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Abstract

Recovering a function f from its integrals over hyperplanes (or line integrals in the

two-dimensional case), that is, recovering f from the Radon transform Rf of f , is a basic

problem with important applications in medical imaging such as computerized tomog-

raphy (CT). In the presence of stochastic noise in the observed function Rf , we shall

construct asymptotic uniform confidence regions for the function f of interest, which al-

lows to draw conclusions regarding global features of f . Specifically, in a white noise

model as well as a fixed-design regression model, we prove a Bickel-Rosenblatt-type theo-

rem for the maximal deviation of a kernel-type estimator from its mean, and give uniform

estimates for the bias for f in a Sobolev smoothness class. The finite sample properties

of the proposed methods are investigated in a simulation study.

Key words: Confidence bands, Inverse problems, Nonparametric Regression, Radon Trans-

form

AMS subject classification: Primary 62G15; Secondary 62G08, 65R10.

1 Introduction

Often, we would like to draw conclusions on the internal structure of a certain object but there

is no possibility to take a direct look, say, by invasive means. Classical examples where this is
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und Informatik, Hans-Meerwein-Straße. D-35032 Marburg, Germany, Email: holzmann@mathematik.uni-
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the case are the interior of the earth or features hidden inside a human body. In order to reveal

parts of the respective inner structure under investigation one can often resort to tomography

methods. Tomography is a collective term for noninvasive imaging methods that allow the

reconstruction of the inner structure of the object of interest by cross-sections. In such an

example only indirect observations (from the outside) are available for the reconstruction of

the the invisible quantity (inside).

In general, problems of this nature are called inverse problems. Mathematically both the

observed quantity and the quantity to be reconstructed are modelled as elements (functions)

of suitable Hilbert spaces, g ∈ Y and f ∈ X, respectively. Often, the connection between

these functions can be modelled via some bounded linear operator T : X → Y, i.e. g = Tf.

Mathematically, the resulting inverse problem can be formulated as: Given g ∈ Y find f ∈ X
such that Tf = g. Typically, the corresponding spaces are of infinite dimension which leads

to ill-posed problems in the sense that T (X) 6= T (X) and hence, even if T is injective and

bounded its inverse T−1 does not need to be bounded. In case of practical applications where

one can never assume to observe the whole function g without any noise/ errors this causes

severe problems in the reconstruction. Instead of the actual inverse T−1, a regularized version

thereof has to be used. In many examples of tomography the corresponding operator T is the

Radon transform and the spaces under consideration are suitable Sobolev spaces.

An overview over inverse problems from a numerical, deterministic viewpoint and existing

regularization methods can be found in the monograph Engl et al. (1996). From a statistical

viewpoint, where errors are modelled as random quantities, the respective methods have

to be revisited. Mair and Ruymgaart (1996); Kaipio and Somersalo (2005); Bissantz et al.

(2007b) or Cavalier (2008) among others focus on the statistical modelling of inverse problems.

Statistical inverse problems related to tomography have been studied in the last decades,

where the main focus has been on positron emission tomograpy (PET) and compterized

tomography (CT) in medical imaging which are both related to the Radon transform.

In PET we are given lines along which emissions have occured but the precise position on

the lines is unknown and is reconstructed in order to obtain the emission distribution. This

problem is related to nonparametric density estimation and is discussed in detail in, e.g.,

Johnstone and Silverman (1990); Korostelev and Tsybakov (1993); Cavalier (2000).

The example of CT leads to an inverse regression model. Here, from fixed positions thin

beams of X-rays of known intensity are sent through the object of interest. The decrease of

the intensity of the X-rays along several lines is measured from which, due to proportionality,

the mass density of the object of interest can be reconstructed. Hence, the given data in

this regression problem are integral values of the mass density along certain lines which are

preselected and given by the design. Related problems have already been studied in Cavalier

(1999); Kerkyacharian et al. (2010, 2012). The application related to the statistical models
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regarded in this paper is also the problem of CT. An overview of the mathematical aspects of

this particular method of medical imaging can be found in the monographs Natterer (1986)

or Helgason (2011).

In this paper we will consider T = R the Radon transform, which may be considered as

a bounded operator between certain Sobolev spaces, see Natterer (1980). In our model we

assume that the image Rf of f under R is observed with random noise. We then aim

to construct uniform confidence regions for the function of interest f based on kernel-type

estimators, which are closely related to the popular filtered backprojection algorithm.

To this end, we will first review kernel-type estimators for the function f from the litera-

ture and discuss their properties for flexible choices of the kernel. Mere estimation is usually

only the first step in data analysis, further steps being statistical inference via goodness-of-fit

tests or confidence regions. From the pointwise asymptotic distribution of an estimator and

the resulting pointwise asymptotic confidence regions, statements regarding the function of

interest at fixed points may be validated. For CT such a statement could be that the mass

density of the object of interest at a fixed point does not exceed a certain threshold with high

probability. In many cases, conclusions regarding global features of a curve, such as overall

curvature or shape of the underlying function, are of particular interest. In the example of CT

given above such a global statement could be that, with high probability, the mass density

of an object of interest does not exceed a certain threshold at many points or a complete

interval, rectangle or cube simultaneously. Here, the employment of confidence intervals is

not sufficient without any additional considerations. A very common approach is based on

the asymptotic distribution of the maximal deviation of the estimator and the function of

interest which requires results from extreme value theory for stationary Gaussian processes.

It was first introduced by Smirnov (1950) who constructed uniform confidence bands for the

histogram estimate of a density and by Bickel and Rosenblatt (1973b) who derived the respec-

tive limit theorem for general kernel density estimates. Based on this approach simultaneous

confidence regions have been constructed in many different problems of density estimation

and nonparametric regression in the direct case Hall (1992); Eubank and Speckman (1993);

Xia (1998); Claeskens and van Keilegom (2003); Giné and Nickl (2010), or Bissantz et al.

(2007a); Birke et al. (2010); Lounici and Nickl (2011); Schmidt-Hieber et al. (2013) in density

deconvolution and inverse regression. Neumann and Polzehl (1998) derived bootstrap-based

uniform confidence bands without an application of such a limit theorem by directly linking

the bootstrap statistic to the one based on the data.

However, all these results are for univariate problems. The construction of multivariate con-

fidence regions has received much less attention in the literature, see Rosenblatt (1976); Kon-

akov and Piterbarg (1984); Rio (1994). However, in many cases, multivariate problems arise

naturally such as in the analysis of astronomical or biological images taken with telescopes

or microscopes, respectively, that also involves deconvolution (Proksch et al. (2012)). Also
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in the problem of reconstructing a function from noisy observations of its Radon transform

discussed in this paper we have to deal with a two-dimensional problem at least.

The paper is structured as follows. In Section 2 the mathematical preliminaries will be

discussed and the reconstruction problem will be formulated as an example of a multivariate

inverse regression problem. Both an idealized Gaussian white noise model as well as a more

commonly used discrete counterpart with fixed-design are discussed in Sections 2.2 and 4,

respectively and kernel-based estimators will be proposed for all cases. Section 3.3 contains

the limit theorems that will be used in order to construct the confidence bands and in Section

5 the finite sample properties of the estimator and the proposed methods will be investigated

in a small simulation study. Finally, all proofs are given in Section 6. In the following, let

‖x‖∞ = max1≤i≤N |xi| and ‖x‖ be the usual Euclidean norm on RN .

2 The Radon transform and the white noise model

2.1 Radon transform

For N ≥ 2, the N -dimensional Radon transform R is an integral operator that maps a real

valued function f on RN into the set of its integrals over the hyperplanes of RN . To be precise,

for f : RN → R, f ∈ L1(RN ) the Radon transform is defined by

Rf(s, u) =

∫
H(s,u)

f(v) dv,

where u ∈ R, s ∈ SN−1, SN−1 = {v ∈ RN | ‖v‖2 = 1} is the unit sphere in RN , H(s, u) :=

{v | < v, s >= u} and integration is with respect to the Lebesgue measure on the hyperplane.

The function Rf is defined on the cylinder Z := SN−1 × R. Note that, for f ∈ L1(RN ), the

Radon transform exists for almost all (s, u) ∈ Z and the map f 7→ Rf is injective on L1(RN )

(see, e.g., Helgason (2011), Proposition 3.4).

In spherical coordinates we have s = s(ϑ), ϑ ∈ U ⊂ RN−1 and H(s, u) = H(s(ϑ), u) =

H(ϑ, u). In the case N = 2 the parametrization of the hyperplane, i.e. line, H is illustrated

in Figure 1.

2.2 Observations in the Gaussian white noise model

We shall derive our results first in an idealized white noise model, which we introduce below.

The main advantage of such an idealized model is that unnecessary technicalities can be

avoided, while the results obtained in the idealized setting also hold true under more realistic

model assumptions. For further discussion and a discretized version of model (1) we refer to

Section 4.

To introduce the model we need to fix some notation first. Consider the σ-finite measure ν
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Figure 1: Parametrization of the line H = H(ϑ, u) in the case N = 2.

on B
(
Z
)

defined by

A 7→ ν(A) =

∫
SN−1

∫
R

1A(s, u) du ds,

where ds is the common surface-measure on SN−1, such that |A| =
∫
A ds for A ∈ SN−1. We

denote ρN = |SN−1|. Define

(
B(Z)

)
ν

:=
{
A ∈ B

(
Z
) ∣∣ ν(A) <∞

}
and let W be Gaussian noise on Z based on ν, i.e. a Gaussian random set function such that

for A,B ∈
(
B(Z)

)
ν
, A ∩B = ∅ we have W (A ∪B) = W (A) +W (B) a.s., and

W (A) ∼ N
(
0, ν(A)

)
,

and W (A) and W (B) are independent (see, e.g., Adler and Taylor (2007), Chapter 1.4.3 for

details). Now, we consider the Gaussian white noise model

dY (s, u) = Rf(s, u) ds du+ εdW (s, u), (s, u) ∈ Z. (1)

Here, ε > 0 is a small parameter, representing the noise level of the observations. The meaning

of equation (1) is that for every A ∈
(
B(Z)

)
ν

we observe the Gaussian set function Y on Z
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at A, i.e. Y (A), where

Y (A) ∼ N
(∫

SN−1

∫
R
Rf(s, u)I(s,u)∈A du ds, ε

2ν(A)
)
.

For f ∈ L2(Z) the process W (f) =
∫
f(s, u) dW (s, u) is a centered Gaussian field with

E
[
W (f) ·W (g)

]
=

∫
SN−1

∫
R
f(s, u)g(s, u) du ds = 〈f, g〉du×ds .

The goal is to recover f from the observation of Y , i.e. from indirect observations corrupted

with random noise.

3 Estimation and uniform confidence regions

3.1 Derivation of the estimator

In this section we will derive suitable estimators for the regression function in the Gaussian

white noise model (1). Our approach is based on an explicit inversion formula obtained

by the application of results from Fourier analysis as it is given, e.g., in Natterer (1986)

or Helgason (2011) which naturally leads to a nonparametric kernel-type estimator. The

idea is similar to that of filtered backprojection, a reconstruction algorithm known from the

numerical literature. This idea was also adopted by, e.g., Cavalier (1999, 2000) in a statistical

framework. In the following we will give a heuristic derivation of the estimator. To this end

let Ff denote the Fourier transformation of a function f : RN → R, i.e. for u, t ∈ RN

Ff(t) =

∫
RN

f(u) ei<u,t> du

so that

f(x) =
1

(2π)N

∫
RN

e−i<x,t>FNf(t) dt. (2)

In the following we will not only deal with Fourier transformation with respect to all N

variables, especially the case of one-dimensional Fourier transformation of an N -dimensional

function will also be important. In these cases we will point out the dimension by means of

an index j such that Fj denotes j-dimensional Fourier transformation. Under mild Sobolev

smoothness assumptions on f , the so-called Projection Theorem (cf. Natterer (1986), The-

orem 1.1) FNf(us) = F1Rf(s, u), holds. Here, the second Fourier transform is taken with

respect to the second variable only, i.e. F1Rf(s, u) = F1

(
Rf(s, ·)

)
(u). Thus one can derive

explicit inversion formulae which will be the basis for the construction of our kernel-type es-

timators. With a smoothing parameter δ > 0, satisfying δ → 0 as ε→ 0 and δ · ε−2 →∞, we

will use kernels Kδ that are implicitly defined via their Fourier transforms FKδ which have
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the property FKδ(t) → 1
2(2π)N−1 |t|1−N as δ → 0. To see why this makes sense, introduce

polar coordinates t = u · s, s ∈ SN−1, and apply the projection theorem to obtain

f(x) =
1

(2π)N

∫
SN−1

∫
R+

e−iu<x,s>uN−1FNf(us) du ds

=
1

2(2π)N

∫
SN−1

∫
R
e−iu<x,s>|u|N−1F1Rf(s, u) du ds,

(3)

where we also used that F1Rf(s, ·) is an even function. Since our data is on Rf , in a next

step we derive a representation of the function f from (3) in which the Fourier transform

F1Rf is replaced by Rf itself which could be achieved by an application of the Plancherel

theorem if the function u 7→ |u|N−1 were square intagrable on R. At this point we approximate
1

2(2π)N−1 |u|N−1 by some function FKδ of compact support such that 1
2(2π)N−1 |u|N−1 ≈ FKδ

in an appropriate way for small values of δ (for details see Assumption 1 below). Then we

can in fact write

f(x) ≈ 1

(2π)

∫
SN−1

∫
R
e−iu<x,s>FKδ(u)F1Rf(s, u) du ds

=

∫
SN−1

∫
R
Kδ(< x, s > −u)Rf(s, u) du ds =: (Aδf)(x). (4)

Below we show that Aδ is actually a regularized inverse of Rf , also with respect to the sup-

norm. In conclusion, to estimate f in model (1) we consider kernel-type estimators f̂(·; δ, ε)
of the form

f̂(x; δ, ε) =

∫
SN−1

∫
R
Kδ

(
< s, x > −u

)
dY (s, u), (5)

where evidently, Ef̂(x; δ, ε) = Aδf .

3.2 Kernel choice and bias estimates

We proceed by discussing possible choices for the kernel function Kδ in (5). For an overview

of popular choices in the numerical literature see Natterer and Wübbeling (2007).

Cavalier (1999, 2000) proposes to use the kernel (Ram-Lak filter) Kδ,1 with

FKδ,1(t) =
1

2
(2π)1−N |t|N−1Iδ(t), (6)

where Iδ = I[− 1
δ
, 1
δ

] is the indicator function of the interval [−1
δ ,

1
δ ]. It is a rather straightfor-

ward approximation of 1
2(2π)1−N |t|N−1 that, due to the compact support results indeed in a

smooth kernel. Nonetheless the rough edges also cause slow decay of the Fourier transform

in the tails. To illustrate this, consider the case N = 2. Here we can give an explicit formula
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for the resulting kernel Kδ,1 = 1
δ2
K1

( ·
δ

)
with

K1(u) =

 1
(2π)2

(
u·sin(u)+cos(u)−1

u2

)
u 6= 0

1
2(2π)2

u = 0.

Note that we number some specific kernels by K1,K2,K3, the element of scale family is then

denoted by Ki,δ. Obviously the kernel K1 is smooth, K1 ∈ L2(RN ) but K1 /∈ L1(RN ). The

heavy tails result in poor practical performance of the estimator based on this kernel.

A natural alternative is to use smoothed versions of the indicator instead which will produce

kernels with faster decay in the tails. Interestingly, representation (6) shows that there is a

certain asymmetry regarding the dimension. While for odd dimensions N the absolute value

in |t|N−1 is redundant and, hence, smoothing of the indicator results in a smooth function

FK and thus a fast decaying kernel K, the same no longer holds true for even dimensions.

Here, the smoothness of FK is limited by the smoothness of t 7→ |t|N−1 in 0. Hence, a proper,

continuous replacement for Iδ in (6) will already improve the decay properties as much as

possible. In this case, for N = 2 this will lead to kernels K with rate of decay of O
(
1/u2

)
(see

Example 1) at best, instead of O (1/u). This asymmetry of the operator is further discussed

in Natterer (1986), Chapter II.2.

Hoderlein et al. (2010) used generalised versions of Kδ,1 by replacing the indicator by the

function Lr,δ(t) :=
(
1 − |δt|r

)
I[0, 1

δ
] for an r > 0. This yields kernels of order r with the

well-known properties from classical kernel smoothing problems, which, however, have slower

order bias terms in the sup-norm.

Consider the following assumption on a function F .

Assumption 1. Let F : R→ R be a symmetric function that satisfies (i) supp(F ) ⊂ [−1, 1],

(ii) F (0) = 1 and 0 ≤ F (x) ≤ 1 for all x ∈ R, and

(iiia) there exists M > 0 such that |F (δ‖ω‖)− I[0,1](δ‖ω‖)| ≤ δM‖ω‖M , or

(iiib) there is a 0 < D < 1 such that F (t) = 1 for t ∈ [−D,D].

Given such an F , define Kδ via its Fourier transform.

FKδ(t) =
1

2 · (2π)N−1
|t|N−1F (δ|t|).

By symmetry of F ,

Kδ(u) =
1

(2π)N

∫
R+

tN−1F (δt) cos(tu) dt. (7)

Example 1.
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• Consider the filter F = (1 − |t|r) I[−1,1](t) as in Hoderlein et al. (2010). We have

F (δ‖ω‖) − I[0,1](δ‖ω‖) = δr‖ω‖r and Assumption 1 (iiia) is satisfied for M = r. For

r = 2 and N = 2 we obtain the explicit form

K2(u) =

 1
(2π)2

(
−2u2 cos(u)−u2+6u sin(u)+6 cos(u)−6

u4

)
u 6= 0

1
4(2π)2

u = 0.

• Setting F (t) = (1− t2)rI[−1,1], Assumption 1 (iiia) holds with M = 2 and for r = 2 and

N = 2 we obtain the expressions

K3(u) =

 1
(2π)2

(
120 cos(u)−120+120u sin(u)−48u2 cos(u)−12u2−8u3 sin(u)−u4

u6

)
u 6= 0

1
6(2π)2

u = 0.
(8)

• The full indicator 1[−1,1], leading to K1, evidently satisfies Assumption 1 (iiib). In order

to achieve lighter tails of the resulting kernel, the indicator on some [−D,D], 0 < D < 1,

could be smoothly extended onto R. Such a filter F would require numerical integration

to evaluate the resulting kernel K.

• The cosine filter F (t) = cos(tπ/2) I[−1,1](t) satisfies 1 − F (t) ≤ (π/2)3t2, and hence

satisfies Assumption 1 (iiia) with M = 2 (with an additional constant).

Consider the Sobolev space Wm(RN ) :=
{
f ∈ L2(RN ) | (1 + ‖ · ‖2)

m
2 Ff ∈ L2(RN )

}
with

corresponding seminorm

‖f‖2m =

∫
RN

(1 + ‖ω‖2)m|Ff |2(ω) dω, f ∈ Wm(RN ),

and given L > 0 set

Wm(RN ;L) = {f ∈ Wm(RN ) : ‖f‖m ≤ L}.

Lemma 1. Suppose that m > N/2, and suppose that F satisfies Assumption 1 (i) and (ii).

Then for the bias of f̂(x; ε, δ)

a. under Assumption 1 (iiia) for M ≥ m − N/2, given L and 0 < η < m − N/2 there is a

C1 = C1(L, η,M,N,m) > 0 such that

sup
f∈Wm(RN ;L)

sup
x∈RN

∣∣(Aδ)f(x)− f(x)
∣∣ ≤ C1 δ

m−N/2−η, δ > 0.

b. under Assumption 1 (iiib), for L, δ > 0 we have that

sup
f∈Wm(RN ;L)

sup
x∈RN

∣∣(Aδ)f(x)− f(x)
∣∣ ≤ L( ρN

(2m−N) (2π)2N

)1/2 (
1 +D−(2m−N)/2

)
δm−N/2.
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Thus, kernels satisfying only Assumption 1 (iiia), like the ones employed in Hoderlein et al.

(2010) have suboptimal bias properties in the sup-norm. The reason is that they involve a

remainder term in the bias which requires the L1 norm of ‖ω‖nf(ω) for the desired power

n of δ. However, this is only garantueed to exist if n < m − N/2. As we shall see in the

simulations, the finite sample properties of such kernels, especially the second class introduced

in Example 1, may nevertheless be quite reasonable.

3.3 Asymptotic uniform confidence bands

In order to construct uniform confidence regions, we first require the following result on the

asymptotic distribution of the maximal deviation of the estimator from its mean over the

region of interest. We let

Yδ(x) =ε−1 δN−1/2
(
f̂(x; δ, ε)− Ef̂(x; δ, ε)

)
= δN−1/2

∫
SN−1

∫
R
Kδ

(
< s, x > −u

)
dW (s, u), x ∈ RN ,

(9)

which, because of the white noise structure, does no longer depend on ε nor f .

Theorem 2. Suppose that F satisfies Assumption 1 (i) and (ii). For a Jordan-measurable

set B ⊂ RN with 0 < VolB(<∞) we set

M(δ) = sup
x∈B

ε−1 δN−1/2
∣∣f̂(x; δ, ε)− Ef̂(x; δ, ε)

∣∣ = sup
x∈B

∣∣Yδ(x)
∣∣.

Then, as δ → 0,

P
(

(2 log δ−N )1/2
(M(δ)

C
1/2
1

−D(δ)
)
≤ z
)
→ exp

(
− 2e−z

)
, z ≥ 0,

where

C1 =
1

2(2π)(2N−1)

∫ 1

0
t2N−2|F (t)|2 dt ,

and

D(δ) = (2 log δ−N )1/2 +
(N − 1

2
log log δ−1 + log

((2N)(N−1)/2C2

(2π)1/2

))
(2 log δ−N )−1/2, (10)

C2 = (2π)−N/2 VolB

(∫
RN w2

1 ‖w‖N−1 F (‖ω‖) dw∫
RN ‖w‖N−1 F (‖ω‖) dw

)N/2
. (11)

Remarks

1. The Gaussian fields Yδ in (9) are not of the convolution type as in Bickel and Rosenblatt

(1973b), Rosenblatt (1976), or Bissantz et al. (2007a), thus, it is not obvious that the corre-

sponding arguments apply.
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2. We use the multivariate extreme value theory for Gaussian processes, and specifically

Corollary 2 in Bickel and Rosenblatt (1973a).

3. The theorem in particular implies the rate of convergence OP
(
ε δ−N+1/2 (log δ−1)1/2

)
for

the maximal deviation supx∈B
∣∣f̂(x; δ, ε)−Ef̂(x; δ, ε)

∣∣, uniformly in f . If the kernel function

F satisfies Assumption 1 (iiib) and δ(ε) ∼
(
ε2 log(1/ε)

)1/(2m+N−1)
, then we obtain the rate

of convergence OP
((
ε2 log(1/ε)

)(2m−N)/(2m+N−1))
for supx∈B

∣∣f̂(x; δ(ε), ε)− f(x)
∣∣, uniformly

over f ∈ Wm(RN ;L). This can be extended to

sup
f∈Wm(RN ;L)

Ef sup
x∈B

∣∣f̂(x; δ(ε), ε)− f(x)
∣∣ ≤ C (ε2 log(1/ε)

)(2m−N)/(2m+N−1)
.

In order to construct an asymptotic confidence set for the function f , we need to choose δ at

a slightly faster rate than the optimal δ(ε). For a given level α ∈ (0, 1) we let

Iα(x; δ, ε) :=
[
f̂(x; ε, δ)− Φα,δ,ε , f̂(x; ε, δ) + Φα,δ,ε

]
,

Φα,δ,ε :=
√
C1

(− ln
(
−1

2 ln(1− α)
)√

2 ln(δ−N )
+D(δ)

)
εδ

1
2
−N

(12)

where the constants C1 and D(δ) are specified in the theorem. Then we have the following

corollary.

Corollary 3. If the kernel function F satisfies Assumption 1 (i), (ii) and (iiib), and if

δ → 0 so that δ
(
ε2 log(1/ε)

)−1/(2m+N−1) → 0, ε → 0, then for any 0 < α < 1 and L > 0 we

have that

lim inf
ε→0

inf
f∈Wm(RN ;L)

Pf
(
f(x) ∈ Iα(x; δ, ε) ∀ x ∈ B

)
≥ 1− α.

For an application, we need to estimate the noise level ε. We shall discuss this in the discrete

model in the following section.

3.4 Confidence sets for compactly-supported functions

The white noise model (1) is useful as an idealization of a more realistic discrete regression

model. In such models, it is assumed that the function f has compact support, and that

observations are only taken in a given set including the support of Rf .

Therefore, suppose that supp f ⊂ {x ∈ RN : ‖x‖ < 1} =: B1(0), so that suppRf ⊂
SN−1 × [−1, 1], and let

Wm
c (RN ;L) = {f ∈ Wm(RN ) : ‖f‖m ≤ L, supp f ⊂ B1(0)}.

Suppose that for such an f , observations are made according to the restricted white noise
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model

dY (s, u) = Rf(s, u) ds du+ εdW (s, u), s ∈ SN−1, u ∈ [−1, 1]. (13)

As an estimator, we therefore take

f̂c(x; δ, ε) =

∫
SN−1

∫ 1

−1
Kδ

(
< s, x > −u

)
dY (s, u), (14)

In this case we impose an additional assumption on the decay of the kernel and its derivatives

that guarantee that the influence of the noise simply weighted by the kernel is negligible.

Assumption 2. Let F be such that K ∈ L1(R) and such that for u 6= 0

|K(j)(u)| ≤ CK
uαN+j

, j = 0, . . . , N − 1

for positive constants CK ∈ R, αN > (N − 1)/2.

Note that Assumption 2 is satified if F ∈ C2N−1(R) by smoothness and integrability properties

of the functions t 7→ tj |t|N−1, j = 1, . . . , N. While it is neither satisfied for K1 nor for K2

the assumption holds for the kernel K3 or one constructed with a smoothed index function.

Then we have the following result.

Corollary 4. Suppose that the kernel function F satisfies Assumption 1 (i), (ii) and (iiib),

and additionally Assumption 2. Let 0 < κ < 1 and suppose that B ⊂ {x ∈ RN : ‖x‖ ≤ 1−κ}
is Jordan measurable with VolB > 0. If δ → 0 so that δ

(
ε2 log(1/ε)

)−1/(2m+N−1) → 0, ε→ 0,

then for any 0 < α < 1 and L > 0 we have that

lim inf
ε→0

inf
f∈Wm

c (RN ;L)
Pf
(
f(x) ∈ Iα,c(x; δ, ε) ∀ x ∈ B

)
≥ 1− α,

where Iα,c(x; δ, ε) is defined in (12) with f̂ replaced by f̂c in (14).

For the proof, we show that for the restricted noise process,

Ỹδ(x) = δN−1/2

∫
SN−1

∫ 1

−1
Kδ

(
< s, x > −u

)
dW (s, u).

we have that for some η̃ > 0,

sup
‖x‖≤1−κ

|Yδ(x)− Ỹδ(x)| = oP (η̃).

Here, it is essential that a small boundary in B1(0) is excluded, the constant in oP will depend

on the value of κ. Due to the multi-dimensionality and the range of integration SN−1, the

proof is somewhat more involved than in the standard univariate regression framework.
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Figure 2: Schematic representation of the alignment of the projection rays in the parallel
beam design (left) and the corresponding values in the sample space (right).

4 Discrete regression models

In this section, we restrict ourselves to the case N = 2. Here, we parametrize s ∈ S1 by

the angle ϑ ∈ [0, 2π) according to s = (cosϑ, sinϑ). Suppose that supp f ⊂ {(x, y) ∈ R2 :

x2
1 + x2

2 < 1} =: B1(0), and that observations are taken according to

Y(i,j) = (Rf)(ϑi, uj) + ε(i,j), i = 1, . . . , n1, j = 1, . . . , n2, (15)

where ε(i,j) are centered, i.i.d. random variables with finite variances Eε2
i,j = σ2 and existing

moment larger than 2, and

ϑi = 2π (i− 1/2)/n1, uj = (j − 1/2)/n2,

i = 1, . . . , n1, j = 1, . . . , n2, and n1 and n2 should be of the same order. As a physical model,

it is the parallel-beam design: For each fixed angle ϑj j = 1, . . . , n1, the set of all n2 rays of

different values for u, u1, . . . , un2 , are sent through the object, see Figure 2 for an illustration.

Note that we only consider measurements at positive points uj in order to avoid redundancies

as simply changing the sign of the distance variable u only changes the orientation of the line

13



under consideration. A discrete analogue for the estimator (14) is then given by

f̂n(x1, x2; δ) =
2π

n1n2

n1∑
i=1

n2∑
j=1

2Kδ

(
x1 cos(ϑi) + x2 sin(ϑi)− uj

)
Y(i,j), (16)

where we abbreviate n = (n1, n2). We start by estimating the additional discretization bias

involved in the estimator.

Lemma 5. Suppose that m > 5/2, and suppose that F satisfies Assumption 1 (i), (ii) and

1 (iiib) as well as Assumption 2. Consider the estimator f̂n(·; δ) in model (15). Then for

L, δ > 0 and constants C1 and C2 which are independent of the function f or the kernel K

we have for the bias of f̂n(x1, x2; δ) that

sup
f∈Wm

c (R2;L)

sup
x∈B1(0)

∣∣Ef f̂n(x; δ)− f(x)
∣∣

≤L 1 +D−(m−1)(
2 (m− 1) (2π)3

)1/2 δm−1 + C1

( 1

n1
+

1

n2

)∫
R2

‖ω‖|Ff(ω)| dω

+
C2

δ3

( ∑
i,j∈{0,1,2}
i+j=2

1

ni1n
j
2

)(
max

i,j∈{0,1,2}
i+j=2

sup
(ϑ,u)∈[0,2π]×[0,1]

|D(i,j)Rf(ϑ, u)| · 2
max
j=0
‖K(j)‖1

)

In order to construct uniform confidence sets, we let

Ĩα(x; δ, n) :=
[
f̂n(x; δ)− Φ̃α,δ,n , f̂n(x; δ) + Φ̃α,δ,n

]
,

Φ̃α,δ,n :=
√
C1

(− ln
(
−1

2 ln(1− α)
)√

2 ln(δ−2)
+D(δ)

)
(4π)1/2 σ
√
n1 n2δ3/2

,

where

C1 =
1

2(2π)3

∫ 1

0
t2|F (t)|2 dt ,

and

D(δ) = (2 log δ−2)1/2 +
(1

2
log log δ−1 + log

( 2C2

(2π)1/2

))
(2 log δ−2)−1/2,

C2 = (2π)−1 π(1− κ)2

(∫
R2 w

2
1 ‖w‖F (‖ω‖) dw∫

R2 ‖w‖ F (‖ω‖) dw

)1/2

.

Corollary 6. Suppose that m > 5/2, and suppose that F satisfies Assumption 1 (i), (ii) and

1 (iiib) as well as Assumption 2. Further assume that E|εi,j |r <∞ for some r > 4. Consider

the estimator f̂n(·; δ) in model (15), and suppose that n1 � n2 as n1, n2 → ∞. Suppose that

δ → 0 such that δ
(
n−2

1 log(n1)
)−1/(2m+1) → 0 and log(n)/

√
n1δ3 → 0, n1 →∞, then for any

14



0 < α, κ < 1 and L > 0 we have that

lim inf
n1,n2→∞

inf
f∈Wm

c (R2;L)
Pf
(
f(x) ∈ Ĩα(x; δ, n) ∀ ‖x‖ ≤ 1− κ

)
≥ 1− α.

The noise variance σ2 can be estimated
√
n1n2-consistently in two dimensions by difference-

based estimators or by estimation of the squared residuals using smoothing, see Munk et al.

(2005).

5 Simulations

In this section we illustrate the finite sample properties of both our estimator f̂n, defined in

(16), and the proposed confidence sets by means of a small simulation study. To this end we

use two different two-dimensional objects to generate data.

The first object is rather simple and consists of a sum of two (Gaussian-shaped) peaks. In

more detail, the image is generated from the signal

f0(x1, x2) =
[
e−8·(x2+(y−0.3)2) + e−8·((x−0.2)2+(y+0.3)2)

]
· I[(x2+y2)≤1].

To achieve smoothness of the image at the boundary of the unit disc we have applied a

smoothing filter with standard deviation ≈ 0.01 resulting in a smooth object.

Our second object has been constructed in a more complicated way and is motivated by

the fact that a typical application of a Radon transform such as CT imaging requires the

reconstruction of cross-sectional images of specific parts of a patient’s body. Hence, a simple

model of relevant strucures consists of a disc on which certain features of interest (such as

organs, bones or spine, but also tumours etc.) are superimposed. The second object mimics

such features by overlaying the disc-like main object with several additional, smaller ones. In

more detail, it consists of a sum of several elliptical objects each of which is generated in two

steps: firstly, a proto-image based on a scaled indicator function has been created which was

smoothed by a Gaussian filter in a second step. Table 1 summarizes the relevant properties

of the different objects and also contains the different standard deviations of the Gaussian

filters for the case of an image of size 128× 128 pixels. For other image sizes these standard

deviations have been scaled accordingly.

We generate observations from the model (15), where the ε(i,j) are taken as i.i.d. standard

normally distributed. In the subsequent simulations we have always used n1 = n2 = nx,y,

where nx,y is the number of points used in the discretization of the true object along the x

and y-axis. Moreover, we have used in all simulations described in the following the kernel

Kδ,3 with r = 2 in the estimator f̂n, which had shown best properties among the kernels

discussed. We choose κ = 0.2 for the parameter which governs the exclusion of the boundary.

Concerning the smoothing parameter δ > 0, we first determined a suitable value for each

15



Component Scaled indicator function σ

Main object ((x2
1 + x2

2) < 0.64) · 1. 5
Left eye (((x1 − 0.25)2 + (x2 + 0.25)2) < 0.04) · 0.3 3
Right eye (((x1 + 0.25)2 + (x2 + 0.25)2) < 0.04) · 0.3 3
Nose (((3x2

1 + (x2 − 0.1)2) < 0.04) · 0.2 3

Mouth ((x2
1 + 5(x2 −

√
max(0, 0.3− 2x2))2) < 0.09) · 0.3 2

Table 1: Properties of the components of the second object, where the column labeled σ gives
the standard deviation of Gaussian smoothing in the generation of the true images (see text
for details).

Image Sample size σ δ predicted (f̂n − Ef̂n) (f̂n − f0)

’two peaks’ 128× 128 0.01 0.01 0.051 0.048 0.049
’two peaks’ 128× 128 0.1 0.025 0.114 0.110 0.116
’two peaks’ 256× 256 0.01 0.007 0.046 0.044 0.043
’two peaks’ 256× 256 0.1 0.015 0.132 0.128 0.128
’face’ 128× 128 0.01 0.01 0.051 0.049 0.054
’face’ 128× 128 0.1 0.025 0.114 0.111 0.152
’face’ 256× 256 0.01 0.007 0.046 0.044 0.046
’face’ 256× 256 0.1 0.015 0.132 0.128 0.137

Table 2: Predicted and simulated widths of 80%-confidence bands. The column labeled
(f̂n − Ef̂n) shows 80% quantiles of the supremum of the simulated distance between f̂n and
its mean and the column labeled (f̂n−f0) the respective quantile of the simulated distribution
of sup|f̂n − f0|.

simulation scenario by applying the L∞-motivated bandwidth selection method introduced

in Bissantz et al. (2007a). This fixed smoothing parameter is then used in all runs for the

respective scenario.

Figure 3 shows both objects under consideration and the corresponding sinograms in com-

parison to both one exemplary dataset with σ = 0.1 each and reconstructions from these

datasets with bandwidth δ = 0.025 and an image size of 128×128. Sample slices through the

90%-confidence surfaces for estimates with these parameters are shown in Figure 4. Finally,

Fig. 5 illustrates (from left to right) the upper 90%-confidence surface, the estimate and the

lower 90%-confidence surface for estimates of object 1 and 2, respectively.

Tables 2 and 3 summarise the results of the simulation study of the estimator, based on 500

simulation runs for each combination of object, image size and noise level. The results show a

reasonably close proximity of the simulated width of confidence bands with their theoretical

asymptotic counterparts.
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Figure 3: Sample reconstructions of the two objects. Top: ’two peaks’, bottom: ’face’.
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Figure 4: 1d-slices through confidence surfaces for the two objects. Top: ’two peaks’, bottom:
’face’.

18



Figure 5: Confidence surfaces for object ’two peaks’ (top) and ’face’ (bottom).

Image Sample size σ δ predicted (f̂n − Ef̂n) (f̂n − f0)

’two peaks’ 128× 128 0.01 0.01 0.053 0.050 0.051
’two peaks’ 128× 128 0.1 0.025 0.120 0.116 0.122
’two peaks’ 256× 256 0.01 0.007 0.047 0.038 0.041
’two peaks’ 256× 256 0.1 0.015 0.138 0.135 0.136
’face’ 128× 128 0.01 0.01 0.053 0.051 0.057
’face’ 128× 128 0.1 0.025 0.120 0.118 0.161
’face’ 256× 256 0.01 0.007 0.047 0.046 0.048
’face’ 256× 256 0.1 0.015 0.138 0.134 0.143

Table 3: Predicted and simulated widths of 90%-confidence bands. Similar to table 2, the
column labeled (f̂n − Ef̂n) shows 80% quantiles of the supremum of the simulated distance
between f̂n and its mean and the column labeled (f̂n − f0) the respective quantile of the
simulated distribution of sup|f̂n − f0|.
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6 Proofs

In the following remark we will list three results from Fourier analysis which will be frequently

used throughout this section.

Remark 1. (i) Ff(x+ ·)(ξ) = exp(−ixξ)Ff(ξ)

(ii) F1Rf(s, t) = FNf(t · s), t ∈ R, s ∈ SN−1, where F1Rf(s, t) denotes one-dimensional

Fourier transformation of Rf(s, ·) for fixed s ∈ SN−1 and FNf(t · s) denotes N -

dimensional Fourier transformation at the point t ·s, i.e. FNf(t ·s) =
(
FNf

)
(t ·s). This

identity is also known as Projection Theorem (cf. Natterer (1986), Theorem 1.1). Note

that the constants in this identity differ from those given in Natterer (1986) which is

due to the different choice of standardisation in the definition of the Fourier transform.

(iii) (2π)N ·〈f , g〉 = 〈Ff , Fg〉, where the factor (2π)N is due to the choice of standardisation

in the definition of the Fourier transform (Plancherel Theorem, see, e.g., Folland (1984),

Theorem 8.29).

6.1 Proof of Lemma 1

Let x ∈ RN , f ∈ Wm(RN ;L). Following (4) and (3) backwards yields

(Aδ)f(x) =:

∫
R

∫
SN−1

Kδ

(
< s, x > −u

)
Rf(s, u) du

=
1

2π

∫
SN−1

∫
R
FKδ(t)FRf(s, t) exp(−it < s, x >) dt

=
1

2(2π)N

∫
SN−1

∫
R
|t|N−1F (δ|t|)Ff(ts) exp(−it < s, x >) du ds

=
1

(2π)N

∫
RN

F (δ‖ω‖)Ff(ω) exp(−i < ω, x >) dω.

Therefore, we obtain

(Aδ)f(x)− f(x) =
1

(2π)N

∫
RN

(
F (δ‖ω‖)− 1

)
Ff(ω) exp(−i < ω, x >) dω

=
1

(2π)N

∫
RN

(
F (δ‖ω‖)− I[0, 1

δ
](‖ω‖)

)
Ff(ω) exp(−i < ω, x >) dω

− 1

(2π)N

∫
RN

I( 1
δ
,∞)(‖ω‖)Ff(ω) exp(−i < ω, x >) dω =: bI(x)− bII(x),
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where bI(x) and bII(x) are defined in an obvious manner.

An application of the Cauchy-Schwarz inequality gives

|bII(x)| ≤ 1

(2π)N

∫
RN

I(1,∞)(δ‖ω‖)|Ff(ω)|
(

1 + ‖ω‖2

‖ω‖2

)m
2

dω

≤ 1

(2π)N

(∫
RN

I(1,∞)(δ‖ω‖)
1

‖ω‖2m
dω ·

∫
RN
|Ff(ω)|2

(
1 + ‖ω‖2

)m
dω

) 1
2

.

Since m > N
2 we have∫

RN
I(1,∞)(δ‖ω‖)

1

‖ω‖2m
dω = ρN

∫ ∞
1
δ

tN−1 1

t2m
dt =

ρN
2m−N

δ2m−N ,

therefore ∣∣bII(x)
∣∣ = L

( ρN
(2m−N) (2π)2N

)1/2
δm−N/2.

Concerning bI(x), under Assumption 1(iiib) we obtain

|bI(x)| ≤ 1

(2π)N

∫
RN

I(D
δ
,∞)(‖ω‖)|Ff(ω)| dω,

which may be estimated as bII(x) to yield the second part of the lemma. Under Assumption

1(iiia) we have

∣∣F (δ‖ω‖)− I[0, 1
δ

](‖ω‖)
∣∣ ≤ (δ‖ω‖)M ∧ 1 ≤ (δ‖ω‖)m−N/2−η.

Since f ∈ Wm(RN ;L), we have ‖ω‖m−N/2−η|Ff(ω)| ∈ L1(RN ). Therefore

|bI(x)| ≤ 1

(2π)N
δm−N/2−η

∫
RN
‖ω‖m−N/2−η|Ff(ω)| dω ≤ C1δ

m−N/2−η.

�

6.2 Proof of Theorem 2

First observe that the Gaussian fields Yδ are stationary since

Yδ(x+ h) = δN−1/2

∫
SN−1

∫
R
Kδ

(
< s, x > + < s, h > −u

)
dW (s, u)

=d Yδ(x), x ∈ RN ,

where we used that integrals w.r.t. the Gaussian sheet are translation invariant in distribution.

Next, we observe that the processes (Yδ(x))x∈RN scale as follows

(Yδ(x))x∈RN
d
= (Y1(x/δ))x∈RN . (17)
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To show (17), we prove that

Cov
(
Yδ(x), Yδ(y)

)
= Cov

(
Y1(x/δ), Y1(y/δ)

)
.

To this end, compute

Cov
(
Yδ(x), Yδ(y)

)
= δ2N−1

∫
SN−1

∫
R
Kδ

(
< s, x > −u

)
Kδ

(
< s, y > −u

)
ds du

= δ2N−1 1

2π

∫
SN−1

∫
R
e−it(<s,x>−<s,y>)FKδ(t)

2dt ds

= δ2N−1 (2π)−(2N−1)

4

∫
SN−1

∫
R
e−i<t s,x−y> |t|2N−2 F (δ|t|)dt ds

= δ2N−1 (2π)−(2N−1)

4
ρN

∫
RN

e−i<z,x−y> ‖z‖N−1 F (δ‖z‖)dz

=
(2π)−(2N−1)

4
ρN

∫
RN

e−i<w/δ,x−y> ‖w‖N−1 F (‖w‖)dw

=
(2π)−(2N−1)

4
ρN

∫
RN

e−i<w,x/δ−y/δ> ‖w‖N−1 F (‖w‖)dw

= Cov
(
Y1(x/δ), Y1(y/δ)

)
,

where the last step follows by going through the calculations backwards. In particular,

M(δ) = sup
x∈B
|Yδ(x)| d= sup

x∈B/δ
|Y1(x)|.

Therefore, we can analyze the asymptotic distribution of the right side, using corollary 2 in

Bickel and Rosenblatt (1973a), similarly as Theorem 2 in Rosenblatt (1976). As calculated

above, the covariance function of Y1(x) is

r(h) = Cov
(
Y1(x+ h), Y1(x)

)
=

(2π)−(2N−1)

4

∫
SN−1

∫
R
e−i<t s,h> |t|2N−2 F (t)dt ds

=
(2π)−(2N−1)

4
ρN

∫
RN

e−i<w,h> ‖w‖N−1 F (‖w‖)dw.

For the variance, the first part gives

r(0) =
(2π)−(2N−1)

4

∫ 1

−1
|t|2N−2|F (t)|2 dt = C1.

For the covariance, we have for the vector of partial derivatives

∂hr(h) =
(2π)−(2N−1)

4
ρN

∫
RN

(−i)w e−i<w,h> ‖w‖N−1 F (‖w‖)dw,
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and thus ∂hr(0) = 0 by symmetry. Similarly,

∂h ∂
T
h r(h) = −(2π)−(2N−1)

4
ρN

∫
RN

wwT e−i<w,h> ‖w‖N−1 F (‖w‖)dw,

so that

−∂h ∂Th r(0) =
(2π)−(2N−1)

4
ρN

∫
RN

wwT ‖w‖N−1 F (‖w‖)dw.

By symmetry again, ∫
RN

wiwj ‖w‖N−1 F (‖w‖)dw = 0, i 6= j,

so that

r(h)/r(0) =
1

2

∫
RN w2

1 ‖w‖N−1 F (‖w‖) dw∫
RN ‖w‖N−1 F (‖w‖)dw

‖h‖2 + o(‖h‖2), h→ 0.

Finally, r(h) is the Fourier transform of an L2-function (in fact a compactly supported func-

tion), thus it is itself in L2. An application of corollary 2 in Bickel and Rosenblatt (1973a)

finishes the proof in case VolB = 1.

For the general case, we let s0 =
(
VolB

)1/N
, so that Vol (B/s0) = 1. Consider Ỹ (x) =

Y1(s0x), x ∈ RN . Then

M̃(δ) := sup
{
|Ỹ (x)|, x ∈ B/(δs0)

}
= sup

{
|Y1(s0 x)|, s0 x ∈ B/δ

}
= sup

{
|Y1(x)|, x ∈ B/δ

}
= M(δ).

Therefore, in order to treat the supremum of Y1 over B, we can apply the case already proved

to the process Ỹ where the supremum is taken with respect to x ∈ B/s0. For its covariance,

we have that

r̃(x) = Cov (Ỹ (x), Ỹ (0)) = r(s0x),

therefore

r̃(h)/r̃(0) =
sN0
2

∫
RN w2

1 ‖w‖N−1 F (‖w‖) dw∫
RN ‖w‖N−1 F (‖w‖)dw

‖h‖2 + o(‖h‖2), h→ 0,

and the conclusion follows since sN0 =VolB. �

6.3 Proof of Corollary 3

Let

M̃(δ, ε) = sup
x∈B

ε−1 δN−1/2
∣∣f̂(x; δ, ε)− f(x)

∣∣,
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so that, for zα = − ln
(
−1

2 ln(1− α)
)

we have

Pf
(
f(x) ∈ Iα(x; δ, ε) ∀ x ∈ B

)
= Pf

(
(2 log δ−N )1/2

(M̃(δ, ε)

C
1/2
1

−D(δ)
)
≤ zα

)
.

Further, by Lemma 1 and the assumption on δ, we have uniformly in f ∈ Wm(RN ;L),

∣∣∣(2 log δ−N )
1
2

(M(δ, ε)

C
1
2
1

−D(δ)
)
− (2 log δ−N )

1
2

(M̃(δ, ε)

C
1
2
1

−D(δ)
)∣∣∣

=
(2 log δ−Nδ2N−1

C1ε2

) 1
2 ·
∣∣‖f̂ − Ef̂‖∞ − ‖f̂ − f‖∞

∣∣
≤
(2 log δ−Nδ2N−1

C1ε2

) 1
2 · ‖f̂ − Ef̂ − f̂ + f‖∞

=
(2 log δ−Nδ2N−1

C1ε2

) 1
2 · ‖f − Ef̂‖∞ = o(1),

Therefore,

Pf

(
(2 log δ−N )1/2

(M̃(δ, ε)

C
1/2
1

−D(δ)
)
≤ zα

)
≥ P

(
(2 log δ−N )1/2

(M(δ)

C
1/2
1

−D(δ)
)
≤ zα + o(1)

)
,

where o(1) is independent of f , and the conclusion follows from Theorem 2. �

6.4 Proof of Corollary 4

We now give a detailed proof for the case N = 2 and briefly sketch its extension to the cases

N > 2 afterwards. We have

|Yδ(x)− Ỹδ(x)| ≤
∣∣∣δ 3

2

∫
S1

∫
(1,∞)

Kδ(< s, x > −u) dW (s, u)
∣∣∣

+
∣∣∣δ 3

2

∫
S1

∫
(−∞,−1)

Kδ(< s, x > −u) dW (s, u)
∣∣∣ =: I + II,

where the summands I and II are defined in an obvious manner. Consider the term I. Let

W̃ be a Wiener sheet on [0, 2π]× [0,∞), and let s(ϑ) = (cosϑ, sinϑ). Then

δ
3
2

∫
S1

∫
(1,∞)

Kδ(< s, x > −u) dW (s, u)
d
= δ

3
2

∫ 2π

0

∫
(1,∞)

Kδ

(
< s(ϑ), x > −u

)
dW̃ (ϑ, u).
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Now, the partial integration formula for a continuously differentiable function f : R2 7→ R and

a Wiener sheet on [0,∞)2, z = (z1, z2)T , a = (a1, a2)T , b = (b1, b2)T ∈ R2 reads as follows:∫
[a,b]

f(z) dW (z) =

∫
[a,b]

W (z)
∂2

∂z
f(z) dz

−
∫

[a1,b1]
W (z1, b2)

∂

∂z1
f(z1, b2) dz1 +

∫
[a1,b1]

W (z1, a2)
∂

∂z1
f(z1, a2) dz1

−
∫

[a2,b2]
W (b1, z2)

∂

∂z2
f(b1, z2) dz2 +

∫
[a2,b2]

W (a1, z2)
∂

∂z2
f(a1, z2) dz2

+W (b1, b2)f(b1, b2)−W (a1, b2)f(a1, b2)−W (b1, a2)f(b1, a2) +W (a1, a2)f(a1, a2).

Therefore, integration by parts yields

I = δ
3
2

∣∣∣∫ 2π

0

∫
(1,∞)

K
(2)
δ (< s(ϑ), x > −u)W̃ (ϑ, u) < s⊥(ϑ), x > du dϑ

+

∫ 2π

0
K

(1)
δ (< s, x > −1) < s⊥(ϑ), x > W̃ (ϑ, 1) dϑ

−
∫ ∞

1
K

(1)
δ (x1 − u)W̃ (2π, u) du− W̃ (2π, 1)Kδ(x1 − 1)

∣∣∣ =: |I1 + I2 + I3 + I4|,

since the other terms such as W (0, 1)Kδ(x1 − 1) vanish. First let us estimate I1. Here we

have to deal with a two parameter Wiener sheet, to which we can apply a two parameter

version of the LIL, such as given in Csörgo and Révèsz (1981), Theorem 1.12.3. To this end

define the set Du := {(s, t) | s · t ≤ 2π · u, s ≤ 2π · u, t ≤ 2π · u} and note that (ϑ, u) ∈ Du if

(ϑ, u) ∈ [0, 2π] × (1,∞), i.e., especially for all pairs (ϑ, u) in the domain of integration. We

find

|W̃ (ϑ, u)| d= |
√
δ W̃ (ϑ, u/δ)| =

√
8πδ

u

δ
log log(2πu/δ) ·

∣∣∣∣ W̃ (ϑ, u/δ)√
8π uδ log log(2πu/δ)

∣∣∣∣
≤
√

8πu log log(2πu/δ) · sup
u> 1

δ

sup
(s,t)∈Du

∣∣∣∣ W̃ (s, t)√
8πu log log(2πu)

∣∣∣∣
≤ C ·

√
8πu log log(2πu/δ) a.s.,

(18)

for some random C > 0 by the version of the LIL cited above. We further observe∫ 2π

0

∫ ∞
1

∣∣∣√u log log(2πu/δ) · K(2)
δ (< s(ϑ), x > −u) < s⊥(ϑ), x >

∣∣∣ du dϑ
≤
∫ 2π

0

∫ ∞
1

√
u log log(2πu/δ) · |K(2)

δ (< s(ϑ), x > −u)| du dϑ

= δ−3

∫ 2π

0

∫ 〈s(ϑ),x〉−1
δ

−∞
|K(2)(z)|

√
(〈s(ϑ), x〉 − δz) log log(2πδ−1(〈s(ϑ), x〉 − δz)) dz dϑ,

(19)
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where s⊥(ϑ) = (− sinϑ, cosϑ), by the definition (7) and a substitution. Since

< s(ϑ), x > −δz ≤ 1− κ− δz ≤ 1− δz ≤ −δz(1/κ+ 1) = δ|z|(1/κ+ 1)

we can estimate√
(〈s(ϑ), x〉 − δz) log log(2πδ−1(〈s(ϑ), x〉 − δz)) ≤

√
δ(1/κ+ 1)|z| log log(2π|z|(1/κ+ 1))

(20)

and obtain from (18), (19) and (20) that a.s.,

I1 ≤C δ3/2

∫ 2π

0

∫ ∞
1

√
u log log(2πu/δ) · |K(2)

δ (< s(ϑ), x > −u)| du dϑ

≤C 2π(1/κ+ 1)
1
2 δ3/2−3+1/2

∫ 〈s(ϑ),x〉−1
δ

−∞
|K(2)(z)|

√
|z| log log(2π|z|(1/κ+ 1)) dz

≤C 2π(1/κ+ 1)
1
2 δ−1

∫ −κ/δ
−∞

|K(2)(z)|
√
|z| log log(2π|z|(1/κ+ 1)) dz,

where in the last step we used that (〈s(ϑ), x〉 − 1)/δ < −κ/δ. By Assumption 2, K(2)(u)

decays with a higher power than |u|−5/2, so that for a sufficiently small constant η̌ > 0,

I1 ≤ 2πC(1/κ+ 1)
1
2 δ−1

∫ −κ/δ
−∞

|K(2)(z)|
√
|z|
(δz
κ

)1+η̌√
log log(2π|z|(1/κ+ 1)) dz

≤ C̃δη̌

for some finite (random) C̃. Concerning I2, since

|K(1)
δ (< s, x > −1)| ≤

(
δ3
∣∣∣< s, x > −1

δ

∣∣∣α2+1)−1

as well as supϑ∈[0,2π]

∣∣W̃ (ϑ, 1)
∣∣ = OP (1), we obtain I2 = oP

(
δα2−3/2

)
and by assumption,

α2 − 3/2 > 0. For I4, the same result in proven in a similar manner. Finally we will give an

estimate for the term I3. Note that (2π)−
1
2 W̃ (2π, u)

d
=
√
δ/2π W̃ (2π, u/δ) is the usual one

parameter Wiener process. An application of the LIL yields

sup
u> 1

δ

∣∣∣(2π)−
1
2 W̃ (2π, u)√

2u log log(u)

∣∣∣→ 1 a.s. for δ → 0.

This implies

I3 = OP (δ
3
2 log log(1/δ))

∫
(1,∞)

|K(1)
δ (x1 − u)| du.
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By Assumption 2, K(1)(u) decays with a higher power than |u|−3/2. Therefore, for a suffi-

ciently small constant η̃ > 0 we obtain

δ
3
2

∫
(1,∞)

|K(1)
δ (x1 − u)| du = δ−

1
2

∫
(−∞,(x1−1)/δ)

|K(1)(z)| dz

≤δ−
1
2

∫
(−∞,−κ/δ)

|K(1)(z)|
(
δ|z|
κ

) 1
2

+η̃

dz = o
(
δη̃
)

and hence I3 = oP
(
δη̃
)
. The combination of the results gives the estimate I = oP (δη) for some

small constant η > 0. All estimates hold uniformly with respect to the variable x ∈ B1−κ(0).

For symmetry reasons we obtain the same rate of convergence for the term II as for I with

the same arguments which completes the proof of the lemma in the case N = 2.

In the case N > 2, we introduce N -dimensional polar coordinates in order to parametrize the

sphere SN−1

s(ϑ) =



sin(ϑ1) sin(ϑ2) . . . sin(ϑN−3) sin(ϑN−2) cos(ϕ)

sin(ϑ1) sin(ϑ2) . . . sin(ϑN−3) sin(ϑN−2) sin(ϕ)

sin(ϑ1) sin(ϑ2) . . . sin(ϑN−3) cos(ϑN−2)
...

sin(ϑ1) cos(ϑ2) sin(ϑ1)


,

ϑ = (ϑ1, . . . , ϑN−2, ϕ) ∈ (0, π)N−2 × (0, 2π) and ds = sinN−2(ϑ1) · . . . · sin(ϑN−2) dϑ. Let Ŵ

be a Wiener sheet on [0, π]N−2 × [0, 2π]× [0,∞). We find

δ
N+1

2

∫
SN−1

∫
(1,∞)

Kδ(< s, x > −u) dW (s, u)

d
= δ

N+1
2

∫ 2π

0

∫ π

0
. . .

∫ π

0

∫
(1,∞)

Kδ(< s, x > −u)

√
sinN−2(ϑ1) · . . . · sin(ϑN−2) dŴ (ϑ, u).

Starting from the right hand side of the latter equation, again by integration by parts, we

obtain integrals with respect to the variables (ϑ, u) instead of the integral with respect to the

Wiener sheet Ŵ . The estimations are very similar to the ones in the two-dimensional case and

are therefore omitted. For the N -dimensional integration by parts formula or N -dimensional

versions of the LIL see, e.g., Proksch et al. (2012) or Paranjape and Park (1973), respectively.

�

6.5 Proof of Lemma 5

Since F is compactly supported it follows that K is smooth and an application of the

Hausdorff-Young inequality shows that its derivatives of all orders are bounded and since
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K ∈ L1(R) by assumption, also the derivatives K(j) ∈ L1(R), j ∈ {1, 2}. Further, see Nat-

terer (1980) Theorem 3.2, Rf ∈ Wm+1/2(Z), m + 1
2 > 3 and hence Rf ∈ C2(Z) a.s.. With

these arguments we directly obtain the following estimation for the error in the integral ap-

proximation

Ef̂n(x; δ) =

∫
S1

∫
R
Kδ

(
< s, x > −u

)
Rf(s, u) du ds+O

 1

n1
+

1

n2
+

∑
i,j∈{0,1,2}
i+j=2

1

δ3ni1n
j
2

 .

The constant given in the lemma can be derived by an application of Taylor’s theorem and

by following (3) and (4) backwards were we now regard K ′δ and K ′′δ as well as Kδ and the

respective derivatives of Rf. The calculations are straightforward but tedious and are therefore

omitted. �

6.6 Proof of Corollary 6

In order to prove the assertion of the corollary we need to show that under the given assump-

tions the quantity

Yn(x) =
1√

n1n2σ2

(
f̂n(x1, x2, δ)− Ef̂n(x1, x2, δ)

)
=

4π√
n1n2σ2

n1∑
i=1

n2∑
j=1

Kδ

(
〈s(ϑi), x〉 − uj

)
εi,j

can be approximated by the Gaussian field Ỹδ(x) with an error of smaller order than 1/
√

log(n)

uniformly with respect to the variable x. The lengthy details of this, i.e., the definition of

suitable approximating processes and detailed calculations can be found in Proksch et al.

(2012).

With an application of Corollary 4 we obtain the approximation of Ỹδ by Yδ and Lemma 5

yields the negligibility of the bias. An application of Theorem 2 completes the proof of this

corollary.

�
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Natterer, F. and Wübbeling, F. (2007). Mathematical methods in image reconstruction.

1st paperback ed. 1st ed. Philadelphia, PA: Society for Industrial and Applied Mathematics

(SIAM).

Neumann, M. H. and Polzehl, J. (1998). Simultaneous bootstrap confidence bands in

nonparametric regression. Journal of Nonparametric Statistics, 9 307–333.

Paranjape, S. R. and Park, C. (1973). Laws of iterated logarithm of multiparameter

Wiener processes. Journal of Multivariate Analysis, 3 132–136.

Proksch, K., Bissantz, N. and Dette, H. (2012). Confidence bands for multivariate and

time dependent inverse regression models. Preprint, arXiv:1206.2743v1 [math.ST].

Rio, E. (1994). Local invariance principles and their application to density estimation.

Probab. Theory Related Fields, 98 21–45.

Rosenblatt, M. (1976). On the maximal deviation of k-dimensional density estimates.

Annals of Probability, 6 1009–1015.
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