
Algorithms and Tools for the Analysis of

High-roughput DNA Sequencing Data

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaen

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Marcel Martin

Dortmund

2013

Tag der mündlichen Prüfung: 26. November 2013

Dekan: Prof. Dr.-Ing. Gernot A. Fink

1. Gutachter: Prof. Dr. Sven Rahmann
2. Gutachter: Prof. Dr. Jens Stoye

Abstract

High-throughput DNA sequencing technologies make it possible to determine the order of the
nucleotides adenine, cytosine, guanine and thymine in DNA samples, resulting in millions of
short strings (reads) over the alphabet (A, C, G, T). Advances in biological and biomedical re-
search rely on the ability of bioinformatics to make sense out of that data with novel algorithms
and tools. In this thesis, we contribute on four levels to the typical data processing pipeline in
sequencing experiments and provide soware tools that implement the described algorithms.

When sequenced DNA fragments are short, reads can contain adapter sequences. ese arti-
facts are a technical requirement of the sequencing process. We describe how to remove them
with amodified semiglobal alignment algorithm that finds overlapping regions between read and
adapter. e algorithm is designed to only find alignments below a given error rate threshold,
where the error rate is defined as the number of errors divided by the number of aligned adapter
characters. We show how to use only linear space while still keeping track of all information
necessary to correctly locate and remove adapter sequences. e algorithm can remove adapters
also from colorspace reads, which come from a sequencing technology that queries two adjacent
nucleotides (colors) of DNA at the same time. We show how to modify the trimming procedure
to get correct results. e easy-to-use cutadapt tool is introduced. It contains additional features
that make pre-processing of adapter-contaminated reads simple, and is in use by many other
researchers.

e next step in the pipeline is read mapping, where the likely origin of reads is found on a
given reference DNA. We concentrate on mapping reads from bisulfite sequencing experiments,
in which sodium bisulfite is used to determine which cytosines have a methyl group attached to
them. Methylation changes gene expression and is therefore biologically interesting. Bisulfite
converts unmethylated cytosines into thymines. By comparing modified reads to the reference,
methylation patterns can be determined. To map reads while allowing sequencing errors and
also differences from bisulfite conversion, we introduce the bisulfite q-gram index, an extension
of regular q-gram indices. For a given q-gram (string of length q), the index returns all positions
in the reference where that bisulfite-converted q-gram may have originated. By efficiently simu-
lating bisulfite conversion of the reference, the index can be constructed in time proportional to
itsmemory usage. Simulation theoretically leads to an exponential increase in index size, but size
is only triple that of a regular index on realistic references. We describe how to map reads with
the index with the seed-and-extend paradigm, first finding short matches with the help of the
index, and extending them to longer maximal error-free matches (seeds) with either a determin-
istic finite automaton (DFA) or an efficient bitparallel algorithm. Seeds are then extended to an
alignment that covers the full read, and parts that were not bisulfite converted are detected. We
show that the number of bisulfite strings of a given length n is approximately 1.19 · 3.3n, and we
show how to compress the index by up to 25% while retaining efficient access. We finally apply
the full read mapping algorithm to a dataset of 454 bisulfite sequencing data using the Verjinxer
tool.

i

Following read mapping, we continue with the Exomate tool, which is used in exome sequenc-
ing studies. e tool assists medical researchers in finding potentially disease-causing mutations
in syndrome and tumor patients and consists of three parts. e first is an automated pipeline
that directs all steps from read mapping up to finding of mutations (variant calling). e second
part is a relational database that stores variants and metadata about patients, samples, etc. e
third part is a web interface designed for highly interactive analysis of the variant data bymedical
researchers. We discuss how to filter variants by discarding those that are likely not disease caus-
ing, for example, by discarding low-quality variants, those also found in public databases (such as
dbSNP), and those also in an unaffected control sample. Filtering options can be set within the
web interface and result in dynamically generated SQL queries that typically finish within a few
seconds. Extensive quality control is implemented through various queries that check for known
chromosome loss, patient gender and dbSNP re-discovery rate. We describe how Exomate has
been used successfully in multiple exome sequencing studies.

As last topic, we return to the task of aligning reads to a reference, but in this case, we study
reads obtained as flowgrams from a specific sequencing technology. Flowgrams associate each
sequenced nucleotide with a fractional length (an intensity). To get a regular sequence which
can then be aligned, intensities are rounded, but measurement errors of intensities occur and are
the dominant cause of sequencing errors (over- and undercalls). We propose to directly align a
flowgram to a reference and to let the conversion to a regular sequence be guided by the refer-
ence, avoiding information loss from rounding. Variants of this idea have been suggested before,
but our method, which we call flowgram-string alignment, is the first to use a well-founded sta-
tistical model. Our score function has two components that model the processes that take place:
1) editing of the sample relative to the reference and 2) measurement errors during sequencing.
We give a recurrence equation that leads to a dynamic programming algorithm on the alignment
matrix between reference string and flowgram such that the optimal flowgram alignment can be
computed. For the first score component, we give a closed formula for alignment scores between
a DNA string and a homopolymer (a single nucleotide repeated a number of times), which is
then used to show that the score can be evaluated in constant time with some pre-processing.
For the score component that assesses measurement errors, we use correctly aligned reads to
estimate empirical frequencies for intensity measurements vs. sequence length, from which we
derive log-odds scores and then approximate them by a function with five parameters. To evalu-
ate the method, we compare flowgram-string alignment to regular alignment by simulating the
two-stage sequencing process (editing events, sequencing errors) and find that our method con-
siderably reduces the number of spurious editing events introduced by measurement errors.

Danksagungen

Diese Arbeit würde es nicht geben ohne viele andere Menschen, die mir geholfen haben und
denen ich sehr dankbar bin.

Mein Betreuer Sven Rahmann hat mich während meiner ganzen Arbeit unterstützt, indem er
immer Zeit hatte, meine Fragen zu beantworten. Seine neuen und manchmal ungewöhnlichen
Ideen, die er in unsere Diskussionen einfließen ließ, brachten mich in meinen Überlegungen o
voran. Jens Stoye weckte vor Jahren mein Interesse an der Bioinformatik und ermunterte mich
in einer schwierigen Phase weiterzumachen. Heinrich Müller und Lars Hildebrand haben ohne
zu zögern zugestimmt, die Prüfungskommission zu vervollständigen. Tobias Marschall ist der
ideale Bürokollege. Durch unsere Diskussionen hatte er wohl einen größeren Einfluss auf mich
als er es selbst vermuten würde. Meine Kollegen Marianna D’Addario und Dominik Kopczynski
hatten immer Zeit und ein offenes Ohr für mich, wenn ich jemanden zum Reden brauchte –
sowohl fachliche als auch mal andere Dinge betreffend. Johannes Köster hat das Snakemake-
Programm geschrieben, welches ich nutzte, um meine Forschung reproduzierbar zu machen.
Michael Zeschnigk half mir dabei, den biologischen Teil unserer Arbeit zu verstehen. Durch
seine Erklärungen konnte meine Arbeit letztlich relevant für Forscher in der Genetik werden.

Neben Sven, Jens, Tobias, Marianna, Dominik, Johannes und Michael haben auch Christina
Czeschik, RolandWittler undRominaMartinTeile desManuskripts gelesen undhilfreicheRück-
meldungen gegeben, die fast ausnahmslos eingeflossen sind.

Meine Eltern haben auf andere Art zum Gelingen beigetragen, denn sie haben es überhaupt
erst möglich gemacht, dass ich soweit gekommen bin. Romina, die nicht nur meine Frau, son-
dern auch eine Forscherkollegin ist, bin ich ewig dankbar.

Marcel Martin
Dortmund, im November 2013

iii

Contents

Abstract . i
Danksagungen (Acknowledgments) . iii

1 Introduction 1
1.1 DNA sequencing . 1
1.2 Applications . 2
1.3 DNA . 2
1.4 Library preparation . 3
1.5 Sequencing technologies . 3

1.5.1 Pyrosequencing with 454 . 4
1.5.2 Ion semiconductor sequencing . 4
1.5.3 Illumina sequencing . 4
1.5.4 Colorspace sequencing . 5

1.6 Paired-end sequencing . 5
1.7 Base quality . 6
1.8 File formats . 6
1.9 Conventions . 8
1.10 Structure . 9

2 Trimming Adapters 11
2.1 Introduction . 11

2.1.1 Types of adapter contamination . 12
2.1.2 Previous work . 14
2.1.3 Requirements . 14

2.2 Finding adapters . 15
2.2.1 Alignments . 16
2.2.2 Finding optimal alignments . 16
2.2.3 Semiglobal alignment . 18
2.2.4 Adapter alignment . 20
2.2.5 Overlap . 21
2.2.6 Error rate . 22
2.2.7 Optimization criteria . 22
2.2.8 Cutting adapters . 25
2.2.9 Adapter alignment algorithm . 25
2.2.10 Removing one of multiple adapters . 28

2.3 Reducing false positives and false negatives . 29
2.3.1 Choosing the maximum error rate . 29
2.3.2 Partial-match bias . 30

v

2.3.3 False positives through random matches 32
2.4 Trimming colorspace reads . 34

2.4.1 Aligning colorspace reads . 35
2.4.2 Concatenating strings in colorspace . 36
2.4.3 Removing 3’ adapters . 37
2.4.4 Removing 5’ adapters . 38

2.5 Implementation in cutadapt . 40
2.5.1 Features . 40
2.5.2 Performance evaluation . 42

2.6 Future work . 44
2.6.1 Performance improvements . 45
2.6.2 Paired-end reads . 45

2.7 Discussion . 46
2.7.1 e error rate threshold . 46
2.7.2 Combining trimming and mapping . 47

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index 49
3.1 Introduction . 49

3.1.1 Biological background . 49
3.1.2 Detecting methylation . 51
3.1.3 High-throughput bisulfite sequencing 51
3.1.4 Choosing the references . 53
3.1.5 e q-gram index . 53
3.1.6 Bisulfite read mapping tools . 56

3.2 e bisulfite q-gram index . 57
3.2.1 Simulated bisulfite treatment . 57
3.2.2 Index structure and creation . 59
3.2.3 Multiple reference sequences . 62

3.3 Mapping a bisulfite read . 62
3.3.1 Finding seeds . 62
3.3.2 Extending hits . 64
3.3.3 Strict hit extension . 64
3.3.4 Relaxed hit extension . 66
3.3.5 Bitwise-parallel relaxed hit extension . 66
3.3.6 Extending seeds . 68
3.3.7 Determining methylation patterns and rates 70
3.3.8 Finding unconverted parts of reads . 70
3.3.9 Counting bisulfite strings . 71
3.3.10 Bucket compression . 75

3.4 Results . 76
3.4.1 Index size . 76
3.4.2 Analyzing bucket compression . 77
3.4.3 Bisulfite sequencing of human CpG islands 79

3.5 Future work . 80
3.6 Discussion . 81

4 Analyzing Exome Sequencing Data 83
4.1 Introduction . 83

4.1.1 Structure and motivation . 83
4.1.2 Exome sequencing . 84
4.1.3 Related work . 86
4.1.4 Structure of the soware . 86

4.2 Computational pipeline . 87
4.2.1 Variant calling pipeline . 87
4.2.2 BAM file validation . 93
4.2.3 Quality control . 93
4.2.4 Empirical runtime . 94
4.2.5 Indel normalization . 94

4.3 Database . 97
4.3.1 Patients, samples and other metadata . 97
4.3.2 Known and discovered variants . 100
4.3.3 Annotations . 101
4.3.4 SIFT . 102

4.4 Web frontend . 102
4.4.1 Implementation . 102
4.4.2 Simple queries . 103
4.4.3 Criteria for filtering mutations . 103
4.4.4 Mutation query implementation . 105
4.4.5 Quality control queries . 106

4.5 Results . 108
4.5.1 Coffin-Siris syndrome . 109
4.5.2 Nager syndrome . 109
4.5.3 Uveal melanoma . 109

4.6 Future work . 110
4.6.1 Open problems . 113

4.7 Discussion . 114

5 Aligning Flowgrams to DNA Sequences 117
5.1 Introduction . 117

5.1.1 Information loss from base calling . 117
5.1.2 Previous work avoiding base calling . 118
5.1.3 Basic definitions and ideas . 119
5.1.4 How editing changes the flowgram . 120

5.2 A flowgram-string alignment algorithm . 122
5.2.1 Alignments . 122
5.2.2 e flowgram-string alignment graph 123
5.2.3 Recurrence . 124

5.3 Scoring . 124
5.3.1 Scoring of editing events . 125
5.3.2 Alternative formulation . 126
5.3.3 Scoring of flow intensities against substring lengths 126

5.3.4 Parameters for editing events . 127
5.4 Evaluation . 129
5.5 Future work . 130
5.6 Discussion . 131

6 Conclusion 133
6.1 Summary . 133
6.2 Connections between topics . 135
6.3 Discussion . 136

A Appendix 137
A.1 Soware . 137
A.2 Contributions to co-authored articles . 139

Bibliography 141

1 Introduction

DNA sequencing has revolutionized medical and biological research. e development was cat-
alyzed by the invention of highly parallel high-throughput sequencing (HTS) technologies. With
them, the order of the four nucleotides adenine, cytosine, guanine and thymine (A, C, G, T) in
millions of DNA fragments can be determined at the same time, at rates and costs that had previ-
ously not been achievable. is enabled new applications in biological and biomedical research,
but also introduced new challenges resulting from the need to process the data generated by the
sequencers. is thesis contributes to the area of bioinformatics that is concerned with tackling
those challenges. On the one hand, we describe algorithms which have been designed to work
with high-throughput sequencing data, but we also focus on making those algorithms available
in the form of usable soware tools.

For many applications, data from a HTS instrument first undergoes pre-processing – such as
removal of low-quality sequences –, is then aligned to a reference sequence, and then the exper-
imental results are derived from the aligned sequences. In each of its main chapters, this thesis
contributes to one of those respective stages: Chapter 2 discusses how to remove contaminat-
ing so-called adapter sequences from certain types of sequencing data. Chapter 3 describes an
index structure that can be used to align reads to a reference that have undergone a chemical
modification with sodium bisulfite. Chapter 4 focuses on the analysis steps aer read mapping,
proposing a computational pipeline for exome sequencing data. Chapter 5 introduces a novel
alignment method for data from sequencers that produce their output in the so-called flowgram
representation.

1.1 DNA sequencing

DNA sequencing is the process of determining the base sequence of a sample of DNA. It started
being used formedical and biological research already around 1977, when the chain-termination
sequencing method was invented by Sanger et al. (1977). Sanger sequencing was gradually im-
proved over the years and culminated in the sequencing of the human genome with its 3 billion
base pairs (Lander et al., 2001), which could only be achieved by implementing a high degree of
automation. e Sanger method allows to sequence fragments of up to around 1000 nucleotides
(nt), but only a few fragments can be sequenced in a single experiment. Even with automation,
sequencing the human genome took years to complete and was a world-wide effort that cost bil-
lions of dollars. Sanger sequencing is still an economical method when only a particular, small
stretch of DNA needs to be sequenced, but routine sequencing of mammalian – in particular
human – genomes has only become possible through the invention of high-throughput DNA
sequencing methods, sometimes called second-generation or next-generation sequencing (NGS)
methods.

Modern sequencing methods have in common that they create enormous amounts of data.
Depending on the specific technology, millions or even billions of DNA fragments are sequenced

1

1 Introduction

in parallel. Each obtained DNA sequence, also called a read, has a typical length of currently 35,
50, 100 or 250 nt, resulting in up to 600Gbp (gigabasepairs) for a single run of a machine such
as an Illumina HiSeq 2000.

1.2 Applications

High-throughput sequencing can be used to sequence the entire genome of an organism; this is
called whole-genome sequencing. e approach is usually to break the DNA of the organism ran-
domly and to sequence the resulting fragments (shotgun sequencing). e problem of computa-
tionally reconstructing the full, original DNA sequence from the reads is called de-novo assembly
(Earl et al., 2011). e obtained DNA sequence is not useful in itself, but further computational
methods on top of it can then be used to predict the locations of genes, splicing patterns, or to
compare different species in order to determine phylogenetic relationships.

In many cases, a known reference sequence of the same or a highly related species is available
for comparison. Sequencing such an organism is called re-sequencing. Its focus is typically on
finding differences (such as mutations) between the reference and the sample of interest. As-
sembling reads is not necessary, but for each read, its likely origin on the reference needs to be
determined while allowing differences caused by mutations and sequencing errors; this is called
read mapping. Read mapping algorithms typically allow only small, highly localized differences
such as single-nucleotide substitutions or small insertions or deletions. Structural variations are
large-scale differences and need to be found with different algorithms (Alkan et al., 2011).

Re-sequencing is not necessarily done for the entire genome, but may be, for example, limited
to the exome (Bamshad et al., 2011; Martin et al., 2013), which is the set of gene-bearing subre-
gions of the genome. Exome sequencing is in wide use because it can help to efficiently identify
the cause of genetic diseases. We discuss this in depth in Chapter 4. Another application is to
study DNA methylation; this is explained in detail in Chapter 3.

In addition to DNA, living cells contain other genetic material, in particular RNA, which are
copies of sections of DNA that usually represent genes. ese transcripts can be converted to
DNA and then sequenced (transcriptome sequencing). By counting the reads mapping to each
gene, the expression level of each gene can be determined (Schramm et al., 2012).
SmallRNA sequencing focuses on short RNA molecules, of which microRNAs are a subset

(Schulte et al., 2010; Rahmann et al., 2013). e problem arising from the fact that microRNAs
(≈ 22 nt) are shorter than reads is discussed in Chapter 2.

1.3 DNA

We can only give an extremely brief introduction to the basics of molecular biology here. Please
see an introductory text such as that by Alberts et al. (2008) for a much fuller treatment of the
subject.
DNA (deoxyribonucleic acid) is a chain molecule, where each element is one of the nucleotides

adenine, cytosine, guanine and thymine. Nucleotides are connected by phosphodiester bonds.
e part of the nucleotide that varies is a nucleobase or base. e molecule is directional. One
front is the 5′ end and the other is the 3′ end. e nucleotides adenine–thymine and cytosine–
guanine can pair with each other through relatively weak hydrogen bonds. DNAmolecules in the

2

1.4 Library preparation

5' Adapter 3' AdapterInsert (molecule of interest)

Sequencing start

Figure 1.1 e structure of a DNA molecule that has been prepared for sequencing. e rightmost part
of the 5′ adapter is the sequencing primer, which determines where the sequencing process
begins. e 3′ adapter may contain a variable barcode sequence (see Section 2.1). Aer
attaching the molecule to the surface where sequencing takes place, the molecule is partially
double-stranded and also contains the dotted part, which is complementary to the 5′ Adapter.

cell are double-stranded most of the time, resulting in the typical helix structure: A second DNA
strand, running in the opposite direction, is attached to the first such that all bases are paired.
e strands are said to be reverse complements of each other.

1.4 Library preparation

e first step in a sequencing experiment is to obtain a tissue sample and purify it such that only
DNA remains. We explain the typical subsequent biotechnological steps, which are library prepa-
ration and the actual sequencing, in as much detail as necessary to understand the properties of
the data that comes out of a high-throughput sequencer.

eprocedure of preparing aDNA sample for sequencing is called library preparation. Initially,
DNA is fragmented that is, it is cut into short double-stranded pieces. To each fragment, adapters
are appended (ligated) at both the 5′ and the 3′ end. e adapters are short, double-stranded
DNA molecules with a known base sequence. Next, the fragments are copied (amplified) with
polymerase chain reaction (PCR). Single-stranded (denatured) DNA is then, with the help of the
adapters, attached to the location where sequencing takes place. e part of the molecule that
we are interested in is also called an insert. e structure of a DNA molecule fully prepared for
sequencing is shown in Figure 1.1. Adapters can serve other purposes, discussed in Section 2.1.

e base aer the 5′ adapter is the first base that is sequenced. e sequencer then proceeds
along the insert towards the 3′ end. How exactly the sequencing process is done depends on the
specific technology used.

1.5 Sequencing technologies

We describe here the Illumina, SOLiD, 454 and Ion Torrent sequencing technologies. Illumina is
currently the most popular one, and many pipelines, including the one we suggest in Chapter 4,
are adjusted to work well with its data. Data from the SOLiD, 454 and Ion Torrent instruments,
on the other hand, have certain interesting characteristics that require specialized algorithms (see
Section 2.4 and Chapter 5).

Other technologies include Pacific Biosciences’ Single-Molecule Real-Time (SMRT) sequenc-
ing (Eid et al., 2009), which is oen used due to its capability of sequencing very long reads
(10 000 bp), and Oxford Nanopore’s technology (Clarke et al., 2009), which works entirely dif-
ferent from the others but is not yet commercially available.

3

1 Introduction

1.5.1 Pyrosequencing with 454

Pyrosequencing, also sequencing by synthesis, was invented by Ronaghi et al. (1996) and later
developed further into a highly parallel sequencing technology by Margulies et al. (2005). e
technology was commercialized by 454 Life Sciences (now owned by Roche) and is known as 454
sequencing. It was the first available high-throughput DNA sequencing technology.

Sequencing by synthesis starts from the single-stranded DNA template that is connected to
the initial double-stranded adapter. Many copies of the same template are attached to tiny beads
that are placed in miniature wells serving as reaction chambers. Each bead yields a single se-
quenced read. e sequencing process consists of multiple cycles. In each cycle, nucleotides of
a single type are flowed over the wells and extend the sequencing primer if the next free bases
on the template strand are complementary. e activity of the enzyme that catalyzes this reac-
tion is measured optically through its intermediate release of pyrophosphate. All remaining free
nucleotides are then removed and a different type of nucleotide is added.

e intensity of the light is proportional to the number of incorporated nucleotides. is
means that not a single nucleotide is sequenced in each step, but a run of the same nucleotide,
called a homopolymer. Using initial known “key” sequences, the signal intensities are normalized
for each read such that an intensity of 1.0 represents the incorporation of a single base. Due to the
linearity of the signal, 2.0 represents two bases and so on. is linearity can be maintained up to
eight bases on a 454 system (Margulies et al., 2005), but errors already occur at lower intensities.

By measuring the intensity in each cycle, the nucleotide sequence of the entire template DNA
fragment can be reconstructed. Achievable read lengths depend on the number of flow cycles
and the number of homopolymers in the fragment. e most recent machine generation (GS
FLX+) and associated chemistry (Titanium) allow read lengths of up to 1000 bp.

e sequencing results are natively output not as regular DNA sequences, but as so-called
flowgrams, which associate each nucleotide homopolymer with its measured fractional inten-
sity. Since there are always measurement errors, it is possible, for example, that a nucleotide
homopolymer was measured at an “intensity of 2.4”. In Chapter 5, we discuss in greater detail
the problems arising from ambiguous and incorrect measurements in pyrosequencing and sub-
sequently give a solution for those cases in which a related reference sequence is available.

1.5.2 Ion semiconductor sequencing

In Ion semiconductor sequencing (Merriman et al., 2012) by Ion Torrent (now owned by Life
Technologies), the incorporation of nucleotides into the growing template strand is not detected
optically, but through a change in pH value, which can be measured directly with a semicon-
ductor chip. Apart from this fundamental difference, the obtained reads are of the same type as
those by the 454 technology since also homopolymers are sequenced.

1.5.3 Illumina sequencing

e Illumina sequencing technology (Bentley et al., 2008) currently dominates the market. Illu-
mina sequencing takes place on a glass slide called a flowcell whose surface is covered with short
single-stranded oligonucleotide “stubs” that are reverse-complementary to the initial part of the
adapter. e flowcell is divided into eight separated sections called lanes, which make it possible
to run multiple experiments in parallel, without one sample contaminating the other.

4

1.6 Paired-end sequencing

To extend the growing template DNA strand, reversible terminators are used, which are modi-
fied nucleotides that can attach (hybridize) to the template, but, if they do, prevent the incorpo-
ration of further nucleotides (unlike in the 454 technology). e four nucleotides have different
colors and can be detected optically. Aer detection, the remaining free nucleotides are removed
and the modification is reversed such that the strand can be extended again in the next cycle.
us, each cycle results in a single sequenced nucleotide and the cycle count determines the read
length, which is fixed for all reads in a run. A typical read length is 100 bp1 or rather 2× 100 bp
when paired-end sequencing is used (see Section 1.6).

1.5.4 Colorspace sequencing

While those sequencing technologies described previously determine the sequence of amolecule
of DNA by adding single nucleotides to the growing template strand, the SOLiD technology uses
dinucleotides, that is, pairs of nucleotides (AA, AC, …, TT) to query the sequence (Breu, 2010).
Each dinucleotide queries two adjacent nucleotides of the DNA molecule. rough multiple
hybridization and de-hybridization cycles, all adjacent groups of two bases of the template are
queried. e dinucleotides are color-coded, and the final read is therefore given as a sequence of
colors in which the i-th color is the result of querying bases i and i+ 1. Hence, each nucleotide,
except the first and last one, is interrogated twice (in different cycles). A nucleotide sequence of
length m results in a read that contains m− 1 colors.

e colors assigned to the dinucleotides are not unique: Although there are 16 distinct two-
character strings, only four colors are used, written as digits 0 to 3. e assignment to dinu-
cleotides was chosen such that an unambiguous reconstruction of the nucleotide sequence from a
colorspace read is possible, and to satisfy other requirements, such as that dinucleotide ab should
have the same color as ba (Breu, 2010). e assignment is shown in Table 2.2 (p. 35).

Breu also describes the advantages of the encoding: It has, in particular, error-correcting prop-
erties thatmake it possible to distinguish some sequencing errors from real variants. For example,
a single-base substitution leads to two adjacent colors being changed in a particular way. If the
colors do not change as expected, then the event is likely not a substitution. Also, if only a single
color change is observed, this is likely to be a sequencing error.

Some of the special properties of colorspace encoding are discussed further in Section 2.4.
Reads from a SOLiD 3 plus sequencer have a fixed length of 35 bp or 50 bp.

1.6 Paired-end sequencing

When the DNA fragment of interest is sequenced from both ends, a pair of reads is obtained.
Figure 1.2 gives an overview: e first read is sequenced as usual and its first base therefore is the
one following the 5′ adapter. en the process is restarted on the complementary strand. is
time, the first base that is sequenced is the complement of the last base of the insert. Instead
of “first” and “second” we also call the reads forward and reverse read, respectively. Most oen,
both reads have the same length (for example, 2 × 100 bp in current Illumina protocols). e
procedure is called paired-end sequencing and supported by most HTS technologies.

1http://www.illumina.com/systems/hiseq_comparison.ilmn

5

http://www.illumina.com/systems/hiseq_comparison.ilmn

1 Introduction

5' Adapter 3' AdapterInsert

First read

Second read

-5'3'-

5'- -3'

5' Adapter 3' AdapterInsert

Figure 1.2 In paired-end sequencing, the molecule of interest is sequenced twice. Compared to the
first read, the second read is obtained in the reverse-complementary direction. Gray shading
denotes the complementary strand.

e size of the insert can be pre-determined (within bounds) during library preparation by
adding a size-selection step. is can be donewith gel electrophoresis, inwhich shortermolecules
travel farther through a gel to which a voltage has been applied.

Paired-end sequencing mitigates some of the problems that are caused by the relatively short
read lengths of high-throughput sequencers. For example, a read mapping algorithm can resolve
ambiguous mapping locations by inspecting the mapping location of the second read. Another
application is to estimate the locations of structural variations (Marschall et al., 2012).

1.7 Base quality

All sequencing technologies deliver quality values associated with each sequenced base. e
values are derived from the physical measurements made during sequencing such as brightness,
signal intensity, or density of the DNA molecule spots on the flowcell. Details are usually only
known to the manufacturer. Quality typically decreases towards the end of the reads. Quality
values can be used for pre-processing to discard low-quality reads entirely or to trim low-quality
ends. Quality values are an important tool in assessing whether discovered mutations are real or
sequencing errors.

A quality Q is oen given as a rounded integer resulting from

Q = −10 · log10 pe ,

where pe is the estimated probability that the base was sequenced incorrectly. For example, a
probability pe = 0.001 results in a quality of Q = 30. is convention was introduced with
the phred program (Ewing and Green, 1998) and such values are therefore called phred-scaled
qualities.

Note thatQ = 0 is not used as an actual quality value: Since the probability that the given base
is incorrect is pe = 10−

Q
10 = 100.0 = 1, we could otherwise deduce that it must be one of the

other three possible bases.

1.8 File formats

We describe some of the file formats typically used in high-throughput sequencing experiments
and supported by our soware where appropriate. A brief description of the variant call format
(VCF) is postponed to Section 4.2.5.

6

1.8 File formats

FASTA

eFASTA format (Pearson and Lipman, 1988) is a text-based format used for storing sequences.
Each sequence is introduced by a comment line that starts with the “>” character. is is the
beginning of a FASTA file that contains the sequence of the ΦX174 phage:

>phiX174
GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTT
GATAAAGCAGGAATTACTACTGCTTGTTTACGAATTAAATCGAAGTGGACTGCTGGCGGAAAATGAGAAA
…

FASTA files are typically used to store reference sequences; they are oen gzip-compressed.

FASTQ

e FASTQ format is based on the FASTA format, but adds the ability to store quality values
with each base (Cock et al., 2010). It is therefore the standard format for representing sequenc-
ing reads. Each record representing a read and its associated quality values is stored in four
consecutive lines of a text file. A single record may look like this:

@HWI-ST552:105:C0TPMACXX:6:1101:1241:1970 1:N:0:TGACCA
TTGGGGATAGTCTGGAAAACAGAGAATGAGA
+
CCCFFFFFHHHHHJJGIIIIIJ#########

e first line is the read name. e format of the name is not standardized in general, but here,
the standard Illumina header is used. It tells us, for example, that the read was sequenced on
an instrument named “HWI-ST552” in its 105th run, that the unique flowcell identifier was
“C0TPMACXX” and so on. e read itself is in the second line and the quality values are given
in the last. Each quality valueQ is represented as the ASCII character whose code isQ+ 33. For
example, the run of “#” characters, whose ASCII code is 35, have quality 2.

FASTQ files are oen stored gzip-compressed (extension .fastq.gz). Paired-end reads are
stored in two separate files, where the order of reads in both files must match. at is, the n-th
read in the first file belongs to the n-th read in the second file.

e sequence in FASTQ files (and also in FASTA files) may contain the character ‘N’, which is
a wildcard character that represents an unknown nucleotide.

SAM/BAM

e text-based SAM (Sequencing Alignment/Map) format (Li et al., 2009) is the standard for
representing aligned reads. Each line in a SAM file is a record that stores information about a
single mapped read. e most important attributes of that record are the identifier of the ref-
erence to which the read was mapped, the mapping position on that reference, information on
how to reconstruct the alignment itself, and a phred-scaledmapping quality. Also, the nucleotide
sequence and quality values from the original FASTQ file are stored.

A companion to the human-readable SAM format is the BAM format. It is a compressed,
binary representation of the same information and is most oen used in practice instead of SAM,
not only because it requires less space, but also because it can be indexed for random access to
any chromosome position.

7

1 Introduction

1.9 Conventions

We use Σ to denote an alphabet, and ΣDNA = { A, C, G, T } is the DNA alphabet. A string is an
element ofΣ∗; for s ∈ Σ∗, its length is written |s|. We use string and sequence synonymously. We
mainly use variables r, s, t for strings, and ℓ,m, n denote their lengths. A string that consists of the
character b ∈ Σ repeated ℓ times where ℓ is a non-negative integer is called a run or homopolymer
of length ℓ and written bℓ. e substring si, si+1, . . . , sj−1, sj of s is written si...j. When i > j, then
it is the empty string (length zero), denoted as ε. A monospace font is used for literal strings or
characters, such as s = TAACG. Given s = (s1, . . . , sm) and t = (t1, . . . , tn), the concatenation of
s and t, written st, is the string s1, . . . , sm, t1, . . . , tn. e power set of a set S is written P(S).

We use theword query synonymouslywith read. A reference sequence is also a target sequence.
Although they represent chemically different entities, we do not distinguish between nucleotides
and (nucleo-)bases.

e term index is used in two different meanings. One is the (usually numeric) value that
discriminates between different elements of a collection, such as the entries of an array. e
other index is a data structure that helps to locate occurrences of items of a specific type in a
collection, such as an index of important terms in a book.

e term [x], where x is a predicate, evaluates to one if the predicate is true and zero otherwise
(Iversion bracket notation).

Units

We use nt (nucleotides) and bp (basepairs) interchangeably as length units for nucleotide se-
quences. Values for memory usage are given using the International Electrotechnical Commis-
sion’s (IEC) binary prefixes. For example, 1MiB = 220 bytes and 1GiB = 230 bytes. SI-defined
prefixes (k, M, G, etc.) have their usual meaning.

Algorithms

Algorithm descriptions in this work are given in imperative style on a relatively high level in
order to ease readability. For example, a description of a single step may be: “Count the number
of Cs or Gs in the string depending on the setting of the flag variable.” is implies that in the
actual implementation there is an implicit if statement that checks the flag, a loop that iterates
over the characters of the string, and also that the result is stored in a (temporary) variable. Error
conditions such as encountering characters other than A, C, G, T in DNA sequences, are ignored
in the description, but are handled in the actual soware that accompanies each chapter.

Some algorithms are described as so-called generators, a feature available in some program-
ming languages (such as Python). A generator resembles a function, but instead of return a
building up a list of results and returning the full list, a generator function yields each value one
by one. When the generator yields, its execution is suspended and control returns to the func-
tion caller. Execution is resumed when the caller requests the next value. Generators have the
advantage that memory usage is lower (compared to building the full list of results) and that they
simplify programming of iterators.

As symbols for bitwise operators, we use & (and), | (or), ⊕ (xor), ¬ (not), << (shi bits le),
and >> (shi bits right).

8

1.10 Structure

1.10 Structure

e chapters of this work loosely follow the order of steps taken when analyzing data from a
high-throughput sequencing experiment: Pre-processing, read mapping, and finally some form
of analysis that leads to biologically or medically interpretable results.

In Chapter 2, we discuss the removal of adapter sequences, which is an essential pre-processing
step required for some types of sequencing data, in particular for smallRNA sequencing.

Chapter 3 discusses how to map a certain type of read to a reference. To study so-called DNA
methylation, these reads have undergone a chemical modification with sodium bisulfite, which
essentially means that some cytosines have been replaced with thymine. We propose an index
data structure that allows to efficiently map those reads to a reference.

Chapter 4 focuses on the analysis steps that occur aer readmapping. In this case, we consider
data resulting from exome sequencing. First, we describe our implementation of a computational
pipeline whose output are lists of mutations in the sequenced samples. Second, a web interface
is presented that displays those mutations and allows interactive analysis by medical researchers.

Chapter 5 returns to the low-level task of aligning a read to a DNA reference string. We in-
troduce a novel method for aligning flowgrams from the 454 or Ion Torrent instruments to a
DNA sequence, which reduces the information loss otherwise incurred by the conversion of the
flowgram to a regular string.

Chapters 2–5 present separate aspects of high-throughput sequencing and were written to
largely stand on their own. Each of these chapters therefore concludes with a discussion and
suggestions for future work considering that particular aspect alone. However, there are also
connections between the four topics that become obvious only aer all four of them have been
covered. Aer summarizing the results, we therefore conclude in Chapter 6 with a discussion
that includes these connections.

e four main chapters are each accompanied with soware that implements the given algo-
rithms. When inspecting the soware, refer also to Appendix A.1, which explains where algo-
rithms in the thesis can be found in each tool’s source code.

9

2 Trimming Adapters

For certain applications of high-throughput sequencing, some of the sequenced DNA or RNA
molecules are expected to be shorter than the read length. For example, microRNAs (miRNAs),
which are small RNAs, are between 20 and 24 bp in length (Hafner et al., 2008), while reads have
a length of at least 35 bp. e sequencing process does not stop at the end of such molecules,
but continues along the molecule, reaching the adapter. Consequently, the reads that are output
contain the sequence of the molecule of interest and also the adapter sequence. erefore, an
essential first task is to find the reads containing adapters and to remove the adapters where they
occur. is is called the adapter trimming problem or adapter contamination problem. Only the
relevant part of the read is then passed on to further analysis.

In this chapter, we first describe the variants of the adapter trimming problem known to us and
the requirements that an algorithm must fulfill to solve them. We then proceed by suggesting an
algorithm based on semiglobal alignment. We discuss some factors that influence sensitivity and
specificity of the algorithm. A large section is devoted to the description of how the algorithm
can be extended to work with colorspace reads. Finally, we describe the tool cutadapt and give
a short overview of some of its additional features, followed by a discussion of possible future
improvements of the tool and its underlying algorithms.

2.1 Introduction

Any current sequencing technology requires, as part of preparation for the actual sequencing,
that an adapter or primer sequence is ligated to the DNA fragments of interest. e adapters
serve three different purposes (Schiemer, 2011).

First, they allow the fragments to be bound to a certain physical location. For example, in Illu-
mina sequencing, this is the surface of the flowcell. Second, the adapters contain a PCR primer
sequence that directs amplification of DNA fragments. is is necessary for all but some exper-
imental sequencing technologies (single molecule sequencing). ird, the adapter may contain
a short so-called barcode sequence. Illumina barcodes, for example, have a length of 6 bp. ey
make it possible to sequence multiple samples at the same time within a single lane of the flow-
cell. Each sample is prepared with an adapter containing a barcode that is different from those
of the other samples. e samples are pooled (multiplexed) and then sequenced simultaneously.
Aer the fragments themselves have been sequenced, the barcodes are sequenced, which allows
assigning each read to the correct sample (demultiplexing).

erefore, usage of adapters is a technical requirement of the sequencing process. e moti-
vation for adapter trimming is that, under some circumstances, the adapter sequence or a part
of it may be seen in the sequenced reads. We call this adapter contamination. Before using con-
taminated reads, the adapters need to be found and removed.

11

2 Trimming Adapters

2.1.1 Types of adapter contamination

3' adapter contamination

e most common form of adapter contamination occurs when the sequenced insert is shorter
than the read. In that case, the read ends with a prefix of the 3′ adapter. We call this 3′ adapter
contamination. A typical application in which it necessarily occurs is small RNA sequencing.
Here, the sequenced molecules are known to be very short.

For example, microRNAs, which are a type of small RNA, have lengths of 20-24 nt. Since even
the earliest models of commercially used high-throughput sequencers deliver reads of at least
35 nt, the adapter appears in all reads that contain a microRNA molecule. If one is interested
only in microRNAs, this fact can even serve as a quality control measure: If the adapter does not
appear, then the read is not from microRNA. Since not all microRNAs have been discovered, yet
(this is the case even for humans), this is an advantage as the sequence of the microRNAs does
not need to be known in advance.

In other applications, the library preparation includes a step in which the DNA fragments are
size-selected to be longer than the reads. is ensures that all bases of each read are usable as
data that can be further analyzed. Examples are whole-genome or exome sequencing. Adapters
should not appear within reads in such applications, but it can still make sense to search for
adapters as a quality control measure.

A 3′ adapter may also occur within a read. ere are at least two reasons why this happens.
First, although the end of themoleculemay have been reached with the last base of the 3′ adapter,
the sequencer will continue to sequence until it has reached its fixed read length. e called bases
beyond the end of the molecule result from noise or perhaps nearby molecules. Second, the
known adapter sequence may not be the true adapter sequence, but only a prefix of it, possibly
because the vendor considered the full adapter sequence to be proprietary information.

5' adapter contamination

Adapters may also appear in the beginning of a read. For example, RNA immunoprecipitation
followed by sequencing (RIP-seq) results in such reads (Philippe Loher, personal communica-
tion). Briefly, RIP-seq (Zhao et al., 2010) aims to find targets of an RNA-binding protein, that is,
those RNA molecules that the protein binds to. e idea is to extract the protein using specific
antibodies while it is still bound to the RNA. e proteins are then removed, leaving RNA only,
which is then converted to DNA (reverse transcribed) and sequenced.

In RIP-seq, two different sets of adapters can be used. e 5′ and 3′ adapters (primers) are
ligated first. en the adapters for the actual sequencing step are added, resulting in a molecule
with two nested adapter pairs (inner and outer). Since the sequencing process starts at the outer
5′ adapter, the inner 5′ adapter is part of the read. We must therefore be able to detect adapters
which occur as a prefix of the read.

To find and remove the 3′ adapter in RIP-seq, the two 3′ adapter sequences can simply be
concatenated and then found and removed like any other 3′ adapter. Or, since trailing bases aer
a 3′ adapter match are ignored, one can simply search for the inner 3′ adapter only.

Another application in which we observed 5′ adapter contamination is the bisulfite sequencing
protocol as employed by Zeschnigk et al. (2009), see also Section 3.4.3. e protocol occasionally
led to the 5′ adapter being ligatedmore than once (oen twice, rarely three times) to the bisulfite-

12

2.1 Introduction

Removed sequence

Adapter

Read

5' Adapter

3' Adapter

Anchored 5' adapter

or

or

Figure 2.1 Types of adapters, how they appear within reads, and which part of the read needs to be
removed if the adapter is found. A mixed adapter may appear in any of the shown configu-
rations.

converted DNA molecule. In this case, sequencing will sometimes (randomly) start at the earlier
adapter. Again, the adapter is then a prefix of the read.

In the same experiment, we also noted degradation of some 5′ adapters. at is, some adapters
seemed to have lost their first nucleotides. In that case, the reads start with a suffix of the adapter
sequence.

Mixed adapter contamination

Another observation in the bisulfite experiment was that the location of adapters may be incor-
rect: Sometimes the 5′ adapter was found at the 3′ end, and sometimes the 3′ adapter was found
at the 5′ end. We call this mixed adapter contamination.

To summarize, for the purposes of adapter removal, we distinguish four different types of
adapters that differ by how the adapter sequence appears in the read and which part of the read
needs to be retained, see also Figure 2.1.

• A 3′ adapter appears either as a substring of the read, or a prefix of it is a suffix of the read.
e sequence preceding the adapter needs to be retained.

• When a regular 5′ adapter occurs, a suffix of it appears as a prefix of the read. e sequence
following it needs to be retained.

• An anchored 5′ adapter is a special case of the regular 5′ adapter. e entire adapter se-
quence must appear as a prefix of the read (no degradation allowed). As before, the se-
quence following it needs to be retained.

13

2 Trimming Adapters

• For amixed adapter, it is unknown whether it is a 3′ adapter or a non-anchored 5′ adapter.
If it is detected to be a 5′ adapter, the sequence following it needs to be retained and the
sequence preceding it otherwise.

A universally usable algorithm must recognize all of the above types of contamination. Since
the trimming behavior depends on the adapter type, we can expect the user to know beforehand
which type of adapter is to be searched. If the adapter type is unknown, the “mixed” type can be
used.

2.1.2 Previous work

eadapter contamination problem is not new and some partial solutions exist. ere are at least
two standalone tools usable for adapter trimming. Vectorstrip is part of the EMBOSS package
(Rice et al., 2000). It was originally developed to recognize and remove vector sequence contam-
ination from Sanger sequencing reads, which makes it cumbersome to use in high-throughput
sequencing experiments. Vectorstrip does not find partial adapter matches and does not support
colorspace (see below and Section 2.4). e program fastx_clipper, which is part of the FASTX
toolkit1 by Assaf Gordon, is another command-line tool, but it is also limited to 3′ adapter con-
tamination and also does not support colorspace data.

Some soware libraries, such as HTSeq2 by Simon Anders and Biostrings3 offer some error-
tolerant trimming routines, but HTSeq does not consider insertions and deletions, and both
require the user to be able to write their own programs that use those routines.

Also, some read mapping tools, such as SOAP (version 1) by Li et al. (2008b), MAQ by Li
et al. (2008a) and Novoalign4 can trim adapters, but this is only useful if the reads are to be
mappedwith the respective program. Other popularmapping tools such as BWA (Li andDurbin,
2009) do not support adapter trimming. Such tools can only be used with a stand-alone adapter
trimmer such as the one described here.

Furthermore, none of the mentioned tools are universally usable as they do not support all of
the different types of adapter contamination that may occur.

2.1.3 Requirements

While the main goal is to find adapters of various types, high-throughput sequencing technolo-
gies and different experimental setups add further requirements. We list in this section those
requirements that influence the design of the algorithm.

Error tolerance

Sequencing errors can occur anywhere in the read. at is, for each base in the read there is a
nonzero probability that it is sequenced incorrectly. Sequencing errors in the insert do notmatter
for adapter trimming, but some form of error-tolerant patternmatching is needed to allow errors
in adapter sequences. Typically, an allowed number of errors is specified by the user. Since the

1http://hannonlab.cshl.edu/fastx_toolkit/
2http://www-huber.embl.de/users/anders/HTSeq/
3http://bioconductor.org/packages/release/bioc/html/Biostrings.html
4http://novocraft.com/

14

http://hannonlab.cshl.edu/fastx_toolkit/
http://www-huber.embl.de/users/anders/HTSeq/
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://novocraft.com/

2.2 Finding adapters

adapter matches can have different lengths, this is not helpful because short matches would be
allowed to have a greater number of errors relative to their length. Instead, we use an error rate
threshold, which is the number of errors normalized by the length of thematch (see Section 2.2.7).

Indels

e algorithm should be usable with data from a 454 sequencer, whose primary errors come
from insertions and deletions within homopolymer runs (stretches of the same nucleotide, see
also Chapter 5). One of the first applications of our suggested algorithm was adapter trimming
in 454 sequencing data collected by Zeschnigk et al. (2009).

Multiple adapters

e algorithm should be able to search for more than one adapter and to determine which of the
adapters (if any) occurs. It will sometimes be the case that a set of adapters is used in an experi-
ment, and at most one of them is expected to occur in a read, for example, when the adapters
contain barcodes in multiplexed samples.

A simple case is that multiple 3′ adapters share a long enough common prefix. is can be
handled by searching only for the common prefix. If it is found, the trailing variable sequence
should also be removed. If the adapters vary in only a few characters, then it should also be
possible to use wildcard characters (see Section 2.5.1).

If the adapters are too different, then it should be possible to specify all adapter sequences and
the program must then be able to determine which of the adapters is present.

Colorspace

We would like to be able to trim reads obtained in so-called dinucleotide colorspace from an ABi
SOLiD sequencer. For a study by us (Schulte et al., 2010), an ABi SOLiD sequencer was used
to obtain short reads of small RNA. SOLiD sequencing is comparatively inexpensive, but yields
shorter reads than other technologies. For other applications, this would be a disadvantage, but
it is a good choice for small-RNA sequencing. We therefore need to support colorspace reads.

In the following, the algorithm is introduced without considering the colorspace-specific is-
sues. In Section 2.4, we then explain implications arising from the colorspace representation and
how to extend the algorithm.

2.2 Finding adapters

e adapter trimming problem is a variant of an approximate patternmatching problemwith the
additional constraints of being able to 1) find partial matches, 2) findmatches below a given error
rate threshold and 3) determine which adapter matches best if multiple adapters are searched.

e problem of allowing partial matches is similar to that of overlap detection in shotgun se-
quence assembly (Gusfield, 1997, Sec. 11.6.4). e alignment algorithmwe introduce for adapter
trimming is therefore an extension of the semiglobal alignment algorithm.

We first summarize the standard global and semiglobal alignment algorithms and then de-
scribe the modifications that are made to incorporate the error rate threshold.

15

2 Trimming Adapters

2.2.1 Alignments

Let two strings s, t ∈ Σ∗ be given. Let m := |s| and n := |t|.

Definition 1 (alignment, editing events). An alignment between two strings s, t ∈ Σ∗ is a finite
sequence of pairs (ask, a

t
k), where ask, a

t
k ∈ Σ∪ {−}, but not both are−. e “−” is called space.

e concatenation of all characters ask and atk that are not spaces must yield the strings s and t,
respectively. A pair (ask, a

t
k) in which ask is a space is an insertion. If atk is a space, the pair is a

deletion. If ask = atk, it is a match. Otherwise, it is called a mismatch or substitution. Insertions
and deletions are collectively called indels.

e terms insertion and deletion imply a directionality since it is necessary to define which of
the two sequences is the reference sequence into which insertions and from which deletions are
made. Whenmeasuring relatedness between sequences in an evolutionary sense, the designation
is oen arbitrary. Here, we know the true, error-free adapter sequence, and all observed editing
events are expected to be sequencing errors. erefore, we consider the adapter sequence to be
the reference when discussing indels.

In the following, s is the adapter sequence and t is the read.

2.2.2 Finding optimal alignments

e cost of an alignment is the sum of the number of its insertions, deletions and substitutions.
e edit distance between s and t is the minimum cost over all alignments between s and t (Lev-
enshtein, 1966). An alignment whose cost is equal to the edit distance is an optimal alignment.

e edit distance can be found with the following recurrence (see Gusfield (1997) for details).
Let s, t,m and n be defined as above and let d(c1, c2) := [c1 ̸= c2] be the unit cost function. D(i, j)
is the edit distance between the prefixes s1..i and t1..j.

D(i, j) =



0 for i = 0 and j = 0
i for i > 0 and j = 0
j for i = 0 and j > 0

min


D(i− 1, j− 1) + d(si, tj),
D(i− 1, j) + 1,
D(i, j− 1) + 1

 for i > 0 and j > 0

(2.1)

By using an (m+1)×(n+1)dynamic programming table forD (alsoDPmatrix), the edit distance
between s and t is found by evaluatingD(m, n) in timeO(mn) (Sellers, 1980). It is not necessary
to keep the entire DPmatrix inmemory since the computations depend only on the previous row
and column. Instead, storing a single row or column is sufficient. For the edit distance, memory
used in addition toO(m+ n) for the input strings is thereforeO(min {m, n }).

e simplest way to find an optimal alignment, not only the edit distance, is to keep the full DP
matrix in memory and to backtrace from cell (m, n) to cell (0, 0). For the backtrace, one needs
to determine which of the three terms of the computation of the minimum in Equation (2.1)
resulted in the value for the current cell. is can be done by either re-computing the minimum
at the time of backtracing or by using a second table with “back pointers” that point to the correct

16

2.2 Finding adapters

cell (either above, le, or diagonally above and le). e memory usage for this variant of the
algorithm isO(mn).

Hirschberg algorithm

A reduction to linear space usage is possible with the improvement by Hirschberg (1975). e
idea is to first find the cell (k, l) in the middle row k := ⌊m/2⌋ through which the backtrace
would go. As described in the original paper, this can be done by computing the edit distances
between s1..k and prefixes of t, and edit distances between sk+1..m and suffixes of t with both
strings reversed. Column index l is set to the length of the prefix of t at which the sum of both
edit distances is minimal. By applying the algorithm recursively to the strings s1..k and t1..l and
also to sk+1..m and tl+1..n, the full alignment can be found (Hirschberg, 1975, Algorithm C).

Finding the cell (k, l) can also be done in the following way. In addition to tableD, wemaintain
a second (m+1)×(n+1) tableOk (for “origin”), where k is the rowwe are interested in andOk(i, j)
is set to the largest l′ such that an optimal alignment between s1..i and t1..j passes through cell
(k, l′). e desired l is found by evaluating Ok(m, n). For k < i, the origin Ok(i, j) is undefined
since these rows are above k. For k = i, we have Ok(i, j) = j. For rows i > k, the value of Ok(i, j)
is propagated from eitherOk(i− 1, j− 1),Ok(i, j− 1), orOk(i− 1, j), depending on which of the
three terms in Equation (2.1) is minimal. e values inOk have ameaning similar to the pointers
used in backtracing, with the difference that they do not point to the immediately preceding cell,
but to a cell in row k.

In order to get the same linear space requirement as the original Hirschberg algorithm, we note
that, just as in the computation of edit distance, only a single row of theOk table needs to be kept
in memory at a time. A variant of the algorithm is to maintain an Ol table of which only a single
column needs to be kept at a time.

Other cost functions

e function dmay also be a non-unit cost function. For example, it may make sense to penalize
insertions and deletions more strongly than substitutions in Illumina reads since substitutions
are the dominant source of errors in them. Such a “weighted edit distance” would no longer
be equal to the number of errors, which makes the results of the algorithm harder to interpret
for the user. Also, the idea of basing the algorithm on the concept of an “error rate”, which is
defined in terms of the number of errors, no longer applies. In addition, it would introduce a
further parameter into the algorithm that needs tuning for each dataset. We therefore restrict
the algorithm to unit costs only.

Global alignment

e alignment variant described in this section is called global alignment since both strings are
compared in full (globally). e term alignment is used in the literature both for the resulting
object according to Definition 1 and also for the process of finding an optimal alignment. When
clear from the context what is meant, we will do the same in the following.

Global alignments model a relationship between two strings by assuming that they represent
two instances of the same underlying sequence which differ only in some editing events, such as
those caused by mutations or sequencing errors. e hypothesis underlying global alignments is

17

2 Trimming Adapters

Figure 2.2 Semiglobal alignment between two sequences (marked in gray and black) allows four config-
urations: Either a prefix of one of the strings is a suffix of the other (top two configurations)
or one string is a substring of the other (bottom two). e cases “one string is a prefix or
suffix of the other” are not shown as they are special cases of the shown configurations.

that there is a start-to-end correspondence between both strings s and t; that is, the entire string
t is an edited version of the entire string s.

2.2.3 Semiglobal alignment

To compare two strings that are edited fragments (substrings) of a larger string, we use semiglobal
alignment. Semiglobal alignment allows two strings to overlap arbitrarily without penalty, while
errors within the overlapping region are penalized as in regular alignments. Semiglobal align-
ment is described, for example, by Gusfield (1997, Chapter 11.6.4). One of the applications men-
tioned is the assembly of fragments from shotgun sequencing. Such fragments may overlap and
when a full genome is to be assembled from them, the overlaps need to be detected.

e relationship between two strings can be: A prefix of one string may be a suffix of the other
string or one string may be a substring of the other string. erefore, there are four possible
configurations for overlap between two strings, see Figure 2.2. Semiglobal alignment is also called
free-shi alignment or end-space free alignment.

To achieve the desired effect of allowing arbitrary overlaps, the cost functionmust be modified
such that it 1) can skip an arbitrary-length prefix of either s or t at no cost; and 2) can skip an
arbitrary-length suffix of either s or t at no cost.

A semiglobal alignment can be considered to be a global alignment with the addition of a
second type of space that incurs no cost and can occur only at the ends of the alignment. We
call those free spaces and write them as “∼”. In the alignment, they are exactly those spaces
that are paired with the skipped prefixes or skipped suffixes of s and t. If we allow free skipping
of arbitrary-length prefixes and suffixes of both strings at the same, we arrive at the even more
general local alignment (Smith andWaterman, 1981), whichmodels that a substring of s is related
to a substring of t.

18

2.2 Finding adapters

Similarity scores

Usually, semiglobal alignments are not optimized in terms of cost since this can give meaning-
less results: By skipping both s and t entirely, an alignment with a cost of zero can always be
constructed:

OPTIMAL~~~~~~~~~
~~~~~~~ALIGNMENT

Since one purpose of semiglobal alignments is to detect overlap, we would intuitively expect
the AL prefix and suffix of the two strings to be paired (with zero errors). However, the shown
alignment also has a cost of zero, and there is no guarantee for the more meaningful variant to be
found. If in addition there is an error in the overlapping part, it is certain that the meaningless
variant is preferred.

One solution could be to use a similarity function instead that assigns positive values tomatches
and negative values to substitutions, insertions and deletions, and that assigns a value of zero to
pairs with free spaces (Gusfield, 1997). Instead of minimizing the sum of distances, an align-
ment would then be defined to be optimal if it maximizes the sum of similarities. Since matches
improve the total similarity while free spaces do not, such an alignment tends to increase the
length of its overlapping region unless there are too many differences. In the following, we will
not pursue this approach, but instead show how to find useful semiglobal alignments while still
using the edit distance. We believe that, in this way, results are easier to interpret since the edit
distance is simply the minimal number of editing events. us, we suggest that the simplest way
for a user to specify which alignments are acceptable and which are not is a measure that is based
on the number of errors. In our case, this will be the error rate threshold.

We solve the problem of avoiding optimal, but meaningless alignments later (Section 2.2.6)
and continue to describe how certain minimum-cost semiglobal alignments can be computed.

Recurrence equation

Given two strings s and t, and m = |s|, n = |t|, we use the recurrence adapted from Gusfield
(1997, Chapter 11.6.4) to compute the edit distanceD′

sg(i, j) between prefixes s1..i and t1..j, where
a prefix of either s or t (but not a suffix) may be skipped.

D′
sg(i, j) =


0 for i = 0 or j = 0

min


D′

sg(i− 1, j− 1) + d(si, tj),
D′

sg(i− 1, j) + 1,
D′

sg(i, j− 1) + 1

 for i > 0 and j > 0
(2.2)

We see that the only difference to Equation (2.1) is to allow free spaces in the beginning by setting
D′

sg(0, j) = 0 and D′
sg(i, 0) = 0.

For completeness, we show how to find the full “semiglobal edit distance”. In order to allow
the skipping of either a suffix of s or t, the minimum of all values in row i = m and column j = n
needs to be found:

Dsg = min {D′
sg(i, j) : j = n, 0 ≤ i ≤ m or i = m, 0 ≤ j ≤ n }

19



2 Trimming Adapters

5' Adapter

3' Adapter Anchored 5' adapter

Mixed adapter

A
d

ap
te

r

Read

A
d

ap
te

r

Read

A
d

ap
te

r

Read

A
d

ap
te

r

Read

Figure 2.3 Dynamic programming matrices used for adapter alignment. e le and top gray bars in-
dicate prefixes of the adapter and read that may be skipped. e right and bottom gray bars
indicate suffixes that may be skipped. e matrix for a mixed adapter is equivalent to regular
semiglobal alignment. See text for the dashed columns.

Since D′
sg(m, 0) = D′

sg(0, n) = 0 by definition, this is always zero, as discussed, but the same
idea works when using a similarity function, replacing D with a similarity function S and min
with max.

In the DP matrix for semiglobal alignment (equivalent to the “Mixed adapter” in Figure 2.3),
allowing to skip a prefix of s or of t is equivalent to setting all values in the le column or top row,
respectively, to zero. Skipping a suffix of s or of t is allowed by searching for an extremum in the
bottom row or right column, respectively.

2.2.4 Adapter alignment

Since finding an adapter in a read means that the overlap between adapter and read needs to be
detected, we can use semiglobal alignment for it, except that different adapter types need to be
taken into account.

e adapter variants differ by which prefixes and suffixes of the read and the adapter may be
skipped, see Figure 2.3. When aligning a 3′ adapter, skipping of a prefix is not allowed since the
adapter is not expected to be degraded in its 5′ end. Regular 5′ adapters, on the other hand, can
be degraded in the 5′ end, but they are not expected to start within the read, therefore no prefix
of the read can be skipped. For anchored 5′ adapters, degradation is not allowed so that also no
prefix of the adapter can be skipped.

For both 5′ adapter types, whether to allow skipping a suffix of the read is not important. If
the right column in the DP matrix is reached (dashed in Figure 2.3), this implies that the read
is shorter than the adapter, which should occur rarely and, if it does, the read is trimmed to a
length of zero. Since read lengths are either constant (Illumina, SOLiD) or longer than typical
adapters (454), it probably does not make sense to search for 5′ adapters that are longer than the

20



2.2 Finding adapters

read length.
Finally, for mixed adapters, all prefix and suffix skips must be allowed, resulting in a regular

semiglobal alignment.
We collectively call these four restricted variants of semiglobal alignment adapter alignment.

Formally, let a ∈ { three-prime, five-prime, anchored-five-prime,mixed } be an adapter type.
Let D′

a(i, j) := D(i, j), except

• for a = three-prime and i = 0, set D′
a(i, j) := 0,

• for a = five-prime and j = 0, set D′
a(i, j) := 0,

• for a = mixed, set D′
a(i, j) := D′

sg(i, j).

Note that D′
a(i, j) only accounts for the skipping of prefixes of s or t. Skipping of suffixes will be

taken care of in the final algorithm.
We would like to point out why these restricted types of semiglobal alignment are needed at

all. e alternative would be to always use the unrestricted DP matrix of regular semiglobal
alignment as it encompasses the other types. In order to incorporate the knowledge we have
about the adapter type, we would then need to check the found optimal alignment and ignore it
when it does not start and end at the appropriate places. In this way, true matches can be missed.

For example, if an anchored 5′ adapter occurs once in the beginning of a read and once in the
middle, but with fewer errors, the middle occurrence will be found and then discarded since it
is not in the expected position. By incorporating the restrictions given by the adapter type into
the alignment algorithm itself, such suboptimal occurrences are never considered.

2.2.5 Overlap

To find an adapter essentially means to find an optimal overlap between two strings. We define
overlap in the following way. Let the sequenceA =

(
(as1, at1), (as2, at2), . . . , (asl , a

t
l)
)
with ask, a

t
k ∈

Σ ∪ {−,∼} , k = 1, . . . , l be a semiglobal alignment between s and t. e “∼” represent free
spaces.

Definition 2 (Overlap). Let A be an alignment as above. Let O =
(
(asα, atα), . . . , (asβ, atβ)

)
be a

sub-alignment ofAwhere α is the smallest index and β is the largest such that it contains no free
spaces. O is called the overlap. If such indices do not exist, the overlap is an empty alignment.

Definition 3 (Overlap start and end coordinates). e tuple (starts, startt) is the overlap start
coordinatewhere starts (startt) is the index of the lemost character of s (t) that is not paired with
a free space. e tuple (stops, stopt) is the overlap end coordinate where stops (stopt) is the index
of the rightmost character of s (t) that is not paired with a free space.

e strings sstarts..stops and tstartt..stopt are the parts of s and t that overlap each other. e overlap
start and end coordinates give the location of the cells in the dynamic programming matrix at
which the overlap starts and ends, respectively. More precisely, the path that corresponds to the
overlap starts in cell (starts − 1, startt − 1) and ends in cell (stops, stopt).

Since free spaces are, by definition, not paired with free spaces in a semiglobal alignment, at
least one of starts and startt is equal to one. Also, stops = m or stopt = n or both.

21



2 Trimming Adapters

Example 1. Consider the following semiglobal alignment between the strings s = ADAPTER and
t = READADPT:

1234567
~~~~ADAPTER
READAD-PT~~
123456 78

Here, the overlap start coordinate is (starts, startt) = (1, 5), and the overlap end coordinate is
(stops, stopt) = (5, 8).

2.2.6 Error rate

Since adapters can occur at variable lengths in the read, it makes sense not to count the absolute
number of errors in an alignment, but to normalize this number by the length of the match. e
“length” can be defined in multiple ways. We consider three variants: It can be the number of
alignment columns (the length of the alignment), the number of aligned characters in the read,
or the number of aligned characters in the reference (the adapter). Our aim is for each type of
sequencing error to increase the error rate by the same amount. at is, when aligning reads
ADOPTER, ADPTER and ADAPETER to the ADAPTER, the error rate should be 1/7 in all cases. Hence,
the denominator needs to be the number of aligned adapter characters. e other options result
in undesired error rates of 1/6 and 1/8.

Definition 4. e error rate r(A) or simply r is the number of errors in an adapter alignment A,
divided by the number of aligned reference characters in the overlap. Letting e be the number of
errors in the adapter alignment A, we can write this as

r(A) = e
stops − starts + 1

. (2.3)

If there are no aligned adapter characters, we define the error rate to be zero.

Example 2. In this 5′ adapter alignment of the adapter ADAPTER, the error rate is r = 2/6 = 1/3
since six adapter characters are in the overlap and there is one substitution and one insertion.

ADAP-TER~~~~
~RAPETERREAD

If the alignment is an anchored 5′ adapter alignment instead in which the space preceding the
read is not free, the error rate will be r = 3/7.

2.2.7 Optimization criteria

Intuitively, an alignment between an adapter and a read should be considered to be goodwhen the
overlap is large and the number of errors is low. Asmentioned previously, optimizing semiglobal
alignments in terms of edit distance gives meaningless results. Except for anchored 5′ (prefix)
adapters, this is also the case for adapter alignment (see Figure 2.1) since trivial solutions can be
constructed that align the two strings such that there is no overlap, resulting in an edit distance
of zero.

22

2.2 Finding adapters

Minimizing the error rate instead is not helpful as we get the same results. One remedy could
be to special-case the error rate for “no aligned characters” (that is, a denominator of zero) and
set it to a value other than zero. Still, this will result in short, meaningless alignments, such as
when adapter and read overlap by a single base due to chance.

Having a long overlap therefore conflicts with the aim of having a low error rate. It seems
at first that we must solve a multi-objective optimization problem that involves minimizing the
error rate while maximizing the overlap. ere are at least two ways to deal with such a problem,
and both require the introduction of a new parameter: One is to optimize a linear combination of
both criteria, which we will not do here. e other is to introduce a threshold for one parameter.

Thresholding the error rate

We introduce a limit for the error rate, the error rate threshold ε. is parameter must be chosen
by the user according to the observed sequencing error probability, see Section 2.3.1 for details
on how this should be done. We use the error rate threshold as a filter in the same way as in the
work by Rasmussen et al. (2006) by discarding alignments that exceed the threshold. Similar to
k-differences algorithms such as that by Landau et al. (1986), we regard all alignments for which
the error rate is below ε to be equally good. is makes sense since we expect a few sequencing
errors to occur in each read. As long as the number of errors is not too large, an alignment with
fewer errors does not necessarily better reflect reality than one with more.

Maximal number of matches

Among the remaining alignments, we can optimize for overlap length. e overlap length itself is
not a good criterion: Given two alignments with the same overlap length, we should pick the one
that has fewer errors. erefore, we subtract the number of errors from the overlap length and
maximize that quantity, which is equal to the number of matches in the alignment. We formalize
these thoughts as follows. As before, s is the adapter and t is a read,m = |s| and n = |t|. Let a be
an adapter type.

Definition 5 (Overlap start/end diagonals). A diagonal δ in the DP matrix is the set of all cells
(i, j) for which j− i = δ. e values for δ range from−m to n.

e overlap start diagonal startδ := startt − starts of an alignment is the diagonal on which
its overlap start coordinate is located. Similarly, we define the overlap end diagonal stopδ :=
stopt − stops.

Since overlaps start and end in the borders of the DP matrix, start and end diagonals can be
converted back to coordinates:

starts = 1 + max { 0,−startδ } (2.4)
startt = 1 + max { 0, startδ } (2.5)
stops = min {m, n− stopδ } (2.6)
stopt = min { n,m+ stopδ } (2.7)

When these formulas result in startt > stopt or starts > stops, the overlap is empty.

23

2 Trimming Adapters

r ≤ ε
A

d
ap

te
r

Read

}r ≤ ε

}

Figure 2.4 Schematic illustration of how the error rate criterion limits alignments to those that end in
the shaded region. Two intervals are shown, but there can be fewer or more.

Let us now consider all adapter alignments whose overlap end diagonal is δ. For all four
adapter types, δ may range between −m and n, unless we choose not to allow skipping suffixes
of 5′ adapters. en δ is limited to values between−m and n−m.

Let Aδ be an alignment that is optimal (minimum cost) among all adapter alignments that
have end diagonal δ. If there are multiple optimal alignments, choose the unique alignment that
is “rightmost”: at is, when backtracing from the overlap stop, this alignment is the one that
prefers to go up over going diagonal and prefers diagonal over le when more than one path
is possible. us, this alignment also has the maximal overlap start diagonal. Using the edit
distance between adapter prefixes D′

a(i, j) as defined in Section 2.2.4, its cost Cδ is

Cδ :=

{
D′
a(m, δ +m) for δ ≤ n−m

D′
a(n− δ, n) otherwise.

In the DPmatrix, this corresponds to the values of the edit distance in cells that are in the bottom
row (first case) or in the right column (second case).

LetOδ := startδ (for “origin”) be the overlap start diagonal of Aδ . With Equations 2.3, 2.4, 2.6,
we get

r(Aδ) =
Cδ

stops − starts + 1
=

Cδ

min {m, n− δ } −max { 0,−Oδ }
. (2.8)

Lemma1. r(Aδ) gives the value of the lowest possible error rate among alignmentswhose overlap
ends in δ.

Proof. e numerator of Equation (2.8) is minimal among alignments whose overlap ends in δ
by the definition of Cδ . For the denominator, consider that Aδ was chosen to be the rightmost
optimal alignment among those that end in δ. us,Oδ is maximal among possible overlap start
coordinates. erefore, the denominator is maximal, which guarantees that r(Aδ) is minimal
among all alignments that end in δ.

Alignment candidates

Taking the error rate threshold into account, an initial set of candidate alignmentsA′ is:

A′ := {Aδ : r(Aδ) ≤ ε, δ = −m, . . . , n }

24

2.2 Finding adapters

e overlap ends of the elements of this set correspond to intervals in the bottom row and right
column of the DP matrix, see Figure 2.4. Let Mδ be the number of matches in alignment Aδ .
We restrict the set of alignment candidates further to those for which the number of matches is
maximal and get

A := {Aδ ∈ A′ : Mδ = max
d

Md } .

Choosing the final alignment

e setA can still contain more than one alignment when, for example, an adapter occurs twice
in the read with the same number of errors. In the case of 3′ and mixed adapters, we choose the
one with the smallest δ in order to remove as much contaminating sequence as possible.

Although multiple adapter occurrences may be rare, some people have reported using our tool
for poly(A) trimming, which is the following: Aer transcription of messenger RNA, a so-called
poly(A) tail consisting of multiple adenines is appended to the molecule before it is translated
into protein, which stabilizes the RNA (polyadenylation). By searching for an adapter such as
A…A, the poly(A) tail can be removed from reads that contain them. By choosing the lemost
occurrence of the A…A “adapter” in the read, the user need not concern herself with making sure
that the given adapter contains as many As as there are bases in the read.

For 5′ adapters, multiple alignments with the same number of matches are also possible al-
though this is not quite as obvious as in the 3′ case. For example, when the adapter is AGGGG and
the read is GGGGGCCCC, these two alignments both have four matches and an error rate of 20%:

AGGGG~~~~~ AGGGG~~~~
-GGGGGCCCC GGGGGCCCC

We do not see a reason for preferring one over the other and therefore also choose, for simplicity,
the alignment with the smallest end diagonal (the le one in the example).

us, for nonemptyA and all adapter types, let∆ := min { δ : Aδ ∈ A}. e final alignment
is then A∆.

2.2.8 Cutting adapters

Once the value of ∆ and the corresponding value O∆ have been found, overlap coordinates can
be computed from Equations 2.4–2.7. e read needs to be trimmed to tstopt+1..n for 5′ adapters,
and to t1..startt−1 for 3′ adapters. For mixed adapters, we use the following simple heuristic to
decide whether a suffix or prefix needs to be removed: We determine if the adapter occurs in
the beginning of the read, that is, whether startt is equal to one. If that is the case, the adapter is
treated as a 5′ adapter and as a 3′ adapter otherwise.

Note that knowledge of the alignment A∆ itself is not required for correct trimming since
overlap start and stop coordinates can be computed from ∆ and O∆ alone.

2.2.9 Adapter alignment algorithm

Let us summarize the alignment algorithmwehave so far. With standard dynamic programming,
it fills matrix C := D′

a, which implicitly gives us Cδ for δ ∈ {−m, . . . , n }. With the help of two
auxiliary matrices (M and O, see below) values of Mδ and Oδ are found at the same time.

25

2 Trimming Adapters

Error rates r(Aδ) are then computed, and all δ for which r(Aδ) > ε are not considered. en,
those δ for whichMδ is maximal are selected. Finally, if there is a tie, the smallest δ is chosen. We
describe the auxiliary matrices and time/space improvements before giving the final algorithm
in detail (Algorithm 1).

Auxiliary matrices

For a given δ, the valuesOδ andMδ could be found by backtracing inmatrixC in timeO(m+n).
Since there can also be up to m + n + 1 values of δ that need to be checked, this is inefficient.
Instead, we introduce the two auxiliary matrices M and O, which both have dimension (m +
1) × (n + 1) and are updated along with C. M(i, j) is defined to be the number of matches in
an optimal alignment between s1...i and t1...j. M(i, j) is obtained along with C(i, j) according to
the edit operation determined to be optimal in cell (i, j): M(i, j) is set to M(i− 1, j− 1) + 1 on
a match, to M(i − 1, j − 1) on a mismatch, and to M(i, j − 1) or M(i − 1, j) on an insertion or
deletion. M is initialized to zero in row i = 0 and column j = 0. Note that M is not the length
of a longest common subsequence (lcs) since we do not optimize for number of matches. As a
counterexample, consider strings ABC and CDE. e optimal alignment between them is ABC

CDE with
zero matches, but the longest common subsequence is “C” at length one.

e second matrixO is the “origin” matrix, whereO(i, j) is the maximal overlap start diagonal
of an optimal adapter alignment between s1...i and t1...j. A cell in this matrix is updated in the
same way asM from previous values ofO, except that values are only copied, never incremented.
e initialization is as follows: For mixed adapter/semiglobal alignments, set O(i, 0) = −i and
O(0, j) = j. For 3′ adapters and the anchored 5′ adapter, change the first term toO(i, 0) = 0. For
both 5′ adapter types, also change the second term to O(0, j) = 0.

Single-column optimization

By using the two auxiliary matrices, we have eliminated the need for backtracing in C while
finding the best alignment according to our criteria. Finding alignment A∆ itself, which would
still require backtracing, is also not necessary as only the overlap coordinates are needed for
correct adapter trimming. erefore, we can use the standard optimization of keeping only a
single column ofC inmemory at a time. e same optimization is possible forM andO, reducing
total space complexity fromO(mn) toO(m+n). While thememory savings are negligible given
typical values of m ≈ 25 and n = 100, the optimization avoids a few memory copies and may
result in better cache efficiency.

Note how this linear-space version of the algorithm is related to the variant of the algorithm
by Hirschberg (1975) as described in Section 2.2.2. e main differences are that the “origin”
is defined differently and that no recursion is required for adapter alignment since we are not
interested in the full alignment, only in the start coordinate of the overlap.

Ukkonen's cutoff

Since we use unit costs, we can implement the optimization described by Ukkonen (1985). e
idea is that, given an allowed number of errors k, one can stop computing cells in the current
column of C when the cost would be larger than k. Although k varies in our algorithm since
an error rate is used, we can set it to the maximum value it can attain given the known adapter

26

2.2 Finding adapters

length: k := εm. If spaces in the le column are not free, the index of the last cell to be computed
(stored in variable last) is initialized to k and the expected runtime is O(nk) as in the original
algorithm.

When spaces in the le column are free, last needs to be initialized tom, which leads to worse
runtime. In the best case, last decreases by one per column. Since this means that the full upper
le “triangle” of the DP matrix is computed, total runtime isO(m2 + kn).

When the alignment is not allowed to start in the top row of the matrix, one further optimiza-
tion is to not compute columnswhose indices exceedm+k, which is themaximum length that an
alignment with at most k errors can have. Other optimizations are possible, such as not comput-
ing cells on diagonals too far away from the zero diagonal (banded alignment), see Section 2.6.1.

Remarks on anchored 5' adapters

For anchored 5′ adapters, or in general when neither free spaces in the le and top edges of the
matrix are allowed, it is not necessary to keep track of the alignment origin, as it is always the
top-le cell (Oδ = 0). Also, other improved alignment algorithms such as a variant of Myers
bit-vector algorithm (Myers, 1999) could be used. Furthermore, the error rate computations are
not necessary for this adapter type since the number of errors is always divided by the full adapter
length (if the right edge of the matrix is not free or if reads are required to be long enough).

Both improvements are currently not implemented since the benefit of having a single function
that can do all variants of adapter alignments and is therefore easier to maintain have so far
outweighed the performance advantages.

To summarize the above thoughts, we give the full adapter alignment algorithm for locating a
single adapter of any of the four discussed types within a single read.

Algorithm 1 (L-S-A).
Input: Adapter s (length m); read t (length n); error rate threshold ε; and adapter type.
Output: Overlap start and end coordinates of an optimal adapter alignment; number of errors
and number of matches in the alignment.

1. Depending on the adapter type, set the flags Left-Free, Top-Free, Right-Free, Bottom-Free
to true for those edges of the DP matrix where end spaces are free (see Figure 2.3). (e
latter two flags are always true in our case.)

2. Initialize arrays C, M, and O of length m + 1 to zero. ese arrays represent the current
column of the matrices of the same name. If Left-free is set, the initialization of O and C is
different: ey are set to C[i] = i and O[i] = −i, respectively.

3. For the cutoff optimization, set k to εm. Set last to m if Left-Free and to k + 1 otherwise.
Since k is only an upper bound on the number of errors, whether ε is exceeded for an
alignment candidate still needs to be checked below.

4. Keep track of the best alignment found so far within variables best-cost, best-matches,
best-origin and best-end. best-origin is the overlap start diagonal, and best-end is the over-
lap end diagonal. e initialization is as follows: best-cost = C[m]; best-matches = 0;
best-origin = O[m]; best-end = −m.

27

2 Trimming Adapters

5. Compute the remaining columns of the matrix and update the best- . . . variables in each
step by iterating over j = 1 to n and doing the following; if Top-Free is not set, then only
iterate to column min { n,m+ k }:

a) Set variables prev-C, prev-M and prev-O to C[0],M[0],O[0]. When computing cell
(i, j), they hold the values C(i− 1, j− 1), M(i− 1, j− 1) and O(i− 1, j− 1), which
would otherwise be overwritten since only a single column of the matrix is kept in
memory.

b) If Top-Free, set (C[0],M[0],O[0]) to (0, 0, j). Set them to (j, 0, 0) otherwise.
c) Compute cells in column j by iterating from i = 1 to last and doing the following.

i. Determine the minimum of prev-C+d(si, tj) (match or mismatch), C[i− 1] + 1
(insertion), and C[j] + 1 (deletion).

ii. Copy C[i], M[i], O[i] into helper variables.
iii. Set C[i] to the minimum found above. Depending on where it was found, set

O[i] to prev-O for a match or mismatch, and to O[i − 1] for an insertion (no
change for a deletion). If there is a tie, prefer the largest diagonal to make sure
that the overlap start of the longest alignment is found.
In the same way, update M[i], except that the value gets incremented by one if
the edit operation is a match.

iv. Set prev-C, prev-M, prev-O to values of the helper variables.
d) While C[last] > k, decrease last by one. If Free-Bottom is set and last = m, then an

alignment candidate ending at (m, j) has been found (see Ukkonen, 1985). Compute
the error rate r = C[m]

m−max{−O[m],0 } and update the best- . . . variables with appropriate
values if a better match is found. A match is better if r ≤ ε and either M[m] >
best-matches or M[m] = best-matches and C[m] ≤ best-cost.

e) If last is less than m, increment it.

6. When Free-Right is set, search for a better match in the last column using the same criteria
as in step 5d), but compute the error rate as r = C[i]

i−max{−O[i],0 } .

7. If best-end is still set tom, check whether the best- . . . values represent an alignment whose
error rate is below the threshold. Return “no alignment found” if that is not the case.
Otherwise, convert best-origin and best-end to a pair of coordinates and return them along
with best-cost, and best-matches.

2.2.10 Removing one of multiple adapters

For completeness, we give the full algorithm that searches and removes the bestmatching adapter
from a single read.

Algorithm 2 (R-B-A).
Input: A read; a list of adapters, their types and associated error rates threshold.
Output: A trimmed read.

28

2.3 Reducing false positives and false negatives

1. For each adapter:

a) Run L-S-A and store the returned values.

2. Determine the adapter that received the largest number of matches (M∆). is is assumed
to be the best matching adapter.

3. Remove the adapter and any trailing or preceding sequence (according to adapter type)
from the read.

4. Return the modified read.

2.3 Reducing false positives and false negatives

While Algorithm 1 is exact in the sense that it finds all occurrences of the adapter sequence below
a given error rate threshold, it is still possible to get incorrect results.

Assume the adapter alignment algorithm is used as a binary classifier, that is, it tells us whether
a read contains an adapter or not. If a read contains an adapter and the classifier agrees then that
is a true positive (TP). If the classifier does not, it is a false negative (FN). Similarly, true negatives
(TN) and false positives (FP) occur when the read does not contain an adapter.

In adapter alignment, false negatives occur when an adapter occurrence is not found because
the error rate is too strict. False positives occur when part of the read randomly matches the
adapter sequence. We will discuss both types of errors below.

e sensitivity is the ratio TP/(TP+FN), and the specificity is the ratio TN/(TN+FP); higher
ratios are better. We first discuss how to achieve good sensitivity.

2.3.1 Choosing themaximum error rate

To improve sensitivity, the number of false negativesmust be reduced. is requires that the error
rate threshold is set sufficiently high such that not to too many adapters are missed. However,
setting it overly large increases false positives. We suggest to compute a good threshold from a
given target sensitivity t. is is inspired by the “missing prob” parameter in BWA (Li andDurbin,
2009) (command-line parameter -n).

e sequencing error rate of a set of reads is the estimated overall probability for a sequenced
base to be incorrect. It is typically below 5%. Our own measurements on a SOLiD dataset from
2008, using the quality values associated with each sequenced base or color, resulted in 3% error
rate and in 0.75% on an Illumina HiSeq 2000 dataset from 2011. Assuming that we know that
rate or an estimate of it, we can set the target sensitivity t to a value such as t = 0.95 and compute
an appropriate error rate threshold εt that allows us to reach that sensitivity. We first consider
only full adapter occurrences of length m and deal with partial matches in the next section.

Let the random variable X be the number of observed sequencing errors. e probability of
seeing at most x sequencing errors in m bases given a sequencing error rate of p is given by the
cumulative distribution function of the binomial distribution:

P(X ≤ x) =
x∑

ℓ=0

(
m
ℓ

)
(1− p)m−ℓpℓ

29

2 Trimming Adapters

Table 2.1 Suggested error rates for different adapter lengthsm and sequencing error rates p. For a given
p, each table shows, for multiple adapter lengths m, the number of errors k that should be
allowed in order to reach a target sensitivity of t = 0.95. e columns εmin

t and εmax
t show the

range of error rate thresholds that achieve this. Given values for εmin
t are rounded away from

zero; values for εmax
t are rounded towards zero.

p = 0.01
m k εmin

t εmax
t

10 1 0.10 0.19
20 1 0.05 0.09
30 1 0.04 0.06
40 2 0.05 0.07

p = 0.02
m k εmin

t εmax
t

10 1 0.10 0.19
20 2 0.10 0.14
30 2 0.07 0.09
40 2 0.05 0.07

p = 0.05
m k εmin

t εmax
t

10 2 0.20 0.29
20 3 0.15 0.19
30 4 0.14 0.16
40 4 0.10 0.12

is is equal to the expected sensitivity. We can therefore determine the number of errors k that
must be allowed within matches of length m in order to achieve the desired sensitivity t:

k = min { x : P(X ≤ x) ≥ t, x ≥ 0 } .

is absolute number of errors must be converted to an error rate threshold εt that must fulfill
⌊εtm⌋ = k in order to allow k errors in matches of length m. We get this range for εt:

k
m
≤ εt <

k+ 1
m

Hence, the threshold should be at least εmin
t := k

m , but note that floating-point precision is an
issue here: On a typical machine, ⌊98 · 8

98⌋ results in 7, not 8. One can solve this by adding a
small constant value to the numerator. e threshold should be at most about εmax

t := k+0.99
m .

Some suggested error rate thresholds that achieve a target sensitivity of t = 0.95 in full-length
matches are shown in Table 2.1.

Varying sequencing error rates

In many sequencing technologies, the sequencing error rate is position-specific and tends to
increase towards the end of the read. Depending on the experimental setup and in particular
on the average insert size, we may expect 3′ adapters to occur in those low-quality parts of the
read, too. e converse also applies: When trimming 5′ adapters, they tend to be within the
high-quality regions of the read. e choice of error rate threshold according to Table 2.1 should
therefore not depend on the global sequencing error rate, but, if possible, on an estimate of the
sequencing error rate within adapter-bearing regions of reads.

2.3.2 Partial-match bias

Whenwe start to take partial matches into account, it becomes relevant that the number of errors
in a match can only be an integer. Let ℓ be the match length and assume that ε > 0. e product
ℓε is the number of errors that would be allowed. Since the actual number of errors in a match is
never fractional, effectively ⌊ℓε⌋ errors are allowed. For ε = 0.11, both functions are shown in

30

2.3 Reducing false positives and false negatives

0 10 20 30 40

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
A

ll
o

w
ed

 e
rr

o
rs

`"

b c`"

0 10 20 30 40
Match length

0.00

0.05

0.10

0.15

0.20

E
rr

o
r

ra
te

 t
h

re
sh

o
ld

=0 11" :

()eff" `

Figure 2.5 For error rate ε = 0.11, the top plot shows the fractional number of errors theoretically
allowed vs. the actual value. e bottom plot compares actual and effective error rate.

Figure 2.5.
Let us define the effective error rate as εeff(ℓ) := ⌊εℓ⌋

ℓ . It varies over differentmatch lengths. e
sensitivity is dependent on the effective error rate. As a consequence, fewer matches are found
for lower effective error rates.

As we can see in the example for ε = 0.11 shown in Figure 2.5, εeff is quite close to ε at
length 10, but decreases further and further up to length 18. As long as the number of absolute
errors remains constant, we suspect that this phenomenon is likely not relevant in practice as the
difference is small when going from ℓ to ℓ+ 1.

More of a problem could be those lengths where εeff(ℓ) is at a localminimum and then “jumps”
to a local maximum at εeff(ℓ+1). at is, where the function allows k errors at length ℓ, but k+1
errors at length ℓ+1, such as ℓ = 9 and ℓ = 18 in Figure 2.5. As a result, the sensitivity suddenly
increases at these transitions. For many applications, this second issue is also not relevant in
practice. When trimming reads that come from an mRNA sequencing experiment, the effect is
not visible. e only real problem are false positives themselves, not that the sensitivity varies
with match length.

However, when there are many partial matches and when one is interested in comparing the
number of matches at certain lengths, the bias can influence the results. We describe a spe-
cific case that we observed when trimming smallRNA data, as also described by Rahmann et al.
(2013).

31

2 Trimming Adapters

Bias in a small-RNA sequencing study

In the study by Rahmann et al., microRNA (miRNA) molecules were sequenced on a SOLiD
sequencer at read length 35 bp. e most abundant miRNAs in this study have lengths between
20 and 23 nt. erefore, the match lengths in reads with miRNAs is most oen expected to be
between 15 and 12 nt, corresponding to 14–11 colors in SOLiD reads.

e adapter has a length of 18 and since raw SOLiD data has a high sequencing error rate,
the error rate threshold was initially set to 3/18 ≈ 17%. Unfortunately, this choice exposes
the bias at match lengths 11 vs. 12 since ⌊11 · 0.17⌋ = 1 and ⌊12 · 0.17⌋ = 2. ese lengths
correspond to miRNAs of 22 and 23 nt. Both are abundant in the sample, but 23 nt-miRNAs
were underrepresented due to reduced sensitivity of adapter trimming. e solution in this case
was to increase the error rate threshold to 20%, which results in two errors being allowed for
match lengths from 10 to 14, thus covering the range of interesting miRNAs with a constant
number of allowed errors. As a result, the number of reads containing 23 nt miRNAs increases
by 18%, while the number of reads trimmed to shorter lengths remains almost unchanged. We
conclude that the bias can be reduced by choosing the error rate threshold such that the steps of
the floor function are not located within interesting length regions.

While this problem seems to be an inherent problem of the error rate, it is actually a problem
of allowing approximate partial matches. Having a constant number of errors over all match
lengths is certainly counter-intuitive: While allowing four errors in an adapter of length 40 is
appropriate, allowing four errors in a partial match of length 10 is not. erefore, there must be
different numbers of absolute errors and the error rate is one way to interpolate between them.

2.3.3 False positives through randommatches

Apart from false negatives, which occur when we miss real adapter occurrences, there can also
be false positive matches that happen when an adapter is found although the corresponding se-
quence is not an adapter. e fewer false positives are found, the greater is the specificity.

Adapter sequences are artificial sequences that we must assume are designed to be different
from naturally occurring DNA (at least for those organisms whose genome is known). Also, the
chance that an adapter, whose typical length is between 20 and 40 bp, occurs at its full length by
chance in a piece of unknownDNA is negligible. We can therefore exclude this type of systematic
error error from consideration. On the other hand, when we allow partial matches, we need to
be aware that short, random matches do occur. We will in the following give a rough estimate of
the number of bases lost due to random matches.

Let us consider a 3′ adapter first. Assume that no errors are allowed and that the characters of
the alphabetΣ are distributed uniformly within reads and adapters. Let σ = |Σ|. e probability
of a length-k prefix of the adapter to randomly match a length-k suffix of the read is

P(s1...k = tm−k+1...m) = σ−k .

e expected number M of matching – and therefore removed – characters, ignoring matches
longer than m, is

M(m) =

m∑
k=1

kP(s1...k = tm−k+1...m) =

m∑
k=1

kσ−k .

32

2.3 Reducing false positives and false negatives

Before proceeding, we need the following lemma.

Lemma 2. Let |r| < 1. en

m∑
k=1

krk = r− rm+1(1 +m− rm)

(1− r)2
.

Proof. We show this by using

r d
dr

n∑
k=1

rk =
n∑

k=1

krk

and applying the formula for the sum of the first m terms of a geometric series

m∑
k=1

rk = r(1− rm)
1− r

.

We let r = σ−1 in the lemma and get

M(m) =
σ−1 − σ−m−1 (1 +m− m

σ

)
(1− σ−1)2

To get an upper bound, let m tend to infinity:

lim
m→∞

M(m) =
σ−1

(1− σ−1)2
=

σ

(σ − 1)2

For the DNA alphabet with σ = 4, the value is 4
9 . at is, one loses approximately 0.44 bases per

read on average. For regular 5′ adapters, we get the same result. For a mixed adapter, the number
of randomly matching bases is doubled since the adapter can match a prefix or a suffix of the
read. If there are multiple adapters, the value 4

9 must be multiplied by the number of adapters,
assuming independence between adapter sequences.

We can see that the error rate threshold ε does not need to be taken into account for realistic
values of ε: Even for ε as high as 0.2, at least four bases need tomatch exactly, which is sufficiently
rare to have any discernible effect.

Minimum overlap

While the value of 0.44 bases lost per read is already quite low, we can reduce it even further by
introducing aminimum overlap parameter o. Any match in which the overlap is shorter than o is
ignored. For example, setting o to three reduces the number of bases lost per read to 4

9−
1
4−

2
16 =

10
144 ≈ 0.07. Note that this will slightly increase the number of false negatives.

Some analysis pipelinesmay include a step inwhich so-calledRNA editing is analyzed, which is
a physical process by which RNAmolecules aremodified aer being transcribed fromDNA.is
needs to be considered when tuning the minimum overlap parameter. When o is too small, false

33

2 Trimming Adapters

positivematchesmay result that are detected as spurious “RNA shortening”. However, increasing
o to avoid this may lead to spurious “RNA extension” being detected for inserts that are slightly
below the read length. We suggest that the safest approach is to choose a large value for o and to
analyze RNA editing only for those reads that are trimmed at all. Obviously, it is also beneficial
when the read length can be chosen to be clearly larger than the longest RNA molecule that is to
be analyzed, such as when sequencing small RNA.

2.4 Trimming colorspace reads

We show in this section how to trim adapters from colorspace reads (see Section 1.5.4). Since the
colors in a colorspace read result from querying two adjacent nucleotides, some effects occur-
ring at the first and last bases of the insert, where a color covers both the insert and an adapter
sequence, need to be taken into account.

In the absence of sequencing errors, colorspace reads can be converted to the standard nu-
cleotide representation and then treated in the same way as reads from other sequencing tech-
nologies. Sequencing errors, however, propagate along the sequence during the conversion and
result in mostly unusable reads. Better results can be achieved by modifying the algorithms such
that they can work with colorspace data natively. We show how to extend the adapter trimming
algorithm such that it works well with colorspace reads.

As discussed in Section 1.5.4, colorspace sequencing allows to distinguish, to a degree, se-
quencing errors from true editing events since only certain color change patterns can be observed
when an editing event occurs. For adapter trimming, we expect the only source of differences
between read and adapter to be sequencing errors. us, every color that has changed in compar-
ison to the reference can be counted as a sequencing error, and there is no need to check whether
the pattern of color changes corresponds to an allowed one. On the other hand, the sequencing
error rate of the SOLiD system is oen given in terms of errors aer correction. Only then is it
comparable to the error rates of other technologies. For adapter trimming, the higher error rate
before correction needs to be taken into account when deciding which error rate threshold to
use.

Converting strings to and from colorspace

e string of colors one observes when sequencing a DNA fragment with a SOLiD sequencer is
called the colorspace representation of the read. We call the conversion into colorspace encoding
and the conversion from colorspace decoding. In contrast, a string of nucleotides is sometimes
said to be in nucleotide space.

To encode a read, Table 2.2 can be used as a look-up table for all dinucleotides of the read. For
example, GGCAG is encoded into the sequence of colors 0, 3, 1, 2, which we write as 0312 for short.

is simple mapping is not injective as there are, for a given colorspace sequence, four nu-
cleotide sequences that map to it. For example, AATGA also encodes into 0312. e ambiguity is
obvious by considering the pigeonhole principle: A nucleotide string of lengthm is encoded into
a colorspace string of length m− 1. While there are 4m nucleotide strings of length m, there are
only 4m−1 colorspace strings of length m− 1.

To resolve the ambiguity and make decoding possible, one of the original nucleotides needs to
be known. In SOLiD sequencing, this is the first nucleotide. It is clear that none of the bases of

34

2.4 Trimming colorspace reads

Table 2.2 Assignment of colors to nucleotide pairs in colorspace encoding. Colors are written as digits
0 to 3. Since the assignment is symmetric, the labels “First” and “Second” may be swapped.

Second base
⊕ A C G T

Fi
rs
tb

as
e A 0 1 2 3

C 1 0 3 2
G 2 3 0 1
T 3 2 1 0

the insert are known (otherwise, one would not need to sequence it). erefore, the sequencing
process begins one base earlier. at is, the first queried dinucleotide and therefore the first
sequenced color covers the last base of the 5′ sequencing adapter (or primer) (called the primer
base) and the first base of the insert. When the standard primer is used, the primer base is a T.

Given a dinucleotide ab, we write its encoded color as a⊕b. is notation was chosen because
encoding a dinucleotide is equivalent to the bitwise “exclusive or” operation (XOR, ⊕) on the
two nucleotide characters, assuming that the nucleotides A, C, G, T are encoded as 0, 1, 2, 3, re-
spectively. Breu (2010) introduced the⊕ symbol in his notation, but does not explicitly describe
the connection to XOR.

Let x be a DNA fragment x = (x1, . . . , xk), xi ∈ ΣDNA. Let Σcolor := { 0, 1, 2, 3 } be the
colorspace alphabet. e colorspace representation xcs of x is

xcs = (x1, c1, c2, . . . , ck−1) where ci ∈ Σcolor and ci = xi ⊕ xi+1.

A given instance of a colorspace read such as (T, 0, 3, 1, 2) is usually written in the abbreviated
form “T0312”. e T is the primer base. is is also the format in which the read is stored in
FASTQ files. We also introduce x∗cs, which is equal to xcs without the primer base:

x∗cs = (c1, c2, . . . , ck−1) where ci ∈ Σcolor, ci = xi ⊕ xi+1

Decoding

e conversion from colorspace to nucleotide space needs to start at the known nucleotide, in
our case in the beginning at x1. To find x2, we can search for the row that contains c1 in the
column labeled x1 in Table 2.2 and then proceed to x3 and so on. Alternatively, we note that the
exclusive or is its own inverse. at is, (a⊕ b)⊕ b = a. For the base at index i+ 1, we get

xi+1 = (xi ⊕ xi+1)⊕ xi = ci ⊕ xi .

e nucleotide sequence can therefore be computed iteratively from le to right, using the pre-
viously decoded nucleotide in the current iteration and starting with the known nucleotide x1.

2.4.1 Aligning colorspace reads

Since each color in a colorspace read is decoded with the help of the preceding decoded nu-
cleotide, a sequencing error in the form of an incorrect color propagates from the point at which

35

2 Trimming Adapters

it occurs to the end of the read. at is, all the bases following the incorrect one are also decoded
incorrectly (unless a compensating second sequencing error occurs). When attempting to align
or map these converted reads to a reference, a run of mismatches is produced that prevents a
correct analysis. erefore, colorspace-aware read mappers such as BFAST (Homer et al., 2009)
use the unconverted colorspace read and instead convert the reference to colorspace. Sequencing
errors thus appear as mismatches of single colors only. Aer mapping, the most likely nucleotide
sequence of the read is then inferred, guided by the reference (Li et al., 2008a; Homer et al., 2009).

For adapter trimming, we follow the same approach. us, to align a colorspace read to an
adapter, we first convert the adapter to colorspace and then use the adapter alignment algorithm
(Algorithm 1) to find it within the read, except that the cost function is defined on colors instead
of nucleotides. It is not necessary to infer a most likely nucleotide sequence since the correct
adapter sequence is already known.

While the alignment algorithm remains almost unchanged, care needs to be taken when re-
moving a found adapter, resulting from the way in which string concatenation works in col-
orspace.

2.4.2 Concatenating strings in colorspace

A read that contains an adapter can be modeled as the concatenation of the string that represents
the insert and the string that represents the adapter. Removing an adapter can then be seen as un-
doing this concatenation. is is the same in both nucleotide- and colorspace, but concatenation
works differently in colorspace.

Let x = (x1, . . . , xk), y = (y1, . . . , yℓ), with xi, yj ∈ ΣDNA and k, l > 1. When these two
nucleotide-space strings are concatenated and subsequently encoded into colorspace, the result-
ing string is

(xy)cs = (x1, x2 ⊕ x3, . . . , xk−1 ⊕ xk, xk ⊕ y1, y1 ⊕ y2, . . . , yℓ−1 ⊕ yℓ) .

It contains one color xk⊕ y1 that belongs to both x and y since it encodes the transition from one
string to the other. We call it a bridge color.

Example 3. e colorspace representations of the two strings x = AAAA and y = TGTG are
xcs = A000 and ycs = T111, respectively. e concatenated string xy = AAAATGTG gets encoded
to (xy)cs = A0003111. e “3” is the bridge color.

Another example for a bridge color is the first color of each SOLiD read. It encodes the tran-
sition from the primer base to the first base of the insert.

Example 4. Sequencing GGCAG, preceded by the standard primer base T, results in the read
T10312, where the first 1 is the bridge color.

Bridge colors can cause spurious mismatches when they are not accounted for. Consider a
colorspace read of the primer T concatenated with the insert. When the read is mapped to a
location on the reference in which the sequence of the insert is not preceded by a T, there will be
a mismatch at that position. See Figure 2.6 for an example. One solution is to discard the first
color before mapping the read, as done by BWA (Li and Durbin, 2009). e problem is then that
one of the dinucleotides that interrogates the first base of the insert is missing. A substitution of

36

2.4 Trimming colorspace reads

Read T A C C C
Readcs T 3 1 0 0
Ref.cs G 0 2 1 0 0
Ref. G G A C C C

Figure 2.6 An example for a spuriousmismatch between the colorspace read of theDNA fragment ACCC
and the reference sequence GGACCC. Since the ACCC is preceded by a T in the read and by a G
in the reference, the colors differ (bold) and result in the mismatch.

the first base would therefore result in only one color change instead of two. As a consequence,
BWA ignores the first base when computing the most likely nucleotide sequence. BWA also does
not call the last nucleotide of a read since it is supported by only one color. For BWA, this results
in reads that are two bases shorter than the nominal read length given by the manufacturer.

Especially when sequencing short molecules, which is a primary application for adapter re-
moval, discarding even a single base represents a proportionally large loss of data (5% for a mi-
croRNA molecule of 20 nt). For adapter removal, we show how to retain as much information
as possible. e procedure is different for 5′ and 3′ adapters. We describe the simpler case of
removing a 3′ adapter first.

2.4.3 Removing 3′ adapters

Let t = bus be a sequenced fragment (in nucleotide space), where u = u1, . . . , uk is the insert,
b ∈ ΣDNA is the primer base, and s is the adapter. We assume the adapter is a suffix of the
read, but the following thoughts hold also if a prefix of it appears or when it is followed by other
nucleotides. e sequencer gives us the colorspace read

tcs = (b, b⊕ u1, u1 ⊕ u2, . . . , uk−1 ⊕ uk, uk ⊕ s1, s1 ⊕ s2, . . . , sm−1 ⊕ sm) .

Aer adapter removal, the read should look as if the adapter had not been sequenced, that is,
it should look as if ttrimmed = bu had been sequenced. e result of adapter trimming must
therefore be the colorspace sequence

tcstrimmed = (b, b⊕ u1, u1 ⊕ u2, . . . , uk−1 ⊕ uk) .

In other words, the suffix (uk ⊕ s1, s1 ⊕ s2, . . . sm−1 ⊕ sm) of tcs needs to be searched and re-
moved. is is not possible, however, as the bridge color uk ⊕ s1 is unknown since it depends
on the unknown base uk. e simple solution in this case is to search instead for s∗cs = (s1 ⊕
s2, . . . sm−1 ⊕ sm) and then cut the read one base earlier than what the obtained overlap start
coordinate indicates. See Figure 2.7 for an example.

Note that the string s∗cs, which we search for, has onlym− 1 colors whereas the adapter hasm
nucleotides. is is caused by leaving out the bridge color from the search pattern, which could
be considered to represent a “free mismatch”. If the color is inconsistent with the transition from
uk to s1, no error would be detected. Without knowing uk, this cannot be avoided, but if adapter
detection was done as part of the read mapping process, it would be possible, see Section 2.7.2.

e full algorithm is summarized in the following.

37

2 Trimming Adapters

Adapter sequence: 330201030313112312
Original read: T30002321001012222223330201030313112

Trimmed read: 000232100101222222

Figure 2.7 Trimming a 3′ colorspace adapter. Here, also the removal of the primer base and the first
color is shown, which is necessary if the read is processed further with BWA. e removed
characters are underlined.

Algorithm 3 (C-3′-A-C).
Input: Colorspace read tcs; adapter s; error rate threshold ε.
Output: A prefix of tcs.

1. Compute s∗cs (the colorspace representation of adapter s without the initial nucleotide s1).

2. Compute t∗cs by removing the primer base from tcs.

3. Search for s∗cs within t∗cs by calling L-S-A (Algorithm 1) with the
adapter type set to “3′ adapter” and the error rate threshold set to ε.

4. If no match was found, return tcs unchanged.

5. Otherwise, set t∗cstrimmed to t∗cs1...startt−2. Prepend the primer base and return the result.

Note that the algorithmworks correctly for reads inwhich the insert is empty: e single bridge
color between primer and adapter is correctly removed. If that bridge color is also missing due
to a deletion, then startt−2 gets negative, and, by definition, an empty read is correctly returned.

2.4.4 Removing 5′ adapters

When trimming 5′ adapters in both the anchored or non-anchored case, there are two problems:
First, we need to take into account that the first color is a bridge color from the primer into
the adapter, not into the insert. Second, to remove the adapter from the read, the two bridge
colors between primer/adapter and adapter/insert cannot simply be discarded as when trimming
a 3′ adapter, but need to be re-encoded.

Let the sequenced fragment in nucleotide space be t = bsu = (b, s1, . . . , sm, u1, . . . , uk), where
b is the primer base, s is the 5′ adapter, and u is a prefix of the insert. In the non-anchored case,
s is a suffix of the adapter, but the following considerations still apply. e colorspace read is:

tcs = (b, b⊕ s1, s1 ⊕ s2, . . . , sm−1 ⊕ sm, sm ⊕ u1, u1 ⊕ u2, . . . , uk−1 ⊕ uk) (2.9)

is includes the two bridge colors b ⊕ s1 and sm ⊕ u1. As before, the trimmed read should be
ttrimmed = (b, u1, . . . , uk) in nucleotide space. In colorspace, this is

tcstrimmed = (b, b⊕ u1, u1 ⊕ u2, . . . , uk−1 ⊕ uk) . (2.10)

Let us now consider the search pattern. As in the case of the 3′ adapter, searching for s∗cs works,
but we can do better since the primer b is known for each read. For anchored 5′ adapters, also s1
is known and therefore the first bridge color b⊕ s1 can be computed and included in the pattern.

38

2.4 Trimming colorspace reads

Assuming that we have removed the primer base from both the read and the adapter before
alignment, the final search pattern is therefore (bs)∗cs = (b ⊕ s1, s1 ⊕ s2, . . . , sm) for anchored
5′ adapters.

If the adapter is not anchored, the first color in the read tcs is not necessarily b⊕ s1, but b⊕ si
for some i ≥ 1. e correct search pattern is (bsi...m)∗cs for an unknown i. Since i is unknown,
we actually get patterns for i = 1, . . . ,mwhere the pattern for i+1 is in general not a suffix of the
one for i. Fortunately, we do not need to deal with all patterns separately, but can use semiglobal
alignment with the search pattern (bs)∗cs as before, but need to alter the cost function in column
j = 1. At a cell (i, 1) in this column, one would usually compare the first color of the read to the
i-th color of the pattern, which is si−1 ⊕ si for i > 1 and b ⊕ s1 for i = 1. e only adjustment
we need to make is to instead compare the first color of the read to b ⊕ si for cells in column 1,
rows i > 1. No changes are needed for the other columns.

For how to actually remove the adapter, let us look at the untrimmed read again, copying
Equation (2.9):

tcs = (b, b⊕ s1 , s1 ⊕ s2, . . . , sm−1 ⊕ sm, sm ⊕ u1 , u1 ⊕ u2, . . . , uk−1 ⊕ uk)

e boxes mark bridge colors. We get the position of the second box from the adapter alignment
step. In the trimmed read (Equation (2.10)), the primer base is as before and also the colors to
the right of the second box:

tcstrimmed = (b, b⊕ u1 , u1 ⊕ u2, . . . , uk−1 ⊕ uk)

e box marks a new bridge color b⊕ u1 that does not appear in the original read, but it can be
computed since we now know that the second bridge color is sm⊕ u1. Decoding that gives us u1
and then encoding yields the new bridge color:

b⊕ u1 = b⊕ (sm ⊕ u1)⊕ sm

See Figure 2.8 for an example.

Quality values

So far, quality values (see Section 1.7) have not been considered as they must simply be trimmed
in the same way as the read that they belong to: For each base or color that is kept, the corre-
sponding quality value must be retained. In the case of 5′ adapter trimming in colorspace, how-
ever, the trimmed read contains a new, computed color that is not part of the original read. e
corresponding quality should describe the probability of the dinucleotide that covers the primer
base and u1 being sequenced incorrectly, but that measurement was never made. We suggest to
use the quality value associated with the second bridge color (sm ⊕ u1). While that belongs to
a different dinucleotide, both are the result of interrogating one known and the same unknown
base.

Algorithm 4 (C-5′-A-C).
Input: Colorspace read tcs; 5′ adapter s; adapter type (anchored 5′ or non-anchored 5′); error rate
threshold ε.
Output: An adapter-trimmed version of tcs.

39

2 Trimming Adapters

Read T G T T C A A A A

Readcs T 1 1 0 2 1 0 0 0
Adapter G T T C
Adapter∗cs 1 0 2
Trimmed readcs T 3 0 0 0

Figure 2.8 Trimming the 5′ adapter GTTC from the colorspace read T11021000. e boxes mark the two
bridge colors in the original read. e new bridge color is the single 3 in the last row.

1. Let b = t1 be the primer base of tcs.

2. Set t∗cs to tcs without the primer base.

3. Set s′ to bs, that is, the adapter prepended by the primer base of the read.

4. Compute (bs)∗cs.

5. If the adapter is anchored, run L-S-A (Algorithm 1). If the adapter
is non-anchored, then run the version of L-S-A instead that uses the
modified cost function as described above. e parameters are the adapter type, (bs)∗cs,
t∗cs and ε.

6. If no result was returned, return tcs unchanged. Otherwise, set i to stopt + 1. is is the
index of the second bridge color in t∗cs.

7. Decode the second bridge color by setting d to sm ⊕ t∗csi .

8. Set tcstrimmed to (b, b⊕ d, t∗csi , t∗csi+1, . . . , t∗csn−1) and return it.

2.5 Implementation in cutadapt

e above algorithms were implemented in a tool named cutadapt (Martin, 2011). e pro-
gram runs on Ubuntu Linux, Windows and Mac OS X. Cutadapt is written in Python, except
for the adapter alignment algorithm, whose prototype was developed in Python but then re-
implemented in C as a Python extension module, and again rewritten in Cython5, which is a
Python-like language that is also compiled to C. e tool has been published under the MIT
Open Source license at http://code.google.com/p/cutadapt/. It has been downloaded thousands
of times and is being successfully used by researchers as part of their sequencing pipelines (van
Bakel et al., 2011; Jünemann et al., 2012; Vesely et al., 2012).

2.5.1 Features

Cutadapt was written to be usable in practice. In addition to the adapter trimming algorithms
described in this chapter, it contains many features that have not been described so far. ey,
for example, help the user deal with different input and output formats and further filter and

5http://www.cython.org/

40

http://code.google.com/p/cutadapt/
http://www.cython.org/

2.5 Implementation in cutadapt

modify the reads. Many of the features were added following user feedback, and a few have been
contributed in the form of source code patches by the users themselves (marked below).

For increased maintainability and to allow us to deliver production-quality code, all of the
features and trimming algorithms are extensively unit-tested. We use the Python unit testing
framework nosetest6.

Input and output formats Input to the program can be given in FASTA or FASTQ format or
– needed for SOLiD data – as a pair of .csfasta and .qual files. e output format is
either FASTA or FASTQ, depending on whether input data contains quality values or not.
Also, the program works with colorspace FASTQ files from the Sequence Read Archive
(SRA, Leinonen et al., 2011; Kodama et al., 2012) that contain a fake additional quality in
the beginning.

Compressed input and output Any input or output file can be gzip- or bzip2-compressed.
Transparent compression or decompression is automatically enabled when a given file-
name ends in .gz or .bz2.

Quality values As discussed in Section 1.7, sequencing data contain quality values for each
sequenced base. e program can read ASCII-encoded quality values from FASTQ files
according to different vendor standards and from SOLiD-specific .qual files. e reads
are trimmed appropriately and written with correctly trimmed quality values to the output
file.

Low-quality bases Using the same algorithm as BWA (Li and Durbin, 2009), low-quality ends
of reads can be trimmed before locating adapters.

Discarding reads In some cases, reads that contain adapters should not be analyzed at all. To
support this, there is a mode in which a read with an adapter is discarded entirely, instead
of being trimmed appropriately. Use of this option requires a more careful choice of the
minimum overlap parameter. It should be set to a value larger than its default of three in
order to avoid discarding too many reads with random adapter matches.

Allowed lengths Reads that are not within a specified length range aer trimming can be dis-
carded.

Double encoding When trimming colorspace reads, cutadapt can produce output compatible
with MAQ (Li et al., 2008a) and BWA (Li and Durbin, 2009). ese tools require FASTQ
files in which the colors are not encoded by the digits 0–3, but by the letters ACGT (so-
called double encoding), and in which the primer base and the first color are removed.

Repeated search Due to technical problems, it is possible that, at library preparation time,
an adapter is added to each DNA fragment multiple times. If it is a 5′ adapter, only the
lemost occurrence would be found and removed. If it is a 3′ adapter, but occurs only
in a degraded form, only the rightmost occurrence would be removed. We allow dealing
with such reads by searching and removing adapters repeatedly until either no adapter can
be found anymore or until a maximum number of iterations is reached. e number of
iterations is set to one by default.

6http://readthedocs.org/docs/nose/

41

http://readthedocs.org/docs/nose/

2 Trimming Adapters

Wildcard characters Both the adapter and the readmay contain ‘N’ characters, which are wild-
card characters that match any character at no cost. is is useful when sets of adapters
are used that differ in only a few characters, for example when sequencing barcoded frag-
ments. (is feature was contributed externally.)

For completeness, we point out two differences between the implementation available online
and the work described in this chapter: First, non-anchored 5′ adapters are also allowed to start
within reads, that is, in contrast to Figure 2.1, the DP matrix for them is the same as for mixed
adapters (semiglobal alignment). is behavior is currently retained only for backwards com-
patibility and will be changed in a future version of the tool. e second difference is that the
part of Algorithm 4 where a modified cost function is used to trim non-anchored 5′ adapters is
not implemented.

2.5.2 Performance evaluation

e focus while developing cutadapt was foremost on correctness, usability, maintainability and
feature-richness. Choosing Python as the programming language facilitates reaching those goals,
but since Python is interpreted, there is some loss of performance compared to an implementa-
tion in a lower-level language. To partially mitigate that loss, the alignment function is kept in
a compiled Python extension module that contains machine-level instructions. Calling the func-
tion incurs the same overhead as calling a Python function, but the execution of the function
itself is as fast as it would be for any other function implemented in a compiled language such
as C.

In theory, adapter trimming with cutadapt is dominated by the time needed to compute align-
ments, which isO(NM), where N is the total number of the characters in all reads and M is the
total number of characters in all adapters. For those adapter types where the “Ukkonen cutoff”
(stopping the calculation of a column when the number of encountered errors is too large) is
applicable, a better estimate is O(NεM) expected runtime. As we will see below, however, time
spent aligning adapters to reads takes up only a fraction of total processing time. As first anec-
dotal evidence for that, consider the addition of the Ukkonen cutoff parameter to the algorithm.
Compared to a version of the alignment algorithm that computes the full alignment matrix, the
runtime of the alignment algorithm itself was sped up by more than a factor of three, but the
total runtime decreased by only 30%.

Software

Our benchmarks were done on a single core of an Intel Core 2 Quad processor (Q9400) running
at 2.66GHz with Python 2.7 under a 64 bit Ubuntu Linux 11.04. e extension module was
compiled with Cython 0.17.2 to C code, which in turn was compiled to a shared library (“.so”,
shared object) with GCC 4.5.2. e cutadapt version is 1.3.

Improving runtime

As a runtime heuristic, the implementation does initially not run the alignment procedure, but
searches for an exact match of the adapter sequence within the read first. If a match is found, the
alignment procedure can then be skipped. In many real-world datasets, the error rate is low and

42

2.5 Implementation in cutadapt

adapters oen occur in full. Also, since a fast, built-in function is used (the find() method of
string objects) for the exact search, this results in noticeable speedups for typical datasets.

Datasets

We evaluate cutadapt’s performance on both simulated and real datasets. For the simulated
datasets, we use the randomly generated adapter sequence GCCTAACTTCTTAGACTGCCTTAAGGACGT
(length 30).

Simulated We generate a FASTQ file with 10 million 100 bp reads sampled randomly from
human chromosome 1. e quality value for each base is set to “I”, which corresponds to
quality 40 in the standard encoding. e quality value is not used, but required for the
FASTQ file format.

SimulatedAdapt0.0 Into 50% of the reads of the above file, we insert an adapter sequence.
e start position of an adapter is chosen randomly from { 1, . . . , 100 } (using a uniform
distribution). Aer the adapter is inserted, the read is truncated to length 100.

SimulatedAdapt0.1, SimulatedAdapt0.2 ese two datasets are generated in the same way
from Simulated, except that each base in the adapter was mutated before insertion with a
probability of 0.1 or 0.2, respectively.

Exome We obtained dataset SRR636532 from the Sequence Read Archive. is is a paired-end
exome sequencing dataset published as part of a study by Harbour et al. (2013), which we
further describe in Section 4.5.3. We use here only the forward read of the first 10 million
read pairs. Each read has a length of 101 bp. is is an example of a dataset wherewe expect
little adapter contamination. Systematically trying out all Illumina adapters known to us,
we determined that the adapter that should be removed is the Illumina TruSeq adapter
AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC.

SmallRNA is dataset stems from a smallRNA sequencing experiment (“sequencing of small
RNA from the H1 cell line”). It was picked randomly from those smallRNA sequenc-
ing datasets available in SRA that also provide the adapter sequence in their description.
Single-end reads of length 43 bpwere obtained on an IlluminaGenomeAnalyzer II.7 Reads
are of comparatively low quality. For example, 10% contain at least one N character. As
above, only the first 10 million reads are used.

Colorspace is is a smallRNA sequencing dataset of a neuroblastoma patient and chosen be-
cause it is an example for adapter-containing colorspace reads. e dataset has previously
been used in two of our studies (Rahmann et al., 2013; Schulte et al., 2010). It is available
under accession SRR029974 from the SRA. e length of the single-end reads is 35 bp.
Again, only the first 10 million reads are used. e adapter sequence is CGCCTTGGCCG-
TACAGCAG, which is 330201030313112312 in colorspace.

43

2 Trimming Adapters

Table 2.3 Benchmark results for 5′ adapter trimming on simulated and real datasets. All datasets contain
10 million reads. Runtimes were measured as the minimum of six runs.

Total Trimmed Time

Bases Reads Bases Bases Read
Dataset ε (Mbp) (%) (Mbp) (%) (µs)

Simulated 0.1 1 000 1.82 0.6 0.06 32
SimulatedAdapt0.0 0.1 1 000 49.91 252.7 25.27 33
SimulatedAdapt0.1 0.1 1 000 32.07 162.8 16.28 37
SimulatedAdapt0.1 0.2 1 000 49.16 246.5 24.65 41
SimulatedAdapt0.2 0.1 1 000 9.00 33.0 3.30 33
SimulatedAdapt0.2 0.2 1 000 33.23 158.4 15.84 39
Exome 0.1 1 010 4.97 6.5 0.65 35
SmallRNA 0.1 430 75.73 135.1 31.42 38
SmallRNA 0.2 430 82.09 145.6 33.86 42
Colorspace 0.1 350 45.38 66.5 19.01 34

Results

Results of running the cutadapt program on all datasets are shown in Table 2.3. e minimum
overlap parameter was set to 3 and we see that almost no adapters are trimmed in the simulated
dataset without adapters. e predicted value of 0.07 bases lost per read (Section 2.3.3) matches
the observed value of 0.06% of bases per read. Comparing the percentage of trimmed reads in
dataset SimulatedAdapt0.1 for ε = 0.1 and ε = 0.2 confirms that the error rate threshold needs
to be higher than the actual sequencing error rate in order for the program to find most adapters.
Also, the percentage of trimmed bases is as expected (25%) only for SimulatedAdapt0.0 with
ε = 0.1 and SimulatedAdapt0.1 with ε = 0.2. emodest increase in the percentage of trimmed
bases in the SmallRNA dataset going from ε = 0.1 to ε = 0.2 suggests that a further increase of
ε will likely not improve results any further. e difference in the percentage of trimmed reads
between the SmallRNA (ε = 0.1) and Colorspace datasets suggests that enrichment of small
RNA molecules was less effective in the latter. Runtimes for ε = 0.1 are relatively constant at
values around 35 µs and increase to slightly above 40 µs for ε = 0.2.

Not shown in this table are the runtimes of the adapter alignment function itself, which is
about 7 µs and therefore represents only a fih of the total runtime. at is, about 20% is spent
within compiled C code on computing alignments, and the remaining CPU time is spent within
Python on parsing the input file, calculating statistics, and writing output files. For comparison,
note that mapping a read of length 100 with BWA takes 400 µs on average on the same machine.

2.6 Future work

We consider two types of improvement to the algorithm and to the program that warrant future
research. e first is performance improvement, the second is the addition of more features, in

7See http://www.ncbi.nlm.nih.gov/sra/SRX007166 for more details.

44

http://www.ncbi.nlm.nih.gov/sra/SRX007166

2.6 Future work

particular support for paired-end reads. ere are also other feature requests, but most of them
entail simple implementation or engineering work, such as support for multi-threading or other
file formats. We will not discuss those here; see the issue tracker at http://code.google.com/p/
cutadapt/issues/list for a current list.

2.6.1 Performance improvements

Since the current performance bottleneck is the interpretation of the code by the Python inter-
preter, an obvious way to speed up execution is to re-write the essential parts of the tool in a
non-interpreted language. At that point, the alignment algorithm itself may become the bottle-
neck and alternatives may be sought for. It is likely that the best improvements can be achieved
by using separate algorithms for some adapter types. For example, an anchored 5′ adapter will
benefit from banded alignment, in which cells in the matrix that are too far from the diagonal
are skipped (proposed, among others, by Fickett, 1984).

Another option is to use a bitparallel alignment algorithm (Myers, 1999). Since typical adapters
are shorter than available register widths of 64 bits, there is not even a need to split a too long
pattern into multiple registers. is limits the implementation complexity and reduces run-
time overhead. Another bitparallel alternative is a Shi-And algorithm that allows approximate
matches (Wu and Manber, 1992). For adapter alignment, these algorithms cannot be used un-
changed. Wemust take partialmatches and the error rate threshold into account. Partialmatches,
at least for 3′ adapters, are straightforward to handle, but the error rate poses a problem since the
overlap start coordinates need to be tracked and the overhead for that could dwarf the benefits
gained from the faster algorithm.

In general, any approximate patternmatching algorithm that slides a window from le to right
over the text and searcheswithin that window from le to rightmay potentially be used for partial
3′ adapter matching (Navarro and Raffinot, 2002, some of the approaches in Chapter 6 apply).
For 5′ adapters, the same algorithms could search on the reverse read.

When it is of importance that many adapters can be searched for efficiently, more compli-
cated data structures may be appropriate, such as an error-tolerant version of the Aho-Corasick
algorithm (Aho and Corasick, 1975).

2.6.2 Paired-end reads

e most oen requested feature for cutadapt is better support for trimming of paired-end reads
(see Section 1.6). We will explain in this section how paired-end reads are currently supported
in the tool and what could be done to get better results.

As with single reads, adapter contamination is possible in paired-end reads if the insert is
shorter than the read length. In the forward read, the 3′ adapter appears towards the end of the
read, whereas in the reverse read, the reverse complement of the 5′ adapter appears, also towards
the end of the read (see Figure 1.2).

Since paired-end reads are stored in two separate FASTQ files, the cutadapt tool can cur-
rently deal with paired-end reads by trimming both files separately. First, the forward reads
are trimmed with the 3′ adapter and with the adapter type set to “3′ adapter”. Second, the reverse
reads are trimmed with the reverse complement of the 5′ adapter and again the adapter type is
set to “3′ adapter”.

45

http://code.google.com/p/cutadapt/issues/list
http://code.google.com/p/cutadapt/issues/list

2 Trimming Adapters

While this approach works, it ignores some of the information that is available: For inserts
shorter than the read length, not only do adapter sequences appear in both reads, but also the
insert is the same in both reads. Let ℓ1 and ℓ2 be the respective read lengths and L be the insert
length. Assume for the moment that L ≥ ℓ1, L ≥ ℓ2, that is, no adapters occur. If ℓ1 + ℓ2 > L,
then there is at least one base that is sequenced twice. More precisely, the suffixes of length
ℓ1+ ℓ2−L of both reads come from the same part of the insert. is also means that the forward
read and the reverse complement of the second read overlap. e tool FLASH by Magoč and
Salzberg (2011) uses this fact: It detects overlapping regions and merges the reads into single,
longer reads, which in turn improves the output from assembly algorithms.

For adapter trimming, paired-end reads with adapters (L < ℓ1 or L < ℓ2) could reduce false
positives matches. e idea is that there are now more conditions that can be checked to assert
that an adapter is found. Previously, the criterion (for a 3′ adapter) was that the adapter must
appear as a suffix of the read. For paired-end reads, the criteria are: 1) e first (3′) adapter must
be a suffix of the forward read; 2) the second (reverse-complemented 5′) adapter must be a suffix
of the reverse-complemented reverse read; 3) the part preceding the adapter in the forward read
must be the same as the part following the adapter in the reverse-complemented reverse read. All
conditions can be checked error-tolerantly at the same time by using a single DPmatrix as shown
in Figure 2.9. e idea is that we compute a semiglobal alignment of two sequences: e first is
the forward read (“First read” in the figure) concatenated to the reverse-complemented 5′ adapter
(“Reverse adapter”), and the second is the reverse-complemented reverse read (“Second read”)
followed by the 3′ adapter. We need to allow free spaces in the le column and in the bottom row,
and, as previously, we search for an alignment that is as long as possible but has few errors. ere
are four regions in the matrix. e bottom-right one aligns the forward adapter to the first read,
and the top-le one aligns the reverse adapter to the second read. is covers conditions 1) and
2). e bottom-le region aligns a prefix of read 1 to a suffix of read 2. Together with the fact
that we allow only a single path, this covers condition 3). e top-right region can be ignored
and does not need to be computed.

In principle, this method gives us all the information needed to properly trim both reads while
being more specific than trimming both reads separately.

2.7 Discussion

Adapter trimming must accurately model the underlying sequencing process in order for sub-
sequent steps in a high-throughput sequencing pipeline to give correct results. e algorithms
presented in this chapter do this, and their implementation within cutadapt is faster than read
mapping by an order ofmagnitude. In the following, we discuss alternative approaches of solving
the adapter trimming problem in practice.

2.7.1 The error rate threshold

We argued that the error rate threshold is a natural way for users to specify how error-prone
they believe their data to be. is is supported by the fact that almost none of the hundreds of
messages regarding cutadapt that the author received express a misunderstanding regarding the
error rate. On the other hand, the error rate threshold causes the bias described in Section 2.3.2.

46

2.7 Discussion

Forward

Adapter

 R
ev

er
se

A
d

ap
te

r
F

ir
st

 R
ea

d

Second Read

Figure 2.9 Matrix for aligning paired-end reads that may contain adapters. e “Reverse adapter”
denotes the reverse-complemented 5′ adapter. e “Second read” denotes the reverse-
complemented reverse read. e longer of the two paths represents an alignment that cor-
rectly identifies where the reverse adapter is in the second read (top-le region), where the
the two reads overlap (bottom-le region) and where the forward adapter is in the first read
(bottom-right region). e shorter path represents an alignment in which no adapter was
found, but where the reads overlap. e shaded top-right region is not computed.

For those use cases in which that bias may be important, a different model based on scores might
work better.

Computation of the error rate also requires maintaining the origin matrix O, which may not
need to be done when scores are used. e matrix is also needed to know where to trim the
read, but that could be solved for 3′ adapters by searching for the reverse of the 3′ adapter in the
reverse of the read; then only the overlap end coordinate, which is available without theOmatrix,
is needed.

2.7.2 Combining trimming andmapping

Adapter trimming and read mapping are currently modeled as two separate problems. It may be
beneficial to treat them as one. Consider the case of spurious matches of a 3′ or non-anchored
5′ adapter. Currently, when the last few bases of the read match the adapter, there is no way to
decide whether that is a real match or due to chance. e minimum overlap parameter also does
not help to make that decision, it only reduces the overall number of false positives.

A much better criterion would be available if the location that the read maps to on a reference
genome were known: If the last few bases match the adapter, but not the reference, then a true
adapter is likely present. eminimumoverlap could therefore be lowered, increasing sensitivity.

An existingmapping algorithmwould need to bemodified to allow simultaneous alignment to
the reference and to the adapter, for example by appending the adapters as additional reference
sequences and then allowing a single “jump”, that is, a long deletion, at little or no penalty to the

47

2 Trimming Adapters

beginning of a 3′ adapter. is splits the alignment into one part that is on the regular reference
and one part that aligns a suffix of the read to a prefix of the adapter. Readmappers that find local
alignments, such as BWA-SW by Li and Durbin (2010), and those used for split-read mapping
such as splitseek byAmeur et al. (2010) could be used for that purpose, except that they need to be
modified to ensure that the alignment to the adapter starts with its first base. A similar method
would work for non-anchored 5′ adapters.

A problem is that we cannot expect every read mapper to include adapter trimming routines
as flexible as those in a tool such as cutadapt. One only needs to consider that the command-line
interface to cutadapt currently has 33 distinct options, and that it is a valuable analysis tool by
itself. A worthy goal therefore is to define a standard way of exchanging information between
the processing pipelines. In the future, a trimming tool would then be able to mark the found
adapters, for example by writing the characters in lower-case in the FASTQ file or by using so
clipping in a SAM/BAM file (Li et al., 2009), and would not actually remove them. Instead, the
read mapper would then decide whether to cut.

48

3 Mapping Bisulfite Sequencing Reads with
a q-Gram Index

In addition to the nucleobases adenine, cytosine, guanine and thymine, DNA in some organ-
isms – and vertebrates in particular – may contain methylated cytosine, which influences gene
expression and is associated, for example, with gene silencing and genomic imprinting. To study
methylation patterns at nucleotide resolution, the method of bisulfite sequencing has been devel-
oped twenty years ago. Treatment with sodium bisulfite changes cytosines depending on their
methylation state. Sequencing themodifiedDNA and then comparing it to the unmodified refer-
ence yields the desired information. High-throughput sequencing technologies have allowed to
investigate methylation of ever larger amounts of DNA, up to the level of whole-genome studies.

A crucial algorithmic step in any bisulfite sequencing pipeline is that of mapping the bisulfite-
modified reads to the reference genome. In this chapter, we will propose one such method,
developed for a study comparing DNA methylation between human blood and sperm samples
in a subset of DNA regions called CpG islands.

e algorithms have been implemented within the Verjinxer (versatile Java-based indexer)
soware framework, which is available from http://code.google.com/p/verjinxer/. Verjinxer was
originally written by S. Rahmann, and has been heavily extended by us while we added bisulfite
mapping capabilities. e soware is dual-licensed under the GNU General Public License and
the Artistic License.

3.1 Introduction

We discuss methylation in the biological context, describe the bisulfite sequencing method and
introduce the q-gram index for use in read mapping.

3.1.1 Biological background

A nucleotide is said to be methylated if a methyl group (CH3) is attached to it. Methylation has
different functions. In bacteria, for example, the mechanism that detects and corrects copying
errors during DNA replication relies on methylated adenines to distinguish the original from the
copied strand.

e prevalent form of methylation in vertebrates is cytosine methylation. In the following, we
will consider only this form of methylation. Since the methyl group – if present – is attached to
the fih carbon atom, a methylated cytosine is called 5-methylcytosine.

Methylation in vertebrates occurs almost exclusively at cytosines that are followed by a guanine.
e sequence “CG” is also called aCpG dinucleotide, where the “p” represents the phosphodiester
bond between C and G, clarifying that base-pairing (involving hydrogen bonds) is not meant.
Since CG is reverse-complementary to itself, there is, for each methylcytosine, also a cytosine on

49

http://code.google.com/p/verjinxer/

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

the opposite strand. Enzymes such asDNMT1 inmammals have amaintenancemethyltransferase
activity, whichmeans that theymethylate one strand if they detectmethylation on the other. Most
of the time, therefore, both cytosines are methylated.

Methylated cytosines influence gene expression, mainly by preventing transcription factors
from binding to the DNA. Methylation also achieves what is called genomic imprinting. is
means that some genes are expressed differently depending onwhether they are on thematernally
or paternally inherited chromosome.

Methylation patterns can be passed from one generation to the next and therefore represent
another level of heritable information aside from the information contained in the base sequence
alone. Other heritable information exists that is not stored within the DNA sequence itself, an
example being histonemodification (histones are proteins aroundwhich theDNAwinds in order
to take up less space in the cell). e study of heritable informationnot stored in theDNA is called
epigenetics.

CpG depletion

CpG dinucleotides occur at a lower frequency than would be expected from single-base frequen-
cies alone. e human genome (excluding the mitochondrial chromosome), for example, con-
tains 20% G and 20% C (the GC content is 40%). e expected frequency of CpG dinucleotides,
using a first-order model, is therefore 0.2 · 0.2 = 4%, but the observed frequency is less than 1%,
as can be computed from the openly available GRCh37 reference sequence (Church et al., 2011).
See also the book by Scherer (2008, page 11).

is bias can be explained by considering the repair mechanisms for imperfect DNA replica-
tion. As summarized by Alberts et al. (2008, Chap. 5), nucleobases within DNA undergo sponta-
neous changes called deamination. For unmethylated bases, deamination gives rise to bases that
do not naturally occur within DNA (hypoxanthine, xanthine and uracil) and the damage can
be detected and repaired efficiently by enzymes recognizing these bases. Since methylcytosine
deaminates into the natural base thymine, detection is harder and damage repair is less efficient.
Over an evolutionary time scale, this leads to a depletion of methylated Cs in the genome. Since
methylation is used to inactivate most genes within germ-line cells, most CpG dinucleotides are
methylated. And, since only cytosines in CpG dinucleotides are methylated, a depletion of CpG
dinucleotides results.

CpG islands

Although CpGs are rare in the genome on average, there are regions where they are more fre-
quent, called CpG islands (CGIs) (Bird et al., 1985). Methylation correlates with CpG islands:
CpGs within CpG islands are usually not methylated (Cooper et al., 1983), while those outside
usually are (Larsen et al., 1992). ere are two reasons for the existence of CpG islands. First,
they are associated with genes that need to remain active in germ-line cells and are therefore
unmethylated. Second, CGIs are within functionally important locations that do not tolerate
damaged CpGs and selection therefore favors those individuals that contain undamaged CpGs
(Alberts et al., 2008, Chap. 7). CpG islands show a high correlation with promoter regions of
genes and are therefore used as markers that help to discover new genes.

Attempts have been made to characterize CpG islands by their sequence composition alone.
Gardiner-Garden and Frommer (1987) define a CpG island to be a region of DNA that is at least

50

3.1 Introduction

200 bp in length, has a GC content of at least 50%, and has an observed/expected ratio of CpG
dinucleotides of 0.6 or more.

An updated CGI definition was given by Takai and Jones (2002). Aer human chromosomes
21 and 22 had been sequenced and annotated, the authors could computationally apply the pre-
vious definition to the two chromosomes and compare the locations of the found islands to the
positions of known genes. e authors show that many of the islands are, in fact, not associated
with genes, but with so-called Alu repetitive elements (Alu repeats). For CpG islands to serve as
gene markers, this is not desirable. Takai and Jones then find that adjusting the criteria for CpG
islands reduces the fraction of islands classified as Alu repeats (and those classified by them as
“unknown”) substantially. eir updated definition states that a CpG island is a region of DNA at
least 500 bp in length that has a GC content of at least 55% and an observed/expected CpG ratio
of at least 0.65. Consequently, the number of CpG islands on chromosomes 21 and 22 decreases
from14 062 to 1 101, which is closer to the actual number of genes on those chromosomes. While
the new definition strongly improves specificity, this comes at a loss of sensitivity. In particular,
the number of exon-associated CpG islands also drops from 757 to 120 on chromosomes 21 and
22, according to the authors. For the purpose of read mapping, an overly broad definition leads
to a larger reference and is therefore not a problem, but losing sensitivity could impair map-
ping accuracy. us, we rely on the older definition by Gardiner-Garden and Frommer in the
following. For more details, see also the summary by Bock et al. (2007).

3.1.2 Detectingmethylation

Since current sequencing technologies cannot distinguish methylated from unmethylated cy-
tosines, multiple approaches for determining methylation of a sample of DNA have been de-
veloped. ere is, for example, MeDIP (methylated DNA immunoprecipitation) (Weber et al.,
2005), which uses antibodies to extract those fragments from the DNA that contain methylcy-
tosine. Using microarrays (MeDIP-chip) or high-throughput sequencing (MeDIP-seq), the frag-
ments that contain at least one methylcytosine can be identified. Since it is not possible to de-
termine which of the cytosines in a single fragment are methylated, methylation can only be
determined at the level of fragments, i. e., at a low resolution.

e other major technique is bisulfite sequencing (Frommer et al., 1992), which can determine
methylation patterns at the level of single nucleotides. It has only recently become economically
feasible to use this method on a larger scale due to the arrival of high-throughput sequencing
technologies.

3.1.3 High-throughput bisulfite sequencing

Bisulfite sequencing relies on a chemical reaction between the DNA and sodium hydrogen bisul-
fite (simply bisulfite in the following), which acts differently on methylated and unmethylated
cytosines (Frommer et al., 1992). Bisulfite sequencing has been called the “gold standard” of
methylation analysis since it works at nucleotide resolution. Certain phenomena can only be
investigated with a method that works at the nucleotide level (Lister and Ecker, 2009).

e first studies combining bisulfite treatment with high-throughput sequencing investigated
methylation inArabidopsis thaliana (Lister et al., 2008; Cokus et al., 2008). Meissner et al. (2008)
determined methylation patterns in mice using an Illumina Genome Analyzer. Methylation in

51

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

5'-ACGTCAGA

3'-TGCAGTCT

5'-ATGTTAGA

5'-ACGTTAGA

3'-TACAATCT3'-TGTAGTTT

3'-TGCAATCT3'-TGCAGTTT

5'-ACATCAAA

5'-ACGTCAAA

or or

oror

P
C

R

forward sequences

reverse sequences

C-to-T forward:

C-to-T reverse: G-to-A reverse:

G-to-A forward:

P
C

R

bisul�te

bisul�te

C→T G→A

Figure 3.1 e six different types of sequences that arise during bisulfite sequencing of the double-
strandedDNA fragmentACGTCAGA.e 5′ denotes the beginning of the forward sequence
and 3’ the beginning of the reverse sequence. All sequences in the top dashed box have a re-
verse complementary partner in the bottom dashed box.

humanCpG islands was analyzed by Zeschnigk et al. (2009). e underlying bisulfite-aware read
mapping algorithm is described in detail in this chapter. e biological results of that work are
summarized in Section 3.4.3. e first study to perform whole-genome methylation analysis was
performed later by Lister et al. (2009).

Bisulfite sequencing protocol

To determine the methylation pattern of a double-stranded DNA fragment, bisulfite sequencing
uses the following protocol, summarized in Figure 3.1. We assume that methylation occurs only
at cytosines in CpGs context. Because of methyltransferase activity, we also assume that a CpG
is methylated if and only if its partner on the opposite strand is methylated.

Initially, double-stranded DNA fragments potentially containing both methylated and non-
methylated cytosines are denatured into single-stranded molecules. Let us call the strand that is
in the same orientation as the reference sequence the forward strand and the other the reverse
strand (also called Watson and Crick strands).

When sodium bisulfite is added, unmethylated cytosines within both strands are deaminated
to uracil, but 5-methylcytosines are le unaffected.

Next, bisulfite-treated DNA is amplified by polymerase chain reaction (PCR), during which
the copied fragments will incorporate thymine instead of uracil in their base sequence. e in-
termediate uracil-containing fragments represent only a small fraction of all fragments and we
ignore them henceforth. erefore, unmethylated Cs in the original fragment will appear to have
been replaced by Ts. We say that the bisulfite-converted fragments are of the C-to-T forward or

52

3.1 Introduction

C-to-T reverse type, depending on their orientation relative to the reference sequence (middle
column in Figure 3.1). Note that bisulfite conversion introduces an asymmetry: e converted
C-to-T forward and C-to-T reverse fragments are, in general, not reverse complementary.

PCR amplification not only creates copies of a template fragment, but also copies of the re-
verse complement. Here, the reverse complements of C-to-T forward and of C-to-T reverse are
therefore created. Since the complementary bases of C and T are G and A, respectively, those frag-
ments will appear to have undergone G-to-A substitutions (right column in Figure 3.1). More
exactly, those guanines that are paired with an unmethylated cytosine in the original fragment
will appear to have been replaced by adenines. We therefore say that the resulting fragments are
of the G-to-A forward or G-to-A reverse type. ese fragments are also, in general, not reverse
complementary.

Finally, the amplified fragments are sequenced. e distinction between fragment types is not
maintained and can only be recovered computationally.

Incomplete bisulfite conversion

In reality, bisulfite conversion is not perfect and there are parts of the DNA that are not con-
verted. Bisulfite conversionworks only on single-strandedDNA and a source of error is therefore
incomplete denaturation of the double-stranded DNA. Since very short double-stranded regions
of a few nucleotides are unstable, the resulting errors are localized over longer stretches of the
sequence.

3.1.4 Choosing the references

In standard, non-bisulfite sequencing, a read originates from either the forward or reverse strand
and it is unknown which one it is. e standard solution is to map the read and also its reverse
complement to the forward reference, which is equivalent to mapping it to the forward and re-
verse reference, but uses less memory.

In bisulfite sequencing, the read originates from one of four strands. By using the same idea
of mapping the read and its reverse complement, only two references are needed. ose two
references must not be reverse complements of each other. ere are two sensible choices: Either
designate both C-to-T strands or both forward strands as reference. e first option allows one
to ignore the G-to-A strand. With the second option, the reverse sequence can be ignored.

In our soware, we need to be able to deal with incomplete bisulfite conversion and there-
fore need the unconverted sequence as a third reference. It is therefore simplest to use all three
forward references (top dashed box in Figure 3.1).

3.1.5 The q-gram index

A string of length q is a q-gram or q-mer. Both terms oen imply that the q-gram or q-mer is
a substring of another string. In a string of length n, there are max { 0, n− q+ 1 } positions at
which a q-gram starts. We assume q≪ n in the following and use n− q+ 1 only.

e q-gram index of a text r ∈ Σ∗ of length n = |r| is an abstract data type that supports a
single operation: Given a q-gram u, return all occurrences of u within r in constant time per

53

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

Table 3.1 e 3-gram index of the reference r = CCACACCC, using the alphabet { A, C }. e shown
q-code is only valid for an alphabet of size 2.

q-code q-gram list of positions

0 AAA
1 AAC
2 ACA 3
3 ACC 5
4 CAA
5 CAC 2, 4
6 CCA 1
7 CCC 6

occurrence. More precisely, the q-gram index of r is the function

Qr : Σ
q → P({ 1, . . . , n− q+ 1 })

where, with u ∈ Σq

Qr(u) = { i : ri...i+q−1 = u } .

See Figure 3.1 for a simple example of a q-gram index.
We also introduce the q-code of a q-gram, which is the integer encoding of the q-gram to base

σ := |Σ|, assuming characters are ordered A, C, G, T.

Implementation with two arrays

A q-gram index can be implemented with the help of two arrays. For simplicity, let the first
element in them have index zero. e first array P stores all q-gram positions ordered by the
q-code of the respective q-gram. We call a subarray of P that contains all positions belonging
to the same q-gram a bucket; buckets may be empty. e second array B has length σq + 1 and
is indexed by q-code. e element B[c] is the start index of the bucket in P that contains the
positions for the q-gram with code c. We set B[|Σq|] to the length of P minus one. All q-gram
positions for q-code c are found at P

[
B[c], . . . ,B[c+ 1]− 1

]
.

Enumerating all k occurrences of a requested q-gram within r takes time O(k), as required.
Memory usage is O

(
(n + σq)⌈log n⌉

)
bits since there are n − q + 1 positions in the buckets

and σq q-grams. For an efficient implementation, the ⌈log n⌉ term is rounded up to the nearest
multiple of the machine word size.

For example, memory usage for indexing the human genome with n = 3 · 109 and q = 12 and
a word size of 4 bytes is 12GiB for the positions plus 4 ·412 = 64MiB for the bucket start indices.
Values of up to q = 16 may be realistic on current machines, requiring 12GiB for P as before,
but 16GiB for the B array.

54

3.1 Introduction

Similarity to hashing

e q-gram index can be seen as an associative array that maps a q-gram to a list of positions.
Array B can be considered a hash table, where the hash function maps each q-gram to its q-code.
e values in the hash table are the indices into the array P. Another interpretation is that the
index is a hash table that stores (q-gram, position) pairs and resolves collisions of equal q-grams
through direct chaining.

Many authors therefore call read mapping methods that use q-gram indices or similar data
structures hashing-based methods since mapping a q-gram to its q-code is one specific hashing
function. It follows that the q-gram indexing scheme can be generalized by using different hash-
ing functions.

Tools that use a q-gram index

e q-gram index or a variant of it is typically used to heuristically speed up read mapping or for
finding local alignments. e approach is to seed and extend: First, find short matches (seeds)
between a query and reference sequence and then extend those matches to full alignments if
possible. As the seed finding phasemust be fast, a q-gram index is oen used here. e index can
be created over the query or reference sequence. Aer constructing the index, matches between
query and reference are found by iterating over the sequence that is not indexed and looking up
its q-grams in the index.

BLAST (Altschul et al., 1990) finds local alignments. It saves memory by indexing the (short)
query sequence. When it is used for protein sequences, not only all q-grams of the query are
looked up in the index, but also those that are similar to within a pre-determined threshold in
order to findmaximal segment pairs, which are then extended to local alignments. Later versions
(Altschul et al., 1997) also support alignments with gaps.

Choosing the q parameter involves a tradeoff between sensitivity and speed: A large q leads to
fewer random matches that need to be verified and therefore makes the algorithm faster. It also
reduces sensitivity since the chance of finding the seed at all is reduced (depending on the error
rate). For the converse reasons, a small q increases processing time but improves sensitivity.

e authors of PatternHunter (Ma et al., 2002) show that through the use of non-contiguous,
so-called gapped q-grams, one can improve speed and sensitivity at the same time. Gapped
q-grams are defined by a shape of length w with q ones, such as 1101101. e program creates
an index of each w-gram of the input sequence, but those characters that are at a position where
the shape is zero are removed beforehand. For example, the original w-gram ATGAATC would be
indexed as ATAAC.

MAQ (Li et al., 2008a) is a read mapping tool that creates six indices of the first 28 characters
of the input reads. e chosen shapes guarantee that up to two mismatches in that region are
tolerated. BFAST (Homer et al., 2009) indexes the reference withmultiple gapped q-gram indices
and allows configurable shapes. Found seeds are extended by gapped alignment.

Rasmussen et al. (2006) show that in a local alignment of a given minimum length and within
a given error rate threshold, a certain number of q-gram matches must necessarily be found in
parallelogram-shaped regions of the alignment matrix. Since this is not a heuristic, full sensi-
tivity can be achieved. eir SWIFT program finds those regions in the alignment matrix with
the help of a q-gram index. e RazerS read-mapping tool (Weese et al., 2009) is an advanced
implementation of the same concept, also reaching full sensitivity.

55

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

GASSST (Rizk and Lavenier, 2010) is another full sensitivity readmapper. It focuses on quickly
filtering false positive q-gram hits. Multiple filters are applied in order of fastest tomost complex.
For efficiency, the index contains not only the positions of the q-grams, but also the actual base
sequence of up to 16 bp to the le and to the right of each q-gram occurrence. GASSST needs
16n bytes of memory (more than 48GiB for the human genome).

3.1.6 Bisulfite readmapping tools

A bisulfite read mapping tool can solve the read mapping problem for bisulfite-treated reads. We
give here an overview of some of the existing programs and methods.

Lister et al. (2008) studiedmethylation patterns in theArabidopsis thaliana genome. It is one of
the first studies that used bisulfite sequencing combined with high-throughput sequencing. e
authors approach the bisulfite mapping problem by mapping reads to one reference in which
cytosines are replaced by thymines and another reference in which guanines are replaced by
adenines. Unmapped reads are aerwards mapped to the original reference. C-to-T and G-to-A
modifications therefore do not result inmismatches, but there aremismatches formethylated cy-
tosines. If the degree of methylation is high and the error threshold too low, reads are unmapped,
leading to a loss of sensitivity (Xi and Li, 2009). Lister et al. have notmade their soware publicly
available.

Cokus et al. (2008) also studied methylation in Arabidopsis. eir tool CokusAlignment does
not work with the standard representation of a read as a sequence of bases with associated quality
values, but with data one step earlier in the Illumina base-calling pipeline, where each base of the
read is represented by amixture of four color intensities. us, a read can be seen as a sequence of
probability vectors (position weight matrix, PWM). CokusAlignment views also the reference as
a PWMby assigning, at each position, very low, but non-zero probabilities to each non-reference
base. e authors then define a function that incorporates a background model and gives the
likelihood of a read originating from a given reference location. Bisulfite modification can be
accounted for through a straightforward modification of that function. eir mapping tool uses
a prefix trie of the reference to search for the best read location, computing partial scores at the
nodes and pruning branches that cannot yield good results. CokusAlignment is available for
download. It uses more than 32GiB of memory for human genomes and is slow, according to Xi
and Li (2009)

MAQ (Li et al., 2008a) also has a bisulfite mapping mode, which is not mentioned in the orig-
inal publication, but which has been successfully used by Ziller et al. (2011). MAQ is not suited
for long 454 reads as it does not map with indels and allows read lengths of at most 63 bp.

e following tools appeared aer the article this chapter is based on (Zeschnigk et al., 2009)
had been published.

One of the first tools aimed at being generally usable for bisulfite mapping is BSMAP (Xi and
Li, 2009). It uses a hashing-based method implemented on top of SOAP (Li et al., 2008b). It was
published aer our tool, but the authors independently arrive at a similar idea to ours, which is
to use an index of a simulated bisulfite-treated reference genome. One of the major differences
to our soware is that BSMAP indexes the C-to-T forward and C-to-T reverse sequences, and
therefore does not need to consider G-to-A changes. Aer looking up q-grams of reads in its
index, BSMAP uses bitparallel operations to allow C-to-T matches in the remainder of the read
without counting them as mismatches. BSMAP is six times faster than CokusAlignment at the

56

3.2 e bisulfite q-gram index

same sensitivity. e BSMAP algorithm is also used in RRBSMAP (Xi et al., 2012). e first
version of BSMAP has been superseded in speed by tools that were developed later (Chatterjee
et al., 2012).

One of those faster tools is RMAPBS, part of an extension to the RMAP read mapper (Smith
et al., 2008, 2009). RMAP indexes the reads and then scans the reference sequence. Bisulfite
mapping in RMAPBS is achieved by treating Ts in the reads as wildcard characters that match
both a C and a T in the reference, and allowing a match between a C in the read and a C in the
reference only when in CpG context.

Chen et al. (2010) later published BS Seeker, which does not implement an aligner itself, but
wraps Bowtie (Langmead et al., 2009). BS Seeker converts either all Cs to Ts or Gs to As, in both
reads and the reference, then maps the converted reads to the converted references. Nonunique
alignments are discarded, and the original sequences are used to compute an accurate number
of mismatches. Alignments with too many errors are discarded. e paper compares BS Seeker’s
runtimes to those of BSMAP, RMAP and MAQ. BSMAP is shown to be orders of magnitude
slower than the other three even on small references. MAQ is dismissed due to low accuracy. On
a human-sized reference, RMAP is also shown to be slower than BS Seeker.

BRAT (Harris et al., 2010) converts the reference to two bitstrings. In the first, a bit is set to
one if and only if the reference has a C or T at that position. In the second, the bit is set to
one for positions with C or G. All q-grams of both bitstrings are then indexed in separate hash
tables. e bisulfite reads are converted in a similar way and first looked up in the C/T reference
hash table, automatically allowing C-to-T and G-to-A matches. A lookup in the second hash
table filters out the G-to-C and A-to-G matches. Under some conditions, BRAT is faster than
mrsFAST (Hach et al., 2010) and BSMAP. BRAT uses 12n bytes of memory (24n for paired-end
reads), where n is the length of the reference, plus some memory for the reads. Mapping only to
human chromosome 1 requires 4GiB. BRATdoes notmapwith indels. Amorememory-efficient
successor named BRAT-BW that uses the Burrows-Wheeler transform (Burrows and Wheeler,
1994) instead of hashing has recently become available (Harris et al., 2012).

3.2 The bisulfite q-gram index

In this section, we introduce another variation of the q-gram indexing scheme that enables us to
map reads from bisulfite sequencing experiments to a reference genome, which we call the bisul-
fite read mapping problem, and to subsequently analyze methylation patterns. We use the stan-
dard seed-and-extend approach tomap bisulfite-treated reads. e index allows to find seeds that
contain substitutions from bisulfite conversion without counting them as errors. e mapping
procedure itself is described in Section 3.3.

3.2.1 Simulated bisulfite treatment

e bisulfite q-gram index is a q-gram index over a simulated bisulfite-treated version of the
reference sequence. Sincemethylation of cytosines is unknownduring index creation, all possible
arising q-grams are simulated. e index answers the following question: Given a q-gram of a
read from a bisulfite sequencing experiment, from which positions in the reference can it have
originated? e index must cope with reads of both the C-to-T and the G-to-A type, but also
those reads of fragments that were partially or fully unconverted.

57

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

We allow methylation of cytosines only in CpG context. is is a simplification, but close
to reality in vertebrate genomes, and it reduces memory usage. erefore, when we compare a
read that comes from the C-to-T forward strand to the reference, the characters should be equal,
except that every C in the reference not followed by a G must be replaced with a T and that every
C in the reference that is followed by a G can be either C or T, see also Figure 3.1. ismnemonic,
also for the G-to-A forward strand, may be helpful:

C→ T but CG→ CG|TG and

G→ A but CG→ CG|CA

Definition 6 (bisulfite compatibility). Let r ∈ Σ∗
DNA be the reference sequence and u ∈ Σ

q
DNA

a q-gram. A position i in r is C-to-T bisulfite compatible with u if the following holds for all
j = 1, . . . , q:

uj = T if ri+j−1 = C and ri+j ̸= G,
uj ∈ { C, T } if ri+j−1 = C and ri+j = G,
uj = ri+j−1 otherwise.

e position is G-to-A bisulfite compatible with u if the following holds for all j = 1, . . . , q:

uj = A if ri+j−1 = G and ri+j−2 ̸= C,
uj ∈ { G, A } if ri+j−1 = G and ri+j−2 = C,
uj = ri+j−1 otherwise.

We do not define bisulfite compatibility between two q-grams as compatibility requires knowl-
edge of the context on the reference. In the C-to-T case, we need to know the character following
the q-gram on the reference. In the G-to-A case, we need to know the character preceding it.

Example 5. Given a position on the reference where the substring CACGAC occurs, the q-grams
TATGAT and TACGAT are C-to-T compatible with it. If the substring is followed by G, then also
TATGAC and TACGAC are compatible.

Definition 7. e bisulfite q-gram index of r is the function

Br : Σq
DNA → P({ 1, . . . , |r| − q+ 1 })

Br(u) = { i : i is C-to-T or G-to-A bisulfite compatible with u or ri...i+q−1 = u } .

ismathematical definition is slightlymore general than the actual implementation, in which
the positions are stored as a list in ascending order (see below).

In order to be able to process reads that were not bisulfite converted, it is necessary to include in
the index the positions where the unmodified q-gram occurs. As a consequence Br(u) ⊆ Qr(u)
for all u ∈ Σ

q
DNA. In total, the index covers all types of reads shown in the upper box in Figure 3.1.

No alphabet reduction

ebisulfite q-gram index does not employ a reduced alphabet as other tools do, such as BS seeker
(Chen et al., 2010). e idea of a reduced alphabet is that all Cs are (unconditionally) replaced

58

3.2 e bisulfite q-gram index

by Ts (or Gs by As) in both the read and the reference, neutralizing all differences caused by
bisulfite-treatment so that any standard read mapping tool can be used aerwards. In contrast,
the advantage of our approach is that less information is lost that can potentially be used to as-
sign a read unambiguously to a position. A q-gram that contains at least one C can potentially
be mapped to fewer locations. For example, consider the read CGA and the reference CGATGA.
Reducing the alphabet results in read TGA, reference TGATGA. e read can therefore be mapped
to two locations (start positions 1 and 4). By taking into account the C in the read, it is clear that
only the first alternative is correct.

3.2.2 Index structure and creation

e bisulfite q-gram index is stored in the same arrays B and P described in Section 3.1.5. In
summary, array B is an array of bucket start indices, indexed by the q-code of the q-gram. Array
P contains start positions within r such that P

[
B[c], . . . ,B[i + 1] − 1

]
for q-code c of q-gram u

gives, in ascending order, the content of the set Br(u).
In the regular q-gram index, array P is a permutation of the integers 1, . . . , |r| − q + 1. An

important difference is that, in the bisulfite version, positions can occur more than once in P.

Index creation

e index is created in a pre-processing step and stored on disk. We split the description of
its creation up into two algorithms. One simulates bisulfite treatment for each q-gram of the
reference, and the second uses those results to actually build the index. e second algorithm
could also be used to build a regular q-gram index. For the sake of a straightforward description,
we give simplified versions of the algorithms that do not consider some practical issues. ese
are then discussed further below.

In the following, a lone C is a C that is not in CpG context.

Algorithm 5 (S-B-C--T).
Input: r ∈ Σ∗

DNA and q.
Output: Lists of bisulfite-simulated q-grams (C-to-T and unmodified q-grams only).

1. u is the current q-gram on the reference. Since we start before the first character of the
reference, initialize it to A...A (length q).

2. active is a list of bisulfite-simulated q-grams. It is initialized to a list that contains u.

3. lone ← −1 tells us the position of the last lone C. e invariant is that rlone is the most
recently seen lone C. If lone = −1, no lone C has been seen so far.

4. Iterate from i = 1 to i = |r| − q+ 1. e current character is therefore ri:

a) Drop the first character from u and append ri.
b) Remove all q-grams from active that start with C. Remove the first character from

those that remain.
c) If ri is a lone C, that is, if ri = C and ri+1 ̸= G, set ch to T and set lone to i. Set ch to ri

otherwise.

59

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

d) If ch ̸= C, append ch to all strings in active.

e) Otherwise, update active such that it contains two copies of each of its previous ele-
ments, where one has a T and one a C appended to it.

f) If i < q, continue with the next iteration of the loop.

g) If lone ≥ i− q, that is, if there is a lone C in the current q-gram, yield active∪{ u }.
Otherwise, yield active only since we know that the unmodified q-gram is already
one of its elements.

e full algorithm S-B, which is not shown here, also takes G-to-A substitu-
tions into account.

For simplicity, the algorithm above is described in terms of q-grams, that is, strings. In the
actual implementation, integer values (q-codes) are used that represent the q-grams and string
manipulations (dropping the first character, appending a character, etc.) are implemented as bit-
level operations. Assuming that a q-gram fits into amachine word, Algorithm 5 needs timeO(1)
per simulated q-gram. In theworst case, r consists entirely of consecutiveCGs, and therefore each
q-gram of r (except for the last) gives rise to 2q/2 simulated q-grams (assuming even q). Worst-
case runtime is therefore O(|r|2q/2+1) when we also simulate G-to-A conversion. e average
runtime is much better, as we show in Section 3.4.1.

e bisulfite index is created in two passes over the reference.

Algorithm 6 (C----).
Input: Reference r ∈ Σ∗

DNA and q.
Output: A q-gram index consisting of the two arrays B (bucket starts) and P (positions).

1. Let sizes be an array of length 4q, all values initialized to zero. It stores the size of the
buckets of P.

2. Iterate over S-B(r, q); let qgrams be the list of q-grams returned in each
iteration: For each q-gram in qgrams, let qcode be its q-code and increment sizes[qcode]
by one.

3. Initialize B with the help of sizes: B[c]←
∑

d<c sizes[d] (this can be done inO(|B|)).

4. Set B[4q] to the sum over all sizes and initialize P to that length.

5. Copy B into starts. Iterate, as above, over S-B(r, q), but this time, keep
track of the current position i on the reference and for each q-code, write it into P with
P
[
starts[qcode]

]
← i and increment starts[qcode].

6. Return B and P.

e asymptotic runtime of Algorithm 6 is the same as that of Algorithm 5 plus O(4q) for
creation of B. e worst-case size of the bisulfite q-gram index is the same, that is,O(|r|2q/2+1 +
4q). See the results in Section 3.4.1 for actual values, which are much lower.

60

3.2 e bisulfite q-gram index

Table 3.2 Low-complexity filtering by keeping only those q-gram buckets containing q-grams with at
least d = 3 or d = 4 distinct characters.

q-grams kept Ratio

q 4q d ≥ 3 d ≥ 4 d ≥ 3 d ≥ 4

4 256 168 24 65.62% 9.38%
5 1 024 840 240 82.03% 23.44%
6 4 096 3 720 1 560 90.82% 38.09%
7 16 384 15 624 8 400 95.36% 51.27%
8 65 536 64 008 40 824 97.67% 62.29%
9 262 144 259 080 186 480 98.83% 71.14%

10 1 048 576 1 042 440 818 520 99.41% 78.06%
11 4 194 304 4 182 024 3 498 000 99.71% 83.40%
12 16 777 216 16 752 648 14 676 024 99.85% 87.48%
13 67 108 864 67 059 720 60 780 720 99.93% 90.57%
14 268 435 456 268 337 160 249 401 880 99.96% 92.91%

Using less mainmemory

e second phase of the algorithm as given creates the full P array in memory. Main memory
usage can be reduced by constructing P incrementally in multiple passes over r. Each pass fills
in subarray B[ck, . . . , ck+1 − 1] and works only on those simulated q-grams whose q-code is at
least ck and at most ck+1 − 1. Each ck is chosen such that the sizes[k+ 1] − sizes[k] positions in
that bucket range fit into memory and such that all q-codes have been processed in the end.

Wildcard characters

Non-nucleotide characters in the reference occur, in particular, at the centromere and telomere
regions, where long stretches of consecutive ‘N’ characters indicate an unknown sequence. We
therefore ignore the start position of all q-grams in those regions. ose positions are not added
to the index. If only a few characters are non-nucleotide characters, another solution (currently
not implemented) is to simulate the possible q-grams similar to how the bisulfite q-grams are
simulated. For example, the IUPAC character K is “G or T”. e q-gram AAKAA would be inter-
preted as being compatible with both AAGAA and AATAA.

In some references, lowercase characters indicate repeat-masked regions. We have therefore
implemented the option to ignore all q-grams that contain a lowercase character.

Low complexity q-gram filtering

In the Verjinxer soware, it is also possible to filter repetitive sequences at the q-gram level.
is filter was implemented by the original author for regular q-gram indexing, but can also be
used for bisulfite q-gram indexing. e idea is to discard all q-grams that use fewer than the
four available alphabet characters. e filter discards all buckets belonging to those q-grams that
contain fewer than a specified number d of distinct characters. Only values less than four make
sense for this parameter. See Table 3.2.

61

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

3.2.3 Multiple reference sequences

Our assumption so far has been that there exists a single reference sequence. A realistic genome
that we would like to use as reference consists of multiple parts, which we call chromosomes for
simplicity, even if they do not correspond to a biological chromosome. We can deal with those
in the following ways.

e first option is to append a sentinel character that is otherwise unused in the alphabet to
each chromosome. Before index construction, the chromosomes plus sentinels are concatenated
and treated as a single reference. e position of each sentinel is recorded in a separate array.
Index creation needs to ignore q-grams with sentinel characters and read mapping needs to be
modified to stop processing when a sentinel character is encountered. e mapping algorithm
remains unchanged otherwise so that the coordinates ofmapped reads are obtained relative to the
concatenated reference. Each coordinate is finally converted to a pair of the correct chromosome
name and the coordinate relative to the chromosome start, using either binary search or linear
search if there are few chromosomes.

Alternatively, the chromosomes can be concatenated directly and non-nucleotides be replaced
with random nucleotide characters (Li and Durbin, 2009). Reads overlapping a chromosome
border are filtered out in a postprocessing step. Again, binary or linear search is used to map
reference coordinates to chromosome positions.

When the term reference occurs in the following, the concatenated reference is meant.

3.3 Mapping a bisulfite read

In the mapping algorithm, we basically follow the seed-and-extend paradigm employed in tools
such as BLAST (Altschul et al., 1990), MAQ (Li et al., 2008a) and BFAST (Homer et al., 2009).
In general, this paradigm describes the idea of initially locating short and usually exact matches
(the seeds), which are then extended error-tolerantly.

In our version of this approach, a seed is a maximal exact match between the reference and
the read, where “exact” means that differences due to bisulfite treatment are allowed. We also call
this a maximal bisulfite match. How seeds are found with the help of the bisulfite q-gram index
is described in Section 3.3.1.

When a short match is extended to a longer one (error-tolerantly or not), and bisulfite rules
apply, then it is necessary to know whether the read is of the C-to-T or G-to-A type in order for
the costs to be computed correctly. is is described in Section 3.3.2.

Finally, we explain in Section 3.3.6 how seeds are extended into an alignment that covers the
entire read.

3.3.1 Finding seeds

Let t ∈ Σn
DNA be a single read. If we look up one of its q-grams u = ti...i+q−1 in the bisulfite

q-gram index, we get a list of positions on the reference r. We call the pair (i, j), where j is one of
the positions, a (bisulfite) hit. e diagonal of the hit is j − i. An exact bisulfite match between
read and reference that is longer than q results in consecutive hits that lie on the same diagonal.

Briefly, the seed finding algorithm determines the list of hits for each position 1, . . . , n− q+ 1
of the read, extends each to the right as far as possible and reports them, taking care to exclude

62

3.3 Mapping a bisulfite read

hits that are part of an already reported match.
When extending a hit to the right, we need to be aware that it may have arisen from the sim-

ulated C-to-T or G-to-A strand or from the unmodified sequence, and that the type must be
consistent in an exact match. As there are multiple ways to ensure this, we describe the subrou-
tine for hit extension in the next section and assume here simply that it exists.

Algorithm 7 (F-S).
Input: e read t; reference r. e bisulfite q-gram index.
Output: Maximal bisulfite matches between read and reference as triples (i, j, ℓ), where ℓ is the
match length.

1. If read length n < q, return an empty result list.

2. Initialize an empty list active. Each entry in the list is a pair (start, length).
Each entry describes the remainder of a match that has been found in a previous iteration.
In other words: e start positions describe the hits that we expect to find in the next
iteration and which should be ignored because the matches they belong to have already
been reported.

3. Iterate over the q-grams of the read with start positions i = 1, . . . , n− q+ 1:

a) For each entry in active, increase its start by one and decrease its length by one. Re-
move those entries whose length is less than q.

b) Retrieve a list of hits by looking up the current q-gram code in the q-gram index.
Let hits be that list. Due to index construction, the hits are in ascending order by
reference position.

c) Iterate over active and hits simultaneously in the same way as in a “merge” step in
mergesort.
ere are three cases:

i. If the position is found in both active and hits, then a previously found match
continues. Keep the entry in the active list.

ii. If a position is in active, but not in hits, then the entry in the q-gram index for
this position is missing. is can be due to a skipped q-gram in the reference
because of a wildcard character, an empty bucket in the index due to a too high
q-gram frequency, or discrepancies in how hits are extended (see below) and
how the index is constructed. In any case, keep the entry in the active list.

iii. If the position is in hits, but not in active, the beginning of a new exact match
has been found. To turn it into a maximal exact match, compute its length with
one of the algorithms of Section 3.3.2. Add the position in the reference and the
length of the match to the active list, and yield the match.

Some implementation details

In the implementation, the list active is stored as two arrays activepos and activelen that have as
many entries as there are positions in the largest bucket of the q-gram index. An entry is removed

63

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

from both lists by setting the entry in activelen to zero and a check is added in order to skip such
an entry when iterating over active matches.

When querying the index to retrieve the list of hits, it is sufficient to return a pointer to the
start of the appropriate bucket and the length of that bucket. is avoids some copying.

We also introduce a minimum match length ℓmin ≥ q. Maximal bisulfite matches are only re-
ported if they are not shorter. is reduces the number of false positives that need to be processed
in the next stage. Iteration over the read is modified to iterate from i = 1 to n− ℓmin + 1.

3.3.2 Extending hits

Given a hit (i, j), the question arose in the previous section how to extend it in order to find a
maximal match. Without bisulfite conversion, we could simply compare the subsequent charac-
ters on reference and read until a mismatch occurs. e problem is that bisulfite reads can be of
the C-to-T or G-to-A type and that we must first determine which of the two we have. At this
point, we will also take into account that bisulfite reads can be fully or partially unconverted. We
therefore describe two different modes of extending a hit.
Strict hit extension requires that the bisulfite substitution rules are strictly followed. at is,

in a C-to-T match, every C must be replaced by T, unless the C is in CpG context. In a G-to-A
match, every G must be replaced with an A, unless the G is in CpG context.
Relaxed hit extension lis the restriction of not allowing lone Cs or lone Gs in the read. us,

in a C-to-T match, every C can be replaced with a T. In a G-to-A match, every G can be replaced
with anA.is does not only allow incomplete bisulfite conversion, but also cytosinemethylation
outside of CpG context.

3.3.3 Strict hit extension

Extending a hit while strictly observing bisulfite replacement rules is straightforward to imple-
ment with a deterministic finite automaton. We start out by describing regular languages for the
different types of matches. We use the alphabet ΣDNA × ΣDNA, where the first character is from
the reference and the second from the read. In the following, we write the characters on top of
each other as in an alignment. is is the language of all valid C-to-T bisulfite matches:

LC-to-T =

(
A

A

∣∣∣∣TT
∣∣∣∣GG

∣∣∣∣CGCG
∣∣∣∣CGTG

∣∣∣∣CT
)∗

And this describes the valid G-to-A bisulfite matches:

LG-to-A =

(
A

A

∣∣∣∣TT
∣∣∣∣CC

∣∣∣∣CGCG
∣∣∣∣CGCA

∣∣∣∣GA
)∗

e two underlined subexpressions are redundant and are added for clarity. We can immediately
write down the language of matches for which we cannot give the type since that is equal to the
intersection of both languages:

Lunknown = LC-to-T ∩ LG-to-A =

(
A

A

∣∣∣∣TT
∣∣∣∣CGCG

)∗

64

3.3 Mapping a bisulfite read

C-to-T

C
C

G
G

C
C

G
G

C-to-TCG

G-to-A G-to-ACG

C
C

C
C

C
C

C G
T G

C T G A
T T G A

G G A T
G A A T

G A T
A A T

G A T
A A T

A T
A T

G
A

unknown unknown
CG

Figure 3.2 e bisulfite matching automaton for strict hit extension. All transitions that are not shown
lead to an implied Mismatch state. e lemost state is the start state. All shown states are
accepting states.

Finally, an arbitrary bisulfite match can be described by the language Lunknown (LC-to-T|LG-to-A).
e concatenation of Lunknown is also redundant, but helpful to understand the automaton.

We can now construct the deterministic finite automaton (DFA) that recognizes the language
of all matches. We call it the bisulfite matching automaton and it is shown in Figure 3.2. e
automaton has one mismatch state (not shown) and six regular states. Two states each represent
unknown, C-to-T and G-to-A match types. e automaton starts out in an “Unknown” state,
and remains in one of the two unknown states until a character pair occurs that is only allowed
in one of the C-to-T or G-to-A states, to which it then transitions.

e resulting algorithm is straightforward.

Algorithm 8 (E-B-H-S).
Input: Reference r of length m; read t of length n; and a hit (i, j).
Output: Length and type of the strict match.

1. Initialize the bisulfite matching automaton state to Unknown and set length to zero.

2. Repeat while i ≤ m and j ≤ n:
a) Transition in the automaton according to (ri, tj).
b) If the automaton is in Mismatch state, break out of the loop.
c) Increment length, i and j.

3. Return length and the type of the match, depending on the last non-Mismatch state the
automaton was in.

Some optimization of this basic algorithm is possible. We can, for example, add a cache that
maps pairs of q-grams to a pre-computed automaton state. Only those q-grams that do not lead
to Mismatch are stored to avoid quadratic memory usage. us, we can avoid iterating over the
first q characters of the hit, for which we know that no mismatch can occur.

65

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

Another option is to store the type of the hit in the bisulfite q-gram index itself. is does
require two bits of extra storage per position, however, since we need to distinguish between
unknown, C-to-T and G-to-A.

We note that the strict mode is not as useful in practice, in contrast to the relaxed mode, which
we describe next.

3.3.4 Relaxed hit extension

e rule for a relaxed match is: Every character must match, except that in the C-to-T case, a C
in the reference additionally matches a T in the read, and in the G-to-A case, a G in the reference
additionally matches an A in the read. Note that this includes exact matches and we therefore
cover not only the case of methylation outside of CpG context, but also full or partial incomplete
bisulfite conversion. e idea of the following algorithm is that the first character pair that is not
equal determines the match type.

Algorithm 9 (E-B-H-R).
Input: Reference r; read t; and a hit (i, j).
Output: Length and type of the relaxed match.

1. Set length to zero. Set the type to unknown.

2. While the end of neither r nor t has been reached and ri = tj, increase i, j and length.

3. If neither the end of r nor t has been reached, compare ri and tj:
a) If ri = C and tj = T, loop over the remaining characters while ri = tj or ri = C and

tj = T, increasing length for each character. Set type to C-to-T.
b) If ri = G and tj = A, do the same, but allow ri = G, rj = A instead. Set type to G-to-A.

4. Return length and type as result. e type is unknown if no mismatch was found before
the end of one of the strings is reached or when the first mismatch is neither C-to-T nor
G-to-A.

3.3.5 Bitwise-parallel relaxed hit extension

If a 2-bit representation is used for both reference and read, Algorithm 9 would need to extract
groups of 2-bit characters from each machine word in order to loop over the strings. is can be
sped up by comparing w/2 characters at a time, where w is the machine word (register) width.
We assume that a register is wide enough to hold an entire read.

emethod described here is similar in spirit to the one described byXi and Li (2009), who use
bit operations to count mismatches between reference and bisulfite-modified query. In contrast
to their method, we do not need to compute a separate “bitwise mask” of the reference, which
they seem to compute in a non-bitparallel way. Additionally, we can distinguish between C-to-
T and G-to-A reads. Our strategy is to compute the match length with low-level instructions
twice: Once allowing C-to-T and once allowing G-to-A replacements. e longer match then
determines the returned match type.

We use the encoding A = 002, C = 012, G = 102, T = 112, which allows us to compute the
complementary character with a binary not (¬). Let x = x1x0 be an encoded character on the

66

3.3 Mapping a bisulfite read

Table 3.3 Character comparison with XOR (le) and with the bcompC-to-T (bisulfite comparison) func-
tion. e 002 values that signify character matches are underlined. Note the differences in the
C row. x: Character on reference. y: Character on read.

x⊕ y y
A C G T

00 01 10 11

x

A 00 00 01 10 11
C 01 01 00 11 10
G 10 10 11 00 01
T 11 11 10 01 00

bcompC-to-T(x, y) y
A C G T

00 01 10 11

x

A 00 00 01 10 11
C 01 01 00 01 00
G 10 10 11 00 01
T 11 11 10 01 00

reference and y = y1y0 the corresponding character in the read (most significant bit written le).
To check whether they are equal, the bitwise XOR (⊕) can be used, since x⊕ y = 002 if and only
if x = y, that is, when x1 = y1 and x0 = y0, see Table 3.3.

For C-to-T reads, the result should additionally be 002 when x = 012 (C) and y = 112 (T). We
can use this function (bisulfite comparison):

bcompC-to-T(x, y) = (x⊕ y) &
(
012 | (x& 102) | ¬(x<< 1)

)
Table 3.3 proves its correctness. e idea is that the right-hand side acts as a bit mask that is 012
if x = 012 (C) and 112 otherwise. Why is this mask not dependent on y? Inspecting the C rows
in Table 3.3, we see that indeed clearing the top bit changes two cells, but that only the C-to-T
substitution ends up as 002 and therefore being considered equal.

e corresponding function for G-to-A type matches can be constructed by noting that C/G
and T/A are complementary. us,

bcompG-to-A(x, y) = bcompC-to-T(¬x,¬y) .

e comparison functions also work when x and y are full machine words containing a 2-bit
encoded DNA string. Instead of the bit masks 012 and 102, we need to use themasks 0101 . . . 012
and 1010 . . . 102.

A set bit in the result of one of the bcomp functions gives us the position of a mismatch. Our
ability to determine the type and length of a match therefore depends on the ability to find the
position of the first set bit. Fortunately, many modern processors have a bit scan or count zeros
instruction, which find the position of the first or last nonzero bit or, similarly, count the number
of leading or trailing zeros in a word. For example, on Intel 80386, one such instruction is BSR
(bit scan reverse) (Intel, 2012). In the following, let clz(x) be a function that returns the number
of leading zeros in x and that returns w if x is zero.

67

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

Match length

Let x and y be two words of length w that encode w/2 characters of the reference and of the read,
respectively. e length of a C-to-T bisulfite match is:

ℓC-to-T(x, y) =

⌊
clz

(
bcompC-to-T(x, y)

)
2

⌋

e length of a G-to-A bisulfite match is:

ℓG-to-A(x, y) =

⌊
clz

(
bcompC-to-T(¬x,¬y)

)
2

⌋

We summarize the results in the following algorithm.

Algorithm 10 (E-B-H-R-B).
Input: Reference r and read t in 2-bit encoding; and a hit (i, j).
Output: Length and type of the relaxed match.

1. Set x to ri...i+w−1, and y to tj...j+w−1. If read or reference are too short, pad x on the right
with ones and y on the right with zeros. (One could instead fall back to Algorithm 9).

2. Compute ct← ℓC-to-T(x, y) and ga← ℓG-to-A(x, y).

3. If ct > ga: Return length ct and type C-to-T.

4. If ct < ga: Return length ga and type G-to-A.

5. Otherwise (ct and ga are equal): Return length and type unknown.

e algorithm can be extended to work with reads that are potentially longer than w/2. On a
current machine with w = 64, it can compare 32 characters in a single step, but larger registers
are oen available. e Advanced Vector Extensions (AVX), for example, offer 256 bit registers.

3.3.6 Extending seeds

ose maximal bisulfite matches found that are not shorter than the minimum seed length ℓmin
are used as seeds when aligning the full read to the reference.

Assume the seed was found at (i, j) with length ℓ. e seed is first extended to the right until
the end of the read by aligning ri+ℓ...|r| to tj+ℓ...|t| and allowing to skip a suffix of the reference
at no cost. is is the same variant of semiglobal alignment as used for aligning an “anchored
5’ adapter” to a read, described in Section 2.2.4 (page 20), except that a suffix of the read is aligned
to a suffix of the reference, see also Figure 2.3 in that section (upper right matrix).

A different cost function also needs to be used. We distinguish again a strict and a relaxed
version of alignment. For relaxed alignment, the cost function is the same as unit costs, except
that the cost of having a C in the reference and a T in the read is zero. For strict alignment, the

68

3.3 Mapping a bisulfite read

cost function is slightly more complicated. It needs to count also non-bisulfite-conversions as
errors:

dC-to-T(ri, tj) =


0 if ri ̸= C and ri = tj
0 if ri = C and tj = T

0 if ri = tj = C and (ri+1 = G or tj+1 = G)

1 otherwise

(3.1)

e or condition of the third case warrants further explanation. When we encounter a C on the
reference and a C in the read, why is it sufficient that one of them is followed by a G? Consider
the following three alignments (the reference is in the top row), which all involve a CG substring:

TC-GT TCAT TCGT TCTGT
TCAGT TCGT TCAT TC-GT

ey describe events that can be either sequencing errors or actual mutations. In all cases, it
is possible that the actual genome sequence truly contains a CpG, which can be methylated. If
it is methylated, incomplete bisulfite conversion has not occurred and should not be penalized.
All of these alignments will therefore receive a cost of one instead of two. However, since the
underlying cause of the event is unknown, such sites will be counted as neither methylated nor
non-methylated in the following.

Let the alignment algorithm that uses cost function dC-to-T be called A-C--T. We can
further define a function dG-to-A (not shown) that works on G-to-A reads. Let the resulting al-
gorithm be called A-G--A. We now have an easy way of extending the seed of a C-to-T
type match to the le: Take the reverse complement of the reference prefix r1...i−1 and align it to
the reverse complement of the read prefix t1...j−1 with A-G--A.

When extending a G-to-A type seed, the roles of A-C--T and A-G--A are re-
versed. At this point, we are done if we trust that the read type determined by the hit extension
is correct and if it is not “unknown”. Otherwise, we suggest the following algorithm for better
results.

Algorithm 11 (E-).
Input: Seed coordinate (i, j); length ℓ; reference r; read t.
Output: Alignment of substrings of r and t and start coordinates on r and t.

1. For both possible read types C-to-T and G-to-A, do the following.
a) Count the number of unconverted Cs or Gs (depending on current read type) in the

seed region and store that in unconv.
b) Use the proper combination of algorithms A-C--T and A-G--A as de-

scribed above to extend the seed to the entire read, assuming the current read type.
c) Set totaltype to the sum of unconv and the numbers of errors returned by the two

alignment functions.

2. Assume that the read type which collected the smaller number of total errors is the correct
one. Construct the full alignment from the three segments and return it, along with the
start coordinates of the aligned strings on r and t.

69

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

Before proceeding, we discard those alignments whose error rate (number of errors divided
by aligned reference length) is above a given error rate threshold ε as previously discussed in
Section 2.2.7.

3.3.7 Determiningmethylation patterns and rates

By inspecting an alignment, the methylation state of individual CpGs can be easily determined.
We classify a CG in the reference aligned to a CG in the read as methylated. It is classified as
unmethylated if it is aligned to a TG in a C-to-T read or to a CA in G-to-A read. As discussed
in the previous section, if a CG in the reference is aligned to neither CG nor TG/CA in the read,
then that CG is ignored.

In our study (Zeschnigk et al., 2009), we report both individual methylation patterns of single
reads and also aggregated methylation rates. e methylation rate of a single read is determined
as #methylated

#methylated+#unmethylated if methylation status of at least one CG could be determined. e read
is removed from further consideration otherwise.

Reads with a degree of methylation above 75% and below 25% are referred to as fully methy-
lated and unmethylated, respectively. Others are referred to as partially methylated.

3.3.8 Finding unconverted parts of reads

In our study (Zeschnigk et al., 2009), a problem in the experimental setup had the effect that reads
were partially not bisulfite-converted. Since the problem is due to an enzymatic reaction that
starts at one end of the DNA fragment, we know that either a prefix or a suffix is unconverted, but
we do not know which one and also not how long it is. To process such data, we therefore always
use the “relaxed” algorithms for hit and seed extension. We then try to recognize the unconverted
part of the read in theway described below and ignore it when computing themethylation pattern
and rate.

e first step is to identify those cytosines in the alignment whose conversion status we know
for certain. For C-to-T reads, a C aligned to a T is converted. A C that is not in CpG context and
that is aligned to a C is unconverted. Similar rules hold for G-to-A reads.

We assign a score of +1 to converted and −1 to unconverted bases and obtain the sequence
Z = (z1, . . . , z|z|), where zi ∈ {−1,+1 }. Assume that a prefix of the read is converted. en
ideally, there is an index k′ such that zi = +1 for all i < k′ and zi = −1 for all i ≥ k′. To take
errors into account, we define the best k to be the one that maximizes the sum over scores in the
converted prefix of the read:

kprefix = argmax
k

∑
i<k

zi

When a suffix of the read is converted, the best k is

ksuffix = argmax
k

∑
i<k

(−zi) .

In both cases, when there is a tie, choose the option that leads to a shorter converted part of
the read. To determine whether a prefix or suffix is bisulfite-converted, compute both kprefix and

70

3.3 Mapping a bisulfite read

ksuffix and pick the one for which the number of errors is lowest, where errors are unconverted
bases within the converted region and converted bases within the unconverted region.

Furthermore, the number of errors is added to the number of errors already determined for
the alignment. If the error rate becomes greater than ε, the alignment is discarded. Otherwise,
the unconverted part is removed.

3.3.9 Counting bisulfite strings

In this section, we answer the question of how many possible strings of length n exist that are
found as a substring in a bisulfite-modified read following strict bisulfite modification rules. We
consider only C-to-T read types. is allows us to answer, for example, how many buckets are
unused in a bisulfite q-gram index that includes only C-to-T simulated q-grams.

Strict bisulfite matching means that no lone Cs occur: Any C must be followed by G, unless it
is the last C of the string. Equivalently, the substrings CA, CC and CTmust not occur in the string.

Definition 8. Given a string s ∈ Σn
DNA, we say that it is a bisulfite string if

si = C ⇒ si+1 = G for all i = 1, . . . , n− 1 .

Let Bn be the set of all bisulfite strings of length n, and bn := |Bn|. We first estimate bn before
giving the exact solution. Since Bn is a subset of Σn

DNA, bn is less than 4n for large enough n.
If no C occurs in the string, no restrictions apply and therefore all strings over a three-character
alphabet without C are a subset ofBn, giving us bn ≥ 3n. Since the alphabet is closer to three than
to four (thirteen out of sixteen dinucleotides are allowed), we estimate that bn ∈ Θ

(
(3 + ε)n

)
,

where 0 < ε < 1 and ε is a little closer to 0 than to 1.

Lemma 3. e number of bisulfite strings is

bn =
1 + α

α− β
αn − 1 + β

α− β
βn (3.2)

where

α =
3 +
√

13
2

and β =
3−
√

13
2

.

Proof. eproblem of counting bisulfite strings is similar to Exercise 7.42 in the book byGraham
et al. (1994) and is solved here along the same lines of thought. See also Section 6.6 in the book.
We start by giving a recurrence for bn, then derive a generating function and find a closed form
for its coefficients.

LetAn be the set of bisulfite strings that do not end in C, and Cn the set of bisulfite strings that
do end in C. Let an := |An| and cn := |Cn| be their respective sizes. en

bn = an + cn . (3.3)

71

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

e recurrence for an is

a0 = 1
an = 3an−1 + cn−1 .

at is, to get a bisulfite string not ending in C, we can either extend a bisulfite string not ending
in C with A, G or T; or we extend one ending in C with G. Also, a0 = 1 since the empty string
does not end in C. We follow Graham et al.’s convention of letting xi = 0 for i < 0. en, using
Iverson bracket notation, this can be rewritten as

an = 3an−1 + cn−1 + [n = 0] .

e recurrence for cn is

c0 = 0
cn = an−1 .

at is, a bisulfite string ending with C can be obtained by simply appending a C to one that does
not end in C. Also, there are no strings of length 0 that end with C.

From the above two recurrences, we see that the generating functions A(z) =
∑

n anzn and
C(z) =

∑
n cnzn are

A(z) = 3zA(z) + zC(z) + 1 and (3.4)
C(z) = zA(z) . (3.5)

Inserting Equation (3.5) into Equation (3.4) and solving for A(z) gives us

A(z) = 1
1− 3z− z2

.

e generating function B(z) =
∑

n bnzn, taking Equation (3.3) into account, therefore is

B(z) = A(z) + C(z) = 1 + z
1− 3z− z2

.

Tofind its coefficients, we can use the samemethod as inGraham et al. (1994, Chapter 6.6), where
a closed form for the Fibonacci series is derived, whose generating function z

1−z−z2 is similar to
the above. First, assume that the partial fraction expansion is

1 + z
1− 3z− z2

=
P

1− αz
+

Q
1− βz

=
P− Pβz+ Q− Qαz
(1− αz)(1− βz)

.

We thus need to solve

(1− αz)(1− βz) = 1− 3z− z2 and (3.6)
P+ Q− (Pβ + Qα)z = 1 + z . (3.7)

72

3.3 Mapping a bisulfite read

Choosing α = 3+
√

13
2 and β = 3−

√
13

2 satisfies Equation (3.6):

(1− αz)(1− βz) =
(
1− 3 +

√
13

2
z
)(

1− 3−
√

13
2

z
)

= 1− 3−
√

13
2

z− 3 +
√

13
2

z+
(

3 +
√

13
2

)(
3−
√

13
2

)
z2

= 1− 6
2
z+ 1

4
(9− 13)z2

= 1− 3z− z2

Setting z = 0 in Equation (3.7) gives us Q = 1− P, and then setting z = 1 in the same equation
results in

P+ (1− P)−
(
Pβ + (1− P)α

)
= 2 .

And therefore

P =
1 + α

α+ β
and Q =

1 + β

α− β
.

According to Graham et al., Equation (6.118), the coefficients of the partial fraction expansion

B(z) = P
1− αz

+
Q

1− βz

are

bn = Pαn + Qβn,

which gives us the lemma

bn =
1 + α

α− β
αn − 1 + β

α− β
βn .

e formula can be simplified as described by Graham et al. We observe that the right-hand
term in Equation (3.2) is small and gets smaller with increasing n. It can be omitted if we instead
round the first term to the closest integer. If we additionally insert constants α and β, we get

bn =

⌊
5
√

13 + 13
26

(
3 +
√

13
2

)n

+
1
2

⌋
.

Since 3+
√

13
2 ≈ 3.30277, this finding is in line with our initial estimate. Some values for bn are

shown in Table 3.4.

73

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

Table 3.4 Some values for the number bn of bisulfite strings of length n, compared with the number 4n
of DNA strings of length n.

n bn 4n bn
4n (%)

0 1 1 100.00
1 4 4 100.00
2 13 16 81.25
3 43 64 67.19
4 142 256 55.47
5 469 1 024 45.80
6 1 549 4 096 37.82
7 5 116 16 384 31.23
8 16 897 65 536 25.78
9 55 807 262 144 21.29

10 184 318 1 048 576 17.58
11 608 761 4 194 304 14.51
12 2 010 601 16 777 216 11.98
13 6 640 564 67 108 864 9.90
14 21 932 293 268 435 456 8.17
15 72 437 443 1 073 741 824 6.75

20 28 468 099 417 1 099 511 627 776 2.59
25 11 188 035 508 324 1 125 899 906 842 624 0.99
30 4 396 926 422 870 754 1 152 921 504 606 846 976 0.38

74

3.3 Mapping a bisulfite read

3.3.10 Bucket compression

Individual buckets of the q-gram index as created by Algorithm 6 contain q-gram start positions
in ascending order. We explore in this sectionwhether itmakes sense to store only the differences
(∆ values) between the positions in order to save memory.

Büttcher et al. (2010, Chap. 6.3) have already summarized applicable methods for compressing
occurrence lists in the context of inverted text indices, which are used in (web) search engines.
e authors describe how to compress posting lists, which contain document indices. ese are,
for our purposes, equivalent to positions within q-gram buckets.

Given a text of length n, the index needs to store roughly n positions of q-grams. Since the
differences between positions in each bucket can be on the order of n, we need to use a variable-
width encoding to save any memory.

Büttcher et al. describe multiple such codes, but argue that some of them, such as Elias’ γ and
δ code (Elias, 1975) cannot be decompressed quickly enough. One of the advantages of the q-
gram index is the speed with which single buckets can be accessed, so we follow this argument
and concentrate on byte-aligned codes although these may not result in the best compression.

e Base 128 variable integer code or varint is a byte-aligned code that can represent arbitrary
integers. It is, for example, implemented in the Protocol Buffers serialization format by Google1.
It represents each integer as a series of bytes in which the lower seven bits of each byte contain the
actual value of the integer. e most significant bit of each byte indicates whether another byte
follows. is representation needs 8 bits for values up to 27 − 1, 16 bits for values up to 214 − 1,
and so on. e same idea, but with 16 bit words with a payload of 15 bits each, is the Base 215

variable integer code.
Let us estimate the average∆ value. If n positions are distributed over 4q buckets, there are on

average n
4q positions per bucket. e average distance between two positions is therefore roughly

n
n/4q = 4q, ignoring the first position in each bucket. We come to the same conclusion if we
argue that, in a random text (of infinite length), the average distance between two occurrences
of a given q-gram is 4q. us, we would need 2q bits per difference on average.

With realistic q-gram lengths q ≥ 12 when indexing the human genome, each difference re-
quires 24 bits on average. e base 128 varint encoding therefore needs four bytes on average,
which is not better than storing absolute positions (four bytes each).

Since we know that the average value requires around 24 bits, it makes sense to consider a
custom byte-aligned value-length integer code that needs fewer bits than base 128 and base 215

varint codes for typical data. We therefore define two versions of a base 223 varint code. e first
version (named 23+7) always uses at least three bytes, of which 23 bit are usable. If more bits
need to be encoded, further bytes are used. at is, the code uses 24 + 8k, k ≥ 0 bits per value.
e second version (named 23+15) also uses three bytes for small values, but then adds groups
of two bytes. us, the code uses 24 + 16k, k ≥ 0 bits per value.

So far, our thoughts hold only for the regular q-gram index. When we consider the bisulfite
q-gram index, we need to consider that it contains more positions than the regular index and
that a few buckets are much larger than others due to bisulfite simulation (as seen in Table 3.4).
Both properties decrease the average difference between positions.

1https://developers.google.com/protocol-buffers/

75

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

3.4 Results

We evaluate size and compression of the bisulfite q-gram index and then show mapping results
for a bisulfite-sequencing dataset. We use the following two references.

CpG islands

A reference sequence (named “CGIs”) of 27 639 known CpG islands was created by retrieving
CpG island locations from the UCSC database2 and extracting the corresponding substrings
from the human genome (NCBI Build 36.1), including a context of 200 bp before and aer each
island. e resulting FASTA file contains 32 156 976 bp in total, of which 9.1% are marked as
repeats (lowercase letters), which are ignored at index creation time.

Chromosome 1

esecond reference (named “Chr1”) is human chromosome 1 of theGRCh37 sequence (Church
et al., 2011). It has a length of 249 250 621 bp. Of these, 23 970 000 bp (10.6%) are ‘N’ characters,
which are ignored at index creation time. Lowercase letters are not ignored.

3.4.1 Index size

In the worst case, runtime of the creation andmemory consumption of the bisulfite q-gram index
is exponential in q for both the B and P arrays. As described in Section 3.2.2, the worst case is
reached only for sequences consisting entirely of CpG dinucleotides. For realistic data, this is
not the case. As discussed in the Section 3.1.1 (page 50), only 1% of observed dinucleotides are
CpGs and we therefore expect a more benign behavior for the size of P.

Let us define the bisulfite factor of a q-gram index to be the number of positions stored di-
vided by the number of q-grams on the reference that were not skipped. For a regular q-gram
index, this is equal to 1. For a bisulfite q-gram index, each non-skipped q-gram gives rise to an
unconverted q-gram, simulated C-to-T q-grams, and simulated G-to-A q-grams. If no CpG din-
ucleotides occur, there is one of each and the bisulfite factor will be slightly below 3 since there
is some overlap if no C, no G or none of both occurs. If CpGs occur, the bisulfite factor increases
accordingly. e factor tells us how much more work is needed to construct a bisulfite q-gram
index instead of a regular index.

In Table 3.5, we have summarized sizes of the bisulfite q-gram index for both datasets, given
varying values of q. For the index over the full chromosome, the bisulfite factor starts out at 2.83
for q = 9. As q increases, more CpGs per q-gram occur and the factor rises slowly up to 3.16 at
q = 14, confirming our expectation that the exponential increase in q of runtime and memory
usage is almost negligible in practice for typical sizes of q.

Since CpG density is much higher in CpG islands by definition, the bisulfite factor is larger in
the CGIs dataset. Its increase is also more pronounced, growing from 4.57 at q = 9 to 6.62 for
q = 14.

76

3.4 Results

Table 3.5 Size of bisulfite and regular q-gram indices for the CGIs and Chr1 references. e “size” is
the number of positions stored in the index, either in total or per bucket. For the CGIs refer-
ence, the regular index gets noticeably smaller with increasing q since it consists of multiple
reference sequences (see main text), in which q-grams overlapping a border are ignored.

Total size Average bucket size

Dataset q Regular Bisulfite Regular Bisulfite Bis. factor

CGIs 9 31 935 549 145 957 159 121.82 556.78 4.57
CGIs 10 31 907 909 157 250 825 30.43 149.97 4.93
CGIs 11 31 880 269 169 171 565 7.60 40.33 5.31
CGIs 12 31 852 629 181 869 010 1.90 10.84 5.71
CGIs 13 31 824 989 195 629 713 0.47 2.92 6.15
CGIs 14 31 797 349 210 426 758 0.12 0.78 6.62

Chr1 9 225 280 317 637 414 158 859.38 2431.54 2.83
Chr1 10 225 280 279 655 561 520 214.84 625.19 2.91
Chr1 11 225 280 241 671 771 220 53.71 160.16 2.98
Chr1 12 225 280 203 686 524 952 13.43 40.92 3.05
Chr1 13 225 280 165 700 154 548 3.36 10.43 3.11
Chr1 14 225 280 127 712 809 260 0.84 2.66 3.16

3.4.2 Analyzing bucket compression

e q-gram indices that are listed in Table 3.5 are also analyzed for compressibility according
to Section 3.3.10. To denote the encoding, we write “x + y” (such as 23+7). is means that
the first group of bits has a payload of x bits and all further groups, if they exist, have a payload
of y bits. Each group, as discussed previously, needs one additional bit of storage to indicate
whether another group follows. For each non-empty bucket, its first value is le unchanged and
all remaining ones are replaced with their difference to the previous value. All values are then
encoded.

A typical implementation of a q-gram index using 32-bit words for positions needs 4 bytes
per position. As we see in Table 3.6, this can be reduced considerably by the described encoding
schemes, excluding the 23+15 variant, which needsmore than four bytes per position for large q.

For all datasets, either the 15 + 7 or the 23 + 7 encoding uses fewest bytes, where 23 + 7
tends to be the better one for q greater than twelve. e predefined 7 + 7 and 15 + 15 encoding
schemes always perform worse. As we expect, fewer bytes are used per position in a bisulfite
index compared to the regular index for otherwise the same parameters. is is due to the higher
density of positions, leading to smaller differences. For the converse reason, more bytes are used
when q gets larger.

Interestingly, even in those datasets with very small average bucket sizes, compression is ad-
vantageous. is can be explained by the nonuniform distribution of their sizes, as illustrated by
the large differences between median and average.

Although the largest analyzed reference here is chromosome 1, we expect the observed trend to

2http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/cpgIslandExt.txt.gz

77

 http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/cpgIslandExt.txt.gz

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

Table 3.6 Compressibility of the q-gram index by variable-length encoding of differences between po-
sitions. Values in the Encoding column are the average bytes per position. ey should be
compared to the standard scheme that typically uses 4 bytes per position. e best values in
each row are set in bold.

Bucket size Encoding

Dataset q Type Avg. Median 7+7 15+7 15+15 23+7 23+15

CGIs 9 Bis. 556.8 154 2.318 2.264 2.527 3.000 3.000
9 Reg. 121.8 62 2.767 2.681 3.355 3.000 3.001

10 Bis. 150.0 31 2.541 2.455 2.897 3.002 3.003
10 Reg. 30.4 14 2.980 2.886 3.676 3.013 3.026
11 Bis. 40.3 6 2.748 2.653 3.240 3.014 3.027
11 Reg. 7.6 3 3.242 3.107 3.816 3.092 3.183
12 Bis. 10.8 1 2.939 2.840 3.502 3.045 3.091
12 Reg. 1.9 1 3.493 3.354 3.870 3.254 3.509
13 Bis. 2.9 0 3.119 3.012 3.673 3.100 3.200
13 Reg. 0.5 0 3.664 3.554 3.891 3.433 3.866
14 Bis. 0.8 0 3.293 3.176 3.777 3.178 3.357
14 Reg. 0.1 0 3.754 3.674 3.900 3.564 4.128

Chr1 9 Bis. 2431.5 780 2.403 2.330 2.656 3.001 3.002
9 Reg. 859.4 626 2.822 2.723 3.431 3.003 3.006

10 Bis. 625.2 175 2.618 2.518 3.010 3.006 3.012
10 Reg. 214.8 131 2.996 2.902 3.722 3.020 3.039
11 Bis. 160.2 38 2.846 2.722 3.307 3.032 3.065
11 Reg. 53.7 25 3.291 3.121 3.836 3.097 3.193
12 Bis. 40.9 8 3.063 2.939 3.529 3.113 3.227
12 Reg. 13.4 5 3.577 3.430 3.882 3.333 3.666
13 Reg. 3.4 1 3.733 3.648 3.904 3.586 4.173
14 Reg. 0.8 0 3.803 3.753 3.918 3.730 4.460

78

3.4 Results

Table 3.7 Statistics of read lengths. Processed reads are those that have undergone adapter removal.

Median Average Total no. of No. of
length length nucleotides sequences

Blood reads 120 135.4 22081676 163034
Processed blood reads 119 134.1 21870876 163034

Sperm reads 117 133.4 17291091 129620
Processed sperm reads 115 132.0 17115073 129620

also apply to indices over the full human genome reference. Since the average distance between
occurrences of the same q-gram remains the same, the same number of bits will be required to
encode position differences.

Overall, bucket compression works best on bisulfite q-gram indices. It offers significant mem-
ory savings of around 40% for small q and still around 10% for large q when the appropriate
custom encoding is used.

3.4.3 Bisulfite sequencing of human CpG islands

We applied ourmethod to a bisulfite sequencing dataset of CpG-richDNA fragments (Zeschnigk
et al., 2009). TwoDNAsamples (blood of a female and sperm)were obtained anddigestedwith an
optimized mix of restriction enzymes in order to enrich fragments associated with CpG islands.
Adapters were ligated and single-stranded DNA was bisulfite treated. e adapters contain no
unmethylated cytosines and are therefore unaffected by bisulfite conversion. Aer PCR, prepared
fragments were sequenced on a 454 Roche Genome sequencer FLX. Processing of sequencing
data is fully automated through the use of a Makefile.

Reads

As a first processing step, cutadapt (Chapter 2) is used to remove adapter contamination from the
reads. Since some reads containmultiple adapters or adapter fragments, possibly due to problems
during adapter ligation, the program was set to repeat the read trimming process for each read
up to three times (“--times 3”). See Table 3.7 for read lengths before and aer pre-processing.

Bisulfite readmapping

For mapping, a bisulfite q-gram index of the CGIs reference with q = 10 is created. Reads and
their reverse complements were thenmapped in the “relaxed”mode, with an error rate threshold
of 5% and minimum seed length ℓmin = 25. Unconverted parts of reads are excluded from
further consideration (see Section 3.3.8), and also those parts of the read that do not cover a
CpG island. All remaining reads that map uniquely to one position on the reference are then
classified into fully methylated, partially methylated or unmethylated (Section 3.3.7).

Results

12 358 blood reads and 10 216 sperm reads could be mapped uniquely to a CpG island. In the
X-chromosomal CGIs of the blood sample, we find a generally higher rate of methylation than

79

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

in autosomes. is is to be expected since inactivation of one of the X-chromosomes in females
is achieved through methylation. An unexpected result, however, is that we see many partially
methylated CGIs on this chromosome. Partialmethylation is observed in only 3.8% of autosomal
CGIs, but in 25% of those on the X chromosome. Statistical analysis of the methylation rates
shows the difference to be significant. See the article by Zeschnigk et al. for more results.

3.5 Future work

e bisulfite read mapping soware presented comprises two components, the bisulfite index
(and its construction algorithm) and a mapping algorithm that uses that index. We discuss some
improvements that can be made to these two components.

A problem that many q-gram indexing methods have is the large memory usage. e bisulfite
index, with triple the size of a regular index, suffers even more from that problem. Our work
on index compression mitigates the problem only partially. Some of the following suggestions
therefore involve a reduction of memory usage. e first two have already been implemented in
the Verjinxer soware, but were not yet evaluated.

Read indexing

A surprisingly simple to implement change in the algorithm is to index the reads instead of the
reference as is done, for example, in theMAQ soware (Li et al., 2008a). e index itself is created
as a regular (non-bisulfite) index. To find hits, bisulfite simulation is done for each q-gram of the
reference (from le to right) and the resulting q-grams are then then looked up in the index.
Further processing (seed extension etc.) is the same as before.

is method reduces memory usage if the total length of all reads is less than the length of the
reference. It therefore does not apply to current datasets that oen contain tens of millions of
reads. e Verjinxer soware supports mapping by indexing the reads.

Strided indexing

To reduce memory consumption, one could include not all positions i in the index, but only
those that are multiples of a constant d, called stride, as is done in the BLAT soware (Kent,
2002). e case d = 1 is the same as before and values up to d = q may make sense, which
means that all non-overlapping but adjacent q-grams are included. inning out positions in this
way reduces sensitivity, but also improves runtime as there are fewer positions in each bucket.
Algorithm 7 (F-S) needs to be adjusted, too, since the shown version assumes in step
3a that adjacent q-grams that belong to the same maximal bisulfite match have coordinates that
differ by exactly one. Also, the algorithm needs to extend each seed to the le, not only to the
right. For a stride d > 1, the memory usage could be reduced further by storing not position
i, but i/d, thus reducing the number of bits needed for each position if an appropriate encoding
scheme is chosen. For example, for d = 8, three bits can be saved per position.

Some preliminary support for BLAT-like strided indexing has been implemented in the Ver-
jinxer soware.

80

3.6 Discussion

True hashing

e bucket array B grows exponentially in q. As soon as the number of buckets is about the same
as the number of positions that need to be stored, it makes sense to limit B to a fixed length. As
done in regular hash tables, positions for q-code c are then stored at B

[
c mod |B|

]
. e usual

considerations for hash tables apply. For example, |B| should be a prime number in order to
distribute positions more evenly across buckets. Index construction remains almost unchanged,
except for the modulo term, but obtaining a set of hits for a given q-gram needs to be modified:
Each retrieved position needs to be checked for whether it is compatible with the requested q-
gram. eoverhead for this is likely small as relaxed/strict hit extension already needs to compare
the corresponding substrings on reference and read.

Avoiding C-to-T/G-to-A type classification

Since the bisulfite indexmixes C-to-T- and G-to-A-type simulated q-grams, the appropriate type
needs to be determined aer a position has been looked up. is classification could be avoided
in at least two ways. e first idea is store the type in the index along with the position. Since the
types are C-to-T, G-to-A and “unconverted”, this requires two additional bits, which could be
stored in the same machine word as the position. is leaves only 30 bits for the position for typ-
ical word sizes and should therefore be combined with one of the schemes for index compression
proposed in Section 3.3.10.

e second idea is to split up the index into three indices: two indices over theC-to-T andG-to-
A-converted references, respectively, and one regular q-gram index of the unconverted reference.
On-disk memory usage would increase slightly since each position is stored at least three times
unlike in the combined index, where some positions are stored only once. A read would then be
mapped against all three indices, where the regular q-gram index would be used last and serves
as a kind of “fallback”. When reads are partially unconverted, the regular index needs to be used
at the same time as one of the others, which likely makes mapping more complicated.

Improvedmapping algorithms

e relatively basicmapping algorithmdescribed in this chaptermay be considered to be a proof-
of-concept only. Other algorithms can be used on top of the bisulfite q-gram index. Particularly
interesting may be to find a bisulfite version of Lemma 2 in the paper describing the SWIFT
soware (Rasmussen et al., 2006), which is also the basis for RazerS (Weese et al., 2009). Both
tools allow read mapping at full sensitivity. Other techniques, such as using gapped q-grams or
multiple indices with differently shaped q-grams (see Section 3.1.5 on p. 55), may also be used
and are orthogonal to the bisulfite index itself.

3.6 Discussion

We could show that mapping reads with the bisulfite q-gram index works well on real-world
data, enabling advances in medical research. However, one needs to be aware that the basic
algorithms in the presented tool were finished already in 2009 and that it therefore belongs to
the first generation of bisulfite read mappers. As a testament to this, note that the Verjinxer
soware does not support the SAM/BAM format because the format had not been invented at the

81

3 Mapping Bisulfite Sequencing Reads with a q-Gram Index

time. First-generation tools – including ours – are comparatively slow and use large amounts of
memory. is does not diminish our contribution regarding themapping algorithm: econcept
of simulating bisulfite treatment for each q-gram has been imitated and varied successfully in
other mapping tools that appeared subsequently.

Many recent read mapping tools, including those with bisulfite capabilities, tend to employ
data structures based on the FM index (Ferragina and Manzini, 2000), which in turn uses the
Burrows-Wheeler transform (Burrows and Wheeler, 1994). Asymptotic runtimes are close to
the suffix tree (depending on implementation and on the machine model), but memory usage is
much smaller.

e advantage of the q-gram index is its extreme simplicity coupled with the ability to instantly
obtain a requested list of q-gram positions. So far, the disadvantage of its large memory usage
has negated that advantage and compressed indices dominate. However, compression comes
with a runtime overhead, and it is possible that, with rising main memory sizes but genome sizes
remaining constant, the scale may tip in favor of q-gram indices again.

82

4 Analyzing Exome Sequencing Data

e exome is the set of all exons of a genome. Since genetic diseases are usually caused by protein-
changing mutations, it is most efficient to limit the search for mutations to the exome, which
makes up only about 1%–2% of the genome in humans. Efficient techniques have recently been
developed to enrich exonic DNA in regular DNA samples, making targeted sequencing possible.
As human whole-genome studies are, as of now, still too expensive for routine studies, exome
sequencing has become themethod of choice for identifying genes that underlie genetic diseases.

Whilemany bioinformatics tools exist that help in the analysis of exome sequencing data, these
are usually command-line tools, many of which need to be run in a particular order for a full ana-
lysis, resulting in a cumbersome workflow with repetitive tasks. We have therefore developed a
pipeline called Exomate that automates most of the tasks and provides an interactive web inter-
face to the medical researcher who can easily get desired analysis results and interactively re-run
parts of the analysis with adjusted parameters.

We used the pipeline in studies that identifymutations in uvealmelanoma (Martin et al., 2013),
in patients with Nager syndrome (Czeschik et al., 2013) and Oto-facial syndrome (Voigt et al.,
2013). It is also being used to study mutations related to Goldenhar syndrome, retinoblastoma
and other diseases.

Exomate is available under the MIT license at https://bitbucket.org/marcelm/exomate/.

4.1 Introduction

Aer we motivate our research, we give an overview of what exome sequencing entails and de-
scribe work by other groups whose existing tools we have integrated into our soware.

4.1.1 Structure andmotivation

Exomate is comprised of three components. e first part is the computational backend. It is
probably that component which is most similar to other pipelines that were created at the same
time in other research groups, but not publicly available when we started. e backend was
created to automate all computational tasks involved in exome sequencing and to make them
reproducible.

e second component of Exomate is the database. Using a relational database engine is a cru-
cial difference to many other pipelines and provides greater flexibility. Other algorithms oen
work with specially formatted files and manipulate them in various ways in order to annotate,
aggregate, extract, sort and retrieve the desired information. However, relational database en-
gines were designed for exactly those tasks. By storing most of our data in the database, we can
leverage existing optimizations that went intomaking the database engine fast. Also, queries that
otherwise require running one or more specialized tools can be formulated by writing one or a
few lines of code in the standardized Structured Query Language (SQL).

83

https://bitbucket.org/marcelm/exomate/

4 Analyzing Exome Sequencing Data

e third part of Exomate is a web frontend that was created out of the desire to remove a bot-
tleneck in multidisciplinary collaborations between computer scientists or bioinformaticians on
the one side, and medical researchers without computer science background on the other side.
A “traditional” model of cooperation is as follows: e computer scientist is asked to perform
some data analysis, does so and hands the results to the medical researcher. en there is feed-
back from the recipient and the process is iterated when problems need to be fixed, parameters
need to be changed, or when new data arrives. e problem, of course, is that the assistance of
bioinformaticians/computer scientists is required for virtually everything. For small groups, this
does not scale: If the responsible persons leave, the knowledge is gone, too.

Our solution to this is to introduce a piece of easily usable soware in the form of a web fron-
tend that is placed in the middle and gives medical researchers more direct access to the data,
without requiring them to become programmers. Data analysis is then done through the interac-
tion between themedical researcher and the soware, thus reducing reliance on a human “middle
man”. is does not obviate the need for communication: Discussions about what to implement
and how to do so still take place, but the analyses themselves can be done independently.

e separation into three components is not only on the conceptual level, but on a technical
one: Each component can, if desired, be run on a different machine.

4.1.2 Exome sequencing

Exome sequencing was pioneered by Ng et al. (2009), who enriched DNA fragments that contain
coding sequences by using two custom microarrays before sequencing those fragments on an
Illumina Genome Analyzer II. e authors later applied their method to discover the cause of
Miller syndrome (Ng et al., 2010).

It is estimated that 85% of disease-causing mutations are within the exome (Antonarakis et al.,
1995). Combined with the fact that the price for sequencing an exome is about one tenth of
sequencing an entire genome (Baker, 2011), exome sequencing has found widespread adoption
as the method of choice for discovering the cause of genetic diseases.

Exome sequencing has been used to find the causative gene for Miller syndrome (Ng et al.,
2010), to find genes involved in Schinzel-Giedion syndrome (Hoischen et al., 2010), to identify
mutations related to Coffin-Siris syndrome (Santen et al., 2012), and in many other studies, see
also the reviews by Bamshad et al. (2011) and Gilissen et al. (2011, 2012).

Exome capturing

Commercial so-called exome capture kits that enrich exonic DNA in DNA samples have be-
come available by vendors such as Agilent, Illumina and Roche. e exome data with which
our pipeline was tested and to which some of the examples in this chapter refer was obtained
mainly with Roche NimbleGen SeqCap EZ Human Exome Library v2.0 (EZ2) and v3.0 (EZ3)1.
Earlier capture kits were based on microarrays, but have been superseded by kits that work in
solution with free-floating biotinylated oligos, called baits. Exonic DNA fragments hybridize to
the baits, which in turn bind to magnetic beads. ese are then extracted and washed, leaving
the enriched molecules (Bamshad et al., 2011, Box 1).

1http://www.nimblegen.com/products/seqcap/ez/v2/ (EZ2) and …/v3/ (EZ3)

84

http://www.nimblegen.com/products/seqcap/ez/v2/
http://www.nimblegen.com/products/seqcap/ez/v3/

4.1 Introduction

Figure 4.1 is image shows the coverage of some exons (thick bars) of the FMR1 gene in an exome
sequencing dataset of a sample of blood from a healthy patient. e shown region is chro-
mosome X, positions 147 016 188 to 147 025 995. e SeqCap EZ 3.0 capture kit was used.
We can see that usable coverage extends into introns (thin line with dashes). Screenshot take
from the Integrative Genomics Viewer (IGV).

e regions of DNA captured by the kits differ from the coding regions. e target regions are
those chosen by themanufacturer to be included. ey also vary fromkit to kit depending onhow
many probes are used. Since the capture probes have a certain length, the regions are extended for
very short exons, yielding the capture regions. For example, SeqCap EZ 2.0 targets regions that
total 36.5Mbp, but captures 44.1Mbp. SeqCap EZ 3.0 captures 64Mbp. Both SeqCap EZ 2.0
and 3.0 also capture some regions annotated as microRNA, which are disregarded in the current
version of our pipeline.

Since captured DNA fragments extend into regions outside the capture targets, it is possible
to find mutations not only in coding regions themselves, but also in short sections of intronic
and UTR regions that are close to coding regions, see also Figure 4.1. is makes it possible to
reliably analyze intronic splice-site affecting variants.

Note that the targets of exome sequencing are the coding regions only although the term “ex-
ome” implies otherwise. Non-coding parts of exons (5′ UTR and 3′ UTR regions) are usually
not captured. Also, exome capture is more accurately described as enrichment, that is, it is not
perfect and in reality some non-exome DNA fragments are also enriched and sequenced, but
their coverage is low.

A comparison of three commercially available exome capture kits was done by Asan et al.
(2011), who conclude that all kits have similar specificity, allow to find very similar sets of vari-
ants, but that the solution-based methods are easier to handle in the lab than the array-based
methods.

Variants

Exomate focuses on the analysis of variants, which we define to be sequence differences between
the sample of interest and a reference sequence. Currently, this is the human reference sequence
(build 37) by the Genome Reference Consortium (GRC) (Church et al., 2011). e differences
can be substitutions, insertions and deletions.

If a particular variant recurs in a population, the site of the variant is said to be polymorphic. A
single nucleotide polymorphism (SNP) is a polymorphic site with recurring substitution variants
of a single base. Differences between individuals of a population are largely due to SNPs. e
dbSNP (Sherry et al., 2001) is a public database of verified polymorphisms. It mostly contains
SNPs, but also polymorphic insertions and deletions.

A mutation is a change in DNA sequence at a point in time in a single cell. If the mutation
occurs in a germ-line cell, it spreads to every cell of the child that develops from that cell. It is
called de novo mutation. A somatic mutation arises in a non-germ cell, such as in a tumor.

e main task of the Exomate soware is to determine which of the variants that were found

85

4 Analyzing Exome Sequencing Data

aremutations that are relevant for a disease. De novomutations can be found by sequencing both
a patient and their parents (a trio), and excluding variants found in the patient that also occur in
the parents. Somatic mutations are found by sequencing both affected and unaffected tissue of a
patient and discarding those variants that are found in both samples.

Note that terminology is not strictly followed in the literature. For example, the process of
finding variants is oen termed SNP calling although variant calling is more accurate. In this
text, we prefer the term “variant” as it includes SNPs and mutations.

Types of variants

Variants in coding regions can be distinguished by their effect on the resulting protein. Insertions
and deletions of a number of bases that is a multiple of three add or remove entire amino acids.
Otherwise, a frameshi occurs and the remainder of the amino acid chain is changed. Substitu-
tion mutations can be classified into the following types. ose that change the resulting amino
acid are calledmissense and those that do not are called synonymous. If a regular codon becomes
a stop codon, this is a nonsense mutation. If a a stop codon changes into a regular codon, this is
a read-through mutation. In exome sequencing, we are typically interested in non-synonymous
(indel, missense, nonsense, read-through) variants.

4.1.3 Related work

e filtering strategy of our suggested pipeline builds upon the work by Ng et al. (2010). e
authors search for variants that either are non-synonymous, affect a splice site, or are indels.
ey exclude variants from further consideration that are also found in dbSNP, in eight HapMap
control exomes (International HapMap 3 Consortium et al., 2010), or classified as not damaging
by Polyphen (Adzhubei et al., 2010).

Our pipeline uses many tools of the Genome Analysis Toolkit (GATK, DePristo et al., 2011)
and follows the recommended workflow given in their document “best practice exome variant
detection v1”.2 Alternative tools for variant calling are, among others, ATLAS2 (Challis et al.,
2012) and SAMTools’ mpileup command (Li et al., 2009).

e idea to create a web frontend for an exome sequencing pipeline at all and the idea tomodel
“abstract variants” was taken from an existing exome sequencing pipeline developed by Tim
Strom’s human genetics group at the Helmholtz center in Munich (personal communication).

4.1.4 Structure of the software

e first component of Exomate is an automated pipeline that performs all computations nec-
essary to get from raw FASTQ files as obtained from the sequencer to high-quality variant calls.
It is described in Section 4.2. e second component is a database in which variants, annota-
tions and metadata are stored, described in Section 4.3. e third component is a web frontend
that constructs database queries from user requests, submits those requests to the database and
displays the results in a web browser, described in Section 4.4.

2e document used to be available at http://www.broadinstitute.org/gsa/wiki/index.php/Whole_exome_v1, but
is no longer online. e third, similar version of those guidelines can currently be found at http://gatkforums.
broadinstitute.org/discussion/15/.

86

http://www.broadinstitute.org/gsa/wiki/index.php/Whole_exome_v1
http://gatkforums.broadinstitute.org/discussion/15/
http://gatkforums.broadinstitute.org/discussion/15/

4.2 Computational pipeline

All three components can use custom computational resources by running on different ma-
chines. Most resources are needed by the computational pipeline at those times when new
datasets arrive. It should ideally run on a system with as many CPUs as possible. A cluster may
be preferable. For day-to-day work, the database server is the bottleneck since it runs almost all
interactive computations. It should therefore run on a systemwith high single-core performance
and enough main memory to cache most of the database contents. e web frontend needs few
resources as it only constructs and submits queries and shows the result to the user.

Since the Exomate soware is centered around variant calls, we will describe its constituent
parts in the order in which the information regarding variants flows through them: Computa-
tion, database, and web frontend. Note that not all information flows in that direction since the
pipeline also accesses the database to read metadata from it.

4.2 Computational pipeline

e task of the computational pipeline is to process sequencing data in order to obtain high-
quality variant calls. It is fully automated through the use of Snakemake (Köster and Rahmann,
2012).

Workflow description

Snakemake offers a workflow description language that extends the Python language in order to
allow concisely specifying rules that describe how to transform one type of file to another. In
the style of GNU make, whether a rule applies solely depends on the file name patterns given
as input and output. File names can contain wildcards resulting, for example, in a rule that
specifies how to transform “something.bam” into “something.sorted.bam” through the use of the
program “samtools sort”. e tool automatically creates a dependency graph (a DAG, directed
acyclic graph) from all rules, given a set of target files, linearizes the jobs that need to be exe-
cuted through topological sort, and distributes them to any number of CPU cores or to a batch
processing system. We chose Snakemake since its usage of Python in the workflow description
(named Snakefile) allows general-purpose programming in the same language as that used for
the rest of the pipeline. is allows, for example, re-use of modules that have been written for
database access. See also the paper by Köster and Rahmann (2012) for more advantages over
other workflow systems. For an excerpt of the Snakefile used in Exomate, see Figure 4.2.

Input data

Twomanual steps are necessary. First, the raw sequencing data needs to be copied into the work-
ing directory in FASTQ format. Second, the metadata with information about what is stored in
the files needs to be added to the database (explained in Section 4.3.1). Aer that, all the following
steps are run automatically.

4.2.1 Variant calling pipeline

e steps of the variant calling pipeline, modeled on the GATK’s “best practice” document and
extended, are briefly summarized in Figure 4.3 and explained below.

87

4 Analyzing Exome Sequencing Data

1 rule validate:
2 input:
3 bam="{file}.bam"
4 output:
5 validated="{file}.bam.validated"
6 log:
7 "{file}.bam.validatelog"
8 shell:
9 'picard-tools ValidateSamFile I={input.bam} > {log} 2>&1 &&'

10 ' touch {output.validated}'

1 rule samtools_index:
2 ’’’Index a BAM file’’’
3 input:
4 bam="{name}.bam"
5 output:
6 bai="{name}.bam.bai"
7 shell:
8 "samtools index {input.bam}"

1 rule bwa_sampe:
2 ’’’Create BAM file from a pair of sai files output by bwa aln’’’
3 input:
4 BWAREF,
5 "mapped/{ds}.1.sai", "mapped/{ds}.2.sai",
6 "reads/{ds}.1.fastq.gz", "reads/{ds}.2.fastq.gz"
7 output:
8 bam="mapped/{ds}.unsorted.bam"
9 log:

10 "{ds}/bwa-sampe.log"
11 run:
12 sample_name = session.query(Sample).join(Library).join(Unit).\
13 filter(Unit.prefix == wildcards.ds).one().accession
14 rgline = "@RG\tID:{id}\tSM:{sample}\tPL:Illumina".format(
15 id=wildcards.ds, sample=sample_name)
16 shell(
17 'bwa sampe -r "{rgline}" {input} 2> {log} | sqt-samfixn |'
18 ' samtools view -bS - > {output.bam}')

Figure 4.2 ree exemplary rules from the Exomate Snakefile, simplified for presentation. Shell com-
mands in a “shell:” section are executed aer replacing “{placeholders}” with their actual
values. e “run:” section contains regular Python code. e session.query line queries
the database for the correct sample accession number of the given FASTQ file.

88

4.2 Computational pipeline

FASTQ1
FASTQ2

→ BAM → realigned
BAM

→
duplicate-
marked
BAM

→ recalibrated
BAM

→ VCF

Figure 4.3 Overview of data flow from raw input sequences (two FASTQ files for paired-end sequences)
to files with variant calls (VCF). is is essentially the GATK’s “best practice” workflow. e
diagram is simplified and leaves out some intermediate steps. Also not shown is the possi-
bility to have multiple BAM files leading to a single VCF output file.

ReadMapping

Paired-end or single reads are mapped with BWA (Li and Durbin, 2009). e SAM/BAM files
(Li et al., 2009) for the resulting mapped reads can store meta information about the dataset
(see Section 1.8). Such metadata are read, for each dataset, from the appropriate database tables
and added to the BAM file by supplied command-line parameters for BWA. BWA works in two
stages. e first (bwa aln) can run multi-threaded, while the second (bwa sampe) cannot. For
each stage, a rule in the Snakefile exists that sets the appropriate number of threads. is enables
Snakemake to properly schedule execution of those rules in parallel if more than one dataset is
being mapped at a time.

Most BWA parameters have been le at their default values since the program was designed
with Illumina data inmind. However, we do set a quality threshold for the removal of low-quality
read ends. is was verified on a low-quality dataset containing 48.5M reads. Without quality
trimming, 91.6% of all reads were mapped. With the quality-trimming threshold set to 10 (“-q
10”), this grew to 95.7%.

Indel realignment

Read mapping tools map a single read at a time and cannot take other reads that map to the
same location into account. is has been shown to lead to the detection of spurious variants
in the vicinity of indels (Homer and Nelson, 2010). For an example, see also Figure 4.4. e
authors propose a soware (SRMA) that does local re-alignment around indels, which reduces
the number of spurious variants. e GATK authors have independently added a similar fea-
ture, called multiple sequence realignment (McKenna et al., 2010) to the GATK, available as the
IndelRealigner tool. e latter is used in the Exomate pipeline.

Re-alignment is typically necessary when the ends of reads optimally align to an inserted or
deleted sequence that is also repetitive. As shown in Figure 4.4, the read mapper will not output
an alignment that (correctly) includes an insertion or deletion, but instead tends to produce an
alignment that may contain mismatches. Considered in isolation, this is optimal because no or a
few mismatches result in a better score than an insertion or deletion in typical scoring schemes.
When there are multiple such reads, the mismatches will result in spurious variant calls. When
the alignments of the other reads are considered, indel re-alignment can determine that the over-
all optimal configuration of reads is one in which all (or half for a diploid organism) contain the
same indel, reducing the number of mismatches and therefore the number of spurious variant
calls (Homer and Nelson, 2010) and at the same time increasing support for the indel.

89

4 Analyzing Exome Sequencing Data

Before indel re-alignment

Aer indel re-alignment

Read 1

Read 1

Read 2

Read 2

Figure 4.4 An example showing the effect of indel realignment. Horizontal bars are reads. Characters
within reads mark bases that differ from the reference (given at the top). Read 1 starts with
the bases CCAC and is optimally aligned to the reference CCAAwith one substitution. e same
holds for Read 2, which begins with AC.e re-aligner can inspect the other readsmapping to
the same location and determine that in fact a deletion of the bases CAA –whichwould usually
incur a lower score than a single mismatch – is more consistent with the other observations.
In this way, a spurious SNP substituting A with C can be avoided. Edited screenshot of the
Integrative Genomics Viewer (IGV, orvaldsdóttir et al., 2012).

Removal of PCR duplicates

Because DNA fragments are amplified through PCR before sequencing (see Section 1.4), it is
possible that there are multiple reads that originate from the same fragment. If there is an error
in an early cycle of the PCR, many reads may result that show the same error. A variant caller
thus incorrectly finds a high-quality SNP since it is supported by many reads.

A larger problem is that efficiency of PCR amplification depends on the sequence content,
which works better with higher GC content, and is therefore biased (PCR bias, Polz and Ca-
vanaugh, 1998). is means that different positions on the reference have differing coverages
depending on sequence content. Since coverage, among other things, is used to compute variant
quality, this makes quality values from different reference positions harder to compare. PCR bias
can also skew the expected 1:1 ratio of alleles in diploid genomes.

To identify PCR duplicates, we use the tool MarkDuplicates from the Picard tool collection3.
For single-end reads, it considers all reads to be from the same fragment whose first bases are
mapped to the same coordinate and which have the same (forward or reverse complement) ori-
entation relative to the reference.4 For paired-end reads, two read pairs are considered to be from
the same fragment if the smallest and largest coordinatesmatch (the first base of the first read and
the last base of the second read, whose reverse complement was mapped). Also, orientations of
corresponding reads must match. MarkDuplicates keeps only that read or read pair whose over-
all base quality is largest. e tool can either discard duplicate reads or set a flag in order for

3http://picard.sourceforge.net/
4is is only documented in the Picard source code itself in MarkDuplicates.java.

90

http://picard.sourceforge.net/

4.2 Computational pipeline

them to be ignored in further processing. Marking reads like this has the advantage that it is still
possible to get the duplicate reads if desired, for example by displaying them interactively in the
Integrative Genomics Viewer (IGV, orvaldsdóttir et al., 2012).

Reads or read pairs can be considered duplicate also when they map to the same location by
chance only but are in fact independent. For single-reads, this limits the coverage to twice the
read length. e closer one gets to that, the more reads are discarded incorrectly. For exome
sequencing, where target coverage is around 20 or 30 and read lengths are 100, the effect is small.
For paired-end reads, the effect is even smaller since not only the start position but also the end
position of the fragment needs to match and because insert sizes are highly variable.

For an exome sequencing dataset, typically between 10% and 20% of reads are marked as du-
plicates. If there are problems during sample/library preparation, this can grow to 90%.

Recalibrate base qualities

Next, the GATK BaseRecalibrator (DePristo et al., 2011, Online Methods) is used to recalibrate
base qualities in the re-aligned, duplicate-marked BAM files. Using the known alignments of
reads to the reference, the tool estimates the true sequencing error rate for each quality value and
then adjusts the base qualities accordingly. Mismatches at positions that are also found in dbSNP
are ignored. is step improves the accuracy of variant call qualities computed in the following
step since these rely on base qualities.

Call variants

Variant calling is the process of finding differences between the sample and the given reference,
done in our case with the Genome Analysis Toolkit (GATK) (McKenna et al., 2010). Since there
are always sequencing errors, which could be mistaken for variants, calls are assigned a quality
value by the GATK, which gives an estimate of the reliability of a variant call. Variants are dis-
covered with the GATK’s UnifiedGenotyper, which finds both indel and substitution variants in
the sample. Variant lists are emitted in standard variant call format (VCF) files.

We set most parameters to their standard values, except that the minimum quality for a vari-
ant to be emitted at all is set very low. In the GATK documentation, a threshold of 50 is rec-
ommended while we set it to around 10. is increases the number of calls: Around 30% of
calls in our database have a quality of less than 50. While this naturally means that many false
positives are included, it gives us the freedom to dynamically set the quality threshold to any de-
sired value when querying the database, choosing the tradeoff between sensitivity and specificity.
Also, it makes it possible to use different thresholds within different parts of a single query, see
Section 4.4.3.

Dealing with repeatedly sequenced samples

Some samples are sequenced multiple times. Reasons for this include a low yield (too few reads)
in the first sequencing run or the desire to use an improved exome capture kit. e question
arises how this data should be treated. If the reason for repeated sequencing was bad quality,
then the bad data should simply be discarded. If the data was good, then it makes sense to use
the data of both runs. e GATK UnifiedGenotyper supports this natively: If it receives multiple

91

4 Analyzing Exome Sequencing Data

Table 4.1 e effect of merging samples from two different sequencing runs for one of the samples that
was sequenced twice. Merging was done by providing two input BAM files to GATK Uni-
fiedGenotyper. Only exonic variants (within 1000 bp of an exon) are considered. Q is the
variant quality. On target refers to the number of bases within uniquely mapped reads that
are not marked as duplicates and that mapped to the captured region as annotated by the
manufacturer.

Bases On target No. of variants
(Gbp) (Gbp) Q ≥ 20 Q ≥ 50 Q ≥ 200

Run 1 14 0.4 92 500 63 197 22 841
Run 2 11 3.5 296 320 216 800 120 898
Union of 1 and 2 309 734 222 558 121 982
BAM merged 25 3.9 332 776 245 814 133 420

BAM input files, these are merged on the fly. For GATK to correctly detect that the files should
be merged, the metadata in the BAM header needs to have the same sample name in both files.

Merging could also be done by calling variants in the input files separately, followed by taking
the union of the resulting sets of variants. is alternative method leads to worse results, as we
show inTable 4.1. edifference is thatmerging on the BAMfile level increases the total coverage
and therefore leads to variant calls with higher average quality.

Table 4.1 shows data for a sample of a healthy mother of a patient diagnosed with Coffin-Siris
syndrome. e samplewas captured initially with theNimbleGen 2.1Mmicroarray-based exome
capture kit, yielding unsatisfactory coverage in the first sequencing run. For the second run, the
exome was re-captured with SeqCap EZ v3, resulting in sufficient coverage.

Discard non-exonic variants

As shown in Section 4.1.2, exome capture also yields non-exonic reads that cover introns or the
UTR. In our pipeline, we are not interested in the variants that arise from those regions, except for
intronic variants very close to an exon border as these may influence splicing. Before importing
the variants into the database, those located farther away than 1000 bp from an exon are removed,
which reduces the total number of calls with a quality of at least 100 by 50% on average.

e exon annotation is taken from the Ensembl (Flicek et al., 2013) gene annotation track5,
currently at version 70 (see also Section 4.3.3), and VCF files are filtered with the bedtools
window program by Quinlan and Hall (2010).

Import variants into database

Finally, all found variants are imported into the database. Before importing, indels are normal-
ized as described in Section 4.2.5.

5available at ftp://ftp.ensembl.org/pub/release-70/gtf/homo_sapiens/

92

ftp://ftp.ensembl.org/pub/release-70/gtf/homo_sapiens/

4.2 Computational pipeline

Figure 4.5 Aplot of base quality distributions created by the FastQC program. Each column is a boxplot
of quality values at that position in all reads. One can see the Illumina-typical decrease of
quality values towards the end of the read. is example also shows an untypical decrease in
quality at cycles 55–57. e full FastQC report in HTML format is available from within the
web frontend through a hyperlink.

4.2.2 BAM file validation

Due to our experience with poor error reporting in some existing tools, we added extensive val-
idation to the pipeline. e read mapper BWA ignores improperly paired FASTQ files, that is, if
the n-th reads in both files are not actually from the same fragment. We detect this by checking
whether corresponding read names are equal. e command samtools index ignores defective
(truncated) BAM files. We added a validation step using Picard’s ValidateSamFile command in
order to detect such problems as early as possible. Also, BAM files end with a typical signature
(a compressed block of length zero). Since not all downstream tools check for the existence of
that signature themselves, we do so and stop further processing if we encounter an incompletely
written BAM file.

4.2.3 Quality control

While the previous sections have described the main processing steps needed to go from raw
reads to called variants, we have implemented other steps that mainly consist in gathering statis-
tics for quality control purposes.

Quality control of raw sequencing data

We first count the number of reads in all input FASTQ files. Each file is also analyzed by the
FastQC6 program. Wemainly use it to compute the distribution of quality values (see Figure 4.5).

6http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

93

4 Analyzing Exome Sequencing Data

Verification of sequencing and library preparation

For each of the final BAMfiles, we determine themapping rate (the fraction of reads that could be
mapped), which is at least 90% for almost all of our datasets (96% on average). We also determine
the fraction of mapped reads that were marked as duplicate. e duplicate rate in our datasets is
highly variable: It ranges from 2% to 90%, with a median of 15%. Most of the datasets with high
duplicate rates (≥ 50%) were obtained within two early runs of the sequencer for which library
preparation was problematic. More recent datasets generally remain below 20% duplicates.

Verification of exome capture

For all exome capture kits that we use, annotation files are available. Each mapped BAM file
is run through the bedtools coverage tool with the appropriate annotation track, resulting in
information on the coverage in the captured regions. rough further processing, we extract
numbers for the “breadth” of coverage, which answers: What is the percentage of bases (relative
to all captured bases) that is covered by at least 1, 5, 10 or 20 reads? Good datasets result in 80%
to 90% of captured bases covered at least 20-fold.

On-target bases

As a global indicator of the efficiency of library preparation, sequencing and exome capture, the
number of “on-target” bases is computed for each dataset. We define this to be the number of
bases in reads that map to a target region of the capture kit (flanking regions are ignored) and
that have not been marked as duplicates. e average over our datasets is 2.9Gbp.

Chromosome-level mapping rates

e number of reads mapping to each chromosome is obtained with samtools idxstats and
stored in a separate table in the database. We describe in Section 4.4.5 how that data is used to
estimate patient gender and also to detect chromosome loss or duplication.

4.2.4 Empirical runtime

We use the exome dataset generated by DePristo et al. (2011), which is publicly available, to mea-
sure the runtime of the variant calling pipeline. e sequenced exome belongs to the NA12878
individual of the 1000 Genomes Project (e 1000 Genomes Project Consortium et al., 2010).
It contains 13.5Gbp and is therefore representative of our 169 exomes, whose median size is
13.7Gbp (average: 13.1Gbp; standard deviation: 4.3Gbp). e pipeline was run on an Intel
Core i7-3770 CPU (at 3.40GHz) and with 16GiB RAM. e processor has four hyperthreading
cores allowing for eight threads. e pipeline was allowed to use six threads.

e runtimes are shown in Table 4.2. We see that at least two typical datasets can be processed
per day (about 12 hours per dataset) on that machine. roughput is limited by the non-parallel
tasks, but can be improved if multiple datasets are being processed simultaneously.

4.2.5 Indel normalization

e main tasks that we are concerned with when answering user queries are set operations on
sets of variants. For example: Given all variants found in a tumor sample, subtract those variants

94

4.2 Computational pipeline

Table 4.2 Processing times for DePristo et al.’s NA12878 exome sequencing dataset. Given times are
wall-clock time. Where possible, tools were set to use six threads. Tools that cannot runmulti-
threaded are shown under the “1 thread” heading. Not included are runtimes for FastQC,
computation of statistics, and importing of variants into the database, which are less than
1 hour in total.

Task Time (hours)
1 thread 6 threads

Read mapping 3.40
Sorting 0.73
Indel Realignment 1/2 0.75
Indel Realignment 2/2 0.91
Duplicate marking 0.59
Recalibration 1/2 0.69
Recalibration 2/2 1.16
Variant Calling 3.26

Total 3.89 8.10

also found in healthy tissue. For that, the variants need to be comparable, which is sometimes
not the case for variants coming from different sources. e problem is that there can bemultiple
equivalent alignments that represent the same insertion or deletion event.

Let us look at how a variant is represented in a VCF (variant call format) file7. e same rep-
resentation is used within our database. A variant is described by four values: e chromosome
(“CHROM” as per the VCF specification); the position in 1-based coordinates relative to the
beginning of the chromosome (POS); the original sequence on the reference (REF); and the al-
ternative sequence that replaces it (ALT). Each variant is stored in a single line and additional,
optional fields on the same line allow to describe quality values, allele counts, coverage, inferred
genotype (homozygous or heterozygous) etc. that are associated with the sample-specific call.

Example 6. A single-nucleotide variant on chromosome 7, position 5000, where the reference
has a C, while a T was observed instead, is described by (7, 5000, C, T). Below, we write this as
7:5000 C→T.

For insertions and deletions, the position must refer to one base before the actual event, which
implies that the first characters in REF and ALT are equal. e event is an insertion if ALT is
longer than REF and a deletion if ALT is shorter than REF.

Example 7. e deletion of a single T on chromosome 2, position 4444, assuming that the pre-
vious base on the reference is an A, is described by 2:4443 AT→ A.

Unfortunately, a single event can be described by multiple tuples. e chosen representation
depends on theway inwhich the alignmentwas found. For example, the insertion of the sequence
AC at position 100 on chromosome X can be described by X:100 C→CAC. A different tool may
find that the insertion is X:99 G→GCA. is is the alignment that is described by the first variant:

7Specification:
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41

95

http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41

4 Analyzing Exome Sequencing Data

GC--T
GCACT

And this is the alignment described by the second variant:

G--CT
GCACT

Both are optimal alignments between GCT and GCACT under linear and affine gap scores. ere
is no reason to prefer one over the other, and which one is chosen depends only on the way in
which ties are resolved in the alignment algorithm.

Some mappers (including BWA) have standardized on computing indels that are shied to the
le as far as possible. is can be achieved at the time of backtracing by choosing a mismatch
over an insertion or deletion if there is a tie between the scores.

In order to normalize indels that were not computed with BWA (such as some of those found
in dbSNP), we can use the following simple algorithm (instead of re-computing the alignment).

We first observe that an insertion described by r1 → a1, . . . , an with r1 = a1 and n > 1 can
be moved one position to the le without changing the alignment score or cost if r1 = an. A
deletion described by r1, . . . , rm → a1 with r1 = a1 and m > 1 can be moved one position to
the le if rm = a1. Together, an insertion or deletion described by r1, . . . , rm → a1, . . . , an with
r1 = a1 and either n > 1,m = 1 or n = 1,m > 1 can be moved one position to the le without
changing the alignment score if rm = an.

e resulting algorithm needs, in addition to the variant itself, also the nucleotide sequence of
the chromosome that it refers to.

Algorithm 12 (N-I).
Input: POS, REF, ALT and the base sequence of CHROM. e lengths of REF and ALT must be
different, and both must start with the same character.
Output: Normalized POS, REF, ALT.

1. While the last character of REF and the last character of ALT are equal:

a) Delete the last character of both REF and ALT.

b) Prepend to both REF and ALT the character found in the reference before POS.

c) Decrease POS by one.

2. Return modified POS, REF and ALT.

Each shiing of the indel by one position can be done in constant time if appropriate data
structures are used (linked lists) for REF and ALT.

Example 8. With REF=C and ALT=CAC and assuming that the preceding characters are GA, the
algorithm finds a lemost representation of the insertion in three steps. e characters that are
compared are underlined:

96

4.3 Database

Step 1 Step 2 Step 3
REF→ ALT: C→ CAC A→ ACA G→ GAC

Alignment: GAC--T
GACACT

GA--CT
GACACT

G--ACT
GACACT

4.3 Database

edatabase is the secondmain part of our exome sequencing analysis tool. It stores both patient
metadata and the variant data. Using an SQL database for metadata is the natural choice as the
different entities such as patients and samples and their relationships are easily represented as
tables, which are the basic components of SQL databases. We also store the variants themselves in
the database. is is unusual since other workflows use VCF files directly. is is exemplified by
the existence of dedicated tools for the purpose of indexing, intersecting, merging, and filtering
VCF files. However, all those operations are typical tasks of a database system and database
engines are already highly optimized to perform those tasks. By putting the variant data into the
database, it is possible to leverage those optimizations. In addition, all processing remains in a
single domain, which simplifies program structures.

e most important advantage, however, is that it enables us to provide dynamic, interactive
querying of variant data for the user. For example, when viewing a particular set of variants, the
user can interactively try out different filtering parameters, such as whether to discard variants
found in dbSNP or in other samples. On each change, a new query is issued to the database
server and the result is available within a few seconds. is would be much harder to achieve
with a workflow purely based on VCF files.

In the current implementation, we rely on the PostgreSQL database8. Since a database abstrac-
tion layer is used, it is possible to easily switch to a different engine.

In the following sections, we give an overview of the entities that are stored in the database.
We strive for the database tables to be in third normal form (see Codd, 1971).

4.3.1 Patients, samples and other metadata

In addition to storing the variants, we keep track of where they come from. Inspired partially
by the SAM/BAM specification (Li et al., 2009), we model the following basic entities: patient,
sample, library and sequencing unit. Further metadata tables exist for sequencing runs, cap-
ture kits and diseases. A simplified entity-relationship diagram (without attributes) is shown in
Figure 4.6.

We now describe the tables, including their attributes, in more detail. All tables except “Call”
and “Annotation” have a primary integer key named “id”, even when this is not explicitly men-
tioned below. e id is distinct from the “accession” attribute, which is also present in some
tables. e accession is a user-visible, permanent identifier for an object, while the id is used
only internally.

8http://www.postgresql.org/

97

4 Analyzing Exome Sequencing Data

Known variant

Feature Transcript Gene

Annotation

Variant

Call

Run Capture kit Disease

Sample PatientLibrary

Source

Unit

1 1 1

1

1

1

1

11

1

1 1

1

1n

n n n
n n n

n

n

n

n

n n

n

Figure 4.6 is simplified entity-relationship diagram shows the main tables in the database. One-to-
many relationships are shown with a “1” and “n” at the ends of their connection. Note that
the “Annotation” and “Call” table create many-to-many (m : n) relationships between Vari-
ant/Transcript and Sample/Variant, respectively.

Patient

e attributes of each patient are: accession, gender, id of mother, id of father. e accession
consists of a unique number that identifies the patient, prefixed with “P”. To maintain privacy,
no names, birthdays etc. are kept in the database, except for the gender, which can be used as a
plausibility check (see Section 4.4.5). e association between names and accession numbers is
supposed to only be available to the medical researchers, who maintain a separate spreadsheet
on their own secured systems with that information. emother and father id attributes are self-
referencing foreign keys that model family relationships between patients. If the intention is to
model a sibling relationship between two patients, then records for their parents must be created
even if those parents’ entries would otherwise be unnecessary.

Disease

A disease simply has an id and a name. To model healthy samples, this table always contains the
entry “healthy”.

Sample

A sample is a piece of tissue (blood, tumor) taken from a single patient. Its attributes are: acces-
sion, patient id, disease id, tissue. e patient id references the patient that is the source of the
sample and the disease id references the disease that is associated with this sample. e tissue
is either “blood” or “tumor”. Note that we consider samples instead of patients to have diseases:

98

4.3 Database

is makes it possible to classify a blood sample as “healthy” and a different sample from the
same patient as being associated with a specific tumor.

e sample accession numbers play a central role within Exomate as they are the identifiers
that are used most oen by the medical researchers. ey are oen also used to identify patients.
is works because a sample is associated with exactly one patient. Multiple samples from a
single patient are possible.

Capture kit

An entry in the capture kit table has an id, a short name, such as “SeqCap EZ v3”, and also the
path to an annotation track in the file system that specifies the capture targets of the capture kit.
ese files are usually in GFF (General Feature Format) and available from the manufacturer’s
web site.

Library

e attributes of a library are: sample id, capture kit id. A library is a sample that has been
prepared for sequencing. Having separate tables for library and sample allows us to describe the
case that one sample has been captured by multiple kits, where, for example, the second one is a
more recent kit that captures a larger part of the exome. If we were not concerned with exome
sequencing only, further attributes could indicate perhaps whether whole genome sequencing or
bisulfite sequencing has been performed.

Run

A run groups all sequenced datasets that were obtained during a single run of the sequencing
instrument. Its attributes are: date, machine name (assumed to be globally unique) and a flowcell
identifier string. e flowcell identifier is assigned by the manufacturer and also unique.

Unit

A “sequencing unit” or simply “unit” is a sequenced library. Modeling this is necessary since a
library can be sequenced more than once with different parameters. ere is a bijection between
units and the FASTQfileswith raw sequencing data that are output by the sequencer. Its attributes
are: FASTQfile name, library id, lane, barcode, run id. e lane is the lane number of the Illumina
sequencer and the barcode is the barcode sequence used within that lane when multiplexing was
used.

Statistics

Unit-specific statistics are stored in a statistics table with data such as read counts, fraction of
mapped reads, fraction of PCR duplicates, etc.

Importingmetadata

New patients, samples, etc. can be added and edited through an administrative interface on the
web page. For bulk imports of an entire run, a spreadsheet table template exists. It needs to be

99

4 Analyzing Exome Sequencing Data

filled outmanually (one sample per row), but can then be imported automatically by a command-
line import script.

4.3.2 Known and discovered variants

ere are two types of variants: ose that were discovered (called) in our samples and those
that are known from external sources. Called variants, or “calls”, come with an estimate of the
genotype (homozygous or heterozygous) and with quality values both for the variant call itself
and the genotype. External or “known” variants come from dbSNP, but also from data released
by the 1000 Genomes project, from the HapMap Project (International HapMap 3 Consortium
et al., 2010), and from the Exome Variant Server (EVS)9. ese variants are known in the sense
that we assume that most of them are not associated with a disease and that they are therefore
not interesting candidates for disease-causing mutations.

Since variants oen occur in more than one sample and additionally in datasets of known
variants, we normalize the tables by splitting variants up into abstract variants, calls, and known
calls, as described below. Annotations are stored in a separate table.

Abstract variants

We use an idea by Tim Strom (Helmholtz CentreMunich, Institute of HumanGenetics, personal
communication) and store variants in their own table without associating them with a specific
sample. Using the same convention as in the VCF input files, an entry in the variants table there-
fore consists of only the chromosomename, position on the chromosome, the reference sequence
and the altered sequence. Each variant also has a unique integer id that serves as the primary key.

One of the main low-level tasks of the pipeline is to perform set operations on lists of variants.
is is realized with SQL JOIN operations. By using the numeric variant identifiers, this can be
done efficiently since only integers need to be compared in the database engine instead of full
(chromosome, position, reference, alternative) tuples.

Calls

An entry in the calls table represents a single called variant. It references the id of an abstract
variant and a sample id, and also contains further information, such as the assigned quality value
of the call, quality value of the genotype, strand bias, total read depth, number of reads supporting
the reference allele and number of reads supporting the alternative allele.

Sources

is table simply lists all sources for known variants, such as data from the 1000Genomes project,
different dbSNP versions, etc.

Known variants

e third table stores those variants that are known from external sources. Each entry references
a variant and a source by id. If an entry refers to a dbSNP entry, it also contains the dbSNP

9http://evs.gs.washington.edu/EVS/

100

http://evs.gs.washington.edu/EVS/

4.3 Database

Table 4.3 A snapshot of the Exomate database in February 2013. For dbSNP variants, only “exonic”
variants are counted, that is, those that are within 1000 bp of an exon as annotated by Ensembl.
e dbSNP 137 re-discovery rate is the number of calls that also occur in dbSNP divided by
the total number of calls (see Section 4.4.5).

Patients 128
Samples 154

Units 172
Calls 41 390 180

Unique called variants 2 612 406
dbSNP 137 exonic variants 9 582 261

dbSNP 137 re-discovery rate 94.4%
Unique variants overall 10 763 318

rsid, the allele frequency and flags that indicate whether this variant is clinical: Such variants are
possibly associated with a disease and if they are found in a sample, they should therefore not be
discarded.

Global statistics of the number of different types of variants within the database are shown in
Table 4.3.

4.3.3 Annotations

A variant annotation tells us what effect the variant has on a gene transcript within which the
variant is located. Since multiple transcripts may overlap the variant’s location, there can be
multiple annotations for a single variant. An annotation is therefore not stored along with the
variant itself, but in a separate annotations table. A single annotation associates a variant id and a
transcript idwith the following information (substitution variants only): Reference codon (string
of length three), alternate codon, reference amino acid, alternate amino acid. To indicate a stop
codon, a special symbol is used as “amino acid”. Further, the variant’s type is classified; it can
be an insertion or deletion, or a synonymous, nonsense, missense or read-through substitution.
Additionally, the variant is classified by its position relative to the transcript into the regions
upstream,UTR, coding, intron anddownstream. Also, the distance to the next splice site (defined
as an exon-intron border), is recorded. If the distance is negative, the variant is located on an
intron, and within an exon otherwise. A value of zero does not occur.

To simplify some queries, the annotations table is not in third normal form. For example,
reference amino acid and alternate amino acid are each a function of the respective codon and
would usually have to be stored in a separate table. Also, whether a variant is insertion, deletion
or substitution is a function of the lengths of the variant’s reference and alternate sequences. We
consider each annotation and variant to be immutable, however, and can therefore not suffer
from update anomalies that can occur in non-normalized tables.

On average, we have 3.1 annotations per variant and 1.1% of variants have annotations with
differing amino acid changes.

101

4 Analyzing Exome Sequencing Data

Ensembl

Variants are annotated with the help of the public Ensembl gene annotation track, available for
download as a GTF file. A custom script first imports the data into the database into three tables
for genes, transcripts and features. A feature is an interval on the reference genome (start and
stop coordinate) that has a type, which can be exon, coding sequence, start codon or stop codon.
Each feature references a transcript, and a transcript is defined by all features that reference it.
Each transcript, on the other hand, references a gene. Each gene usually has multiple transcripts
that reference it due to alternative splicing.

Using the information available in the features and transcripts tables, variants are annotated
by a script10 that considers feature start and stop positions and variant positions as “events” and
iterates over merged events in ascending order. If a position belonging to a variant is seen, the
variant is annotated with the currently active features.

4.3.4 SIFT

SIFT is a tool by Ng and Henikoff (2003, 2001) that assigns scores to substitution variants which
help to estimate whether a mutation is detrimental or not. A database of pre-computed scores
can be downloaded11 and imported into our own database. (SIFT predictions are currently not
shown in the web frontend.)

4.4 Web frontend

emost visible part of Exomate is the interactiveweb frontend. Itsmain task is to create database
queries derived fromuser input and to display the results. e emphasis is on creating the queries:
ese encode the central logic necessary to reduce the lists of variants to those that are likely
interesting in the context of the study being done.

In a simplified view, we could consider everything done up to this point as pre-processing:
mapping, variant calling, annotation, gathering statistics. e actual work of selecting the ap-
propriate data is le to the frontend. Other workflows rely on soware such as vcools12 that
annotate, intersect, subtract etc. VCF files. Within Exomate, these tasks are encoded as SQL
database queries and computed by the database server. As should be clear now, this allows a
highly interactive analysis where queries with different parameters can be run quickly by a non-
bioinformatician.

4.4.1 Implementation

e web frontend is written in Python with the Flask13 web-framework. Flask deals with such
low-level tasks as interpreting request URLs, routing them to the correct function, and parsing
parameters. To interface with the database, we rely on the object-relational mapping (ORM)
library SQLalchemy14. ORM makes it possible to view each row of a database table as an ob-
10written by Christopher Schröder and Manuel Allhoff, former student assistants in our group
11ftp://ftp.jcvi.org/pub/data/sift/Human_db_37_ensembl_63/
12http://vcftools.sourceforge.net/
13http://flask.pocoo.org/
14http://www.sqlalchemy.org/

102

ftp://ftp.jcvi.org/pub/data/sift/Human_db_37_ensembl_63/
http://vcftools.sourceforge.net/

4.4 Web frontend

ject, where the table columns are represented as attributes of the object. More importantly,
SQLalchemy allows us to construct queries incrementally and dynamically. Instead of going into
detail here, we refer to the SQLalchemy documentation and give a short example that should help
to understand the basic idea.

Example 9. We show the code for querying either all samples or only those that have a specific
disease.

Assuming that db is an open database session and that disease references a Disease object,
the code would look similar to this in Python with SQLalchemy:

1 q = db.query(Sample)
2 if disease is not None:
3 q = q.filter(Sample.disease == disease)
4 samples = q.all()

Line 1 constructs a query for all samples; line 3 adds a filter, but only if a disease was specified.
e actual query is then sent to the database in the last line. In raw SQL, this corresponds to
choosing between either

SELECT * FROM samples;

or

SELECT * FROM samples WHERE disease_id = ...;

Note that the correct disease id is filled out by SQLalchemy automatically. In the same way, more
complex queries can be constructed. See the Exomate source code for some of them.

4.4.2 Simple queries

Some of the pages generated by the web frontend simply list the content of a particular table. An
example of an overview of all persons is shown in Figure 4.7. Similar pages exist for samples,
units and diseases. Libraries are never shown to the user. Instead, the capture kit information is
shown along with the corresponding units. ere is also a page that shows all the quality control
statistics that are described in Section 4.2.3.

Another page allows the user to search the entire database for any variant given by its coordi-
nates (chromosome and position), or for all variants in a region. Both calls and known variants
are displayed. See Figure 4.10 on page 111 for an example, explained in Section 4.5.

4.4.3 Criteria for filteringmutations

Our central task can be described as follows: Find all variants in a certain sample, but only those
that are probably interesting. e list of variants is simply the list of calls found in the corre-
sponding VCF file. More difficult is to answer what “interesting” means. We describe here the
filtering criteria that can be relevant, many of which are optional and can be switched on and off
dynamically. Some of these have already been used by Ng et al. (2009).

103

4 Analyzing Exome Sequencing Data

Statistics BAM Files Query mutations Gender check

EXOMATE

Overview of all persons
Showing 154 persons.

Accession Samples

P0001 M001, M002 ♂ chromosome 3 disomy

P0002 M003, M004 ♀ chromosome 3 monosomy

P0003 M010, M009 ♀

P0004 M005 ♂

P0010 M007 ♀

P0011 M068 ♂

P0014 M006 ♂ P0010 P0011

Infos Variants

chromosome 3 monosomy

chromosome 3 disomy

Gender Mother Father Comment

Figure 4.7 Extract of patient/person overview page. P0001 through P0004 are uveal melanoma pa-
tients. Chromosome 3 status within the tumor was added as a patient-specific comment (see
Section 4.5.3). A trio of a patient and his parents is also shown. Sample names have been
anonymized.

Variant region

Typically, we are interested only in variants that are located within a coding region. For a com-
plete picture, one may also include intronic variants or those located in the 5′ or 3′ untranslated
region (UTR). eoretically, variants located in promoter regions are also of interest, but these
regions are not captured.

Splice sites

Splice-site mutations can have a large functional impact as changed splicing leads to radically
different protein products. In order for an intron to be removed by the splicing machinery, con-
sensus sequences in three regions must be recognized (Alberts et al., 2008, Chap. 6, Fig. 6-28).
One of the regions (the branch site) is typically located too far within the intron to be consistently
seen by exome sequencing and therefore ignored here. e two other regions are the exon/intron
boundaries. e consensus sequences extend a few bases into the exon and up to twelve bases
into the intron at the 3′ splice site (Zhang, 1998). Splicing is quite tolerant of changes within those
sequences, excluding the four bases directly adjacent to the two exon/intron boundaries. In our
soware, we define a splice-site mutation to be any that has a distance of at most n bases to the
closest exon/intron border, where n is per default set to twelve and can be changed dynamically
for each query. Splice-site mutations, including those on introns, are never discarded.

Variant types

Synonymous variants do not change the amino acid sequence of the resulting protein and are
therefore discarded from the result list by default. An exception are synonymous variants that

104

4.4 Web frontend

occur close to a splice site. ese are not discarded since the nucleotide sequence is relevant for
splicing, not the amino acid sequence.

Known in dbSNP

Variants that occur in our samples of interest but that are also in dbSNP are, by default, discarded.
e assumption is that variants in dbSNP either come from healthy individuals or, if not, that the
associated disease is at least sufficiently different from the disease that is being investigated. is
assumption is not always valid. Some entries in dbSNP are marked as “clinically significant”, and
these are therefore not discarded. When searching for a recessive trait, the responsible variant can
also occur in dbSNPwithout being specially marked since the affected individual is heterozygous
for that variant and therefore does not show the phenotype. Currently, the alternative of not
discarding dbSNP variants is infeasible as too many remain.

Found in other samples

A second source of variants that can be ignored are the variants found in healthy samples. Stud-
ies usually include not only samples of an affected patient or affected tissue, but also controls.
For solid tumors, the control is typically blood from the same patient, and for patients with rare
Mendelian diseases, the parents are oen sequenced (resulting in trios). Discarding these vari-
ants should, in the best case, restrict the set to de-novo/somatic mutations only. In our own
experiments, this does not work as many variants of the controls are simply not found, and usu-
ally hundreds of variants remain unless variants found in other, unrelated samples and dbSNP
are discarded. According to Ng et al. (2009, Suppl. Fig. 2), the need to rely on dbSNP decreases
as more and more controls are available.

Using own controls has the further advantage that some variants arising from sequencing er-
rors are ignored automatically. Such errors are oen sequence-specific (Nakamura et al., 2011;
Allhoff et al., 2013), and will therefore affect both the sample of interest and the control.

Quality thresholds

ere are two independently adjustable thresholds on variant call qualities. e first limits the
shown calls to those above the threshold (affected call quality threshold). ismust be set to some
reasonable, large enough value in order not to show too many artifacts. e second threshold
is applied to the calls from control exomes used for filtering (unaffected call quality threshold).
Since we want to maximize the effectiveness of the filter, this threshold is set to a low value and
therefore includes – intentionally – many sequencing artifacts.

4.4.4 Mutation query implementation

e following description of a variant query only approximates what is really done by the pro-
gram. e actual code uses SQLalchemy to construct a single SQL query incrementally. at is,
when we describe below that the “set of variants is reduced”, this actually means that the query is
extended by appropriate criteria. e idea behind this is to let the SQL database engine optimize
the final query in the best way. For example, instead of retrieving two sets of variants separately
from the database and subtracting one from the other on the client side, it is much more efficient

105

4 Analyzing Exome Sequencing Data

to use a proper SQL JOIN clause and let the server return the end result, especially if millions of
variants are involved, as is the case here.

Algorithm 13. e following algorithm summarizes the procedure to find “interesting” muta-
tions, defined by user-supplied parameters.
Input: A database connection and query parameters.
Output: A list of (Call, Annotation) tuples.

1. Get a list of all unaffected samples. ese contain the variants that are to be discarded. e
list is provided by the user, who can explicitly specify samples by accession or indirectly
through a list of diseases. is is usually le at its default of discarding variants found in
“healthy” samples.

2. Obtain all calls from unaffected samples, excluding those below the unaffected quality
threshold.

3. Get a list of all affected samples, that is, those that interest us.

4. Query the database for all calls from affected samples whose quality is better than the
affected call quality threshold, and subtract (using a LEFT OUTER JOIN) those that rep-
resent the same variant (identical variant id) as one of the unaffected calls obtained above.

5. Get the list of “Known sources” specified by the user for filtering. If that list is nonempty,
further subtract from the set of calls obtained so far those calls that represent the same
variant as one of the known variants from the given sources. Optionally, calls that are
marked as “clinical” are not subtracted.

6. Associate (join) each call to its corresponding annotation, applying further filter criteria:
Variants must be on the coding region and be not synonymous unless they are close to a
splice site. If specified, intron and UTR variants are also retained.

7. Return the resulting list of (Call, Annotation) tuples.

4.4.5 Quality control queries

In addition to directly displaying statistics, further quality control is performed by analyzing the
calls that belong to a single sample. e advantage here is again that the queries can be changed
dynamically, for example by setting different variant quality thresholds.

dbSNP re-discovery rate

e dbSNP re-discovery rate, for example described by Challis et al. (2012), is the fraction of
those variants discovered in an exome that were also found in dbSNP. e rate gives a rough
estimate of the variant calling pipeline’s specificity. e value is computed on the fly when the
sample detail page is retrieved. On average, the dbSNP re-discovery rate of our data is 94.4% (see
Table 4.3) when only variants with a minimum quality of 200 are considered.

106

4.4 Web frontend

Table 4.4 Captured bases on chromosomes X and Y for three capture kits. Capture targets are taken
from the manufacturer’s annotation.

Captured bases
Capture kit Chromosome Y Chromosome X Ratio Y/X

NimbleGen 2.1M Array 62 443 1 482 139 4.2%
SeqCap EZ v2 102 743 1 661 562 6.2%
SeqCap EZ v3 232 073 2 404 880 9.7%

Checking patient gender

As a first measure against incorrect patient metadata, we use the number of reads mapping to
sex chromosomes to estimate each sample’s gender. For each sample, we compute the ratio y/x,
where y is the number of reads mapping to the Y chromosome and x is the number of reads
mapping to the X chromosome.

In females (two X chromosomes), onemight expect that this ratio is zero since no reads should
map to the Y chromosome. However, since there are regions on X and Y that contain the same
genes and have similar sequence (pseudoautosomal regions), some reads will map to the Y ref-
erence even in females. erefore, the ratio should be low, but not zero.

In males (both X and Y chromosome), we expect the y/x ratio to be (roughly) the same as the
ratio between the number of bases captured on Y vs. those captured on X. is ratio depends on
the capture kits used, but is at least 4.2%; see Table 4.4 for details.

Our largest observed y/x ratio within a sample known to be female is 1.4%, while the lowest
y/x ratio within a known male sample is 4.7%. See Figure 4.8. We therefore use a simple linear
classifier with a threshold of 3%: Ratios below are classified as female, above as male. Within
Exomate, this result is presented in the form of a table that lists all samples, ordered by their y/x
ratio. If annotated and predicted gender do not match, the sample is highlighted. is check has
so far resulted in the correction of three annotations. e check is crude, but works accurately.
e only incorrect classifications are due to two male tumor samples classified as female, but it
is likely that here either partial or full Y chromosome loss has occurred.

Chromosome number anomalies

Other chromosomes can also be lost (partially or fully) in tumors, such as chromosome 3 in uveal
melanoma (see Section 4.5.3) or chromosome 13 in retinoblastoma. Such large-scale deletions
are easier to detect with other methods, but are also detectable in exome sequencing data. We
have implemented two methods.

First, for a single dataset, we compute the ratio nc/n
bc/b , where nc is the number of reads that map

to a chromosome c, n is the total number of mapped reads in the dataset, bc is the number of
bases captured in chromosome c, and b is the total number of captured bases. Deviations from a
value of 1 point to a chromosome number anomaly.

e second idea is based on the observation that missing chromosomes or large deletions lead
to regions without heterozygous calls. is is called loss of heterozygosity and has been used
successfully to detect deletions (Bignell et al., 2004). We use this technique here only as a quality
check in order to verify that our known information about chromosomal loss match the data.

107

4 Analyzing Exome Sequencing Data

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
y/x ratio

0

10

20

30

40

50

60

F
re

q
u

en
cy

y/x ratio histogram

unknown

male

female

Figure 4.8 Histogram of ratio of reads mapped to the Y- vs. the X chromosome. e dashed line marks
the threshold used for gender classification. e male samples classified as female are tumor
samples (see text).

For that, each sample overview page in Exomate shows a table that lists all chromosomes and the
ratio nhet/n, where nhet is the number of heterozygous calls on a chromosome, and n is the total
number of calls on that chromosome. A chromosome where that ratio is low compared to the
others is a good candidate for having been lost.

Checking relatedness

A further check (currently not implemented) could test whether two samples really are related in
the way the metadata indicates. For example, for parent/child relationships, most variants in the
child should be explained by matching variants in one of the parents. In tumor/normal sample
pairs from the same patient, the variants in the tumor should bemostly a subset of variants in the
normal cells. If non-matching samples are detected, it may be possible to find the sample most
closely related to a given one.

4.5 Results

Exomate has been and is being used in multiple projects. We present three of the projects, two
of which have resulted in manuscripts accepted for publication. All show that Exomate is a valu-
able tool that helps in identifying disease-causing genes and discovering mutations in exome
sequencing data.

108

4.5 Results

Gene Common Sample Transcripts Nucleotide Codon Amino acid Type Region Splice Quality

1 ARID1A 1 M024 001, 201, 002, more C → T CGA→ TGA R → * Nonsense Coding 75.19 1:27106354

2 ARID1B 1 M026 201, 203, 009, more C → T CGA→ TGA R → * Nonsense Coding 37.98 6:157406006

3 SMARCB1 1 M021 005, 001, 002, 003 G → A CGG→ CAG R → Q Missense Coding Splice 224.79 22:24176330

Location

Figure 4.9 e result table returned by Exomate when querying for mutations on genes encoding
SWI/SNF subunits withinCoffin-Siris patients. Some columnswere removed for better read-
ability.

4.5.1 Coffin-Siris syndrome

Coffin-Siris syndrome is a genetic disease associated with mental retardation and body anoma-
lies (Santen et al., 2012). Seven affected patients were sequenced by colleagues at the University
Hospital Essen. is was one of the first exome datasets available to us, and it was used to cali-
brate the pipeline and refine themethods. We assumed that Coffin-Siris was amonogenic disease
(caused by mutations in a single gene). Candidate genes were therefore those that were simulta-
neously mutated in a large subset of the seven patients. Unfortunately, no single gene could be
identified. Later, a study by Santen et al. (2012) was published, in which the cause for Coffin-Siris
syndromewas pinpointed to bemutations in the geneARID1B. At the same time, Tsurusaki et al.
(2012) come to the conclusion that mutations in an entire set of genes (including ARID1B) that
encode subunits of the “SWI/SNF” protein complex are common to patients with Coffin-Siris
syndrome, in contrast to our assumption of a single gene. We verified with Exomate that one of
our patients had a mutation in ARID1B and that two other patients had mutations on ARID1A
and SMARCB1, respectively (see Figure 4.9), which also belong to the SWI/SNF complex.

4.5.2 Nager syndrome

Nager syndrome belongs to a type of diseases called acrofacial dysostoses. We sequenced exomes
of two patients with Nager syndrome and identified mutations in gene SF3B4, using Exomate.
With Sanger sequencing of ten further patients, we found pathogenic mutations of SF3B4 in
seven out of twelve patients, confirming that SF3B4 is a cause for Nager syndrome (Czeschik
et al., 2013).

Before we finished our study, Bernier et al. (2012) independently published their own results,
also identifying mutations in SF3B4 as a cause of Nager syndrome. Our results agree in that both
studies do not find pathogenic mutations in SF3B4 in one third of Nager patients. It is therefore
likely that Nager syndrome is a condition with genetic heterogeneity, in which a mutation in
SF3B4 is only one of several possible causes, but the other causal genes are currently unknown.

4.5.3 Uveal melanoma

In our largest study (Martin et al., 2013), we investigate uveal melanoma, which is a malignant
eye tumor. Tumor and blood samples of 22 patients were exome-sequenced. Uveal melanoma
can be divided into two major classes (Tschentscher et al., 2003). In one class, tumor cells have
a normal chromosome 3 count (disomy 3), and in the other, cells are characterized by loss of an
entire chromosome3 (monosomy3). Metastasis disease andpoor survival are strongly associated

109

4 Analyzing Exome Sequencing Data

with monosomy 3 (Prescher et al., 1996). Exome sequencing identified recurrent mutations in
multiple genes, among them GNAQ, GNA11 and BAP1. ese genes are known to be frequently
mutated in uveal melanoma.

e study shows the potential of exome sequencing for identifying new candidate genes. One
of the candidates was SF3B1, which had previously been described in connection with other tu-
mors, and another was EIF1AX, which had previously not been described as cancer gene. Muta-
tions in these genes were all verified by Sanger sequencing. To evaluate the mutation frequency
and pattern of these genes in uveal melanoma, the relevant exons of SF3B1 and EIF1AX were
Sanger-sequenced in additional 66 tumors. emain result of the study is thatmutations of these
two genes are mutually exclusive and largely restricted to the class of tumors with disomy 3.

Aer submission of our initial manuscript, a study by Harbour et al. (2013) was published, in
which the authors also observe recurrent mutations of SF3B1 in uveal melanoma. Since their
exome sequencing data are publicly available from the Sequence Read Archive (SRA) under ac-
cession SRA062369, we downloaded the data and ran our pipeline on it.

All three mutations in SF3B1 that were found by Harbour et al. change position 198 267 484
on chromosome 2 from G to A.With Exomate, we can confirm the existence of thosemutations in
their data. e result of the crucial query is shown in Figure 4.10. In the figure, we see the three
mutations described by Harbour et al. and an additional one affecting sample SRS378747, which
is supposed to be the healthy control sample from one of the patients according to SRA. It is not
clear where this discrepancy comes from. e figure also shows two of the SF3B1mutations that
we observe in our own exome data.

4.6 Future work

e soware described in this chapter is in daily use at the University Hospital of Essen within
theHumanGenetics research group. Its development is still ongoing at a rapid pace. We describe
here some possibilities for future work. First, we list planned extensions for which it is already
quite clear how to proceed in adding them. In Section 4.6.1, we describe those issues for which
more research is needed.

Tumor/normal variant calling

When samples of tumor and normal tissue from the same patient are available, both datasets can
be analyzed at the same time. e idea is that a variant that would usually be missed in one of the
samples since evidence for it is too weak can still be found if information from both samples and
the knowledge that the samples are closely related is taken into account. SomaticSniper (Larson
et al., 2012), for example, is able to find SNPs in tumor/normal pairs. With such a tool, it should
be possible to eliminate some of the false positive candidates.

Do not discard rare variants

For those variants that are discarded, wewould like to ensure that they aremost likely not relevant
for the disease being studied. We initially discarded all variants that also occur in dbSNP. A
first improvement was to keep those variants marked as “clinical” (Section 4.4.3). A problem
is that absence of that marker does not imply that the variant is not clinical. Only 60 325 of

110

http://www.ncbi.nlm.nih.gov/sra/?term=SRS378747

4.6 Future work

Statistics BAM Files Query mutations Gender check Report issue

EXOMATE

Variants

Calls

Variant

Nucleotide

change Quality Unit Sample Patient Disease

2:198267484 G → A 759.77 SRR636542 SRS378747 Harbour065 healthy

2:198267484 G → A 639.77 SRR636531 SRS378243 Harbour065 Uveal melanoma

2:198267484 G → A 413.77 SRR636566 SRS378956 Harbour134 Uveal melanoma

2:198267484 G → A 492.77 SRR636565 SRS378955 Harbour133 Uveal melanoma

2:198267484 G → A 129.36 M014T M014 P0026 Uveal melanoma

2:198267483 C → T 1968.42 M019T M019 P0037 Uveal melanoma

Known variants
No known variants matching the search criteria found.

Infos Variants Debugging

Version: 2013-03-25 f66a5cb; Time spent: 0.1s

Figure 4.10 Reproducing the results by Harbour et al. e page shows results for a search for variants
within 10 bp of pos. 198 267 484 on chromosome 2. On the bottom, we see that no known
variants (in dbSNP) were found. See text for explanation of the results in the top table.

111

4 Analyzing Exome Sequencing Data

8 944 641 (0.7%) exonic variants in dbSNP 135 have that marker. As dbSNP continues to grow,
it makes therefore sense to only discard those variants that occur in a sufficiently large subset
of the population. About 6.7 of 9.6 million exonic variants in dbSNP 137 are annotated with
an allele frequency. Setting a minimum allele frequency of 1% leaves 2.1 million variants that
can be filtered. A similar threshold could be used for discarding variants that occur in our own
individuals, where one could, for example, only discard those that occur in at least two unrelated
healthy persons.

Integrate more external data sources

At the moment, we still see too many spurious variants in Exomate’s output. One way to improve
specificity is to add other external sources of known variants, which would be added to our own
variants from healthy samples and dbSNP variants. One such source is the data released by the
1000 Genomes Project (e 1000 Genomes Project Consortium et al., 2010), but that data has
already been integrated into dbSNP. A promising candidate for inclusion is data from the NHLBI
Exome Sequencing Project (ESP), available for download via the Exome Variant Server (EVS)15.
It includes variants from over 6500 samples obtained by exome sequencing. Variants havemostly
not been verified with Sanger sequencing, whichmakes the data less reliable than dbSNP, but this
is not a problem since it is only meant to be used for filtering. Since there are so many variants
in EVS, the previous point about not discarding rare variants becomes even more important and
should be addressed first.

Include structural variations

As many other tools, we currently ignore structural variations, which are large-scale insertions,
deletions, inversions etc. (see the review by Alkan et al., 2011). Long indels can be found with a
tool such as CLEVER (Marschall et al., 2012) or Pindel (Ye et al., 2009), but it is unclear whether
this works well for exome sequencing data with its uneven distribution of reads over the genome.

Pseudoautosomal regions

Due to the pseudoautosomal regions (PAR) on the X and Y chromosomes, some reads are seen
mapping to the Y chromosome in females. e errors introduced are small, but if the gender of
the patient is known, one could map samples from females to a reference that does not contain a
Y chromosome.

Ignore long transcripts

When searching for genes that are commonly mutated in a set of samples, long transcripts oen
appear as candidates, simply because they have a larger chance of being mutated in all samples.
Accordingly, we oen see TTN andMUC16, which are the largest proteins (Scherer, 2008, p. 26).
Possible solutions are to create a blacklist of genes that are never to be displayed or to mark very
long transcripts in the user interface.

15http://evs.gs.washington.edu/

112

http://evs.gs.washington.edu/

4.6 Future work

4.6.1 Open problems

In this section, we mention those issues whose existence we have recognized, but for which a
solution is probably not as straightforward as in the previous section and which therefore require
further research.

Non-existence of variants

In its current design, the database can only indicate existence of a variant, but not non-existence.
e problem is as follows: If no entry exists in the calls table for a given variant, there are two
possibilities. e first is that the variant caller encountered a sufficient number of reads covering
that position that support the hypothesis that there is no difference to the reference. e second
option is that not enough reads cover the position to support any hypothesis. When, for example,
a variant is found in a child but not its parents, it is a candidate for being a de novomutation only
if the coverage in both parents at that position is sufficient. To reflect this, one would need to
model three types of variants: ose that exist, those that do not exist, and those for which one
does not know.

One way to solve the problem could be to automatically post-process result lists of candidate
variants by inspecting the appropriate BAM files. e disadvantage of this approach is that it
forces us to leave the database domain. Storing full existence/nonexistence/unknown informa-
tion in the database for each sample and each coordinate is not an option as this requires too
much space and slows down all queries. A second option is therefore to summarize the data by
storing, for each sample, a set of intervals that describe regions with high (or low) coverage. We
have conducted initial experiments which suggest that the number of intervals needed is below
100 000 per sample, making this approach feasible.

Automating testing

Little of Exomate’s functionality that is exposed via the web interface is tested automatically for
correctness. e largest problem is that we do not know whether the result set returned by a
particular query is correct and that it therefore does not make sense to check whether it remains
the same aer changing the algorithm. is does not mean that the soware is unreliable: e
results given in the previous section show that results are accurate. Also, many manual checks
have been done by the users. False positives andnegativeswere reported by themand investigated
by us. Oen, these reports indicate not a problem in the pipeline itself or in the algorithms, but
in a misunderstanding of how a particular parameter works. Incorrect metadata were also the
cause of false results. Rare problems in the soware were subsequently fixed and a decreasing
number of error reports over time increase our confidence in the results, but of course, this is not
a substitute for automatic testing.

An initial solution to part of the problem is to automate some queries that search for variants
verified by Sanger sequencing, making sure that these are shown. Some checks could also verify
that false positives do not re-appear aer a modification to the soware and when new data is
imported. e best variants for verificationmay be those from published studies whose sequenc-
ing data is available, such as the one by Harbour et al. As we have described in the last section,
even that may be unreliable as we have encountered possibly incorrect metadata, at least in that
study.

113

4 Analyzing Exome Sequencing Data

Correctness of metadata

In our own soware we also need to be concerned with problems in metadata. Errors are hard to
detect and the checks described in Section 4.4.5 can detect only a few classes of errors. Somemay
be caught by using check digits in sample numbers, and by using barcodes. In fact, connecting
Exomate to a full laboratory information management system (LIMS) that is able to properly
track samples could help, but is currently out of scope. We cannot give a solution here, but only
emphasize that procedures need to be established that ensure metadata is double-checked before
being added to the database.

4.7 Discussion

Using a relational database

e decision to build on a database instead of using a file-based workflow was influenced by
the realization that most of the variant data one works with during exome sequencing can be
viewed as tables and that the specialized tools used to manipulate them arguably re-implement
the same algorithms as those already available in a database – except for the fact that the database
engine likely has received more performance tuning and testing than the specialized tool. is
assumption has so far turned out to be true: It is usually quite easy to implement a new, custom
analysis on top of the database with a few lines of SQL. Adding to this a web-accessible user
interface takes only a few more lines in Python, and is, for simple queries, therefore done very
quickly.

Using SQL also has its problems. It is a very concise language that essentially allows us to ex-
press the properties of the desired result objects in very few lines of code. In fact, we are not only
allowed to but oen have to express the entire idea in a few lines. Typical soware engineering
techniques such as refactoring and using subroutines that help to make the code easier to un-
derstand are not easily possible or lead to major performance loss. In that regard, usage of the
object-relational mapping library alleviates this problem to a large degree, as it makes it possible
to break up a query into re-usable parts which lend themselves to refactoring. However, as the
underlying language is SQL, it still takes some time to design complex queries.

Developmentmodel

One of our aims was to remove the “human bottleneck” in exome analysis by adding the web
interface, which is always ready to answer a research question. We noted that it requires some
effort in order for that bottleneck to not re-appear, by following a simple rule: If a request for an
analysis comes in, one must add the possibility for such a query to the soware, and not give the
answer oneself. Inspired by agile soware development models, we also try not to offer too many
query parameters prematurely, but generalize only when there is evidence that the flexibility is
required.

Proceeding in the describedway improves reproducibility of experiments since the source code
of the query algorithms serve as documentation that describes how a result was obtained.

Another observation that has likely beenmade before bymany other soware developers is the
following. It is crucial for the developer to understand how the user interacts with the soware in
order to recognize those tasks that could be automated. Many people without formal computer

114

4.7 Discussion

science training or programming experience will happily work around missing functions in the
soware that they use by effectively implementing their own algorithms “by hand”. An example
could be the copying and pasting of a gene name from a result page into the search field of a third-
party website, whereas adding an appropriate hyperlink to the result page would be a matter of
minutes for the soware engineer.

Exomate in its current form is a practical tool that has already shown its usability in prac-
tice, but we also consider it to be easy to build upon in order to meet new challenges in exome
sequencing.

115

5 Aligning Flowgrams to DNA Sequences

We return in this chapter to the low-level task of aligning a read to a reference, but focus on
reads represented as flowgrams, that is, those from the 454 or Ion Torrent sequencer. Incorrectly
measured homopolymers are the major source of errors in such data.

Recent work has focused on improving the accuracy of the initial conversion of flowgrams to
DNA sequences (base calling) in order to facilitate read mapping and downstream analysis of
sequence variants. However, base calling always incurs a loss of information by discarding frac-
tional intensity information. We introduce here a method to directly align flowgrams to DNA
sequences. In this way, base calling can be avoided entirely. We call our algorithm flowgram-
string alignment. It is based on dynamic programming, but covers more cases than standard
local or global sequence alignment. We also propose a scoring scheme that takes into account
sequence variations (from substitutions, insertions, deletions) and sequencing errors (flow in-
tensities contradicting the homopolymer length) separately. is allows to resolve fractional in-
tensities, ambiguous homopolymer lengths and editing events at alignment time by choosing the
most likely read sequence given both the nucleotide intensities and the reference sequence. We
also demonstrate the advantages of flowgram-string alignment compared to base-called align-
ments. A proof-of-concept implementation called FlowG is available under theMIT license from
http://www.rahmannlab.de/software .

5.1 Introduction

We describe in this section the type of measurement errors arising in 454 sequencing when not
the full information available in the flowgram is used, and discuss previous work attempting to
incorporate more of that information into the alignment algorithm. We then motivate why it
seems hard to incorporate editing events into the algorithm.

5.1.1 Information loss from base calling

A flowgram is a sequence of nucleotides, each of which is paired with its fractional measured in-
tensity (see Section 1.5.1). By rounding intensities in a flowgram to the nearest integer, a regular
DNA sequence can be inferred, a step known as base calling. For example, a thymine at inten-
sity 2.4 would be called as TT. Subsequently, standard read-mapping and sequence alignment
algorithms can be used to compare the obtained sequence reads with reference sequences.

Recent work has focused on improving base calling from straightforward rounding to the near-
est integer towards more elaborate statistical methods based on HMMs (Golan and Medvedev,
2013). Nevertheless, base calling always incurs a loss of information by replacing the fractional
intensities with integer lengths. For example, the distinction between a C observed at an intensity
of 5.4 vs. one at an intensity of 4.6 is lost. Both are called as CCCCC, but in the first case, alignment
to six Cs is much more plausible than in the latter case.

117

http://www.rahmannlab.de/software

5 Aligning Flowgrams to DNA Sequences

0 1 2 3 4 5 6 7 8 9 10
Flow intensity

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

F
re

q
u

en
cy

Figure 5.1 Distribution of flowgram intensities given homopolymer length ℓ. e data was obtained by
mapping base-called reads to an Arabidopsis reference and correlating genomic homopoly-
mer lengths to flowgram intensities, assuming insertions of the same character into runs are
overcalls and deletions within a run are undercalls. Some artifacts likely remain from this
heuristic procedure, including smaller peaks at integer intensities that are not equal to the
run length, but the graph looks remarkably similar to Figure 3 in the article by Balzer et al.
(2010).

For a homopolymer of length ℓ, rounding works correctly if the measured intensity is in the
interval [ℓ− 0.5, ℓ+ 0.5). If it is outside that range, a homopolymer error occurs. If the intensity
is ℓ+ 0.5 or larger, this is called an overcall and if it is smaller than ℓ− 0.5, it is an undercall.

Homopolymer errors occur because the distributions of flowgram intensities observed for dif-
ferent run lengths overlap each other, as seen in Figure 5.1. e overlap gets more pronounced
the longer the homopolymer is (Balzer et al., 2010). Within an alignment to a reference sequence,
homopolymer errors result in spurious insertions (for overcalls) or deletions (for undercalls).
ese are the dominant form of errors in 454 sequencing data (Margulies et al., 2005).

5.1.2 Previous work avoiding base calling

We put forward the hypothesis that it makes more sense to invent alignment algorithms that di-
rectly work on flowgrams, instead of on a base-called sequence. A few publications on flowgram-
based alignment already exist, but none clearly separates the two processes of sequence editing
and flowgram under- and overcalling.

118

5.1 Introduction

Vacic et al. (2008) model the distribution of flowgram intensities and derive a probabilistic
model to compute the log-odds score that a given flowgram originates from a given genomic
sequence. Using an enhanced suffix array of the run-length compressed reference genome, posi-
tions with a high score are then found efficiently. eir soware FLAT is intended for mapping
sequenced small RNA molecules to a reference and not for aligning diverged DNA sequences, so
they do not take into account editing events. We use a similar way of deriving log-odds scores
for differences between aligned reference and flow intensity.

Quince et al. (2009) use an algorithmadapted fromglobal alignment (Needleman andWunsch,
1970) to align twoflowgrams, first converting the reference sequence into flowspace. e authors’
idea is to introduce gaps only in steps of four in order to take into account the cyclic nature of
the flow order. e remaining description in the paper is brief, but one can deduce that a single
flow is aligned to a homopolymer. It is unclear how editing is handled. e cost function used is
− logP(f | ℓ), where P(f | ℓ) is the probability of observing flow intensity f given a homopolymer
of length ℓ.

Lysholm et al. (2011) propose a different method of aligning flowgrams, which is an extension
of the Smith-Waterman local alignment algorithm (Smith and Waterman, 1981) and can han-
dle substitutions and indels with affine gap costs. FAAST’s alignment is computed between the
reference string and the base-called flowgram. Its modified scoring system reduces gap costs at
points of uncertain homopolymer lengths.

Our contributions

In contrast to previouswork, we do neither convert the reference into flowspace nor the flowgram
to a string. Instead, we present the first algorithm that directly aligns a flowgram to a reference
sequence, being aware of two processes in between: sequence editing between the reference and
the (unknown) sequenced sample, and sequencing errors resulting in imprecise flow intensities.

Aer stating basic definitions (Section 5.1.3), we introduce a dynamic programming algorithm
for optimal flowgram-string alignment (Section 5.2). e key component is a detailed scoring
scheme that models both sequence editing events and flow intensity measurement errors; it is
described in detail in Section 5.3, where we also explain how the scoring parameters can be set
to reasonable values. In Section 5.4, we demonstrate how flowgram-string alignment improves
upon aligning a base-called sequence. A discussion and outlook on future work concludes the
chapter.

5.1.3 Basic definitions and ideas

Let ΣDNA be the DNA alphabet as in preceding chapters. Remember that bℓ is the character b ∈
ΣDNA repeated ℓ times, where ℓ is a non-negative integer. Such a string is called a homopolymer
of length ℓ.

e output of a 454 or Ion Torrent sequencer for a single read is a sequence of pairs of a nu-
cleotide character and an intensity, called a flowgram (Margulies et al., 2005), which we now
define formally.

Definition 9 (Flow). A flow is a pair (b, f), where b ∈ ΣDNA is the flow character (or flow nu-
cleotide) and f ∈ R+

0 is the flow intensity.

119

5 Aligning Flowgrams to DNA Sequences

In analogy to exponentiation, we also write a single flow as bfii , that is, as the flow character
followed by the flow intensity as a superscript. For example, instead of (A, 3.4), we write A3.4.

Definition 10 (Flowgram). A flowgram is a finite sequence F = (F1, F2, . . . , Fm) of flows Fi =
(bi, fi). e flowgram length is m. For k = 1, . . . ,m− 1, we require that bi ̸= bi+1.

e four nucleotides are typically added in repeating cycles. We assume in the following that
the order is (T, A, C, G, . . .), the typical order used in 454 instruments (that for Ion Torrent is
different). We may also say that a read is in flowspace to indicate that it is a flowgram.

Given flowgram F = (F1, . . . , Fm), the sequence Fj...k := (Fj, . . . , Fk) is a subflowgram. For
j = 1, it is a flowgram prefix, and for k = m, it is a flowgram suffix.

Example 10. A possible measured flowgram for the sequence TTCGG is T2.3A0.1C0.9G1.9.

eflowgramsoutput by both 454 and IonTorrent sequencers are stored in Standard Flowgram
Files (SFF). e cycle order is stored once globally, and each flow intensity is stored as a 16-bit
unsigned integer value and scaled such that a value of 100 represents an intensity of 1. It is thus
a fixed-point number representation with two decimal places aer the decimal separator and
allows intensity values from 0.00 up to (216 − 1)/100 = 655.35.

e SAM/BAM file format has also been extended to allow storing flowgram information.
For this, an array data type was added to the specification and the tags “FO” (flow order) and
“FZ” (flow intensities) were standardized. Both SFF and SAM/BAM formats additionally store a
basecalled regular DNA sequence for each read.

Definition 11 (Canonical flowgram). Given a string s, the canonical flowgram for s is the flow-
gram that arises when we substitute all runs of character b of length nwith the flow bn and insert
appropriate flows of intensity zero in between in order to get the correct order of nucleotides
according to cycle order.

Example 11. e canonical flowgram for TCTT (using cycle order TACG) is T1A0C1G0T2.

Definition 12 (Canonical DNA sequence). Given a flowgram F, let F̄ be the flowgram with each
intensity rounded to the nearest integer. e canonical DNA sequence for F is the DNA sequence
which has the canonical flowgram F̄, if it exists, and is undefined otherwise.

Note that a canonical DNA sequence for F = T1.1A0.1C0.4G0.2T2.3 does not exist, as rounding
leads to F̄ = T1A0C0G0T2, but TTT has a canonical flowgram starting with T3. (A base caller that
is cleverer than rounding (Golan and Medvedev, 2013) calls TCTT in this example instead of a
non-existing canonical DNA sequence.)

5.1.4 How editing changes the flowgram

To align a flowgram to a reference sequence, we could convert the reference to its canonical
flowgramand perform alignment between the resulting two flowgrams (Quince et al., 2009; Vacic
et al., 2008). We show in this section that this approach complicates the modeling of editing
events.

Editing events occuring in base space change the associated canonical flowgram in various
ways that depend on the sequence context, that is, on the bases adjacent to the change. Changes
that are compatible with the flow order only change an intensity, but those that are incompatible
may insert or delete a full cycle of four flows.

120

5.1 Introduction

Example 12 (Events compatible with flow order). Insertion of a third T into TT changes the
canonical flowgram from T2 to T3. A substitution that changes TAG to TCG changes the canonical
flowgram from T1A1C0G1 to T1A0C1G1.

Example 13 (Events incompatible with flow order). A substitution that changes TAC into TGC
changes the canonical flowgram from T1A1C1 to T1A0C0G1T0A0C1, which has an additional cycle.
e insertion of A into TT results in the flowgram T1A1C0G0T1 with an additional cycle. Deleting
the G from TGT shortens the flowgram from T1A0C0G1T1 to T2.

Algorithmically dealing with editing events in flowspace

A method that changes a canonical flowgram according to a given substitution event may work
as follows. Assume standard cycle order and, without loss of generality, that the substitution
occurs within a run of the character T of length n ≥ 1. First, split Tn into Tk and Tn−k−1, where
k ∈ { 0, n− 1 } is the number of characters preceding the substituted base. Insert flows AxA , CxC ,
GxG between them, where one of the xb is set to one and the others are zero, depending on which
character is substituted. us, Tn is replaced with

TkAxACxCGxGTn−k−1 .

When k = 0 or k = n−1, this transformation can result in three consecutive flows with intensity
zero, which is not a valid canonical flowgram. erefore, in a second step, check whether this
occurs (potentially twice) and fix the flowgram by removing the three zero flows and by merging
the flanking flows.

Example 14. Weconsider the substitution that changes ACCTTT into ACCCTT.e canonical flow-
gram is A1C2G0T3, which is initially transformed into A1C2G0T0A0C1G0T2. Since the underlined
subflowgram is not allowed, it is removed and C2 and C1 are merged, resulting in A1C3G0T2.

Insertions are handled in a similar way: by inserting a full cycle at the appropriate position,
possibly splitting up a flow if the insertion is within a run, and then repairing the resulting flow-
gram if necessary. For deletions, no cycle needs to be added, only the intensity of the affected
flow needs to be decreased before repairing.

e method could be sped up by tabulating the induced changes from all possible editing
events, taking adjacent bases into account. When we start to take into account that multiple
editing events can occur simultaneously, it becomes clear that the approach of converting the
reference to flowspace is not constructive.

us, our approach is to align a flowgram directly to a reference sequence, converting neither
the flowgram to a string nor the reference to a flowgram.

Direct alignment between flowgram and reference sequence

Our main idea is to conceptually model a two-stage process (sequence editing, errors during
sequencing) within one model and scoring function. It is best visualized with Figure 5.2.

Fractional intensities and ambiguous run lengths are resolved at alignment time by choosing
the most likely read sequence given flowgram and reference sequence. In contrast to the work by
Vacic et al. (2008), we also model differences due to editing events. Every observed flow bf must

121

5 Aligning Flowgrams to DNA Sequences

Reference r editing Read/sample s sequencing Flowgram F
Substring t −→ Homopolymer bℓ −→ Flow bf
(known) (unknown) (observed)

Figure 5.2 Differences between an observed flowgram F and a reference sequence r arise from two dif-
ferent processes that cannot be distinguished by the observer: Sequence editing, responsible
for differences between the sequenced sample and the reference in databases, and sequenc-
ing/measurement errors (intensity overcalls and undercalls) incurred during the sequencing
process.

be explained by a substring t of the reference. e substring and the flow need not necessarily
agree: If there is a non-b character in t, then there is a substitution or an insertion, and if f deviates
from |t|, then there is an insertion or deletion event or a homopolymer error. us, a flow bf can
be explained as a sequenced homopolymer bℓ (where ℓ is integer), which in turn is an edited
version of t (compare Figure 5.2).

5.2 A flowgram-string alignment algorithm

We define flowgram-string alignments and give the recurrence for finding an optimal alignment.
e scoring functions are described later in Section 5.3.

5.2.1 Alignments

Definition 13 (Flowgram-string alignment). A flowgram-string alignment F between a flow-
gram F of length m and a string s of length n is a finite sequence of pairs F = (F′i, ti), where
each F′i is a flow or the space character (−) such that the concatenation of all non-space F′i is the
flowgram F, and where the ti are (possible empty) substrings of s such that their concatenation
is equal to s.

Example 15. Given flowgram F = T1.0A2.1C1.1G2.2T3.1A0.1C2.7G0.2 and string s = TAAGGATGTCC,
a possible alignment is (see also Figure 5.3):

T1.0 A2.1 C1.1 G2.2 − T3.1 A0.1 C2.7 G0.2

T AA ε GG A TGT ε CC ε

We see that flowgram-string alignment can describe all editing events: T3.1 aligned to TGT in-
volves a mismatch (G instead of T); C1.1 aligned to ε means that there is an insertion; and the
space aligned to an A is a deletion. We will also see in Section 5.3 that, with the proper scoring
function, flowgram-string alignment can distinguish between homopolymer errors and inser-
tions. e scoring function will inform us whether the rightmost flow G0.2 aligned to an empty
string ε of the reference needs to be interpreted as a homopolymer error of 0.2 or as an inser-
tion. Our alignment algorithm picks the option with the better score. Note also the asymmetry
between deletion and insertion: Only characters are deleted, and only flows are inserted.

A flowgram-string alignment describes how (1) editing events and (2) sequencing errors due to
over- or undercalling add up to result in an observed flowgram. In contrast to previous flowgram

122

5.2 A flowgram-string alignment algorithm

A
2.1

C
1.1

G
2.2

A
0.1

C
2.7

G
0.2

T A A G G A T G T C C

substitution G→T

homopolymer

error
insertion

deletion

T
1.0

T
3.1

empty �ows

match

Figure 5.3 A visualization of the alignment of Example 15. e black path represents the alignment. A
flowgram alignment is a path from the top le node to the bottom right node along edges
allowed by Equation (5.1). One difference to global alignment is that the path may skip an
arbitrary number of columns, but it cannot skip rows.

alignment ideas, there is no need to convert the reference to a flowgram or to convert the flow-
gram into a string. Instead, a flowgram-string alignment describes a direct relationship between
flowgram and reference.

5.2.2 The flowgram-string alignment graph

A flowgram-string alignment can be interpreted as a path through a graph of (m+ 1)× (n+ 1)
vertices (i, j) ∈ { 0, . . . ,m } × { 0, . . . , n } that has different types of edges with different scores
(see Figures 5.3 and 5.4). e score of an alignment F is the sum of the scores of the individual
edges used by the alignment, and so finding the optimal alignment is equivalent to finding a
highest-scoring path. e following two edge types exist:

s1 s2 sj-1 sj

bi

fi

insertion or
empty �ow

…

matches to suffixes of s1,…,j

deletion (i,j)

Figure 5.4 Visualization of different types of edges of the alignment graph and of the recurrence for cell
(i, j) in the dynamic programming matrix

123

5 Aligning Flowgrams to DNA Sequences

• Horizontal edges that connect (i, j) to (i, j − 1). ese represent deletions, that is, the
flowgram indicates that a nucleotide from the reference is missing in the sample. e score
del < 0 is assigned to these edges.

• Vertical and diagonal edges that connect (i, j) to (i − 1, j − k) for all k ∈ { 0, . . . , j }. For
k = 0, the edge is vertical and interpreted as either an empty flow aligned to an empty
substring, or as an insertion, where the flowgram indicates a homopolymer not present
in the reference. ese edges use a complex scoring function v(b, f, t) for aligning flow bf
to substring t = sk+1...j. is scoring function is central to our method and discussed in
detail in Section 5.3.

5.2.3 Recurrence

Let (b, f) be a flow and t ∈ Σ∗
DNA a string. We assume that scoring parameter del and scoring

function v(b, f, t) are available (see Section 5.3).
Let S(i, j) be the optimal score between the length-i prefix of flowgram F of total lengthm and

the length-j prefix of string s of total length n = |s|. e recurrence for S(i, j) follows from the
structure of the alignment graph, in which the optimal flowgram-string alignment is a highest-
scoring path, analogously to standard global alignment. Other variants (local, semiglobal, etc.)
are possible; for ease of exposition, we focus on the global case. We have

S(0, j) = j · del,

S(i, 0) =
i∑

k=1

v(bk, fk, ε),

S(i, j) = max

{
S(i, j− 1) + del,
max

k=0,...,j

(
S(i− 1, k) + v(bi, fi, sk+1...j)

) }
. (5.1)

e two cases for S(i, j) correspond to the two types of edges. e inner maximization corre-
sponds to the vertical and diagonal edges, in which the score of aligning the current flowgram
to all suffixes of s1...j (including the empty suffix for case k = j) is found. It is the main differ-
ence to regular global alignment. With dynamic programming, S(m, n) can be computed in time
O(mn2), assuming v can be evaluated in constant time.

5.3 Scoring

e score v(b, f, t) for pairing flow (b, f) with string t must take into account two different pro-
cesses – editing and measurement – that cannot be distinguished by an observer (Figure 5.2).
First, editing events occur that change a substring t of the reference into a homopolymer bℓ, but
ℓ is unknown. Second, an intensity f is measured for bℓ. We score the first process by sedit(b, ℓ, t),
which is the score of an optimal alignment between t and bℓ. e score σ(f, ℓ) is assigned to
measuring intensity f for a homopolymer run of length ℓ; we assume that it does not depend on
the nucleotide b.

Since ℓ is unknown, to obtain v(b, f, t) we maximize over all possible lengths in order to pick

124

5.3 Scoring

the most plausible explanation:

v(b, f, t) := max
ℓ=0,1,2,...

(
sedit(b, ℓ, t) + σ(f, ℓ)

)
(5.2)

As we will see in the two following subsections, this potentially infinite maximization is in fact
finite, since a value of ℓ ≫ max { |t|, f } will yield a strongly negative score in both terms and
cannot achieve the maximum. In practice, positive scores are only obtained if f ≈ |t| for a choice
of ℓ close to both f and |t|.

To reconstruct the most plausible process to flow bf via homopolymer bℓ from sequence t, we
also store the value of ℓ maximizing v(b, f, t) in Equation (5.2),

L(b, f, t) := argmax
ℓ=0,1,2,...

(
sedit(b, ℓ, t) + σ(f, ℓ)

)
. (5.3)

It is this (unknown but inferred) value of ℓ = L(b, f, t) that links the two processes of sequence
editing and sequencing.

As we will show, the score v(b, f, t), and hence L(b, f, t), depends on b and t only through
the number e = e(t, b) of characters in t that are equal to b and the number ē = ē(t, b) of
characters different from b (see Section 5.3.1). erefore we can write v(b, f, t) = v′(f, e, ē) and
L(b, f, t) = L′(f, e, ē). Tables of both L′ and v′ are pre-computed for realistic flow intensities
f ∈ { 0.00, 0.01, . . . , 9.99 } and values of e and ē, both in { 0, . . . , 9 }, that is, 100 000 values
overall. As the recurrence (5.1) considers different substrings t that differ in length by 1, the b
characters in t can be counted in amortized constant time for each t, so each value of v(b, f, t) is
available in constant time. e non-tabulated rare cases can be computed on demand without
measurably affecting the running time.

Reconstruction

As discussed, the most likely underlying DNA sequence when pairing flow (b, f)with t is the run
bℓ with ℓ = L(b, f, t). Concatenating these runs for all flows in an optimal flowgram alignment
thus results in the most likely sequence of the DNA fragment that was sequenced. We call this a
reconstructed read or sequence.

5.3.1 Scoring of editing events

In this section, we derive the edit score sedit(b, ℓ, t) to align two sequences: bℓ and t. is is, in
fact, a classical sequence alignment problem, with the special property that one sequence bℓ is a
homopolymer. Instead of using a standard global alignment algorithm every time when sedit is
called, we can give a closed formula because of the special structure.

We assume that scores for insertion (ins), deletion (del), mismatch (mis) and match (mat) are
available and fulfill ins, del < mis < 0 < mat.

Let e be the number of characters in t that are equal to b, and let ē = |t| − e be the number of
characters in t that are not equal to b. If |t| = ℓ, the score is composed of only match (e times)
and mismatch (ē times) scores. If t is longer than ℓ, then |t| − ℓ characters must be deleted from
t to obtain length ℓ, and it is advantageous to delete only non-b characters, as long as there are
any. If t is shorter than ℓ, we have e matches and ē mismatches, and ℓ − |t| characters must be

125

5 Aligning Flowgrams to DNA Sequences

inserted into t. us the score for aligning t to bℓ can be expressed as

sedit(b, ℓ, t) =


e ·mat+ ē ·mis if ℓ = |t|,
e ·mat+ ē ·mis+ (ℓ− |t|) · ins if ℓ > |t|,
min { e, ℓ } ·mat+ max { ℓ− e, 0 } ·mis+ (|t| − ℓ) · del if ℓ < |t| .

(5.4)

e parameter values for mat, mis, ins, del must be compatible with the scores for scoring
flow intensities f against substring lengths ℓ, which we discuss in Section 5.3.3. We come back to
choosing appropriate values in Section 5.3.4.

5.3.2 Alternative formulation

Equation (5.2) contains an implicit iteration over all homopolymer lengths ℓ. We give here an
alternative formulation as an explicit algorithm. e idea is to start with an empty string (length
ℓ = 0) and iteratively add appropriate characters of t to it. is is equivalent to what is done in
Equation (5.2) and serves simply as an alternative explanation. In our Python implementation,
this algorithm is also slightly faster (by a constant factor) due to fewer function calls.

Algorithm 14 (C-V).
Input: Flow character b; flow intensity f; string t.
Output: v(b, f, t).

1. Compute the value e(t, b) or look it up in a table.

2. Initialize length to zero and editscore to |t| · del. at is, start out by assuming that all
characters of t are deleted.

3. While length < e, increase length by one and add del − mat to the editscore. at is, we
incrementally undo deletions of characters equal to b and gain matches. Keep track of the
best total score editscore+σ(f, ℓ).

4. While length < |t|, increase length by one and add del − mis to the editscore. at is,
we also undo deletions of non-b characters, gaining mismatches. Again, keep track of the
maximal total score as above.

5. Keep increasing length by one, but add ins to editscore in each iteration. Stop iterating
when σ(f, ℓ) starts to decrease. is assumes that σ decreases monotonically to the le
and to the right of a global maximum. Again, keep track of the best total score.

6. Return the best total score.

5.3.3 Scoring of flow intensities against substring lengths

Here we describe how to set the scores σ(f, ℓ) for scoring the event that a flow of intensity f is
aligned to a DNA sequence of length ℓ. Our approach is similar to that of Vacic et al. (2008), but
we go further by analyzing the resulting empirical scores parametrically.

Intuitively, the score should be positive if f ≈ ℓ and drop into the negative range when |f − ℓ|
gets large. A consistent set of score values is obtained by using log-odds scores (Dayhoff et al.,

126

5.3 Scoring

1978; Müller et al., 2001), having their roots in the theory of score matrices for amino acids, such
as the famous PAMmatrices (Dayhoff et al., 1978). ere the scoreΣij between amino acids i and
j is computed as the log-oddsΣij = log10

(
Pij/(πi · πj)

)
, where Pij is the probability of observing

i and j paired in an alignment and πi, πj are the background frequencies of amino acids i, j,
respectively. Moreover, the joint probabilities Pij depend on the divergence time t of the aligned
sequences, and so different score matrices Σ(t)

ij are used for differently diverged sequences.
Here we follow a similar idea for deriving scores for evaluating differences between f and ℓ. We

estimate frequencies from (assumedly correctly) aligned flowgrams to DNA sequences. For ease
of exposition, we do not discuss different divergence times, and we assume that the flowgrams
have been obtained from the DNA reference by sequencing, or at least from a very closely related
reference sequence.

Given a large number of such aligned flowgram-DNA alignments, we construct a count ma-
trix C = (Cf,ℓ) for all reasonable genomic lengths ℓ ∈ { 0, 1, 2, . . . } and flow intensities f ∈
{ 0.00, 0.01, 0.02, . . . , 1.00, . . . }, such that Cf,ℓ counts the number of times we observe a flow of
intensity f aligned to a genomic sequence of length ℓ. e result is shown in Figure 5.1. We obtain
a joint probability matrix P = (Pf,ℓ) by dividing C through the sum of its entries. Background
frequencies π = (πℓ) for genomic lengths are obtained as marginal probabilities πℓ =

∑
f Pf,ℓ,

and similarly background frequencies τ = (τf) for flow intensities. e score component for
aligning a flow of intensity f to a homopolymer of length ℓ is defined in units of nats as

σ(f, ℓ) := ln
Pf,ℓ

τf · πℓ
.

To obtain such scores, we used three SFF files containing Arabiopsis reads (from an unspeci-
fied strain)1. To measure only the effects of homopolymer errors, only reads aligning close-to-
perfectly to the A. thaliana reference sequence were considered further, and the empirical joint
distribution of flow intensities f and homopolymer lengths ℓwas tabulatedwhere f ∈ [ℓ−1, ℓ+1].

e resulting scores are shown in Figure 5.5, one curve for each ℓwith sufficient data (top) and
one curve for some chosen intensities (bottom). Unsurprisingly, the maximum score occurs at
flow f = ℓ for each ℓ. More remarkably, the score stays almost constant at the same level in the
interval f ∈ [ℓ−0.5, ℓ+0.5]. At ℓ±0.5, there appears to be a sudden drop in the scoring function,
beyond which we can observe an affine-linear course in the intervals [ℓ− 1.0, ℓ− 0.5] and [ℓ+
0.5, ℓ+1.0]. erefore, for each ℓ, the score function can be described by five parameters, namely
the values of Sℓ,f for f ∈ { ℓ− 1.0, ℓ− 0.75, ℓ, ℓ+ 0.75, ℓ+ 1.0 }. Scores at other values of f are
obtained by linear resp. constant interpolation (or extrapolation outside the 1.0-neighborhood).
e parameters for lengths ℓ ≤ 7 are shown in Figure 5.6. As empirical data becomes sparser for
larger ℓ, it is advisable to extrapolate the parameters instead of relying on data.

In summary, we implement σ(f, ℓ) for each ℓ as a piecewise affine function consisting of three
components, given by the empirically determined parameters shown in Figure 5.5 (top).

5.3.4 Parameters for editing events

It remains to appropriately set the match, mismatch, insertion and deletion score parameters
mat, mis, ins and del, respectively. ese depend on the assumed degree of divergence of the

1We thank Bernd Weisshaar from the Chair of Genome Research, Bielefeld University, for providing the data.

127

5 Aligning Flowgrams to DNA Sequences

0 1 2 3 4 5 6 7 8 9 10
Flow intensity

−10

−5

0

5

10

Sc
or

e

Length 0

Length 1

Length 2

Length 3

Length 4

Length 5

Length 6

Length 7

Length 8

Length 9

Length 10

Length 11

0 1 2 3 4 5 6 7 8 9 10
Genomic length

−10

−5

0

5

10

S
co

re

Intensity 0.00

Intensity 1.00

Intensity 2.00

Intensity 3.00

Intensity 4.00

Intensity 5.00

Intensity 6.00

Intensity 7.00

Intensity 8.00

Figure 5.5 Empirically determined log-odds scores σ(f, ℓ), computed from the Arabidopsis reference
frequencies shown in Figure 5.1. Top: e score is shown for different genomic sequence
lengths ℓ (see legend) as a function of flow intensity f. Bottom: escore is shown for different
intensities f as a function of genomic sequence length.

128

5.4 Evaluation

0 1 2 3 4 5 6 7
Genomic length

−15

−10

−5

0

5

10

Sc
or

e
va

lu
e

max

at -0.75

at -1.0

at +0.75

at +1.0

Figure 5.6 As each function in Figure 5.5 can be described by a piecewise affine functionwith three com-
ponents, one of them constant, we estimated five parameters from five characteristic score
values: for each length ℓ, the score values at f ∈ { ℓ− 1.0, ℓ− 0.75, ℓ, ℓ+ 0.75, ℓ+ 1.0 }.
e plot shows these five score values as a function of ℓ.

sequenced sample and the reference and can be obtained by (approximate) log-odds.
Assuming 3%divergence (i.e., 97%matches, as opposed to about 30% in alignments of random

sequences), and rare insertions/deletion with a rate of 1/3000, it is reasonable to use

• mat ≈ ln 0.97
0.3 = 1.173 ≈ 1.2,

• mis ≈ ln 0.03
0.7 = −3.1498 ≈ −3.1,

• ins = del ≈ ln 1/3000
C ≈ −8.0 with some C ≈ 1.

ese are the scores that we use for evaluation; other assumptions will result in different scores.
It is important to use the same logarithm (and scaling, if any) as for σ(f, ℓ) in order to keep both
score components compatible.

5.4 Evaluation

Before we evaluate flowgram-string alignment against base-called alignment, let us illustrate typ-
ical miscalls made by base calling. Obviously, the most common case is that a homopolymer
length is simply off by 1 because of rounding in the wrong direction. If a length of at least one re-
mains, this can always be corrected by post-processing the alignments. However, there are more
complex errors, such as spurious indels in the middle or between two homopolymers. Some
real examples of problematic alignments which can resolved by our algorithm are illustrated in
Table 5.1.

129

5 Aligning Flowgrams to DNA Sequences

Table 5.1 Example errorsmade by alignment aer base calling in contrast to flowgram-string alignment:
(A) e undercalled C0.4 would be reported as a single-base deletion, but flowgram alignment
reconstructs a read that includes the missing C. (B) e G → A substitution is mistakenly re-
ported as a single-base deletion because of the low flow value. For flowgram-string alignment
with the surrounding context, the case that AAGAA generated A4.4 is plausible. (C) Similarly,
but slightly more complex, the CA → AC flip is mistakenly reported as a 2 bp deletion aer
base calling. For our method, however, two mismatches plus small intensity errors are more
plausible than two deletions.

Flowgram alignment Reconstructed read Alignment of base-called read

(A) A2.0 C0.4 G1.0

AA C G
AACG

AA-G
AACG

(B) T0.9 A4.4 C1.1

T AAGAA C
TAAAAAC

TAA-AAC
TAAGAAC

(C) T0.9 A3.4 C3.4 G2.0

T AAAC ACCC GG
TAAAACCCCGG

TAAA--CCCGG
TAAACACCCGG

We now demonstrate that flowgram-string alignment reduces the number of differences be-
tween observed sequence and reference that are due to sequencing errors, but leaves actual mu-
tation events untouched. We simulate DNA fragments of E. coli K12 (NC_000913); call this the
original data. We introduce mutations by adding 3% substitutions and 0.05% indels (mutated
data). en the 454 sequencing process is simulated with flowsim (Balzer et al., 2010). Reads in
the resulting SFF file are base-called by rounding flow intensities (basecalled) and aligned to the
original sequence. Alternatively, we use our flowgram alignment algorithm to align each flow-
gram to the original sequence. During the process, the most likely base-spacemutated sequence
is reconstructed using function L(b, f, t) from Equation (5.3) (reconstructed).

All differences between mutated and basecalled are necessarily due to sequencing errors and
wrong base calls. Similarly, all differences betweenmutated and reconstructed are due to sequenc-
ing errors and errors by our alignment method. Figure 5.7 compares histograms of the number
of differences, measured by unit-cost edit distance. e differences are considerably reduced for
flowgram-string alignment in comparison to base-calling: e distribution is shied towards the
le side. us, flowgram alignment is able to distinguish editing events and true mutations.

5.5 Future work

ere are several ways to extend this work. For example, finding a more robust way to estimate
the divergence rate between reference and sample than guessing it before computing alignments
would be of interest. On the practical side, several optimizations of the basic alignment algorithm
are desirable, improving the running time from O(mn2) to O(mn) by restricting the considered
predecessors in each node (i, j) of the alignment graph (compare Figure 5.4). It is clear that for a
flow bf, the best choices for t and ℓ have |t| ≈ ℓ ≈ f.

Extending the algorithm to be able to use affine gap costs would be of high practical relevance.
is is not entirely trivial, as gaps could extend over several flows, which in the current model

130

5.6 Discussion

0 1 2 3 4 5
Number of differences

0

100

200

300

400

500

600

700

800
F

re
q

u
en

cy
Naive basecalling

Flowgram alignment

Figure 5.7 Histograms of the number of differences due to sequencing and base-calling errors for naive
base calling and our method. Note how the latter distribution is shied towards zero.

can only be considered separately.
Our approach used a scoring function derived from alignments of 454 data, but we expect that

it works well also on Ion Torrent datasets with a re-estimated score function. In fact, preliminary
work indicates that intensity distributions for each length overlap much stronger in Ion Torrent
data, making it even more important to avoid basecalling.

It is currently not clear how to ensure that the flowgram alignment does not involve three
or more consecutive zero-length runs. For example, the algorithm in its current form aligns
the flowgram T1A0C0G0T1T1 to the string TT by pairing each T1 flow with a T character. In the
alignment graph, the restriction is that the pathmust not contain three consecutive vertical edges
that correspond to empty flows (ℓ = 0).

5.6 Discussion

Wepresented a dynamic programming alignment algorithm that optimally aligns flowgrams out-
put by 454 or Ion Torrent sequencers to DNA reference sequences directly, without explicit base
calling. Our approach can also be interpreted as calling bases conditional on the reference we
align to, that is, doing both steps at the same time instead of sequentially. Our algorithm is
based on a two-stage process model (Figure 5.2) that explains both sequence editing and homo-
polymer sequencing errors. In particular, in the process, we can reconstruct the most plausible
homopolymer length ℓ for each flow bf and thus separate flow intensity over- and under-calling
from sequence editing. Our method is the first one that cleanly separates the two processes.

A major challenge is to design a scoring scheme for flowgram-DNA alignment that is of low
complexity (that is, has fewparameters) and statisticallywell-founded. We started froma classical
log-odds framework (Dayhoff et al., 1978) that was also used by Vacic et al. (2008). Going a
step further, we noted that for each length ℓ, the score function has a simple three-component
piecewise affine form that can be described by only five parameters. is yields the first low-
complexity scoring scheme for directly aligning 454 flowgrams to DNA sequences.

131

6 Conclusion

In this final chapter, we start with a summary of the main results from the preceding four chap-
ters (Section 6.1). While those chapters are related in that they all demonstrate how to tackle
challenges that arise in the processing of high-throughput sequencing data, the four topics were
presented mostly independently. erefore, it is now appropriate to point out the connections
between them (Section 6.2). We finally discuss some thoughts on the development of algorithms
and tools for high-throughput sequencing in Section 6.3.

6.1 Summary

Adapter trimming

DNA sequencing reads of short molecules can contain adapter sequences. We give an algorithm
for removing different types of 5′ and 3′ adapters. It is based on semiglobal alignment and finds
overlapping regions between read and adapter. Using auxiliary matrices in the dynamic pro-
gramming algorithm, only alignments below a given error rate threshold are found, where the
error rate is defined as the number of errors divided by the number of aligned adapter characters.
We show how to use only linear space while still keeping track of all information necessary to cor-
rectly locate adapter sequences. Performance is improved by using a version of banded alignment
through Ukkonen’s cutoff idea. We also show how the algorithm can be extended for remov-
ing adapters from colorspace reads. Due to the color encoding using overlapping dinucleotides,
this is straightforward for 3′ and slightly more complicated for 5′ adapters. e cutadapt tool is
introduced, which is easy to use, contains many additional features for making pre-processing
adapter-contaminated HTS reads simple, and is in use by many other researchers.

Bisulfite q-gram indexing

For mapping of bisulfite-treated reads, the bisulfite q-gram index is proposed, which is a data
structure that indexes all q-grams in a reference and also those that arise due to simulated bisulfite
treatment (it includes all C-to-T- and G-to-A-compatible positions). Simulation theoretically
leads to an exponential increase in index size, but on real-world data, the size of the index is only
triple that of the regular q-gram index. We show how to create the index in time proportional to
its memory usage.

We describe how tomap reads with the index with the seed-and-extend paradigm, first finding
short matches (hits) with the help of the index, and extending them to longer ones (still without
errors) in either a “relaxed” or a “strict” mode. Strict hit extension can be done by using a deter-
ministic finite automaton (DFA) that works on pairs of characters. Relaxed hit extension, on the
other hand, allows incomplete bisulfite conversion within reads and is therefore more relevant in
practice. We give an efficient bitparallel algorithm for relaxed hit extension and type determina-
tion (C-to-T or G-to-A) that works on multiple DNA characters at the same time. We describe

133

6 Conclusion

how to extend seeds to an alignment that covers the full read and how to detect those parts of
each read that are not bisulfite-converted.

A lemma is derived stating that the number of bisulfite strings of a given length n is approxi-
mately 1.19 · 3.3n. e result can be used to compute the fraction of the buckets in the bisulfite
index that do not contribute to mapping of bisulfite reads.

We investigate how storing the differences between positions in each bucket instead of full four-
byte words helps to compress the index, and find that a considerable compression of 25% can be
achieved with our custom byte-aligned encoding scheme. is result also applies to non-bisulfite
q-gram indexing. We finally apply the full read mapping algorithm to a dataset of 454 bisulfite
sequencing data using the Verjinxer tool and observe that the fraction of partially methylated
CpG islands located on the human X chromosome is larger than previously thought (Zeschnigk
et al., 2009).

Exome sequencing

We describe the Exomate tool, which is used for the analysis of exome sequencing data and in
particular assists in finding potentially disease-causing mutations in syndrome and tumor pa-
tients. e tool is split up into three parts. e first is an automated pipeline that implements
all tasks needed to find variants (mutations), such as read mapping, quality recalibration, indel
realignment and variant calling. e second part is a relational database, into which variants
and metadata about patients, samples, the sequencing instrument, etc. are imported. e third
part of Exomate is a web interface. In conjunction with the database, it was designed for highly
interactive analysis of the variant data by medical researchers, without in-depth knowledge of
command-line tools. e challenge lies in filtering the enormous amounts of variants by discard-
ing those that are assumed to be not disease-causing. is can be done, for example, by quality
filtering, discarding variants known in public databases (dbSNP), and discarding variants seen in
an unaffected sample. All thresholds and filtering options can be set on the fly, resulting in dy-
namically generated SQL queries that finish within a few seconds. Extensive quality control was
implemented through various queries that check for known chromosome loss, patient gender
and dbSNP re-discovery rate.

Exomate is still in active development, but has already been used successfully in multiple stud-
ies (Martin et al., 2013; Czeschik et al., 2013; Voigt et al., 2013), and results of two other studies
could be confirmed (Harbour et al., 2013; Santen et al., 2012).

Flowgram alignment

In sequencing technologies that obtain reads as flowgrams, measurement errors of nucleotide in-
tensities are the dominant cause of sequencing errors (over- and undercalls). Instead of rounding
fractional intensities to obtain a regular sequence, which can then be aligned, we integrate base
calling into the alignment algorithm, avoiding information loss from rounding. is has been
suggested before, but our method (flowgram-string alignment) is the first to use a well-founded
statistical model. e score function has two components that model the processes taking place:
1) editing of the sample compared to the reference and 2)measurement errors during sequencing.
A recurrence equation is given that leads to a dynamic programming algorithm on the alignment
matrix between flowgram and DNA reference string.

134

6.2 Connections between topics

For the first score component, we give a closed formula for alignment scores between a DNA
string and a homopolymer, which is then used to show that the score can be evaluated in constant
time by tabulating the values in a pre-processing step. For the second score component, we use
correctly aligned reads to estimate empirical frequencies for intensitymeasurements vs. sequence
length, from which we derive log-odds scores and then approximate them by a function with five
parameters.

To evaluate the method, we compare flowgram-string alignment to regular alignment by sim-
ulating the two-stage sequencing process and find that our method considerably reduces the
number of spurious editing events introduced by measurement errors.

6.2 Connections between topics

Having summarized the previous chapters, we can now point out the connections between them
that have not been discussed until now. Some of them also show directions for future work.

e initial adapter trimming algorithms and the bisulfite read mapping work have been pre-
sented separately, but were in fact developed as part of the same methylation study (Zeschnigk
et al., 2009). Proper trimming of adapters was a pre-condition for the success of read mapping
in that experiment. Fortunately, there is no need to make the read trimming algorithms aware
of bisulfite treatment: Adapters can be added aer bisulfite treatment and will therefore remain
unchanged. Alternatively, adapters with only methylated cytosines can be used; these will also
not be changed. e third option, if the adapters have been modified, is to trim the modified
sequence, which also does not require any changes in the trimming step.

Adapter trimming can also be a valid pre-processing step in exome sequencing. Feedback from
users of the cutadapt tool shows that this is done in practice, and we tested whether it makes
sense to do so on our data. Our target insert sizes are around 300 bp. Since actual lengths follow
a normal distribution, a large variance could lead to some inserts being shorter than our 100 bp
read length. Testing a few datasets for adapter contamination, we found that less than 0.4% of
bases were trimmed. Since the improvements are marginal in relation to the needed processing
time, and also because other factors such as quality trimming have a much larger effect, we chose
not to include the step in the exome sequencing pipeline. A compromise in the future may be
to trim only the first 1 million reads or so of a dataset and, as a further quality control measure,
to mark those datasets in the web interface where the rate of trimmed reads exceeds a critical
threshold.

Considering that one of the aims of our adapter trimming algorithmwas tomake it usable with
454 sequencing data, it appears that using flowgram alignment in a (not yet discussed) semiglobal
variant would be an obvious improvement over the current method, which is based on edit dis-
tance. However, we see this as low priority future work for two reasons. First, the strength of our
flowgram alignment algorithm is in distinguishing sequencing errors from true editing events,
but there is expected to be no editing in adapter sequences. e second reason is that our as-
sumption for adapter trimming has been that a score-based alignment method should not be
used since the results are less comprehensible by the user.

In contrast, flowgramalignment is a good candidate for being used inmethylation studies. Due
to the effective reduction of the alphabet size from bisulfite treatment, homopolymer lengths of
the T and A nucleotides increase and, compared to regular reads, result in more high-intensity

135

6 Conclusion

flows, which cannot be measured well. Within our group, research is in progress in the area of
amplicon sequencing, where short pre-determined segments of DNA are sequenced in multiple
individuals. Preliminary results indicate that flowgram alignment improves correct detection of
methylation.

Tentatively, we also suggest to draw a connection between our exome sequencing pipeline and
methylation studies. Such studies are now performed at amuch larger scale, on the level of whole
genomes. While we have not investigated this further, it seems plausible that some of the ideas
proposed for the exome sequencing pipeline and web interface can be transferred to that area.
For example, the structure for meta data is likely very similar as also patients, samples, tissues,
etc. need to be modeled. Computational pipelines for methylation studies are today also based
on BAMfiles and would likely integrate well into the workflow due to the similarity to processing
of exome data.

6.3 Discussion

e development of algorithms and tools for the analysis of high-throughput DNA sequencing
data remains challenging. It needs to adjust quickly to new ways for conducting experiments
and to innovations on the technological side. Different technologies result in different data and
the algorithms building upon them need to take that into account. e work presented in this
thesis is a good illustration of that point, with its algorithms specially designed for colorspace
and flowgram data. Even if the technology yields data that is very close to our model of DNA as
a simple string over a four-letter alphabet, as Illumina reads are, an understanding of low-level
details of the full process is required. As an example, consider the case of PCR duplicates in the
reads or sequence-specific errors that may lead to the detection of spurious mutations.

Developing algorithms for high-throughput sequencing is therefore a process that needs to be
closely coupled to the underlying technology. For the foreseeable future, as the technology con-
tinues to improve, this will arguably remain that way. Developing HTS algorithms seems to be
a typical situation in which methods of agile programming are required – in this case, an itera-
tive cycle of programming, development of theoretical models, and user feedback. e cutadapt
program may serve as an example of this: Over the course of its development and while it was
already in use, the alignment algorithm was re-implemented multiple times until it converged
to the version presented here. is is entirely acceptable since it is unrealistic to expect that all
requirements are known in advance.

We do not only cover novel algorithms in this thesis, but have also implemented them within
tools. Our opinion of how important this is can be found in the title of this work, which includes
the word “tools”. e area of research we are concerned with here is aimed at gaining biological
or medical insights through computational methods. at is only possible if the algorithms can
actually be used in order to test them and to apply them. Usability can come at different levels.
e cutadapt soware is usable by other computer scientists or those familiar with the command
line, which is still the level at which much day-to-day bioinformatics work is conducted. e
Exomate soware, on the other hand, is an attempt to improve accessibility even further and
therefore removing even more hurdles for research.

Overall, we believe to have reached our aim of improving algorithms on the bioinformatics
side in order to help fellow researchers gain biological knowledge.

136

A Appendix

A.1 Software

e following soware was created as part of this thesis. All tools are available under an Open
Source license.

Cutadapt (Chapter 2)

e cutadapt soware for adapter trimming is available at http://code.google.com/p/cutadapt/,
while current source code is hosted at https://github.com/marcelm/cutadapt/. e work pre-
sented in Chapter 2 refers to the state of the soware at commit 036d487b52, which is a pre-
release of cutadapt version 1.3.

Relevant source files are the following. File cutadapt/calign.pyx contains the Cython im-
plementation of adapter alignment (Algorithm 1, page 27), which locates adapters through a
variant of semiglobal alignment. File cutadapt/adapters.py contains definition of adapter
types, trimming of 3′ colorspace adapters (Algorithm 3, page 38) and 5′ colorspace adapters (Al-
gorithm 4, page 38). e main script is in cutadapt/scripts/cutadapt.py and includes read
filtering and conversion routines listed in Section 2.5.1 on page 40.

Verjinxer (Chapter 3)

e Verjinxer soware (versatile Java-based indexer) can be found at http://code.google.com/p/
verjinxer/. e version of the soware used for the paper by Zeschnigk et al. (2009) is available by
checking out the tag named “methylationpaper” from version control. File src/verjinxer/se-
quenceanalysis/BisulfiteQGramCoder.java implements simulation of bisulfite treatment
as in Algorithm 5, page 59. Creation of the q-gram index (Algorithm 6, page 60) is implemented
in src/verjinxer/QGramIndexer.java. Within file src/verjinxer/QgramMatcher.java,
finding maximal bisulfite matches (Algorithm 7, page 63) is implemented.

e B and P arrays containing the q-gram index are written by Verjinxer into files named
name.qbck and name.qpos, respectively.

Exomate (Chapter 4)

e Exomate soware is available at https://bitbucket.org/marcelm/exomate. e state of the
soware as described in Chapter 4 is that of April 2013. e repository includes also contribu-
tions from colleagues and student assistants.

e variant calling pipeline (Section 4.2) is implemented in pipeline/Snakefile.
Algorithm 12 (page 96) for indel normalization is in exomate/variants.py within the func-

tion normalized_indel. e database layout (Section 4.3) is defined in exomate/models.py.

137

http://code.google.com/p/cutadapt/
https://github.com/marcelm/cutadapt/
http://code.google.com/p/verjinxer/
http://code.google.com/p/verjinxer/
https://bitbucket.org/marcelm/exomate

A Appendix

Function affected_mutations in exomate/views.py implements the SQLalchemy query
for interestingmutations (Algorithm 13, page 106). e same file also contains all quality-control
queries (Section 4.4.5, page 106).

FlowG (Chapter 5)

A proof-of-concept implementation of flowgram-string alignment written in Python is avail-
able from http://www.rahmannlab.de/software. Scoring-related functions, in particular Equa-
tions (5.2), (5.3) and (5.4) are implemented in flowg/scoring.py. e dynamic programming
implementation of the recurrence given in Equation (5.1) is found in flowg/align.py. Algo-
rithm 14 is implemented in the same file. Emphasis is currently on readability and no attempt has
been made to improve performance, except that diagonal edges in recurrence 5.1 are computed
only up to a fixed number of cells to the le.

138

http://www.rahmannlab.de/software

A.2 Contributions to co-authored articles

A.2 Contributions to co-authored articles

is thesis contains results that were obtained in cooperation with other researchers. My contri-
butions to multi-author publications are described in the following. As advisor, Sven Rahmann
assisted in all stages of research.

I implemented the exome-analysis pipeline described in Chapter 4 and performed all exome-
sequencing-related bioinformatics analyses for the following two articles:

Czeschik, Voigt, Alanay, Albrecht, Avci, FitzPatrick, Goudie, Hehr, Hoogeboom,
Kayserili, Simsek-Kiper, Klein-Hitpass, Kuechler, López-González, Martin, Rah-
mann, Schweiger, Splitt, Wollnik, Lüdecke, Zeschnigk, and Wieczorek (2013). Clin-
ical and mutation data in 12 patients with the clinical diagnosis of Nager syndrome.

Martin, Maßhöfer, Temming, Rahmann, Metz, Bornfeld, van deNes, Klein-Hitpass,
Hinnebusch, Horsthemke, Lohmann, and Zeschnigk (2013). Exome capture identi-
fies recurrent somaticmutations in EIF1AXand SF3B1 anti-correlated in uvealmelanoma
with disomy 3.

I performed adapter removal (Chapter 2), bisulfite read mapping (Chapter 3) and subsequent
bioinformatics analyses:

Zeschnigk, Martin, Betzl, Kalbe, Sirsch, Buiting, Gross, Fritzilas, Frey, Rahmann,
and Horsthemke (2009). Massive parallel bisulfite sequencing of CG-rich DNA frag-
ments reveals that methylation of many X-chromosomal CpG islands in female blood
DNA is incomplete.

ebioinformatics analyses in the following articleswere shared equally between SvenRahmann,
Tobias Marschall and me. I extended the adapter removal soware (Chapter 2) to work with
colorspace:

Schulte, Marschall, Martin, Rosenstiel, Mestdagh, Schlierf, or, Vandesompele,
Eggert, Schreiber, Rahmann, and Schramm (2010). Deep sequencing reveals differ-
ential expression of microRNAs in favorable versus unfavorable neuroblastoma.

Rahmann, Martin, Schulte, Köster, Marschall, and Schramm (2013). Identifying
transcriptional miRNA biomarkers by integrating high-throughput sequencing and
real-time PCR data.

e following paper contains an abridged version of Chapter 5. Major contributions by my co-
author are found in Sections 5.3.3 (Scoring of flow intensities) and 5.3.4 (Parameters for editing
events). Also, restructuring and rewording of the text was done by my co-author for the article
and incorporated back into the chapter.

Martin and Rahmann (2013). Aligning Flowgrams to DNA Sequences.

139

Bibliography

I. A. Adzhubei, S. Schmidt, L. Peshkin, V. E. Ramensky, A.Gerasimova, P. Bork, A. S. Kondrashov,
and S. R. Sunyaev. A method and server for predicting damaging missense mutations. Nature
Methods, 7(4):248–249, Apr. 2010. doi:10.1038/nmeth0410-248. (Page 86.)

A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic search. Com-
munications of the ACM, 18(6):333–340, June 1975. doi:10.1145/360825.360855. (Page 45.)

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell.
Garland Science, 5th edition, 2008. (Pages 2, 50 and 104.)

C. Alkan, B. P. Coe, and E. E. Eichler. Genome structural variation discovery and genotyping.
Nature Reviews Genetics, 12(5):363–376, May 2011. doi:10.1038/nrg2958. (Pages 2 and 112.)

M. Allhoff, A. Schonhuth, M. Martin, I. Costa, S. Rahmann, and T. Marschall. Discovering
motifs that induce sequencing errors. BMC Bioinformatics, 14(Suppl 5):S1, 2013. doi:10.1186/
1471-2105-14-S5-S1. (Page 105.)

S. F. Altschul, W. Gish, W. Miller, E. W. Meyers, and D. J. Lipman. Basic Local Alignment Search
Tool. Journal of Molecular Biology, 215(3):403–410, Oct. 1990. (Pages 55 and 62.)

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nu-
cleic Acids Research, 25(17):3389–3402, 1997. (Page 55.)

A. Ameur, A. Wetterbom, L. Feuk, and U. Gyllensten. Global and unbiased detection of
splice junctions from RNA-seq data. Genome Biology, 11(3):R34, 2010. doi:10.1186/
gb-2010-11-3-r34. (Page 48.)

S. E. Antonarakis, M. Krawczak, and D. N. Cooper. e nature and mechanisms of human gene
mutation. In C. Scriver, A. Beaudet, W. Sly, and D. Valle, editors,eMetabolic and Molecular
Bases of Inherited Disease, chapter 13, pages 259–291. McGraw-Hill, New York, 7th edition,
1995. (Page 84.)

Asan, Y. Xu, H. Jiang, C. Tyler-Smith, Y. Xue, T. Jiang, J. Wang, M. Wu, X. Liu, G. Tian,
J. Wang, J. Wang, H. Yang, and X. Zhang. Comprehensive comparison of three commer-
cial human whole-exome capture platforms. Genome Biology, 12(9):R95, 2011. doi:10.1186/
gb-2011-12-9-r95. (Page 85.)

M. Baker. Sorting out sequencing data. Nature Methods, 8(10):799–803, 2011. doi:10.1038/
nmeth.1702. (Page 84.)

141

http://dx.doi.org/10.1038/nmeth0410-248
http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1038/nrg2958
http://dx.doi.org/10.1186/1471-2105-14-S5-S1
http://dx.doi.org/10.1186/1471-2105-14-S5-S1
http://dx.doi.org/10.1186/gb-2010-11-3-r34
http://dx.doi.org/10.1186/gb-2010-11-3-r34
http://dx.doi.org/10.1186/gb-2011-12-9-r95
http://dx.doi.org/10.1186/gb-2011-12-9-r95
http://dx.doi.org/10.1038/nmeth.1702
http://dx.doi.org/10.1038/nmeth.1702

Bibliography

S. Balzer, K.Malde, A. Lanzén, A. Sharma, and I. Jonassen. Characteristics of 454 pyrosequencing
data–enabling realistic simulation with flowsim. Bioinformatics, 26(18):i420–i425, Sept. 2010.
doi:10.1093/bioinformatics/btq365. (Pages 118 and 130.)

M. J. Bamshad, S. B. Ng, A. W. Bigham, H. K. Tabor, M. J. Emond, D. A. Nickerson, and J. Shen-
dure. Exome sequencing as a tool for Mendelian disease gene discovery. Nature Reviews
Genetics, 12(11):745–755, Nov. 2011. doi:10.1038/nrg3031. (Pages 2 and 84.)

D. R. Bentley, S. Balasubramanian, H. P. Swerdlow, G. P. Smith, J. Milton, C. G. Brown, K. P. Hall,
D. J. Evers, C. L. Barnes, H. R. Bignell, J. M. Boutell, J. Bryant, R. J. Carter, R. Keira Cheetham,
A. J. Cox, D. J. Ellis, M. R. Flatbush, N. A. Gormley, S. J. Humphray, L. J. Irving, M. S. Kar-
belashvili, S. M. Kirk, H. Li, X. Liu, K. S. Maisinger, L. J. Murray, B. Obradovic, T. Ost, M. L.
Parkinson, M. R. Pratt, et al. Accurate whole human genome sequencing using reversible ter-
minator chemistry. Nature, 456(7218):53–59, Nov. 2008. doi:10.1038/nature07517. (Page 4.)

F. P. Bernier, O. Caluseriu, S. Ng, J. Schwartzentruber, K. J. Buckingham, A. M. Innes, E. W.
Jabs, J. W. Innis, J. L. Schuette, J. L. Gorski, P. H. Byers, G. Andelfinger, V. Siu, J. Lauzon, B. A.
Fernandez, M. McMillin, R. H. Scott, H. Racher, FORGE Canada Consortium, J. Majewski,
D. A. Nickerson, J. Shendure, M. J. Bamshad, and J. S. Parboosingh. Haploinsufficiency of
SF3B4, a component of the pre-mRNA spliceosomal complex, causes Nager syndrome. Amer-
ican Journal of Human Genetics, 90(5):925–933, May 2012. doi:10.1016/j.ajhg.2012.04.004.
(Page 109.)

G. R. Bignell, J. Huang, J. Greshock, S.Watt, A. Butler, S.West, M. Grigorova, K.W. Jones,W.Wei,
M. R. Stratton, P. A. Futreal, B.Weber,M.H. Shapero, andR.Wooster. High-resolution analysis
of DNA copy number using oligonucleotide microarrays. Genome Research, 14(2):287–295,
Feb. 2004. doi:10.1101/gr.2012304. (Page 107.)

A. Bird, M. Taggart, M. Frommer, O. J. Miller, and D. Macleod. A fraction of the mouse genome
that is derived from islands of nonmethylated, CpG-rich DNA. Cell, 40(1):91–99, Jan. 1985.
(Page 50.)

C. Bock, J. Walter, M. Paulsen, and T. Lengauer. CpG island mapping by epigenome predic-
tion. PLoS Computational Biology, 3(6):e110, June 2007. doi:10.1371/journal.pcbi.0030110.
(Page 51.)

H. Breu. A theoretical understanding of 2 base color codes and its application to annotation, error
detection, and error correction. Technical report, Applied Biosystems by Life Technologies
Corporation, 2010. White Paper. (Pages 5 and 35.)

M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical
Report 124, Systems Research Center, digital, Palo Alto, California, 1994. (Pages 57 and 82.)

S. Büttcher, C. L. A. Clarke, and G. V. Cormack. Information Retrieval – Implementing and Eval-
uating Search Engines. MIT Press, 2010. (Page 75.)

D. Challis, J. Yu, U. S. Evani, A. R. Jackson, S. Paithankar, C. Coarfa, A.Milosavljevic, R. A. Gibbs,
and F. Yu. An integrative variant analysis suite for whole exome next-generation sequencing
data. BMC Bioinformatics, 13:8, 2012. doi:10.1186/1471-2105-13-8. (Pages 86 and 106.)

142

http://dx.doi.org/10.1093/bioinformatics/btq365
http://dx.doi.org/10.1038/nrg3031
http://dx.doi.org/10.1038/nature07517
http://dx.doi.org/10.1016/j.ajhg.2012.04.004
http://dx.doi.org/10.1101/gr.2012304
http://dx.doi.org/10.1371/journal.pcbi.0030110
http://dx.doi.org/10.1186/1471-2105-13-8

Bibliography

A. Chatterjee, P. A. Stockwell, E. J. Rodger, and I.M.Morison. Comparison of alignment soware
for genome-wide bisulphite sequence data. Nucleic Acids Research, Feb. 2012. doi:10.1093/nar/
gks150. (Page 57.)

P.-Y. Chen, S. J. Cokus, and M. Pellegrini. BS Seeker: precise mapping for bisulfite sequencing.
BMC Bioinformatics, 11:203, 2010. doi:10.1186/1471-2105-11-203. (Pages 57 and 58.)

D. M. Church, V. A. Schneider, T. Graves, K. Auger, F. Cunningham, N. Bouk, H.-C.
Chen, R. Agarwala, W. M. McLaren, G. R. S. Ritchie, D. Albracht, M. Kremitzki, S. Rock,
H. Kotkiewicz, C. Kremitzki, A. Wollam, L. Trani, L. Fulton, R. Fulton, L. Matthews, S. White-
head, W. Chow, J. Torrance, M. Dunn, G. Harden, G. readgold, J. Wood, J. Collins, P. Heath,
G. Griffiths, et al. Modernizing reference genome assemblies. PLoS Biology, 9(7):e1001091,
July 2011. doi:10.1371/journal.pbio.1001091. (Pages 50, 76 and 85.)

J. Clarke, H.-C.Wu, L. Jayasinghe, A. Patel, S. Reid, andH. Bayley. Continuous base identification
for single-molecule nanopore DNA sequencing. Nature Nanotechnology, 4(4):265–270, Apr.
2009. doi:10.1038/nnano.2009.12. (Page 3.)

P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice. e Sanger FASTQ file format for
sequenceswith quality scores, and the Solexa/Illumina FASTQvariants.NucleicAcids Research,
38(6):1767–1771, Apr. 2010. doi:10.1093/nar/gkp1137. (Page 7.)

E. F. Codd. Further normalization of the data base relational model. IBM Research Report, San
Jose, California, RJ909, 1971. (Page 97.)

S. J. Cokus, S. Feng, X. Zhang, Z. Chen, B. Merriman, C. D. Haudenschild, S. Pradhan, S. F.
Nelson, M. Pellegrini, and S. E. Jacobsen. Shotgun bisulphite sequencing of the Arabidopsis
genome reveals DNA methylation patterning. Nature, 452(7184):215–219, Mar. 2008. doi:10.
1038/nature06745. (Pages 51 and 56.)

D. N. Cooper, M. H. Taggart, and A. P. Bird. Unmethylated domains in vertebrate DNA. Nucleic
Acids Research, 11(3):647–658, Feb. 1983. (Page 50.)

J. C. Czeschik, C. Voigt, Y. Alanay, B. Albrecht, S. Avci, D. FitzPatrick, D. R. Goudie, U. Hehr,
A. J. Hoogeboom, H. Kayserili, P. O. Simsek-Kiper, L. Klein-Hitpass, A. Kuechler, V. López-
González, M. Martin, S. Rahmann, B. Schweiger, M. Splitt, B. Wollnik, H.-J. Lüdecke,
M. Zeschnigk, and D. Wieczorek. Clinical and mutation data in 12 patients with the clini-
cal diagnosis of Nager syndrome. Human Genetics, 2013. doi:10.1007/s00439-013-1295-2.
(Pages 83, 109, 134 and 139.)

M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change in proteins,
volume 5, pages 345–352. National Biomedical Research Foundation, 1978. (Pages 126, 127
and 131.)

M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, A. A. Philip-
pakis, G. D. Angel, M. A. Rivas, M. Hanna, A. McKenna, T. J. Fennell, A. M. Kernytsky, A. Y.
Sivachenko, K. Cibulskis, S. B. Gabriel, D. Altshuler, and M. J. Daly. A framework for variation
discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43
(5):491–498, May 2011. doi:10.1038/ng.806. (Pages 86, 91, 94 and 95.)

143

http://dx.doi.org/10.1093/nar/gks150
http://dx.doi.org/10.1093/nar/gks150
http://dx.doi.org/10.1186/1471-2105-11-203
http://dx.doi.org/10.1371/journal.pbio.1001091
http://dx.doi.org/10.1038/nnano.2009.12
http://dx.doi.org/10.1093/nar/gkp1137
http://dx.doi.org/10.1038/nature06745
http://dx.doi.org/10.1038/nature06745
http://dx.doi.org/10.1007/s00439-013-1295-2
http://dx.doi.org/10.1038/ng.806

Bibliography

D. Earl, K. Bradnam, J. St John, A. Darling, D. Lin, J. Fass, H. O. K. Yu, V. Buffalo, D. R. Zerbino,
M.Diekhans, N.Nguyen, P.N.Ariyaratne,W.-K. Sung, Z.Ning,M.Haimel, J. T. Simpson, N.A.
Fonseca, I. Birol, T. R. Docking, I. Y. Ho, D. S. Rokhsar, R. Chikhi, D. Lavenier, G. Chapuis,
D. Naquin, N.Maillet, M. C. Schatz, D. R. Kelley, A.M. Phillippy, S. Koren, et al. Assemblathon
1: a competitive assessment of de novo short read assembly methods. Genome Research, 21
(12):2224–2241, Dec. 2011. doi:10.1101/gr.126599.111. (Page 2.)

J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Baybayan, B. Bettman,
A. Bibillo, K. Bjornson, B. Chaudhuri, F. Christians, R. Cicero, S. Clark, R. Dalal, A. Dewinter,
J. Dixon, M. Foquet, A. Gaertner, P. Hardenbol, C. Heiner, K. Hester, D. Holden, G. Kearns,
X. Kong, R. Kuse, Y. Lacroix, S. Lin, et al. Real-time DNA sequencing from single polymerase
molecules. Science, 323(5910):133–138, Jan 2009. doi:10.1126/science.1162986. (Page 3.)

P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions on
Information eory, 21(2):194–203, Mar. 1975. doi:10.1109/TIT.1975.1055349. (Page 75.)

B. Ewing and P. Green. Base-calling of automated sequencer traces using phred. II. Error prob-
abilities. Genome Research, 8(3):186–194, Mar 1998. (Page 6.)

P. Ferragina and G. Manzini. Opportunistic data structures with applications. In FOCS ’00: Pro-
ceedings of the 41st Annual Symposium on Foundations of Computer Science, page 390, Wash-
ington, DC, USA, 2000. IEEE Computer Society. (Page 82.)

J. W. Fickett. Fast optimal alignment. Nucleic Acids Research, 12(1 Pt 1):175–179, Jan. 1984.
(Page 45.)

P. Flicek, I. Ahmed, M. R. Amode, D. Barrell, K. Beal, S. Brent, D. Carvalho-Silva, P. Clapham,
G. Coates, S. Fairley, S. Fitzgerald, L. Gil, C. García-Girón, L. Gordon, T. Hourlier, S. Hunt,
T. Juettemann, A. K. Kähäri, S. Keenan, M. Komorowska, E. Kulesha, I. Longden, T. Maurel,
W. M. McLaren, M. Muffato, R. Nag, B. Overduin, M. Pignatelli, B. Pritchard, E. Pritchard,
et al. Ensembl 2013. Nucleic Acids Research, 41(Database issue):D48–D55, Jan 2013. doi:10.
1093/nar/gks1236. (Page 92.)

M. Frommer, L. E. McDonald, D. S. Millar, C. M. Collis, F. Watt, G. W. Grigg, P. L. Molloy, and
C. L. Paul. A genomic sequencing protocol that yields a positive display of 5-methylcytosine
residues in individual DNA strands. Proceedings of the National Academy of Sciences of the
United States of America, 89(5):1827–1831, Mar. 1992. (Page 51.)

M. Gardiner-Garden and M. Frommer. CpG islands in vertebrate genomes. Journal of Molecular
Biology, 196(2):261–282, July 1987. (Pages 50 and 51.)

C. Gilissen, A. Hoischen, H. G. Brunner, and J. A. Veltman. Unlocking Mendelian disease us-
ing exome sequencing. Genome Biology, 12(9):228, 2011. doi:10.1186/gb-2011-12-9-228.
(Page 84.)

C. Gilissen, A. Hoischen, H. G. Brunner, and J. A. Veltman. Disease gene identification strategies
for exome sequencing. European Journal of HumanGenetics, 20(5):490–497,May 2012. doi:10.
1038/ejhg.2011.258. (Page 84.)

144

http://dx.doi.org/10.1101/gr.126599.111
http://dx.doi.org/10.1126/science.1162986
http://dx.doi.org/10.1109/TIT.1975.1055349
http://dx.doi.org/10.1093/nar/gks1236
http://dx.doi.org/10.1093/nar/gks1236
http://dx.doi.org/10.1186/gb-2011-12-9-228
http://dx.doi.org/10.1038/ejhg.2011.258
http://dx.doi.org/10.1038/ejhg.2011.258

Bibliography

D. Golan and P. Medvedev. Using state machines to model the Ion Torrent sequencing process
and to improve read error rates. Bioinformatics, 29(13):i344–i351, July 2013. doi:10.1093/
bioinformatics/btt212. (Pages 117 and 120.)

R. L. Graham, D. E. Knuth, andO. Patashnik. ConcreteMathematics: A Foundation for Computer
Science. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1994.
(Pages 71, 72 and 73.)

D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press, May 1997.
(Pages 15, 16, 18 and 19.)

F. Hach, F. Hormozdiari, C. Alkan, F. Hormozdiari, I. Birol, E. E. Eichler, and S. C. Sahinalp.
mrsFAST: a cache-oblivious algorithm for short-read mapping. Nature Methods, 7(8):576–
577, Aug. 2010. doi:10.1038/nmeth0810-576. (Page 57.)

M. Hafner, P. Landgraf, J. Ludwig, A. Rice, T. Ojo, C. Lin, D. Holoch, C. Lim, and T. Tuschl.
Identification ofmicroRNAs and other small regulatory RNAs using cDNA library sequencing.
Methods, 44(1):3–12, 2008. doi:10.1016/j.ymeth.2007.09.009. (Page 11.)

J. W. Harbour, E. D. O. Roberson, H. Anbunathan, M. D. Onken, L. A. Worley, and A. M. Bow-
cock. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma.
Nature Genetics, 45(2):133–135, Feb. 2013. doi:10.1038/ng.2523. (Pages 43, 110, 111, 113
and 134.)

E. Y. Harris, N. Ponts, A. Levchuk, K. L. Roch, and S. Lonardi. BRAT: bisulfite-treated reads
analysis tool. Bioinformatics, 26(4):572–573, Feb. 2010. doi:10.1093/bioinformatics/btp706.
(Page 57.)

E. Y. Harris, N. Ponts, K. G. Le Roch, and S. Lonardi. BRAT-BW: efficient and accurate map-
ping of bisulfite-treated reads. Bioinformatics, 28(13):1795–1796, Jul 2012. doi:10.1093/
bioinformatics/bts264. (Page 57.)

D. S. Hirschberg. A linear space algorithm for computingmaximal common subsequences. Com-
munications of the ACM, 18(6):341–343, June 1975. doi:10.1145/360825.360861. (Pages 17
and 26.)

A. Hoischen, B. W. M. van Bon, C. Gilissen, P. Arts, B. van Lier, M. Steehouwer, P. de Vries,
R. de Reuver, N. Wieskamp, G. Mortier, K. Devriendt, M. Z. Amorim, N. Revencu, A. Kidd,
M. Barbosa, A. Turner, J. Smith, C. Oley, A. Henderson, I. M. Hayes, E. M. ompson, H. G.
Brunner, B. B. A. de Vries, and J. A. Veltman. De novo mutations of SETBP1 cause Schinzel-
Giedion syndrome. Nature Genetics, 42(6):483–485, June 2010. doi:10.1038/ng.581. (Page 84.)

N. Homer and S. F. Nelson. Improved variant discovery through local re-alignment of short-read
next-generation sequencing data using SRMA. Genome Biology, 11(10):R99, 2010. doi:10.
1186/gb-2010-11-10-r99. (Page 89.)

N. Homer, B. Merriman, and S. F. Nelson. BFAST: an alignment tool for large scale genome
resequencing. PLoS One, 4(11):e7767, 2009. doi:10.1371/journal.pone.0007767. (Pages 36, 55
and 62.)

145

http://dx.doi.org/10.1093/bioinformatics/btt212
http://dx.doi.org/10.1093/bioinformatics/btt212
http://dx.doi.org/10.1038/nmeth0810-576
http://dx.doi.org/10.1016/j.ymeth.2007.09.009
http://dx.doi.org/10.1038/ng.2523
http://dx.doi.org/10.1093/bioinformatics/btp706
http://dx.doi.org/10.1093/bioinformatics/bts264
http://dx.doi.org/10.1093/bioinformatics/bts264
http://dx.doi.org/10.1145/360825.360861
http://dx.doi.org/10.1038/ng.581
http://dx.doi.org/10.1186/gb-2010-11-10-r99
http://dx.doi.org/10.1186/gb-2010-11-10-r99
http://dx.doi.org/10.1371/journal.pone.0007767

Bibliography

Intel. Intel®64 and IA-32 Architectures Soware Developer’s Manual Volume 2 (2A, 2B & 2C):
Instruction Set Reference, A-Z, Mar. 2012. Order number 325383. (Page 67.)

International HapMap 3 Consortium, D. M. Altshuler, R. A. Gibbs, L. Peltonen, D. M. Altshuler,
R. A. Gibbs, L. Peltonen, E. Dermitzakis, S. F. Schaffner, F. Yu, L. Peltonen, E. Dermitzakis,
P. E. Bonnen, D. M. Altshuler, R. A. Gibbs, P. I. W. de Bakker, P. Deloukas, S. B. Gabriel,
R. Gwilliam, S. Hunt, M. Inouye, X. Jia, A. Palotie, M. Parkin, P. Whittaker, F. Yu, K. Chang,
A. Hawes, L. R. Lewis, Y. Ren, et al. Integrating common and rare genetic variation in diverse
human populations. Nature, 467(7311):52–58, Sept. 2010. doi:10.1038/nature09298. (Pages 86
and 100.)

S. Jünemann, K. Prior, R. Szczepanowski, I. Harks, B. Ehmke, A. Goesmann, J. Stoye, and
D. Harmsen. Bacterial community shi in treated periodontitis patients revealed by Ion Tor-
rent 16S rRNA gene amplicon sequencing. PLoS One, 7(8):e41606, 2012. doi:10.1371/journal.
pone.0041606. (Page 40.)

W. J. Kent. BLAT–the BLAST-like alignment tool. Genome Research, 12(4):656–664, Apr. 2002.
doi:10.1101/gr.229202. (Page 80.)

Y. Kodama, M. Shumway, R. Leinonen, and International Nucleotide Sequence Database Col-
laboration. e sequence read archive: explosive growth of sequencing data. Nucleic Acids
Research, 40(Database issue):D54–D56, Jan. 2012. (Page 41.)

J. Köster and S. Rahmann. Snakemake–a scalable bioinformatics workflow engine. Bioinformat-
ics, 28(19):2520–2522, Oct. 2012. doi:10.1093/bioinformatics/bts480. (Page 87.)

G. M. Landau, U. Vishkin, and R. Nussinov. An efficient string matching algorithm with k dif-
ferences for nucleotide and amino acid sequences. Nucleic Acids Research, 14(1):31–46, Jan.
1986. (Page 23.)

E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, K. De-
war, M. Doyle, W. FitzHugh, R. Funke, D. Gage, K. Harris, A. Heaford, J. Howland, L. Kann,
J. Lehoczky, R. LeVine, P. McEwan, K. McKernan, J. Meldrim, J. P. Mesirov, C. Miranda,
W. Morris, J. Naylor, C. Raymond, M. Rosetti, R. Santos, A. Sheridan, C. Sougnez, et al. Ini-
tial sequencing and analysis of the human genome. Nature, 409(6822):860–921, Feb 2001.
(Page 1.)

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient alignment
of short DNA sequences to the human genome. Genome Biology, 10(3):R25, 2009. doi:10.
1186/gb-2009-10-3-r25. (Page 57.)

F. Larsen, G. Gundersen, R. Lopez, and H. Prydz. CpG islands as gene markers in the human
genome. Genomics, 13(4):1095–1107, Aug. 1992. (Page 50.)

D. E. Larson, C. C. Harris, K. Chen, D. C. Koboldt, T. E. Abbott, D. J. Dooling, T. J. Ley, E. R.
Mardis, R. K. Wilson, and L. Ding. SomaticSniper: identification of somatic point muta-
tions in whole genome sequencing data. Bioinformatics, 28(3):311–317, 2012. doi:10.1093/
bioinformatics/btr665. (Page 110.)

146

http://dx.doi.org/10.1038/nature09298
http://dx.doi.org/10.1371/journal.pone.0041606
http://dx.doi.org/10.1371/journal.pone.0041606
http://dx.doi.org/10.1101/gr.229202
http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1093/bioinformatics/btr665
http://dx.doi.org/10.1093/bioinformatics/btr665

Bibliography

R. Leinonen, H. Sugawara, M. Shumway, and International Nucleotide Sequence Database Col-
laboration. e sequence read archive. Nucleic Acids Research, 39(Database issue):D19–D21,
Jan. 2011. (Page 41.)

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10(8):707–710, Feb. 1966. (Page 16.)

H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics, 25(14):1754–1760, July 2009. doi:10.1093/bioinformatics/btp324. (Pages 14,
29, 36, 41, 62 and 89.)

H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows-Wheeler transform.
Bioinformatics, 26(5):589–595, Mar. 2010. doi:10.1093/bioinformatics/btp698. (Page 48.)

H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and calling variants using
mapping quality scores. Genome Research, 18(11):1851–1858, Nov. 2008a. doi:10.1101/gr.
078212.108. (Pages 14, 36, 41, 55, 56, 62 and 80.)

H. Li, B.Handsaker, A.Wysoker, T. Fennell, J. Ruan, N.Homer, G.Marth, G. Abecasis, R. Durbin,
and 1000 Genome Project Data Processing Subgroup. e Sequence Alignment/Map format
and SAMtools. Bioinformatics, 25(16):2078–2079, Aug. 2009. (Pages 7, 48, 86, 89 and 97.)

R. Li, Y. Li, K. Kristiansen, and J. Wang. SOAP: short oligonucleotide alignment program. Bioin-
formatics, 24(5):713–714, Mar. 2008b. doi:10.1093/bioinformatics/btn025. (Pages 14 and 56.)

R. Lister and J. R. Ecker. Finding the fih base: genome-wide sequencing of cytosinemethylation.
Genome Research, 19(6):959–966, June 2009. doi:10.1101/gr.083451.108. (Page 51.)

R. Lister, R. C. O’Malley, J. Tonti-Filippini, B. D. Gregory, C. C. Berry, A. H. Millar, and J. R.
Ecker. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell,
133(3):523–536, May 2008. doi:10.1016/j.cell.2008.03.029. (Pages 51 and 56.)

R. Lister, M. Pelizzola, R. H. Dowen, R. D. Hawkins, G. Hon, J. Tonti-Filippini, J. R. Nery,
L. Lee, Z. Ye, Q.-M. Ngo, L. Edsall, J. Antosiewicz-Bourget, R. Stewart, V. Ruotti, A. H.
Millar, J. A. omson, B. Ren, and J. R. Ecker. Human DNA methylomes at base res-
olution show widespread epigenomic differences. Nature, 462(7271):315–322, Nov. 2009.
doi:10.1038/nature08514. (Page 52.)

F. Lysholm, B. Andersson, and B. Persson. FAAST: Flow-space assisted alignment search tool.
BMC Bioinformatics, 12:293, 2011. doi:10.1186/1471-2105-12-293. (Page 119.)

B. Ma, J. Tromp, and M. Li. PatternHunter: faster and more sensitive homology search. Bioin-
formatics, 18(3):440–445, Mar. 2002. (Page 55.)

T. Magoč and S. L. Salzberg. FLASH: fast length adjustment of short reads to improve genome
assemblies. Bioinformatics, 27(21):2957–2963, Nov. 2011. doi:10.1093/bioinformatics/btr507.
(Page 46.)

147

http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1093/bioinformatics/btp698
http://dx.doi.org/10.1101/gr.078212.108
http://dx.doi.org/10.1101/gr.078212.108
http://dx.doi.org/10.1093/bioinformatics/btn025
http://dx.doi.org/10.1101/gr.083451.108
http://dx.doi.org/10.1016/j.cell.2008.03.029
http://dx.doi.org/10.1038/nature08514
http://dx.doi.org/10.1186/1471-2105-12-293
http://dx.doi.org/10.1093/bioinformatics/btr507

Bibliography

M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka, M. S.
Braverman, Y.-J. Chen, Z. Chen, S. B. Dewell, L. Du, J. M. Fierro, X. V. Gomes, B. C. Godwin,
W. He, S. Helgesen, C. H. Ho, C. H. Ho, G. P. Irzyk, S. C. Jando, M. L. I. Alenquer, T. P. Jarvie,
K. B. Jirage, J.-B. Kim, J. R. Knight, J. R. Lanza, J. H. Leamon, S. M. Leowitz, M. Lei, et al.
Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437(7057):
376–380, Sept. 2005. doi:10.1038/nature03959. (Pages 4, 118 and 119.)

T. Marschall, I. G. Costa, S. Canzar, M. Bauer, G. W. Klau, A. Schliep, and A. Schönhuth.
CLEVER: clique-enumerating variant finder. Bioinformatics, 28(22):2875–2882, Nov. 2012.
doi:10.1093/bioinformatics/bts566. (Pages 6 and 112.)

M. Martin. Cutadapt removes adapter sequences from high-throughput sequencing reads. EM-
Bnet.journal, 17(1):10–12, 2011. (Page 40.)

M. Martin and S. Rahmann. Aligning flowgrams to DNA sequences. In T. Beißbarth, M. Koll-
mar, A. Leha, B. Morgenstern, A.-K. Schultz, S. Waack, and E. Wingender, editors, German
Conference on Bioinformatics 2013, volume 34 of OpenAccess Series in Informatics (OASIcs),
pages 125–135, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/OASIcs.GCB.2013.125. (Page 139.)

M. Martin, L. Maßhöfer, P. Temming, S. Rahmann, C. Metz, N. Bornfeld, J. van de Nes, L. Klein-
Hitpass, A. G. Hinnebusch, B. Horsthemke, D. R. Lohmann, and M. Zeschnigk. Exome se-
quencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma
with disomy 3. Nature Genetics, 45(8):933–936, Aug. 2013. doi:10.1038/ng.2674. (Pages 2, 83,
109, 134 and 139.)

A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella,
D. Altshuler, S. Gabriel, M. Daly, andM. A. DePristo. eGenomeAnalysis Toolkit: aMapRe-
duce framework for analyzing next-generation DNA sequencing data. Genome Research, 20
(9):1297–1303, Sept. 2010. doi:10.1101/gr.107524.110. (Pages 89 and 91.)

A. Meissner, T. S. Mikkelsen, H. Gu, M. Wernig, J. Hanna, A. Sivachenko, X. Zhang, B. E. Bern-
stein, C. Nusbaum, D. B. Jaffe, A. Gnirke, R. Jaenisch, and E. S. Lander. Genome-scale DNA
methylation maps of pluripotent and differentiated cells. Nature, 454(7205):766–770, Aug.
2008. doi:10.1038/nature07107. (Page 51.)

B. Merriman, Ion Torrent R&D Team, and J. M. Rothberg. Progress in ion torrent semiconduc-
tor chip based sequencing. Electrophoresis, 33(23):3397–3417, Dec. 2012. doi:10.1002/elps.
201200424. (Page 4.)

T. Müller, S. Rahmann, and M. Rehmsmeier. Non-symmetric score matrices and the detec-
tion of homologous transmembrane proteins. Bioinformatics, 17(Suppl. 1):S182–S189, 2001.
(Page 127.)

G. Myers. A fast bit-vector algorithm for approximate string matching based on dynamic pro-
gramming. J. ACM, 46:395–415, May 1999. doi:10.1145/316542.316550. (Pages 27 and 45.)

148

http://dx.doi.org/10.1038/nature03959
http://dx.doi.org/10.1093/bioinformatics/bts566
http://dx.doi.org/10.4230/OASIcs.GCB.2013.125
http://dx.doi.org/10.1038/ng.2674
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1038/nature07107
http://dx.doi.org/10.1002/elps.201200424
http://dx.doi.org/10.1002/elps.201200424
http://dx.doi.org/10.1145/316542.316550

Bibliography

K. Nakamura, T. Oshima, T. Morimoto, S. Ikeda, H. Yoshikawa, Y. Shiwa, S. Ishikawa, M. C.
Linak, A. Hirai, H. Takahashi, M. Altaf-Ul-Amin, N. Ogasawara, and S. Kanaya. Sequence-
specific error profile of Illumina sequencers. Nucleic Acids Research, 39(13):e90, July 2011.
doi:10.1093/nar/gkr344. (Page 105.)

G. Navarro and M. Raffinot. Flexible pattern matching in strings: practical on-line search algo-
rithms for texts and biological sequences. Cambridge University Press, New York, NY, USA,
2002. (Page 45.)

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–453, Mar.
1970. (Page 119.)

P. C. Ng and S. Henikoff. Predicting deleterious amino acid substitutions. Genome Research, 11
(5):863–874, May 2001. doi:10.1101/gr.176601. (Page 102.)

P. C.Ng and S.Henikoff. SIFT: Predicting amino acid changes that affect protein function.Nucleic
Acids Research, 31(13):3812–3814, July 2003. doi:10.1093/nar/gkg509. (Page 102.)

S. B. Ng, E. H. Turner, P. D. Robertson, S. D. Flygare, A. W. Bigham, C. Lee, T. Shaffer, M. Wong,
A. Bhattacharjee, E. E. Eichler,M. Bamshad, D.A.Nickerson, and J. Shendure. Targeted capture
and massively parallel sequencing of 12 human exomes. Nature, 461(7261):272–276, Sept.
2009. doi:10.1038/nature08250. (Pages 84, 103 and 105.)

S. B. Ng, K. J. Buckingham, C. Lee, A. W. Bigham, H. K. Tabor, K. M. Dent, C. D. Huff, P. T.
Shannon, E. W. Jabs, D. A. Nickerson, J. Shendure, and M. J. Bamshad. Exome sequencing
identifies the cause of a mendelian disorder. Nature Genetics, 42(1):30–35, Jan. 2010. doi:10.
1038/ng.499. (Pages 84 and 86.)

W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison. Proc Natl
Acad Sci U S A, 85(8):2444–2448, Apr. 1988. (Page 7.)

M. F. Polz and C. M. Cavanaugh. Bias in template-to-product ratios in multitemplate PCR. Ap-
plied and Environmental Microbiology, 64(10):3724–3730, Oct. 1998. (Page 90.)

G. Prescher, N. Bornfeld, H. Hirche, B. Horsthemke, K. H. Jöckel, and R. Becher. Prognostic
implications of monosomy 3 in uveal melanoma. Lancet, 347(9010):1222–1225, May 1996.
(Page 110.)

C. Quince, A. Lanzén, T. P. Curtis, R. J. Davenport, N. Hall, I. M. Head, L. F. Read, and W. T.
Sloan. Accurate determination of microbial diversity from 454 pyrosequencing data. Nature
Methods, 6(9):639–641, Sept. 2009. doi:10.1038/nmeth.1361. (Pages 119 and 120.)

A. R. Quinlan and I. M. Hall. BEDTools: a flexible suite of utilities for comparing genomic
features. Bioinformatics, 26(6):841–842, Mar. 2010. doi:10.1093/bioinformatics/btq033.
(Page 92.)

S. Rahmann, M. Martin, J. H. Schulte, J. Köster, T. Marschall, and A. Schramm. Identifying
transcriptional miRNA biomarkers by integrating high-throughput sequencing and real-time

149

http://dx.doi.org/10.1093/nar/gkr344
http://dx.doi.org/10.1101/gr.176601
http://dx.doi.org/10.1093/nar/gkg509
http://dx.doi.org/10.1038/nature08250
http://dx.doi.org/10.1038/ng.499
http://dx.doi.org/10.1038/ng.499
http://dx.doi.org/10.1038/nmeth.1361
http://dx.doi.org/10.1093/bioinformatics/btq033

Bibliography

PCR data. Methods, 59(1):154–163, Jan. 2013. doi:10.1016/j.ymeth.2012.10.005. (Pages 2, 31,
32, 43 and 139.)

K. R. Rasmussen, J. Stoye, and E.W.Myers. Efficient q-gramfilters for finding all epsilon-matches
over a given length. Journal of Computational Biology, 13(2):296–308, Mar. 2006. doi:10.1089/
cmb.2006.13.296. (Pages 23, 55 and 81.)

P. Rice, I. Longden, and A. Bleasby. EMBOSS: the European Molecular Biology Open Soware
Suite. Trends in Genetics, 16(6):276–277, June 2000. (Page 14.)

G. Rizk and D. Lavenier. GASSST: Global alignment short sequence search tool. Bioinformatics,
Aug. 2010. doi:10.1093/bioinformatics/btq485. (Page 56.)

M. Ronaghi, S. Karamohamed, B. Pettersson, M. Uhlén, and P. Nyrén. Real-time DNA sequenc-
ing using detection of pyrophosphate release. Analytical Biochemistry, 242(1):84–89, Nov.
1996. doi:10.1006/abio.1996.0432. (Page 4.)

F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating inhibitors.
Proceedings of the National Academy of Sciences of the United States of America, 74(12):5463–
5467, Dec. 1977. (Page 1.)

G. W. E. Santen, E. Aten, Y. Sun, R. Almomani, C. Gilissen, M. Nielsen, S. G. Kant, I. N. Snoeck,
E. A. J. Peeters, Y. Hilhorst-Hofstee, M. W. Wessels, N. S. den Hollander, C. A. L. Ruivenkamp,
G.-J. B. van Ommen, M. H. Breuning, J. T. den Dunnen, A. van Haeringen, and M. Kriek.
Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syn-
drome. Nature Genetics, 44(4):379–380, 2012. doi:10.1038/ng.2217. (Pages 84, 109 and 134.)

S. Scherer. A Short Guide to the Human Genome. Cold Spring Harbor Laboratory Press, 2008.
(Pages 50 and 112.)

J. Schiemer. Illumina TruSeq DNA adapters de-mystified, 2011. Tus University Core Facility.
(Page 11.)

A. Schramm, B. Schowe, K. Fielitz, M. Heilmann, M. Martin, T. Marschall, J. Köster, J. Van-
desompele, J. Vermeulen, K. de Preter, J. Koster, R. Versteeg, R. Noguera, F. Speleman,
S. Rahmann, A. Eggert, K. Morik, and J. H. Schulte. Exon-level expression analyses iden-
tify MYCN and NTRK1 as major determinants of alternative exon usage and robustly pre-
dict primary neuroblastoma outcome. British Journal of Cancer, 107(8):1409–1417, Oct. 2012.
doi:10.1038/bjc.2012.391. (Page 2.)

J. H. Schulte, T. Marschall, M. Martin, P. Rosenstiel, P. Mestdagh, S. Schlierf, T. or, J. Van-
desompele, A. Eggert, S. Schreiber, S. Rahmann, and A. Schramm. Deep sequencing reveals
differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nu-
cleic Acids Research, 38(17):5919–5928, Sept. 2010. doi:10.1093/nar/gkq342. (Pages 2, 15, 43
and 139.)

P. Sellers. e theory and computation of evolutionary distances: pattern recognition. Journal of
Algorithms, 1:359–373, 1980. (Page 16.)

150

http://dx.doi.org/10.1016/j.ymeth.2012.10.005
http://dx.doi.org/10.1089/cmb.2006.13.296
http://dx.doi.org/10.1089/cmb.2006.13.296
http://dx.doi.org/10.1093/bioinformatics/btq485
http://dx.doi.org/10.1006/abio.1996.0432
http://dx.doi.org/10.1038/ng.2217
http://dx.doi.org/10.1038/bjc.2012.391
http://dx.doi.org/10.1093/nar/gkq342

Bibliography

S. T. Sherry, M. H. Ward, M. Kholodov, J. Baker, L. Phan, E. M. Smigielski, and K. Sirotkin.
dbSNP: the NCBI database of genetic variation. Nucleic Acids Research, 29(1):308–311, Jan.
2001. (Page 85.)

A. D. Smith, Z. Xuan, andM. Q. Zhang. Using quality scores and longer reads improves accuracy
of Solexa read mapping. BMC Bioinformatics, 9:128, 2008. doi:10.1186/1471-2105-9-128.
(Page 57.)

A. D. Smith, W.-Y. Chung, E. Hodges, J. Kendall, G. Hannon, J. Hicks, Z. Xuan, andM. Q. Zhang.
Updates to the RMAP short-read mapping soware. Bioinformatics, 25(21):2841–2842, Nov.
2009. doi:10.1093/bioinformatics/btp533. (Page 57.)

T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Journal of
Molecular Biology, 147(1):195–197, Mar. 1981. (Pages 18 and 119.)

D. Takai and P. A. Jones. Comprehensive analysis of CpG islands in human chromosomes 21
and 22. Proceedings of the National Academy of Sciences of the United States of America, 99(6):
3740–3745, Mar. 2002. doi:10.1073/pnas.052410099. (Page 51.)

e 1000 Genomes Project Consortium, R. M. Durbin, G. R. Abecasis, D. L. Altshuler, A. Auton,
L. D. Brooks, R. M. Durbin, R. A. Gibbs, M. E. Hurles, and G. A. McVean. A map of human
genome variation frompopulation-scale sequencing.Nature, 467(7319):1061–1073, Oct. 2010.
doi:10.1038/nature09534. (Pages 94 and 112.)

H. orvaldsdóttir, J. T. Robinson, and J. P. Mesirov. Integrative Genomics Viewer (IGV): high-
performance genomics data visualization and exploration. Briefings in Bioinformatics, Apr.
2012. doi:10.1093/bib/bbs017. (Pages 90 and 91.)

F. Tschentscher, J. Hüsing, T. Hölter, E. Kruse, I. G. Dresen, K.-H. Jöckel, G. Anastassiou,
H. Schilling, N. Bornfeld, B. Horsthemke, D. R. Lohmann, and M. Zeschnigk. Tumor clas-
sification based on gene expression profiling shows that uveal melanomas with and without
monosomy 3 represent two distinct entities. Cancer Research, 63(10):2578–2584, May 2003.
(Page 109.)

Y. Tsurusaki, N. Okamoto, H. Ohashi, T. Kosho, Y. Imai, Y. Hibi-Ko, T. Kaname, K. Naritomi,
H. Kawame, K. Wakui, Y. Fukushima, T. Homma, M. Kato, Y. Hiraki, T. Yamagata, S. Yano,
S. Mizuno, S. Sakazume, T. Ishii, T. Nagai, M. Shiina, K. Ogata, T. Ohta, N. Niikawa, S. Miy-
atake, I. Okada, T. Mizuguchi, H. Doi, H. Saitsu, N. Miyake, et al. Mutations affecting compo-
nents of the SWI/SNF complex cause Coffin-Siris syndrome. Nature Genetics, 44(4):376–378,
Apr. 2012. doi:10.1038/ng.2219. (Page 109.)

E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms, 6(1):132–137, 1985.
(Pages 26 and 28.)

V. Vacic, H. Jin, J.-K. Zhu, and S. Lonardi. A probabilistic method for small RNA flowgram
matching. Pacific Symposium on Biocomputing, pages 75–86, 2008. (Pages 118, 120, 121, 126
and 131.)

151

http://dx.doi.org/10.1186/1471-2105-9-128
http://dx.doi.org/10.1093/bioinformatics/btp533
http://dx.doi.org/10.1073/pnas.052410099
http://dx.doi.org/10.1038/nature09534
http://dx.doi.org/10.1093/bib/bbs017
http://dx.doi.org/10.1038/ng.2219

Bibliography

H. van Bakel, J. M. Stout, A. G. Cote, C. M. Tallon, A. G. Sharpe, T. R. Hughes, and J. E. Page.
e dra genome and transcriptome of Cannabis sativa. Genome Biology, 12(10):R102, 2011.
doi:10.1186/gb-2011-12-10-r102. (Page 40.)

C.Vesely, S. Tauber, F. J. Sedlazeck, A. vonHaeseler, andM. F. Jantsch. Adenosine deaminases that
act on RNA induce reproducible changes in abundance and sequence of embryonic miRNAs.
Genome Research, 22(8):1468–1476, Aug. 2012. doi:10.1101/gr.133025.111. (Page 40.)

C. Voigt, A. Mégarbané, K. Neveling, J. C. Czeschik, B. Albrecht, B. Callewaert, F. von Deim-
ling, A. Hehr, M. F. Smeland, R. König, A. Kuechler, C. Marcelis, M. Puiu, W. Reardon, H. M.
F. R. Stensland, B. Schweiger, M. Steehouwer, C. Teller, M. Martin, S. Rahmann, U. Hehr,
H. G. Brunner, H.-J. Lüdecke, and D. Wieczorek. Oto-facial syndrome and esophageal atre-
sia, intellectual disability and zygomatic anomalies – expanding the phenotypes associated
with EFTUD2 mutations. Orphanet Journal of Rare Diseases, 8(110), 2013. doi:10.1186/
1750-1172-8-110. (Pages 83 and 134.)

M. Weber, J. J. Davies, D. Wittig, E. J. Oakeley, M. Haase, W. L. Lam, and D. Schübeler.
Chromosome-wide and promoter-specific analyses identify sites of differential DNA methy-
lation in normal and transformed human cells. Nature Genetics, 37(8):853–862, Aug. 2005.
doi:10.1038/ng1598. (Page 51.)

D. Weese, A.-K. Emde, T. Rausch, A. Döring, and K. Reinert. RazerS–fast read mapping with
sensitivity control.GenomeResearch, 19(9):1646–1654, Sept. 2009. doi:10.1101/gr.088823.108.
(Pages 55 and 81.)

S. Wu and U. Manber. Fast text searching allowing errors. Communications of the ACM, 35(10):
83–91, 1992. (Page 45.)

Y. Xi and W. Li. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinfor-
matics, 10:232, 2009. doi:10.1186/1471-2105-10-232. (Pages 56 and 66.)

Y. Xi, C. Bock, F. Müller, D. Sun, A. Meissner, and W. Li. RRBSMAP: a fast, accurate and user-
friendly alignment tool for reduced representation bisulfite sequencing. Bioinformatics, 28(3):
430–432, Feb. 2012. doi:10.1093/bioinformatics/btr668. (Page 57.)

K. Ye, M. H. Schulz, Q. Long, R. Apweiler, and Z. Ning. Pindel: a pattern growth approach to de-
tect break points of large deletions and medium sized insertions from paired-end short reads.
Bioinformatics, 25(21):2865–2871, Nov. 2009. doi:10.1093/bioinformatics/btp394. (Page 112.)

M. Zeschnigk, M. Martin, G. Betzl, A. Kalbe, C. Sirsch, K. Buiting, S. Gross, E. Fritzilas,
B. Frey, S. Rahmann, and B. Horsthemke. Massive parallel bisulfite sequencing of CG-
rich DNA fragments reveals that methylation of many X-chromosomal CpG islands in fe-
male blood DNA is incomplete. Human Molecular Genetics, 18(8):1439–1448, Apr. 2009.
doi:10.1093/hmg/ddp054. (Pages 12, 15, 52, 56, 70, 79, 80, 134, 135, 137 and 139.)

M. Q. Zhang. Statistical features of human exons and their flanking regions. Human Molecular
Genetics, 7(5):919–932, May 1998. (Page 104.)

152

http://dx.doi.org/10.1186/gb-2011-12-10-r102
http://dx.doi.org/10.1101/gr.133025.111
http://dx.doi.org/10.1186/1750-1172-8-110
http://dx.doi.org/10.1186/1750-1172-8-110
http://dx.doi.org/10.1038/ng1598
http://dx.doi.org/10.1101/gr.088823.108
http://dx.doi.org/10.1186/1471-2105-10-232
http://dx.doi.org/10.1093/bioinformatics/btr668
http://dx.doi.org/10.1093/bioinformatics/btp394
http://dx.doi.org/10.1093/hmg/ddp054

Bibliography

J. Zhao, T. K. Ohsumi, J. T. Kung, Y. Ogawa, D. J. Grau, K. Sarma, J. J. Song, R. E. Kingston,
M. Borowsky, and J. T. Lee. Genome-wide identification of polycomb-associated RNAs by RIP-
seq. Molecular Cell, 40(6):939–953, Dec. 2010. doi:10.1016/j.molcel.2010.12.011. (Page 12.)

M. J. Ziller, F. Müller, J. Liao, Y. Zhang, H. Gu, C. Bock, P. Boyle, C. B. Epstein, B. E. Bernstein,
T. Lengauer, A. Gnirke, and A. Meissner. Genomic distribution and inter-sample variation
of non-CpG methylation across human cell types. PLoS Genetics, 7(12):e1002389, Dec. 2011.
doi:10.1371/journal.pgen.1002389. (Page 56.)

153

http://dx.doi.org/10.1016/j.molcel.2010.12.011
http://dx.doi.org/10.1371/journal.pgen.1002389

	Abstract
	Danksagungen (Acknowledgments)
	Introduction
	DNA sequencing
	Applications
	DNA
	Library preparation
	Sequencing technologies
	Pyrosequencing with 454
	Ion semiconductor sequencing
	Illumina sequencing
	Colorspace sequencing

	Paired-end sequencing
	Base quality
	File formats
	Conventions
	Structure

	Trimming Adapters
	Introduction
	Types of adapter contamination
	Previous work
	Requirements

	Finding adapters
	Alignments
	Finding optimal alignments
	Semiglobal alignment
	Adapter alignment
	Overlap
	Error rate
	Optimization criteria
	Cutting adapters
	Adapter alignment algorithm
	Removing one of multiple adapters

	Reducing false positives and false negatives
	Choosing the maximum error rate
	Partial-match bias
	False positives through random matches

	Trimming colorspace reads
	Aligning colorspace reads
	Concatenating strings in colorspace
	Removing 3' adapters
	Removing 5' adapters

	Implementation in cutadapt
	Features
	Performance evaluation

	Future work
	Performance improvements
	Paired-end reads

	Discussion
	The error rate threshold
	Combining trimming and mapping

	Mapping Bisulfite Sequencing Reads with a q-Gram Index
	Introduction
	Biological background
	Detecting methylation
	High-throughput bisulfite sequencing
	Choosing the references
	The q-gram index
	Bisulfite read mapping tools

	The bisulfite q-gram index
	Simulated bisulfite treatment
	Index structure and creation
	Multiple reference sequences

	Mapping a bisulfite read
	Finding seeds
	Extending hits
	Strict hit extension
	Relaxed hit extension
	Bitwise-parallel relaxed hit extension
	Extending seeds
	Determining methylation patterns and rates
	Finding unconverted parts of reads
	Counting bisulfite strings
	Bucket compression

	Results
	Index size
	Analyzing bucket compression
	Bisulfite sequencing of human CpG islands

	Future work
	Discussion

	Analyzing Exome Sequencing Data
	Introduction
	Structure and motivation
	Exome sequencing
	Related work
	Structure of the software

	Computational pipeline
	Variant calling pipeline
	BAM file validation
	Quality control
	Empirical runtime
	Indel normalization

	Database
	Patients, samples and other metadata
	Known and discovered variants
	Annotations
	SIFT

	Web frontend
	Implementation
	Simple queries
	Criteria for filtering mutations
	Mutation query implementation
	Quality control queries

	Results
	Coffin-Siris syndrome
	Nager syndrome
	Uveal melanoma

	Future work
	Open problems

	Discussion

	Aligning Flowgrams to DNA Sequences
	Introduction
	Information loss from base calling
	Previous work avoiding base calling
	Basic definitions and ideas
	How editing changes the flowgram

	A flowgram-string alignment algorithm
	Alignments
	The flowgram-string alignment graph
	Recurrence

	Scoring
	Scoring of editing events
	Alternative formulation
	Scoring of flow intensities against substring lengths
	Parameters for editing events

	Evaluation
	Future work
	Discussion

	Conclusion
	Summary
	Connections between topics
	Discussion

	Appendix
	Software
	Contributions to co-authored articles

	Bibliography

