured in a similar way to the first phase so that the same three opportunities
arise here. A nested loop executes four statements in the inner loop’s body. Also
here, these statements can be allocated to concurrently executed tasks – as soon as
data dependencies do not prevent parallel execution. Moreover, the loops’ iterations
can also be executed in parallel.

Finally, in stages 2, 3, and 4 several filters are initialized (marked via comments)
and a function named convolve2d is called three times for different filters and
buffers in lines 10, 13, and 16. To keep the example simple, the inner structure of
this function is not visualized in Figure 5.1. However, a nested loop is also contained
in this function which offers possible parallelism deeper in the hierarchy.

As soon as the whole hierarchical structure of all functional phases is processed
by the parallelization approach, the body of the main function starting in line 1 can
finally be processed. As described before, both nested loops (in line 3 and line 19) as
well as the three calls to the function convolve2d offer potential parallelism which
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Figure 5.2: Possible Parallel Solution of the Edge Detect Benchmark [Lee13]

was extracted before. With respect to the dependencies between the statements of
the function’s body, parallelism extracted deeper in the hierarchy may be combined
with new parallel sections executing the statements of the function body in parallel.

One possible solution of the parallelized edge detect benchmark optimized for
a platform with four processing units is visualized in Figure 5.2. The solution is
based on the solution candidates discussed above. In this example, the iterations
of the outer loop of phase 1 are executed sequentially since the high-level models
revealed that the parallel execution of this loop would slow down the overall perfor-
mance. Afterwards, the second phase is executed containing the first convolve2d
function which is divided into four concurrently executed tasks inside this function
deeper in the hierarchy. Afterwards, new parallelism is implemented directly in the
main function’s body, which executes phase 3 from lines 12-13 and phase 4 from
lines 15-16 in parallel. As a result, the initialization of the filter arrays and the
calls to convolve2d are executed in parallel. Since only two processing units are
allocated so far in this region, each convolve2d can be further divided into two
additional tasks. Therefore, two implementations of the convolve2d function are
added to the application’s source code with four (convolve2d_4tasks) and two
tasks (convolve2d_2tasks) running in parallel for phase 2, 3, and 4, respectively.
Finally, as soon as all tasks executing phase 3 and 4 have finished, the iterations
of the nested loop executing phase 5 and 6 are also divided into four concurrently
executed tasks. These tasks can either be extracted by one or also by a combination
of the proposed parallelization options.

To conclude, this example has shown the following aspects of the presented task-
level parallelization approach:

1. Task-Level parallelism can be extracted and combined from different hierar-
chical levels.

2. The combination of parallelism from different hierarchical levels (e.g., nested
loops, function bodies, and function calls) can be beneficial.

3. High-level cost models are necessary to find the best combination of extracted
tasks and to avoid too fine-grained solutions, which slow done the application.
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4. Specialization of functions with different amounts of tasks can be beneficial.

5. Parallelization tools should be able to tailor solutions to the targeted architec-
ture by, e.g., limiting the number of extracted tasks to the number of available
processing units.

5.2.2 Integration into the Global Parallelization Approach

The integration of the presented ILP-based task-level parallelization approach op-
timized for homogeneous MPSoCs into the global parallelization framework (cf.
Section 4.2) is shown in Algorithm 5.

Algorithm 5 Pseudo Code of the ILP-based Task-Level Parallelization Approach
1: // Called bottom-up hierarchically by Algorithm 4 in line 18 on page 56
2: function ExtractHomTLP(Node n, Platform pf , int maxTasks)
3: // This function is only applicable to hierarchical nodes.
4: solutions← ∅
5: if IsNotHierarchicalNode(n) then
6: return solutions

7: end if
8: // Extract parallelism for hierarchical node n.
9: // All nodes deeper in the hierarchy are already processed.

10: i← maxTasks

11: while i >= 2 do
12: result← HomILPTaskLevelParallelizer(n, pf, i)

13: solutions← solutions ∪ {result}
14: i← NumberOfTasks(result)− 1

15: end while
16: return solutions

17: end function

The function ExtractHomTLP is executed by the global parallelization al-
gorithm (cf. Algorithm 4) as soon as all child nodes deeper in the hierarchy are
processed. As arguments, the function expects the node to parallelize n, plat-
form specific information pf containing, e.g., the performance characteristics and
the number of available processing units, and an upper bound of extractable tasks
maxTasks. The variable maxTasks is set to the number of available processing
units of the targeted architecture by default and can be customized by the appli-
cation designer. Thereby, the parallelization process does not generate more tasks
than processing units are available by default. This reduces additional scheduling
overhead at runtime which is desirable for embedded systems.

In lines 5-7 the algorithm determines whether the currently processed node n is
a non-hierarchical node since only hierarchical ones are processed by the ILP-based
homogeneous task-level parallelization approach. It does not make sense to move
one node to a separate task and wait for its completion. As a consequence, non-
hierarchical nodes are skipped in the parallelization process (lines 5-7). ILP-based
optimization techniques always return the best solution candidate – with respect
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to the applied optimization model – as their only solution. If only one solution
would be generated for each node in the graph, the parallelization process upwards
in the hierarchy would be limited in its further possibilities. Therefore, the ILP-
based parallelization technique described in Section 5.2.4 is executed multiple times
in lines 10-15 to generate several solution candidates with at maximum maxTasks

tasks down to 2 tasks. Thus, for architectures providing, e.g., four processing units
the ILP-based parallelization approach is called up to three times in line 12 with an
upper bound of extractable tasks set to 4, 3, and 2. However, due to the optimality
of the solutions returned by the ILP solver, some of the iterations can often be
skipped. If the parallelization process returns a solution with 2 tasks, even if it
was able to generate up to 4 tasks, the iterations with 3 and 2 maximum tasks are
skipped since they would create the same solution. All generated solution candidates
are finally collected in line 13 and returned as solution candidates for the processed
node n in line 16. Upwards in the hierarchy, the generated solution candidates of
node n can later be combined with new parallelism for the parent node.

5.2.3 Parallelization Model

This section presents the concepts of the task-level parallelization approach called in
line 12 of Algorithm 5 (HomILPTaskLevelParallelizer) before the ILP formu-
lations used are discussed in the next Section. As its target objective, the task-level
parallelization approach presented in this chapter tries to minimize the critical path
(the most expensive one) within a hierarchical node n. In particular, this means
that the ILP-based approach aims at the minimization of the costs of the path from
the hierarchical node’s communication in- to its communication out-node by moving
some of its child nodes to concurrently executed tasks. All child nodes are already
processed at this point, due to the bottom-up parallelization approach of the frame-
work. Therefore, a set of parallel solution candidates with different execution times
depending on the number of extracted tasks exists for all child nodes. The ILP
solver is now able to reduce the longest execution path for node n by moving its
child nodes to newly created tasks and by selecting hierarchical solution candidates
with different granularities for each child node. The computation of the critical
path is based on Sarkar [Sar91a]. To be able to adapt this approach to different
hardware platforms, a task creation overhead which is added for each created task
and a communication overhead which is multiplied by the amount of communicated
bytes between different tasks can be specified. By changing these parameters, the
user is also able to steer the granularity of the extracted parallelism.

The ILP-based parallelization approach divides the hierarchical node into three
sections (cf. Figure 5.3(b)). All statements of the first section belong to the main
task and are executed sequentially on the processor which started the execution of
the hierarchical node. The second one is the so called parallel section, where dif-
ferent tasks can be executed concurrently. The main task waits until all tasks of
this parallel section have finished their work and all data is communicated back.
The last section is again a sequential section which belongs to the main task, where
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Figure 5.3: Task-Level Parallelization Example

statements are executed without explicit data communication. This kind of seg-
mentation is called fork-join execution model [DM98] and is equal to the one used
by MPA [BBW+09] and OpenMP [DM98]. In general, it is often useful to exe-
cute some statements before and after a parallel section sequentially to avoid high
communication costs for less computationally intensive parts of the application.

An example for such a partitioning is shown in Figure 5.3. The input for the
parallelization step is given as a hierarchical node of the AHTG to be processed on
the left-hand side in Figure 5.3(a). The sequential, hierarchical node, which should
be parallelized, contains six child nodes, its communication in- and communication
out-node and several data dependencies, which may produce communication, if the
statements are executed in different tasks. The hierarchical node to be processed
may be anywhere in the hierarchy and the child nodes can either be simple nodes
or hierarchical ones. The right-hand side shows a possible result of the ILP-based
approach in Figure 5.3(b). Here, the solver decided to map Node 1 to the sequential
task that is executed in front of the parallel section. Therefore, no data has to
be communicated to execute Node 1. Node 2 and Node 4 are then moved to a
newly created task T1. The second task T2, which is concurrently executed to
T1, contains Node 3 and Node 5. Node 6 is finally executed after the two tasks
have been synchronized. As a result, two tasks, each one containing two child
nodes, are executed in parallel, which may reduce the overall execution time of the
hierarchical node. Further reductions may be achieved by choosing non-sequential
parallel solution candidates for the child nodes. Especially in this case, the created
tasks should be balanced so that all tasks within the parallel section finish nearly
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Figure 5.4: Node in Task Constraint

at the same time. Obviously, the well-known Amdahl’s law [Amd67] provides an
upper bound on the speedup which can be achieved in this way.

5.2.4 ILP-based Parallelization Approach

To cope with the complexity of the parallelization problem, the hierarchical nodes
of the AHTG are processed in isolation with the global divide-and-conquer-based
parallelization technique. Instead of creating one large ILP, smaller ones for each hi-
erarchical node are created and solved. The extracted solutions are later re-combined
with parallelism on the parent hierarchical level. This drastically reduces the search
space of the optimization problem so that the ILPs can be used and solved efficiently.
The rest of this section defines the ILP formulation used to extract task-level paral-
lelism in the form presented in the previous section. The ILP-based parallelization
approach covers the following four main goals:

I) Map statements of direct child nodes into newly extracted, disjunctive tasks
to reduce the overall execution time by parallel execution.

II) Combine newly extracted tasks with tasks which were extracted deeper in
the hierarchy, if such a solution increases the overall performance (Parallel
Solution Candidate Mapping).

III) Keep track of dependencies which may change if child nodes representing state-
ments are moved from one task to another one.

IV) Minimize the overall execution time by taking task creation and communica-
tion overhead as well as task execution costs into account.

In the following, decision variables are written in lower case letters, sets start
with a capital letter and constants consist of exclusively capital letters. Indices n

and o are used for child nodes of the node to be parallelized, t and u represent
indices for tasks while hierarchical solution candidates of the child nodes use s as
index. Graphical representations for most equations are also given in Figures 5.4 -
5.10 which visualize the decision variables and constraints used.
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5.2.4.1 Node in Task Constraint

Goal (I) of the approach is a mapping of child nodes to newly extracted, concurrently
executed tasks. Therefore, a decision variable xtn is defined in Equation 5.3 which
denotes whether child node n is mapped to task t. This mapping is also visualized
on the left-hand side of Figure 5.4. The tasks with the lowest number (T1) and the
highest one (Tn) belong to the sequentially executed main task. All other tasks are
part of the parallel section and are executed concurrently if dependencies do not
prevent parallel execution.

xtn =

{
1, if node n is mapped to task t

0, otherwise
(5.3)

The constraint in Equation 5.4 takes care that every node is mapped to exactly
one of the given tasks.

∀n ∈ Nodes :
∑

t∈Tasks

xtn = 1 (5.4)

To reduce the number of created condition variables and constraints, the nodes
are first topologically sorted with respect to their dependencies. Afterwards, the first
node can only be assigned to the main task or the first task of the parallel section.
The second node can further be assigned to the main, the first or the second task
of the parallel section and so on. In this way, the variables are created in a triangle
form which does not limit the solution quality but reduces the amount of created
variables (cf. right-hand side of Figure 5.4).

5.2.4.2 Parallel Solution Candidate Constraint

As explained in the previous section, all child nodes are already processed by the
ILP-based parallelization approach since the extraction algorithm parallelizes the
application in a bottom-up manner. As a result, all profitable parallel solution
candidates were collected in a so-called parallel set for each child node (cf. Fig-
ure 5.5). Each set contains at least a sequential solution for each child node and
also parallelized versions if they increase the overall performance. Now, the algo-
rithm has to choose one solution candidate for each child node which may contain
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tasks which were extracted deeper in the hierarchy. In this way, newly extracted
tasks are combined with tasks which were found earlier like claimed by Goal (II).
Each solution candidate has a different execution time depending on the number of
extracted tasks. Equation 5.5 defines variable pn,s which evaluates to 1 if parallel
solution s of node n is chosen for n.

pn,s =

{
1, if parallel solution s of child node n is chosen
0, otherwise

(5.5)

Equation 5.6 takes care that exactly one hierarchical parallel solution is chosen
for each child node n.

∀n ∈ Nodes :
∑

s∈Solutionsn
pn,s = 1 (5.6)

The definition and the way the hierarchical solution candidates are selected were
slightly modified compared to the original publication [CMM10]. In the original ver-
sion, the solution candidates of all child nodes were crosswise combined before the
ILP was executed. As a consequence, the solver only had to choose one combina-
tion of solution candidates. Hence, depending on the number of extracted solution
candidates per child node, a large number of combinations had to be created even
if only one of them was chosen and further used. In the new version presented here,
the ILP directly selects one solution candidate per child node so that this step can
be skipped. This form also enables better opportunities for heterogeneous architec-
tures, like required by the heterogeneous parallelization approaches presented later
in this thesis.

5.2.4.3 Predecessor Constraint

Parallel execution is often prohibited by data- or control-flow dependencies which
create a predecessor and successor relationship between the extracted tasks. Un-
fortunately, the dependencies between the different newly extracted tasks are based
on the dependencies between the child nodes. Thus, if a dependence edge between
two nodes exists and both nodes are mapped to different tasks, the succeeding one
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has to wait until its predecessor has finished its execution so that the required data
can be communicated (cf. nodes N1 and N3 in tasks T1 and T3 in Figure 5.6). The
situation gets even worse if one node is re-allocated from one to another task by the
ILP solver since dependencies between the newly extracted tasks may also change.
If, e.g., node N4 in Figure 5.6 would be re-allocated from task T2 to task T3, the
dependence edge between nodes N2 and N4 would enforce the serial execution of
the tasks T2 and T3. This behavior and the resulting execution order of tasks in the
parallel section have to be explicitly modeled since the critical (or most expensive)
execution path within the hierarchical node to be parallelized should be used as
optimization objective. Techniques determining such paths within ILPs are often
used in literature, like, e.g., in [LMD94] and [FSS11]. However, these techniques
model paths with static dependencies. Here, the paths dynamically depend on the
node-to-task mapping making the problem more complex. Equation 5.7 defines de-
cision variable predt,u which evaluates to 1 if task t is a direct predecessor of task
u.

predt,u =

{
1, if task t is a direct predecessor of task u

0, otherwise
(5.7)

The relation between the newly extracted tasks must be expressed in the ILP
as claimed by Goal (III) and depends on the node-to-task mapping, modeled by
decision variable xtn (cf. Equation 5.3). If a dependence edge from node n to node o

exists (EDGEn,o = 1) and both nodes are mapped to different tasks t and u, then
task t is a direct predecessor of u, like denoted in Equation 5.8.

∀t, u ∈ Tasks : ∀n, o ∈ Nodes : t �= u : n �= o : EDGEn,o = 1 :

predt,u ≥ xtn ∧ xuo (5.8)

If task t is a predecessor of task u, then u has to wait until t has finished
its execution since u has to consume data produced by task t. The ∧ operator
used in Equation 5.8 is not part of regular ILP formulations. Nevertheless, it can
be substituted by a new variable and three inserted constraints as shown in the
Appendix in Section A.2.1.

The predecessor variable predt,u is created for all possible task combinations.
From a technical perspective, it should be mentioned that the constant EDGEn,o is
known when the ILP is created. Therefore, constraints are only generated if a direct
edge between n and o exists. Two further exceptions are related to the calculation
of the path information: the sequential block of the main task right before the
parallel section (cf. Figure 5.3) is a predecessor of all other tasks. Analogously,
the sequential block after the parallel section is a successor of all other tasks or
vice versa: All other tasks are predecessors of the sequential task after the parallel
section.

5.2.4.4 Task Execution Costs Constraint

The presented ILP-based parallelization approach should be able to balance the
extracted tasks automatically so that all tasks finish nearly at the same time before
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the parallel section is left. Therefore, execution costs are estimated for all tasks to
weight the different execution paths extracted in the next step. Equation 5.9 defines
variable costt which represents the execution costs of task t.

∀t ∈ Tasks : costt = EC ∗ TCO +
∑
n

∑
s
(xtn ∧ pn,s) ∗ COSTSn,s (5.9)

The execution costs costt of task t consist of a configurable task creation over-
head TCO multiplied by the execution count EC of the node to be parallelized.
This overhead is increased by the execution costs1 COSTSn,s of all nodes n which
are mapped to task t depending on the chosen parallel solution candidate pn,s (cf.
Figure 5.7). By adjusting the constant task creation overhead TCO, the approach
can be ported to various target platforms since this overhead directly influences the
granularity of the extracted tasks. It should also be mentioned here that costt is
part of the objective function so that it is automatically minimized by the ILP.

The execution costs belonging to the two parts of the sequential main task
are calculated in a slightly different way. Because they are executed on the same
processing unit as the previous nodes, the task creation overhead EC ∗ TCO of
Equation 5.9 can be ignored for them so that only the execution costs of the nodes
are summed up.

5.2.4.5 Path Cost Constraint

Based on the knowledge of the predecessor relationships and the execution costs of
each task, it is now possible to define the accumulated costs of all possible execution
paths within the hierarchical node to be parallelized as stated by Goal (IV). Each
path cost variable accumcostt for task t contains execution and communication costs
for task t itself and all previous tasks on the path starting with the sequential task
in front of the parallel section (cf. Figure 5.8). The order in which the data will be
communicated between the extracted tasks is not known at this time. This decision
is later taken by one of the parallelization implementation tools. Therefore, a best-
case and a worst-case scenario are shown here which can be selected by the user to

1The variables COSTSn,s were calculated deeper in the hierarchy and are therefore constants
for the parallel solution candidates.
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calculate the path costs. However, experience has shown that the best-case scenario
estimates too optimistic execution costs for at least the target platforms considered
in this thesis. As a consequence, the worst-case formulation was chosen to generate
the results presented later in this chapter.

Equation 5.10 defines the accumulated cost information accumcostt for task t

estimated by the best-case communication model. Here, the accumulated path costs
are equal to the execution costs costt of task t itself increased by execution costs of
the most expensive predecessor task u and the communication costs commcostu,t

between both tasks. Thus, it is assumed that the data is directly communicated
from task u to t as soon as u has finished its execution. The communication costs
are determined by multiplying the amount of communicated bytes by a configurable
communication factor to adjust the approach to different target platforms. The
precondition predu,t = 1 can be ensured by subtracting a constant from the right-
hand side of the equation whose value is greater than the sum of all other possible
values if the precondition is not met like shown in the Appendix in Section A.2.2.

∀t, u ∈ Tasks : predu,t = 1⇒ t �= u :

accumcostt ≥ costt + accumcostu + commcostu,t (5.10)

The worst-case scenario presented in Equation 5.11 assumes that task t has to
wait for its input data until all its predecessor tasks have communicated all data
to their successor tasks, even if this data is not consumed by t. In contrast to the
best-case model, the communication costs commcostu contain all communication
costs of task u even if the data is not communicated to task t to express that the
required data is communicated at the end of u’s communication phase.

∀t, u ∈ Tasks : predu,t = 1⇒ t �= u :

accumcostt ≥ costt + accumcostu + commcostu (5.11)

The accumulated path costs are also part of the objective function and are
automatically minimized by the ILP solver.
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5.2.4.6 Number of Hierarchical Tasks Constraint

The avoidance of additional runtime overhead is important for resource-restricted
embedded devices. Therefore, the application designer should be able to restrict the
number of parallel executed tasks in order to avoid scheduling overhead at runtime.
Each child node may contain a number of concurrently executed tasks deeper in
the hierarchy, depending on the chosen parallel solution candidate. To be able
to restrict the overall number of concurrently executed tasks, the amount of tasks
executed deeper in the hierarchy htaskst has to be calculated for all newly extracted
tasks t, based on the node-to-task mapping. Since all nodes within the same task are
executed sequentially, the hierarchical tasks of these nodes will not overlap. Thus,
the highest amount of concurrently executed hierarchical tasks at a time is as large
as the maximum number of hierarchical tasks of all nodes mapped to the new task
(cf. Figure 5.9). This is expressed by the constraint defined in Equation 5.12.

∀t ∈ Tasks : ∀n ∈ Nodes : ∀s ∈ Solutionsn :

htaskst ≥ (xtn ∧ pn,s) ∗DEEPERHTASKSn,s (5.12)

The number of hierarchical tasks DEEPERHTASKSn,s for node n depends
on the chosen parallel solution candidate pn,s and is a constant since it is known at
the time when the ILP is created for the hierarchical node to be parallelized.

5.2.4.7 Max. Number of Concurrently Executed Tasks Constraint

To limit the number of concurrently executed tasks, a new decision variable taskusedt

is introduced in Equation 5.13 which defines if task t is used.

taskusedt =

{
1, if task t is used
0, otherwise

(5.13)

Task t is used if it contains at least one node like ensured by Equation 5.14 (cf.



5.2. ILP-based Task-Level Parallelization Approach 77

N3

N5

T3 Task T3 is used, since two nodes are 
mapped to this task → taskused 

t3 = 1

T5
Task T5 is not used, since no nodes are 
mapped to this task → taskused 

t5 = 0

Figure 5.10: Max. Number of Concurrently Executed Tasks Constraint

Figure 5.10).

∀t ∈ Tasks : ∀n ∈ Nodes : taskusedt ≥ xtn (5.14)

The number of concurrently executed tasks is now equal to the sum of newly
created tasks increased by the number of hierarchical tasks. Here, only the parallel
tasks are taken into account since the executed tasks in the sequential parts are
already synchronized before the parallel section is entered. Equation 5.15 takes care
that the number of newly created and combined hierarchical tasks does not exceed
the given upper bound MAXTASKS of concurrently executed tasks.

MAXTASKS ≥
∑

t∈Tasks

(taskusedt + htaskst) (5.15)

The ILP formulation can further be optimized here by excluding solutions with
the same objective value, which only differ in the allocated tasks (cf. [LMM+97] and
Section 9.2). This could be achieved by constraints like taskusedt ≥ taskusedt+1

and may be integrated into the system in the future.

5.2.4.8 Cycle-Free Constraint

To avoid deadlocks and paths with infinite costs, the approach has to take care that
the paths within the node to be parallelized are cycle-free. Therefore, all direct child
nodes are topologically sorted by their dependencies and an ascending, unique id is
generated for both, nodes (nodeid) and tasks (taskid). W.l.o.g., the generated task
graph is cycle-free if the taskid of node n is greater or equal to the taskids of all
nodes o with a smaller nodeid. This is shown by Equation 5.16.

∀n, o ∈ Nodes : nodeidn ≥ nodeido : taskidn ≥ taskido (5.16)

5.2.4.9 Objective Function

Based on all defined decision variables and constraints, it is now possible to construct
the objective function. As mentioned before, the critical or most expensive path from
the communication in- to the communication out-node should be minimized. The
costs of this path are stored in the value of the variable accumcost of the sequential
out task tseqout (the last one which is the second part of the main task) because it
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is the successor of all other nodes in the created task graph. Therefore, it should be
minimized by the ILP solver as defined in Equation 5.17.

exectime = accumcosttseqout → min (5.17)

The value of the objective function is equivalent to the execution time required
to process the parallelized hierarchical node. It is hence returned together with the
node-to-task mapping and the chosen hierarchical solution candidates as result of
the parallelization step.

Even though the definition of the presented ILP-based parallelization technique
is complex, it can be solved quickly for the considered real-world benchmarks as
shown in the next section. In most cases, the hierarchical task graph reduces the
amount of child nodes from five up to fifteen nodes on each hierarchical level. Em-
pirical results have shown that most of the ILPs can be solved in less than a second
using the commercial ILP solver CPLEX [IBM13].

5.2.5 Experimental Results

To evaluate the efficiency of the presented ILP-based task-level parallelization ap-
proach for embedded homogeneous multi-core architectures, results for eleven em-
bedded benchmarks are presented. Most of them belong to the UTDSP benchmark
suite [Lee13] containing representative real-world embedded applications. In addi-
tion, other meaningful embedded applications like, e.g., a jpeg2000 encoder and an
implementation of the so-called boundary value problem from a physics application
domain were evaluated.

Three different target platforms were used to further highlight portability to
different target architectures. The first one is the Arm11MPCore platform (cf.
Section 3.3.3) containing one ARM11MPCore multi-core processor [ARM13b] pro-
viding four ARM cores. The second one is the ARM11QuadProc multi-processor
architecture (cf. Section 3.3.2) equipped with four ARM1176 single-core proces-
sors [ARM13a]. The last considered platform is the MPARM platform (cf. Sec-
tion 3.3.1) containing four ARM7 single-core processors [ARM13c]. While the first
two platforms are evaluated by the instruction-accurate simulator contained in the
Virtualizer tool suite [Syn13b], the last one is simulated by the cycle-accurate
MPARM simulator [BBB+05].

In order to execute the output of the parallelization framework on the simula-
tors, some additional work had to be done. The MPA tool [BBW+09] is used to
implement the extracted parallelism specified by the presented parallelization ap-
proach. MPA requires a special run time library (RTLIB), which had to be ported
to the different platforms. RTEMS (Real-Time Executive for Multiprocessor Sys-
tems) [RTE13] is used as real-time operating system and had to be adapted to the
different target platforms as well. To build a bridge between the operating system
and RTLIB, a library called R2G (RTEMS and RTLIB Glued Together) [Hei10] is
employed. These middleware adaptations were mostly done by Andreas Heinig.
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Figure 5.11: Speedup of Homogeneous Task-Level Parallelization Approach (Arm11-
MPCore Platform)

The results presented in Figures 5.11 - 5.13 include the execution time of the
application without the initialization phase of the operating system and the run-
time library because this overhead affects both the sequential and the parallelized
version of the application. Hence, the results focus on the execution time of the
application itself. The parallelization approach was limited to two, three and four
tasks as an upper boundary of concurrently executed tasks by the maxTasks vari-
able to evaluate the extracted speedup for different configurations of the considered
target platforms. The baseline of all diagrams is the sequential execution time of
the applications on one of the available cores. The original publication in [CMM10]
contains only results for the MPARM platform so that two additional architectures
are evaluated here. Furthermore, this section presents new results for more bench-
marks compared to [CMM10]. Some of the results may differ from the originally
extracted ones since many parts of the parallelization tool flow changed in the last
years including, e.g., the parallelization tool itself but also the operating system, the
simulators and other parts of the middleware which all have a big influence on the
extracted speedup.

As can be seen in Figures 5.11 - 5.13, the speedup scales well with the given
amount of extracted tasks for most of the benchmarks. The extracted speedups of
the different target platforms are further comparable and differ only marginally for
the different platforms. It was, e.g., possible to accelerate the compress benchmark
by nearly 2.0×, 2.6×, and 3.9× for two, three and four tasks running in parallel on
the Arm11MPCore platform, respectively. For the ARM11QuadProc and MPARM
platforms marginally lower speedups of nearly 2.0×, 2.6× and 3.8× were reached
which shows that the approach is able to extract reasonable speedups for several
target platforms. Other applications like the edge detect benchmark, require more
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Figure 5.12: Speedup of Homogeneous Task-Level Parallelization Approach (Arm11-
QuadProcessor Platform)

communication between the extracted tasks so that the speedup is not as high as
observed for the compress benchmark. But also here, speedups of nearly 1.8×, 2.4×,
and 3.0× were reached for the Arm11MPCore platform while 1.8×, 2.3×, and 2.7×
speedups were extracted for the ARM11QuadProc platform. The MPARM platform
performed slightly faster than the ARM11QuadProc platform with speedups of 1.8×,
2.4×, and 2.9×, respectively. Some of the benchmarks like the boundary value
problem show larger differences between the considered target platforms but most
results are comparable for all evaluated platforms.

However, in contrast to benchmarks like compress, edge detect, and mult for
which the task-level parallelization approach was able to extract efficient parallelism,
some benchmarks perform not so well. The benchmarks jpeg2000 and spectral, for
example, contain loops with loop-carried dependencies, which can hardly be handled
by task-level parallelism. Therefore, additional parallelization methods (like the
pipeline parallelization approach presented in the next section) are required to be
well applicable for benchmarks from various application domains. But even though
some of the benchmarks perform not so well, an average speedup of 1.7×, 2.1×, and
2.6× could be achieved for the Arm11MPCore platform, respectively. Moreover,
also for the ARM11QuadProc architecture, speedups of 1.7×, 2.1×, and 2.4× could
be reached. The MPARM platform is, on average, the slowest one with speedups of
1.6×, 2.0×, and 2.4×, respectively. Since these average speedups also contain results
for which task-level parallelism was not well applicable, the results show that this
first approach is a good basis for other parallelization techniques presented later in
this thesis. In addition, efficient solutions could be extracted for more than 50% of
all considered benchmarks with speedups of up to 3.9× for the considered platforms
providing four processing units.
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Figure 5.13: Speedup of Homogeneous Task-Level Parallelization Approach (MPARM
Platform)

5.2.5.1 Exemplary Description of Extracted Parallelism

In order to present the conceptual possibilities of the extracted parallel solution
candidates exploited by the presented task-level parallelization approach, the struc-
tural results for two, three, and four concurrently executed tasks for the edge detect
benchmark are visualized in Figure 5.14. This application provides a good trade-off
between computational work and simplicity in its structure and was also used as a
motivating example at the beginning of this section.

The structure of the sequential application shown in Figure 5.14(a) consists
of six phases. After a short initialization phase, three filters are applied to the
original image in order to extract horizontal and vertical edges from the input image.
All three filters are applied by the same function convolve2d which is called with
different input filters. The result of the smoothing filter (the first call) is used as
input for the second and third function calls. The two filtered images are then
combined and compared to a predefined threshold. This is done in a loop which is
iterating over the image dimensions. The first difference which can be observed in
the solutions presented in Figures 5.14(b) - 5.14(d) compared to the parallelization
example shown in Figure 5.2 is that phases five and six (gradient combining and
threshold application) are executed sequentially for all created solutions since the
employed high-level models revealed that the parallel execution of this part slows
down the application due to high task-creation and communication costs.

The result of the parallelization tool, limiting the number of concurrently exe-
cuted tasks to two, is visualized in Figure 5.14(b). There, the convolve2d function
is parallelized using two tasks to compute the result of the smoothing filter. Instead
of using this parallelization method also for the two succeeding filters, which seems
to be the most obvious solution, the parallelization tool decided to duplicate the
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Figure 5.14: Parallelization of the Edge Detect Benchmark

convolve2d function. One version of this function implements two concurrently
executed tasks while the second one is only executed sequentially by the main task.
The latter sequential version is then used for the horizontal and vertical filters be-
cause the tool detected that maximum benefit is obtained by parallelizing both
function calls instead of just parallelizing the functions itself. A combination of a
parallel execution of both functions with two inner tasks would exceed the maximum
task boundary. For this solution, nearly the entire application is executed in parallel
while the number of concurrently executed tasks is limited to two. This results in
the presented speedup of nearly 1.8× for the Arm11MPCore platform.

The results for the three and four core versions are visualized in Figures 5.14(c)
and 5.14(d). In contrast to the two core version, the parallel result differs in the
implementation of the vertical and horizontal function calls. The version with two
concurrent function calls to the convolve2d function is no longer used since this
would only lead to two concurrently executed tasks. Therefore, both function calls
are executed one after the other with three and four concurrently executed tasks in
each function, respectively. The achieved speedup with three concurrently executed
tasks is 2.4× while the measured speedup of four tasks is 3× for the Arm11MPCore
platform. It could also be observed that the speedup further increases for growing
input image sizes because the contribution of the initialization phase to the overall
execution time decreases. Besides these results, this example also demonstrates the
described trade-off technique, deliberating which parallelism is most suitable for the
given architectural configuration.

5.2.5.2 Optimization Time & ILP Statistics

Further statistics including the execution times which were required to extract the
presented results by the ILP-based parallelization approach and additional ILP-
based statistics are presented in Table 5.1. All results are based on the extraction
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Execution Times of Approach in MM:SS2 ILP Statistics (for 4 Tasks)
Benchmark Preproc. 2 Tasks 3 Tasks 4 Tasks #ILPs #Var #Constr

adpcm enc. 00:08 00:02 00:02 00:02 23 4,425 10,178
bound. value 00:08 00:02 00:03 00:06 7 1,517 4,145
compress 00:49 00:03 00:20 00:21 40 9,649 22,806
edge detect 00:28 00:06 00:06 00:08 49 9,601 20,558
filterbank 00:55 00:01 00:01 00:09 6 2,046 5,023
fir 256 64 00:08 00:01 00:01 00:01 10 874 1,534
iir 4 64 00:06 00:01 00:01 00:02 10 2,611 8,101
jpeg2000 00:58 00:16 00:23 00:33 40 12,822 36,381
latnrm 32 64 00:05 00:01 00:01 00:01 12 1,578 2,964
mult 10 10 00:10 00:01 00:01 00:01 6 636 1,521
spectral 00:10 00:01 00:07 00:22 33 8,674 21,232

average 00:22 00:03 00:06 00:09 21 4,948 12,222

Table 5.1: Statistics of Homogeneous ILP-based Task-Level Parallelization Approach for
the Arm11MPCore Platform.

of task-level parallelism for the Arm11MPCore platform. Statistics for the other
architectures are comparable and therefore omitted. The execution time is divided
into the necessary preprocessing steps (including code optimization, execution time
estimation and data-dependency analysis) and the extraction algorithm itself. For
the latter one, the times for extracting up to two, three, and four tasks are given.
CPLEX [IBM13] was used as ILP solver. As shown in Table 5.1, most time is
required to execute the preprocessing steps (22 seconds on average). The results
for two, three, and four tasks could be extracted in 3, 6, and 9 seconds in the
average case, respectively. Many benchmarks could be processed in less than a
second which shows that the complex ILP system can be solved efficiently, even
though ILP is NP-complete in the general case. This is only possible due to the
hierarchical segmentation provided by the Augmented Hierarchical Task Graph.

The ILP statistics shown on the right-hand side of Table 5.1 are based on the
solutions running four tasks in parallel. The first column (#ILPs) shows the number
of created and solved ILP systems while the second and third ones present the
number of created variables (#Var) and constraints (#Constr) summed up over
all ILP systems. For the compress benchmark, for example, 40 ILP systems were
created containing all in all nearly 10k decision variables and 23k constraints. The
whole benchmark was parallelized in 21 seconds and the ILPs were solved in less
than a second. The same behavior could also be observed for the average case,
where 21 ILP systems were solved in 9 seconds which also highlights the efficiency
of the proposed approach.

2Measured on an AMD Opteron core running at 2.4 GHz
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5.3 ILP-based Pipeline Parallelization Approach

The evaluation of the task-level parallelization technique presented in the previ-
ous section has shown that this kind of parallelism is well applicable for embedded
applications from multiple application domains. Reasonable speedups could be ex-
tracted for most of the considered benchmarks. However, the approach was not
able to parallelize some of them efficiently, like the filterbank, jpeg2000, and spectral
benchmarks. The reason is that many embedded applications, especially in the do-
main of networking services, voice- and image processing as well as multimedia tasks
like video decoding, are structured in a pipelined manner. All these applications
have in common that most of their parallelism is hidden in loops containing different
pipelining-based jobs. Several filters are, for example, applied to a block of a source
image and each filter depends on the previous one. This prevents the extraction of
task-level parallelism. Often, some of these filters are also responsible for depen-
dencies between different processed blocks. This also prohibits ordinary data-level
parallelism like DoAll parallelism which just executes all loop iterations in parallel.
In contrast, pipeline parallelism can often lead to efficient parallel solutions in such
cases. Since ILP was successfully employed to extract task-level parallelism in the
previous section, it is also used here to extract pipeline parallelism from sequentially
written applications.

The rest of this section is structured as follows: First, Section 5.3.1 explains
pipeline parallelism in more detail and introduces its key properties with a mo-
tivating example. Afterwards, Section 5.3.2 presents the Program Dependence
Graph (PDG) which is used as intermediate representation to extract pipeline par-
allelism. The integration of the pipeline parallelization technique into the global
parallelization approach is discussed in Section 5.3.3 before the model used is ex-
plained in Section 5.3.4. Details of the ILP-based extraction technique are then
presented in Section 5.3.5 before the efficiency of the proposed approach is evalu-
ated in Section 5.3.6.

5.3.1 Motivating Example for Pipeline Parallelism

The extraction of coarse-grained task-level parallelism is an efficient technique to
parallelize large independent blocks of an application such as function calls which
can be executed concurrently. However, those approaches lack the possibility to ex-
tract parallelism from loops, especially from those with loop-carried dependencies.
Therefore, this section introduces pipeline parallelism which can be extracted from
flat or nested loops of sequentially written applications. The spectral benchmark,
which is part of the UTDSP benchmark suite [Lee13], is used as a real-world moti-
vating example. This application calculates the power spectrum of an input sample
of speech. It was chosen as an example since it has a representative structure for
pipeline-based embedded applications without being too complex.

The example code shown in Figures 5.15 - 5.17 represents the main computation
loop of the spectral benchmark. On the left-hand side of each figure, the applica-
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  for (i = 0; i < NUMAV; ++i) {
      float sample_real[SLICE];
      float sample_imag[SLICE];

int index = i * DELTA;
      for (int j = 0; j < SLICE; ++j) {
        sample_real[j] = 
            input_signal[index + j] * hamming[j];
        sample_imag[j] = zero;
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Figure 5.15: Spectral Benchmark [Lee13]: Sequential Execution

tion’s source code and the way how the statements are partitioned into concurrently
executed tasks are shown. The right-hand side shows the time at which the itera-
tions of the tasks are executed. In this example, it is assumed that the execution of
the first inner loop and the calculation of the index (lines 5-10) requires one time
slot, the execution of one FFT call (line 12) takes two time slots and the execu-
tion of the second inner loop (lines 14-18) needs one time slot to be completed.
Thus, one iteration of the whole outer loop takes four time slots like shown on the
right-hand side of Figure 5.15, representing the sequential execution of the appli-
cation. The second inner loop starting in line 14 reads elements of the mag array
which were written in the previous iteration of the outer loop (starting at line 1).
This creates a loop-carried dependency between different iterations of the outer loop
which prevents parallelization approaches from executing the whole outer loop in
parallel. Even though many types of parallelism are useless in such a situation,
pipeline parallelism can successfully be applied here by splitting a loop horizontally
and vertically into concurrently executed tasks. While horizontal splits divide the
statements of the loop body into disjunctive pipeline stages which are executed in
a pipelined manner, vertical splits further partition the different loop iterations of
the created stages into additional sub-tasks.

An example performing horizontal splits applied to the spectral application is
depicted in Figure 5.16. Here, the body of the outer loop is divided into three
pipeline stages T1, T2, and T3. The benefit of such a parallelization is that each
pipeline stage can start the next iteration of the outer loop, executing its assigned
statements as soon as it has communicated its result to the next pipeline stage
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Figure 5.16: Spectral Benchmark [Lee13]: Horizontal Loop Splits

waiting for its output. In this way, a pipeline of calculations is created whose
execution time is shown on the right-hand side of Figure 5.16. As soon as the first
iteration of pipeline stage T1 has completed its work, the required data is sent to
pipeline stage T2. Now, T1’s second and third iteration can be executed in parallel
to the first iteration of pipeline stage T2. After completion of its first iteration, T2

sends its data to stage T3 so that all three pipeline stages execute their work in an
interleaved, pipelined manner.

As can be seen, this example is not well balanced since pipeline stage T3 has to
wait for data of stage T2 after each iteration. To circumvent this problem, differ-
ent loop iterations of the outer loop (line 1) of the created pipeline stages may be
executed in parallel if data dependencies do not prevent parallel execution. Such
sub-tasks of the extracted pipeline stages are generated by so-called vertical splits.
The extracted parallelism shown in Figure 5.17 combines horizontal and vertical
splits and is much more efficient than the solution which only generates pipelined
tasks as shown in Figure 5.16. Pipeline stages T1 and T2 of the example shown in
Figure 5.16 are combined into one pipeline stage (T1) to provide a more compu-
tationally intensive pipeline stage. This stage is now vertically divided into three
sub-tasks T1,1, T1,2, and T1,3. These tasks execute the first, second and third iter-
ation of the outer loop (line 1) of the statements assigned to this pipeline stage in
parallel. As soon as all sub-tasks have communicated their data to the consuming
pipeline stage T2, iterations four, five and six are executed in parallel to the first
three iterations of pipeline stage T2 and so on. By combining both kinds of splits,
the workload is well balanced.
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Figure 5.17: Spectral Benchmark [Lee13]: Horizontal and Vertical Loop Splits

By combining horizontal and vertical splits, the pipeline parallelization approach
presented in this section is able to extract efficient parallelism from loops, even if
loop-carried dependencies prevent traditional data-level parallelization techniques.
The ILP-based approach provides both kinds of splits simultaneously so that it will
not end up in a local optimum which may be the case if the vertical splits would
rely on horizontal splits extracted in a separate phase. The example also shows
that it is important to take the execution time of the tasks into account to create a
well-balanced task structure.

5.3.2 Augmented Program Dependence Graph

Besides all advantages of the Augmented Hierarchical Task Graph (AHTG), it has
become evident that the AHTG is not the best intermediate representation to extract
parallelism from loops – especially from nested ones. As described in Chapter 4.1,
the AHTG hides data flow edges pointing in the opposite direction of the control
flow (back-edges). This is one of the key aspects used to separate the different hier-
archical levels as exploited by the global parallelization approach of the presented
framework. However, these back-edges are important for loop-level and pipeline par-
allelism, since, among others, they represent data which is communicated between
different iterations of the loop(-nest) to be parallelized. In addition, an implicit
synchronization barrier is assumed at the end of each hierarchical node, which is
not a problem for task-level parallelism. Contrarily, it drastically limits the speedup
obtainable by pipeline parallelism.
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Figure 5.18: Program Dependence Graph Example - Spectral Benchmark

Therefore, a so-called Program Dependence Graph (PDG) [FOW87] is extracted
and augmented with cost information for a loop(-nest) as soon as a hierarchical
node representing a loop is reached in the parallelization process. The employed
augmented PDG combines control-3 and data-flow dependencies in one graph rep-
resentation like also done by the AHTG. In contrast to the AHTG, the augmented
PDG is a flat graph without hierarchical levels and communication redirection. Each
statement of the loop to be parallelized is represented by a node in the PDG and
data- as well as control-flow edges are directly added between the nodes.

An example of an augmented PDG is given in Figure 5.18. The graph represents
the nested main computational loop of the spectral benchmark from Figure 5.15.
Obviously, the graph contains one entry node, one exit node and several other nodes
representing statements of the application. The nodes are connected by directed
edges describing dependencies that have to be taken into account if the nodes are
mapped to concurrently executed tasks. Solid black edges represent control flow
dependencies while dashed green edges visualize data dependencies. In order to
extract efficient parallelism from sequential applications, the created tasks have to
be balanced as shown by the first presented parallelization approach. For this reason,

3Denoting that the execution of a statement must precede the execution of another statement.
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each node of the PDG is also augmented with the iteration count and execution costs
of the statement represented by the node (cf. Node Info in Figure 5.18). It is also
essential to have information about the communication costs which have to be taken
into account if the statements of the nodes are executed in separate tasks. Therefore,
the edge type, communication costs, the communicated data, the iteration count as
well as an interleaving level – describing the minimal amount of loop iterations which
can be executed before the data is consumed at the target node – are annotated to
the data dependence edges (cf. Edge Info in Figure 5.18). Additional information
like the estimated energy consumption or different objective values depending on
the executing processing unit of a heterogeneous architecture will be added by other
approaches presented later in this thesis.

Since the PDG was not conceived by the author of this thesis, the author would
like to refer to [FOW87] for more details and techniques how to extract the graph
from a given application’s source code.

5.3.3 Integration into the Global Parallelization Approach

The integration of the ILP-based pipeline parallelization approach optimized for
homogeneous MPSoCs into the global parallelization framework (cf. Section 4.2) is
shown in Algorithm 6.

Algorithm 6 Pseudo Code of the ILP-based Pipeline Parallelization Approach
1: // Called bottom-up hierarchically by Algorithm 4 in line 18 on page 56
2: function ExtractHomPipeline(Node n, Platform pf , int maxTasks)
3: // This function is only applicable to loops.
4: solutions← ∅
5: if not n.getStmt().isLoopStmt() then
6: return solutions

7: end if
8: // Create an augmented PDG for the loop(-nest).
9: loopPDG← ConstructPDG(n.getStmt())

10: // Extract pipeline parallelism from the loop’s PDG.
11: i← maxTasks

12: while i >= 2 do
13: result← HomILPPipelineParallelizer(loopPDG, pf, i)

14: solutions← solutions ∪ {result}
15: i← NumberOfTasks(result)− 1

16: end while
17: return solutions

18: end function

The function ExtractHomPipeline is executed by the global parallelization
algorithm (cf. Algorithm 4) as soon as all child nodes deeper in the hierarchy are
processed. As arguments, the function expects the node n to be parallelized, plat-
form specific information pf containing, e.g., the performance characteristics and
the number of available processing units, and an upper bound of extractable tasks
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maxTasks. The variable maxTasks is set to the number of available processing
units of the targeted architecture by default and can be customized by the applica-
tion designer. In this way, the parallelization process does not generate more tasks
than processing units are available by default.

Pipeline parallelism can, in general, be extracted only from nested or flat loops of
sequentially written applications. Therefore, the algorithm first determines whether
the currently processed node represents a loop statement in lines 5-7. If this is the
case, it creates an augmented PDG containing only nodes for the statements which
are part of the (nested) loop, like explained in Section 5.3.2. If the statement is a
non-loop statement, the algorithm returns an empty solution set in line 6 so that
other parallelization approaches should be used to extract parallelism for node n.

ILP solvers return the best solution as their only result. Since the child solutions
should be re-combined with new parallelism on the parent hierarchical level, several
solution candidates with a different number of concurrently executed tasks should be
extracted for each node. Therefore, the function HomILPPipelineParallelizer

is called multiple times to extract solutions with, e.g., two, three, four, up to
maxTasks concurrently executed tasks in line 13. All generated solution candi-
dates are finally collected in line 14 and returned as solution candidates for the
processed loop node n in line 17. The pipeline-based solution candidates extracted
for node n can further be combined with solution candidates from other paralleliza-
tion techniques in the global parallelization approach. Afterwards, the extraction
step is continued with nodes on the same and later parent hierarchical levels until
the root node of the application’s AHTG is reached.

5.3.4 Parallelization Model

The function HomILPPipelineParallelizer of Algorithm 6 is called for each
loop in isolation with a given augmented PDG containing only those nodes which
are part of the loop to be parallelized. Furthermore, an upper bound of extractable
tasks and some platform-specific information are given as arguments in line 13 of
Algorithm 5. The pipeline parallelization approach tries to split the statements of
the loop’s body horizontally into disjunctive pipeline stages which are executed in
a pipelined manner. Vertical splits can also be applied to each pipeline stage which
move different iterations of a stage into concurrently executed tasks (cf. example in
Section 5.3.1).

The ILP-based pipeline parallelization approach is able to balance the extracted
tasks fully automatically. Therefore, a high-level cost model is used to evaluate
the performance of the possible parallel solution candidates. This model considers
dependencies between the extracted pipeline stages and also between their different
iterations. To accomplish this, the different iterations of the loop are virtually
unrolled for evaluation purposes within the employed model4. Based on this unrolled
augmented PDG, the most expensive execution path (critical path), starting from

4This iteration-unrolling is only done in the employed model and, of course, not in the applica-
tion’s source code.
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Figure 5.19: Loop Dependencies for Vertical Splits

the entry to the exit node of the loop’s PDG is minimized by splitting the loop
horizontally and vertically into different tasks.

An example for such an unrolled PDG containing two extracted pipeline stages
T1 and T2 is depicted in Figure 5.19(a-c). T (x, y) represents iteration y of pipeline
stage x. The example is based on the spectral benchmark shown in Figure 5.17.
Pipeline stage 2 consumes data of stage 1 and a loop-carried data dependency ex-
ists between the different iterations of pipeline stage 2 like denoted by the dashed
green edges. In contrast, pipeline stage 1 is free of loop-carried data dependencies.
Besides loop-carried data dependencies, the amount of vertical splits also adds vir-
tual dependencies between the different iterations of the pipeline stages’ execution
since iterations belonging to the same task can only be executed one after another.
If, e.g., a pipeline stage is not divided into several concurrently executed tasks, all
iterations are processed sequentially by one task. In contrast, if a pipeline stage is,
e.g., split once, iterations 1 and 2 as well as 3 and 4 etc. can be executed in parallel.
Since iterations 1, 3, 5 etc. are mapped to the same sub-task, iteration 3 depends
on iteration 1 while iteration 5 depends on iteration 3 and so on.

Figure 5.19(a) shows the different iterations of the two pipeline stages without
vertical splits. All iterations of pipeline stage 2 have to be executed sequentially due
to the loop-carried data dependency with an interleaving level of 1. Even though
no loop-carried data dependencies exist for pipeline stage 1, a dependence edge has
to be inserted between all iterations of stage 1 since all of them are mapped to
the same sub-task due to missing vertical splits (denoted by the solid blue arrows).
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Figure 5.19(b) shows how the dependencies change if pipeline stage 1 is vertically
split once. Iterations {1, 3, 5, ..} and {2, 4, 6, ..} of pipeline stage 1 can be exe-
cuted in parallel in that case. Further parallel execution can be achieved if pipeline
stage one is split twice into three concurrently executed sub-tasks like depicted
in Figure 5.19(c). Here, the iterations are grouped into tasks executing iterations
{1, 4, 7, ..}, {2, 5, 8, ..}, and {3, 6, 9, ..} in parallel. Of course, it does not make sense
to split pipeline stage 2 into concurrently executed tasks since the loop-carried data
dependency would sequentialize their execution.

All cases and their corresponding dependencies, shown in Figure 5.19(a-c), have
to be taken into account by the ILP-based parallelization technique presented in the
following section. In addition, the dashed green arrows of Figure 5.19, describing
data dependencies, depend on the node-to-task mapping. Thus, the dependencies
between the tasks may also change if one statement is moved from one pipeline stage
to another one.

5.3.5 ILP-based Parallelization Approach

This section defines the ILP formulations for the pipeline-based parallelization ap-
proach described above. The approach is executed for each loop in isolation and
covers four main goals:

I) Extract different pipeline stages by mapping statements of the loop’s body into
disjunctive stages (cf. Figure 5.16 on page 86 from the motivating example).

II) Divide pipeline stages into sub-tasks which execute different iterations of the
stages in parallel (see Figure 5.17 on page 87 from the motivating example).

III) Keep track of dependencies which may change if statements are moved from
one pipeline stage to another one or if iterations of pipeline stages are mapped
to different sub-tasks.

IV) Minimize execution costs by considering task creation, communication, and
task execution costs.

In the following, decision variables are written in lower case letters, sets start
with a capital letter and constants contain exclusively capital letters. Indices n
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Figure 5.21: Vertical Split Constraint (Split Pipeline Iterations)

and o are used for nodes of the PDG, i and j are used for iterations of the loop
to be parallelized, t and u represent indices for pipeline stages while s is used for
concurrently executed sub-tasks of a pipeline stage. Graphical representations for
most equations are also given in Figures 5.20 - 5.24.

5.3.5.1 Horizontal Split Constraint (Pipeline Stage Extraction)

Goal (I) of the ILP-based pipeline parallelization approach for homogeneous MP-
SoCs is a mapping of PDG nodes to pipeline stages. This is the first method applied
by this approach to extract parallelism and is comparable to the horizontal splits
presented in the motivating example. This is ensured by decision variable xtn like
defined in Equation 5.18 and visualized in Figure 5.20. It evaluates to 1 if node n

is mapped to pipeline stage t.

xtn =

{
1, if node n is mapped to pipeline stage t

0, otherwise
(5.18)

The constraint defined in Equation 5.19 ensures that every child node (repre-
senting statements of the loop to be parallelized) is mapped to exactly one pipeline
stage.

∀n ∈ Nodes :
∑

t∈Stages
xtn = 1 (5.19)

5.3.5.2 Vertical Split Constraint (Split Pipeline Iterations)

Besides horizontal splits, further parallelism can be extracted by vertical splits like
shown in the motivating example. These vertical splits allocate the different itera-
tions of a pipeline stage in concurrently executed tasks (Goal (II)). This is expressed
by decision variable splitts which has the value of 1 if pipeline stage t is split s times.
In the example of Figure 5.21, split12 has the value of 1 which means that pipeline
stage t1 is divided twice into 3 concurrently executed sub-tasks. Hence, iterations
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0, 1, and 2 as well as iterations 3, 4, and 5, etc. are executed in parallel. In con-
trast, split30 is also set to 1 which means that pipeline stage t3 is not divided into
sub-tasks so that all iterations of pipeline stage 3 are executed sequentially by one
task. Equation 5.20 defines decision variable splitts.

splitts =

{
1, if task t is split s times
0, otherwise

(5.20)

The ILP solver has to determine the best amount of splits for each pipeline stage
t used, like ensured by Equation 5.21.

∀t ∈ Stages :
∑

s∈{0..MAXTASKS}
splitts = 1 (5.21)

5.3.5.3 Predecessor Constraint

To minimize the critical or most expensive path from the entry to the exit node
of the PDG, the ILP formulation has to be extended by path information. As
described in Section 5.3.4, the path costs are estimated by virtually unrolling the
iterations of the loop. As a consequence, predecessor variables have to be created for
each iteration combination of two pipeline stages (Goal (III)). Equation 5.22 defines
decision variable predt,ui,j which is added for each pipeline stage t in iteration i and
stage u in iteration j.

predt,ui,j =

⎧⎪⎪⎨
⎪⎪⎩
1, if stage t in iteration i is a direct

predecessor of stage u in iteration j

0, otherwise

(5.22)

Two situations may lead to a predecessor relationship between two pipeline stages
in their different iterations. The first one is based on the amount of vertical splits
per pipeline stage (Stage Split Dependencies) while the second one depends on data
and control flow dependencies (Data and Control Flow Dependencies) caused by
horizontal splits. Therefore, both kinds of dependencies are defined in the following.



5.3. ILP-based Pipeline Parallelization Approach 95

Data dependence 
edges between 

nodes of pipeline 
stages influence 

iteration
dependences

T2 0
2

1
3

... ...
54T3

T1 N1

N4

N2

N3
T2

T1 0
3

1
4

2
5

... ... ...
876

T3 0 1 ...2 3

Figure 5.23: Data and Control Flow Dependencies

Stage Split Dependencies: Figure 5.22 shows the same example of allocated
pipeline stages and their iterations to sub-tasks as presented in Figure 5.21. Here,
new dependence edges are added between some iterations of the pipeline stages since
all iterations allocated to the same sub-task are executed one after another. Since
pipeline stage t1 is divided twice into three sub-tasks in Figure 5.22, iterations 0,
1, and 2 as well as 3, 4, and 5 etc. can be executed concurrently – if no data
dependencies prevent the parallel execution. Thus, no split dependence edges have
to be added between iterations 0, 1, and 2. However, iterations 0 and 3 as well as 1
and 4 are executed by the same sub-task. Since each sub-task can execute only one
iteration at a time, iteration 0 of pipeline stage t1 must be executed before iteration
3 can be started. Therefore, a dependence edge is added between all iterations
mapped to the same sub-task depending on how often the pipeline stages are split.

This is ensured by Equation 5.23 adding constraints for all iteration combina-
tions of pipeline stage t which do not exceed the upper boundary of the maximum
extractable tasks MAXTASKS. Depending on how often pipeline stage t is split
(splitts), iteration i of stage t is a predecessor of iteration j of stage t. The number
of loop iterations NI can be determined by static loop analyzers, like, e.g. [Cor08],
[LCF+09], or the analyzer integrated in the employed ICD-C high-level IR [Inf13].

∀t ∈ Stages : ∀i ∈ {0, ..,NI -1} :
∀j ∈ {i+ 1, ..,NI -1} : (j − i ≤ MAXTASKS ) :

predt,ti,j ≥ splittj−i−1 (5.23)

Data and Control Flow Dependencies: Data and control flow dependencies
between pipeline stages form the second kind of dependency which may sequentialize
the execution of the different pipeline stages’ iterations. In contrast to the Stage
Split Dependencies which are based on the splitts variables, the data and control
flow dependencies are based on the dependencies between the nodes mapped to the
different pipeline stages. An example is shown in Figure 5.23. The node-to-pipeline
stage mapping is shown on the left-hand side. As can be seen, a dependence edge
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between node n2 and node n3 exists, which requires communication between pipeline
stage t1 and pipeline stage t2. This communication takes place at the end of each
iteration. Each edge of the PDG contains additional information containing, e.g.,
the interleaving level denoting how many iterations can be executed between source
and target node before the data is required. An interleaving level of 0 would, e.g.,
indicate that the data is consumed in the same iteration. An interleaving level of
1 would describe that the data is required in the next iteration, etc. The example
on the right-hand side of Figure 5.23 assumes an interleaving level of 0 for the
dependence edge. Dependence edges have to be added between the corresponding
iterations of both pipeline stages, due to the edge between pipeline stage t1 and
pipeline stage t2. Therefore, iteration 0 of pipeline stage t1 is a predecessor of
iteration 0 of stage t2. In addition, iteration 1 of pipeline stage t1 is a predecessor of
iteration 1 of stage t2. Such edges have to be added between all iterations of both
stages5.

The creation of these dependencies is ensured by Equation 5.24:

∀t, u ∈ Stages : ∀i ∈ {0, ..,NI -1} : ∀j ∈ {i, ..,NI -1} :
∀n,m ∈ Nodes : n �= m : EDGEn,m,j−i = 1 :

predt,ui,j ≥ xtn ∧ xum (5.24)

The predecessor variable predt,ui,j is created for all possible pipeline stage and
loop iteration combinations. In this way, for all combinations of nodes, it is checked
if node n is part of stage t while node m has to be part of stage u. If this is true
and a directed edge from n to m exists with an interleaving level of j − i, denoted
by EDGEn,m,j−i, pipeline stage u depends on t for the iterations i and j6.

5.3.5.4 Execution Costs of Pipeline Stage Constraint

The predecessor relationship enables to describe paths with respect to dependencies.
Since it is particularly important to take execution and communication costs into
account to create well-balanced tasks, the augmented cost information of the PDG
(cf. Section 5.3.2) has to be integrated into the ILP formulation. Therefore, the
overall execution costs of each node are distributed in equal parts over the different
iterations of the loop. This saves a couple of decision variables since the ILP does not
have to distinguish between different execution costs of pipeline stages in different
iterations.

∀t ∈ Stages : costt ≥ ∑
n∈Nodes

xtn ∗ (COSTn/NI ) (5.25)

Equation 5.25 sets the lower bound of the costs for one iteration of pipeline
stage t to at least the sum of costs COSTn of each node n, which is part of stage

5If the interleaving level of the dependence edge would be, e.g., 1, iteration 0 of t1 would be a
predecessor of iteration 1 of t2, etc.

6The usage of the ∧ operator and preconditions within ILP formulations is shown in the Ap-
pendix in Section A.2
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Figure 5.24: Path Cost Constraint

t, divided by the number of loop iterations. The variable costt is also part of the
objective function so that it is automatically minimized by the ILP solver if stage t

is part of the critical path. The pipeline parallelization approach does not combine
hierarchical solution candidates (as done by the task-level parallelization approach
presented in the previous section) since it is hard to handle a different amount of
inner tasks for different iterations of the loop. However, this limitation is based on
a technical simplification and can of course be improved by future work.

5.3.5.5 Path Cost Constraint

Based on the knowledge of the execution costs of all pipeline stage iterations, it is
now possible to describe the accumulated costs of the possible paths like depicted
in Figure 5.247 (Goal (IV)). The order in which data is communicated between two
iterations of the pipeline stages is not known at this time. Since the worst-case
scenario has performed best for the presented ILP-based task-level parallelization
approach, a comparable one should be used here as well. The employed model
assumes that a task t has to wait for its data until all its predecessor tasks have
communicated all data to their successor tasks, even if this data is not consumed by
t. The ILP formulation of this worst-case scenario based path calculation is shown
in Equation 5.26.

∀t, u ∈ Stages : ∀i ∈ {0, ..,NI -1} : ∀j ∈ {i, ..,NI -1} : predu,ti,j = 1 :

accumcosttj ≥ costt + accumcostui + commcostu (5.26)

Equation 5.26 ensures that the path costs accumcosttj for pipeline stage t in
iteration j are at least as large as the costs costt for the execution of one iteration
of stage t itself and the path costs of its most expensive predecessor accumcostui ,
including all communication costs commcostu of pipeline stage u.

5.3.5.6 Maximum Number of Extracted Tasks Constraint

To give the user the possibility to limit the number of concurrently executed tasks,
a new decision variable stageusedt is introduced in Equation 5.27, which reflects

7To keep the example in the figure more comprehensive, communication costs are omitted.
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whether pipeline stage t is used.

stageusedt =

{
1, if pipeline stage t is used
0, otherwise

(5.27)

Pipeline stage t is used if it contains at least one node, which is defined by
Equation 5.28.

∀t ∈ Stages : ∀n ∈ Nodes : stageusedt ≥ xtn (5.28)

The number of concurrently executed tasks is equal to the sum of pipeline stages
used (for each stage used, the variable stageusedt evaluates to 1, otherwise to 0),
increased by the number of vertical splits.

numtasks ≥ ∑
t∈Stages

(stageusedt +
∑

s∈{0..MAXTASKS}
s ∗ splitts) (5.29)

If, e.g., pipeline stage 1 is used and it is split 3 times, 4 tasks are created (see
Equation 5.29). Equation 5.30 ensures that the number of created tasks does not
exceed the given upper bound MAXTASKS of concurrently executed tasks.

MAXTASKS ≥ numtasks (5.30)

The ILP formulation can further be optimized here by excluding solutions with
the same objective value, which only differ in the allocated sub-tasks (cf. [LMM+97]
and Section 9.2). This could be achieved by adding constraints like stageusedt ≥
stageusedt+1 and may be integrated into the system in the future.

5.3.5.7 Cycle-Free Constraint

To avoid deadlocks and paths with infinite costs, the approach has to take care that
the paths are cycle-free. Therefore, all direct child nodes are topologically sorted
by their dependencies and an ascending, unique id is generated for both, nodes and
pipeline stages. W.l.o.g., the generated graph is cycle-free if the taskid of node n

is greater or equal to the taskids of all nodes o with a smaller topsort id. This is
ensured by Equation 5.31.

∀n, o ∈ Nodes : topsortn ≥ topsorto : taskidn ≥ taskido (5.31)

5.3.5.8 Objective Function

With all decision variables and constraints defined, it is now possible to describe
the objective function. As mentioned before, the most expensive execution path
from the entry to the exit node of the loop’s PDG should be minimized. Hence,
additional constraints which statically set the entry node to be a predecessor of all
tasks are added. The exit node will be a successor of all tasks, respectively. With
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Figure 5.25: Speedup of Homogeneous Task-Level and Pipeline Parallelization Approach
(Arm11MPCore Platform)

the help of the additional constraints, it is easy to create the objective function, like
shown in Equation 5.32.

exectime = numtasks ∗ TASKOVERHEAD + accumcostexit → min (5.32)

Since the creation of tasks also increases the execution time, a constant task
creation overhead, multiplied by the number of created tasks, is added. This task
creation overhead can be defined in the platform description together with a com-
munication cost factor. By defining these platform-dependent parameters, the cost
model of the ILP can easily be adapted to different architectures. The value of
the objective function is equivalent to the execution time of the parallelized loop.
It is hence returned together with the node-to-task mapping as the result of the
parallelization step.

5.3.6 Experimental Results

Instead of presenting results for the pipeline parallelization approach only, a com-
bination with the previously presented task-level parallelization approach of Sec-
tion 5.2 is given here. Therefore, in addition to the approach itself, a combination
of two approaches of the same framework presented in this thesis is also evaluated.
Results for the pipeline parallelization approach in isolation can be found in the
original publication in [CHM+11]. Some of the results may differ from the ones
presented in [CHM+11] since the operating system, the simulators as well as the
tool flow were changed between both measurements. To ensure comparability to the
task-level parallelization approach evaluated in Section 5.2.5, the evaluation setup
including the employed middleware (RTEMS operating system, etc.), the target
platforms and also the set of benchmarks was chosen to be identical.
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Figure 5.26: Speedup of Homogeneous Task-Level and Pipeline Parallelization Approach
(Arm11QuadProcessor Platform)

The results for the three considered target platforms are presented in Figures 5.25
- 5.27. As can be seen, the speedup of most evaluated benchmarks scales well
for the given amount of processing units (two, three and four) for all three target
platforms. The benchmarks which profit most from the new pipeline parallelization
approach are highlighted by red boxes and outperform the solutions extracted earlier
by the task-level parallelization approach. More than one quarter of the evaluated
benchmarks (3 of 11) and also the average speedup were drastically improved. The
jpeg2000 encoder, for example, reached a speedup of 1.4×, 2.8×, and 3.9× for two,
three, and four concurrently executed tasks, respectively, for the Arm11MPCore
platform as shown in Figure 5.25. In contrast, the task-level parallelization approach
only reached an acceleration of around 1.1× for two up to four cores. For the two
other platforms, speedups of 1.6×, 2.7×, and 3.6× (for the Arm11QuadProcessor)
as well as 1.3×, 2.3×, and 3.2× (for MPARM) could be observed, respectively. Here,
the speedups also scale well, even though the performance increase is less impressive
than for the Arm11MPCore platform. One reason is that both other platforms miss
a cache coherency unit so that the level one cache is not able to cache shared data
which makes communication more expensive. Nevertheless, the speedups also scale
well for the number of available cores for these platforms.

Besides the jpeg2000 encoder, the filterbank and spectral benchmarks also profit
from the presented pipeline parallelization approach. However, the speedups reached
for two, three, and four cores for the spectral benchmark are 1.4×, 1.6×, and 1.8× for
the Arm11MPCore platform, respectively. This is also a higher performance increase
than observed by the task-level parallelization approach (1.4×, 1.4×, and 1.5×) but
is far away from the theoretical speedup limit provided by the target platform.
The reason is that the parallelizable parts of the application are less computational
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Figure 5.27: Speedup of Homogeneous Task-Level and Pipeline Parallelization Approach
(MPARM Platform)

intensive and also require more communication. Thus, not all benchmarks can
reach speedups between 3×-4× for a four core platform. The spectral benchmark
also shows another interesting pattern. While the solutions for the four and three
concurrently executed tasks were extracted by the pipeline parallelization approach,
the version with two concurrently executed tasks was generated by the task-level
parallelization approach. This also shows that a combination of both approaches
is beneficial. The two core version of the edge detect benchmark could also profit
from this combination. The loops of the function applying the filters (cf. Figure 5.1
for more details) were parallelized by the pipeline parallelization approach while
concurrently executed function calls were extracted by the task-level parallelization
approach. It should be mentioned here that the pipeline parallelization approach is
also able to extract simple DoAll parallelism which executes independent iterations
of a loop in parallel. This is just a corner case of pipeline parallelism with one
replicated pipeline stage including all statements of the loop.

For the Arm11MPCore platform, an average speedup of 1.7×, 2.3×, and 2.9×
could be observed, respectively. In contrast, speedups of 1.7×, 2.1×, and 2.6×
could be reached with the task-level parallelization approach in isolation. This
also shows that a combination of both approaches increases the performance. For
the other two platforms, an average speedup of 1.7×, 2.3×, and 2.7× (for the
Arm11QuadProcessor) as well as 1.6×, 2.2×, and 2.7× (for the MPARM) could
be reached, respectively. The speedups for most evaluated benchmarks are further
increased by more complex input samples as evaluated in [CHM+11]. However, the
original input files of the application were used as input here.

With respect to the kind of extracted parallelism, it should be mentioned that
the spectral benchmark was parallelized by the pipeline parallelization approach as
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Execution Times of Approach in MM:SS8 ILP Statistics (for 4 Tasks)
Benchmark Preproc. 2 Tasks 3 Tasks 4 Tasks #ILPs #Var #Constr

adpcm enc. 00:09 00:02 00:03 00:04 39 7,095 15,218
bound. value 00:13 00:04 00:08 00:30 22 17,148 35,507
compress 00:49 00:07 02:07 03:40 175 51,534 117,236
edge detect 00:31 00:36 01:43 02:29 66 31,857 66,749
filterbank 00:53 00:02 00:16 04:15 16 10,068 21,483
fir 256 64 00:07 00:02 00:04 00:09 18 12,003 23,874
iir 4 64 00:07 00:14 00:57 01:45 13 33,616 97,285
jpeg2000 00:58 00:21 00:51 02:12 59 25,698 62,291
latnrm 32 64 00:06 00:01 00:32 00:44 15 6,210 15,380
mult 10 10 00:10 00:05 00:18 01:48 35 30,598 58,372
spectral 00:10 00:04 00:12 01:08 58 33,222 68,005

average 00:23 00:08 00:39 01:42 47 23,550 52,855

Table 5.2: Statistics for a Combination of the Homogeneous Task-Level and Pipeline
Parallelization Approach for the Arm11MPCore Platform.

described in the motivating example in Section 5.3.1. The parallelized version for a
platform with two cores is equal to the one visualized in Figure 5.16 with the differ-
ence that pipeline stages T1 and T2 are merged into one stage. The parallelization
for three and four cores is equivalent to the one shown in Figure 5.17. T1 is only
split twice for the three core-version due to the limited number of cores.

5.3.6.1 Optimization Time & ILP Statistics

Further statistics including the execution time which was required to extract the pre-
sented results by a combination of the ILP-based task-level and pipeline paralleliza-
tion approaches and additional ILP-based statistics are presented in Table 5.2. All
results are based on the extraction of both kinds of parallelism for the Arm11MPCore
platform. The execution time is divided into the necessary preprocessing steps (in-
cluding code optimization, execution time estimation and data-dependency analysis)
and the extraction algorithm itself. For the latter one, the times for extracting up
to two, three, and four tasks are given. CPLEX [IBM13] was used as ILP solver
for both approaches. As a result, the setup is equal to the one used to generate the
results for the task-level parallelization approach in isolation (cf. Section 5.2.5).

Compared to the evaluation shown in Section 5.2.5, it can be seen that the
execution time which was necessary to extract the final solutions increased from 3,
6, and 9 seconds (for two, three, and four parallel tasks) to 8, 39, and 102 seconds
in the average case (without the time necessary to perform the preprocessing steps).
The higher execution times are reasonable since two approaches are executed in a
combined manner, here. Moreover, the construction of the ILP systems used to
extract pipeline parallelism is more complex since the considered loops are virtually
unrolled to model the timing behavior for each loop iteration in isolation. However,
an average execution time between 8 and 102 seconds for two up to four cores is

8Measured on an AMD Opteron core running at 2.4 GHz
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still fast especially for the achieved solution quality.
The ILP statistics shown on the right-hand side of Table 5.2 are based on the

solutions running four tasks in parallel and also show the values of the combined
approaches. The first column (#ILPs) shows the number of created and solved ILP
systems while the second and third ones present the number of created variables
(#Var) and constraints (#Constr) summed up over all ILP systems. For the com-
press benchmark, for example, 175 ILP systems were created and solved containing
all in all nearly 52k decision variables and 118k constraints. Also here, the amount
of solved ILPs and the number of created decision variables was increased by the
combination of both approaches. In contrast, the task-level parallelization approach
created only 40 ILPs with 10k variables and 22k constraints for this benchmark.
This also explains the increased execution times. In the average case, both ap-
proaches created 47 ILP systems for the considered benchmarks with 24k variables
and 53k constraints which could be solved in 102 seconds. Hence, one ILP system
could be solved in 2.5 seconds on average which is still fast.

5.4 Summary

This chapter presented the first two parallelization approaches developed in the con-
text of this thesis. Both of them were optimized for homogeneous MPSoCs and are
based on Integer Linear Programming (ILP). Complex ILP systems could be cre-
ated and solved efficiently to extract tasks from sequentially written applications,
due to the hierarchical divide-and-conquer based approach of the Augmented Hier-
archical Task Graph (AHTG) (cf. Chapter 4). In addition, both approaches were
also evaluated in a combined fashion which highlights the flexibility of the employed
approach. Speedups which are close to the theoretical limits could be observed for
some of the considered benchmarks, like, e.g., the matrix multiplication with 2×,
2.9×, and 3.9× for two, three, and four cores, respectively. The combined approach
reached an average speedup of 1.7×, 2.3×, and 2.9× over all evaluated real-world
benchmarks which highlights the efficiency of the extracted results of the proposed
approaches. In detail, the following goals could be achieved:

1. Creation and integration of a sophisticated task-level parallelization approach.

2. Creation and integration of a sophisticated pipeline parallelization approach.

3. Combination of task-level, data-level9, and pipeline parallelization approaches
which can be executed separately or in a combined fashion.

4. Creation of parallelization techniques combining task creation, communication
and execution costs in high-level models to balance the extracted tasks fully
automatically.

9DoAll parallelism can be extracted as a special case from the pipeline parallelization approach.
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5. Development of approaches optimized for and evaluated on simulated embed-
ded systems.

6. Possibility to limit the number of extracted tasks to ease offline scheduling.

7. Highly efficient solutions can be extracted with speedups of up to 2×, 2.9×,
and 3.9× for two, three, and four cores, respectively.
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The previous chapter presented efficient ILP-based parallelization approaches
which are able to extract significant speedups for several real-world embedded bench-
marks on different homogeneous target architectures. However, for embedded sys-
tems the extraction of high speedups often is not the only optimization objective.
Many embedded devices have, e.g., only a very limited amount of computational
power, small memories, and are obtaining their energy from a small battery. As
a consequence, multiple objectives have to be considered at the same time to map
applications onto an embedded MPSoC in an efficient way. Certainly, a lot of exe-
cution time can be saved if multiple cores of an MPSoC are executing an application
fully in parallel like shown in the previous chapter. But, in general, this requires
more energy since all cores must be supplied with power at the maximum volt-
age level if Dynamic Voltage Scaling (DVS) and Dynamic Voltage and Frequency
Scaling (DVFS) are not applied. Figure 6.1, for example, shows measurements for
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Figure 6.1: Speedup vs. Energy Consumption of the parallelized Mult Benchmark [Lee13]
simulated on one up to four Cores of the MPARM Platform [BBB+05]

the parallelized matrix multiplication benchmark (mult) [Lee13] performed on the
MPARM simulator [BBB+05] with the integrated MEMSIM energy model [Kat08],
which is based on [WM06] (for more details cf. Section 3.3.1). The application
was parallelized with one (sequential execution), two, three, and four concurrently
executed tasks, respectively. The simulated platform was configured to provide one,
two, three, and four processing units appropriate to the number of extracted tasks.
As can be seen, the sequential version of the application executed on a platform
equipped with only one ARM 7 core consumed the lowest amount of energy (36
mJ). The version executing four tasks on four ARM 7 cores in parallel reached a
speedup of 2.8×, but the consumed energy increased to 104 mJ, which is 185%
higher than the sequential version executed on a single-core architecture1. If the
application designer knows that a certain amount of speedup is sufficient for the
execution of the considered application, it may be beneficial to reduce the amount
of parallelism in order to put some of the cores into idle mode or switch to a plat-
form providing fewer cores. In this way, a large amount of energy could be saved
since fewer cores have to be supplied with power which can significantly increase
the battery’s runtime. This shows that these trade-offs (which can be extended for
several other objectives as well) are important for parallelization techniques tailored
towards embedded MPSoCs.

Among others, three major steps have to be performed to map sequentially
written applications to multi-processor architectures efficiently. First, the consid-
ered application has to be divided into concurrently executed tasks as done by the
approaches presented in this thesis. Afterwards, these tasks have to be mapped to

1The extracted speedup is lower than the speedup extracted for the previous approaches since
the MEMSIM model does not provide caches. This has a negative influence on the parallelized
performance since more communication takes place over the shared bus.
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the provided processing units of the targeted architecture before the different tasks
are finally scheduled in their execution order. Researchers working in the domain of
mapping and scheduling optimizations already realized that optimization strategies
tailored towards resource-restricted embedded MPSoCs have to consider multiple
objectives at the same time, like, e.g., shown in [MTK+11], [TBH+07], [NTS+08],
and [HSK+08]. Unfortunately, those techniques rely on the input of the paralleliza-
tion step. As a consequence, if a parallelization approach only focuses on maximizing
the speedup as its only optimization objective, a solution consuming a large amount
of energy might be returned. Mapping and scheduling strategies can therefore only
try to optimize other objectives in a severely limited search space since they rely on
the parallelized application provided as input. In contrast, if a parallelization tech-
nique would also consider multiple optimization objectives at the same time, highly
optimized tasks for various optimization objectives could be extracted. This also in-
corporates better optimization potential for the succeeding mapping and scheduling
steps. Up to now, this was not well considered by previously published paralleliza-
tion approaches as discussed in the related work overview in Section 2.4.

Therefore, to the best of the author’s knowledge, this chapter presents the first
parallelization approaches extracting multi-objective aware parallelism that is highly
optimized for homogeneous embedded MPSoCs. However, the size of the solution
space is already a problem for single-objective aware parallelization approaches.
When considering additional objectives such as energy consumption, the number
of possible solution candidates explodes, which renders traditional sophisticated
optimization approaches infeasible due to the excessive growth in required comput-
ing time to find feasible solutions. This circumstance and the property of Integer
Linear Programming (ILP) that solvers return only one solution for the (single)
considered objective makes the approaches presented in the previous chapter less
attractive for multi-objective aware parallelization strategies. Instead, Genetic Algo-
rithms (GAs) [Mit98], which are a special form of Evolutionary Algorithms [Ash10],
have been a popular technique in terms of multi-objective aware optimizations in the
last decades. Several researchers have shown in various publications that GAs are
well applicable for multi-objective aware optimization techniques even if the opti-
mization is operating on a vast solution space. The combination of these properties
makes GAs very attractive for extracting parallelism in a multi-objective aware man-
ner like exploited by the parallelization approaches presented in this chapter. The
evaluation of the approaches presented in the previous chapter has revealed that
a combination of different parallelization techniques is important to be applicable
for applications from multiple application domains. Therefore, a task-level and a
pipeline parallelization approach extracting multi-objective aware parallelism are
presented here. Moreover, both approaches can be executed in a combined manner.
To prune the vast solution space of the parallelization problem, the Augmented Hi-
erarchical Task Graph (AHTG) is also employed here as the central intermediate
representation combined with the hierarchical parallelization approach presented in
Chapter 4.

The rest of this chapter is structured as follows: The fundamental concepts of Ge-



108 Chapter 6. Multi-Obj. Parallelization for Homogeneous MPSoCs

1. Create Initial 
Population

6. Return front of 
Pareto-optimal 

solutions

2. Evaluate 
objective values

3. Determine fitness 
value from 

objective values

4. Select individuals 
for mutation and 

recombination

5. Create new 
individuals for next 

population

Population

Individual

New 
Population

Pareto-optimal 
solutions

Individuals for 
mutation and 

recombination

Figure 6.2: General Structure of Genetic Algorithms

netic Algorithms (GAs) are shortly summarized in Section 6.1, before the first GA-
based parallelization approach extracting task-level parallelism in a multi-objective
aware manner is presented in Section 6.2. Afterwards, Section 6.3 presents the sec-
ond GA-based parallelization technique for homogeneous architectures, extracting
pipeline parallelism while considering multiple objectives. Finally, Section 6.4 sum-
marizes the approaches presented in this chapter. Multi-objective aware paralleliza-
tion approaches targeting heterogeneous MPSoCs are discussed later in Chapter 8.

6.1 Genetic Algorithms

Optimization is a common goal which is not only aspired by computer architects.
One of the oldest participants in the optimization cycle is nature with all its living
organisms. It continually adapts the current organisms to changing living conditions.
Only the fittest individuals survive and create new offspring by combining their DNA
with other individuals. Too weak or less flexible individuals are devoured by other
creatures so that they get forgotten over time.

This natural optimization procedure was used as an inspiration for Genetic Al-
gorithms (GAs) (cf., e.g., [Sch75]). GAs start with an initial population containing
individuals representing different solution candidates of the targeted optimization
problem. Each individual contains one or more chromosomes (strings of DNA) that
identify the specific characteristics of each individual. Each chromosome is further
divided into an array of genes storing values describing the different characteristics
of the individuals. These values are also called alleles.

The general structure of GAs is depicted in Figure 6.2. As soon as an initial
population is created, e.g., randomly (step 1), all individuals are evaluated for the
considered objectives (step 2). Afterwards, fitness values based on the objective val-
ues are determined (step 3) describing the quality of each individual. With respect
to the fitness values, some individuals are selected (step 4) for mutation and recom-
bination to create new promising individuals for the succeeding population (step 5).
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The individuals of the new population are now evaluated once again so that steps
2-5 are repeated until a given stopping criterion is met. Finally, the front of Pareto-
optimal individuals representing solution candidates is determined and returned as
the final solution of the GA (step 6). More information on Genetic Algorithms
can, e.g., be found in [Mit98]. The additional steps are also further explained in
the following sections describing the components of the GA-based parallelization
approaches.

The approaches presented in this thesis employ the PISA framework [BLT+03]
with SPEA2 [ZLT01] for selection and variation purposes (steps 3 and 4). Thus,
only steps 1, 2, 5, and 6 of Figure 6.2 have to be designed and implemented by the
presented approaches. The calculation of the fitness values, as well as the selection
of individuals, for recombination and mutation is performed by SPEA2.

6.2 GA-based Task-Level Parallelization Approach

Section 5.2 has revealed that task-level parallelism is well suitable to accelerate se-
quentially written embedded applications for homogeneous multi-core architectures
efficiently. Therefore, this kind of parallelism should also be extracted by the multi-
objective aware techniques presented in this Chapter. The approach presented here
also operates on the Augmented Hierarchical Task Graph with the global divide-
and-conquer-based parallelization approach to extract and combine parallelism with
different granularities (cf. Chapter 4). Hence, small groups of statements, differ-
ent loop(-nest)s and also function calls may be executed in parallel (more details
on task-level parallelism with a motivating example is given in Section 5.2.1). The
kind of extracted parallelism with the employed fork-join model is equivalent to
the one presented in Section 5.2.3. Each hierarchical node is processed in isolation
instead of extracting parallelism for the whole application simultaneously. On each
hierarchical level, new tasks can be extracted and further combined with parallelism
which was extracted deeper in the hierarchy. However, in contrast to the ILP-based
approach presented in the previous chapter, the GA-based one described here is
multi-objective aware. As a result, the approach of this section is able to generate
solutions with low energy consumption, high speedups, low communication over-
head, or useful trade-offs between these three objectives instead of just returning
the solution with the highest speedup at the expense of other objectives.

The rest of this section is structured as follows: First, Section 6.2.1 explains the
integration of the presented parallelization technique into the global parallelization
approach. Afterwards, the employed chromosome structure is explained in Sec-
tion 6.2.2 before the evaluation functions are defined in Section 6.2.3. Finally, the
developed mutation and cross-over functions are presented in Section 6.2.4 before
the proposed approach is evaluated in Section 6.2.5.
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6.2.1 Integration into the Global Parallelization Approach

The integration of the multi-objective aware GA-based task-level parallelization
approach optimized for homogeneous MPSoCs into the global parallelization frame-
work (cf. Section 4.2) is shown in Algorithm 7.

Algorithm 7 Pseudo Code of the GA-based Task-Level Parallelization Approach
1: // Called bottom-up hierarchically by Algorithm 4 in line 18 on page 56
2: function ExtractHomGATLP(Node n, Platform pf , int maxTasks)
3: // This function is only applicable to hierarchical nodes.
4: if IsNotHierarchicalNode(n) then
5: return ∅
6: end if
7: // Extract parallelism for hierarchical node n.
8: // All nodes deeper in the hierarchy are already processed.
9: initPopul← CreateInitialPopulation(n,maxTasks)

10: finalPopul← HomGATaskLevelParallelizer(n, initPopul, pf,maxTasks)

11: front← ExtractParetoFrontier(finalPopul)

12: return front

13: end function

The function ExtractHomGATLP is executed by the global parallelization
algorithm (cf. Algorithm 4) as soon as all child nodes deeper in the hierarchy are
processed. As arguments, the function expects the node n to be parallelized, plat-
form specific information pf containing, e.g., the performance characteristics and
the number of available processing units, and an upper bound of extractable tasks
maxTasks. The value of the variable maxTasks is set to the number of available
processing units of the targeted architecture by default and can be customized by
the application designer. In this way, the parallelization process does not generate
more tasks than there are processing units available by default.

In lines 4-6 the algorithm determines whether the currently processed node n

is a non-hierarchical node since only hierarchical ones are processed by the GA-
based homogeneous task-level parallelization approach, similar to the ILP-based
one. If the node is a hierarchical one, an initial population is created in line 9, first.
This initial population contains different individuals representing parallel solution
candidates which are randomly generated. In addition, this initial population also
contains the sequential solution of the node to be parallelized so that steps upwards
in the hierarchy can always fall back to this solution if more efficient parallelism can
be extracted there. Afterwards, the GA-based parallelization approach is started in
line 10 creating new populations with new solution candidates until a given stopping
criterion is met. This stopping criterion is given by a maximum number of created
populations, which is dynamically determined based on the number of direct child
nodes. Thus, hierarchical nodes with a small number of child nodes are processed
faster since their solution space is smaller than the solution space of hierarchical
nodes containing more child nodes. As soon as the final population generated by
the Genetic Algorithm is returned, containing the best solution candidates found,
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Figure 6.3: Individual’s Chromosome Structure

the front of Pareto-optimal solutions is determined and returned as the solution
for the processed node in lines 11-12. These solution candidates can further be
combined with solution candidates of other parallelization techniques inside the
global parallelization method shown in Algorithm 4. In contrast to the ILP-based
approaches, the GA-based one is not executed multiple times for different maximum
task boundaries. These different solutions are naturally part of the final population
returned by the GA.

6.2.2 Chromosome Structure

The first challenge in using Genetic Algorithms is to map the values of the solution
space to genes of the individuals’ chromosomes in such a way that they can be
altered and evaluated efficiently. All child nodes deeper in the hierarchy are already
processed due to the bottom-up direction of the global parallelization algorithm,
so that a Pareto-front of different solutions, which may contain additional tasks, is
attached to each child node. The challenge of parallelizing a hierarchical node is to
find an efficient node-to-task mapping for all direct child nodes and to select one
of the parallel solutions for each child node. Thereby, the parallelization algorithm
is able to extract new parallelism at the current level of the hierarchy which can
be combined with parallelism found deeper in the hierarchy. Two goals have to be
covered by the GA-based task-level parallelization approach:

I) Statements of direct child nodes have to be mapped to newly extracted, dis-
junctive tasks to reduce the overall execution time by parallel execution.

II) Newly extracted tasks can be combined with tasks which were extracted deeper
in the hierarchy if such a solution increases the overall performance.

These goals have to be integrated into the chromosome structure like depicted
in Figure 6.3. The chromosome structure consists of two parts. The first one maps
direct child nodes Ni to newly extracted tasks Tj (cf. Goal (I)) while the second one
selects one hierarchical solution Si,k

2 for each direct child node Ni (cf. Goal II). The
genes’ values in Figure 6.3, for example, specify that nodes N1 and N2 are mapped to
task T1 while node N3 is mapped to task T2. Additionally, the hierarchical parallel
solution S1,4 is chosen for node N1, parallel solution S2,3 is chosen for node N2, etc.
The individuals’ chromosomes are only twice as large as the number of direct child

2k is just an index to distinguish between the different solutions of node Ni.
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Figure 6.4: Impact of Chromosome Configuration on the Hierarch. Node to be Parallelized

nodes so that they can be encoded efficiently by a small array of integer values.
This enables the creation of a large number of solution candidates with low memory
consumption.

The impact of the chromosome’s configuration is visualized in Figure 6.4. The
example parallelizes a hierarchical node with seven child nodes which can be mapped
to up to four newly created tasks. The figure shows the genes’ values on the left-
hand side and their impact on the evaluation on the right-hand side. The upper
part of the figure shows the task graph representation of the node to be parallelized
according to the node-to-task mapping defined on the left-hand side. As can be seen,
nodes N1 and N2 belong to task T1 while node N3 belongs to task T2. Edges between
the created tasks depend on the node-to-task mapping. Here, a dependence edge
between nodes N2 and N3 exists which implies a dependence edge between tasks T1

and T2. Thus, the execution of task T2 has to wait for completion of T1 since data
has to be communicated between both tasks before T2 can start with its execution.
These task execution orders, as well as inserted communication costs, should be
considered by the evaluation functions for the applied objectives (cf. Section 6.2.3).
The evaluation functions must also be aware of changing paths within the task
graph structure. If, for example, node N5 would be moved from task T3 to task T2

by mutation or recombination (cross-over), a new dependency between T3 and T2
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would arise which has to be taken into account for the evaluation of the objective
values.

The second part of the chromosome representation shown in Figure 6.4 selects
hierarchical parallel solutions which were extracted deeper in the hierarchy for all
child nodes. For each of them, a front of Pareto-optimal solutions exists. The
contained solutions were evaluated by the high-level cost functions presented in the
next section. The approach has to choose exactly one solution candidate from each
child node’s Pareto-frontier providing different objective values for the corresponding
node. A solution with more extracted parallelism may, for example, reduce the
overall execution time at the cost of the system’s energy consumption. This part
of the chromosome’s structure also influences the evaluation of the objective values.
In the example shown, hierarchical solution S1,4 is selected for node N1 while S2,3

is selected for N2, etc.
By combining both parts of the chromosome structure, all decisions that have

to be taken to extract efficient task-level parallelism while considering multiple ob-
jectives at a time are modeled (cf. Goal (I) and (II)). The next section presents the
high-level models used to evaluate the quality of different individuals based on the
genes’ values.

6.2.3 Objective Evaluation

The second functionality that has to be provided for GA-based optimizations con-
sists of evaluation models. These models are used to determine the solutions’ quality
for the considered objectives (cf. step 2 in Figure 6.2). The employed selection and
variation framework (e.g. SPEA2) uses these values to compute a fitness value (cf.
step 3 in Figure 6.2) to select the most promising solution candidates for mutation
and recombination (cf. step 4 in Figure 6.2). In the current version of the paral-
lelization approach, three objectives are considered. They cover the execution time,
which reflects the speedup of the application, the energy consumption of executing
the application on the embedded device, and the communication overhead, which
gives a hint on the bus load of the parallelized application. It is, of course, also
possible to take more objectives into account in future research.

Since the quality of the final Pareto-optimal solutions returned by a Genetic Al-
gorithm primarily depends on the population sizes used and the number of generated
populations, the configuration of an individual’s chromosome must be evaluated ef-
ficiently. Simulating each solution candidate on the target platform is not an option
since it would be too time consuming. Instead, the employed genetic parallelization
algorithm uses high-level models to evaluate the different objectives. The models
employed here do not have to be highly precise. Instead, they should provide a good
trade-off between fast evaluation and enough accuracy to check whether a solution
candidate may increase the application’s overall performance. Otherwise, it would
not be possible to evaluate a large number of generated solution candidates which
would result in a reduced solution quality of a GA-based approach. Of course, the
quality of the models used is later verified by simulation in Section 6.2.5.
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6.2.3.1 Objective 1: Execution Time

The evaluation of the objective value for the execution time of a parallelized node’s
gene values is similar to the modeled execution time of the ILP formulations of
the task-level parallelization approach presented in Section 5.2.4. Consequently,
the objective value is equal to the execution time of the longest (most critical) path
through the sub-graph of the parallelized hierarchical node. In the example shown in
Figure 6.4, the longest execution path is either N1 → N2 → N4 → N5 → N6 → N7

or N1 → N2 → N3 → N6 → N7 or more specifically T1 → T2 → T4 or T1 → T3 → T4

depending on the nodes’ execution times and the communication delay of the tasks
created. The following equations show the calculation of the objective value for the
execution time in a more formal way:

The execution time ET (Ti) for task Ti is equal to the sum of the execution
times ETN(n, Sn,k) of all child nodes n which are mapped to task Ti increased by
a constant task creation overhead TCO like defined in Equation 6.1. The execution
time ETN(n, Sn,k) of child node n is defined by the chosen hierarchical parallel
solution Sn,k (cf. Goal (II)) and was calculated by the high-level models proposed
in this section at the time node n was processed.

ET (Ti) = TCO +
∑

n∈Nodes(Ti)

ETN(n, Sn,k) (6.1)

The path costs PC(Ti) of task Ti are recursively defined in Equation 6.2 and
can only be used in this form since it is ensured that the sub-graph is cycle-free.
The path costs are based on predecessor relationships between the extracted tasks
based on data dependencies of the mapped child nodes. If, e.g., node n is mapped
to task Ti while node m is mapped to task Tj and a directed edge exists from node
n to node m, then task Ti is a predecessor of task Tj such that Tj has to wait until
Ti has completed the execution of its statements and communicated the required
data to Tj . Therefore, the path costs PC(Ti) of task Ti are equal to the sum of
the execution times ET (Ti) (cf. Equation 6.1) of task Ti itself plus the path costs
PC(t) of the most expensive predecessor task t including the communication costs
CC(t, Ti) from task t to Ti.

PC(Ti) = ET (Ti) + max{PC(t) + CC(t, Ti)|∀t ∈ Pred(Ti)} (6.2)

Finally, the overall execution time is equal to the longest execution path of the
node’s sub-graph. Since the path costs PC(Ti) contain the costs of Ti and all its
predecessors, the longest path is equal to the maximum path costs like shown in
Equation 6.3.

OverallET = max{PC(t)|∀t ∈ Tasks} (6.3)

6.2.3.2 Objective 2: Energy Consumption

The objective value of the solution candidates’ energy consumption contains energy
costs which arise due to task spawning, statement execution and communication
costs, like shown in the following equations.
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The energy consumption ICE(Ti) (Incoming Communication Energy) for receiv-
ing the necessary input data of a task Ti is determined first. ICE(Ti) is calculated
by summing up a static overhead for the incoming data ICEO (for, e.g., setting
up the communication channels etc.) and a factor ICM (Incoming Communication
Multiplier) per communicated byte like shown in Equation 6.4.

ICE(Ti) =
∑

d∈InData(Ti)

ICEO +#Bytes(d) ∗ ICM (6.4)

The energy consumption OCE(Ti) (Outgoing Communication Energy) for the
outgoing communications is similar to ICE(Ti) like defined in Equation 6.5.

OCE(Ti) =
∑

d∈OutData(Ti)

OCEO +#Bytes(d) ∗OCM (6.5)

The total amount of energy E(Ti) consumed by each task Ti is equal to the sum of
a constant task creation overhead TCE and the energy EEN(n, Sn,k) which has to
be spent to execute all direct child nodes n mapped to Ti. The energy consumption
EEN(n, Sn,k) of child node n depends on the chosen hierarchical solution candidate
Sn,k and was estimated by the proposed high-level models of this section as soon as n
was parallelized. Finally, E(Ti) is increased by the energy consumption for incoming
(ICE(Ti)) and outgoing (OCE(Ti)) communication like defined in Equation 6.6.

E(Ti) = TCE +
∑

n∈Nodes(Ti)

EEN(n, Sn,k) + ICE(Ti) +OCE(Ti) (6.6)

The estimated overall energy consumption for an individual’s configuration is
equal to the sum of the energy consumption of all tasks like shown in Equation 6.7.

OverallEnergy =
∑

t∈Tasks

E(t) (6.7)

6.2.3.3 Objective 3: Communication Overhead

The evaluation of the communication overhead objective value is the simplest one
and is equal to the sum of the communicated bytes (#Bytes(data)) of all tasks
multiplied by a specified communication delay COSTS like shown in Equation 6.8.

CommOverhead =
∑

data∈Comm

#Bytes(data) ∗ COSTS (6.8)

6.2.3.4 Portability of Models

To enable portability to multiple target platforms, the hierarchical task graph is
augmented with additional cost information, like, e.g., execution time and energy
consumption. Hence, as long as these values can be extracted, the presented ap-
proach and its high-level models are portable to multiple target platforms.

In addition, all constants of the evaluation functions can be configured in the
framework of this thesis. The communication costs CC(t, Ti) are determined by
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Figure 6.5: Mutation and Cross-Over (Recombination) Functions

multiplying a configurable communication factor by the amount of communicated
bytes. The task creation overheads for execution time TCO and energy consumption
TCE can also be configured, to mention only some of the configurable constants.
By combining these configurable parts with the extracted objective values, it should
be easy to adapt the framework to multiple target architectures.

6.2.4 Mutation & Cross-Over

The last missing piece to complete the work-flow of a Genetic Algorithm is the
provision of mutation and cross-over functions. These functions alter the most
promising solution candidates to create new populations for the GA’s next iterations
(cf. step 5 in Figure 6.2).

In the current version of the presented parallelization approach, a 1-position
mutation strategy is implemented, like visualized in Figure 6.5(a). One gene of
the mutating individual’s chromosome is randomly chosen and modified. Thus,
one direct child node is moved from one task Ti to another one Tj or a different
hierarchical parallel solution candidate Sn,k is chosen for node n. The employed
cross-over function (also called recombination) splits two individuals at a random
position and joins the left-hand side of the first one with the right-hand side of the
second one and vice versa (cf. Figure 6.5(b)). This can easily be achieved since all
chromosomes of the same node to be parallelized have the same length and the split
position is equal for both individuals. With the combination of both operations, the
GA is able to create new solution candidates based on promising existing ones.

So far, both functions seem to be simple state-of-the-art implementations. How-
ever, experiments have shown that a large number of invalid solutions (> 50%) is
created by such simple mutation and cross-over functions which drastically reduces
the solution quality of the employed Genetic Algorithm. Solutions are invalid if,
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Figure 6.6: Smart Mutation Function Fixing Invalid Solution Candidates

e.g., a cyclic dependency between the created tasks appears by mutation or recom-
bination so that one task is waiting for data of another one and vice versa. This can
occur if a child node is moved from one task to another one since dependencies be-
tween the tasks may change, as well. The presented GA-based approach also marks
solutions with more concurrently executed tasks than available processing units to
be invalid to reduce additional runtime overhead for scheduling. For such invalid
solutions, the objective evaluation functions return the highest possible objective
values to take care that those solutions are not part of the final Pareto front (a
similar technique is, e.g., also employed in [TBH+07]). Nevertheless, they are still
part of the solution space so that they can be selected for mutation or recombination
with a low probability. The performed evaluations have shown that it is better to
avoid the creation of too many invalid solution candidates.

An example for a mutation step causing a cyclic dependency is given in Fig-
ure 6.6. Figure 6.6(a) shows the chromosome representation and the performed mu-
tation steps while Figure 6.6(b) covers the corresponding changes in the extracted
task graph. The task graph of situation SI is free of dependency-based cycles. If,
for example, node N1 is moved from task T1 to T2, like depicted in situation SII,
a cyclic dependency between tasks T1 and T2 appears such that T1 waits for data
generated by T2 and vice versa. Since in the employed model tasks can only start
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when the necessary input data is available, this situation would lead to a deadlock.
Therefore, a smart mutation strategy was developed as part of this thesis which
automatically tries to fix cyclic dependencies. Such a strategy is commonly used to
optimize a GA-based approach (cf., e.g., [Mit05]). The strategy employed by the
approach presented in this section determines the source of the dependency by con-
sidering the predecessors and successors of the mutated node and tries to solve this
cycle by a succeeding mutation. If necessary, this step is continued until a cycle-free
solution could be extracted or a maximum number of fixing steps is reached. This
is also visualized in Figure 6.6 between situations SII and SIII. Here, the algorithm
has detected that an edge from N1 to N2 exists which causes the cyclic dependency
between T1 and T2 so that the gene’s value of N2 is modified by a directly follow-
ing succeeding mutation step. As a result, SIII is cycle-free again so that a valid
solution is returned to the GA-based approach. A similar correction method is also
performed if a mutation step of a selected hierarchical solution candidate created
too many extracted tasks. Here, a different solution is chosen for one of the other
nodes to create a valid solution.

Invalid solutions generated by cross-over methods are fixed in a similar way.
Here, the genes to the left and right of the cutting position are verified and used
as a starting point to fix occurred cyclic dependencies or an invalid number of ex-
tracted tasks. By using these smart correction algorithms, the number of generated
invalid solutions could be decreased from over 50% down to less than 4%. This
supports the GA to find efficient solutions significantly faster since more valid so-
lutions are analyzed in each population. The author of this thesis is aware of the
fact that these modifications applied to the mutation and cross-over functions may
influence the solutions generated by the GA-based approach. Therefore, the user
can choose between the original and the smart mutation and cross-over functions
in the framework. The evaluation chapter will later show that the smart mutation
and cross-over functions lead to efficient results in a short period of time.

6.2.5 Experimental Results

To evaluate the applicability of the newly presented multi-objective aware task-
level parallelization approach for homogeneous embedded MPSoCs the same set of
benchmarks was chosen as before. The cycle-accurate MPARM simulator [BBB+05]
providing up to four single-core ARM processors was selected as target platform.
The simulator is equipped with a detailed energy model called MEMSIM [Kat08]
which is based on [WM06]. The other target architectures, used for evaluation in
the previous chapter, could not be used here since the Virtualizer tool suite does not
provide energy models. The operating system, the employed middleware as well as
the measurement structure are identical to the evaluations presented in the previous
chapter.

Detailed results for three of the considered applications are presented in Fig-
ures 6.7 - 6.9. All figures show the Pareto-frontier of all considered objectives
(based on the high-level models presented in Section 6.2.3) on the left-hand side
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(a) Model-based Results (b) Simulation-based Results

Figure 6.7: Final Parallel Solutions for the Edge Detect Benchmark.

(Figures 6.7(a) - 6.9(a)). The right-hand side of each figure (Figures 6.7(b) - 6.9(b))
depicts results obtained by simulation on the MPARM simulator for execution time
and energy consumption to validate the accuracy of the employed models. The
framework supports three objectives, namely speedup of the execution time, energy
consumption and inserted communication overhead. These objectives are arranged
on the x-, y-, and z-axes on each figure’s left-hand side, accordingly. Other objec-
tives, like, e.g., the reduction of thermal issues or the size of allocated memory, can
easily be added by future research work. The sequential version of the application
is located at the bottom left of each diagram. This solution is the slowest one with
a speedup of 1× and consumes the lowest amount of energy executed on a single-
core architecture configuration. This solution is used as a baseline for all considered
objectives. For improved readability, vertical bars are added to the left-hand sides’
diagrams to project the points into the x-y-plane. A solid blue line marks the front
of Pareto-optimal solutions, also projected to the x-y-plane. Each diagram contains
both, Pareto-optimal (blue) and Pareto-dominated solutions (gray). Of course, only
the first ones are finally returned to the application designer as possible solution can-
didates. Such a front of Pareto-optimal solutions is generated for each node of the
AHTG during parallelization until the root node of the graph is reached. The root
node’s Pareto front is finally returned to the application designer containing so-
lution candidates with parallelism from different granularity levels. Each solution
was evaluated on an architecture with an appropriate number of processing units.
A solution running, for example, at most three tasks in parallel is simulated on a
platform providing three cores.

The application designer is now able to choose one of the Pareto-optimal solu-
tions which complies with the best trade-off for a considered application scenario.
If, for example, a speedup of 1.4× is sufficient for the parallelized edge detect bench-
mark (cf. Figure 6.7(a)), the amount of consumed energy (compared to the sequen-
tial execution) increases to around 200%. If the solution with the highest speedup
would be chosen – like done by most existing parallelization approaches, which are
only optimizing for speedup – the energy consumption would increase to over 340%
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(a) Model-based Results (b) Simulation-based Results

Figure 6.8: Final Parallel Solutions for the Mult Benchmark.

for a speedup of 2.3×3. 140% of energy could be saved here, by using the new
multi-objective aware task-level parallelization approach. Overall, twelve different
solutions are returned as the final solution candidates for the edge detect benchmark
providing meaningful trade-offs between the considered objectives.

Similar trade-offs can also be observed for the benchmarks mult (cf. Figure 6.8(a))
and boundary value (cf. Figure 6.9(a)). Compared to the results of the edge detect
application, it can be seen that a lower number of Pareto-optimal points were found
since many solutions are Pareto-dominated. Nevertheless, speedups of up to 2.8×
with approximately 280% energy consumption (mult) and 3.1× with 310% energy
consumption (boundary value) span a large solution space for trade-offs generated
by the presented multi-objective aware task-level parallelization approach.

6.2.5.1 Evaluation of High-Level Objective Models

Since the applicability of the presented approach strongly depends on the soundness
of the employed high-level models, Figures 6.7(b) - 6.9(b) compare the Pareto-
optimal points of the model to the simulated results on the target platform. The
third objective (amount of communication) is not shown here since it cannot be
measured by the simulator. Nevertheless, the most important ones are speedup
and energy consumption. The MPARM simulator was configured to have the same
amount of cores as the number of concurrently executed tasks appearing in the
parallelized application. Thus, a solution with two concurrently executed tasks is
executed on a platform with two cores. Of course, there can be multiple parallel
regions in the application. All cores that are not executing threads at a given
timeframe are put into idle mode to save energy. As depicted in the figures, the
trend of increasing energy consumption for more expressed parallelism like estimated
by the employed high-level models was confirmed by the results returned by the
simulator. Moreover, the figures show that the points based on the proposed high-

3The extracted speedups are lower than the speedups extracted for the previous approaches
since the MEMSIM model does not provide caches. This has a negative impact on the parallelized
performance since more communication takes place over the shared bus.



6.2. GA-based Task-Level Parallelization Approach 121

(a) Model-based Results (b) Simulation-based Results

Figure 6.9: Final Parallel Solutions for the Boundary Value Benchmark.

level models are comparable to the simulated ones making the models accurate
enough to be used to extract parallelism in a multi-objective aware manner. By using
these models, it is possible to extract a large number of solution candidates since
they can be evaluated very efficiently. This would not be possible if the objective
values would be determined by, e.g., time consuming simulations for each extracted
solution candidate. This is important since the solution quality of a GA-based
approach strongly depends on the number of created solution candidates.

6.2.5.2 Additional Results & Statistics

Summarized results for all evaluated benchmarks can be found in Table 6.1. The
columns contain information about the time in minutes which was necessary to
parallelize the applications with the presented parallelization approach (Time), the
number of processed nodes (#N ), the number of generated populations (#Pop),
the overall number of generated and evaluated individuals (#Ind), the number of
mutated (#Mut) and recombined (#Cross) individuals and the number of offered
Pareto-optimal solutions (#Sol) which are returned to the application designer.
The number of individuals and populations used to parallelize a hierarchical node
is determined dynamically, based on the number of child nodes and the number of
hierarchical solutions found. Therefore, nodes offering less parallelized solutions are
processed much faster. The shown numbers of populations, individuals, mutations,
etc., are summed up over all parallelized hierarchical nodes.

As can be seen, the new multi-objective aware approach is able to create and
evaluate individuals very fast due to the use of the presented high-level models.
To parallelize, e.g., the compress benchmark, more than half a million individuals
were generated and evaluated in about 9 minutes. The number of offered Pareto-
optimal solutions varies between 4 and 42 (11 in the average case), depending on the
available parallelism of the application. This shows that the presented approach is
able to provide the application designer a large amount of freedom in finding good
trade-offs in the parallelization process.

Compared to the ILP-based approaches, the GA-based one requires significantly
more execution time to find reasonable solutions. One of the reasons is that GA-
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Benchmark Time4 #N #Pop #Ind #Mut #Cross #Sol

adpcm enc. 00:49 27 1,376 146,003 27,164 91,616 5
bound. value 01:04 6 532 79,933 15,122 50,492 4
compress 09:07 131 6,552 592,124 110,426 371,048 5
edge detect 02:08 47 2,088 175,203 32,506 109,528 12
filterbank 01:36 4 212 22,198 4,223 14,012 6
fir 256 64 00:18 7 292 26,462 4,883 16,620 4
iir 4 64 00:51 7 564 82,224 15,373 51,996 6
jpeg2000 04:36 43 2,468 294,970 55,655 186,988 42
latnrm 32 64 00:13 11 460 37,122 6,884 23,172 4
mult 10 10 00:14 10 404 34,511 6,529 21,500 4
spectral 01:36 38 1,948 190,266 35,498 120,084 33

average 02:02 31 1,536 152,819 28,569 96,096 11

Table 6.1: Evaluation of GA-based Task-Level Parallelization Approach for Homogeneous
MPSoCs

based approaches do not know whether they found an optimal solution. Instead,
they have to iterate until a given stopping criterion (e.g., a maximum number of
created populations) is met. The GA-based task-level parallelization approach took
two minutes on average to extract the final solution, whereas the ILP-based ap-
proach could finish its work in only nine seconds for a four core architecture (cf.
Section 5.2.5). However, the novel approach of this chapter is able to deliver trade-
offs for multiple objectives, which was not possible for the ILP-based approaches.

To summarize, the following results were achieved:

1. A large optimization potential is exploited since multiple objectives are con-
sidered at the same time in the parallelization process especially for embedded
devices.

2. The new multi-objective aware task-level parallelization approach produces so-
lutions with good trade-offs between high speedups, low energy consumption,
and low communication overhead.

3. The time to extract these solution candidates with the GA-based approach
ranges between 13 seconds up to 9 minutes for the considered benchmarks
and thus stays in an acceptable amount of time.

6.3 GA-based Pipeline Parallelization Approach

The evaluation of the multi-objective aware task-level parallelization approach in the
previous section has shown that the presented GA-based parallelization technique
is able to provide well-balanced solutions with trade-offs between the considered
objectives. However, the ILP-based parallelization techniques presented in Chap-
ter 5 revealed that pipeline parallelism is important for embedded systems since

4Time format MM:SS, measured on an AMD Opteron core running at 2.4 GHz.
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many applications are written in a pipelined manner. Therefore, the multi-objective
aware parallelization techniques presented in this chapter are extended to be able
to extract well-balanced pipeline parallelism. The pipeline parallelization approach
presented in this section extracts the same kind of parallelism as the ILP-based one
(cf. Section 5.3) and is also integrated into the global parallelization approach de-
scribed in Chapter 4. Also here, an augmented Program Dependence Graph (PDG)
(cf. Section 5.3.2) is used as an intermediate representation to divide loop(-nests)
horizontally and vertically into concurrently executed tasks (cf. Section 5.3.4). It
is recommended to make sure to have read at least the referenced sections before
continuing with the approach presented in this section.

The rest of this section describes the multi-objective aware pipeline paralleliza-
tion approach in more detail and highlights its combination with the previously
presented task-level parallelization approach. Therefore, Section 6.3.1 presents the
integration of the pipeline parallelization technique into the global parallelization
framework. Afterwards, the employed chromosome structure is explained in Sec-
tion 6.3.2 before the evaluation functions are defined in Section 6.3.3. Finally, the
developed mutation and cross-over functions are presented in Section 6.3.4 before
the proposed approach is evaluated in combination with the multi-objective aware
task-level parallelization approach in Section 6.3.5.

6.3.1 Integration into the Global Parallelization Approach

The integration of the multi-objective aware GA-based pipeline parallelization ap-
proach optimized for homogeneous MPSoCs into the global parallelization frame-
work (cf. Section 4.2) is shown in Algorithm 8.

Algorithm 8 Pseudo Code of the GA-based Pipeline Parallelization Approach
1: // Called bottom-up hierarchically by Algorithm 4 in line 18 on page 56
2: function ExtractHomGAPipeline(Node n, Platform pf , int maxTasks)
3: // This function is only applicable to loops.
4: if not n.getStmt().isLoopStmt() then
5: return ∅
6: end if
7: // Create an augmented PDG for the loop(-nest).
8: loopPDG← ConstructPDG(n.getStmt())

9: // Extract pipeline parallelism from the loop’s PDG.
10: iPopul← CreateInitialPopulation(loopPDG,maxTasks)

11: finalPopul← HomGAPipelineParallelizer(loopPDG, iPopul, pf,maxTasks)

12: front← ExtractParetoFrontier(finalPopul)

13: return front

14: end function

The function ExtractHomGAPipeline is executed by the global paralleliza-
tion algorithm (cf. Algorithm 4) as soon as all child nodes are processed. As
arguments, the function expects the node n to be parallelized, platform specific
information pf containing, e.g., the performance characteristics and the number of
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available processing units, and an upper bound of extractable tasks maxTasks. The
variable maxTasks is set to the number of available processing units of the targeted
architecture by default and can be customized by the application designer.

The integration is similar to the integration of the multi-objective aware task-
level parallelization approach presented in the previous section. Here, the approach
is only applicable to flat or nested loops of the application to be parallelized. If
the currently processed node of the AHTG does not represent a loop statement, the
function ExtractHomGAPipeline returns an empty set of solutions in line 5 of
Algorithm 8. Otherwise, an augmented PDG is created containing only those nodes
which are part of the considered loop’s body (cf. Section 5.3.2). Afterwards, an
initial population is created in line 10 containing the sequential solution of the loop
as well as randomly generated solution candidates splitting the loop horizontally
and vertically into concurrently executed tasks. Based on this initial population,
the loop’s PDG, the platform information, and the upper task boundary, the GA-
based pipeline parallelization approach starts to iterate over several populations to
create efficient parallelized versions of the processed loop in line 11. Finally, the
front of Pareto-optimal solution candidates is extracted and returned in lines 12-13
based on the resulting population of the GA-based approach.

The global parallelization algorithm (cf. Algorithm 4) has the possibility to
execute other parallelization techniques as well (like the GA-based task-level paral-
lelization approach) to combine the results of different parallelization techniques.

6.3.2 Chromosome Structure

In order to extract pipeline parallelism in the form described in Section 5.3.1, two
goals have to be covered by the structure of the chromosomes:

I) Statements of the loop’s body have to be mapped to disjunctive pipeline stages
(horizontal splits) to profit from parallel execution.

II) Different iterations of each pipeline stage have to be allocatable to concurrently
executed sub-tasks (vertical splits) to further increase parallel execution.

Both splits have to be part of each individual’s chromosome to extract pipeline
parallelism in a multi-objective aware manner5. The employed chromosome struc-

5The pipeline parallelization approach does not combine hierarchical solution candidates since
it is hard to handle a different amount of inner tasks for different iterations of the loop. However,
this limitation is based on a technical simplification and can be removed in future work.
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Figure 6.11: Impact of Chromosome Configuration on the Parallelized Node

ture is shown in Figure 6.10. The structure of the chromosomes is divided into two
parts. The mapping of PDG nodes, representing statements of the loop’s body, to
pipeline stages is shown on the left-hand side. Here, each node is mapped to exactly
one pipeline stage created by horizontal splits. On the right-hand side, an integer
variable declares how often each pipeline stage is split into sub-tasks which are ex-
ecuting different loop iterations of the stage in parallel. In the example shown in
Figure 6.10, the statements represented by nodes N1 and N2 are mapped to pipeline
stage T1 while node N3 is mapped to stage T2. The first pipeline stage T1 is split
S1 times, T2 is split S2 times, and so on. Each chromosome can be encoded by an
array of integers. The size of this array is only as large as the number of statements
contained in the loop’s body plus the maximum number of pipeline stages to gen-
erate. Hence, each chromosome can be encoded efficiently enabling the generation
of a large amount of individuals consuming only a small amount of memory.

The impact of a chromosome’s configuration is visualized in more detail in Fig-
ure 6.11. In the top part of the figure, nodes N1 and N2 are mapped to the first
pipeline stage (T1), N4 and N5 are mapped to stage T3 while N3 and N6 are mapped
to stages T2 and T4, respectively. T1 starts with the execution of the first iteration
of nodes N1 and N2. Afterwards, the generated data is sent to pipeline stages T2

and T3 so that the next iteration of T1 is executed concurrently to the first iteration
of T2 and T3. The dependencies between the different extracted pipeline stages rely
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on the node to pipeline stage mapping. If one node is moved from one pipeline stage
to another one, e.g., by mutation or recombination, the dependencies between the
pipeline stages may change which also influences the execution order of the stages.
If, e.g., node N2 would be moved from pipeline stage T1 to T2, a new edge would
arise between stages T2 and T3 which has to be taken into account while mutating
and recombining individuals. As a consequence, even small changes in the mutation
steps may have big influences on the evaluation of different objectives. Of course,
not all tasks have to be used so that some of the processors can be put into idle
mode to, e.g., save energy.

The genes representing vertical splits are shown in the lower left part of Fig-
ure 6.11. Here, pipeline stages T1 and T3 are split once, resulting in two sub-tasks
for both pipeline stages. Stages T2 and T4 are not split in this example so that
each iteration of these stages is executed sequentially. The timing belonging to the
chromosome’s configuration is visualized in the lower right corner of Figure 6.11.
The first two iterations of stage T1 are executed concurrently, due to the split of
this stage. As soon as the results are available, data is communicated to T2 and
both instances of pipeline stage T3. In the next time frame, iterations 3 and 4 of
stage T1 are executed in parallel to the first and second iterations of T2 and both
sub-tasks of T3. After four time slots, all six sub-tasks are concurrently executing
the statements assigned to their pipeline stage. Depending on task creation and
communication costs, this configuration of the genes’ values might represent a good
solution candidate for the given example regarding executing time. Nevertheless,
six tasks are executed in parallel so that many processing units have to execute their
work concurrently which consumes significantly more energy if voltage scaling is not
applied. Thus, other allocations of the chromosome’s decision values might lead to
solutions which require less limited resources, as well.

With the presented chromosome structure, horizontal and vertical splits can be
encoded very efficiently so that the structure can be used to extract effective pipeline
parallelism from embedded applications in a multi-objective aware manner.

6.3.3 Objective Evaluation

To render the calculation of fitness values possible for the Genetic Algorithm, ob-
jective evaluation functions have to be provided. Also here, high-level evaluation
functions similar to the ones presented in Section 6.2.3 are used.

Different iterations of the same pipeline stage may or may not depend on each
other according to the number and position of horizontal and vertical splits (cf.
Section 5.3.4). In order to consider these dependencies in the high-level objective
models, loop iterations are virtually unrolled for evaluation purposes. Therefore, the
objectives are evaluated for all loop iterations. Constants like a task creation over-
head or a communication multiplier can be adjusted by the framework to support
different target architectures. In addition, values like execution times or the amount
of communicated data are extracted automatically by the pre-processing steps pre-
sented in Section 3.2 and are annotated to the augmented Program Dependence
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Graph of the loop to be parallelized.

6.3.3.1 Objective 1: Execution Time

To evaluate the objective value representing the execution time of a parallelized loop,
a high-level model based on the one presented in Section 6.2.3 is used. The model
described in the previous section was developed to evaluate task-level parallelism so
that it has to be extended to handle different loop iterations and their dependencies
for pipeline parallelism correctly. The returned value of the proposed model for
pipeline parallelism is equal to the number of cycles of the longest (most critical)
execution path of the loop to be parallelized. The following equations describe the
evaluation in a formal way. The first component necessary to calculate the overall
execution time of the parallelized loop is the execution time of pipeline stage Ti

in iteration j. In the proposed model, the execution time of a pipeline stage Ti

is uniformly distributed over all loop iterations of the stage. Hence, the execution
time ET (T j

i ) of pipeline stage Ti in iteration j is equal to the sum of the execution
times ETN(n) of all nodes n which are mapped to Ti, divided by the number of
loop iterations LI like defined in Equation 6.9.

ET (T j
i ) =

∑
n∈Nodes(Ti)

ETN(n)

LI
(6.9)

Based on the execution time of one iteration of a pipeline stage, path costs can
be calculated which denote the maximum time until the jth iteration of a stage
Ti is finished, including all iterations of its predecessors. The path costs PC(T j

i )

of a pipeline stage Ti in its jth iteration are equal to the sum of Ti’s execution
costs ET (T j

i ) in iteration j and the path costs of the most expensive predecessor
stage T k

� including the communication costs CC(T k
� , T

j
i ) between T k

� and T j
i like

defined in Equation 6.10. The communication costs can be adapted to different
architectures using a platform-dependent communication overhead. The costs of all
indirect predecessors are also included, due to the recursive structure of this formula.

PC(T j
i ) = ET (T j

i ) + max{PC(T k
� ) + CC(T k

� , T
j
i )|T k

� ∈ Pred(T j
i )} (6.10)

The overall execution costs are composed of the platform-dependent configurable
task creation overhead TCO, multiplied by the number of created tasks NT plus the
most expensive path costs PC(TLI−1

i ) of all pipeline stages Ti in their last iterations
LI − 1 like shown in Equation 6.11.

OverallET = TCO ∗NT +max{PC(TLI−1
i )|∀Ti ∈ Tasks} (6.11)

The changes made to the original model presented in Section 6.2.3 are mainly
that the execution time of a pipeline stage Ti is now distributed over its loop itera-
tions j and that each iteration is considered separately to make the models applicable
to pipeline parallelism. The task creation overhead is now added once before the
extracted tasks are executed.
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6.3.3.2 Objective 2: Energy Consumption

The objective value describing the estimated energy consumption consists of energy
costs induced by task creation, communication overhead, and the execution costs of
statements which are mapped to the extracted pipeline stages. First, the incoming
communication energy costs ICE(T j

i ) for pipeline stage i in iteration j are defined
in Equation 6.12. They are equal to the sum of a constant incoming communication
energy overhead ICEO plus the number of transferred bytes #Bytes(d) multiplied
by a platform-dependent communication energy factor ICM :

ICE(T j
i ) =

∑
d∈InData(T j

i )

ICEO +#Bytes(d) ∗ ICM (6.12)

The estimated energy consumption for outgoing communication OCE(T j
i ) is

calculated analogously to ICE(T j
i ) like shown in Equation 6.13.

OCE(T j
i ) =

∑
d∈OutData(T j

i )

OCEO +#Bytes(d) ∗OCM (6.13)

The energy E(T j
i ) which is necessary to execute iteration j of pipeline stage i

contains both, the incoming (ICE(T j
i )) and outgoing (OCE(T j

i )) communication
energy costs, increased by the energy EN(n) which is necessary to execute the
statements mapped to pipeline stage Ti. The energy consumption is also uniformly
distributed over all loop iterations of the stage like defined in Equation 6.14.

E(T j
i ) = ICE(T j

i ) +OCE(T j
i ) +

∑
n∈Nodes(Ti)

EN(n)

LI
(6.14)

Finally, the overall estimated energy consumption OverallEnergy includes a
constant energy overhead for task creation TCE multiplied by the number of created
tasks NT , increased by the energy which is consumed by all pipeline stages E(T j

i )

in each iteration like depicted in Equation 6.15.

OverallEnergy = TCE ∗NT +
∑

i∈Tasks

∑
j∈{0..LI−1}

E(T j
i ) (6.15)

Here, the main difference to the original model presented in Section 6.2.3 is that
the energy consumption is modeled for each loop iteration separately. The proposed
models are later evaluated in Section 6.3.5.

6.3.3.3 Objective 3: Communication Overhead

The evaluation of the communication overhead is based on a simple model which is
identical to the original model presented in Section 6.2.3. All communicated data is
summed up and multiplied by a platform-dependent communication factor COSTS

like shown in Equation 6.16.

CommOverhead =
∑

d∈Comm

#Bytes(d) ∗ COSTS (6.16)
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(a) Model-based Results (b) Simulation-based Results

Figure 6.12: Final Parallel Solutions for the Edge Detect Benchmark.

6.3.4 Mutation & Cross-Over

The employed mutation and recombination operations are described in detail in Sec-
tion 6.2.4 for the GA-based task-level parallelization approach. The basic mutation
and recombination operations can also be used here for the extraction of pipeline
parallelism.

However, also for the approach presented in this section, the generation of a large
number (more than 50%) of invalid solution candidates by state-of-the-art mutation
and recombination operations was observed. Thus, smart mutation and recombina-
tion algorithms were also developed for the pipeline parallelization approach. With
these algorithms, significantly more valid solution candidates are created in a shorter
period of time, which increases the solution quality of the developed GA-based par-
allelization approach. The correction operations avoiding cyclic task dependencies
(cf. Section 6.2.4) could, for example, be directly adapted to fix cyclic dependencies
between the different pipeline stages. In addition, if too many tasks are extracted as
a result of, e.g., too many pipeline stage splits, a succeeding mutation is performed
which limits the number of generated sub-tasks for other pipeline stages. By using
these smart mutation and cross-over operations, the generation of a large number of
invalid solution candidates can be avoided which leads to efficient parallel solutions
in a shorter period of time. On average, only 11% of all created solutions were invalid
which shows that these correction methods work well. If necessary, the user can, of
course, always fall back to the standard mutation and cross-over functions even if a
restriction of the solution space excluding efficient solutions was not observed.

6.3.5 Experimental Results

Instead of just presenting results for the pipeline parallelization approach only, a
combination with the previously presented multi-objective aware task-level paral-
lelization approach of Section 6.2 is given, here. This highlights the easy incor-
poration of multiple parallelization approaches into the proposed framework and
compares advantages and limitations of the different approaches. The evaluated
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(a) Model-based Results (b) Simulation-based Results

Figure 6.13: Final Parallel Solutions for the Filterbank Benchmark.

benchmarks are identical to the ones used to evaluate the other parallelization ap-
proaches and are part of the UTDSP benchmark suite [Lee13], extended by other
meaningful embedded applications like a jpeg2000 encoder. The target platform is
also the same as the one used in Section 6.2.5 and is simulated by the cycle-accurate
MPARM simulator [BBB+05] with the MEMSIM [WM06] energy model providing
up to four single-core ARM processors. All other components like the operating
system and the employed middleware are also the same to facilitate a comparison
to the results presented in the previous section.

Figures 6.12(a) - 6.14(a) show detailed results for three of the considered bench-
marks. As explained in Section 6.3.3, the current framework optimizes for the three
objectives: Speedup (execution time), energy consumption, and the communication
overhead introduced by extracted parallelism. These objectives are arranged on the
x-, y- and z-axes in three dimensional diagrams, respectively. All axes are relative
to the sequential solution which is located at the bottom-left point of the diagrams
with a speedup of 1×, 100% energy consumption and zero communication overhead.
The points of the 3D-diagrams are projected to the x-y-plane for enhanced read-
ability. A solid line marks the front of Pareto-optimal solutions, also projected to
the x-y-plane6. The communication overhead of different solutions can be compared
by the height of the vertical bars. Each diagram contains both, Pareto-optimal and
Pareto-dominated points of the final solutions generated by both parallelization ap-
proaches. Of course, only the Pareto-optimal ones are returned to the application
designer. To be able to compare the efficiency of the new multi-objective aware
pipeline parallelization approach presented in this section with the previously pre-
sented multi-objective aware task-level parallelization technique, different shapes are
used for both types of parallelism. The diagrams also contain solution candidates
employing some parallel sections produced by task-level as well as some sections
produced by pipeline parallelism. Thus, these points are based on a combination of

6The projected Pareto-frontier is not always in a straight echelon form due to the third objective.
Even if a solution is worse in execution time and energy consumption, it may be added to the front
of Pareto-optimal solutions if it adds less communication overhead.
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(a) Model-based Results (b) Simulation-based Results

Figure 6.14: Final Parallel Solutions for the Spectral Benchmark.

both approaches and are labeled as a MIXED solution.
By analyzing the results for the three benchmarks presented in the figures, one

can see that the number of Pareto-optimal solutions returned to the application
designer ranges from 8 up to 25 solutions. This highlights the large optimization
potential for the different objectives considered. The solution with the highest
speedup for, e.g., the filterbank benchmark (cf. Figure 6.13(a)) reduces the execution
time by a factor of nearly 2.7×. Even if this solution drastically reduces the execution
time of the application, it requires the highest communication overhead. In addition,
all cores of the platform are executing threads in parallel which increases the energy
consumption of the system to around 320% compared to the sequential solution. If
the application designer knows that, e.g., a speedup of 1.9× is sufficient to meet
the imposed timing requirements a solution can be chosen exploiting less extracted
parallelism. Some of the cores can then be switched into idle mode for some time
or a platform with less processing units can be chosen. This reduces the energy
consumption to less than 270% for this solution of the filterbank benchmark. Hence,
it is much more efficient compared to 320% energy consumption for the solution with
the highest speedup. The amount of inserted communication is also reduced. The
solution with a speedup of 1.7× even reduces the energy consumption from around
320% (for 2.7× speedup) to 180%, which highlights the various trade-offs of the
proposed multi-objective aware approaches. These observations can be made for
the other evaluated benchmarks, as well.

As already observed for the ILP-based single-objective aware pipeline paralleliza-
tion approach (cf. Section 5.3), pipeline parallelism is able to generate solutions with
a high speedup for many embedded applications. When looking at the results of
the multi-objective aware approaches presented here, this observation can also be
confirmed. The solutions shown in Figures 6.12(a) - 6.14(a) providing the highest
speedup for the considered applications are always generated by pure pipeline par-
allelism (blue circles). However, these solutions also consume the highest amount of
energy. The available trade-offs between the different parallelization types can be
seen best in Figure 6.14(a) which shows the extracted solution candidates for the
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spectral benchmark. Here, three of four solutions (purple diamonds) with a speedup
of less than 1.2× are generated by the previously presented multi-objective aware
task-level parallelization approach (cf. Section 6.2). Even though the speedup is
not as high as the speedup of the other approaches, only a small increase in en-
ergy consumption was observed for these solutions. The combination of task-level
and pipeline parallelism (green squares) extracted 14 solutions with speedups be-
tween 1.2× and 1.7×. Thus, the energy consumption is slightly increased but is
at least lower than for solutions generated by pure pipeline parallelism. Finally,
the solution candidates with speedups of more than 1.7× are exclusively extracted
by the new pipeline parallelization approach. As can be seen in the figure, other
Pareto-dominated solutions with task-level parallelism, pipeline parallelism and also
a mixture of both techniques were generated but not returned to the application
designer. Other benchmarks like, e.g., the edge detect benchmark shown in Fig-
ure 6.12(a) profit even more from the new pipeline parallelization approach even
though the results are close to the ones presented in Section 6.2.5.

6.3.5.1 Evaluation of High-Level Objective Models

The solution candidates presented in the 3D-diagrams of Figures 6.12(a) - 6.14(a) are
based on the high-level models presented in Section 6.3.3. Therefore, Figures 6.12(b)
- 6.14(b) depict results obtained by simulation on the MPARM platform with the
MEMSIM energy model. These 2D-diagrams compare speedup and energy consump-
tion of the extracted solution candidates. The communication overhead cannot be
measured by the simulator so that it is skipped, here. In all three diagrams, the
trend of increasing execution time and energy consumption is close enough between
model-based evaluation and simulation so that the models are considered sufficiently
accurate to deliberate whether it may be beneficial to extract parallelism at a certain
point of the application.

6.3.5.2 Additional Results & Statistics

Summarized results and additional statistics of the GA-based approaches are shown
in Table 6.2. The table contains information about all benchmarks shown in the
3D-diagrams and also about further evaluated applications. The columns contain
information about the time in minutes which was necessary to parallelize the applica-
tions with the combination of the task-level and pipeline parallelization approaches
(Time), the number of processed nodes (#N ), the number of generated populations
(#Pop), the overall number of generated and evaluated individuals (#Ind), the
number of mutated (#Mut) and recombined (#Cross) individuals and the num-
ber of offered Pareto-optimal solutions (S ) returned to the application designer.
The numbers in the last columns depict how many Pareto-optimal solutions were
generated by the task-level (TL) and pipeline parallelization (PL) approaches as
well as the number of solutions generated by a combination of both approaches
(MI ). The number of individuals and populations used to parallelize a node is de-
termined dynamically, based on the number of child nodes. Therefore, nodes with
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Benchmark Time7 #N #Pop #Ind #Mut #Cross S TL PL MI

adpcm enc. 01:04 36 1,520 151,049 28,154 98,766 5 2 2 1
bound. value 01:11 12 644 83,331 15,804 54,032 4 0 3 1
compress 14:31 336 10,444 821,854 161,617 608,250 5 0 4 1
edge detect 04:48 105 2,872 196,720 38,125 137,788 9 0 8 1
filterbank 02:39 7 412 51,035 15,005 136,485 8 1 6 1
fir 256 64 00:39 13 388 29,607 5,863 22,317 4 0 3 1
iir 4 64 14:35 13 852 103,294 21,298 92,830 4 0 3 1
jpeg2000 04:49 62 2,868 313,047 62,630 231,390 45 0 27 18
latnrm 32 64 01:34 17 636 53,462 11,931 46,358 4 0 3 1
mult 10 10 02:45 36 1,060 70,442 14,984 60,399 4 0 3 1
spectral 03:04 51 2,260 211,023 41,667 160,477 25 3 7 15

average 04:41 63 2,178 189,533 37,916 149,917 11 1 6 4

Table 6.2: Evaluation of Combined GA-based Parallelization Approaches for Homoge-
neous MPSoCs

a smaller search space are processed much faster. The numbers of populations,
individuals, mutations, etc., shown are summed up over all parallelized nodes and
may marginally differ between different tool flow executions due to random decisions
taken by Genetic Algorithms.

Most Pareto-optimal solutions are created by the new multi-objective aware
pipeline parallelization approach presented in this section (cf. column PL). Never-
theless, some benchmarks also profit from the previously presented task-level par-
allelization approach and the combination of both approaches. For example, 25
Pareto-optimal solutions are returned to the application designer for the spectral
benchmark, like also shown in Figure 6.14(a). Three of these 25 solutions were gen-
erated by the task-level approach while seven solutions are purely based on extracted
pipeline parallelism. Nevertheless, 15 solutions were generated by the combined ap-
proach containing parallel sections with both, task-level and pipeline parallelism.
This shows that both approaches and also their combination provide meaningful
solutions optimizing at least one objective of the Pareto-space.

The table also presents some statistics of the employed Genetic Algorithm and
the time which was necessary to parallelize the application with both approaches.
For the jpeg2000 encoder, for example, more than 300,000 individuals were created
by mutation and recombination. The whole parallelization approach took less than
five minutes, which correlates to less than a millisecond to mutate or recombine
and also evaluate one of the individuals. Otherwise, it would not be possible to
generate such a huge amount of solution candidates, which would drastically reduce
the quality of the solutions generated by the Genetic Algorithm.

To summarize, the following results could be confirmed by the evaluation:

1. A large optimization potential is exploited since multiple objectives are con-
sidered at the same time in the parallelization process.

7Time format MM:SS, measured on an AMD Opteron core running at 2.4 GHz.
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2. The novel multi-objective aware pipeline parallelization approach extracts, in
general, the most efficient parallel solutions regarding speedup of execution
time for the considered embedded applications.

3. Solutions generated by the task-level parallelization approach are less efficient
regarding speedup for many embedded applications, but they use less energy.

4. The combination of task-level and pipeline parallelism produces highly ben-
eficial solutions providing good trade-offs between high speedups of pipeline
parallelism and less energy consumption of task-level parallelism.

The results have shown that the multi-objective aware extraction of pipeline
parallelism improves the quality of the solutions returned by the existing multi-
objective aware parallelization approach. Moreover, the combination with task-level
parallelism also extends the space of Pareto-optimal solutions.

6.4 Summary

This chapter presented two multi-objective aware parallelization approaches which
are well applicable to homogeneous embedded MPSoCs. While most state-of-the-art
parallelization approaches consider the extraction of speedup as their only optimiza-
tion objective, the approaches presented in this chapter are able to trade-off different
objectives directly in the parallelization process. The performed evaluations have,
for example, shown that it is possible to save a significant amount of energy if the
extracted parallelism is reduced so that some of the cores can be put into idle mode
or a platform providing fewer cores can be used.

It could further be shown that both, the newly presented task-level and pipeline
parallelization approaches are able to extract efficient solution candidates leading
to either high speedups, low energy consumption, low communication overhead, or
solutions with good trade-offs between the different objectives. Furthermore, also
a combination of the presented task-level and pipeline parallelization approaches
contributed additional solutions to the space of Pareto-optimal points. These solu-
tion candidates represent trade-offs between the advantages and limitations of both
presented parallelization approaches. It is easy to integrate additional objectives
to the GA-based parallelization approach since only a high-level objective evalua-
tion function has to be provided. As a consequence, other objectives like memory
consumption could easily be integrated for future research work, as well.

To conclude, the following results could be achieved by the multi-objective aware
parallelization approaches presented in this chapter:

1. Creation and integration of a multi-objective aware task-level parallelization
approach.

2. Creation and integration of a multi-objective aware pipeline parallelization
approach.
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3. Combination of task-level, data-level8, and pipeline parallelization approaches,
which can be executed separately or in a combined fashion.

4. Usage of high-level evaluation functions which are accurate enough to esti-
mate whether parallel execution may lead to increased performance for the
considered objectives. Moreover, the model-based evaluation is fast enough to
evaluate a large number of solution candidates.

5. The combination of the different multi-objective aware parallelization ap-
proaches produced highly beneficial solutions providing either high speedups,
low energy consumption, low communication overhead, or also good trade-offs
between the considered objectives.

8DoAll parallelism can be extracted as a special case from the pipeline parallelization approach.
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The previous two chapters presented efficient parallelization approaches inte-
grating high-level cost models into Integer Linear Programming (ILP) and Genetic
Algorithm (GA)-based parallelism extraction techniques. By combining task-level
and pipeline parallelization approaches into single and also multi-objective aware
contexts, solutions could be extracted which are well tailored towards specific re-
quirements imposed by modern homogeneous embedded MPSoCs. However, the de-
sign of current state-of-the-art MPSoCs moves from traditional homogeneous multi-
core architectures towards heterogeneity. In heterogeneous MPSoCs, different kinds
of processors are combined on one die to tackle problems concerning, among others,
processing speed, energy consumption, and heat dissipation arising if the same kind
of processing unit is replicated multiple times by homogeneous MPSoCs. These
heterogeneous systems often combine general purpose cores with processing units
which are highly optimized for specific use cases, like network or digital signal pro-
cessors. Parts of the application can be executed on these specialized cores which
can significantly reduce, e.g, execution time and the system’s energy consumption
simultaneously.

Even though these fully heterogeneous architectures provide high performance at
a significantly lower energy consumption compared to homogeneous MPSoCs, their
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Figure 7.1: Performance vs. Energy of big.LITTLE Architecture [Pet13]

optimization potential is often not fully exploited. The main reason is certainly the
high complexity of such systems. In most cases, the processing units employed be-
have completely differently when executing the same statements of the application.
In addition, most of these cores are not binary compatible so that application code
must be re-written or at least re-compiled to enable exploitation of the specialized
processing units. This often leads to parallelized versions of the targeted application
executing only pre-compiled parts of it (like libraries) on these specialized process-
ing units. This wastes a lot of optimization potential since these cores may also be
useful for multiple parts of the considered application.

Since these fully heterogeneous platforms are often too complex to be fully ex-
ploited, an interesting design pattern was presented by Kumar et al. several years
ago in [KTR+04]. They proposed a heterogeneous same instruction set architecture
(same-ISA) multicore platform which combines different processing units supporting
binary compatibility. This has the advantage that the application has to be com-
piled only once, independent of the executing processing unit, which significantly
eases the step of porting and mapping an application to such an MPSoC platform.
This idea has recently caught on in the industry resulting in designs like ARM’s
big.LITTLE architecture [Pet13] combining multiple Cortex-A15 and Cortex-A7
cores on one die. The benefit of such a platform is depicted in Figure 7.1. While the
(little) Cortex-A7 cores provide only low performance, they are efficient regarding
energy consumption due to their simple processor pipeline. In contrast, the (big)
Cortex-A15 cores provide a large amount of processing power at the cost of the
system’s energy consumption. By combining the benefits of both processor types, a
binary compatible heterogeneous platform providing high-performance, low energy
consumption and many trade-offs between these objectives can be exploited.
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However, independently of whether the heterogeneous architecture is binary com-
patible or not, new problems arise if sequentially written applications are to be
mapped onto the cores of these platforms. On homogeneous platforms, extracting
parallelism has already shown to be time-consuming and error-prone, prompting
the development of automatic parallelization approaches like the ones presented in
Chapters 5 and 6. For heterogeneous systems, the task of parallelizing a given
application becomes even more complex than in the homogeneous case, since the
execution time required for a given section of code differs depending on the execut-
ing processing unit. Hence, manual parallelization of a sequential application and
balancing of tasks becomes a nearly infeasible problem for developers. As a con-
sequence, efficient automatic parallelization becomes indispensable when targeting
heterogeneous platforms.

Since the ILP-based approaches presented in Chapter 5 have shown to be effi-
cient for extracting and balancing tasks for embedded homogeneous architectures,
they are used as a starting point for new extraction techniques tailored towards
heterogeneous MPSoCs. The Augmented Hierarchical Task Graph (AHTG) with
its divide-and-conquer-based approach (cf. Chapter 4) has already been useful to
make the complexity of the parallelization problem manageable for homogeneous
architectures and is now indispensable for heterogeneous ones. Execution times,
as well as other objectives, may vary depending on the processing unit execut-
ing a given piece of code for heterogeneous MPSoCs. This significantly increases
the solution space of the parallelization problem and makes load-balancing an even
more challenging problem. But if such performance variances can be integrated into
the parallelization extraction step, optimized tasks for specific processing units can
be extracted creating well-balanced solutions even for heterogeneous architectures.
While this chapter presents new ILP-based single-objective aware parallelization
techniques for heterogeneous architectures, the succeeding Chapter 8 will further
present approaches extracting parallelism for such platforms in a multi-objective
aware manner.

The rest of this chapter is structured as follows: The first ILP-based paral-
lelization approach for heterogeneous architectures extracting task-level parallelism
is presented in Section 7.1. Afterwards, Section 7.2 presents the second ILP-based
parallelization technique for heterogeneous architectures, extracting pipeline paral-
lelism. Finally, Section 7.3 summarizes the approaches presented in this chapter
and gives directions for future work.

7.1 ILP-based Task-Level Parallelization Approach

Task-level parallelism (cf. Section 5.2.1) could be used to efficiently parallelize
sequentially written application for homogeneous MPSoCs so that it should be con-
sidered for extraction techniques focusing heterogeneous MPSoCs as well. The ap-
proach presented in this section uses the ILP-based task-level parallelization tech-
nique of Section 5.2 as a starting point to extract the same kind of parallelism with
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its employed fork-join model (cf. Section 5.2.3). It also operates on the Augmented
Hierarchical Task Graph with its global divide-and-conquer-based parallelization
approach to extract and combine parallelism with different granularities (cf. Chap-
ter 4). Hence, small groups of statements, different loop(-nest)s or also function calls
may be executed in parallel. The new main challenge that has to be coped with
for heterogeneous MPSoCs is the balancing of the extracted tasks for processing
units with varying performance characteristics. Since the heterogeneous approach
presented here is based on the homogeneous one described in Section 5.2, it is rec-
ommended to read this section first.

The rest of this section is structured as follows: First, Section 7.1.1 demon-
strates the impact of the balancing problem on heterogeneous architectures by a
small example before the integration of the presented parallelization technique into
the global parallelization approach is described in Section 7.1.2. Afterwards, the
employed ILP-based parallelization approach is described in Section 7.1.3 extended
by a simple loop-parallelization approach in Section 7.1.4. Finally, the newly pre-
sented heterogeneous approach is evaluated and compared against the homogeneous
task-level parallelization approach in Section 7.1.5.

7.1.1 Motivating Example

An approach which is able to extract task-level parallelism for homogeneous em-
bedded MPSoCs was already presented in Section 5.2. As shown in the motivating
example of that section, the extracted tasks could be balanced so that all tasks
belonging to the same parallel section finish nearly at the same time. The resulting
partitioning of this example is once again shown in Figure 7.2(a). There, six phases
are grouped into four parallel sections (i.e., four blocks of concurrently executed
tasks) and all tasks finish nearly at the same time.

The new challenge arising in the case of heterogeneous MPSoCs is that the
tasks’ execution times may differ depending on the executing processing unit. Fig-
ure 7.2(b) shows what may happen if the same solution would be mapped to a
heterogeneous architecture with two fast, one slow processor, and one processor
in between (medium). In this scenario, three of the four processing units have to
wait for a long time since the tasks of the different parallel sections are not well-
balanced. Thus, a large amount of processing power is wasted. Even though three
faster processing units were added to the target platform as accelerators, the overall
execution time could not be reduced since all faster processing units have to wait
for the slowest one in each parallel section. Most existing parallelization approaches
do not consider these performance variances of the available processing units which
may result in solutions like the one shown in Figure 7.2(b).

To find a better solution for this problem, the new task-level parallelization
approach presented in this section considers these performance differences and com-
bines task extraction with a pre-mapping of tasks to processor classes. These pro-
cessor classes represent identical processing units of the heterogeneous architecture.
In this way, tasks can be optimized for specific processing units directly in the
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Figure 7.2: Possible Parallel Solutions of the Edge Detect Benchmark (cf. Section 5.2.1)

parallelization process which enables well-balanced solutions even for heterogeneous
architectures. An exemplary solution depicting the possibilities of the new approach
is shown in Figure 7.2(c). There, phase 1 of the application is first moved to one of
the fastest processing units so that the first parallel section is finished earlier. The
second and the final parallel sections, executing phase 2 and phases 5 and 6, are
executing different iterations of the sections’ loops in parallel. Here, a balancing
of iterations with respect to the provided performance is employed. Heavier work-
loads, i.e. tasks with more iterations, are mapped to the two fastest processing units
while the slower ones are allocated with lighter workloads, respectively. In the third
parallel section of the example shown in Figure 7.2(c), the algorithm may decide to
put the slow and the medium processing units into idle mode since their allocation
would decrease the extracted speedup. Instead, both parts of phase 3 and phase 4
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are allocated to one of the fastest processing units each. This solution is more than
twice as fast as the solution shown in Figure 7.2(b) which significantly increases the
application’s performance.

This example has shown that it is indispensable to take performance variances
of the available processing units into account if applications should be efficiently
mapped onto heterogeneous MPSoCs. To achieve this, different estimated execution
times are annotated to the AHTG for each processor class. In addition, a pre-
mapping of tasks to processing units, grouped to processor classes, is performed to
ensure that the extracted tasks are mapped to the processing units for which they are
optimized. These steps are integrated into the ILP-based task-level parallelization
approach in the remainder of this section.

7.1.2 Integration into the Global Parallelization Approach

The integration of the new ILP-based task-level parallelization approach tailored
towards heterogeneous MPSoCs into the global parallelization framework (cf. Sec-
tion 4.2) is shown in Algorithm 9.

Algorithm 9 Integration of Het. ILP-based Task-Level Parallelization Approach
1: // Called bottom-up hierarchically by Algorithm 4 in line 18 on page 56
2: function ExtractHetTLP(Node n, Platform pf , int maxTasks)
3: // This function is only applicable to hierarchical nodes.
4: if IsNotHierarchicalNode(n) then
5: return ∅
6: end if
7: // If n represents an independent loop, use the simple loop parallelizer.
8: if n.getStmt().isLoopStmt() ∧ IsLoopIndependent(n) then
9: solutions← SimpleParallelizer(n, pf,maxTasks)

10: return solutions

11: end if
12: // Otherwise, apply the ILP-based approach.
13: for all seqPC ∈ pf.getProcClasses() do
14: i← maxTasks

15: while i >= 2 do
16: result← HetILPTaskLevelParallelizer(n, seqPC, pf, i)

17: solutions← solutions ∪ {result}
18: i← NumberOfTasks(result)− 1

19: end while
20: end for
21: return solutions

22: end function

The function ExtractHetTLP is executed by the global parallelization algo-
rithm (cf. Algorithm 4 on page 56) as soon as all child nodes deeper in the hierarchy
are processed. The first lines are identical to the integration of the homogeneous
task-level parallelization approach depicted in Algorithm 5. The algorithm first de-
termines in lines 4-6 whether the currently processed node n is not a hierarchical
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node since other node types (e.g. simple nodes) are not processed by this approach.
Since the complexity of the heterogeneous ILP-based task-level parallelization

approach is high, the algorithm first determines whether the currently processed
node n represents a loop statement. If this is true and the iterations are free of
loop-carried dependencies, a less complex approach described in Section 7.1.4 can
be applied in lines 8-11 to extract efficient solutions for these special cases. The so-
lutions extracted by a call to SimpleParallelizer are finally returned as solution
candidates of this node.

If node n represents a non-loop statement or the loop contains loop-carried
dependencies, the sophisticated ILP-based task-level parallelization approach pre-
sented in Section 7.1.3 is repeatedly called in line 16 for different processor classes
and changing upper task boundaries. In this way, several solutions with different
processing unit allocations are extracted to provide the parallelization process up-
wards in the hierarchy with flexibility for extracting and combining parallelism with
different granularities. All extracted results are collected and finally returned as
solution candidates for node n in line 21.

7.1.3 ILP-based Parallelization Approach

The main goals that have to be covered by the new ILP-based task-level paral-
lelization approach for heterogeneous embedded MPSoCs are summarized in the
following:

I) Map statements of direct child nodes into newly extracted, disjunctive tasks
to reduce the overall execution time by parallel execution.

II) Combine newly extracted tasks with tasks which were extracted deeper in the
hierarchy, if such a solution increases the overall performance (Parallel Set
Mapping).

III) Keep track of dependencies which may change if child nodes representing state-
ments are moved from one task to another one.

IV) Minimize the overall execution time by taking task creation and communi-
cation overhead as well as task execution costs depending on the mapped
processor class into account.

V) Create a mapping of tasks to processor classes of heterogeneous MPSoCs to
take care that solutions are well balanced, even for architectures containing
processing units with differing performance characteristics.

Goals (I)-(IV) are already covered by the homogeneous ILP-based task-level par-
allelization approach presented in Section 5.2.4. The referenced section defines and
describes several decision variables and constraints enabling the extraction of pre-
decessor and successor relationships within an ILP system. It further determines
the different execution paths of the node to be parallelized in Equations 5.3 - 5.17.
By using these equations, it is possible to reduce the execution time of the currently
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processed hierarchical node by moving its direct child nodes to concurrently exe-
cuted, well-balanced tasks. The ILP solver also has the option to combine newly
extracted tasks with parallelism which was found deeper in the hierarchy. Most of
these equations can be re-used to build the new heterogeneous task-level paralleliza-
tion approach for heterogeneous architectures on top of the existing one. Only the
Parallel Solution Candidate Constraint (cf. Equations 5.5 - 5.6 in Section 5.2.4.2)
and the Task Execution Costs Constraint (cf. Equation 5.9 in Section 5.2.4.4) have
to be adapted to distinguish between varying execution times depending on the
mapped processing unit for heterogeneous MPSoCs. In addition, the constraints
limiting the number of extractable tasks defined in Equations 5.12 - 5.15 are useless
in this form for heterogeneous architectures. All other equations which map nodes
to tasks and describe execution paths as well as the objective function can be re-
used without being changed. To summarize, the eight Equations 5.3 - 5.4, 5.7 - 5.8,
5.10 - 5.11, and 5.16 - 5.17 are re-used without modifications, extended by ten new
equations, defined in the remainder of this section.

In the following, decision variables are written in lower case letters, sets start
with a capital letter, and constants contain exclusively capital letters. Indices n and
o are used for child nodes of the node to be parallelized, t and u represent indices for
tasks while c represents a processor class. The most important variables presented
in Section 5.2.4 are summarized here once again:

• xt
n = 1 if node n is mapped to task t (Section 5.2.4.1)

• pn,s = 1 if parallel solution s of child node n is chosen (re-defined in
Section 7.1.3.1)

• predt,u = 1 if task t is a predecessor of task u (Section 5.2.4.3)

• costt execution costs of task t (re-defined in Section 7.1.3.2)

• accumcostt path execution costs of t including all its predecessors (Sec-
tion 5.2.4.5)

A graphical representation of all equations is also given in Figures 7.3 - 7.8
visualizing the decision variables and constraints used. The sub-figures have the
same titles as the corresponding subsections. To avoid repetition, the re-used and
unchanged parts of the homogeneous ILP are not repeated here. The complete ILP
formulation containing all decision variables and constraints used can also be found
in the corresponding publication of this approach [CEN+13c].

7.1.3.1 Parallel Solution Candidate Constraint

The largest impact on the tasks’ execution times is caused by the execution times
of the child nodes mapped to the corresponding tasks. Profitable parallel solution
candidates were created and collected in a so-called parallel set for each child node by
the bottom-up parallelization approach (cf. Section 4.2.2). This set can contain both
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sequential as well as parallelized solutions containing parallelism which was found
deeper in the nodes’ hierarchy. The algorithm has to choose one of these solutions
for each child node (Goal (II)) to combine new tasks with previously extracted ones.

In the homogeneous case, the execution times are independent of the execut-
ing processing unit since all cores behave identically. As already motivated, this
assumption would lead to poor results for heterogeneous architectures since the ex-
tracted tasks would operate in a highly unbalanced execution behavior due to the
different performance characteristics of the employed processing units. Therefore,
each solution is now labeled with a specific processor class which has to be used to
execute the selected parallel solution candidate of node n to reach the estimated
performance characteristics. In addition, an internal task-to-processor class map-
ping is also newly integrated for solution candidates running tasks in parallel. In
the example shown in Figure 7.3, three solution candidates exist for child node n3.
The first two ones assume an execution of this node on processor class c1 while the
last one assumes an execution of this node on processor class c2. If the last solu-
tion would be selected for node n3, the execution would take 300,000 time units on
processor class c2. The different execution times were estimated by the high-level
models integrated into the ILP-based parallelization approach in the parallelism
extraction step for the corresponding child node.

Equation 7.1 defines variable pn,c,s which was extended to incorporate the new
processor class dimension. The variable evaluates to 1 if parallel solution s of node
n executed on processor class c is chosen. This new variable replaces pn,s defined
by the homogeneous ILP-based approach.

pn,c,s =

⎧⎪⎪⎨
⎪⎪⎩
1, if parallel solution s of child node n

executed on processor class c is chosen
0, otherwise

(7.1)

Equation 7.2 takes care that exactly one hierarchical parallel solution candidate
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is chosen for each child node as enforced by the global parallelization algorithm1.

∀n ∈ Nodes :
∑

c∈ProcClasses

∑
s∈Solutionsn,c

pn,c,s = 1 (7.2)

7.1.3.2 Task Execution Costs Constraint

The execution costs costt of task t depend on the chosen parallel solution candidates
of its mapped child nodes. Since the definition of pn,c,s was changed in the previous
two equations, the calculation of the task costs must also be updated to be aware of
heterogeneous architectures with varying performance characteristics of the available
processing units. Therefore, the costs for each task are now calculated like defined
in Equation 7.3 and shown in Figure 7.4.

∀t ∈ Tasks : costt = EC ∗ TCO+∑
n∈Nodes

∑
c∈ProcClasses

∑
s∈Solutionsn,c

(xtn ∧ pn,c,s) ∗ COSTSn,c,s (7.3)

Equation 7.3 includes decision variable pn,c,s which selects one solution candidate
for each child node involving different execution costs COSTSn,c,s

2 depending on
the mapped processor class c and the number of extracted tasks deeper in the
hierarchy. The execution costs costt of task t consist of a configurable task creation
overhead TCO multiplied by the execution count EC. This overhead is increased
by the execution costs COSTSn,c,s of all nodes n which are executed on processor
class c and mapped to task t depending on the chosen parallel solution candidate
pn,c,s. Thus, costt contains all execution costs of task t by considering the mapped
processor class.

The variable costt is further embedded in the calculation of the path costs so
that the different execution times depending on the selected processor class are

1Such a solution can be guaranteed since at least one sequential solution candidate exists for
each processor class denoting the sequential execution.

2Variables COSTSn,c,s were calculated deeper in the hierarchy and are thus constants in the
parallel configurations.
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automatically integrated into the path calculation and therefore the minimization
of the overall execution time. Hence, the consideration of differing performance
characteristics of the available processing units could be achieved with only two small
adjustments of the previously presented homogeneous ILP systems. However, to be
able to extract highly optimized tasks for heterogeneous MPSoCs, a pre-mapping of
tasks to processor classes has to be integrated into the new ILP formulation which
was not necessary in the homogeneous case. Therefore, the rest of this section
presents the necessary decision variables and constraints used to achieve this.

7.1.3.3 Mapping of Tasks to Processor Classes Constraint

Up to now, newly extracted tasks are not mapped to any processor class. This has
not been necessary for homogeneous architectures but has a huge impact on the
execution time for heterogeneous ones. Therefore, the presented approach of this
section combines the extraction of parallelism with a mapping of tasks to processor
classes representing identical processing units of the targeted heterogeneous archi-
tecture. This enables the extraction of well-balanced tasks, which are optimized for
a given processor class like demanded by Goal (V). A new decision variable maptc is
introduced which evaluates to 1 if task t is mapped to processor class c like shown
in Figure 7.5 and defined in Equation 7.4.

maptc =

{
1, if task t is mapped to processor class c

0, otherwise
(7.4)

Each task t has to be mapped to exactly one processor class c, which is ensured
by Equation 7.5.

∀t ∈ Tasks :
∑

c∈ProcClasses

maptc = 1 (7.5)

7.1.3.4 Available Processing Units per Processor Class Constraint

By taking advantage of platform information in the task extraction step, it is possi-
ble to avoid additional scheduling overhead at runtime. Therefore, each processing
unit should either be used by newly extracted tasks or tasks which were extracted
deeper in the hierarchy. The number of already allocated processing units of a
processor class c, used by the selected hierarchical solution candidates of the child
nodes, has to be determined for each task t. The constant USEDPROCSs,c rep-
resents the number of already allocated processing units of class c for hierarchical
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parallel solution candidate s and is a constant for each parallel solution candidate.
Equation 7.6 defines variable procsusedtc which stores the amount of already allo-
cated processing units on the basis of USEDPROCSs,c for all processor classes c,
used by the child nodes mapped to task t.

∀c ∈ ProcClasses : ∀t ∈ Tasks : ∀n ∈ Nodes : ∀s ∈ Solutionsn,c :

procsusedtc ≥ USEDPROCSs,c ∗ (pn,c,s ∧ xtn) (7.6)

The constant USEDPROCSs,c is only added to the number of used processing
units procsusedtc if the hierarchical solution candidate s was selected for node n

(pn,c,s) and n is mapped to task t (xtn). An example is shown in Figure 7.6. Nodes n3

and n5 are mapped to task t3 so that only their hierarchical solutions are considered.
The second hierarchical solution is selected for node n3, containing two hierarchical
tasks allocated to processor class c2. For node n5, the solution with one hierarchical
task mapped to processor class c2 was selected, so that the number of hierarchical
tasks contained in t3 mapped to processor class c2 is three.

With procsusedtc, it is now possible to calculate the amount of processing units
which are still available for allocation of newly extracted tasks, like shown in Equa-
tion 7.7.

∀c ∈ ProcClasses : numPCc = NUMPROCSc − (
∑

t∈Tasks

procsusedtc) (7.7)

The constant number of available processing units NUMPROCSc per processor
class c is derived from the provided platform information pf (cf. Algorithm 9).

7.1.3.5 Limit Allocated Processing Units Constraint

So far, all newly extracted tasks can be mapped to the fastest processor class even if
not enough processing units of this class for parallel execution are available. There-
fore, the number of tasks mapped to this processor class should be limited to be less
or equal to the number of available processing units of this class (cf. Figure 7.7).
Equation 7.8 ensures that the number of newly extracted tasks t, mapped to pro-
cessor class c, does not exceed the number of still available processors numPCc for
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each processor class c.

∀c ∈ ProcClasses :
∑

t∈Tasks

maptc ≤ numPCc (7.8)

With this constraint, it is finally ensured that the number of newly extracted
and combined hierarchical tasks does not exceed the number of available processing
units of the different processor classes.

7.1.3.6 Restrict Solution Candidates Constraint

So far, new tasks can be extracted, balanced, and combined with parallelism which
was extracted deeper in the hierarchy to reduce the overall execution time of node n.
However, one last aspect has to be taken into account to ensure that the solutions
extracted by the ILP system are valid. As shown in Figure 7.3 of the Parallel
Solution Candidate Constraint, all solution candidates pn,c,s of child nodes n are
tagged with a specific processor class c. Thus, the execution time of a solution
candidate pn,c,s determined earlier is only valid if node n is mapped to processor
class c. Otherwise, the execution time would alter due to the varying performance
characteristics of the available processing units. Node n is mapped to processor class
c if the task t executing node n is also mapped to processor class c. Therefore, the
ILP system must be restricted to choose only one of those solution candidates using
the same processor class as the task to which node n is mapped. Equation 7.9 is
responsible for this, defining decision variable nodeOnProcClassn,c which evaluates
to 1 if node n is executed on processor class c with respect to the node-to-task
mapping xtn and task-to-processor class mapping maptc, defined earlier.

∀n ∈ Nodes : ∀c ∈ ProcClasses :

nodeOnProcClassn,c =
∑

t∈Tasks

xtn ∧maptc (7.9)

Finally, Equation 7.10 takes care that only those hierarchical parallel solution
candidates can be chosen which are valid with respect to the task-to-processor class
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mapping. This constraint is also visualized in Figure 7.8.

∀n ∈ Nodes : ∀c ∈ ProcClasses :∑
s∈Solutionsn,c

pn,c,s = nodeOnProcClassn,c (7.10)

If the task executing node n is not mapped to processor class c, the sum of
all hierarchical solution candidates’ decision variables must be equal to zero, which
avoids the selection of those solution candidates. Vice versa, if the task of node n is
mapped to processor class c, the sum of all hierarchical solution candidates’ decision
variables must be equal to one so that one of those candidates must be chosen. Note
that the parallel solution set of child node n contains at least one solution candidate
for each processor class which represents the sequential execution on this processor
class. This guarantees that the ILP finds a solution for this mapping.

7.1.3.7 Summary

The newly presented ILP-based parallelization approach for heterogeneous embed-
ded MPSoCs combines parallelism extraction with a mapping of tasks to processor
classes in a clear mathematical model. By employing this model, the approach is
able to determine a good balancing of extracted tasks for heterogeneous processors
with different performance characteristics automatically and to combine this with a
mapping of tasks to processor classes.

7.1.4 Simple Loop Parallelization Approach

The ILP-based task-level parallelization approach described in this section auto-
matically balances extracted tasks of embedded applications. In addition, it di-
rectly maps the extracted tasks to processor classes of an embedded heterogeneous
MPSoC. A fast but simple loop-level parallelization approach is combined with the
presented task-level one (cf. Algorithm 9), due to the complexity of the problem’s
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Processor Execution Time Factor Percentage Iterations

CPU 1 1,153,280 5.13 38.61 30 (+1)
CPU 2 1,281,280 4.62 34.76 27 (+1)
CPU 3 2,332,160 2.54 19.11 15
CPU 4 5,920,320 1.00 7.52 6

Sum (irrelevant) - 13.29 100.00 78 (80)

Table 7.1: Simple Loop Parallelization Approach Example

solution space and the property that it is difficult to balance loop iterations to
concurrently executed tasks by task-level parallelism. The loop-level parallelization
approach presented here just divides the different iterations of a loop into concur-
rently executed tasks. Therefore, a simple approach can be used to extract this kind
of parallelism. But due to its simplicity, it is only able to parallelize loops without
loop-carried dependencies. A more sophisticated pipeline parallelization approach
that overcomes this limitation is later presented in Section 7.2.

An example for a loop with 80 iterations, parallelized for a platform with four
different processing units is given in Table 7.1. In a first step, the approach calculates
how long each processing unit takes to execute one iteration of the loop (cf. column
Execution Time). This time includes the time to execute one loop iteration on
the specific processor as well as task creation and communication costs for the
task created. Just as the ILP-based parallelization approaches, the loop-level one
gets this cost information from the AHTG. Based on the determined execution
times, a factor is calculated (cf. column Factor) which denotes the number of
iterations executed on processing unit c while one iteration is executed on the slowest
processing unit as defined by Equation 7.11.

Factorc = max
p∈Processors

{ExecT imep}/ExecT imec (7.11)

In a third step, the percentage of executed loop iterations is calculated by di-
viding each factor by the sum of all factors (cf. column Percentage) like shown in
Equation 7.12.

Percentagec = (Factorc/
∑

p∈Processors

Factorp) ∗ 100 (7.12)

Finally, the iterations of the loop are distributed to the different CPUs, depend-
ing on the calculated percentages (cf. column Iterations). If the sum of assigned
iterations is less than the number of loop iterations, the remaining iterations are as-
signed to the fastest processing units (numbers in brackets). As a result, the number
of loop iterations assigned to a processing unit is automatically balanced according
to the processing unit’s performance characteristics.

By combining this simple but fast loop parallelization approach with the rich
but complex ILP-based task-level parallelization approach, efficient parallelism for
embedded heterogeneous architectures can be extracted as shown in the following
evaluation section.
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7.1.5 Experimental Results

To evaluate the efficiency of the new approach, results are obtained from the same
benchmarks used to evaluate the previously presented parallelization approaches.
One exception is the jpeg2000 encoder for which the new approach was not able
to extract speedups since other parallelization types are required. However, to
emphasize the quality of the new approach, it is compared with results generated by
the homogeneous task-level parallelization approach presented in Section 5.2. This
comparison against the approach which was used as a starting point also highlights
the influence of the newly added and adapted constraints.

The ARM11QuadProc multi-processor architecture (cf. Section 3.3.2) equipped
with four ARM1176 single-core processors [ARM13a], simulated by the cycle-ac-
curate Vast MPSoC simulator [Syn13b], was used as evaluation platform. Un-
fortunately, no heterogeneous embedded target platform with different processor
types was available for evaluation purposes. Instead, the processors of the ARM11-
QuadProc were clocked with varying frequencies to simulate a platform which is
comparable to a same-ISA multicore platform, like, e.g., ARM’s big.LITTLE plat-
form [Pet13]. The MPARM (cf. Section 3.3.1) as well as the Arm11MPCore platform
(cf. Section 3.3.3) could not be adapted since the cores’ frequencies could not be
configured to be different. However, since the presented approach considers varying
execution costs for the application’s statements depending on the executing pro-
cessing unit, the parallelization approach should also perform well for architectures
providing cores with different instruction sets.

To emphasize the adaptability of the presented approach to multiple architec-
tures, results are presented for two different platform configurations. Platform con-
figuration (A) configures the four available processors of the ARM11QuadProc plat-
form to work at 100 MHz (1×), 250 MHz (1×) and 500 MHz (2×). This configu-
ration shows that the approach works well for architectures with large performance
variances. Platform configuration (B) configures the cores to work at 200 MHz
(2×) and 500 MHz (2×) to simulate a performance discrepancy of approximately
2.5×. This is also the average performance difference of ARM’s big.LITTLE plat-
form [Pet13] with two Cortex-A7 and two Cortex-A15 cores.

7.1.5.1 Evaluation of Speedup

Both platform configurations were evaluated for two different application scenarios:

I) The main processor of the platform is the slowest one (100 MHz) and the
additional cores are added as accelerators.

II) The main processor of the platform is the fastest one (500 MHz) and the other
(slower) processors are added to the platform due to, e.g., power or thermal
issues.

The measurement baseline in both scenarios is the sequential execution on the
main processor. Figure 7.9 depicts results for evaluation scenario (I) with platform
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Figure 7.9: Results for Platform Configuration(A): 100/250/500/500MHz in Scenario(I)

configuration (A) and compares the new heterogeneous parallelization approach to
the homogeneous one presented in Section 5.2. The dashed line shows the theoret-
ical maximum speedup limit for the evaluated platform configuration which can of
course never be fully reached due to, e.g., inserted communication and task creation
overhead.

Like shown in Figure 7.9, both approaches improve the performance of all eval-
uated applications. Since the homogeneous approach is not aware of different pro-
cessor types, it tries to balance the workload for all available processors uniformly.
Speedups between 3× up to 4× were achieved for most applications, which are good
performance increases for homogeneous architectures equipped with four processing
units. However, the results do not exploit the full potential of the targeted heteroge-
neous platform. In contrast, results generated by the newly presented heterogeneous
approach of this section are much more impressive. It automatically balances the
extracted tasks by respecting different performance characteristics of the available
processing units. Thus, the two processors with 500 MHz are automatically assigned
with heavier workloads than the slower ones. This results in performance increases
of up to 10-12× for some of the considered benchmarks (e.g., boundary value, com-
press and mult) which significantly outperforms the speedup of the homogeneous
parallelization approach and is close to the theoretical maximum speedup of 13.5×3.
On average, the homogeneous parallelization tool increased the applications’ perfor-
mance by 3.3×. In contrast, the new heterogeneous one reached an average speedup
of 8.7×.

3Theoretical speedup limit: (1 ∗ 100 + 1 ∗ 250 + 2 ∗ 500MHz)/100MHz = 13.5×
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Figure 7.10: Results for Platform Configuration(A): 500/500/250/100MHz in Scenario(II)

Figure 7.10 shows results for evaluation scenario (II) with a fast main processor
(500 MHz) and slower additional cores. Here, the speedup produced by the homoge-
neous approach is less than 1.0, meaning that the parallelized application performs
slower than its sequential version. The reason is that the homogeneous approach
considers all cores to be identical and uniformly distributes the work to the avail-
able processing units. As a consequence, the faster processors have to wait until the
slower cores have finished their tasks. This behavior was already discussed in the
motivating example at the beginning of this chapter and is now confirmed by these
measurements. It also shows that it is even more challenging to extract beneficial
parallelism for an architecture with slower additional cores. However, in contrast
to the homogeneous approach, the new heterogeneous one was able to speed up the
application by generating tasks that perfectly utilize the slower processing units so
that all cores finish nearly at the same time. The speedup ranges between 1.2×
and nearly 2.5× showing that the approach did not only allocate tasks to the 500
MHz cores and is also close to the theoretical speedup limit of 2.7×4. The aver-
age speedup for this scenario is 0.8× for the homogeneous and 1.9× for the novel
heterogeneous approach, respectively.

To highlight the adaptability of the new heterogeneous parallelization approach,
Figures 7.11 and 7.12 present additional results for platform configuration (B) where
two ARM cores are configured to run at 200 MHz and the two other cores run at
500 MHz. Both evaluation scenarios with a slow (I) and a fast (II) main processor
are visualized, respectively. As can be seen in Figure 7.11, both approaches perform

4Theoretical speedup limit: (1 ∗ 100 + 1 ∗ 250 + 2 ∗ 500MHz)/500MHz = 2.7×
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Figure 7.11: Results for Platform Configuration(B): 200/200/500/500MHz in Scenario(I)

well for evaluation scenario (I). The homogeneous parallelization approach reached
speedups of around 3× for most evaluated benchmarks. In contrast, the new het-
erogeneous approach presented in this section reached speedups of more than 6× for
the benchmarks boundary value, compress and mult. The achieved speedups are not
as high as the ones extracted for platform configuration (A) since the performance
difference between the platform’s processing units is not as large, here. The theo-
retical speedup limit of this platform is 7×5, the one for platform configuration (A)
was 13.5×. Hence, the quality of the results is similar for both evaluated platforms
even if the achieved speedups are different. The homogeneous approach reached an
average speedup of 2.9× for this platform while the heterogeneous one was able to
increase the applications’ performance by 4.5× on average.

The same observations were made for evaluation scenario (II). The results for
this scenario are presented in Figure 7.12. The homogeneous parallelization ap-
proach reached speedups of up to 1.7× while the heterogeneous one increased the
applications’ performance up to 2.6×. Also here, the results are close to the plat-
form’s theoretical speedup limit of 2.8×6 which emphasizes that the new approach
balances the workload well between all available processing units by respecting dif-
ferent performance characteristics. In contrast to platform configuration (I), the
homogeneous parallelization approach reached speedups larger than 1.0 since the
performance discrepancy between the available cores is not as large as for the first
platform configuration. However, the new heterogeneous approach reached higher

5Theoretical speedup limit: (2 ∗ 200 + 2 ∗ 500MHz)/200MHz = 7×
6Theoretical speedup limit: (2 ∗ 200 + 2 ∗ 500MHz)/500MHz = 2.8×
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Figure 7.12: Results for Platform Configuration(B): 500/500/200/200MHz in Scenario(II)

speedups for all evaluated benchmarks. The performance of some benchmarks (e.g.,
latnrm or spectral) can still be improved. Those benchmarks have higher communi-
cation loads, and the current approach extracts task-level parallelism only but the
applications profit more from other parallelism types, like, e.g., pipeline parallelism.
Therefore, extraction techniques for this kind of parallelism for heterogeneous ar-
chitectures will later be presented in Section 7.2.

7.1.5.2 Optimization Time & ILP Statistics

Table 7.2 summarizes collected data for all evaluated benchmarks for platform con-
figuration (A) in scenario (I) and compares the newly presented heterogeneous paral-
lelization approach of this section to the homogeneous one, presented in Section 5.2.
The table contains information about the time in minutes which was necessary to
parallelize the applications with both approaches (Time), the number of generated
ILPs (#ILPs), the number of created variables for all generated ILPs (#Var), and
the overall number of created constraints (#Const). For the new heterogeneous
approach, absolute numbers are given on the left-hand side of Table 7.2 while the
right-hand side depicts factors describing the increased complexity of the heteroge-
neous approach compared to the homogeneous one.

The ILP formulations are more complex in the heterogeneous case since a new
dimension was added describing the task-to-processor type mapping. The new het-
erogeneous parallelization approach also created and solved more ILPs than the
homogeneous one. This is necessary since parallel solution candidates for differ-
ent processor classes have to be extracted on each hierarchical level. Otherwise,
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New Heterogeneous Approach Difference to Homogeneous Appr.
Benchmark Time7 #ILPs #Var #Const Time7 #ILPs #Var #Const

adpcm enc. 00:15 78 50,631 70,488 5.0× 3.4× 7.3× 5.6×
bound. value 00:08 21 18,303 26,832 1.6× 3.0× 5.4× 4.4×
compress 12:12 438 242,382 347,448 34.9× 7.4× 14.8× 11.2×
edge detect 00:42 141 73,647 108,594 5.3× 2.9× 6.0× 4.7×
filterbank 06:27 20 27,918 38,962 55.3× 3.3× 7.5× 5.8×
fir 256 64 00:02 24 7,152 9,192 2.0× 2.4× 5.7× 4.8×
iir 4 64 00:08 24 35,817 52,950 4.0× 2.4× 4.9× 4.1×
latnrm 32 64 00:04 36 13,200 17,568 2.0× 2.6× 5.6× 4.6×
mult 10 10 00:06 45 16,005 23,157 3.0× 4.1× 7.0× 5.4×
spectral 11:40 102 74,595 111,212 29.2× 3.1× 5.6× 4.3×
average 03:10 93 55,965 80,640 14.2× 3.5× 7.0× 5.5×

Table 7.2: Comparison of Homogeneous vs. Heterogeneous ILP-based Task-Level Paral-
lelization Algorithms based on Platform Configuration (A) in Scenario (II)

the parallelization process on the parent hierarchical level would be limited which
would drastically reduce the solution quality. The number of generated ILPs in-
creases by factors between 2.4× and 7.4× while moving from the homogeneous to
the heterogeneous case. The average increase of generated ILPs over all evaluated
benchmarks is 3.5×. The increase of newly created variables in the heterogeneous
case ranges from 4.9× up to 14.8× (7.0× on average) while the number of created
constraints are increased by 4.1× up to 11.2× (5.5× on average). Many new vari-
ables and constraints had to be added to parallelize applications for heterogeneous
architectures. However, if the number of constraints is increased to 5.5× (average
case) while the number of generated ILPs is increased to 3.5× (average case), the
average increase of constraints per ILP is manageably low (<1.5×). This has also an
impact on the time the parallelization approach needs to parallelize an application.
The original homogeneous approach parallelized an application for four cores in 9
seconds on average (cf. Table 5.1), while the heterogeneous one needs 3:10 minutes.
Note that, due to the hierarchical approach, runtimes are still remaining in an ac-
ceptable state. Nevertheless, the speedups outweigh the higher execution times at
compile time since the approach has to be executed only once in the compilation
process. The new heterogeneous approach can of course also be applied to extract
parallelism for homogeneous architectures and is therefore “downwards compatible”.
But due to higher execution times it makes more sense to use the approach which
is optimized for homogeneous architectures.

To summarize, the following results were achieved:

1. The presented heterogeneous parallelization approach utilizes heterogeneous
platforms in an excellent way. Speedups of up to 10–12× could be achieved
for evaluation platform (A) in scenario (I) with a theoretical speedup limit of
13.5×.

7Time format MM:SS, measured on an AMD Opteron core running at 2.4 GHz
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2. The combination of mapping decisions with knowledge of heterogeneous per-
formance characteristics in the parallelization approach is highly beneficial
since tasks can be directly optimized for specific processing units.

3. The new heterogeneous approach is able to increase the applications’ perfor-
mance even for platforms with cores which are much slower than the main
processor.

4. In contrast to the homogeneous approach, the new heterogeneous one never
generated speedups less than 1.0 and significantly outperformed the homoge-
neous approach on heterogeneous architectures for all benchmarks.

5. Even though ILP is NP-complete in the general case, it could be shown that,
due to the hierarchical approach, execution times still remain acceptable.

7.2 ILP-based Pipeline Parallelization Approach

The task-level parallelization approach presented in the previous section has re-
vealed large performance increases exploitable by parallelization approaches which
are aware of heterogeneity in embedded MPSoCs. However, the presented results
have also shown that some of the benchmarks (e.g., spectral, cf. Figure 7.12) re-
quire additional parallelization techniques to exploit their parallel potential entirely.
Therefore, this section presents a new pipeline parallelization approach optimized for
heterogeneous architectures, based on the homogeneous one presented in Section 5.3.
The previously presented ILP system for homogeneous MPSoCs and the kind of ex-
tracted parallelism are used as a basis even though a lot of changes had to be made.
The approach presented in this Section is also integrated into the global paralleliza-
tion approach employing the Augmented Hierarchical Task Graph (cf. Section 4.1)
with its divide-and-conquer-based parallelization technique (cf. Section 4.2). Thus,
the pipeline parallelization approach presented in this section can easily be executed
separately or in a combined fashion with other parallelization techniques. It is rec-
ommended to read Section 5.3 first, since the approach presented here is based on
the homogeneous one.

The rest of this section is structured as follows: First, Section 7.2.1 demonstrates
the impact of the task balancing problem arising on heterogeneous architectures for
pipeline parallelism. The section also proposes possibilities to solve this problem by
discussing a concise example. Afterwards, the integration of the presented paral-
lelization model into the global parallelization approach is described in Section 7.2.2.
The employed ILP-based parallelization technique is described in Section 7.2.3 be-
fore the new approach is evaluated in Section 7.2.4.

7.2.1 Motivating Example

The spectral benchmark from the UTDSP benchmark suite [Lee13] has already been
used as a motivating example for the homogeneous ILP-based pipeline parallelization
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Figure 7.13: Motivating Example for Heterogeneous Pipeline Parallelization

technique in Section 5.3.1. It is used here, once again, to describe the demands
imposed by heterogeneous MPSoCs. The application code is shown in Figure 7.13 (a)
divided into two pipeline stages T1 and T2 by horizontal splits (cf. Section 5.3.1).
Task T1 is vertically split twice into the three sub-tasks T1,1, T1,2, and T1,3 executing
the different iterations of the extracted pipeline stages in parallel. The timing of this
solution mapped to a homogeneous architecture is depicted in Figure 7.13 (b). This
result was already obtained by the homogeneous pipeline parallelization approach
as the final solution for the spectral benchmark (cf. Section 5.3.1). In this example,
four tasks are performing their work in a well-balanced execution behavior.

However, Figure 7.13 (c) shows what might happen if solution (b) would be
mapped to a heterogeneous architecture containing processors with different per-
formance characteristics. This example assumes that the processing unit executing
task T1,1 has the same performance as the processing units of the homogeneous ar-
chitecture assumed in Figure 7.13 (b). The other three processing units are added
as accelerators. Thus, task T1,2 is executed twice as fast as T1,1 while the processing
unit used for T1,3 executes the iterations three times faster than the processing unit
for T1,1. Moreover, T2 is executed twice as fast as T1,1.

Most existing parallelization tools do not possess any information about the tar-
geted architecture and are not aware of those performance variances. Rather, they
would have to assume a homogeneous architecture. This leads to a highly unbal-
anced timing behavior like the one shown in Figure 7.13 (c). Task T1,3 has executed
all its iterations in 4 time units while T1,1 needs 12 time units since it is mapped
onto a slower processing unit. Hence, the processing units executing T1,2 and T1,3

are idle for a long time which reduces the performance of the parallelized solution.
Task T2 also often has to wait for data generated by the three sub-tasks of T1. Solu-
tion (b), executed on the homogeneous architecture, needs 15 time units while the
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execution of solution (c) took 13.5 time units. This shows that the potential of the
accelerated cores can only be exploited sub-optimally by parallelization approaches
that are not optimized for heterogeneous architectures.

To circumvent this problem, the approach presented in this section handles dif-
ferent execution times for all statements of the application (and therefore also for
created tasks) depending on the mapped processing unit while extracting pipeline
parallelism. In addition, the approach performs a pre-mapping of tasks to proces-
sor classes, representing identical processing types of the heterogeneous target ar-
chitecture as done by the heterogeneous task-level parallelization approach before.
Another difference to the homogeneous pipeline parallelization approach presented
in Section 5.3 is the way how the approach maps iterations to sub-tasks. The pre-
viously presented approach maps all iterations with a different offset to the same
sub-task by vertical splits. In contrast, the approach presented in this section freely
maps iterations to sub-tasks. In the example of Figure 7.13 (d), T1,3 executes itera-
tions {1, 3, 6, 7, 9, 12} while task T1,2 executes {2, 5, 8, 11}. This freedom of decision
increases the complexity of the solution space but enables the extraction of well-
balanced tasks for heterogeneous embedded MPSoCs. All sub-tasks of T1 finish at
the same time and provide task T2 with input data in an optimized way reducing the
execution time from 13.5 to 7.5 time units. Compared to the previously presented
homogeneous pipeline parallelization approach, the new one presented in this sec-
tion is able to exploit advantages of heterogeneous architectures for the extraction
of pipeline parallelism.

7.2.2 Integration into the Global Parallelization Approach

The integration of the new ILP-based pipeline parallelization approach optimized for
heterogeneous MPSoCs into the global parallelization framework (cf. Section 4.2)
is shown in Algorithm 10. The function ExtractHetPipeline is executed by the
global parallelization algorithm (cf. Algorithm 4 on page 56) as soon as all child
nodes of the AHTG deeper in the hierarchy are processed. The first lines are equal
to the integration of the homogeneous pipeline parallelization approach depicted
in Algorithm 6. The algorithm first determines in lines 4-6 whether the currently
processed node n does not represent a loop statement since only those statements
are processed by this approach.

Since the complexity of the heterogeneous ILP-based pipeline parallelization
approach is very high, the algorithm first determines if the iterations of the loop to
be parallelized are free of loop-carried dependencies. If this is true, the less complex
loop parallelization approach described in Section 7.1.4 can also be applied here in
lines 8-11. The solutions extracted by the simple loop parallelization approach are
a subset of solutions extracted by the pipeline parallelization approach presented
in this section. Such a solution contains only one pipeline stage divided by vertical
splits into several concurrently executed tasks. As a consequence, the solution of the
simple loop parallelization methodology called in lines 8-11 could also be extracted
by the ILP-based approach but would result in a significantly longer execution time.
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Algorithm 10 Integration of Het. ILP-based Pipeline Parallelization Approach
1: // Called bottom-up hierarchically by Algorithm 4 in line 18 on page 56
2: function ExtractHetPipeline(Node n, Platform pf , int maxTasks)
3: // This function is only applicable to loops.
4: if not n.getStmt().isLoopStmt() then
5: return ∅
6: end if
7: // If n represents an independent loop, use the simple loop parallelizer.
8: if IsLoopIndependent(n) then
9: solutions← SimpleParallelizer(n, pf,maxTasks)

10: return solutions

11: end if
12: // Otherwise, create an augmented PDG for the loop(-nest).
13: loopPDG← ConstructPDG(n.getStmt())

14: // Apply the ILP-based approach.
15: for all seqPC ∈ pf.getProcClasses() do
16: i← maxTasks

17: while i >= 2 do
18: result← HetILPPipelineParallelizer(loopPDG, seqPC, pf, i)

19: solutions← solutions ∪ {result}
20: i← NumberOfTasks(result)− 1

21: end while
22: end for
23: return solutions

24: end function

In general, this strategy does not harm the solution quality as long as the number
of available processing units is not too high so that an insufficient number of tasks
may be extracted by vertical splits.

If node n represents a loop statement containing loop-carried dependencies, the
sophisticated ILP-based pipeline parallelization approach presented in Section 7.2.3
is repeatedly called in line 18 for different processor classes and varying upper task
boundaries. Also here, an augmented Program Dependence Graph (extracted in line
13) is used to extract pipeline parallelism. Several solutions with different processing
unit allocations are extracted in lines 15-22 to provide flexibility to the paralleliza-
tion process upwards in the hierarchy. In this way, new and previously extracted
parallelism with different granularities can later be combined. All extracted results
are collected and finally returned as solution candidates for node n in line 23.

7.2.3 ILP-based Parallelization Approach

The pipeline parallelization approach presented in this section uses the homoge-
neous one presented earlier in Section 5.3 as a starting point. However, as shown
in the motivating example (cf. Section 7.2.1), it is indispensable to distinguish be-
tween different execution times of the same code blocks depending on the executing
processing unit for heterogeneous architectures. Therefore, many parts of homoge-
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neous ILP have to be changed and new decision variables and constraints have to be
added. In the following, these changes will be highlighted to ease a comparison be-
tween both approaches. A complete presentation of all ILP formulations is available
in the corresponding publication of this approach in [CEN+13b].

The new heterogeneous approach covers five main goals which are translated
into constraints and decision variables in the remainder of this section:

I) Extraction of different pipeline stages by mapping statements of the loop’s
body into disjunctive pipeline stages (cf. horizontal splits in Figure 7.13 (a)).

II) Division of pipeline stages into sub-tasks which execute different iterations of
the stages in parallel (cf. vertical splits in Figure 7.13 (b)).

III) Handling of dependencies which may change if statements are moved from one
pipeline stage to another one or if iterations of pipeline stages are mapped to
different sub-tasks.

IV) Extraction of a mapping of tasks to processor classes of the targeted embedded
heterogeneous architecture (cf. Figure 7.13 (d)) to balance the execution load.

V) Minimization of execution costs by considering task creation, communication,
and execution costs depending on the processor class a task is mapped to.

In the following paragraphs, decision variables are written in lower case letters,
sets start with a capital letter, and constants contain exclusively capital letters.
Indices n and o are used for nodes of the augmented PDG, i and j are used for
iterations of the loop to be parallelized, t and u represent indices for pipeline stages,
while c represents a processor class and s is used for concurrently executed sub-
tasks of a pipeline stage. A graphical representation of most equations is also given
in Figures 7.14 - 7.21. The sub-figures have the same name as the corresponding
subsections which describe the equations.

7.2.3.1 Pipeline Stage Mapping

Goal (I) of the heterogeneous ILP-based pipeline parallelization approach is a map-
ping of PDG nodes to pipeline stages. To perform this, decision variable xtn is defined
in Equation 7.13. Since this constraint is important but unchanged compared to
the homogeneous approach, it is just briefly summarized here.

xtn =

{
1, if node n is mapped to pipeline stage t

0, otherwise
(7.13)

The constraint defined in Equation 7.14 ensures that every child node (repre-
senting statements of the loop to be parallelized) is mapped to exactly one pipeline
stage.

∀n ∈ Nodes :
∑

t∈Stages
xtn = 1 (7.14)
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Figure 7.14: Iterations of Pipeline Stages to Sub-Task Mapping

7.2.3.2 Iterations of Pipeline Stages to Sub-Task Mapping

Goal (II) of the ILP-based pipeline parallelization approach is a mapping of loop
iterations of the created pipeline stages to concurrently executed sub-tasks. This
constraint replaces the Vertical Split Constraint presented in Section 5.3.5.2. In the
homogeneous case, it was sufficient to divide the iteration space of a pipeline stage
into chunks of equal size to balance the extracted tasks. This was achieved by vertical
splits denoted by decision variable splitts. As shown in the motivating example of this
section (cf. Section 7.2.1), an approach optimized for heterogeneous architectures
should be able to freely map iterations of the pipeline stages to additional sub-tasks.
Thereby, heavier workloads can be mapped to faster processing units while tasks
with fewer iterations can be mapped to slower ones. This is accomplished by decision
variable subtaskti,s which is defined in Equation 7.15. It evaluates to one if iteration
i of pipeline stage t is mapped to sub-task s like also visualized in Figure 7.14.

subtaskti,s =

{
1, if iteration i of pipeline stage t is mapped to sub-task s

0, otherwise
(7.15)

To be compliant with the original program semantics, the ILP has to take care
that each loop iteration (NI = number of loop iterations) is executed exactly once
for each pipeline stage, which is ensured by Equation 7.16.

∀t ∈ Stages : ∀i ∈ {0, .., NI−1} : ∑
s∈SubTaskst

subtaskti,s = 1 (7.16)

7.2.3.3 Definition of Predecessor Relationships

The main objective of the new heterogeneous pipeline parallelization approach is
a reduction of the loop’s execution time by moving statements of the loop’s body
into disjunctive pipeline stages like performed by decision variable xtn. The loop
iterations of each stage can also be executed concurrently in different sub-tasks like
defined by decision variable subtaskti,s. In order to minimize the execution time,
the critical (most expensive) path from the entry to the exit node of the loop’s
PDG has to be extracted. Therefore, decision variable predt,ui,j was defined by the
homogeneous pipeline parallelization approach in Equation 5.22 which evaluates to
one if pipeline stage t in iteration i is a predecessor of pipeline stage u in iteration
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j (cf. Goal (III)). Two situations can lead to such a predecessor relationship. The
first one relies on data and control flow dependencies of the child nodes mapped
to the different pipeline stages while the second one relies on the mapping of loop
iterations to sub-tasks. Data and control flow dependencies were covered by the
constraint defined in Equation 5.24 and can be re-used without modifications for
the heterogeneous ILP, as well. However, the Stage Split Dependencies defined in
Equation 5.23 cannot be integrated into the heterogeneous ILP system since they
rely on the deprecated splitts variable which is not used in the heterogeneous system.
Therefore, new sub-task dependencies are defined in Equation 7.17 and visualized in
Figure 7.15, reflecting dependencies of the new approach which is able to freely map
iterations to sub-tasks. Thus, if iteration i and iteration j (with i < j) of pipeline
stage t are both mapped to sub-task s, iteration j depends on iteration i since both
iterations are executed sequentially by the same sub-task.

∀t ∈ Stages : ∀i ∈ {0, .., NI−1} : ∀j ∈ {i+ 1, .., NI−1} :
predt,ti,j ≥ subtaskti,s ∧ subtasktj,s (7.17)

If, e.g., iterations 1 and 3 of pipeline stage t are mapped to the same sub-task,
both iterations have to be executed sequentially. As a consequence, iteration 1 of
pipeline stage t is a predecessor of iteration 3 of pipeline stage t. Those dependencies
are created for all iteration combinations of the different pipeline stages

7.2.3.4 Extraction of Execution Costs of Pipeline Stages

To be able to reduce the overall execution time, path costs have to be determined.
Therefore, execution costs for one iteration of the different pipeline stages have to
be estimated first. In the homogeneous case, it was sufficient to sum up the execu-
tion costs of the nodes which are added to the considered pipeline stage. Since it is
essential to consider different performance characteristics of the different processing
units if an application should be parallelized for heterogeneous architectures, exe-
cution costs depend on the processor class executing the given pipeline stage. This
is done in Equation 7.18 which creates one cost variable costtc for all pipeline stages
t executed on processor class c. In the homogeneous case, the variable costt was
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Figure 7.16: Extraction of Execution Costs of Pipeline Stages

independent of the executing processor class so that it had to be adjusted, here.

∀c ∈ ProcClasses : ∀t ∈ Stages : costtc ≥
∑

n∈Nodes

xtn ∗ (COSTn,c/NI) (7.18)

The variable costtc contains the execution costs COSTn,c of all child nodes n

mapped to the corresponding pipeline stage t (xtn = 1) for the execution of one
iteration on processor class c (cf. Figure 7.16). The overall execution costs of each
child node are distributed in equal parts over the iterations NI of the loop. NI can
be determined by static loop analyzers, like, e.g., [Cor08], [LCF+09], or the analyzer
integrated in the employed ICD-C high-level IR [Inf13]. This saves several decision
variables since the ILP does not have to distinguish between different execution
costs of pipeline stages in different iterations. The execution costs of child node
n executed on processor class c are annotated to the nodes of the PDG and are
automatically extracted by the framework presented in this thesis.

7.2.3.5 Mapping of Sub-Tasks to Processor Classes

Variable costtc contains the execution costs of one iteration of pipeline stage t if it
is executed on processor class c. But, up to now, pipeline stages and their sub-
tasks are not mapped to any processor classes. This is not necessary for homoge-
neous architectures, but has a large impact on the execution time for heterogeneous
ones. Therefore, the approach presented in this section combines the extraction of
parallelism with a mapping of sub-tasks to processor classes to be able to create
well-balanced solutions like demanded by Goal (IV). This mapping is expressed by
decision variable mapts,c defined in Equation 7.19 which evaluates to 1 if sub-task s

of pipeline stage t is mapped to processor class c like visualized in Figure 7.17.

mapts,c =

⎧⎪⎪⎨
⎪⎪⎩
1, if sub-task s of pipeline stage t

is mapped to processor class c

0, otherwise

(7.19)

Each sub-task s of pipeline stage t has to be mapped to exactly one processor
class c so that it is executed exactly once which is ensured by Equation 7.20.

∀t ∈ Stages : ∀s ∈ SubTaskst :
∑

c∈ProcClasses

mapts,c = 1 (7.20)
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7.2.3.6 Used Pipeline Stages & Used Sub-Tasks

The presented approach has the capability to extract as many pipeline stages as
processing units are available. Nevertheless, task creation and communication costs
as well as different performance characteristics of the available processing units
may result in the ILP extracting fewer tasks if such a solution leads to a higher
reduction of the overall execution time. Hence, some of the pipeline stages may
not be used. This can be evaluated by decision variable stageusedt which was
defined by the homogeneous ILP in Equation 5.27 with its corresponding constraint
in Equation 5.28. Both equations can be re-used without changes for the new
heterogeneous ILP-based approach.

In addition, the approach enables the extraction of as many sub-tasks s for
a pipeline stage t as processing units are available. The extraction of sub-tasks
directly influences the overall execution costs since task creation costs are added for
each created sub-task. To determine the amount of created sub-tasks, a decision
variable subtaskusedts is created for each sub-task s of pipeline stage t like shown
in Equation 7.21.

subtaskusedts =

{
1, if sub-task s of pipeline stage t is used
0, otherwise

(7.21)

Sub-task s of pipeline stage t is used if at least one iteration i is mapped to it
and pipeline stage t itself is used like ensured by Equation 7.22 and visualized in
Figure 7.18.

∀t ∈ Stages : ∀s ∈ SubTaskst : ∀i ∈ {0, .., NI−1} :
subtaskusedts ≥ subtaskti,s + stageusedt − 1 (7.22)

The ILP formulation can further be optimized here by excluding solutions with
the same objective value, which only differ in the allocated sub-tasks (cf. [LMM+97]
and Section 9.2). This could be achieved by adding constraints like subtaskusedts ≥
subtaskusedt+1

s and may be integrated into the system in the future.
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7.2.3.7 Mapping of Sub-Task Iterations to Processor Classes

Up to now, only a relation between sub-tasks and their mapped processor classes ex-
ists, like defined in Equation 7.19. For the calculation of the overall execution costs,
the relation between iteration i of pipeline stage t and its mapped processor class is
also necessary. Therefore, Equation 7.23 defines decision variable iterOnPCt

i,c.

iterOnPCt
i,c =

⎧⎪⎪⎨
⎪⎪⎩
1, if iteration i of pipeline stage t

is mapped to processor class c

0, otherwise

(7.23)

Iteration i of pipeline stage t is mapped to processor class c if it is part of sub-
task s and s is mapped to processor class c if sub-task s is really used. Equation 7.24
evaluates to one if this is true like visualized in Figure 7.19.

∀t ∈ Stages : ∀c ∈ ProcClasses : ∀s ∈ SubTaskst : ∀i ∈ {0, .., NI−1} :
iterOnPCt

i,c ≥ subtaskti,s +mapts,c + subtaskusedts − 2 (7.24)

7.2.3.8 Path Cost Constraint

Based on the knowledge of the execution costs of each pipeline stage and the mapping
of loop iterations to processor classes, it is now possible to describe the accumulated
path costs (cf. Figure 7.20). Equation 7.25 defines accumcosttj and ensures that
it contains the execution costs of all executed predecessors as well as the execution
costs of the pipeline stage’s iteration itself.

∀t, u ∈ Stages : ∀c ∈ ProcClasses : ∀i ∈ {0, .., NI−1} :
∀j ∈ {i+ 1, .., NI−1} : predu,ti,j = 1 ∧ iterOnPCt

j,c = 1 : (7.25)

accumcosttj ≥ costtc + accumcostui + commcostu

Equation 7.25 ensures that the path costs accumcosttj for pipeline stage t in
iteration j are at least as large as the costs costtc for the execution of one iteration of
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pipeline stage t itself executed on processor class c. It is increased by the path costs
of its most expensive predecessor accumcostui , including all communication costs
commcostu of pipeline stage u. The precondition iterOnPCt

j,c = 1 takes care that
the costs of the correct processing class c of task t is used. The accumulated costs
are included in the objective function so that they are automatically minimized by
the ILP solver.

7.2.3.9 Limit the Number of Allocated Tasks per Processor Class

A platform is equipped with a limited number of processing units. By taking ad-
vantage of platform information in the parallelization step, it is possible to avoid
additional scheduling overhead at runtime. Therefore, each processing unit should
execute only one sub-task of a pipeline stage in the proposed model at a time.
Thus, the constant number of available processing units NUMPROCSc of a pro-
cessor class c must be at least as large as the number of mapped sub-tasks mapts,c
if they are used (subtaskusedts). This is ensured by Equation 7.26 and visualized in
Figure 7.21.

∀c ∈ ProcClasses :∑
t∈Stages

∑
s∈SubTaskst

mapts,c ∧ subtaskusedts ≤ NUMPROCSc (7.26)

7.2.3.10 Objective Function

With all decision variables and constraints defined, it is now possible to describe the
objective function. As mentioned before, the most expensive execution path from
the entry to the exit node of the loop’s PDG should be minimized like defined by
Goal (V). Therefore, additional constraints are added which statically set the entry
node to be a predecessor of all pipeline stages. The exit node will be a successor of
all pipeline stages, respectively. With the help of all defined constraints, it is easy to
create the objective function, like shown in Equation 7.27. The objective function
is equal to the one of the homogeneous parallelization approach but considers the
new version of the accumcost variables.

exectime = numtasks ∗ TASKOVERHEAD + accumcostexit → min (7.27)
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The variable numtasks contains the number of extracted sub-tasks used. Since
the creation of such tasks increases the execution time, a constant task creation
overhead, multiplied by the number of created sub-tasks, is added to the objective
value as defined in Equation 7.28.

numtasks =
∑

t∈Stages

∑
s∈SubTaskst

subtaskusedts (7.28)

The task creation overhead can be defined in the platform description together
with a communication cost factor. By defining these platform-dependent parame-
ters, it is easy to adapt the cost model of the ILP to different architectures. The
value of the objective function is equivalent to the execution time of the parallelized
loop on the targeted heterogeneous architecture. It is hence returned together with
the node-to-pipeline-stage mapping, the mapping of the stages’ loop iterations to
sub-tasks and the mapping of sub-tasks to the processor classes of the targeted
heterogeneous platform as result of the parallelization step.

7.2.4 Experimental Results

To highlight the efficiency of the new approach, results are obtained for the same
real-world embedded applications that were used for evaluation purposes in the
previous chapters. To emphasize the quality of the results exploited by the new
approach, a comparison with the homogeneous pipeline parallelization approach
presented in Section 5.3 and the heterogeneous task-level parallelization approach
presented in Section 7.1 is demonstrated here.

The results were obtained for the same target architecture (ARM11QuadProc
architecture (cf. Section 3.3.2)) simulated by the cycle-accurate Vast MPSoC sim-
ulator [Syn13b] that was also used to evaluate the heterogeneous task-level paral-
lelization approach in the previous section. All approaches are (re-)evaluated for the
new target platform configuration. To emphasize the adaptability of the approach
to multiple architectures, results are presented for the same two configurations as
used in Section 7.1.5. Platform configuration (A) contains four ARM cores running
at 100 MHz (1×), 250 MHz (1×), and 500 MHz (2×) while platform configuration
(B) is configured to provide two 200 MHz and two 500 MHz cores.

7.2.4.1 Evaluation of Speedup

The presented platforms were also evaluated for the two application scenarios:

I) The main processor of the platform is the slowest one (100 MHz) and the
additional cores are added as accelerators.
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Figure 7.22: Results for Platform Configuration(A): 100/250/500/500MHz in Scenario(I)

II) The main processor of the platform is the fastest one (500 MHz) and the other
(slower) processors are added to the platform due to, e.g., power or thermal
issues.

These scenarios are the corner cases for the considered target architectures and
were also used in Section 7.1.5 to ease comparability. The measurement baseline in
both scenarios is the sequential execution on the main processor for all evaluated
approaches. Figures 7.22 and 7.23 depict results for both evaluation scenarios for
platform configuration (A) (100/250/500/500 MHz) and compare the new heteroge-
neous pipeline parallelization approach to the ones presented in Sections 5.3 and 7.1.
The dashed line represents the theoretical maximum speedup of the considered tar-
get platforms in all figures.

Results for platform configuration (A) and the accelerator scenario (I) are shown
in Figure 7.22. As can be seen, all three approaches increase the performance of
all evaluated applications well. The homogeneous pipeline parallelization approach
presented in Section 5.3 tries to balance the workload for all available processors uni-
formly. Speedups between 3× up to 4× are achieved for most applications, which are
good results for a homogeneous architecture providing four processing units. How-
ever, the considered target architecture is heterogeneous and only a small amount
of the available performance could be exploited. In contrast, results generated by
the heterogeneous task-level parallelization approach presented in Section 7.1 and
the new heterogeneous pipeline parallelization approach of this section are much
more impressive. Both of them automatically balance the extracted tasks by re-
specting different performance characteristics of the available processing units. As
a result, the two processors running at 500 MHz are automatically allocated with
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Figure 7.23: Results for Platform Configuration(A): 500/500/250/100MHz in Scenario(II)

heavier workloads than the slower ones. This results in performance increases of
up to 10-12× for some of the considered benchmarks (e.g., boundary value, com-
press and mult) which significantly outperforms the speedup of the homogeneous
pipeline parallelization approach and is close to the theoretical maximum speedup of
13.5×8. However, even if the heterogeneous task-level parallelization approach ex-
tracts comparable speedups to the newly presented pipeline parallelization approach
of this section for many applications, it is outperformed for three of the considered
benchmarks (filterbank, jpeg2000, spectral). The highest difference was observed for
the jpeg2000 encoder. Here, even the homogeneous pipeline parallelization approach
extracted a more efficient parallel solution (2.6×) than the heterogeneous task-level
approach (only 1.1×). This shows that for some embedded applications pipeline
parallelism is most efficient. In contrast to both other approaches, the technique
presented in this section is able to extract a speedup of nearly 10× which signifi-
cantly outperforms the two earlier presented ones. On average, the homogeneous
pipeline parallelization approach increased the applications’ performance by 3.8×
while the heterogeneous task-level parallelization approach reached speedups of on
average 8×. In contrast, the new heterogeneous pipeline approach presented in this
section reached an average speedup of nearly 9×.

Figure 7.23 depicts results for platform configuration (A) with application sce-
nario (II) with a fast main processor (500MHz) and slower additional cores. Here,
the speedup produced by the homogeneous pipeline parallelization approach is less
than 1.0 which means that the parallelized application performs slower than its
sequential version. The reason for this is that the homogeneous approach uni-

8Theoretical speedup limit: (1 ∗ 100 + 1 ∗ 250 + 2 ∗ 500MHz)/100MHz = 13.5×
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Figure 7.24: Results for Platform Configuration(B): 200/200/500/500MHz in Scenario(I)

formly distributes the work to the available processing units without considering
information about varying performance characteristics of the available processing
units. Thus, the fast main processor has to wait until the slower processing units
have finished their tasks. In contrast, both heterogeneous parallelization approaches
were able to speed up the applications by generating tasks that perfectly utilize the
slower processing units so that all cores finish nearly at the same time. Again, the
speedup of the applications filterbank, jpeg2000, and spectral could be increased by
the new heterogeneous pipeline parallelization approach which outperforms both ear-
lier presented approaches. It should also be mentioned that the new heterogeneous
pipeline parallelization approach has extracted a higher speedup for all evaluated
benchmarks in both application scenarios compared to the existing homogeneous
pipeline parallelization approach. In addition, it performed better for more than
one quarter of all evaluated benchmarks compared to the efficient heterogeneous
task-level parallelization approach and otherwise never generated slower solutions.
On average, the homogeneous pipeline parallelization approach decreased the appli-
cations’ performance to 0.8× for this application scenario while the heterogeneous
task-level parallelization approach was able to increase the applications’ performance
by approximately 1.8×. In contrast, the speedup of the new heterogeneous pipeline
parallelization approach nearly reached 1.9×9 for this platform configuration.

Similar results could also be observed for platform configuration (B) with two
200 MHz and two 500 MHz cores (cf. Figures 7.24 and 7.25). The performance
difference between all three approaches is less than the performance difference for
platform configuration (A) since the theoretical speedup limit is lower for platform

9Theoretical speedup limit: (1 ∗ 100 + 1 ∗ 250 + 2 ∗ 500MHz)/500MHz = 2.7×
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Figure 7.25: Results for Platform Configuration(B): 500/500/200/200MHz in Scenario(II)

configuration (B). Nevertheless, the relation between increased speedups and the
theoretical speedup limit is similar to both platform configurations. Here, the three
applications already mentioned, filterbank, jpeg2000, and spectral, profit most from
the new heterogeneous pipeline parallelization approach. The average speedups for
scenario (I) are 2.8×, 4.2× and 4.6× for the evaluated approaches with a theoretical
speedup limit of 7×10 for this platform configuration. The speedups of applica-
tion scenario (II) with the slower additional cores are 1.3×, 1.8× and 2× with a
theoretical speedup limit of 2.8×11.

7.2.4.2 Optimization Time & ILP Statistics

The newly presented ILP-based pipeline parallelization approach for heterogeneous
architectures has the longest execution time compared to the other two approaches.
The time to parallelize the evaluated benchmarks with the three approaches is sum-
marized on the left-hand side of Table 7.3. The timings shown are those which
were necessary to extract the parallel solutions for platform configuration (A) with
evaluation scenario (I).

The homogeneous pipeline parallelization approach (Hom Pip) performs faster
than both other approaches while the heterogeneous task-level parallelization ap-
proach (Het TL) performs faster than the newly presented heterogeneous pipeline
parallelization approach (Het Pip). The reason for this is that the complexity of
the solution space increases between all three approaches from left to right. Never-
theless, the quality of the extracted solutions also increases with the complexity of

10Theoretical speedup limit: (2 ∗ 200 + 2 ∗ 500MHz)/200MHz = 7×
11Theoretical speedup limit: (2 ∗ 200 + 2 ∗ 500MHz)/500MHz = 2.8×
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Execution Times12 ILP Statistics New Approach
Benchmark Hom Pip Het TL Het Pip #ILPs #Var #Const %Opt.

adpcm enc. 00:00:02 00:00:18 00:12:52 4 3,235 16,502 75%
bound. value 00:00:45 00:00:15 00:20:22 2 19,538 157,421 0%
compress 00:06:40 00:10:41 00:52:30 9 8,387 42,239 44%
edge detect 00:06:50 00:03:15 00:00:04 6 1,746 3,592 100%
filterbank 00:00:40 00:15:34 00:04:32 2 1,445 5,065 100%
fir 256 64 00:00:07 00:00:02 00:35:04 3 313,039 2,767,507 0%
iir 4 64 00:14:33 00:00:07 00:10:03 1 3,415 24,061 0%
jpeg2000 00:02:03 01:09:56 01:23:09 11 36,995 274,928 27%
latnrm 32 64 00:01:19 00:00:04 00:10:03 1 3,296 23,577 0%
mult 10 10 00:04:17 00:00:06 00:51:06 5 66,814 555,567 0%
spectral 00:00:17 00:17:00 00:30:32 4 13,766 103,071 25%

average 00:03:25 00:10:40 00:28:12 5 42,880 361,230 34%

Table 7.3: Comparison of Homogeneous and Heterogeneous Parallelization Algorithms &
Statistics of New Heterogeneous Pipeline Parallelization Approach

the approaches as shown earlier by the extracted speedups. On average, the homo-
geneous pipeline parallelization approach took around 3.5 minutes to parallelize the
considered applications. But many of them could be processed in less than a minute.
In contrast, the heterogeneous task-level parallelization approach took 10 minutes on
average to parallelize the applications. The newly presented heterogeneous pipeline
parallelization approach processed the considered applications in 28 minutes on av-
erage while many applications were parallelized in around 10.5 minutes. However,
the execution time of the approach can significantly be reduced by parallelizing
the parallelization approach itself due to the hierarchical divide-and-conquer-based
approach of the global parallelization algorithm. Nevertheless, the high speedups
outweigh the higher execution times of the new approach in most cases and are
acceptable since parallelization has to be done only once in the compilation process.

The right-hand side of Table 7.3 summarizes ILP Statistics for the newly pre-
sented heterogeneous pipeline parallelization approach. 5 ILP systems had to be
solved in the average case containing approximately 43k variables and 362k con-
straints summed up over all ILP systems. But the most interesting statistic is shown
in the last column of Table 7.3. Here, the relative amount of optimally solved ILPs
is shown. Only one third of all ILPs could be solved optimally in the configured
amount of time (five minutes) on average13. In the other cases, the ILP returned
the best solution found so far. However, this solution was already close or equal to
the optimal solution (but the solver could not prove that the solution is optimal) so
that the reported high speedups could be extracted. Nevertheless, this also shows
that the complexity of the presented parallelization approach reached a dimension
which is borderline for ILPs.

To summarize, the following results were achieved:

12Time format HH:MM:SS, measured on an AMD Opteron core running at 2.4 GHz
13The ILPs are solved multiple times for different input parameters with 5 minutes, each.
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1. The newly presented heterogeneous pipeline parallelization approach is able to
utilize heterogeneous platforms in an excellent way. Speedups of up to 10-12×
were measured for evaluation platform (A) with a theoretical speedup limit of
13.5×.

2. The integration of mapping decisions and platform information in a heteroge-
neous parallelization approach is highly beneficial.

3. The new parallelization approach outperformed all previously presented ones.
For the jpeg2000 encoder, a speedup of nearly 10× could be measured com-
pared to 2.6× and 1.1× for the homogeneous pipeline and heterogeneous task-
level parallelization approaches for platform configuration (A) in scenario (I).

7.3 Summary

This chapter presented two parallelization approaches optimized for special require-
ments of heterogeneous embedded MPSoCs. Both, the proposed task-level and
the proposed pipeline parallelization approaches, can be executed independently
or in a combined fashion to extract well-balanced solutions even for target archi-
tectures providing processing units with different performance characteristics. For
the new heterogeneous ILP-based parallelization approaches, the homogeneous ones
presented in Chapter 5 were used as a starting point. The evaluation of both ap-
proaches has shown that the new heterogeneous ones are able to create well-balanced
solutions which significantly outperform the homogeneous approaches on heteroge-
neous target platforms. To summarize, the following results could be achieved in
this chapter:

1. Creation and integration of a sophisticated task-level parallelization approach
optimized for heterogeneous embedded MPSoCs.

2. Creation and integration of a complex pipeline parallelization approach opti-
mized for heterogeneous embedded MPSoCs.

3. Combination of task-level, data-level14, and pipeline parallelization approaches
which can be executed separately or in a combined fashion.

4. Creation of parallelization techniques combining task creation, communication
and execution costs in high-level models to balance the extracted tasks even
for processing units with varying performance characteristics automatically.

5. Highly efficient solutions could be extracted with speedups of up to 10-12×
for an architectures with a theoretical speedup limit of 13.5×.

14DoAll parallelism is extracted by the simplistic loop and the pipeline parallelization approaches.
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Parallelization extraction techniques optimized for heterogeneous embedded MP-
SoCs have already been presented in the previous chapter. The evaluation has shown
that the ILP-based approaches are able to balance solutions well even for architec-
tures providing processing units with different performance characteristics. As a
result, solutions that are close to the theoretical speedup limit could be extracted.
These solutions exploit the performance of heterogeneous systems in an optimized
way.

However, the main purpose of heterogeneous embedded MPSoCs is not the ex-
traction of as much speedup as exploitable. Often, the specialized cores available
in those systems can be used to find excellent trade-offs between additionally con-
sidered optimization objectives, like, e.g., energy consumption. Figure 7.1 on page
138, for example, depicts the exploitable trade-offs between power consumption and
performance of the Cortex-A7 and Cortex-A15 cores of ARM’s big.LITTLE architec-
ture [Pet13]. While the (little) Cortex-A7 cores provide only low performance, they
consume significantly less energy compared to the (big) Cortex-A15 cores. One of
the reasons is the simple processor pipeline employed in the Cortex-A7 cores. In con-
trast, the Cortex-A15 cores provide significantly more performance at the expense
of higher energy consumption. The combination of both processors provides a large
optimization space for multi-objective aware parallelization approaches. Besides
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solutions which execute the whole application either on Cortex-A7 or Cortex-A15
cores, various solution candidates lie in between these corner cases executing more
or less parts of the application on the slower or faster processing units in parallel.
This spans a large solution space containing solutions providing high performance,
low energy consumption, or also useful trade-offs between multiple objectives. Other
heterogeneous embedded target platforms (cf. Chapter 7) provide such trade-offs as
well.

The Genetic Algorithm (GA)-based parallelization approaches presented in Chap-
ter 6 were able to extract efficient trade-offs between multiple objectives directly in
the parallelization process and were optimized for homogeneous embedded MPSoCs.
The new perspective provided by heterogeneity of the available processing units ren-
ders a large optimization potential going far beyond the possibilities provided by
homogeneous architectures. However, the approaches presented in Chapter 6 are
not aware of varying performance characteristics of the provided processing units of
a heterogeneous MPSoC. This leads to poor results for such architectures as already
shown for the homogeneous ILP-based approaches applied to heterogeneous architec-
tures (cf. Section 7.2.4). Therefore, this chapter presents new approaches optimized
for heterogeneous target architectures extracting parallelism in a multi-objective
aware manner. Since the efficiency of the GA-based approaches presented in Chap-
ter 6 could be demonstrated on several real-world embedded applications, they are
used as a starting point for the new heterogeneous parallelization approaches pre-
sented in this chapter.

Also here, a combination of task-level and pipeline parallelism is also employed to
be able to extract parallelism from embedded applications covering a large number
of domains. Both approaches can be executed separately or in a combined fashion
like employed by the parallelization approaches presented in the previous chapters.
Since many basic concepts were entirely discussed before, this chapter presents both
approaches in a shorter way by combining most sections of both approaches. Ac-
cordingly, the rest of this chapter is structured as follows: The integration of the
two multi-objective aware parallelization approaches for heterogeneous embedded
MPSoCs into the global parallelization technique is described first in Section 8.1.
Afterwards, both, the task-level as well as the pipeline parallelization approaches
are presented in Section 8.2 describing all parts which have to be provided for a
GA-based optimization technique. Finally, Section 8.3 presents results for a com-
bined execution of both approaches before Section 8.4 summarizes the approaches
presented in this chapter.

8.1 Integration into the Global Parallelization Approach

The integration of the multi-objective aware GA-based task-level parallelization
approach optimized for heterogeneous embedded MPSoCs into the global paral-
lelization framework (cf. Section 4.2) is shown in Algorithm 11. The function
ExtractHetGATLP is executed by the global parallelization algorithm (cf. Al-



8.1. Integration into the Global Parallelization Approach 179

Algorithm 11 Pseudo Code of the GA-based Task-Level Parallelization Approach
1: // Called bottom-up hierarchically by Algorithm 4 in line 18 on page 56
2: function ExtractHetGATLP(Node n, Platform pf , int maxTasks)
3: // This function is only applicable to hierarchical nodes.
4: if IsNotHierarchicalNode(n) then
5: return ∅
6: end if
7: // Extract parallelism for hierarchical node n.
8: // All nodes deeper in the hierarchy are already processed.
9: initPopul← CreateInitialPopulation(n,maxTasks)

10: finalPopul← HetGATaskLevelParallelizer(n, initPopul, pf,maxTasks)

11: front← ExtractParetoFrontier(finalPopul)

12: return front

13: end function

gorithm 4) as soon as all child nodes deeper in the hierarchy are processed. As
arguments, the function expects the node n to be parallelized, platform specific
information pf containing, e.g., the performance characteristics and the number of
available processing units, and an upper bound of extractable tasks maxTasks. The
structure of this algorithm is comparable to the one presented for the homogeneous
multi-objective aware task-level parallelization approach (cf. Algorithm 7) since the
changes made are hidden in the HetGATaskLevelParallelizer method which is
called in line 10 to start the GA-based approach. To summarize, the algorithm first
determines in lines 4-6 whether the currently processed node is not a hierarchical
one since only those nodes are processed by the presented approach. Afterwards,
an initial population is created in line 9 containing randomly generated solution
candidates and the sequential solution executed on all processor classes. This initial
population is then used in line 10 to extract the final population with the help of the
Genetic Algorithm-based parallelization approach presented in this section. Finally,
the front of Pareto optimal solutions is determined in line 11 and returned as the
result of the presented approach in line 12.

The integration of the multi-objective aware pipeline parallelization approach is
structured in a similar way to Algorithm 11 and only differs in two points. First,
lines 4-6 determine whether the currently processed node represents a loop state-
ment since only those statements are parallelized by this parallelization method.
Second, the pipeline parallelization approach operates on an augmented PDG (cf.
Section 5.3.2) so that it is extracted in line 9 first, before the initial population is
created and the GA-based approach is executed.

The outer parallelization algorithm (cf. Algorithm 4) has the possibility to fur-
ther combine the results of these approaches with additional ones extracted by
other parallelization approaches, due to the divide-and-conquer based parallelization
method. Thus, each processed application can benefit from multiple parallelization
methods.
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 T1  T1  T2  T3 ...  T4  S1,4  S2,3  S3,2  S4,8 ...  Sn,4

Node1..n Node1..n

Node-to-Task Mapping Hierarchical
Parallel Solution

P1 P2 ... P1

Task1..i

Task-to-Processor-
Class Mapping

Figure 8.1: Individual’s Chromosome Structure for Heterogeneous Task-Level Parallelism

8.2 GA-based Approaches for Heterogeneous Architec-
tures

According to Section 6.1, an efficient chromosome representation, objective evalu-
ation functions as well as mutation and cross-over functions have to be provided
for a GA-based optimization process. Again, the PISA framework [BLT+03] with
SPEA2 [ZLT01] is used for selection and variation purposes. Therefore, the afore-
mentioned parts of the employed GA-based approach are discussed in the following.
While the chromosome representations for task-level (cf. Section 8.2.1) and pipeline
parallelism (cf. Section 8.2.2) are described separately, the objective functions (cf.
Section 8.2.3) as well as the mutation and cross-over techniques (cf. Section 8.2.4)
employed are summarized in separate sections. The following section highlights the
performed changes compared to the multi-objective aware parallelization approaches
for homogeneous MPSoCs.

8.2.1 Chromosome Structure for Task-Level Parallelism

The chromosome structure presented in this section is able to extract task-level par-
allelism according to the fork-join model explained in Section 5.2.3. The approach
presented here also operates on the Augmented Hierarchical Task Graph (AHTG)
with its global divide-and-conquer-based parallelization approach to extract and
combine parallelism with different granularities (cf. Chapter 4). Hence, small groups
of statements, different loop(-nest)s or also function calls may be executed in par-
allel. Figure 8.1 depicts the developed chromosome structure used by the novel
multi-objective aware task-level parallelization approach for heterogeneous embed-
ded MPSoCs. Each hierarchical node of the AHTG is processed in isolation to ex-
tract parallelism from sequentially written applications. Since the new approach has
to cope with heterogeneous MPSoCs, the extracted tasks are also directly mapped
to processor classes of a heterogeneous MPSoC. All nodes deeper in the hierarchy
are already processed, due to the bottom-up approach of the global parallelization
technique. As a result, a front of Pareto-optimal solutions Si,j exists for each child
node Ni containing solution candidates that might implement parallelism deeper in
the hierarchy.

The first part of the employed chromosome structure maps each child node of
the node to be parallelized to newly extracted tasks (cf. Figure 8.1). The second one
chooses one hierarchical solution for each child node. These parts of the chromosome
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structure were also used in the homogeneous representation described in Section 6.2.
However, to be able to extract efficient parallelism for heterogeneous multi-core
architectures, a third part was added mapping newly extracted tasks to processor
classes of the targeted MPSoC. This enables the possibility of optimizing extracted
tasks for specific processing units while balancing the overall execution behavior. In
the example shown in Figure 8.1, nodes N1 and N2 are mapped to task T1 while
node N3 is mapped to task T2 and so on. In addition, solution S1,4 of child node
N1’s Pareto front is chosen as hierarchical solution while S2,3 is chosen for child node
N2. Task T1 is mapped to processor class P1 while task T2 is mapped to processor
class P2.

Each chromosome is encoded as an array of integers. The size of each chro-
mosome is twice as large as the number of direct child nodes n contained in the
hierarchical node to be parallelized (1× node to task mapping + 1× hierarchical
solution) plus the maximum number of extractable tasks1 i for the task-to-processor
class mapping. Each chromosome can be encoded efficiently by an array of 2×n+ i

integers enabling the creation of a large amount of individuals that require only a
low amount of memory.

The impact on the evaluation of the individuals’ objectives is depicted in Fig-
ure 8.2. The example is based on the one used to describe the impact of the homoge-
neous chromosome structure, extended by the new task-to-processor class mapping.
As shown, a hierarchical node with seven child nodes which can be mapped to four
newly created tasks on a platform providing four processing units grouped into three
processor classes is processed here. The figure shows the genes’ values on the left-
hand side and their impact on the evaluation on the right-hand side. The upper
part of the figure shows the task graph representation of the node to be parallelized
according to the node-to-task mapping defined on the left-hand side. As can be
seen, nodes N1 and N2 belong to task T1 while node N3 belongs to task T2. Edges
between the created tasks depend on the node-to-task mapping. Here, a dependence
edge between node N2 and N3 exists which implicitly adds a dependence relation
between tasks T1 and T2. Thus, the execution of task T2 has to wait for completion
of T1 since data has to be communicated between both tasks before T2 can start
with its execution.

The second part of the chromosome representation contains the selection of hi-
erarchical parallel solution candidates for all child nodes. All child nodes deeper in
the hierarchy are already processed by the GA-based parallelization technique, due
to the bottom-up approach. Therefore, a front of Pareto-optimal solutions exists
for each child node evaluated by the high-level functions presented in Section 8.2.3.
The frontiers contain solution candidates with parallelism which was found deeper
in the hierarchy. The approach has to choose one solution candidate from each
child node’s Pareto-frontier providing different objective values for the correspond-
ing node. A solution with more extracted parallelism may, for example, reduce the

1The maximum number of extractable tasks is set to the number of available processing units
by default but can be changed by the user.
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Figure 8.2: Impact of Chromosome Configuration on the Parallelized Hierarchical Node

overall execution time at the cost of the system’s energy consumption. Hence, this
part of the chromosome’s structure also influences the objectives’ evaluation.

The last part of the chromosome structure defines the task-to-processor class
mapping which is crucial if applications should be parallelized for heterogeneous
MPSoCs. Execution time, energy consumption, and other objectives depend on the
processing unit used for a task. Therefore, these gene values map the tasks created in
the first part of the chromosome structure to processor classes representing identical
processing units. In the example shown, task T1 which contains nodes N1 and N2, is
mapped to processor class C1 while task T3, which executes the statements of nodes
N4 and N5, is mapped to processor class C2. Also here, the genes’ values directly
influence the evaluation of all objective values.

To summarize the chromosome representation, new tasks can be extracted,
mapped to processor classes, and can also be combined with tasks which were found
deeper in the hierarchy. Thereby, all necessary parts are covered to extract ef-
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Figure 8.3: Individual’s Chromosome Structure for Heterogeneous Pipeline Parallelism

ficient task-level parallelism from sequentially written applications optimized for
heterogeneous embedded MPSoCs. More details on the evaluation of the considered
objectives are presented in Section 8.2.3 just after the following Section presenting
the developed chromosome structure for pipeline parallelism.

8.2.2 Chromosome Structure for Pipeline Parallelism

This section adapts the existing multi-objective aware pipeline parallelization ap-
proach for homogeneous MPSoCs presented in Section 6.3. The new approach is
able to extract well-balanced parallelism for heterogeneous architectures. The adap-
tation of the pipeline parallelization approach required more changes while moving
from the homogeneous to the heterogeneous case compared to the changes necessary
to port the task-level parallelization approach. The main goal of pipeline parallelism
is the extraction of concurrently executed pipeline stages (horizontal splits). The
iterations of these stages can further be distributed into sub-tasks (vertical splits).
These goals, as well as iteration balancing and processor class mapping, have to be
extracted by the new GA-based pipeline parallelization approach targeting hetero-
geneous MPSoCs.

The developed chromosome structure is depicted in Figure 8.3. The first part of
the chromosome maps child nodes of the loop to be parallelized to disjunct pipeline
stages. This part is the only one that could be re-used from the homogeneous
approach presented in Section 6.3 without changes. The two succeeding parts of
the chromosome structure (namely Sub-Tasks Used and Chunk Sizes of Sub-Tasks)
divide the different iterations of pipeline stages to concurrently executed sub-tasks.
Finally, the Sub-Task to Processor Class and Scheduling genes map the extracted
tasks to processing units of the target architecture and define the scheduling policy
of loop iterations. An example using the new chromosome representation is shown
in Figure 8.4. There, nodes N1 and N2 are mapped to pipeline stage T1 while node
N3 is mapped to pipeline stage T2. As a result, two pipeline stages are extracted
which can be executed in a pipelined manner. A dependence edge exists between
both pipeline stages which limits the achievable speedup of this solution since each
iteration of pipeline stage T2 waits for data generated by T1. Therefore, the second
part of the chromosome structure (called Sub-Tasks Used) defines whether sub-tasks
are created for a given pipeline stage2. In the given example, three sub-tasks are
used for T1 like defined by the boolean Sub-Tasks Used genes. Thus, this pipeline

2The maximum number of generated sub-tasks can also be defined by the user and is set to the
number of available processing units by default.
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Figure 8.4: Impact of Chromosome Configuration on the Parallelized Hierarchical Node

stage is processed in parallel to faster supply pipeline stage T2 with the required
input data. The genes’ values further depict that pipeline stage T2 uses only one
sub-task and is not split into concurrently executed sub-tasks.

So far, pipeline stage extraction and sub-task generation are encoded in the
chromosome structure. This structure is – in general – sufficient if applications are
to be parallelized for homogeneous architectures. For heterogeneous ones, however,
the execution time of a task’s iteration may change depending on the executing
processing unit. Therefore, the third gene block allocates chunk sizes of the pipeline
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stages’ iterations to the according sub-tasks. In this way, sub-tasks executing larger
chunks can, e.g., be executed on faster processing units to balance the overall ex-
ecution behavior. In the example of Figure 8.4, sub-task T1,1 executes 6 iterations
while sub-tasks T1,2 and T1,3 execute 4 and 2 iterations, respectively. Sub-task T2,1

of pipeline stage T2 executes all 12 iterations of the loop. The chunk sizes of T2,2

and T2,3 are ignored since the sub-tasks are not used according to the zero values
in the last two positions of the Sub-Tasks Used genes. The chunk sizes are not di-
rectly taken from the genes’ values because the probability that the sum of all chunk
sizes per pipeline stage is equal to the number of loop iterations is quite low. Since
all loop iterations of a pipeline stage must be executed exactly once by the gener-
ated sub-tasks, a solution with less or more executed iterations is invalid. To avoid
this, the chunk sizes are translated into percentage-values so that the iterations are
mapped to the sub-tasks according to these percentages.

The fourth block of gene values maps the extracted sub-tasks to the processor
classes of the targeted heterogeneous MPSoC. In the given example, sub-task T1,1

is mapped to processor class C1 which contains two fast processors. This is a good
choice for this scenario since T1,1 executes more iterations than both other sub-tasks
of pipeline stage T1 like defined by the corresponding genes (Chunk Sizes of Sub-
Tasks). T1,2 and T1,3 are mapped to processor class C2 and C3 with respect to their
execution load.

The last position in the chromosome structure is reserved to select the itera-
tion scheduling policy. Three different scheduling strategies are supported, namely
chunk-based, interleaved and fully-interleaved. The first one maps all iterations con-
tinuously to one sub-task respecting its chunk size. Here, sub-task T1,1 would be
allocated loop iterations {0, .., 5} while T1,2 would be allocated iterations {6, .., 9},
respectively. This scheduling policy has a good data cache locality, but all succeeding
iterations are executed by the same task so that tasks waiting for the generated data
do not obtain the data of iterations concurrently. The interleaved policy executes
smaller chunk sizes in an interleaved manner. Thus, task T1,1 could, for example, ex-
ecute iterations {0−2, 6−8} while T1,2 and T1,3 could execute iterations {3−4, 9−10}
and {5, 11}, respectively. This scheduling policy is a good trade-off between cache
locality and a faster response time for waiting tasks. The last scheduling policy,
namely fully-interleaved, schedules the iterations in a way that all tasks start with
the execution of a pipeline stage’s iteration as soon as possible while respecting the
configured chunk sizes. A possible schedule for this example with this scheduling
methodology could be {0, 3, 5, 6, 9, 11}, {1, 4, 7, 10}, and {2, 8} for tasks T1,1, T1,2,
and T1,3, respectively (cf. Figure 8.5). All three tasks execute one of the first three
iterations concurrently. Afterwards, task T1,3 starts with the next iteration after
task T1,1 has executed 3 iterations, like defined by the chunk size. In the future, the
integration of additional scheduling strategies could be considered as well.

With the presented chromosome structure, it is possible to extract well-balanced
pipeline parallelism optimized for heterogeneous MPSoCs. The timing behavior of
the genes’ values presented in Figure 8.4 is depicted in Figure 8.5. The node-to-
task-mapping, the sub-task creation, the different chunk-sizes, the processor-class-
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Figure 8.5: Timing of Example Depicted in Figure 8.4

mapping as well as the iteration scheduling are considered in the diagram. As soon
as the first six iterations of pipeline stage T1 have been executed, all sub-tasks are
executing their work without any interruptions. This behavior would improve fur-
ther if the loop would be executed for more than the shown twelve iterations. The
solution depicted in Figure 8.4 has a good execution behavior regarding execution
time. However, the new approach considers other objectives, such as energy con-
sumption, as well. For this objective, other solutions with, e.g., a lower number of
cores used may produce better results. Therefore, the new approach evaluates all
considered objectives for all individuals so that a front of Pareto-optimal solutions
is generated which also contains results with good trade-offs between the different
objectives.

8.2.3 Objective Evaluation

This section defines the functions necessary to evaluate task-level and pipeline par-
allelization individuals. The evaluation functions presented in Chapter 6 were eval-
uated (by target platform simulation) to be accurate enough to estimate the parallel
performance for homogeneous MPSoCs. Therefore, these models should be used as
a basis for the new approaches.

8.2.3.1 Objective 1: Execution Time

The execution time of the longest execution path formed by the extracted tasks is
used for the execution time of the parallelized node. This is valid since all tasks
have to wait until the slowest one (or the longest execution path) has completed its
work so that all tasks are joined before the parallel section is left.

Equations 6.1 - 6.3 (cf. page 114) define the employed model for task-level
parallelism in a formal way. Fortunately, the adaptation of this model to heteroge-
neous architectures is straightforward. The only equation that has to be adapted is
Equation 6.1 which estimates the costs of task Ti. In its original form, the formula
does not distinguish between different execution times of the child nodes mapped
to the task depending on the executing processing unit. Therefore, it is replaced by
Equation 8.1.

ET (Ti) = TCO +
∑

n∈Nodes(Ti)

ETN(n, Sn,k, c) (8.1)
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The execution times ETN of all nodes n mapped to task Ti depend on the chosen
hierarchical solution candidate Sn,k of node n and also on the selected processor class
c. A similar adaptation had to be made to estimate the execution time of a pipeline
parallelization candidate. Here, equation 6.9 defining ET (T j

i ) for pipeline stage i in
iteration j is changed in a similar way like denoted in Equation 8.2.

ET (T j
i ) =

∑
n∈Nodes(Ti)

ETN(n, c)

LI
(8.2)

Equations 6.10 - 6.11 (cf. page 127) can be reused without any changes since
the estimated path costs are based on ET (T j

i ) which now distinguishes between
different execution times depending on the mapped processor class. Thus, the path
costs implicitly include this distinction without being modified.

8.2.3.2 Objective 2: Energy Consumption

The objective functions used to estimate the system’s energy consumption for task-
level and pipeline individuals have to be adapted in an analogous way to the first
objective. The employed formulas used to evaluate task-level individuals for this ob-
jective on homogeneous architectures have already been presented in Equations 6.4
- 6.7 (cf. page 115). Only the estimation of the tasks’ energy consumption has to be
extended to take different processor classes into account. Equation 6.6 is replaced
by the formula depicted in Equation 8.3.

E(Ti) = TCE +
∑

n∈Nodes(Ti)

EEN(n, Sn,k, c) + ICE(Ti) +OCE(Ti) (8.3)

In Equation 8.3, the energy consumption EEN consumed by all nodes n mapped
to task Ti now depends on the chosen hierarchical parallel solution candidate Sn,k

and the executing processing unit c. Since the energy costs E(Ti) are contained in
the overall energy consumption defined in Equation 6.7, the different performance
characteristics of the available processing units are implicitly part of the final ob-
jective value. A comparable adaptation had to be made to estimate the system’s
energy consumption of a pipeline parallelization candidate. Here, Equations 6.12
- 6.15 define the energy consumption’s estimation for homogeneous MPSoCs (cf.
page 128). All equations with an exception of Equation 6.14 determining the energy
consumption of task Ti in iteration j could be reused without any changes. Equa-
tion 6.14 is replaced by Equation 8.4 so that this estimation also considers different
energy costs for the execution on different processing units.

E(T j
i ) = ICE(T j

i ) +OCE(T j
i ) +

∑
n∈Nodes(Ti)

EN(n, c)

LI
(8.4)

8.2.3.3 Objective 3: Communication Overhead

The third objective considered is the overhead introduced by communication which
is independent of the executing processing units in the employed model. Therefore,
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this objective is determined in an identical way compared to the ones defined in
Equations 6.8 and 6.16.

8.2.3.4 Portability of Models

Also in the heterogeneous case, constants like, e.g., the task creation overhead for
execution time TCO or the communication cost multiplier COSTS can be config-
ured to be applicable to multiple target platforms. In addition, the objective values
for the leaves of the AHTG are determined via target platform simulation so that
they are also automatically adjusted for the considered target architecture.

8.2.4 Mutation & Cross-Over

The mutation and cross-over strategies that were previously presented in Chapter 6
are used as a basis for the new heterogeneous parallelization approach. The imple-
mented standard mutation function employs a 1-position mutation strategy. One
gene of the mutating individual’s chromosome is randomly chosen and altered to a
new value. The employed standard cross-over function (also called recombination)
splits the chromosomes of two individuals at a random position and joins the left-
hand side of the first one with the right-hand side of the second one and vice versa.
Both functions lead to good solution candidates but have the drawback that they
generate many invalid solution candidates (> 98%). Solutions are invalid if, e.g.,
a deadlock is created by mutation or recombination so that one task is waiting for
data of another one and vice versa. This can happen if a child node is moved from
one task to another one since dependencies between the tasks may change, as well.
The presented approach rejects such solutions and also ones with more concurrently
executed tasks mapped to the same processor class as processing units are available
in this class. As a result, additional scheduling overhead at runtime can be avoided.

This problem was also observed in Sections 6.2.4 and 6.3.4 so that smart muta-
tion and cross-over strategies were developed. As soon as a valid solution becomes
invalid after mutation or recombination, the algorithm determines the source of the
problem and tries to fix it with a subsequently executed mutation. For example, to
fix a deadlock, the target node which causes the deadlock is moved to a different
task to solve the problem. Similarly, if too many tasks are allocated to a specific
processor class after mutation, one of the other tasks is moved to a different pro-
cessor class. These steps are repeated until the solution becomes valid again or a
maximum number of fixing steps is reached.

By applying this strategy, the number of invalid solutions could be reduced
from more than 98% to around 5% for the heterogeneous parallelization techniques,
which significantly reduced the time which was necessary to extract efficient solution
candidates. As stated earlier, it is clear to the author of this thesis that these
modifications applied to the mutation and cross-over functions may influence the
solutions generated by the GA-based approach. However, a negative influence on
the solution quality could not be observed. Instead, the evaluation chapter will later
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Figure 8.6: Final Parallel Solutions for the Edge Detect Benchmark.

show that the smart mutation and cross-over functions lead to efficient results in a
short period of time.

8.3 Experimental Results

To evaluate the applicability of the newly presented multi-objective aware paral-
lelization approaches for embedded heterogeneous MPSoCs, the same set of bench-
marks used in the previous chapters was also employed here. As a target platform
for the model-based evaluation, a same ISA-multi-core platform (like [Pet13]) con-
figured with four ARM cores running at 100 MHz (1x), 250 MHz (1x) and 500
MHz (2x) to simulate a platform with large performance variances was chosen as
an inspiring example. Unfortunately, all considered target platforms described in
Section 3.3 lack an energy model for a heterogeneous system configuration. There-
fore, the results in this section are only based on the evaluation models presented in
Section 8.2.3. An evaluation of the employed models could be performed in future
work as soon as a platform providing such a model exists.

Detailed results for four of the considered applications can be found in Figures 8.6
- 8.9. The presented approach supports three objectives, namely speedup of the
execution time, energy consumption and inserted communication overhead. The
considered objectives are arranged on the x-, y-, and z-axes, accordingly. Other
objectives, like, e.g., the reduction of thermal issues or the size of allocated memory
may easily be added by just providing a corresponding objective evaluation function.
The sequential version of the application, executed on the slowest processing unit,
is located at the bottom-left of each diagram and is used as base-line, here. No data
has to be communicated so that the point is directly placed on the x-y-plane, due
to its sequential execution. For improved readability, vertical bars are added to the
diagrams to project the points into the x-y-plane. The third dimension (i.e., the
amount of communicated bytes) can be compared by the height of these bars. A solid
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Figure 8.7: Final Parallel Solutions for the Spectral Benchmark.

line marks the front of Pareto-optimal solutions, also projected to the x-y-plane3.
Each diagram contains both, Pareto-optimal and Pareto-dominated solutions. Of
course, only the first ones are finally returned to the application designer as possible
solution candidates. The diagrams contain three different shapes to mark solution
candidates containing parallel sections generated by the task-level parallelization
approach (cf. Section 8.2.1), the pipeline parallelization approach (cf. Section 8.2.2)
and a mixture of both approaches. All objective values of the presented solutions
are based on the high-level models presented in Section 8.2.3.

The visualized benchmarks have been selected since they show different behaviors
with respect to the evaluated parallelization approaches and the maximum objec-
tive values. The edge detect application, for example, shown in Figure 8.6 profits
most from the presented pipeline parallelization approach. Only a few solutions
generated by the task-level parallelization approach are part of the Pareto-frontier
since most parallelism is hidden in loops. In contrast, the solutions generated for
the spectral benchmark shown in Figure 8.7 and the jpeg2000 encoder shown in
Figure 8.8 profit from both approaches and also from a mixture of them. The last
visualized application is the boundary value problem in Figure 8.9. Here, fewer so-
lutions are generated, but it was possible to extract a speedup of over 12× which is
close to the theoretical speedup limit of the targeted embedded MPSoC. However,
the solution increases the energy consumption to 940% compared to the solution
which is executed sequentially on the slowest processing unit only. This highlights
the trade-offs which are enabled by the presented parallelization framework due to
the new multi-objective aware approach. If the application designer knows that
a speedup of, e.g., 3.4× is sufficient for the considered application scenario of the
boundary value problem, a solution which uses less and also slower processing units

3The projected Pareto-frontier is not in a straight echelon form due to the third objective. Even
if a solution is worse in execution time and energy consumption, it may be added to the front of
Pareto-optimal solutions if it requires less communication overhead.
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Figure 8.8: Final Parallel Solutions for the jpeg2000 Benchmark.

can be chosen so that the energy consumption is only increased to around 500%
instead of 940%. If 2.2× is sufficient, a solution with an energy consumption of
320% could also be chosen to further decrease the system’s overall energy consump-
tion. Comparable trade-offs were also observed for the other evaluated benchmarks.
The fastest solution, extracted for the edge detect benchmark shown in Figure 8.6,
increases the system’s energy consumption to 900% while gaining a speedup of 9×.
If a speedup of 5× is sufficient, more energy efficient cores can be used for execution
to reduce the energy consumption to 700%.

Most solutions generated by the presented pipeline parallelization approach ex-
tract the highest speedups at the cost of the system’s energy consumption. Moreover,
a large amount of data has to be communicated for this approach. The solutions
generated by task-level parallelism are the ones producing only a small speedup but
are much more energy efficient. The solutions which contain both, parallel sections
based on task-level and pipeline parallelism, are mostly a good trade-off between
higher speedups and lower energy consumption. This shows that both approaches
are able to extract efficient parallelism from sequentially written embedded applica-
tions and that the approaches are applicable best for different objectives.

The observations made in this evaluation have revealed that the consideration
of heterogeneity was an advantageous extension to the existing homogeneous multi-
objective aware parallelization approaches. Even more useful trade-offs can be pro-
vided by the newly presented approaches compared to the homogeneous ones. As
a result, the solution space of the homogeneous parallelization approaches could
successfully be extended. This is also shown by the dense cloud of solution points
shown in Figures 8.6 - 8.8. Significantly higher speedups and a wider range of op-
timizations for all considered objectives could be reached due to the heterogeneous
performance properties of the available processing units. The results also motivate
to invest additional time in the future to examine other objectives, as well.
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Figure 8.9: Final Parallel Solutions for the Boundary Value Benchmark.

8.3.1 Statistics of the GA-based Approaches

Table 8.1 summarizes the results for all evaluated benchmarks while providing ad-
ditional statistics about timing and the employed Genetic Algorithm. The columns
contain information about the required time to extract the final solution space in
minutes and seconds (Time), the number of parallelized hierarchical nodes (#N ),
the number of created populations (#Popul), the number of created individuals
(#Ind), the number of performed mutations (#Mut) and cross-over operations
(#Cross) as well as the number of Pareto-optimal solutions (#S ) returned to the
application designer. All numbers are summed up over all performed parallelization
steps. The population sizes as well as the number of populations are determined
dynamically so that nodes with a larger number of child nodes require more time
than nodes with a smaller number of child nodes. Thus, the number of created
solution candidates automatically scales with the size of the solution space. It may
seem that the number of solutions in the last column differs from the ones visible
in Figures 8.6 - 8.9. In fact, some of the points are just too close to each other to
be noticeable.

As can be seen, the number of finally returned Pareto-optimal solutions ranges
between 30 solutions for the compress benchmark up to 333 solutions for the jpeg2000
encoder. Nevertheless, the number of extracted solutions shows the huge optimiza-
tion potential for trade-offs generated by the newly presented multi-objective aware
parallelization approach. Another important aspect is the time the approach needs
to parallelize an application. The time varies between 30 seconds for the fir bench-
mark up to 11 minutes for the compress benchmark measured on a system with
four AMD-Opteron cores running at 2.4 GHz. To compensate for the higher com-
plexity of the heterogeneous approach, mutation, recombination, and evaluation of
the different individuals were parallelized to run on multiple cores. This was not
implemented in the framework at the time the homogeneous approaches were eval-
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Benchmark Time4 #N #Popul #Ind #Mut #Cross #S
adpcm enc. 01:31 36 1,520 153,453 30,729 104,962 63
bound. value 01:17 12 644 83,973 17,900 54,964 34
compress 10:59 289 8,936 706,266 141,170 464,112 30
edge detect 02:43 105 2,872 200,371 40,002 133,096 118
filterbank 03:24 7 412 50,779 12,229 44,164 47
fir 256 64 00:30 13 388 29,889 6,629 21,515 44
iir 4 64 03:02 13 852 105,224 22,631 79,206 63
jpeg2000 05:13 62 2,868 312,242 68,142 246,427 333
latnrm 32 64 01:11 17 636 53,642 11,462 39,831 54
mult 10 10 01:01 36 1,060 70,855 14,635 57,226 90
spectral 02:25 51 2,260 213,230 44,696 158,624 114
average 03:01 58 2,041 179,993 37,293 127,648 90

Table 8.1: Evaluation of Combined GA-based Parallelization Approaches for Heteroge-
neous MPSoCs

uated so that the execution times of the more complex heterogeneous approaches
are sometimes even lower or in the same order of magnitude. For the jpeg2000
encoder, over 300,000 solution candidates were created, evaluated and mutated or
recombined. This means that creation and evaluation of one individual could be
done in less than a millisecond due to the use of the proposed high-level models.
Otherwise, it would not be possible to evaluate so many individuals which would
result in a drastic reduction of the solution quality of a Genetic Algorithm.

8.4 Summary

This section presented the final parallelization approaches tailored towards resource
restricted embedded devices of this thesis. Since heterogeneity has proven to be
a key aspect for modern, efficient embedded systems in Chapter 7, the homoge-
neous multi-objective aware parallelization approaches presented in Chapter 6 were
extended in this section to be able to distinguish between differing performance
characteristics of the available processing units of heterogeneous architectures. The
empirical evaluation on typical real-world embedded applications has shown that
the new heterogeneous parallelization approaches – extracting task-level as well as
pipeline parallelism – are able to provide a large number of parallel solution can-
didates. With these solution candidates, the application designer can optimize for
different optimization objectives leading to either high speedups, low energy con-
sumption, low communication overhead, or to solutions with good trade-offs between
the different objectives.

Also, a combination of the presented task-level and pipeline parallelization ap-

4Time format MM:SS, measured on a system with four AMD Opteron cores running at 2.4GHz
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proaches contributed additional solutions to the space of Pareto-optimal solution
points. These solution candidates represent trade-offs between the advantages and
limitations of both parallelization approaches adapted to heterogeneous embedded
MPSoCs. It is easy to integrate additional objectives to the heterogeneous GA-based
parallelization approaches since only a high-level objective evaluation function has
to be provided. Other objectives, like, e.g., memory consumption, could easily be
integrated by future research work as well. For completeness, it should be mentioned
here, once again, that the evaluation of the high-level models’ precision has to be
examined in the future, since no energy model for one of the employed heterogeneous
target platforms was available.

To summarize, the following results were achieved:

1. The consideration of differing performance characteristics of processing units
available in a heterogeneous MPSoC combined with mapping decisions in the
parallelization process could be exploited.

2. The presented framework is able to provide the application designer with a
large number of solution candidates for trade-offs between different objectives.

3. The combination of task-level and pipeline parallelization approaches opti-
mized for heterogeneous MPSoCs in one framework is advantageous since both
approaches perfectly complement each other.

4. The extension to heterogeneity perfectly extends the solution space spanned
by the homogeneous parallelization approaches of Chapter 6.
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Recent years have shown a dramatic increase in the complexity of software writ-
ten for embedded and cyber-physical systems. This resulted in demands for more
computational performance which could not be satisfied by state-of-the-art embed-
ded single-core architectures. As a consequence, Multiprocessor System-on-Chip
(MPSoC) architectures gained more and more importance in the domain of embed-
ded systems. Nowadays, high-performance embedded devices can hardly be designed
without using multi-core processors. Compared to single-core platforms, MPSoCs
contain multiple processing units clocked with lower CPU frequencies. By distribut-
ing the work of the considered application to multiple processing units, the same
amount of work can often be processed with a lower energy consumption and less
heat dissipation compared to single-core architectures. Unfortunately, these benefits
do not come for free. Many new challenges have to be tackled if existing embedded
applications are to be ported to such multiprocessor systems.

Most embedded applications are still written in sequential C code in such a
way that they are not enabled to use multiple processors. Thus, to exploit the
full potential of MPSoC platforms, applications have to be partitioned into several
concurrently executed tasks to enable parallel execution on the available processing
units. Since manual parallelization tends to be very error prone and time consuming,
the application designer should be relieved from the burden of manually parallelizing
an application.

Even though automatic parallelization is a research area for decades, resulting in
a significant amount of available parallelization tools, only a minority of them can
be reasonably applied to resource-restricted embedded devices. For such systems,
aspects, like, e.g., energy consumption and heterogeneity have to be taken into ac-
count which were hardly ever considered by existing parallelization approaches so
far. Therefore, this thesis presents a new parallelization framework containing sev-
eral novel parallelization techniques, which are especially tailored towards resource-
restricted embedded systems. The benefits of the developed approaches and their
contribution to the current state of research are summarized in Section 9.1 before
Section 9.2 finally concludes this thesis with an outlook to future research possibil-
ities.
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9.1 Research Contributions

The initial considerations that inspired this thesis (cf. Chapter 1) revealed many
aspects which have to be taken into account if embedded applications should be
mapped efficiently to embedded MPSoCs. From these characteristics, ambitious
goals were defined. This chapter reviews these goals and checks if they were accom-
plished.

Task Balancing: Efficient task balancing has been one of the most important
aspects which was determined to be essential in the beginning of this thesis. If tasks
are not well balanced, a lot of performance may be wasted. This also has a nega-
tive impact on other important objectives, like, e.g., the energy consumption of the
embedded device. Unfortunately, many existing parallelization approaches do not
apply cost models or only use extremely rudimentary greedy algorithms to extract
tasks from sequentially written applications. Therefore, several Integer Linear Pro-
gramming and Genetic Algorithm-based parallelization approaches were presented
in Chapters 5 - 8 which inherently contain cost models for the considered objectives.
Based on these models, the approaches were able to extract well-balanced tasks and
determine whether parallel execution really accelerates the applications. For most of
the presented approaches, speedups which are close to the theoretical speedup limit
of the targeted architectures could be reached. The compress benchmark, for exam-
ple, could be accelerated by factors of nearly 2.0×, 2.6×, and 3.9× for two, three and
four tasks running in parallel on the Arm11MPCore platform for the homogeneous
ILP-based parallelization approaches (cf. Chapter 5). The performed evaluations
highlight the applicability of the proposed approaches to embedded devices.

Complexity: Large complexity is always a problem for approaches dealing with
automatic extraction of parallelism from sequentially written applications. This is
one of the reasons why most existing approaches disregard the use of cost models
or rely on simple heuristics. Since the approaches developed in this thesis employ
cost models and sophisticated parallelization techniques based on Integer Linear
Programming and Genetic Algorithms, the complexity of the vast solution space
had to be pruned in a smart way. Therefore, Chapter 4 presents the Augmented
Hierarchical Task Graph which was used as central intermediate representation by
the developed parallelization framework including all approaches presented in Chap-
ters 5 - 8. By dividing the application to be parallelized into different hierarchical
levels which are processed in isolation by the proposed divide-and-conquer based ap-
proach, it was possible to drastically reduce the vast solution space. This was crucial
for the complex parallelization approaches presented in this thesis. Even though the
task-level parallelization approach, for example, presented in Section 5.2 is based on
NP-complete Integer Linear Programming, solutions could be determined in 3 - 9
seconds on average for the tested benchmarks on multiple platform configurations.
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Multiple Optimization Objectives: If sequentially written applications should
be efficiently mapped onto resource-restricted embedded MPSoCs, the consideration
of multiple optimization objectives is indispensable. Unfortunately, most previously
presented parallelization approaches try to maximize the speedup without consid-
ering the impact on other objectives like, e.g., the system’s energy consumption.
Therefore, Chapters 6 and 8 studied such effects and presented several paralleliza-
tion approaches which are able to extract different kinds of parallelism for homo-
geneous and also heterogeneous embedded MPSoCs. By putting some of the cores
into idle mode and reducing the number of employed processing units, trade-offs be-
tween different objectives could be achieved. For a combination of the approaches
presented in Chapter 6, for example, several solutions ranging from 1.7× with in-
creased energy consumption of 200% to 2.7× with increased energy consumption
of 320% were returned for the filterbank benchmark. If the application designer
knows that a given speedup is sufficient to meet the specified deadlines, a solution
consuming less energy can be beneficial. In this way, the application designer can
choose a solution which perfectly fits to a specific application scenario.

Online vs. Offline Decisions: Additional overhead caused by runtime decisions
should be avoided for embedded devices as much as possible, due to lower com-
putational power of these devices compared to high-performance architectures. In
contrast to, e.g., OpenMP’s online task scheduling strategies, the approaches pre-
sented in this thesis extract optimized solutions by considering target architecture
information. The number of extracted tasks can, for example, be limited to the
amount of available processing units. In this way, it is possible to avoid additional
scheduling overhead at runtime. The high speedups of the presented approaches
have shown that this was a beneficial decision for the targeted embedded architec-
tures.

Type of Parallelism: To be applicable to a large number of embedded appli-
cations from multiple application domains, it is often not sufficient to focus on
the extraction of only one kind of parallelism. Therefore, each chapter presented
task-level and pipeline parallelization approaches optimized for the intended use of
homogeneous and heterogeneous as well as single and multi-objective aware paral-
lelization approaches. The pipeline parallelization approach is also able to extract
DoAll parallelism which is some sort of data-level parallelism. Moreover, the ap-
plication designer does not have to stick to one kind of extracted parallelism. The
approaches presented in Chapters 5 - 8 can also be executed in a combined manner,
achieved by the plug-and-play model provided by the global parallelization technique
presented in Chapter 4. The evaluation sections have shown that the different paral-
lelization techniques perfectly complement each other to extract efficient parallelism
optimized for resource-restricted embedded MPSoCs.
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Heterogeneity: Heterogeneity is one of the key design patterns for current and
future embedded MPSoCs. These systems combine different kinds of processors
on one die to tackle problems concerning processing speed, energy consumption,
heat dissipation, and other objectives. While task balancing was already a com-
plex problem for homogeneous architectures, its complexity significantly increases
for heterogeneous ones. The approaches presented in Chapters 7 and 8 have shown
that it is crucial to take performance variances of the available processing units into
account if applications should be parallelized efficiently for heterogeneous MPSoCs.
Also here, speedups which are close to the theoretical maximum could be reached
for the approaches presented in Chapter 7 (up to 10-12× for an architecture with a
theoretical speedup limit of 13.5×). In addition, the multi-objective aware heteroge-
neous parallelization approaches of Chapter 8 provide solutions with high speedups,
low energy consumption, low communication overhead or useful trade-offs between
these objectives.

As can be seen above, all goals defined in the introduction of this thesis were ac-
complished and are covered by the novel parallelization approaches. All approaches
have been integrated into the developed parallelization framework and were pre-
sented at conferences and workshops with a strong background on embedded sys-
tems or parallelization problems. Since all points discussed above are fulfilled, the
proposed approaches are able to extract well-optimized parallelism for resource-
restricted embedded MPSoCs like intended as the main goal of this thesis. To the
best of the author’s knowledge, such a framework – at least covering all of the
above-mentioned points – was not presented before which highlights the research
contribution of this thesis.

It should also be mentioned here that the approaches presented in this thesis are
optimized for specific intended use cases. All of them are useful for specific circum-
stances. If an application designer has to, e.g., extract parallelism for homogeneous
architectures and the maximization of the speedup is the main goal, the approaches
presented in Chapter 5 should be used since they are optimized for this intended use
case. Of course, the heterogeneous multi-objective aware parallelization approaches
presented in Chapter 8 could also be used in this situation (since a homogeneous ar-
chitecture is a special case of a heterogeneous one) but the homogeneous ILP-based
approaches are much faster and optimized for this use case. Therefore, all presented
approaches are valuable without being superfluous due to more complex ones. With
the help of the developed parallelization framework, all presented parallelization ap-
proaches could be integrated into one tool flow so that the most suitable approaches
can easily be selected.

9.2 Future Work

In addition to the results achieved by the approaches presented in this thesis, there
is always space for future research work which can extend or improve the quality of
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the presented approaches. This section closes this thesis with an outlook to possible
future research work grouped into different categories.

High-Level Objective Models: The high-level objective models employed in
this thesis are accurate enough to be used for estimating whether parallel execution
may increase the overall performance or may reduce the system’s energy consump-
tion. These models can, of course, be extended to be more precise. In the current
version, for example, there is no distinction between different communication strate-
gies. Such aspects can be easily integrated into the presented high-level cost models.
However, precision and runtime complexity have to be considered carefully to take
care that the parallelization approaches can still be solved in a reasonable amount
of time.

Execution Time Reduction: The execution time of the first presented ap-
proaches employing ILP for homogeneous embedded MPSoCs were fast in finding
efficient solutions. However, the complexity of the proposed approaches increased
from chapter to chapter so that it reached an upper limit of an acceptable runtime
for the ILP-based pipeline parallelization approach for heterogeneous architectures.
One possibility to accelerate the presented approaches significantly is to parallelize
the parallelization approach itself. This can be easily achieved by parallelizing
the divide-and-conquer-based parallelization approach presented in Chapter 4. All
nodes which are part of the same hierarchical level can be processed concurrently
which can significantly reduce the approaches’ runtime. A nice side effect is that
all approaches presented in Chapters 5 - 8 would profit from parallelization if the
global parallelization algorithm would be parallelized at this point.

Multi-Objective aware Approaches: Up to now, three objectives are consid-
ered by the GA-based parallelization approaches, namely speedup, the system’s en-
ergy consumption, and the inserted communication overhead. Additional objectives,
like, e.g., the memory consumption or heat dissipation could also be interesting to
analyze. Moreover, the approaches presented in this thesis only employed SPEA2
for individual selection and variation purposes. Since SPEA2 already returned good
solution candidates in a short amount of time, other tools were not evaluated. This
could also be done by future research work.

ILP-based approaches: Some of the presented ILP systems can be further im-
proved since, e.g., several solutions with the same objective value may exist. For
example, the objective value does not change if the nodes of two tasks T1 and T2

are swapped. Such solutions can, e.g., be avoided by the techniques presented in
[LMM+97]. Even though this will not have an impact on the solution quality, it
may reduce the time to solve the ILP systems.
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Portability: The developed approaches were evaluated on three different target
architectures. It might be interesting to test the developed approaches also for
additional target architectures which are more diverse. Heterogeneous architectures,
for example, containing processors with different instruction sets could not be tested
in the context of this thesis due to portability problems of the employed operating
system. If this limitation could be eliminated, the portability of the presented
approaches to such platforms should also be evaluated.

Static Dependence Analysis: In the current version, the parallelization frame-
work employs a profile-driven analysis to detect dependencies between statements
of the application to be parallelized. The main reason was that this kind of analysis
could be developed significantly faster than a static one. Furthermore, this thesis
focuses on parallelism extraction techniques so that not too much effort could be
spent on such analysis techniques. However, the profile-driven dependence analysis
is implemented in a separate MACC tool so that it can easily be exchanged for a
static analysis as soon as it is available.

Additional Programming Languages: Even though most embedded applica-
tions are written in sequential C code, support for additional programming lan-
guages may be beneficial. Especially for services which are less hardware specific,
source code languages with higher abstraction levels, like, e.g., C++ or Java, are
often used. Therefore, the presented parallelization framework could be extended
to support such programming languages as well. This would require additional fun-
damental work on the parallelization framework for, e.g., extracting the AHTG.
However, most concepts of the parallelization approaches presented in Chapters 5 -
8 may probably be re-used for C++ and Java without adaptations.
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A.1 Visualization Example of the Generated AHTG

The components and key properties of the Augmented Hierarchical Task Graph
(AHTG) were presented in Chapter 4. Since AHTGs are, in general, very com-
plex even for small applications, a simplified example was used, there. For the sake
of completeness, this section shows additional screen shots of the AHTG gener-
ated by the proposed parallelization framework for the spectral [Lee13] benchmark.
The framework is able to write out the initial as well as the parallelized AHTG in
the so-called graphml format [Gra13]. This format can be parsed by many high-
quality graph visualization applications. The screen shots shown in Figures A.1 -
Figures A.3 were generated by the yED Graph Editor [yWo13]. At this point, the
author would like to thank yWorks for providing the application free of cost.

The three figures show the graph at different zoom levels to present the gen-
eral graph structure as well as an example depicting the different node types and
dependencies between them. Figure A.1 shows the complete graph without going
too much into detail. The different hierarchical levels cannot be seen here due to
the tiny zoom level. The upper left corner of Figure A.1 is presented in more de-
tail in Figure A.2. Here, different hierarchical nodes with first details can be seen.
Hierarchical nodes are visualized by blue shapes while simple nodes are represented
by yellow rectangles. Communication in- and out-nodes have a white background.
Data- and control dependencies are marked by directed edges between the nodes.
Finally, Figure A.3 further increases the zoom level of Figure A.2. There, node ids,
the labels of the statements, iteration counts, communicated data, and additional
information can be seen.
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Figure A.1: Complete AHTG of the Spectral Benchmark’s Main Function generated by
the Parallelization Framework (visualized by the yED Graph Editor [yWo13]).

Figure A.2: More Detailed View of the AHTG of the Spectral Benchmark’s Main Function
(visualized with the yED Graph Editor [yWo13]).
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Figure A.3: More Detailed View of the AHTG of the Spectral Benchmark’s Main Function
(visualized with the yED Graph Editor [yWo13]).

A.2 Additional ILP Formulations

The Integer Linear Programming (ILP)-based systems presented in Chapters 5 and 7
contain operands which are not part of regular ILP formulations. This was done to
improve readability of the proposed models. For completeness, this section presents
and explains how these operands can be transformed to be compliant with the form
of regular ILPs.

A.2.1 And-Operator in ILP

The ∧ operator used in many equations can be substituted easily by a new variable
and three inserted constraints as shown in Equation A.1.

z = (x ∧ y) ∈ {0, 1}
z ≥ x+ y − 1, z ≤ x, z ≤ y (A.1)

A.2.2 Preconditions in ILP

Preconditions, like, e.g., predu,t = 1, are not part of regular ILP formulations.
Nevertheless, they can be expressed by subtracting a constant whose value is greater
than the sum of all other possible values of an ILP system if the precondition is
not met. An example is given in Equation A.3 showing the expanded form of
Equation A.2.
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∀t, u ∈ Tasks : ∀n, o ∈ Nodes : t �= u : n �= o :

predt,u ≥ EDGEn,o ∗ (xtn ∧ xou) (A.2)

The last line of Equation A.3 takes care that the equation is fulfilled automati-
cally if task u is not a predecessor of task t. If the variable predu,t = 0, the constant
BIGCONST is subtracted from the right-hand side of the constraint so that it is
fulfilled automatically for all variable assignments. Vice versa if predu,t = 1, the
last line of the constraint nullifies itself.

∀t, u ∈ Tasks : t �= u :

accumcostt ≥ costt + accumcostu + commcostu (A.3)

−BIGCONST +BIGCONST ∗ predu,t
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