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Historical remarks to integration methods1  

This article makes an excursion into the history of integration, from ancient 
to the present time. Our presentation is based on the exhaustion method 
invented by Eudoxos and used by Archimedes and Oresme in their 
integration attempts. The aim of our article is to show that this approach 
leads to an integral equivalent to the Lebesgue integral. It is based on the 
summation of infinite series and it has some pedagogical advantages. A 
weaker form of it completely avoids measure theory and it is simpler than 
the Riemann integral. 

1. Archimedes method for the finding the area of a parabolic section 
The proof is one of reductio ad absurdum, and the method is to show that, 
if the diagonal of a square is commensurable with the side, then the same 
number must be both odd and even. The understanding that the diagonal of 
a square is not commensurable with its side lead to the better understanding 
of numbers: the notion of  cardinality in terms of natural (and rational) 
numbers is not rich enough to express various forms of the length. The 
calculations by Archimedes provided strong impetus for the development 
of real number. The method of finding the area of parabolic section as he 
presented it so far is surely not rigorous by our standards. Archimedes did 
not stop at the picture, he offered a fine argument. His argument became an 
important principle of mathematical analysis. He found this important 
property by calculating the sum of the areas of triangles, which fill 
parabolic section.  We have to calculate the 

following sum: ...
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proceeded in an ingenious way illustrated in 
Figure 1. From a square one corner is removed. 
The removed corner is a square whose side is half 
of that of the original square and, hence, its area 

is 
4
1  of the area of the original square. The 

resulting area of three squares equals the area of  A, so that the area of the 

original square is A
3
4 . The same is done with the removed square in the 
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Figure 1 



corner, then with the square removed from this square and so on. The union 
of all figures so obtained is the whole of the original square. Therefore 
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smallest of all numbers B such that  
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Archimedes needed for this purpose the following property of numbers 
which have now name the principle of Archimedes:  

For any numbers  ε > 0 and K, there exists n∈ N such that ε<K
n
1 .  

By this way we introduce the sum of a sequence of positive numbers.  
Archimedean definition. A number s is called the sum of the sequence of 
positive numbers a0, a1, a2,… if s is the smallest of all the numbers b such 
that  a0 + a1 + a2+… + an ≤ b  for every n = 0, 1, 2,… 
If s is the sum of the sequence of numbers  a0, a1, a2,…, then we write  
a0 + a1 + a2+… = s.  
This approach to infinite sums is easier and avoids limits. The correct 
definition of the limit of a sequence requires the involvement of three 
quantifiers. On the other hand, in the Archimedean definition of sum we 
got away with only 2 quantifiers. 

2.  “Archimedes” integral - application of the Archimedean methods 

Nicole d’Oresme around 1350 has shown that .2...
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sum was obtained by modifying the geometric method of Archimedes. He 
divided the same planar region into rectangles in 2 ways. The first way, 

rectangles have base of length n2
1  and height n, therefore its area is equal 

n
n
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 and the sum of areas of these rectangles is ...
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way, each rectangle has base of length nnnn 2
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The determination of area of a parabolic section by Archimedes on Figure 
2 and the finding sum by Oresme are both based on the following property 



of area which is called σ-additivity: If a planar set S is equal to the union of 
sets S1, S2, S3,… such that the common part of any two of them has the area 
equal to zero, then the area S is equal to the sum of the areas of the sets S1, 
S2, S3, … Archimedes and Oresme´s calculations show that this property 
can be used for determination of areas of planar sets and also for finding 
sums of sequences.  If we interpret the integral of a positive function as the 
area of “region under its graph”, then we can of course use this property for 
finding integrals. 
Let us translate these geometric ideas into analytic language. The length of 
bounded interval I, that is, the absolute value of the difference of its end-
points, is denoted by λ(I). Characteristics function of the interval I, we 

denoted by χI, so χI (x) = 
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. If c is 

an positive number and I a bounded 
interval, then the „region under the graph“ 
of the function cχI is a rectangle whose 
base has the length λ(I) , the height is c and 
the area is cλ(I) . Using these conventions 
we can define “Oresme” integral. 
Definition 1. Lets function f is a nonnegative in the interval I. Let ci 
nonnegative numbers and intervals Ii ⊆ I ,  i = 1, 2, 3, … such that 
following condition is satisfy :  
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Oresme integral in the interval I  is then defined (O) ( )∑∫
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This definition is valid for the nonnegative and bounded functions (see 
Figure 2). Although the class of such functions is already quide wide, 
Oresme´s derivation suggest that it can be 
widened. For example, it is possible to include 
some functions with negative values. When we 
cover the “region under the graph” of function, 
we do not have to stay with the rectangles 
strictly within that region. If we overshoot 
with some, we subtract the areas of 
rectangles covering the excess. In figure 3 the subtracted rectangles are 
shaded. In this case we need following modified definition. 
Definition 2 Lets function f is define in the interval I. Let ci are numbers 
and intervals Ii ⊆ I , i = 1, 2, 3, …  such that following condition is satisfy: 

Figure 2 

Figure  3 
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For example, it is possible to include some unbounded functions and it is 
not necessary to assume that the underlying interval I  be bounded. But of 
course, some precautions then have to be taken because the area of the 
“region under the graph” may be infinite and it may not be possible or easy 
to cover the “region under the graph” by rectangles without also covering 
some points off that region. In this case we need following modified 
definition. 
Definition 3. 
Lets function f  is define in the interval I. Let ci are numbers and intervals   
Ii ⊆ I , i = 1, 2, 3, … such that following condition is satisfy : 
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Archimedes integral in the interval I is then defined (A) ( )∑∫
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3. Conclusions. 
The last question in our article is about the relation of Archimedes integral 
to other notions of integrability and integral found in the literature. It turns 
out that a function is Archimedes integrable if and only if it is Lebesgue 
integrable and the Archimedes integral of such function coincides with its 
Lebesgue integral. The approach to integration outlined in our article has a 
strong historical aspect and presents integration in a simple and effective 
way, hence it is suitable from educational point of view. 
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