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The development of fundamentally important aritnmetinciples related
to the four basic operations, and of arithmetiategies that are based on
these principles, is an intriguing and importarg@ngnt of psychological,
mathematical and math educational research. Asa$araddition and
subtraction are concerned, we have, for instameefdllowing principles:
(a) the commutativity principle, which says that thrder of the addends is
irrelevant to their sum (a+ b =Db + a); (b) thenpiple prescribing that if
nothing is added to or removed from a collectienceirdinal value remains
unchanged (a+ 0 =0; a- 0 = a); (c) the princtpket adding an amount to
a collection can be undone by subtracting the sameunt and vice versa
(@a+t+b-b=aora-b+b=a); and (d) the pplecthat if a + b = c, then
c-b=a or c-a=hb. Previous theorizing and medeashows that
understanding these principles plays an importaé nin children’s
construction of the additive composition of numbend in additive
reasoning. Moreover, the implicit or explicit amatiion of these principles
can also considerably facilitate people’s arithmeperformance by
eliminating computational effort and increasing usion efficiency
(Baroody, Torbeyns, & Verschaffel, 2009). For exéamghe first principle
underlies the well-known computation shortcut falveig additions
starting with the smaller given number (like 2 194 + 58), that consists
of reversing the order of operands and adding thaller addend to the
larger one. The fourth principle underlies the catapon shortcut for
solving subtractions involving a small differencetween the two integers
(like 11 -9 or 61 - 59), by determining how muchsito be added to the
smaller integer to make the larger one. Whereasfitee three above-
mentioned principles and their accompanying contmurtal shortcut
strategies have already received a great amountesdarch attention
(Verschaffel, Greer, & De Corte, 2007), the foystinciple has not. In this
contribution, we will present a series of closestated studies in the
domain of elementary subtraction that we have daméar on this fourth
principle and its accompanying computational shartoamelyindirect
addition (1A). We will use the terndirect subtraction(DS) for the more
common straightforward strategy for doing subt@acivhereby the smaller
number is directly taken away from the smaller one.

Useof A in Young Adults



In our first study, 25 university students solvedsearies of three-digit
subtractions (Torbeyns, Ghesquiere, & Verschaf2®i09). We made a
distinction among three types of subtractions @nliasis of the difference
between the two given numbers, i.e., subtractioitis &small (812 - 783),
medium (821 - 475), and large difference (813 -)17Adopting the
choice/no-choice method (Siegler & Lemaire, 19@ll) participants were
instructed to solve these subtractions individuallyone choice and two
no-choice conditions. In the choice condition, pgrants could choose
between IAor DS. In the first no-choice condition participanisere
instructed to solve all subtractions with IA; inetlrsecond no-choice
condition they always had to apply DS. In all thoeaditions, they had to
verbally report the strategy usafier each trial. We registered the accuracy
and speed of responding in each condition on bBliyrial basis.

When we analyzed the data from the choice conditiwa found that
participants solved about half of the subtractiom IA. The data from
the two no-choice conditions revealed that, as eeoe IA was
significantly quicker than DS on the small-diffecen subtractions.
However, we unexpectedly also found that this smebdntage of IA did
also hold for medium- and even large-differencetrsations. In other
words, |IA was executed faster than DS not only wtiemre was a small
difference between the two integers, but also entivo other subtraction
types where the computational advantage of usingek#ms less clear.

Because we were surprised by the efficiency regidlthis first study, we

replicated it in a follow-up study with a similaragip of students and with
a similar design (Torbeyns, Ghesquiere, et al. 9200he only important

difference was that only subtractions with smallnedium differences
were presented, divided into four problem typeshmnbasis of the size of
the difference. The results of this follow-up stuggre similar to those
from the first study, except that the results floe ho-choice conditions
revealed that IA was not only executed faster lsd more accurately than
DS. Furthermore, IA was (again) executed more iefiity than DS on the
subtractions with a very small difference betwedma tivo integers as well
as on the other problem types for which the contrtal advantage of
solving the subtraction by IA seems less straighitéod.

Still somewhat puzzled by these findings on theralVsuperior efficiency
of IA compared to DS, we conducted a second rephicastudy wherein
we administered another set of subtractions innalai group of young
adults, again using the choice/no-choice methodb@ms, De Smedt,
Peters, Ghesquiere, & Verschaffel, 2009). Partidpavere offered two
types of three-digit subtractions, namely subtoadi with a very small



difference (713 - 695) and subtractions with aneaxely large difference,
l.e., subtractions with a three-digit minuend andwa-digit subtrahend

(756 - 78). We reasoned that the latter subtrastould favor DS par
excellence and that it (thus) would be really stgkif participants still

solved these subtractions more efficiently with Ran with DS.

Unexpectedly, we again observed that participaniised both subtraction
types - even the subtractions with extremely ladiféerences - more
quickly and more accurately by means of IA tharhvidiS. In other words,
the results from our first three studies indicia tadults use IA frequently
and highly efficiently on multi-digit subtractiongven on subtractions
where the computational advantage of using IASs ldear.

Development and Use of | A in Children

Given both the results of our studies in adults @iedfact that many math
educators make a plea for giving IA a prominentc@lan elementary
school children’s mental arithmetic lessons, wet mexestigated children’s
use of this strategy. It is important to know that~landers children are,
from the second grade on, intensively confrontedhwsymbolically
presented multi-digit subtractions of the form lka= ?, which they are
supposed to solve mentally (before they start lagrnthe written
algorithms). Mathematics instruction in mental sabtion typically
focuses on the routine mastery of DS, with littteno systematic attention
to IA. So, most Flemish teachers do not systenlgtitaach IA and only
allow children to apply alternative solution stigigs such as IA as long as
they can also demonstrate perfect mastery of theat¢aught DS strategy
and as long as they do not disturb the teachewgsilae whole-class
teaching with their alternative (self-discoveretlategies.

In line with this instructional tradition, 195 Flesh children who had not
received systematic instruction in IA participated our first study on
children’s use of IA (Torbeyns, De Smedt, Ghesqyi&& Verschaffel,
2009a). Seventy-one second-, 71 third-, and 53Hegnaders individually
completed two tasks: (a) &pontaneous Strategy Use TafRST),
consisting of different problem types designeddseas the use of diverse
shortcut strategies, incl. two-digit small-diffeoensubtractions (41 - 39)
which can be efficiently solved with IA; childrenewe instructed to solve
each item as accurately and as fast as possilietivair preferred strategy,
and to verbally report both the answer and theegjyaused immediately
after solving each item; (b) Wariability on Demand TaskVDT), also
consisting of various problem types, incl. smaffedence subtractions;
children had to solve each item with at least twitecent strategies and
verbally report each strategy; the experimentert kaegking for another



possible strategy until the child had either repadiiA, stated that (s)he did
not know any other strategy, or reported five othiernative solution
methods.

This study had two main findings. First, the analysd children’s strategy
repertoire in the SST revealed that less than 1D#eosecond- and third-
graders and only 15% of the fourth-graders spowtasig applied IA at
least once to answer the small-difference subtmsti Thus, children
hardly used IA, even on items where this strategy loe considered to be
extremely efficient. Second, all children reportearious strategies for
solving the small-difference items from the VDT, tlmnly a minority of
them reported IA as an alternative strategy, sugggethat IA was no part
of the strategy repertoire of most children. In suhese results indicate
that elementary school children who did not recaiystematic instruction
in IA do not apply this strategy (even not smaffatience subtractions) and
are unable to generate IA as an alternative far st@ndard (DS) strategy.

To test the generalizability of these findings tbildren from other
instructional backgrounds, we set up a new studgreinh we compared the
strategy performance of children from two Flemisihaols that did not
provide instruction in IA (= DS-oriented schoolsitiwchildren from a third
school in which IA did receive special instructibrattention (= IA-
oriented school) (Torbeyns, De Smedt, Ghesquierée&schaffel, 2009b).
Children from the IA-oriented school were instrutte use IA when the
difference between the two given numbers was sfnall, a difference
smaller than 10). The textbook also introduced eci$igc notation for the
IA strategy: a little arrow or arc from the subtald to the minuend. In
total, 54 second-, 54 third- and 49-fourth gragedicipated in this study.
The number of children from the IA-oriented schawmid the two DS-
oriented schools was, respectively, 53 and 104.clilldren completed a
paper-and-pencil test with 16 two-digit subtracsioRlalf the items had a
difference smaller than 10 (81 - 79), while theeothalf had a difference
between 10 and 20 (72 -58). Children were instdicto solve the
subtractions in whatever way they wanted and téevetown their solution
strategy in the scrap paper area below each problem

The major result of this study was surprising afndm an instructional
perspective, quite disappointing. While childreonfr the I1A-favoring
school used IA slightly more frequently than chaidrfrom the two other
schools, the frequency of IA was generally extrgmel in all schools:
7.53% for the IA-oriented school and 0.19% for ®-oriented schools.
Because we could not exclude that the unexpecteslynumber of 1A
strategies in this study was due to the technigaiegbused to identify the



children’s solution strategies, namely a paper{aeikil test, we set up a
follow-up study with the same children and the saem set, but this time
strategy performance was assessed during an indiviciterview. The
overall frequency of reported IA increased only gnaally - from 0.19% in
the initial study to 2.43% in the follow-up studymplying that the type of
data-gathering method used was clearly not a mapuse of the
remarkably low frequency of IA observed in theialistudy.

In retrospect, the unexpectedly low frequency ofstfategies in the IA-
oriented school was probably due to the weak instm in IA as provided
by the textbook and as implemented by the teacheoth from a
guantitative and a qualitative perspective. Thesefave conducted a third
study with children, in which we tried to accelerdhe emergence and
further development of IA, using the microgenetiethod (De Smedt,
Torbeyns, Stassens, Ghesquiére, & Verschaffel, )20Ibe sample
consisted of 35 third-graders who did not receing previous instruction
in 1A and who did not apply IA on any subtractioarithg the initial test
session. These 35 children were divided into theedvwoups on the basis of
their general mathematical achievement level, tegsuin two groups of
equal mathematical ability: 20 children particighten the strong
instruction (SI) group and 15 children in tiveeak instruction(WI) group.
All children were individually administered thre@st sessions, four
practice sessions, one transfer session, and ¢erion session. The test
sessions, practice sessions, and retention sesaamconsisted of a series
of symbolic subtractions in the number domain 20-1 the transfer
session, children were offered two tasks: a syrolmlbtraction task in the
number domain up to 1000 and a subtractive wordleno task in the
number domain 20-100. In each session, three iyg@stwere included:
items with a small, medium, or large differencewsstn the minuend and
the subtrahend.

The children from the Sl group solved the sameesedf items as the
children from the WI group. All sessions, excep fnactice sessions, were
exactly the same for both experimental groupshbthree test sessions,
the transfer session, and the retention sessidnshiren were asked to
mentally solve all items with their preferred ségy. In the four practice
sessions, the SI group was explicitly instructedhntally solve each item
once with DS and once with IA, while children okthVl group mentally
solved each item twice with their preferred strgtegthout any further
instruction. In the Sl group, the IA strategy wasoabriefly demonstrated
at the beginning of each practice session, am&aéssary, support with the
execution of the IA strategy was provided during gractice session. In



the WI group, the only extra instruction during giree sessions was an
unusually large number of subtractions with a vemall difference
between the integers, compared to children’s regokructional practice
at school, which typically contains little or nockuyproblems.

In each session, children were asked to mentaliyeseach item as good

and as fast as possible. Accuracy and speed ocbnidsm were registered

per child and per item; children had to verballgae their strategy during

(practice session) or immediately after (test, ¢fan and retention

sessions) solving each item. The exact sequentieeodlifferent sessions

was: test 1, practice 1, practice 2, test2, mwadi practice 4, test 3,

transfer, retention. Test, practice and transfesisas were separated at
least two days in time for each child. One monterahe transfer session,
children were offered the materials from the ratansession.

The major results of the microgenetic study casuramarized as follows.
First, as far as strategy frequency is concern®adyds, quite surprisingly,

not used on a single trial by any child from the @bup during any

session. But also in the SI group, IA was usederatihfrequently during

the second and the third test session. Secondy @&s fthe efficiency of 1A
in the SI group is concerned, we compared the acguand speed of this
newly learnt and quite rarely used IA strategy wiitle accuracy of the
familiar DS strategy. It turned out that as soonchsdren from the SI

group started to apply the new IA strategy, theynediately did so more
accurately and more quickly than the DS strateljgpagh only the greater
accuracy in favor of IA reached significance.

Conclusion and discussion

Our research program on |IA strategy use in chil@mah adults has yielded
quite an interesting contrast, which demands furthesearch and
reflection. Whereas young adults use IA frequengyficiently, and
adaptively to solve symbolically presented mulgttisubtractions, IA is
almost completely absent in the strategy repertofré- to 9-year-olds.
Even when children were confronted with problems fehich the
computational advantage seems overwhelming or wvath explicit
invitation to demonstrate strategy variety, everewhhey reportedly got
math education using a book that pays systematiéntain to IA, even
when they participated in an experiment whereiny tlaetually got
instruction and practice in IA, the number of IAradégies remained
remarkably low. At the same time, children who (bed¢p) use IA
immediately seem to demonstrate relatively highelewf accuracy and
speed, compared to the efficiency of the systemtictaught and



intensively practiced DS strategy. Therefore, m@search is needed to
unravel why so many elementary school childrenksso strongly and

stubbornly to the DS strategy and move so slowly exuctantly in the

direction of IA strategy use. In our view, thisasresult of a mixture of

factors, educational as well as cognitive-psychickignes.

First of all, there are the madlducationalfactors. One could argue that IA
will only show up in children when this strategysh&ceived intensive and
high-quality instructional attention. Although tlekildren from the strong
instruction group in the last (microgenetic) studig receive intensive
instruction in A, it presumably was not of a highality, given that it was
completely individual, purely procedurally orienteghd not building on
children’s prior knowledge (their physical expeges and social
interactions that lie at the roots of inversioreittknowledge of addition-
based strategies for solving subtraction word moisl of the missing
addend type, etc.). Second, at a more general, I¢hvel children who
participated in our studies all had received mathcation in a broader
math education culture and practice that can beactexized as aiming at
routine rather than aadaptive expertis@Baroody & Dowker, 2003). More
particularly, they all had been immersed in a ctam® practice and culture
that values routine mastery of one single (taugiitategy rather than
flexible use of various (self-invented) strategi@sning for such adaptive
expertise would require a classroom climate antliceithat systematically,
from a very young age on, teaches for strategyetyaand flexibility.

Besides these educational explanations for why etéany school children
move so slowly and reluctantly in the directionAfstrategy use, there are
also some explanatory factors that are of a mogmitee-psychological
nature. First, there is the conceptual knowledgethef mathematical
principle that underlies the meaningful use ofil4,, theinverse principle
which may be particularly difficult for children dfat age, who are still in
the transition from the pre-operational to the cetezoperational stage of
their cognitive development. However, a proper @sthis hypothesis
would require a test of children’s understandingh& underlying inverse
principle, independent of their procedural knowlkedgf IA. A second
possible cognitive factor relates to children’sited metacognitive or self-
regulatory capacities, which may make it very difft for them to suppress
or inhibit certain tendencies, such as the tendeaoyxecute the (direct)
subtractionoperation when confronted with a problem that costdahe
minus sign. These two intrinsically (meta)cognitive fastanay explain
why IA apparently originates and develops so sloavid laboriously in the
vast majority of children of that age group, whereather shortcut



strategies for doing addition and subtraction, saghdisregarding addend
order when doing addition, seem to develop mucheeand easier.

From the above list of explanations, it becomearcieat there is probably
no single explanation for the absence of IA in menidren’s repertoire of
strategies for doing symbolic subtraction. Mostlataly, the phenomenon
Is the result of the complex interaction of varidastors, psychological
and educational.
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