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When modeling rating transitions as a continuous time Markov process, it is crucial to monitor
the solvency of the debtors in small periodic intervals, in order to obtain suitable data for pa-
rameter estimation. If this is not done, the transition times are captured with an irregular delay,
which leads to measurement errors in the transition times and consequently to biased parameter
estimators. We develop a score test to check for such measurement errors in the transition data
and prove the asymptotic distribution of the test statistic under the null hypothesis. The test
is applied to a dataset of an international corporate portfolio of a large German bank, while
accounting for economic and debtor-specific covariates. The test result is positive, indicating
that measurement errors in the transition times are a real problem in practice.

1 Introduction

Credit ratings are used to appraise the credit worthiness of a debtor on an ordinal scale. As the credit
worthiness evolves over time, the rating has to be modeled as a stochastic process. The objective is to
estimate rating transition probabilities and especially default probabilities, as they are a major input to
credit risk management. A lot of research has addressed the topic recently. Nickell et al. (2000), Hu
et al. (2002), and Stefanescu et al. (2009), for example, use a discrete-time approach to model the rating
transitions. Discrete-time models however, do not utilize all the information which is available to the analyst,
as it does not account for the exact times at which the transitions occur, i.e. the rating at the beginning and
at the end of a period - typically a year - is considered, while everything which happens in between this time
span is neglected. Hence, a continuous-time approach, i.e. an analysis of durations, is the more appropriate
choice and the continuous-time, finite-state Markov process remains the starting point for modeling credit
rating transition histories (see Jarrow et al., 1997). Therefore, Koopman et al. (2008), Duffie et al. (2009)
and Kim et al. (2012) formulate models for the Markov transition intensity. We pursue a similar approach
and ask for a measurement error in the transition times. In linear and non-linear models, measurement error
in the covariate is known to cause biased parameter estimates (see e.g. Amemiya, 1985). In our non-linear
duration analysis the time (or age) acts as a covariate to the categorical dependent variable and therefore
a similar effect is to be expected. Correcting for measurement error in time-discrete Markov chains has
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1 Introduction

also been considered in Magnac and Visser (1999) in the context of labor market research. An example
for measurement error in continuous-time labor market research can be found in van den Berg and van der
Klaauw (2001), where it is referred to as a recall error.

Rating agencies like Moody’s, Standard & Poor’s or Fitch distinguish between 20-22 rating states. Large
banks usually follow such granularity in their internal rating for comparability reasons. In either case, as
the rating evolves over time, hundreds of possible combinations of a transition from an origin state to a
destination state can occur. Estimating their probabilities, even in simple intensity models, exceeds available
sample sizes. The bulk of rating transitions is to adjacent rating states. Under the assumption that the
asset value of a debtor is a continuous-state process (Merton, 1974), rating changes of more than one state
should theoretically even be impossible. Hence, we model only the intensities of transitions into an adjacent
rating state, implying that rating changes of more than one state can only materialize through a series of
one-state transitions. According to Kadam and Lenk (2008), the assumption of homogeneity among debtors
leads to a misjudgment of a banks’ credit risk. Therefore, following Koopman et al. (2008, 2009) and Kim
et al. (2012), we include covariates in the model to account for debtor-specific and economic differences.
Weißbach and Mollenhauer (2011) find that the transition intensity does not depend on the rating state, so
that we can simplify our model by assuming that all one-state upgrades and all one-state downgrades follow
the same intensity process. This reduces the number of parameters to a manageable level.

A continuous-time model requires an inspection of a debtors’ rating in small periodic intervals, in order
to generate suitable data for estimating the parameters of the model. According to Mählmann (2006), this
is not necessarily the case in practice. If the ratings are reviewed at irregular intervals, the transition times
are registered with a measurement error. Neglecting these errors leads to biased parameter estimators.
In order to account for measurement errors, the intensity model must be extended by a frailty term, a
latent stochastic process. One possible approach is to assume that the frailties follow a suitable parametric
distribution family and to estimate the parameters of this family together with those of the model. However,
as pointed out by Heckman and Singer (1984a,b), the estimators for the model parameters depend heavily
on the choice of the parametric family. Note, that in discrete-time models, selecting the parametric family
does not need to be an issue (see Magnac and Visser, 1999).

We propose initially testing for measurement errors in the data and construct a score test for the null
hypothesis that the transition times are registered without errors. The test extends a concept from Lancaster
(1990) which does not depend on a specific distributional assumption for the measurement error terms. We
apply this test to a 10-year dataset of an international corporate portfolio of a large German bank and
obtain a positive result.

The paper is organized as follows. In Section 2.1, we introduce a simple intensity model, which serves as
our model under the null hypothesis of no measurement errors in the data. In Section 2.2, we expand the
intensity to account for measurement errors and construct the score test. The proof that the test statistic
asymptotically follows a χ2-distribution is delivered in Section 2.3. By means of Monte Carlo simulations, in
Section 3, we analyze the consequences of ignoring the measurement errors, study the Taylor approximation
intrinsic to the concept of Lancaster (1990), and investigate finite sample properties of the score test. Finally,
we apply the test to the abovementioned rating dataset in Section 4.
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2 Derivation of the test

The rating (Ri(t), t ∈ [0, τ ]) of a debtor i ∈ {1, . . . , n} in the observation period [0, τ ] is perceived as a
continuous-time, discrete-state Markov process with finite state space {1, . . . , D}, where the lowest rating D
implies bankruptcy and is considered as absorbing. Assuming that the initial rating of a debtor i does not
depend on the intensity parameters, the rating process (Ri(t), t ∈ [0, τ ]) can - without loss of information
- be decomposed into the right-continuous counting processes (Nhi(t), t ∈ [0, τ ]) and the left-continuous
risk processes (Yhi(t), t ∈ [0, τ ]), where the index h ∈ {↑, ↓} distinguishes between one-state upgrades (↑)
and one-state downgrades (↓). This simple distinction is based on former model building (see Weißbach
and Walter, 2010; Weißbach and Mollenhauer, 2011), but can easily be generalized to allow for transitions
between any two rating states by replacing the index h by two indices denoting origin and destination state
without hindering the test derivation. The process Yhi(t) ∈ {0, 1} takes the value 0, if the loan is paid back,
if a debtor is declared bankrupt or - in the case of h =↑ - if the debtor is in the highest possible rating
state. In order to account for different macroeconomic situations or debtor-specific attributes, we include
covariates in our model. The d-dimensional covariate process of debtor i is denoted by (Xi(t), t ∈ [0, τ ])
and is assumed to be cadlag and almost surely bounded. Moreover, the covariate processes of the n debtors
are considered independent and identically distributed.

2.1 Estimating the model without measurement error

We propose the following model for the intensity process of (Nhi(t), t ∈ [0, τ ]):

λhi(t) = Yhi(t)λ0h exp
(
β>hXi(t)

)
, h ∈ {↓, ↑}, (1)

where βh ∈ Rd is the vector of covariate effects and λ0h ∈ R+ is a constant baseline intensity. Note that
t = 0 marks the credit origination, so that the time-axis of the model is not the calendar-time, but the
age of the debtor in the banks’ credit portfolio. In this way, as argued in Weißbach and Walter (2010), the
processes (Nhi(t), t ∈ [0, τ ]), i = 1, . . . , n, can be considered independent, as they are not observed under
similar conditions for a given t.

Let Thi1, . . . , ThiNhi(τ) be the Nhi(τ) ages at one-state transitions of type h, observed for debtor i. Ac-
cording to Andersen et al. (1993), p. 585, the likelihood of the model (1) is given by

L(θ) =
n∏
i=1

∏
h∈{↓,↑}

Nhi(τ)∏
j=1

(
λ0h exp

(
β>hXi(Thij)

))
exp

(
−
∫ τ

0
Yhi(t)λ0h exp

(
β>hXi(t)

)
dt

)
(2)

with θ = (λ0(↑),β
>
↑ , λ0↓,β

>
↓ )>. As usual, the parameter vector θ can be estimated by maximizing the

logarithm of L(θ). A closed form for θ̂ does not exist, so that the estimation requires numeric methods,
which is quite cumbersome, due to the time-varying covariates. Therefore, we decided to estimate the model
parameters in two steps. We first determine β̂h using the partial likelihood of Andersen and Gill (1982),
which arises from a factorization of (2) and is given by

LPh (βh) =
n∏
i=1

Nhi(τ)∏
j=1

exp(β>hXi(Thij))∑n
k=1 Yhk(Thij) exp(β>hXk(Thij))

. (3)
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In the second step, an estimator for λ0h is obtained by inserting β̂h - the maximum point of (3) - into the
logarithm of (2). Maximization of logL then leads to

λ̂0h(β̂h) =
∑n

i=1Nhi(τ)∑n
i=1

∫ τ
0 Yhi(t) exp

(
β̂
>
hXi(t)

)
dt
. (4)

Let the true parameter values of the model be denoted by λ(0)

0h and β(0)

h . It then follows from Andersen and
Gill (1982), Theorem 4.1, that β̂h is a consistent estimator for β(0)

h , if the following assumptions are fulfilled:

(A1) P (Nhi(τ) <∞) = 1.

(A2) P (Yhi(t) = 1∀t ∈ [0, τ ]) > 0 for all h ∈ {↑, ↓}, i = 1, . . . , n.

(A3) The Fisher-Information matrix IP of LPh from (3) is positive definite.

(A4) λ(0)

0h ∈ (clh, c
u
h), with 0 < clh < cuh <∞.

If, in addition,

(A5) There exists a compact neighborhood Bh around β(0)

h and bounded, deterministic functions µh(t,βh)
on [0, τ ], so that

sup
t∈[0,τ ]

∣∣∣∣∣ 1n
n∑
i=1

Yhi(t) exp
(
β>hXi(t)

)
− µh(t,βh)

∣∣∣∣∣ P→ 0

for all βh ∈ Bh, with µh(t,βh) continuous in βh for all t ∈ [0, τ ] and∫ τ

0
µ(t,βh)dt 6= 0 ∀βh ∈ Bh.

holds, λ̂0h(β̂h) is a consistent estimator for λ(0)

0h. This can be shown by first proving that λ̂0h(β(0)

h ) P→ λ(0)

0h,
using Martingale limit theory and the inequality of Lenglart (1977). Consistency of λ̂0h(β̂h) then follows
from the fact that λ̂0h(βh) converges uniformly in Bh against a continuous function λ0h(βh). Details are
omitted here for the sake of brevity.

2.2 Measurement error model and test statistic

In order to obtain data for estimating the parameters of this continuous-time model, it is essential to
check the solvency of the debtors at small periodic intervals, which may not be possible in practice. If the
ratings are reviewed at irregular intervals, transition times may be registered with a delay, which means
that there are measurement errors in the data. In order to account for such measurement errors, the
model (1) must be extended by a frailty term, an unobservable stochastic process. Let V h = (Vhij , i ∈
{1, . . . , n}, j ∈ {1, . . . , Nhi(τ) + 1}), h ∈ {↑, ↓}, be two independent families of positive i.i.d. random
variables with expectation 1 and let

Whi(t) := Vhi(Nhi(t−)+1). (5)

The left-continuous process Whi(t) is piecewise constant with random starting value Vhi1 and takes on a
new random value immediately after a transition of type h. An intensity model to account for measurement
error in the transition times is then given by

λ∗hi(t,Whi(t)) = Whi(t)λhi(t) (6)
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with λhi(t) given by (1). According to this model, the measurement errors result from a data generating
intensity, which alternates randomly from transition to transition around the originally assumed model
λhi(t). Model (6) can also be interpreted as mixture of Markov processes moving with different speeds,
see Frydmann (2005) and Frydmann and Schuermann (2008). Note that the measurement error process
Whi(t) can take values greater than 1 which increases the intensity λhi(t). At first glance, this implies that
the transition time is registered too early, while in practice, only a delay should be possible. However, as
the average delay is not identifiable, it is already included in λhi(t) and a transition time of an increased
intensity is only registered too early with respect to the non-identifiable average delay.

Ignoring measurement errors in the data can have severe consequences, as we show in a Monte Carlo
simulation in Section 3. Accounting for the errors however, requires detailed insight into the properties of
Whi(t), which are difficult to determine, due to unobservability. Therefore, it makes sense to initially check
for the existence of measurement errors in the data with a statistical test. We develop such a test based on
Lancaster (1990), Chapter 11.2.2. It is of interest to determine whether the variance of the measurement
error terms Vhij differs significantly from zero. If this is not the case, the process Whi(t) takes a constant
value of 1 and λ∗hi(t,Whi(t)) equals the intensity λhi(t) from (1), indicating that there are no measurement
errors in the data. The likelihood of model (6) arises from (2) by replacing λhi(t) with λ∗hi(t,Whi(t)). Due
to the fact that it depends on the unobservable measurement error processes Whi(t), it is however not
possible to use this likelihood for parameter inference. Hence, the test is based on the marginal likelihood of
model (6), i.e. the expected value of the likelihood with respect to the terms Vhij . This marginal likelihood
contains the variance of the Vhij as a parameter and is therefore suitable for testing the hypothesis of interest.
Specifically, the likelihood of model (6) is replaced by an approximation, to avoid distributional assumptions
on the measurement error terms. Lancaster (1990) constructs such a test for uncensored survival data, which
is extended by Jaggia (1997) for censored observations. We extend their idea to counting processes and prove
the asymptotic distribution of the test statistic under the null hypothesis.

As there are n debtors i and two transition types h, the likelihood of the model (6) consists of 2n similar
factors L∗hi with the full likelihood given by

∏
hi L

∗
hi. Let V hi := (Vhij , j ∈ {1, . . . , Nhi(τ) + 1}) ⊂ V h be the

underlying measurement error terms of the process Whi(t) and let θh := (λ0h,β
>
h )>. Then, the hith factor

of the likelihood is given by

L∗hi(θh,V hi) =
Nhi(τ)∏
j=1

λ∗hi(Thij ,Whi(Thij)) exp
(
−
∫ τ

0
λ∗hi(t,Whi(t))dt

)

=
Nhi(τ)∏
j=1

[
Vhijλ0h exp

(
β>hXi(Thij)

)
exp

(
−Vhij

∫ Thij

Thi(j−1)

Yhi(t)λ0h exp
(
β>hXi(t)

)
dt

)]

× exp

(
−Vhi(Nhi(τ)+1)

∫ τ

ThiNhi(τ)

Yhi(t)λ0h exp
(
β>hXi(t)

)
dt

)
(7)

with Thi0 := 0. So L∗hi decomposes into Nhi(τ) + 1 factors L∗hi1, . . . , L
∗
hi(Nhi(τ)+1) - one for each transition of

type h and one for the time between the last observed transition and τ .
In order to avoid a distributional assumption on the Vhij when determining the expected value of the

likelihood, the Nhi(τ) + 1 factors of L∗hi are replaced by a Taylor approximation of order two around
E(Vhij) = 1. This serves as a reasonable approximation, if the variance of the measurement error terms Vhij
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2 Derivation of the test

is small, which implies that they usually take values close to 1. Let

zhij(θh) :=
∫ Thij

Thi(j−1)

Yhi(t)λ0h exp
(
β>hXi(t)

)
dt (8)

for j = 1, . . . , Nhi(τ) + 1 with Thi(Nhi(τ)+1) := τ . Then the approximation for L∗hij , j = 1, . . . , . . . , Nhi(τ), is
given by

L̃∗hij(θh, Vhij) := λ0h exp
(
β>hXi(Thij)

)
exp(−zhij(θh)) (9)

×
(

1− (Vhij − 1)(zhij(θh)− 1) +
(Vhij − 1)2

2
(z2
hij(θh)− 2zhij(θh))

)
,

while the approximation for L∗hi(Nhi(τ)+1) becomes

L̃∗hi(Nhi(τ)+1)(θh, Vhi(Nhi(τ)+1)) := exp(−zhi(Nhi(τ)+1)(θh)) (10)

×
(

1− (Vhi(Nhi(τ)+1) − 1)zhi(Nhi(τ)+1)(θh)

+
(Vhi(Nhi(τ)+1) − 1)2

2
z2
hi(Nhi(τ)+1)(θh)

)
.

Due to the independence of the Vhij , E(L∗) =
∏
hij E(Lhij) holds and an approximation of the marginal

likelihood is given by

L̄(θ∗) :=
n∏
i=1

∏
h∈{↑,↓}

Nhi(τ)+1∏
j=1

E(L̃∗hij) (11)

= L(θ)
n∏
i=1

∏
h∈{↑,↓}

Nhi(τ)∏
j=1

[
1 + ηh

(
z2
hij(θh)− 2zhij(θh)

) ][1 + ηhz
2
hi(Nhi(τ)+1)(θh)

]

with ηh := Var(Vhij)/2, θ∗ := (θ>↑ , η↑,θ
>
↓ , η↓)

> and L(θ) given by (2). The likelihood L̄ depends on the
original parameters θ and the measurement error variance parameters η↑ and η↓. At first glance, it seems
that L̄ provides a universal and easy way to account for measurement errors. It is, however, not useful
for estimating θ together with η := (η↑, η↓), as the likelihood can take negative values for ηh > 1. It is,
however, a suitable foundation for testing the null hypothesis ‘H0 : η↑ = η↓ = 0’, because L̄ is a reasonable
approximation of the real marginal likelihood of model (6) if the variance of the Vhij is small, i.e. close to H0.
Under the null hypothesis, the value of η is on the boundary of the parameter space. As a consequence, the
ML-estimator does not exhibit the usual properties (see Godfrey, 1990), such as asymptotic normality. Test
procedures, like the likelihood ratio- or Wald-test should therefore be avoided, as the distribution of these
tests depend on the asymptotic normality of the maximum likelihood estimate, derived by the asymptotic
normality of the score vector and a Taylor expansion (see e.g. Weißbach and Walter, 2010, Formula 10).
If the Taylor expansion fails, resorting to the score vector for test construction seems natural. This test
procedure requires only the estimation of θ, while η is determined by H0. The basic idea of the score test
is that the expected value of the score vector - i.e. the first derivative of the log likelihood - disappears at
the true parameter values, when H0 is valid, implying that H0 can be rejected, if the difference of the score
vector evaluated at θ̂ and η = 0 to zero is ‘too big’. We show in Section 2.3, that this remains true in our
model, even though η is on the boundary of the parameter space.
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2 Derivation of the test

According to Rao (1948), the test statistic of the score test for ‘H0 : η↑ = η↓ = 0’ is based on the score
vector of η, evaluated at the estimator for θ∗ under H0, i.e.

Ūη(θ̂) :=
∂

∂η
log L̄(θ∗)

∣∣∣∣
θ∗=

(
θ̂
>
↑ ,0,θ̂

>
↓ ,0
)> , (12)

with θ̂ := (θ̂
>
↑ , θ̂

>
↓ ) = (λ̂0↑, β̂

>
↑ , λ̂0↓, β̂

>
↓ )> denoting the two-step-ML-estimators of model (1). The two

components of (12) are given by

Ūηh(θ̂) =
n∑
i=1

Nhi(τ)∑
j=1

(
z2
hij(θ̂h)− 2zhij(θ̂h)

)
+ z2

hi(Nhi(τ)+1)(θ̂h)

 , h ∈ {↑, ↓}. (13)

The test statistic also depends on the estimated Fisher information matrix of L̄i - the ith factor of L̄ in (11)
- which is given by

Î(θ̂) = − 1
n

n∑
i=1

∂2

∂θ∗ (∂θ∗)>
log L̄i(θ∗)

∣∣∣∣∣(
θ̂
>
↑ ,0, θ̂

>
↓ ,0
)> . (14)

Here and onwards ‘θ∗ =’ is suppressed in the argument for which the derivative is to be evaluated. Due to
the fact that L̄i consists of an upgrade- and a downgrade-factor, the second derivatives with respect to one
parameter of each transition type disappear. The components of Î(θ̂) that differ from zero are given by

∂2

(∂ηh)2 log L̄i(θ∗)
∣∣∣∣(
θ̂
>
↑ ,0,θ̂

>
↓ ,0
)> = −

Nhi(τ)∑
j=1

(
z2
hij(θ̂h)− 2zhij(θ̂h)

)2
− z4

hi(Nhi(τ)+1)(θ̂h)

∂2

(∂λ0h)2 log L̄i(θ∗)
∣∣∣∣(
θ̂
>
↑ ,0,θ̂

>
↓ ,0
)> = −Nhi(τ)

λ̂2
0h

∂2

∂βhl∂βhl′
log L̄i(θ∗)

∣∣∣∣(
θ̂
>
↑ ,0,θ̂

>
↓ ,0
)> = −λ̂0h

∫ τ

0
Yhi(t)Xil(t)Xil′(t) exp

(
β̂
>
hXi(t)

)
dt

∂2

∂ηh∂λ0h
log L̄i(θ∗)

∣∣∣∣(
θ̂
>
↑ ,0, θ̂

>
↓ ,0
)> =

Nhi(τ)∑
j=1

(
2

λ̂0h

(
z2
hij(θ̂h)− zhij(θ̂h)

))
+

2

λ̂0h

z2
hi(Nhi(τ)+1)(θ̂h) (15)

∂2

∂ηh∂βhl
log L̄i(θ∗)

∣∣∣∣(
θ̂
>
↑ ,0, θ̂

>
↓ ,0
)> =

Nhi(τ)∑
j=1

(
2
(
zhij(θ̂h)− 1

) ∂

∂βhl
zhij(θh)

∣∣∣∣
θ̂h

)

+ 2zhi(Nhi(τ)+1)(θ̂h)
∂

∂βhl
zhi(Nhi(τ)+1))(θh)

∣∣∣∣
θ̂h

∂2

∂λ0h∂βhl
log L̄i(θ∗)

∣∣∣∣(
θ̂
>
↑ ,0,θ̂

>
↓ ,0
)> = −

∫ τ

0
Yhi(t)Xil(t) exp

(
β̂
>
hXi(t)

)
dt,

with
∂

∂βhl
zhij(θh)

∣∣∣∣
θ̂h

= λ̂0h

∫ Thij

Thi(j−1)

Yhi(t)Xil(t) exp
(
β̂
>
hXi(t)

)
dt (16)

for j ∈ {1, . . . , Nhi(τ) + 1}. Let λ0 := (λ0↑, λ0↓)> and

Σ̂(θ̂) := Î−λ0 −λ0(θ̂)− Î−λ0 λ0(θ̂)Î−1
λ0 λ0

(θ̂)Îλ0 −λ0(θ̂), (17)
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2 Derivation of the test

with Î±λ0 ±λ0 denoting that the rows respectively columns of Î ∈ R2(d+2)×2(d+2), which belong to the
parameter λ0 are retained (+) or deleted (-), i.e. Σ̂(θ̂) is the Schur complement of the partitioned matrix
Î(θ̂). Furthermore, let Σ̂ηη ∈ R2×2 be the elements of Σ̂ ∈ R2(d+1)×2(d+1), which belong to η. We show in
the next section that under H0 and some mild regularity conditions

1
n
Ū
>
η (θ̂)Σ̂

−1
ηη(θ̂)Ūη(θ̂) D→ χ2

2. (18)

2.3 Asymptotic distribution of the test statistic

In order to prove that (18) holds, we need to show that under the null hypothesis ’η↑ = η↓ = 0’, the score
vector converges uniformly to a normally distributed random variable with an expected value of 0 and the
Fisher-Information as the covariance matrix. When dealing with counting processes, this is usually done by
using the fact that the score vector of the likelihood is a Martingale. Due to the fact the L̄ emerges from an
approximation of the counting process likelihood, it is however no longer clear whether this property holds.
We show that L̄ is essentially a probability density function of the durations between two transitions, which
enables us to use density properties to calculate the expected value and covariance matrix. The uniform
convergence to the normal distribution then follows according to a theorem of Donsker.

In addition to assumptions (A1)-(A5), which ensure the consistency of the two-step-ML-estimator, some
further regularity assumptions are required:

(A6) The durations over which the debtors are observed are realizations of the i.i.d. random variables
C1, . . . , Cn. The distribution- and density function of the censoring time Ci, i = 1, . . . , n, are denoted
by G and g respectively and do not depend on the parameters of model (6). Furthermore, the censoring
times are independent of the transition times.

(A7) Let

Ūhi (θh) :=
∂

∂θ∗
log L̄hi(θ∗)

∣∣∣∣
(θ>h ,0)

, (19)

with L̄hi denoting the factor of L̄ that belongs to debtor i and transition type h, i.e.

L̄hi(θ∗h) =

(
Nhi(τ)∏
j=1

[
λ0h exp

(
β>hXi(Thij)

)]
exp

(
−
∫ τ

0
Yhi(t)λ0h exp

(
β>hXi(t)

))

×
[
1 + ηhz

2
hi(Nhi(τ)+1)(θh)

])[
1 + ηh(z2

hij(θh)− 2zhij(θh))
]
. (20)

Then, Ū↑i(θ
(0)

↑ ) and Ū↓i(θ
(0)

↓ ) are uncorrelated for all i = 1, . . . , n.

(A8) There exists a compact neighborhood Θ around θ(0) := (θ(0)>
↑ ,θ(0)>

↓ )>, so that I(θ) := Cov(Ū i(θ))

with Ū i(θ) = (Ū>↑i(θ↑), Ū
>
↓i(θ↓))

> is positive definite for all θ ∈ Θ.

(A9) Î(θ̂) from equation (14) is positive definite.

Because the starting points of the rating histories are distributed randomly across the observation period of
length τ , the time horizon over which a certain debtor is observed is a random variable. Assumption (A6)
ensures that the censoring times of the debtors do not depend on the parameters of λ0h and βh. Assumption

8



2 Derivation of the test

(A7) allows us to examine upgrades and downgrades separately in the following proofs. As the upgrade-
and downgrade factor of the likelihood L̄ do not contain any common parameters, the upgrade factor does
not contribute anything to the estimation of the downgrade parameters and vice versa. Hence, the upgrade-
and downgrade components of the score vector are uncorrelated. However, the formal proof of this property
is very technical. Therefore, we decided to allocate it to the regularity conditions. Finally, assumptions
(A8) and (A9) ensure the invertibility of the Fisher-Information matrix and its estimator.

In order to show that (18) holds, we need the following Lemmas. The proofs are presented in the Appendix.

Lemma 1 Assume that assumption (A6) holds and ‘H0 : η↑ = η↓ = 0’ is valid. Then, E
[
Ūhi(θ

(0)

h )
]

= 0
for i = 1, . . . , n and h ∈ {↑, ↓} with θ(0)

h = (λ(0)

0h,β
(0)>
h )>.

This result is essential for the score test to work, even though under H0, the parameter of interest is on
the boundary of the parameter space. In the appendix, we show that L̄ is essentially a probability density
function, which allows us to prove the result, using standard density techniques. An alternative approach
would be to use the fact that the zhij (see (8)) conditional on Xi(t) and Yhi(t) are standard exponentially
distributed (see e.g. Cook and Lawless, 2007, p. 92). Knowing this, it can easily be seen that the summands
of Ūhi(θ

(0)

h ) have an expected value of zero. This approach, however, does not help with the proof of Lemma
2, which is the reason we decided against it.

Lemma 2 Under the conditions of Lemma 1

Cov
[
Ūhi(θ

(0)

h )
]

= −E

( ∂2

∂θ∗h (∂θ∗h)>
log L̄hi(θ∗h)

)
(θ

(0)>
h ,0)>

 =: Ih(θ(0)

h )

for i = 1, . . . , n and h ∈ {↑, ↓}.

Lemma 3 Suppose assumptions (A6) and (A7) are satisfied. Let Θ be a compact neighborhood of θ(0) :=
(θ(0)>
↑ ,θ(0)>

↓ )> and ū(θ) := E[Ū i(θ)]. Then,

1√
n

n∑
i=1

(
Ū i(θ)− ū(θ)

) D→
Θ
N (0,I(θ))

with D→
Θ

denoting uniform convergence in distribution for all θ ∈ Θ (see Borovkov (1998), p. 220). In

particular, this implies that
1√
n

n∑
i=1

Ū i(θ(0)) D→ N
(
0,I(θ(0))

)
, (21)

with

I(θ(0)) =

(
I↑(θ(0)

↑ ) 0
0 I↓(θ(0)

↓ )

)
.

Lemma 4 Suppose assumptions (A1)-(A6) hold and ‘H0 : η↑ = η↓ = 0’ is valid. Then

Î(θ̂) = − 1
n

n∑
i=1

∂2

∂θ∗ (∂θ∗)>
log L̄i(θ∗)

∣∣∣∣∣(
θ̂
>
↑ ,0,θ̂

>
↓ ,0
) P→ I(θ(0)),

i.e. Î(θ̂) is a consistent estimator of I(θ(0)).
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2 Derivation of the test

Obviously, if η = 0, the derivatives of the log-likelihood of models (1) and (6) with respect to θ are equal.
As λ̂0h is the ML estimator of model (1) and hence, θ̂h is the root of ∂/∂λ0h logL, Ūλ0 := ∂/∂λ0 log L̄|η=0

disappears, when replacing θ by θ̂, which means that there is a functional relationship between θ̂ and Ūλ0 .
Although the test statistic (18) does not depend directly on Ūλ0 , there is a connection, due to the fact that
Ūλ0 and the other components of Ū(θ) := ∂/∂θ∗ log L̄(θ∗)|η=0, denoted by Ū−λ0 , are not uncorrelated.
Hence, the test statistic is not based on Ū−λ0 , but on a modification, which does not depend on Ūλ0 .

Lemma 5 Suppose, assumptions (A1)-(A6) are satisfied. Let θ be an element of Θ from Lemma 3. Then,
Ūλ0(θ) and

Ū
∗
−λ0

(θ) = Ū−λ0(θ)− I−λ0λ0(θ)I−1
λ0λ0

(θ)Ūλ0(θ)

are uncorrelated.

By means of the properties presented in Lemmas 1-5, we are now able to prove the asymptotic distribution
of the test statistic.

Theorem 1 Suppose, assumptions (A1)-(A9) hold and ‘H0 : η↑ = η↓ = 0’ is valid. Let

Σ̂(θ̂) := Î−λ0 −λ0(θ̂)− Î−λ0 λ0(θ̂)Î−1
λ0 λ0

(θ̂)Îλ0 −λ0(θ̂)

and let the rows and columns of Σ̂(θ̂) ∈ R
2(d+1)×2(d+1) that belong to the second derivatives of η in

Î−λ0 −λ0(θ̂) be denoted by Σ̂ηη(θ̂) ∈ R2×2. Then

1
n
Ū
>
η (θ̂)Σ̂

−1
ηη(θ̂)Ūη(θ̂) D→ χ2

2.

Proof: Let θ ∈ Θ and ū∗−λ0
(θ) := E[Ū∗−λ0

(θ)]. Because Ū∗−λ0
is a linear transformation of Ū , it follows

with Lemma 3 that
1√
n

(
Ū
∗
−λ0

(θ)− ū∗−λ0
(θ)
) D→

Θ
N (0,Σ(θ))

with
Σ(θ) = I−λ0 −λ0(θ)− I−λ0 λ0(θ)I−1

λ0 λ0
(θ)Iλ0 −λ0(θ).

Let the components of Ū∗−λ0
that belong to η be denoted by Ū∗η with expected value ū∗η. Then

1√
n

(
Ū
∗
η(θ)− ū∗η(θ)

) D→
Θ
N (0,Σηη(θ)) ,

where Σηη(θ) ∈ R2×2 are the rows and columns of Σ(θ), which belong to Ū∗η. With (A8), it follows that

1√
n

Σ−1/2
ηη (θ)

(
Ū
∗
η(θ)− ū∗η(θ)

) D→
Θ
N (0, I2) . (22)

If H0 is true, Lemma 1 yields

ū∗−λ0
(θ(0)) = E

[
Ū−λ0(θ(0))

]
− I−λ0λ0(θ(0))I−1

λ0λ0
(θ(0))E

[
Ūλ0(θ(0))

]
= 0

and hence, it follows with (22), that

1√
n

Σ−1/2
ηη (θ(0))Ū∗η(θ(0)) D→ N (0, I2) . (23)

10



3 Monte Carlo simulations

Equation (23) remains valid, if θ(0) in Ū∗η(θ(0)) is replaced by θ̂ - a consistent estimator under H0 - because
of the uniform convergence stated in equation (22) (see Davidson, 1994, Theorem 21.6) and the fact that
Ū
∗
η(θ(0)) and Ūλ0(θ(0)) are uncorrelated (Lemma 5). As argued in the paragraph above Lemma 5, there is a

functional relationship between θ̂ and Ūλ0 which also has an influence on Ūη, as Ūλ0 and Ūη are correlated.
Hence, it is essential to use the uncorrelated modification Ū∗η in the test statistic. Because of Ūλ0(θ̂) = 0,
it follows directly from the definition, that Ū∗−λ0

(θ̂) = Ū−λ0(θ̂) and therefore, that Ū∗η(θ̂) = Ūη(θ̂).
Consequently,

1√
n

Σ−1/2
ηη (θ(0))Ūη(θ̂) D→ N (0, I2) . (24)

Lemma 4, together with (A9) and the Continuous Mapping Theorem yield Σ̂
−1/2
ηη (θ̂) P→ Σ−1/2

ηη (θ(0)). Finally,
it results from Slutsky’s Theorem, that

1√
n

Σ̂
−1/2
ηη (θ̂)Ūη(θ̂) D→ N (0, I2) . (25)

Consequently, the scalar product of the statistic in (25) follows a χ2
2-distribution. �

3 Monte Carlo simulations

Three open topics are feasible for investigating in Monte Carlo simulations. (i) Is it at all necessary to
estimate θ differently in the presence of measurement errors. (ii) Is the approximation (11) of the marginal
likelihood useful for testing η 6= 0. (iii) Which sample size is necessary to meet the nominal level of the
test and achieve an adequate power. In order to investigate these topics, we simulate rating histories based
on a rating system with 21 states using model (6) with gamma-distributed measurement error terms Vhij
and three covariates of different type, while the origin rating at age onset is assigned randomly. The model
parameters are given by θ↓ = (0.3, 1, 1.5,−1)> and θ↑ = (0.3,−1, 1.5, 1)>, while the observation lengths
are determined by Exp(0.4)-distributed random variables with a maximum length of τ = 10. Each of the
simulations is based on 5000 iterations.

i) Neglecting measurement errors: In order to demonstrate the need to account for measurement errors
in the intensity model, we depict the consequences of neglecting these errors and using model (1), when
in fact model (6) is the true one. Therefore, we simulate n = 250 rating histories with measurement
errors of varying magnitude and use the two step ML estimator to determine the model parameters. The
results for the parameters of the downgrade intensity are shown in Figure 1. It becomes evident that
ignoring measurement errors in the data leads to a bias of the parameter estimator towards zero. Moreover,
the covariate effects are estimated with a higher variance. Both effects increase with the variance of the
measurement error terms. The effect on the estimators of the upgrade intensity is obviously the same, as
the upgrade and downgrade model have the same structure.

Ridder and Verbakel (1983) analyzed the consequences of omitted covariates in a single spell model and
observed a similar effect on the parameter estimators. Therefore, we investigate the impact of this form
of latent heterogeneity in our model as well. Omitted covariates X̃i, which are constant over time, are
included in our model by replacing the time-dependent measurement error processes Whi(t) in (6), with the
random variables Vhi := exp(β̃

>
h X̃i). We once again generated n = 250 rating histories using this model

with the Vhi following a gamma distribution, while the parameters are estimated under the assumption of

11



3 Monte Carlo simulations

Baseline intensity
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Effect of a constant real−valued covariate
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Effect of a constant 0−1 covariate
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Effect of an AR(2)−covariate
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Figure 1: Estimation of the downgrade intensity parameters ignoring measurement errors

model (1). The results are shown in Figure 2 and are to some extent similar to the results with ignored
measurement errors as the estimated covariate effects are also biased towards zero. However, the bias of the
estimated baseline intensity is much smaller than in the situation of ignored measurement errors and for
omitted covariates with small variances, λ0↓ is even overestimated. On the other hand, the variance of the
parameter estimators seems to be more sensitive to omitted covariates than to ignored measurement errors.

Interestingly, in their empirical study, Duffie et al. (2009) find a considerable difference in the regression
constant with frailty, compared to without frailty. In contrast, for the other regression coefficients, the
differences are not so pronounced. Here, find that the estimate of the baseline hazard is affected more by
the measurement error than by a neglected covariate. Still models are different, because their endpoint is
default, and fortunately, the timing can be determined quite precisely for legal aspects. Rating acts as a
regressor, and their frailty models the unfortunately obvious cross-sectional dependence. Our endpoint is
rating transition (be it to the default state or any other) and the frailty models the unfortunately possible
measurement error. Fortunately, cross-sectional dependence is very unlikely or small in our study, due to
the measurement of portfolio age.
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3 Monte Carlo simulations
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Effect of a constant real−valued covariate
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Figure 2: Estimation of the downgrade intensity parameters with omitted covariates

ii) Approximation of the marginal likelihood: The test is based on the Taylor approximation L̃∗, instead of
the unobservable likelihood L∗ of model (6). If the null hypothesis is valid, that is no measurement errors in
the data, L̃∗ and L∗ are equal by construction. In order to investigate the quality of this approximation near
the null hypothesis, we once again simulate n = 250 rating histories in each iteration - this time with rather
small measurement errors - and estimate E[log L̃∗] and E[logL∗]. The results are shown in Figure 3. It is
evident that the difference between the likelihood and approximation disappears quite fast and uniformly,
indicating that L̃∗ is a reasonable foundation for the score test. As rejection in a score test results from a
slope of the (marginal) likelihood that is too far from zero, the results suggests that a test based on the
approximation of the likelihood might even have a higher power than a test based on the true likelihood,
due to the higher slope of the approximation, if the variance of the errors differs from zero.

iii) Power of the score test: In order to investigate the properties of the score test in finite samples, we
simulated rating histories of n ∈ {25, 50, 100, 250, 500, 1000}. The estimated distribution of the test statistic
under H0 : η↑ = η↓ = 0 is shown in Figure 4. The test statistic seems to converge rather fast. A reasonable
level of approximation is already reached for n = 250. Table 1 shows the power of the test using a level of
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Figure 3: Difference between the marginal log likelihood logL∗ and the approximation log L̃∗

significance of 5%. The test exceeds the specified probability of a Type I error for all investigated sample
sizes. However, with n = 1000, the desired level of 5% approximately holds and datasets in practice are
usually of that sample size. Overall, the score test seems to be quite powerful near H0, as it detects even
measurement errors with a small variance. As pointed out in the Monte Carlo study i), omitted covariates
have a similar effect on the parameter estimators to ignored measurement errors. Therefore, the test is of
course also sensitive to this kind of latent heterogeneity, and a positive test result does not automatically
imply measurement errors in the transition times. The rejection of H0 does, however, always imply that the
estimators are biased and if a sufficient number of covariates is included in the model, measurement errors
are the more likely reason.

4 Application

We apply the test to an internal rating history of an international corporate portfolio of a large German bank.
The bank classifies its debtors into 21 rating states. The data contains 760 international corporate debtors
and covers the period from 1997 until 2007. During this time, 233 one-state upgrades and 255 one-state
downgrades were observed. The simulations in Section 3 suggest that the test is also sensitive to omitted

Table 1: Power of the score test (α = 5%)

Variance of Vhij Sample size
25 50 100 250 500 1000

0.0 0.128 0.123 0.100 0.079 0.065 0.055

0.5 0.096 0.324 0.715 0.997 1.000 1.000
1.0 0.211 0.669 0.953 1.000 1.000 1.000
1.5 0.292 0.792 0.978 1.000 1.000 1.000
2.0 0.339 0.828 0.989 1.000 1.000 1.000
2.5 0.359 0.849 0.991 1.000 1.000 1.000
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Figure 4: Empirical distribution of the test statistic under H0 in finite samples and χ2
2-approach (solid line)

covariates. Hence, we strive to account for as many covariates that are established for credit risk as possible.
Koopman et al. (2011) account for 100 covariates, which does not seem sensible here as our data base is
considerably smaller. In considering their categories of bank lending conditions, macroeconomic and business
cycle indicators, micro-level business and stock market returns and volatilities we use, after pre-screening,
five economic industry indicators and industry dummies. For instance, GDP growth is also considered in
Duffie et al. (2007). Specifically, we use GDP change, GDP trend, change in industrial production, 3-month
interbank interest rates and stock market volatility. For each debtor, we choose the time series according
to its location. For example, we use the GDP and industrial production of the USA, the USD-LIBOR and
the volatility of the SP500 for an US-corporate and the GDP and industrial production of Germany, the
EURIBOR and the volatility of the STOXX50 for a German debtor. The macroeconomic indicators are
standardized, so that zero always indicates an average value of the respective covariate. In contrast to the
latter two data sets being for the US, for our international data, we include country dummies, because,
according to Kadam and Lenk (2008) and Nickell et al. (2000), the debtors’ location has an impact on the
transition probabilities. Regional dummies are also used by Hu et al. (2002). Kadam and Lenk (2008) also
find evidence, that the transition behavior depends on the industrial sector of a debtor, which is why we
include the industry as a covariate as well.

The dataset contains debtors from 9 regions and 18 industries, which have to be encoded as dummy
variates with one reference category each. Together with the effects of the economic indicators and the
baseline intensities, each of the two intensity models (1) contains 31 parameters that are estimated with
the two-step ML-procedure described in Section 2.1. The results are summarized in Table 2. The fact that
many regressors are not significant does not cause us to eliminate them from the model, because model
selection here is not empirically driven.

The effects of the GDP change (∆GDP) and the GDP trend (∆2GDP) are intuitive. An above-average

15



4 Application

Table 2: Estimated model parameters and standard errors

Macroeconomic indicators β̂↑l σ̂(β̂↑l) β̂↓l σ̂(β̂↓l)

∆GDP 0.051 (0.087) -0.056 (0.081)
∆2GDP 0.010 (0.108) -0.064 (0.090)
∆Industrial production 0.259 (0.137) 0.232 (0.122)
3-month interbank interest rates -0.135 (0.097) -0.132 (0.101)
Volatility of stock returns -0.201 (0.122) -0.422 (0.101)

Regional effects (reference: Germany) β̂↑l σ̂(β̂↑l) β̂↓l σ̂(β̂↓l)

USA 0.165 (0.255) -0.127 (0.316)
UK 0.147 (0.371) 0.485 (0.222)
China -0.039 (0.740) 0.783 (0.555)
France 0.542 (0.397) -0.750 (0.587)
Spain 0.272 (0.413) 0.623 (0.336)
Italy -0.674 (0.725) 0.522 (0.324)
Japan -1.396 (1.481) -0.658 (0.911)
Other 0.556 (0.330) -0.270 (0.426)

Industrial effects (reference: Miscellaneous) β̂↑l σ̂(β̂↑l) β̂↓l σ̂(β̂↓l)

Utilities, Electric & Waste Mgt. 0.001 (0.232) 0.030 (0.225)
Oil & Mining -0.185 (0.384) -0.053 (0.337)
Steel & Metal Products 0.359 (0.266) 0.154 (0.302)
Transportation -0.004 (0.273) 0.513 (0.197)
IT, Optical & Precision Instruments 0.305 (0.274) -0.026 (0.363)
Chemicals, Plastic & Rubber -0.013 (0.343) 0.326 (0.362)
Automotive 0.680 (0.290) 0.469 (0.289)
Machinery & Equipment 0.021 (0.376) -0.173 (0.416)
Business Products -0.053 (0.526) 0.162 (0.359)
Business Services 0.123 (0.300) -0.208 (0.446)
Construction -0.028 (0.573) -0.173 (0.316)
Real Estate 0.232 (0.306) 0.145 (0.322)
Medical Services, Instruments & Pharmaceuticals -0.268 (0.530) 0.590 (0.385)
Consumer Goods (Production) -0.391 (0.499) -0.017 (0.359)
Food, Beverage & Tobacco -0.291 (0.439) 0.352 (0.306)
Consumer Goods (Retail) -0.191 (0.275) 0.477 (0.230)
Telephone, Broadcast Media & Cable TV -0.566 (0.471) 0.724 (0.304)

Baseline intensities λ̂0↑ σ̂(λ̂0↑) λ̂0↓ σ̂(λ̂0↓)

3.0 · 10−4 (5.8 · 10−4) 2.8 · 10−4 (4.8 · 10−4)

GDP-change yields an increase in the upgrade hazard and a decrease in the downgrade hazard, while negative
values of both covariates have the opposite effect. In contrast to the other macroeconomic indicators, the
effect of GDP is admittedly rather low. The change in industrial production (∆Industrial production) in a
debtors’ home country has about the same positive effect on the upgrade- and the downgrade intensity. This
implies that growth in industrial production leads to an increase in rating movements in both directions. The
positive effect on the upgrade intensity is rather intuitive. The positive effect on the downgrade intensity
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can be explained by problems in selling the produced goods, due to a slow reaction to a changing economic
situation. Hence, phases of high industrial production yield a higher variance of the rating. The 3-month
interbank interest rates have a negative effect on both intensities, implying that high interest rates stabilize
the ratings, while low interest rates increase their volatility. This seems plausible, as 3-month interbank
interest rates like the LIBOR and the EURIBOR serve as an indicator of general conditions in the financial
market. Favorable market conditions entice businesses to invest or expand, which may have positive as
well as negative consequences for their solvency in the medium term. High stock market volatility has a
stabilizing effect on the ratings, whereas the estimated decrease in the downgrade intensity is much higher
than in the upgrade intensity. This leads to the conclusion that the bank tends to keep the ratings constant
in economically unstable times and is even more conservative with rating downgrades. This also has been
reported in Kim et al. (2012).

The regional effects describe the intensity-difference of the debtors’ business location with respect to the
reference category Germany in an average economic situation. It is conspicuous, that Japanese debtors
have an very stable rating, as both intensities decrease with respect to Germany. The opposite effect can
be observed with respect to debtors from Spain, which yields a very volatile rating during the observation
period.

The estimated industry effects of the automotive sector, the steel and metal product sector and the real
estate sector reveal increased transition intensities in both directions. This is plausible, as these industries
are strongly cyclical from an economic point of view and therefore, the respective debtors frequently undergo
rating movements in both directions. Another notable industry is the telephone, broadcast media and cable
TV sector, which exhibits an increased downgrade intensity and a decreased upgrade intensity. This may
be explained by the fact that the majority of debtors in the data is from Germany. In 1998 the telephone
monopoly of German Telekom was eradicated, which led to an overflow of the market with telephone
businesses in the following years, and many of these businesses did not prove equal to the task.

A critical assumption in our model is the proportionality of the intensities. In order to assess a possible
misspecification, we checked this assumption using the test of Grambsch and Therneau (1994). They argue
that departure from proportionality can often be expressed by introducing time-dependent covariate effects.
Hence, we tested H0 : βh(t) = βh versus H1 : βh(t) = βh + γhg(t) for several functions of the observation
time g(t), but were in no case able to reject H0. This is supported by the results of Duffie et al. (2009), who
also test negatively for the proportional intensity assumption. Another possible cause of misspecification is
the constant baseline intensity that we assume. In our model, fluctuations of the intensity over time are
driven solely by the macroeconomic covariates. Weißbach and Walter (2010) however, find that the intensity
of a rating change is significantly lower in the first year after origination of debt. In our dataset, this does
not seem to be the case, though, as about a third of the rating changes occur during that time span, while
the first year also accounts for about a third of the total observation time.

The estimated parameters are used to calculate the test statistic of the score test, which results in a value
of 7.61, indicating a p-value of 0.022. Hence, the null hypothesis ‘H0 : η↑ = η↓ = 0’ is rejected with respect
to a significance level of 5%, which implies that there is evidence of measurement errors in the data.
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5 Discussion

Given that find empirical evidence of measurement errors in the transition times, one possible direction for
future work could be to explore reliable methods to account for these errors in rating models. Measurement
errors are a form of latent heterogeneity in the data, which is usually modeled by expanding the intensity
model by a frailty-process and using the marginal likelihood of the transition times for the parameter
inference. However, the estimation results depend on the the properties of this frailty-process. Heckman
and Singer (1984a,b) point out, that the estimators for the parameters of interest are sensitive to the choice
of the parametric family for the frailties and, due to the fact that they are unobservable, it is unclear how to
obtain an indication of their distribution. Heckman and Singer (1984a) propose a non-parametric procedure
as an alternative. This procedure, however, turns out to be numerically cumbersome and dependent on a
starting value, see Trussel and Richards (1985) for a detailed discussion.

For the homogeneous Markov process model, a presumably simpler approach is to formulate the likelihood
in terms of the transition matrices (Bladt and Sørensen (2005, 2009)). The computational difficulty that
transition matrices cannot be written in closed form as a function of the intensities can be overcome by
numerically stable procedures for calculating derivatives and eigenvalues, or by an EM algorithm. However,
the consistency proof for the parameter relies on the ergodicity of the Markov processes, which is not the
case for rating histories when we assume the default to be an absorbing state, but this can be based on an
argmax theorem (see Kremer and Weißbach, 2013). Even so, it must be conceded that if dates of rating
affirmations are available, which is not the case in our data set, such techniques may well increase the
efficiency. Bladt and Sørensen (2005, 2009), however, do not include covariates in their model. When
determining the intensity parameters with the likelihood of the transition times, neglected covariates bias
the estimators (Ridder and Verbakel, 1983). Whether this has a similar effect on the estimation method of
Bladt and Sørensen (2005, 2009) is an interesting topic for future investigation.

Another direction for future work could be to formulate more complex models. Extending the model for
non-proportional hazards (as in Kim et al., 2012), to include transitions to beyond the adjacent class (as
in Weißbach and Walter, 2010), the non-homogeneous Markov process (as in Kim et al., 2012; Weißbach
et al., 2009), to cross-sectional dependence (as in Koopman et al., 2011) or to non-Markovian hazards (as
in Lando and Skødeberg, 2002; Koopman et al., 2008) can be done, as long as after marginalizing out the
measurement error in a quadratic Taylor expansion, the likelihood factors have closed-form solution for
derivatives with respect to the error. But one must always keep in mind that further parameters reduce the
quality of the asymptotic approximation. For instance, Weißbach and Walter (2010) developed a test on
stationarity of rating transitions, in a model, which allows for (instantaneous) transition between any states
(apart from the absorbing). Even for a rating system with only eight rating states and thousands of rating
histories, the nominal level of the test is not met.

Note however, that it is not feasible to interpret the measurement error as a random parameter and to
apply Bayesian algorithms. In that case, the error variance, which is the parameter of interest in our case,
would be a gearing parameter and not a model parameter. Of course, one could impose a prior distribution
on the error variance and decide for the measurement error, if the credibility region does not contain the
zero. However, in this case, a non-parametric distribution of the error must be assumed in the model, in
order to achieve robustness.

Acknowledgements: The financial support of the Deutsche Forschungsgemeinschaft (SFB 823: Statistical
modelling of nonlinear dynamic processes, project A1) is gratefully acknowledged.

18



References

References

Y. Amemiya. Instrumental variable estimator for the nonlinear errors-in-variables model. Journal of Econo-
metrics, 28:273–289, 1985.

P.K. Andersen and R.D. Gill. Cox’s regression model for counting processes: A large sample study. The
Annals of Statistics, 10:1100–1120, 1982.

P.K. Andersen, O. Borgan, R.D. Gill, and N. Keiding. Statistical Models based on counting processes.
Springer, New York, 1993.

M. Bladt and M. Sørensen. Statistical inference for discretely observed Markov jump processes. Journal of
the Royal Statistical Society, Series B, 67:395–410, 2005.

M. Bladt and M. Sørensen. Efficient estimation of transition rates between credit ratings from observations
at discret time points. Quantitative Finance, 9:147–160, 2009.

A.A. Borovkov. Mathematical Statistics. Gordon & Breach, 1998.

R.J. Cook and J.F. Lawless. The statistical analysis of recurrent events. Springer, New York, 2007.

J. Davidson. Stochastic Limit Theory. Oxford, 1994.

D. Duffie, L. Saita, and K. Wang. Multi-period corporate default prediction with stochastic covariates.
Journal of Financial Economics, 83:635–665, 2007.

D. Duffie, A. Eckner, G. Horel, and L. Saita. Frailty correlated default. Journal of Finance, 64:2089–2123,
2009.

M. Fisz. Wahrscheinlichkeitsrechnung und mathematische Statistik. VEB Deutscher Verlag der Wis-
senschaften, Berlin, 1989.

H. Frydmann. Estimation in the mixture of Markov chains moving with different speeds. Journal of the
American Statistical Association, 100:1046–1053, 2005.

H. Frydmann and T. Schuermann. Credit rating dynamics and Markov mixture model. Journal of Banking
& Finance, 32:1062–1075, 2008.

L.G. Godfrey. Misspecification tests in econometrics. Cambridge University Press, Cambridge, 1990.

P.M. Grambsch and T.M. Therneau. Proportional hazards tests and diagnostics based on weighted residuals.
Biometrika, 81:515–526, 1994.

J.J. Heckman and B. Singer. A method for minimizing the impact of distributional assumptions in econo-
metric models for duration data. Econometrica, 52:271–320, 1984a.

J.J. Heckman and B. Singer. Econometric duration analysis. Journal of Econometrics, 24:63–132, 1984b.

Y. Hu, R. Kiesel, and W. Perraudin. The estimation of transition matrices for sovereign credit ratings.
Journal of Banking & Finance, 26:1383–1406, 2002.

19



References

S. Jaggia. Alternative forms of the score test for heterogeneity in a censored exponential model. The Review
of Economics and Statistics, 79:340–343, 1997.

R. Jarrow, D. Lando, and S. Turnbull. A Markov model for the term structure of credit risk spreads. Review
of Financial Studies, 10:481–523, 1997.

A. Kadam and P. Lenk. Bayesian inference for issuer heterogeneity in credit ratings migration. Journal of
Banking & Finance, 32:2267–2274, 2008.

Y.-D. Kim, L. James, and R. Weißbach. Bayesian analysis of multi-state event history data: Beta-dirichlet
process prior. Biometrika, 99:127–140, 2012.

S.J. Koopman, A. Lucas, and A.B. Monteiro. The multi-state latent factor intensity model for credit rating
transitions. Journal of Econometrics, 142:399–424, 2008.
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Appendix

Proof of Lemma 1: The proof is not exactly the same for upgrades and downgrades. We only present it
in detail for the downgrades, i.e. for h =↓, and point out the necessary modifications for h =↑ at the end of
the proof. We start by deriving the conditional joint density of the durations between the downgrades and
the duration between the last downgrade and the censoring time for a debtor i under the assumption of the
intensity λ∗hi(t) from (6). Let the duration between the (j − 1)th and jth downgrade of debtor i be denoted
by D↓ij . Using the Markov property of the rating, it can be shown that the distribution function of D↓ij
conditional on (D↓i(j−1), . . . , D↓i1)> = (d↓i(j−1), . . . , d↓i1)> =: d(j−1), Xi(t) = xi(t) and W↓i(t) = w↓i(t) is
for j ∈ N given by

FD↓ij |d(j−1),xi(t),w↓i(t)
(d↓ij) = 1− exp

(
−v↓ij

∫ ∑j
k=1 d↓ik∑j−1
k=1 d↓ik

λ(0)

0↓i exp
(
β(0)>
↓ xi(t)

)
dt

)
, (26)

where v↓ij is the value of w↓i(t) at the jth downgrade. The associated conditional density function is given
by

fD↓ij |d(j−1),xi(t),w↓i(t)
(d↓ij) = v↓ijλ

(0)

0↓i exp

(
β(0)>
↓ xi

(
j∑

k=1

d↓ik

))

× exp

(
−v↓ij

∫ ∑j
k=1 d↓ik∑j−1
k=1 d↓ik

λ(0)

0↓i exp
(
β(0)>
↓ xi(t)

)
dt

)
. (27)

Let ∆i ∈ {0, 1} be an indicator that specifies whether the last downgrade of debtor i is from state D − 1
to state D, which implies that the observation of the debtor ends because of insolvency. In this case, only
D↓i1, . . . , D↓iN↓i(τ) are observed. Debtor insolvency is a rare event, though. For the majority of debtors, ∆i

will take the value 0, which implies that there is an additional observation that carries information about
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the downgrade process, namely the duration between the last downgrade and the censoring time. We only
discuss the more common case of ∆i = 0 in detail.

The duration observed after N↓i(τ) downgrades is the minimum of D↓i(N↓i(τ)+1) and the duration between
the N↓i(τ)th downgrade and the censoring time conditional on N↓i(τ) = n↓i, Xi(t) = xi(t), W↓i(t) = w↓i(t),
(Dhin↓i , . . . , Dhi1)> = d(n↓i) and ∆i = 0. The duration between the n↓ith downgrade and the censoring time
is given by the random variable C̃i = Ci −

∑n↓i
j=1 with the condition that Ci >

∑n↓i
j=1 d↓ij . The density of

Ci >
∑n↓i

j=1 d↓ij is given by

g̃(c) :=
g(c)

1−G
(∑n↓i

j=1 d↓ij

)1[∑n↓i
j=1 d↓ij ,∞

)(c).

Determining the conditional density of min(C̃i, D↓i(N↓i(τ)+1)) yields

fD̃↓i|d(j),xi(t),w↓i(t),n↓i,∆i=0

(
d̃↓i

)
=

∂

∂d̃↓i
P
(
D̃↓i ≤ d̃↓i

∣∣∣N↓i(τ) = n↓i,∆i = 0,d(j−1),xi(t), w↓i(t)
)

(28)

=
∂

∂d̃↓i
P
(
C̃i ≤ d̃↓i, C̃i ≤ D↓i(n↓i+1)

∣∣∣d(j−1),xi(t), w↓i(t)
)

=
∂

∂d̃↓i

∫ d̃↓i

0

∫ ∞
v

f
D↓i(n↓i+1)|d

(n↓i),xi(t),w↓i(t)
(u) g̃

v +
n↓i∑
j=1

d↓ij

 dudv

=
∂

∂d̃↓i

∫ d̃↓i

0

(
1− F

D↓i(n↓i+1)|d
(n↓i),xi(t),w↓i(t)

(v)
)
g̃

v +
n↓i∑
j=1

d↓ij

 dv

=
(

1− FD̃↓i|d(nhi),xi(t),w↓i(t)

(
d̃↓i

))
g̃

d̃↓i +
n↓i∑
j=1

d↓ij

 .

In order to show that the likelihood factor L̄↓i is essentially the joint density function of T↓i1, . . . , T↓in↓i , Ci,
the distribution and density functions (26) and (27) are now approximated using the same principle as for
the likelihood in Section 2.1. This yields

F̄D↓ij |d(j−1),xi(t)
(d↓ij) := 1− exp

[
−
∫ ∑j

k=1 d↓ik∑j−1
k=1 d↓ik

λ(0)

0↓i exp
(
β(0)>
↓ xi(t)

)
dt

]
(29)

×

1 + η↓

(∫ ∑j
k=1 d↓ik∑j−1
k=1 d↓ik

λ(0)

0↓i exp
(
β(0)>
↓ xi(t)

)
dt

)2


and

f̄D↓ij |d(j−1),xi(t)
(d↓ij) := λ(0)

0↓i exp

(
β(0)>
↓ xi

(
j∑

k=1

d↓ik

))
exp

[
−
∫ ∑j

k=1 dhik∑j−1
k=1 dhik

λ(0)

0↓i exp
(
β(0)>
↓ xi(t)

)
dt

]

×

[
1 + η↓

{(∫ ∑j
k=1 dhik∑j−1
k=1 dhik

λ(0)

0↓i exp
(
β(0)>
↓ xi(t)

)
dt

)2

− 2
∫ ∑j

k=1 dhik∑j−1
k=1 dhik

λ(0)

0↓i exp
(
β(0)>
↓ xi(t)

)
dt

}]
. (30)
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For η↓ ∈ [0, 1], F̄ is left-continuous with left-hand limit 0 and right-hand limit 1 and hence, a proper
distribution function, according to the definition of Kolmogoroff (see Fisz (1989), Definition 2.2.1). As f̄ is
the derivation of F̄ , it is a regular density function with

∫∞
0 f̄ = 1.

The joint distribution of D↓i := (D↓i1, . . . , D↓inhi) and D̃↓i is the product of the conditional densities (27)
and (28). Replacing f and F by f̄ and F̄ then yields an approximation of the joint distribution:

fD↓i,D̃↓i|xi(t),w↓i(t),n↓i,∆i=0(d↓i, d̃↓i)

=

nhi∏
j=1

fD↓ij |d(j−1),xi(t),w↓i(t)
(d↓ij)


×
(

1− FD̃↓i|d(nhi),xi(t),w↓i(t)

(
d̃↓i

))
g̃

d̃↓i +
n↓i∑
j=1

d↓ij

 (31)

≈

nhi∏
j=1

f̄D↓ij |d(j−1),xi(t)
(d↓ij)


×
(

1− F̄D̃↓i|d(nhi),xi(t)

(
d̃↓i

))
g̃

d̃↓i +
n↓i∑
j=1

d↓ij

 (32)

=:f̄↓i(d↓i, d̃↓i; η↓)

Note that under the null hypothesis, η↓ = 0 (31) equals (32), as the measurement error terms v↓ij take the
value 1 for all j. Hence, f̄↓i(d↓i, d̃↓i; 0) denotes the joint distribution of D↓i and D̃↓i under H0.

With T↓ij =
∑j

k=1D↓ik, Ci = D̃↓i +
∑j

k=1D↓ik and the fact, that Y↓i(t) = 1 for t < Ci, it follows that
with given transition times, covariate path and risk process

L̄↓i(θ
(0)

↓ , η↓) =
f̄↓i(d↓i, d̃↓i; η↓)

g̃
(
d̃↓i +

∑n↓i
j=1 d↓ij

) . (33)

Hence, apart from the factor g̃, the likelihood L̄↓i is a conditional density of duration times. Moreover

∂

∂θ∗↓
log L̄↓i(θ∗↓)

∣∣∣∣∣(
θ

(0)>
↓ ,η↓

)> =
∂

∂
(
θ(0)>
↓ , η↓

)> log
[
f̄↓i(d↓i, d̃↓i; η↓)

]
, (34)

i.e. the log likelihood and the logarithm of the density have the same derivative, as g̃ does not depend on
(θ(0)>
↓ , η↓)> due to (A6). From the fact that f̄↓i is a density function, it follows that∫ ∞

0
. . .

∫ ∞
0

f̄(d↓i, d̃↓i; η↓)dd̃↓i . . . dd↓i1 = 1. (35)

As the integration limits of (35) do not depend on the parameters, integrating and differentiating with
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respect to (θ(0)>
↓ , η↓)> is interchangeable. Hence, differentiation of both sides of (35) and using (34) yields∫ ∞

0
. . .

∫ ∞
0

∂

∂
(
θ(0)>
↓ , η↓

)> f̄↓i(d↓i, d̃↓i; η↓)dd̃↓i . . . dd↓i1
=
∫ ∞

0
. . .

∫ ∞
0

∂

∂
(
θ(0)>
↓ , η↓

)> log f̄↓i(d↓i, d̃↓i; η↓)f̄(d↓i, d̃↓i; η↓)dd̃↓i . . . dd↓i1

=
∫ ∞

0
. . .

∫ ∞
0

 ∂

∂θ∗↓
log L̄↓i(θ∗↓)

∣∣∣∣∣(
θ

(0)>
↓ ,η↓

)>
 f̄↓i(d↓i, d̃↓i; η↓)dd̃↓i . . . dd↓i1 (36)

=0.

As already mentioned, f̄↓i is the true conditional density of D↓i and D̃↓i if η↓ = 0. Therefore, under H0,
the third row of (36) is the conditional expectation of the the log likelihood and (36) implies that

E

( ∂

∂θ∗↓
log L̄↓i(θ∗↓)

)
(
θ

(0)>
↓ ,0

)>
∣∣∣∣∣∣∣N↓i(τ),Xi(t),∆i = 0

 = 0. (37)

This also holds for ∆ = 1, that is for the (rare) situation that the observation of a debtor ends with a
downgrade from the second to last rating state into insolvency. The only difference in the proof is that in
this case, the factor of f̄↓i, which belongs to the duration between the last downgrade and the censoring
time, is omitted. Hence, E[Ū↓i(θ

(0)

↓ )|N↓i(τ),Xi(t),∆i] = 0 and, according to the law of iterated expectation,
E[Ū↓i(θ

(0)

↓ )] = 0.
For h =↑, it has to be taken into account that the risk process Y↑i(t) can take the value 0 on an interim

basis, if a debtor is in the highest possible rating state. Moreover, it is not possible for the observation time
to end with an upgrade, so there is always a positive duration between the last upgrade and the censoring
time. The only challenge in accounting for these two differences lies in the notation. The principle of the
proof is exactly the same as for h =↓. �

Proof of Lemma 2: As in the previous proof, we only consider the case h =↓ and ∆i = 0. Differentiating
both sides of (35) twice with respect to (θ(0)>

↓ , η↓)> yields

0 =
∫ ∞

0
. . .

∫ ∞
0

∂2

∂
(
θ(0)>
↓ , η↓

)>
∂
(
θ(0)>
↓ , η↓

) log f̄↓i(d↓i, d̃↓i; η↓)f̄↓i(d↓i, d̃↓i; η↓)dd̃↓i . . . dd↓i1

+
∫ ∞

0
. . .

∫ ∞
0

∂

∂
(
θ(0)>
↓ , η↓

)> log f̄↓i(d↓i, d̃↓i; η↓)
∂

∂
(
θ(0)>
↓ , η↓

) f̄↓i(d↓i, d̃↓i; η↓)dd̃↓i . . . dd↓i1
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and hence,

∫ ∞
0

. . .

∫ ∞
0

∂

∂θ∗↓
log L̄↓i(θ∗↓)

∣∣∣∣∣(
θ

(0)>
↓ ,η↓

)>
 ∂

∂θ∗>↓
log L̄↓i(θ∗↓)

∣∣∣∣∣(
θ

(0)>
↓ ,η↓

)>

>

× f̄↓i(d↓i, d̃↓i; η↓) dd̃↓i . . . dd↓i1 (38)

=−
∫ ∞

0
. . .

∫ ∞
0

∂2

∂θ∗↓∂θ
∗>
↓

log L̄↓i(θ∗↓)

∣∣∣∣∣(
θ

(0)>
↓ ,η↓

)> f̄↓i(d↓i, d̃↓i; η↓)dd̃↓i . . . dd↓i1.

If H0 is valid, f̄↓i is the true density and (38) says that

E


( ∂

∂θ∗↓
log L̄↓i(θ∗↓)

)(
∂

∂θ∗>↓
log L̄↓i(θ∗↓)

)>
(θ

(0)>
↓ ,0)

∣∣∣∣∣∣∣N↓i(τ),Xi(t),∆i = 0


=− E

( ∂2

∂θ∗↓∂θ
∗>
↓

log L̄↓i(θ∗↓)

)
(θ

(0)>
↓ ,0)

∣∣∣∣∣∣N↓i(τ),Xi(t),∆i = 0

 . (39)

This result also holds for ∆i = 1. Lemma 1, the theorem of iterated expectation and equation (39) then
yield

Cov
[
Ū↓i

(
θ(0)

↓

)]
=E


( ∂

∂θ∗↓
log L̄↓i

)(
∂

∂θ∗>↓
log L̄↓i)

)>
(θ

(0)>
↓ ,0)


=E

E


( ∂

∂θ∗↓
log L̄↓i

)(
∂

∂θ∗>↓
log L̄↓i

)>
(θ

(0)>
↓ ,0)

∣∣∣∣∣∣∣N↓i(τ),Xi(t),∆i




=− E

E

( ∂2

∂θ∗↓∂θ
∗>
↓

log L̄↓i

)
(θ

(0)>
↓ ,0)

∣∣∣∣∣∣N↓i(τ),Xi(t),∆i


=− E

( ∂2

∂θ∗↓∂θ
∗>
↓

log L̄↓i

)
(θ

(0)>
↓ ,0)

 .
With the modifications addressed at the end of the previous proof, the argumentation also applies for h =↑.�

Proof of Lemma 3: Let i ∈ {1, . . . , n} and θ ∈ Θ be arbitrary. The components of Ū i(θ) are given by

∂

∂λ0h
log L̄i(θ∗)

∣∣∣∣
(θ>↑ ,0,θ>↓ ,0)

>
=
Nhi(τ)
λ0h

−
∫ τ

0
Yhi(t) exp

(
β>hXi(t)

)
dt,

∂

∂βl
log L̄i(θ∗)

∣∣∣∣
(θ>↑ ,0,θ>↓ ,0)

>
=

Nhi(τ)∑
j=1

Xil(Thij)−
∫ τ

0
Yhi(t)λ0hXil(t) exp

(
β>hXi(t)

)
dt,
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l = 1, . . . , d, and

∂

∂ηh
log L̄i(θ∗)

∣∣∣∣
(θ>↑ ,0,θ>↓ ,0)

>
=

n∑
i=1

Nhi(τ)∑
j=1

(
z2
hij(θh)− 2zhij(θh)

)
+ z2

hi(Nhi(τ)+1)(θh)


with

zhij(θh) =
∫ Thij

Thi(j−1)

Yhi(t)λ0h exp
(
β>hXi(t)

)
dt

(see (8)). Thus, Ū i(θ) is clearly infinitely differentiable and due to the boundedness of the underlying
random variables, it is bounded as well. Hence, if we regard Ū i(θ) as a function of the random variables, i.e.
Ū i(θ) = fθ(Nhi(t), Yhi(t),Xi(t), h ∈ {↑, ↓}, t ∈ [0, τ ]), {fθ,θ ∈ Θ} is a Donsker class, according to van der
Vaart (1998), example 19.9. As U i(θ) are independent for i = 1, . . . , n, it follows from van der Vaart (1998),
p. 269, that

1√
n

n∑
i=1

(
Ū i(θ)− ū(θ)

) D→
Θ
N (0,I(θ)) .

As uniform convergence implies pointwise convergence, this means in particular that

1√
n

n∑
i=1

(
Ū i(θ(0))− ūi(θ(0))

) D→ N
(
0,I(θ(0))

)
.

According to Lemma 1 ūi(θ(0)) = 0, while Lemma 2 and (A7) yield

I(θ(0)) =

(
I↑(θ(0)

↑ ) 0
0 I↓(θ(0)

↓ )

)
.

�

Proof of Lemma 4: According to the law of large numbers

Î(θ) = − 1
n

n∑
i=1

∂2

∂θ∗ (∂θ∗)>
log L̄i(θ∗)

∣∣∣∣∣
(θ>↑ ,0,θ>↓ ,0)

P→ I(θ)

for θ = (θ>↑ ,θ
>
↓ )> ∈ Θ with

I(θ) := E

( ∂2

∂θ∗ (∂θ∗)>
log L̄i(θ∗)

)
(θ>↑ ,0,θ>↓ ,0)

 .
It is obvious from (15) that all components of Î(θ) are differentiable with respect to θ. According to
Davidson (1994), p. 340, this is a sufficient condition for Î(θ) to be equicontinuous. As a consequence, the
components of Î(θ) converge not only pointwise, but uniformly to the components of I(θ). As θ̂ P→ θ, the
proof follows with Davidson (1994), Theorem 21.6. �
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Proof of Lemma 5: The proof of this Lemma is straightforward, using the properties of covariance matrices:

Cov
[
Ūλ0(θ), Ū∗−λ0

(θ)
]

= Cov
[
Ūλ0(θ), Ū−λ0(θ)− I−λ0λ0(θ)I−1

λ0λ0
(θ)Ūλ0(θ)

]
= Cov

[
Ūλ0(θ), Ū−λ0(θ)

]
− Cov

[
Ūλ0(θ),I−λ0λ0(θ)I−1

λ0λ0
(θ)Ūλ0(θ)

]
= Iλ0 −λ0(θ)− Cov

[
Ūλ0(θ), Ūλ0(θ)

]
I−1
λ0λ0

(θ)I>−λ0λ0
(θ)

= Iλ0 −λ0(θ)− Iλ0λ0(θ)I−1
λ0λ0

(θ)Iλ0 −λ0(θ)

= 0

�
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