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Chapter 1
Introduction to the Analysis of Gene Expression Time Series
Data

In the second half of the 20th century molecular genetics was established as a new
field in biology. From the central dogma of molecular genetics first postulated
by Francis Crick in 1958 it lasted another 37 years until the first genome of the
bacterium Haemophilus influenzae was fully sequenced. This was only possible due
to enormous scientific and technological advances like the discovery of the enzyme
reverse transcriptase and the proceedings in automation and miniaturization with
the PCR procedure as outstanding mile stone. In the decade around the turn of the
millennium the advent of high throughput technologies allowed the parallel analysis
of tens of thousands of genes or their transcripts with a single experiment on a chip
smaller than a fingertip.
This thesis focuses on the analysis of the quantitative gene expression data

generated by high throughput time series experiments. The second chapter elucidates
the statistical challenges arising from the task to analyze an enormous number of
genes with a much smaller sample size for a few time points. Usually analyzing
gene sets instead of single genes supports the researcher at least in two ways. The
reduction of dimensionality in the data increases statistical power in the findings
of significant changes in gene expression and the a priori definition of gene sets in
the context of molecular functions or pathways facilitates the interpretation of the
findings. There are various methods available for the gene wise analysis of gene
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expression time course experiments and gene set testing in the time series context.
The common approaches are discussed in the third chapter. On the other hand there
is a lack of methods for estimating an activation profile of differential expression in
the gene set setting, which is the overall objective of this thesis.
Three ways of estimating a group activation profile are introduced in the third

chapter. Each algorithm attempts to represent the differential expression of a
significant number of the included genes for a parallel consideration of a large number
of gene sets. Two standard algorithms from literature – STEM and maSigFun – are
presented for comparison purposes. The accuracy of the five approaches is compared
in an extensive simulation study in the fifth part of the thesis. A second large
simulation study in the same chapter evaluates smoothing procedures for the three
activation profile algorithms. The sixth chapter provides the application of the
activation profile estimation algorithm on four exemplary data sets and different
sources of gene set definition. In the last chapter the findings are summarized and
discussed.



Chapter 2
Aspects of Analyzing Gene Expression Time Series Data on a
Gene Set Level

Gene expression data confronts the statistician with the task of parallel analyzing
tens of thousands features representing genes with only a few measurements. In
the time course experimental design there are often only a few time points with
non-uniform sampling scheme, which is an additional challenge for the researcher.
The first section in this chapter elucidates the type of data, which is considered
in this thesis; from the biological backgrounds to the symbolic notation used in
the following chapters. The second section provides an overview of the ideas and
sources of gene set definitions used for gene expression analysis. Currently available
methods for analyzing gene expression data resulting from a time course experiment
are shown in the third section of this chapter. It has to be noted that there currently
no methods are available that explicitly estimate temporal activation profiles of gene
sets, which is the objective of the thesis. Nevertheless the established algorithms
provide beneficial ideas, which can be modified to achieve an estimation procedure
as is demonstrated in chapter 4.
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2.1 Gene Expression Data Characteristics

The Biological Background

All cellular components and functions of all living organisms depend directly or
indirectly on molecules, called proteins. Proteins consist in their primary structure
of one or more chains of aminoacids. The information about the order and type
of the 20 different amino acids, which determines each protein is stored in the
cells Deoxyribonucleic acid (DNA). In order to build a protein all organisms
use a transcription of the double-stranded DNA into a single-stranded Ribonucleic
acid (RNA) molecule, which codes the amino acid sequence forming the corresponding
protein.
Gene expression data means measurements of the qualities and quantities of the

cells RNA. Often these measurements are restricted to the messenger RNA, which
is a replicate of the part of the genetic information coding for a single protein in
the cells nucleus. Transcripts is a synonymously used term for RNA-strands and
the whole space of transcripts is called transcriptome as can be seen in Figure 2.1
on the facing page, in which the main research areas related to bioinformatics are
shown within their biological context.

High Throughput Technologies and Sources of Gene Expression Data

A number of high throughput technologies is available to generate gene expression
data corresponding to thousands of transcripts from a small sample of cell plasma.
All manufacturers have in common, that they provide chips with an area of 1 -
2 cm2, which contain a matrix of fixed oligonucleotides complementary to a priori
chosen transcripts. A prepared cell medium containing the transcripts of interest
in the current experiment is applied on this slide and the (labeled) fragments of
the probe RNA hybridize complementary to the corresponding sites on the chip.
The measurement of transcript quantity is commonly derived of an optical signal
scanning the whole slide with a high resolution.
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Figure 2.1: Sketch of the main areas of bioinformatics (upper line) in combination
with typical data, the term of the entirety of features (the omes), the biological
interactions between the cells molecules and a more colloquial terminology lend from
informatics.

The Gene Expression Omnibus (GEO, see Edgar, Domrachev, and Lash (2002))
is a data base for high-throughput functional genomic data and a free source of
such data. The ArrayExpress data base (Parkinson, Kapushesky, et al. (2009)) is
another repository for this type of data, but includes most of the GEO data sets.
Though there are other free online data bases for gene expression data, a view on the
available technologies on ArrayExpress gives an impression about the distribution
of the experiments on the different methods. Table 2.1 on the next page lists the
number of experiments for the main high throughput technologies, which provide
quantitative information about the presence of transcripts in a cell medium.
Miller and Tang (2009) briefly describe the available array technologies for gene

expression experiments. The microarray technologies (chip technologies from Ta-
ble 2.1) mainly differ in the way how to deposit the complementary oligonucleotides
on the chip surface. This can be done by printing copies of these base sequences
as a whole on the array (cDNA chip) or generate the sequence base by base with a
photolythographic procedure (Affymetrix, NimbleGen) or respectively by contactless
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Table 2.1: Gene expression experiments found in the ArrayExpress repository grouped
by technology and time series experiments. The numbers were obtained by queries
in the ArrayExpress Browser on 1st of November 2013. The overall used keyword
was “RNA assay”. For the Time series value “ef:time” was used. For the microarray
technologies the keyword by array was combined with the corresponding manufac-
turer/chip name, i.e “NimbleGen”, “Agilent”, “Affymetrix”, “Illumina”, “cDNA”. The
numbers for the other technologies are obtained by the keyword in the left column.

Manufacturer / Technology Data Sets Time Series
cDNA arrays; spotted chips 2330 196
Roche NimbleGen chips 671 53
Agilent one color chips 3991 413
Affymetrix one color chips 17232 1652
Illumina Bead chips 2745 294
RT-PCR + RT-qPCR 915 62
sequencing assay 2924 183

printing (Agilent). Illumina bead arrays use beads with identical oligonucleotides
on their surface, which randomly assort to the wells on the array. This necessitates
an additional mapping step, which also serves as quality control. Another difference
between the array technologies is the number of bases in the oligonucleotides fixed
on the array beginning with 20 (Affymetrix) up to several hundreds (spotted arrays).
There is a trade-off between sensitivity and specificity related to the length of the
sequence. Longer sequences provide higher sensitivity but lower specificity and vice
versa (see Miller and Tang 2009, p. 612–614). In contrast to chip technologies
the Real-time polymerase chain reaction (RT-PCR) techniques and the up-coming
high-throughput sequencing methods (also known as “next generation sequencing”)
give information about both the transcript quantity and sequence of the probes’
oligonucleotides. This allows to quantify even those transcripts, whose sequence was
unknown or not yet considered in the expression experiments.
Essentially, all of the technologies shown in Table 2.1 are in principle suited to

be analyzed on a gene set level in time. Nevertheless this thesis focuses on the
Affymetrix technology due to the fact that microarrays of this manufacturer were
used for about two thirds of all gene expression time series experiments listed in the
ArrayExpress data base.
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Affymetrix GeneChips

Dalma-Weiszhausz, Warrington, et al. (2006) provide a detailed description of the
Affymetrix GeneChip technology and the corresponding experimental setup for
measuring gene expression from cell RNA. A scheme of the Affymetrix microarray
construction and a gene expression experiment is shown in Figure 2.2 on the following
page. A transcript on Affymetrix microarrays is represented by a probe set of typically
11 oligonucleotides of 25 base pairs length. Each oligonucleotide appears twice on a
chip; once with the real target sequence as perfect match (PM) probe and once as
mismatch (MM) probe. The MM probe of the probe pair differs only by the 13th base
from the PM probe and is included due to recognized signal from cross-hybridization,
nonspecific binding or technical noise. A photolithographic process applies millions of
identical oligonucleotide sequences onto an 11 µm2-sized feature space on the quartz
chip surface corresponding to each probe sequence. The manufacturer Affymetrix
sells gene expression arrays for many species with tens of thousands probe sets
representing the exon regions (part of a gene sequence transcribed to RNA) of a
priori known transcript-sequences.
In order to obtain the gene expression measurements, the RNA extracted from

various cells must be amplified. The amplification is achieved by reverse transcrip-
tion to cDNA, which is thereafter repeatedly transcribed to Biotin-labeled RNA.
After a fragmentation step the labeled short RNA-strands are applied onto the
Affymetrix array, where the labeled RNA-strands complementary hybridize to their
oligonucleotide counterparts. Non-binding and weakly binding RNA-oligonucleotides
are washed out by a cleanup step. The Biotin-labeled bases are stained with a
fluorescent-dye afterwards and after another cleanup step the hybridized chip is read
out by a high definition laser scanner. Only those feature spaces with stained RNA
on it send fluorescent light back to the sensor. The corresponding measured light
intensity is a measure for the quantity of hybridized RNA and cell RNA, respectively.

RNA from different experimental conditions has to be examined on different chips
due to the array design. Furthermore, there are no replicates for the expression
probe sets on the array. Hence, replicates for the gene expression measurements
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Figure 2.2: General construction of an Affymetrix gene expression microarray and
the experimental work flow to obtain quantitative data for the examined transcripts.
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are only available, if multiple chips are hybridized under the same condition. The
intensity values from the scanner are also called raw expression values and commonly
stored in .cel files. These intensities are biased due to several reasons and hence
have to be preprocessed before applying a differential expression analysis.

Data Preprocessing by Robust Multiarray Analysis

There are several preprocessing algorithms for microarrays proposed in the literature,
which can be divided into the three steps: background correction, normalization
across arrays and summarization of multiple probes per transcript target. Robust
Multiarray Analysis (RMA) is an approach introduced by Irizarry, Bolstad, et al.
(2003), which accomplishes these three preprocessing steps.

Optical noise and non-specific binding to the oligonucleotides on the array lead
to an unspecific background signal even for absent target transcripts and make
a corresponding correction necessary. Z. Wu, Irizarry, et al. (2004) refine the
background model of RMA in the sense, that the different binding affinity of the
four nucleotide bases is taken into account for the estimation of unspecific binding.
The empirical Bayes version of their GC-RMA algorithm is applied as background
correction to the raw gene expression data in this thesis.
Each array is processed under individual conditions, which may also include

individually prepared RNA samples from different laboratories and read by different
Scanners. Those conditions may affect the measured intensities, but do not provide
information about the (differential) transcript expression. Therefore, a normalization
step is needed to make the expression values comparable across all arrays hybridized
in the study. RMA uses quantile normalization to unify the distribution of the probe
values across all arrays.

In the Affymetrix array design multiple probes in one probe set quantify the same
transcript. The different loci on the sequence and the varying sequence-dependent
binding affinity of the probes may lead to a significant variation in the signal strength
among the probes within a probe set. A robust summary resistant to outliers is
needed in order to combine the probe set intensities to obtain a reliable expression
value for the whole transcript. Tukey’s median polish procedure is applied by
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RMA to estimate the probe set expression value, which is synonymously denoted as
transcript or gene expression value in the following.

Time Series Gene Expression Data

Gene expression time series experiments provide insight into the molecular biology
processes inside an organism over time. Usually time series experiments focus on the
changing transcription after suspending a stress condition (e.g. starvation or a drug)
or on the gene activation during a natural process (e.g. embryonic development of a
certain organ). The analysis is challenging due to the biological variability between
the examined individuals and even between cells of the same individual, which
may have different stages in their cell cycles. The analysis is further complicated
by the circumstance that most experiments cover only a few time points, which
are often not uniformly sampled. In contrast to static experiments the number
of biological or technical replicates at the same time point is very restricted as
illustrated in Figure 2.3. Since the collection of gene expression data comes along
with the destructive testing of several cells no real longitudinal data is available
even if the same individuals are tracked across time. All in all the sample size in
a typical gene expression time series experiment is small in contrast to the tens of
thousands genes analyzed in parallel by microarrays, which is also known as a p� n

situation. Some of the typical problems facing gene expression time series analysis
can be mitigated by considering a priori defined gene sets instead of single genes as
is described in the following section.
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Figure 2.3: The Gene expression experiments on Affymetrix arrays found in the
ArrayExpress repository are grouped by the number of time points and available
replicates per time point (minimum and maximum for the experimental condition only,
i.e. without controls). The numbers were obtained by queries in the ArrayExpress
Browser at the 1st of November 2013. The overall used query was “RNA assay ef:time
Affymetrix”. On top the distribution of the species is shown (Y denotes yeast and D
drosophilia melanogaster).

2.2 Definitions of Gene Sets

The statistical gene expression analysis is hampered by various problems. As
mentioned before, only few replicates per experimental condition are faced with
quantitative information for tens of thousands transcripts. The non-experimental
variance on the measured light intensities is quite high due to varying technical
conditions during the separate hybridization of each chip in the experiment and due
to the undoubtedly existing biological differences on the gene expression level, which
may result from different cell cycle states or different genetic or epigenetic conditions
in the examined individuals or cells. Furthermore, the variance increases proportional
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to the measured intensity, which makes a detection of differential expression between
two or more experimental conditions more difficult for a single transcribed gene. In
Affymetrix microarrays often more than one probe set interrogates the quantitative
expression of the same gene, which may lead to contradictory signals, because of
the different hybridization affinity of these probe sets or because of the abundance
of only one of the interrogated transcript variants (e.g. SNPs, splicing variants). All
in all the information from a typical microarray gene expression experiment for a
single gene alone is not as trustworthy as needed to draw definitive conclusions.

On the other hand, most gene products interact with each other and form networks
or can be classified in clusters of similar functions or their contribution to the same
biological process. Gene sets can be defined by aggregating the genes corresponding
to the gene product classes formed by the functional pathway in the network or
their molecular function in biological processes. Other sources of gene set definition
might be the position on chromosome, a common regulatory motif (e.g. transcription
factor) or the knowledge of preliminary experiments for instance related to certain
diseases.
Analyzing gene expression data on a gene set level can provide more reliable

biochemical reactions involved in the pathways.

Gene Ontology (GO) Gene Set Definition

The GO project has the goal to provide “a structured, precisely defined, common,
controlled vocabulary for describing the roles of genes and gene products in any
organism” (Ashburner, Ball, et al. 2000). For this purpose, three ontologies are
introduced to organize the biological terms of biological processes, molecular functions
or cellular components and describe the relation of the terms to one another with
well-defined relationships. Each ontology forms a directed acyclic graph with its
terms and relations. Gene products can be assigned to corresponding GO terms
regarding to their function or location. The matching genes or respectively the
matching transcripts are assigned to the same terms, which allows the definition of
gene sets. The gene to GO term annotation is induced by different sources. The
evidence codes indicate, whether the annotation comes from an experiment, from a
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computational analysis, from author statements, from curator statements, or from
unsupervised electronic software algorithms. However, it has to be emphasized that
these evidence codes cannot be used explicitly as a quality measure of annotation
and therefore all evidence types are considered in the following analyses. The inter-
term-relations or edges in the GO graph are a subset operator in a mathematical
sense. Therefore, all genes annotated to a specific GO term are also assigned to
a more general parent term which is linked to the former by a relation. The GO
terms and relations are well-defined across species, but the annotation of genes to
the terms depends on the understanding of the underlying biology. Due to this, the
ontologies and the annotation are a continuously changing work in progress, but the
benefit from the current biological interpretation is high.

Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Gene Set
Definition

The Kyoto Encyclopedia of Genes and Genomes provides daily manually updated
functional information about genes and ligand-protein-reactions (Kanehisa and Goto
2000). Kanehisa, Goto, et al. (2012) give an overview about the 15 main databases
managed by KEGG. The pathway maps include “graphical diagrams representing
knowledge on molecular interaction and reaction networks for metabolism, genetic
information processing, environmental information processing, cellular processes,
organismal systems, human diseases and drug development” (Kanehisa, Goto, et al.
2012).. The cross-species gene annotation by KEGG allows to define gene sets
according to the pathway maps and makes the underlying biological information
about the molecular reactions usable in the analysis of gene expression experiments.

BioCarta Pathways as Gene Set Definition

BioCarta LLC is a profit oriented US company, but provides the freely avail-
able Proteomic Pathway Project. The “open-source” project invites the research
community to share their knowledge about the “molecular or cell-to-cell interac-
tions” (www.biocarta.com). Newly submitted pathway annotations are checked by
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a peer-review-system. Currently pathway information is available for human and
mice. For each pathway the reference, the review history, and the contributing
protein/gene list is given, which allows for creating gene sets based on the submitted
pathway annotation.

Reactome Pathway Driven Gene Sets

The Reactome data base was originally restricted to human reactions and pathways
(Vastrik, D’Eustachio, et al. 2007). However, the need to compare the knowledge on
the human level with such from model organisms like mice, which are more feasible
for invasive experiments, leads to more than 20 data bases displaying the reactions
and interactions of proteins and ligands across different species. The possibility to
cross-reference the pathway proteins with the corresponding genes yield gene set
definitions according to the peer-reviewed expert knowledge of biological processes
and reactions inside and outside of cells (Matthews, Gopinath, et al. 2009).

BioCyc Data Bases as Gene Set Source

The BioCyc data base collection includes more than 1500 Pathway/Genome data
bases for the most species whose genome is completely sequenced. The collection is
divided into three quality classes (Tier 1–3) regarding the curation intensity for the
originally computationally created networks. The PathLogic program uses existing
genome annotations and combines the found genes with the metabolic pathway
information already understood in other organisms or respectively existent in the
species-transcending MetaCyc data base (Karp, Ouzounis, et al. 2005). A likelihood-
score is used to predict the presence probability of the pathway in the species. This
automatic creation of biochemical networks has a special charm, since due to the
common descendants the metabolic pathways of all species are highly correlated.
On the other hand annotation mistakes and changes during the evolution can lead
to a misunderstanding of the underlying biology not only for a single but also for a
set of different organisms. Hence, the contribution of the research community in the
evaluation of the networks is essential. The genes involved in each pathway can be
used to construct a gene set.
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2.3 Experimental Designs, References and Formalization

The classical statistical time series analysis examines a long list of a single value
(e.g. temperature) observed within a time window, which could (theoretically) be
expanded into both directions, the past and the future. The Markovian assumption,
that every time points depends only on its direct predecessor(s), often facilitates
the modeling of states, trends and periodicity. The wide field of time series analysis
allows to take additional model coefficients or structural breaks into consideration,
but is not directly applicable to cope with the very different nature of gene expression
time series, which is briefly described in the last paragraph of section 2.1.

Figure 2.4 on the next page shows typical data collected for a single gene in a time
course experiment. Different experimental designs are illustrated. The simplest case
is one expression value per time point. This design of experiment does not allow
to consider the variability of the gene expression data in contrast to a replicated
time course experiment. A distinction should be made between technical replicates
(from the same individual) and biological replicates (different individuals). Only the
latter allows to consider the biological variation in the analysis, while the amount of
measurement errors can be estimated by the first one. Some approaches discriminate
between longitudinal (gene expression from the same individual observed over time)
and cross-sectional (different individuals observed at different time points) time
course experiments. The idea behind longitudinal designs is to mitigate the biological
variance. However, the measurement of gene expression destroys the cells from which
the RNA is taken. Hence, it is uncertain, whether the longitudinal design brings real
benefits for the analysis and does not falsify the results because of the intervention
in the living organism or tissue. Sometimes the (replicated) time series are divided
by a single factor as the health or the treatment status. If there is only one factor,
the proposed methods in chapter 4 can be applied. If a multi-factorial design is used
or an even more complex design (e.g. continuous cofactors), then simple gene set
activation profiles would not be the aim of the study and the proposed methods are
not applicable.
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shown for a single gene of a gene expression microarray time series experiment. The
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axis. The measurements are shown as circles and the interpolated gene expression
trajectories are drawn by straight lines. The number of time points is typically small as
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The approaches proposed in this thesis allow to find differential expression profiles
over time for a priori defined gene sets with respect to a reference. This reference
can be a mean or median expression profile for each gene on the chip over all time
points or alternatively depending on the experimental design a reference presented
in Figure 2.5 can be used. Another, here not considered approach would be to use
the direct previous time point as reference to focus on changes within the studied
time interval.
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Figure 2.5: Three possible reference types: A reference time point within the time
series (left), a single reference measurement (center) or a reference time series with an
identical sampling scheme (right).
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In microarray time series experiments there is often an additional effect besides
time included, for instance the tissue, the health status or one treated and one
untreated group. For the control or reference experiment there are usually less
replicates available than for the time points under experimental condition. Rarely,
there is data available in form of a whole control time series experiment.

Formalization and Notation

This section presents the mathematical notation used in the method chapters. Since
this thesis does not focus on preprocessing the analysis is based on the preprocessed
and hence logarithmized gene expression values. A single gene expression value of
the mth measurement for gene g at time point t is denoted by xtjm, where

t ∈ {1, . . . , T}, g ∈ Ğ = {g1, . . . , gG} and m ∈ {1, . . . ,M}.

Ğ is the whole gene universe and it is assumed, that every gene g is annotated
to at least one gene set s ∈ S̆ = {s1, . . . , sS}. Hence, it holds Ğ = ⋃S

i=1 si and
si ⊆ Ğ ∀si ∈ S̆. The capital letters T , G, M and S describe the total numbers of
time points, genes, replicates and gene sets in the analysis.
A symbol list of all used notations in the thesis is given on page 281.





Chapter 3
Methods for the Analysis of Gene Expression Time Series

The statistical analysis of typical gene expression time course experiments is in
general an explorative analysis, though the most methods provide a significance
measure like a p-value or promise to hold an a priori determined significance border,
for instance a family wise error rate (FWER) or a false discovery rate (FDR).
Hence, it is proven standard to evaluate findings from a microarray study in an
external experiment or an independent study. The main reason for this is the small
sample size, which hampers to distinguish between the effects of time, experimental
condition and the omnipresent biological (and technical) variance. Another reason
is the adjustment for multiple experiments (e.g. tens of thousands genes), which
may result in no or only few significant findings and poor power of the method.
Therefore, the hard significance border is often mitigated to a ranked list of findings,
which includes some random items.

There is an uncounted variety of published methods to analyze gene expression
time series experiments. Bar-Joseph (2004) gives an early review on analyzing this
type of data. X. Wang, M. Wu, et al. (2008) list analysis strategies with an emphasis
on clustering and incorporation of multi-source information. Gene-module level
analysis, hence the identification of gene groups and the group interactive dynamics
is the topic of a review by X. Wang, Dalkic, et al. (2008). A more recent review
by Coffey and Hinde (2011) focuses on the functional data analysis (FDA) of gene
expression microarray time courses. It is not the intention of this work to explain all
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these procedures in detail, but to give a survey about the main fields in this research
area, which will shed a light on the great importance of this data type.

Sima, Hua, and Jung (2009) provide a survey about the inference of gene regulatory
networks (GRN) based on gene expression time course experiments. A large number
of samples is needed to estimate GRNs while the total number of genes is typically
restricted (e.g. G = 9 genes in Bansal, Gatta, and Di Bernardo (2006)). The
inference of GRN does not make use of the strength of micoarrays to provide
information about tens of thousands genes, but yields relevant insights into the
microbiological gene-to-gene interactions. The outcome of a GRN analysis can be
used as a gene set definition in the framework of a comprehensive gene set analysis.

A second way to analyze gene expression time series is to identify genes, which are
differentially expressed across the examined time period. This single gene analysis
is described in more detail in section 3.1. The influence of the noise on the single
gene results is quite large and hence a gene set analysis is often applied as second
stage in the analysis, but the temporal information is in general lost on this level
and hard to reconstruct.

The idea that a similar gene expression trajectory over time indicates a common
function or contribution to the same biological process is the foundation of the
various existing clustering approaches for the analysis of gene expression time series.
Section 3.2 gives a brief overview of the methods proposed in the literature. Most
clustering approaches provide an exhaustive partition of the gene universe and hence
allow formulation of hypotheses for the function of genes, where this information is
not yet available. Conversely, the hard cut between the clusters seems not to be a
good assumption for modeling the complex interaction between the true biologic
processes, because one gene product may contribute to different biological processes
in different cell states.
There are methods which does not fit into the three former categories. Those,

which are related to gene set analysis are summarized in section 3.3. Some others are
designed to identify genes jointly regulated by so called transcription factors (TFs) in
time series experiments (Das, Nahlé, and M. Q. Zhang 2006; L. Wang, G. Chen, and
Li 2007). Holter, Maritan, et al. (2001) attempt to explore the causal relationship
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among genes by deducing a time translational matrix on the characteristic modes
specified by singular value decomposition (SVD). Gene expression time series data
is also used to identify regulatory modules and condition-specific regulators (Segal,
Shapira, et al. 2003). The discovery of genes with periodic gene expression may also
be an analytic goal, see J. Chen and Chang (2008) for a review. Hirose, Yoshida,
et al. (2008) attempt to simultaneously identify transcriptional modules (gene
sets) and analyze the resulting module-based networks within a state space model,
whose applicability is limited to time series with more than ten time points and a
comparatively small number of genes (several thousands). Still other approaches
face the task of classifying time series profiles in categories according to prototypes
of trajectories over time. Such a model gene expression pattern can be acquired from
previous experiments with respect to molecular reaction to toxins (Hafemeister, Costa,
et al. 2011) or in relation to the progress of a disease (Costa, Schönhuth, Hafemeister,
et al. 2009). Finally, there are methods to analyze gene expression time series in
order to identify the different timing of gene expression under certain conditions
(Yoneya and Mamitsuka 2007) or to distinct between a consensus gene expression
trajectory and an individual response to a drug in clinical studies (Kaminski and
Bar-Joseph 2007).

In the following the focus lies on published methods, which allow to analyze time
series experiments on the level of a priori defined gene sets.

3.1 Gene Set Testing Based on Differentially Expressed Genes

In principle, all methods providing a list of significant genes can be used for an
enrichment analysis on the gene set level. By using just the list of genes significantly
changing their expression over time has the drawback of loosing all information
about the form of differential expression across the examined time points. Another
disadvantage is the large influence of noise on the resulting gene list and hence its
bad performance in terms of reproducibility.
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Nevertheless, methods identifying significant differences in the gene expression
values across time are largely used. They can be roughly grouped by the way they
assign significance to the gene trajectories.

Three statistics to identify significantly differentially expressed genes between two
equally sampled gene expression time courses are proposed by Di Camillo, Toffolo,
et al. (2007). The method uses the maximal difference or the area between the
linear or spline interpolated gene expression measurements across the given time
points. The significance assessment follows from various null distributions estimated
by using replicate measurements.

Some approaches provide a gene ranking according to differential expression across
time. Chuan Tai and Speed (2009) use a multivariate empirical Bayes approach
to sort genes according to their differential expression within one or between two
or more gene expression time series (i.e. two or more experimental conditions
besides time). Kalaitzis and Lawrence (2011) rank differentially expressed genes
through a likelihood ratio quotient or a Bayes factor after modeling gene trajectories
by Gaussian process regression. The approach of Cheng, X. Ma, et al. (2006)
investigates the changes in an estimated gene neighborhood by the mean absolute
rank difference (MARD) and hence relies completely on gene expression ranks per
time point.
Other methods directly model the gene expression under various conditions and

experimental designs directly on the discrete sampled time series. Xu, Olson, and
Zhao (2002) use a regression based statistical modeling approach in combination
with permutation tests to find significantly differentially expressed genes. Limma
is a very popular procedure fitting linear models to the gene expression values
and using moderated tests in the analysis of variance (ANOVA) framework to
assign significance to its findings (G. K. Smyth 2004; G. Smyth 2005). Park, Yi,
et al. (2003) apply ANOVA models in combination with F– or permutation tests
to identify significant time-group-interactions or effects of experimental groups.
ElBakry, Ahmad, and Swamy (2012) propose a modified repeated measure ANOVA,
which removes the variance caused by individual differences and assigns significance
per permutation of columns (i.e. within time points and replicates). The idea of
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M. J. Nueda, Conesa, et al. (2007) is to utilize a principal componant analysis (PCA)
for a dimension reduction of the estimated parameters from an ANOVA model in
multiple series time course experiments. Genes contributing to a significant effect
in this so called ANOVA-SCA model are identified by permutation tests on the
leverage or squared prediction error.
Hidden Markov models (HMM) are a further class of statistical tools applied

in the gene-wise analysis of gene expression time-course experiments. Yuan and
Kendziorski (2006) estimate non-homogeneous HMMs to distinguish between the
two states equally expressed and differentially expressed at each time point. Hidden
spatial-temporal Markov random fields are used by Wei and Li (2008) to identify
genes, which are differentially expressed at each time point in the context of known
biological pathways.

A wide range of methods originates from the field of functional data analysis (FDA).
They have in common, that the measured gene expression trajectory is modeled as
continuous function in time. Bar-Joseph, Gerber, Simon, et al. (2003) apply gene-wise
hypotheses testing on the integral of the quadratic difference between the B-spline
curves of two aligned gene expression time series experiments. Storey, Xiao, et al.
(2005) introduce the popular Extraction of Differential Gene Expression (EDGE)
software and method for the identification of differentially expressed genes. The
procedure fits a natural cubic spline representation of the gene expression trajectory
under the alternative hypothesis and a constant mean curve under the null hypothesis.
Permutation testing based on the residual sums of squares of both models assigns
significance to the detected differentially expressed genes. A functional hierarchical
model on the p-dimensional B-spline basis gene expression curves is utilized by Hong
and Li (2006). Bayesian Analyisis of Time Series (BATS) is a software tool proposed
for one-sample time series (Angelini, De Canditiis, et al. 2007; Angelini, Cutillo,
et al. 2008). The functional Bayesian approach expands the gene temporal profiles
over an orthonormal basis and assigns significance for differential gene expression
in the form of Bayes factors. P. Ma, Zhong, and J. Liu (2009) utilize a functional
ANOVA mixed-effects model to identify either non-parallel differentially expressed
genes or parallel differentially expressed genes. X. Liu and Yang (2009) apply a
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functional principal component analysis to test for changes in the temporal gene
expression under different conditions.
The advantage of gene wise approaches is the consideration of all transcripts

measured on the chip. Hence, hypotheses about unknown gene-functions can be
made. The power of gene-wise approaches is low, because smaller effects caused by an
experimental factor will not show up on a top position in the list of significant genes
and are therefore not considered for a detailed view. Although a subsequent gene set
testing step based on the gene-wise tests mentioned above would be straightforward
and would give additional insights into the underlying biology, it is not very often
applied in the literature. The clustering approaches in the next section are more
often combined with an analysis of predefined gene sets.

3.2 Clustering Approaches

Clustering approaches intend to identify groups of genes with a coherent gene
expression over time. The underlying idea of these procedures is, that the similar
gene expression trajectory results from a common cause (e.g. a transcription factor)
or a common function. The clustering methods can be discriminated in three main
fields the similarity based approaches, the model based procedures and template
based methods, which attempt to recognize genes with a gene expression time profile
similar to predefined patterns.

Similarity based gene clusters can for instance be found by simple visual inspection
(Cho, Campbell, et al. 1998). Some clustering algorithms need a predetermined
total number of clusters as the k-means procedure (Tavazoie, Hughes, et al. 1999)
or in the self organizing map (SOM) framework (Tamayo, Slonim, et al. 1999). The
standard agglomerative hierarchical clustering has been applied by Eisen, Spellman,
et al. (1998) or Magni, Ferrazzi, et al. (2008), the latter provide the software
package TimeClust, which implements several clustering techniques (e.g. Bayesian
clustering). Brown, Grundy, et al. (2000) propose to use a supervised learning
algorithm, which is based on support vector machines (SVMs), to group genes with
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unknown function to clusters with a priori known function. The CLICK algorithm
(Sharan, Shamir, et al. 2000) combines graph-theoretical and statistical techniques
to find homogeneous gene expression clusters. J. Kim and J. H. Kim (2007) define
the similarity on symbolic vectors representing the first and second order differences
between adjacent time points. Gene Shaving is introduced by Hastie, Tibshirani,
et al. (2000) as a cluster algorithm, which applies sequential PCA techniques to
identify those genes, which are both largely varying across time and coherent to each
other. Tchagang, Bui, et al. (2009) propose clustering in a rank order preserving
matrix framework or by identifying minimum mean squared residue clusters.

The second type of cluster procedures groups the genes either based on the
model fit of their gene expression trajectory in time, by the application of a specific
clustering model, or a combination of both. Ben-Dor, Shamir, and Yakhini (1999)
propose a corrupted clique graph model for the non-hierarchical clustering of genes.
Fitting a mixture of multivariate Gaussian distributions to the gene expression values
is the approach of Yeung, Fraley, et al. (2001) available in the MCLUST software
package. Šášik, Iranfar, et al. (2002) attempt to cluster genes involved in a specific
biological process based on a biological kinetic model. The expectation maximization
(EM) algorithm is used by Bar-Joseph, Gerber, Gifford, et al. (2002) to cluster genes
on the basis of their cubic spline representation in a predefined number of sets.
Ramoni, Sebastiani, and Kohane (2002) introduce CAGED (Cluster analysis of gene
expression dynamics), a pseudo-Bayesian agglomerative clustering approach applied
on auto-regressive gene expression models. An extension of this procedure based on
polynomial models for describing the gene expression trajectory in the framework
of a Bayesian hierarchical mixture model was published by L. Wang, Ramoni, and
Sebastiani (2006). Luan and Li (2003) utilize the EM algorithm to fit a mixed
effects model on the B-spline representations of the gene expression profiles. The
EM algorithm is also used by Chudova, Hart, et al. (2003) for modeling a mixture
of simplified differential equations in order to cluster genes according to their gene
expression time course. Schliep, Schonhuth, and Steinhoff (2003) applied model
based clustering based on linear HMMs, which is implemented in the Graphical
Query Language (GQL) (Costa, Schönhuth, and Schliep 2005). An approach to
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infer gene clusters from finite mixtures of HMMs while using prior informations in a
semisupervised learning framework is proposed by Schliep, Costa, et al. (2005). The
approach called maSigPro (microarray significant profiles) identifies gene clusters of
differentially expressed genes by a two-step regression approach, where the algorithm
is based on the similarity of the gene-wise regression model coefficients (Conesa, M. J.
Nueda, et al. 2006). Heard, Holmes, and Stephens (2006) introduces a Bayesian
hierarchical clustering of nonlinear regression spline representation of the gene
expression trajectories. A mixture of mixed-effects models, which applies a rejection
controlled EM algorithm to estimate the class assignment and the corresponding
mean expression curves is used by P. Ma, Zhong, and J. Liu (2009). Scharl, Grün,
and Leisch (2010) find clusters using the EM algorithm to fit mixtures of linear
models or linear mixed models.

Template based methods attempt to identify predefined patterns in the temporal
gene expression trajectories. In contrast to most other clustering approaches signifi-
cance can be assigned to the various template clusters by permutation or resampling
procedures. Peddada, Lobenhofer, et al. (2003) propose an order-restricted inference
methodology defining candidate temporal profiles in terms of inequalities among the
mean expression levels at the time points. T. Liu, N. Lin, et al. (2009) introduce the
ORICC algorithm, which groups the gene trajectories according to an order-restricted
information criterion to pre-specified candidate inequality profiles. A hierarchy of
trend temporal abstraction profiles (consisting of steady, increasing, decreasing)
serve as prototypes for the clustering of the gene expression profiles in the approach
of Sacchi, Bellazzi, et al. (2005). The EPIG method uses a multi-step filtering
procedure to generate representative candidate patterns from the data (Chou, Zhou,
et al. 2007). StepMiner software (Sahoo, Dill, et al. 2007) identifies genes with
one or more binary transitions across the gene expression time series by modeling
segment-wise constant adaptive regression. Ramakrishnan, Tadepalli, et al. (2010)
introduce the GOALIE procedure, which uses linear time logics to identify segments
in the time series and separate gene clusters with coherent gene expression behavior
within the segments. Ernst and Bar-Joseph (2006) implemented their method in
the Short Time-series Expression Miner (STEM) software. The STEM procedure
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matches the gene expression profiles on data-independent chosen model profiles and
applies a time point permutation test to assign significance to the corresponding
gene clusters. A Fisher test is used to identify GO gene sets enriched with genes from
significant clusters. Springer, Ickstadt, and Stoeckler (2011) propose a data-driven
selection of model profiles, which gains a better fit to the data structure, but with
the drawback of loosing the significance assessment for the identified clusters.

An own implementation of the STEM method based on the median gene expression
profiles is used to compare the performance of the proposed methods (see chapter 4)
in a simulation setting (see chapter 5) and for the example data sets (see chapter 6).

3.3 Other Approaches for the Gene Set Analysis of Gene Ex-
pression Time Series

There are published methods, which do not fit in the former two main categories, but
attempt to analyze gene expression time series on a gene set level. Hvidsten, Lægreid,
and Komorowski (2003) propose a systematic supervised learning approach to
generate hypotheses about the function of genes not yet annotated to any considered
predefined GO gene set. The procedure is based on learning a classification rule
model within the rough set framework, which is evaluated by cross validation. Other
approaches assume that the gene expression of all genes in a predefined gene set
follows the same trajectory, which is hence estimated by regarding the genes as
multiple measurements of the same pattern in time. The GlobalANCOVA procedure
by Hummel, Meister, and Mansmann (2008) fits a linear model to the gene expression
values for every gene set and identifies those groups, in which a design factor (e.g.
treatment-time interaction) is significant in contrast to a reduced model. L. Wang,
X. Chen, et al. (2009) construct a unified mixed effects model for the mean trajectory
of every gene set and claim that their algorithm detects gene sets, in which at least
20 – 50 % of the genes follow the same linear trend. A nonparametric Wald-type
test statistic in combination with a permutation based test is used by K. Zhang,
H. Wang, et al. (2011) to detect treatment effects or treatment-time interactions
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in predefined gene sets. The principal components analysis through conditional
expectation (PACE) is proposed by Yao, Muller, and J. Wang (2005) to estimate
the mean trajectory function for sparse longitudinal data and apply it on yeast cell
cycle gene sets. The idea of fitting regression models to the gene set gene expression
values in the time series or to the corresponding principal components is introduced
by M. Nueda, Sebastián, et al. (2009), who denote their method as maSigFun or
respectively as PCA-maSigFun. The first approach assumes, that all group genes
follow the same underlying trajectory, but the second allows for more than one
model profile per group, but due to the regression on the principal components,
the group profile is hard to reconstruct. The maSigFun is used as competitor in
the simulation study (see chapter 5 and the data analysis (see chapter 6). A brief
introduction to the method is given in section 4.7. The implementation maintained
in the original article is used.
None of the approaches for the analysis of gene expression time series known to

the author intends to estimate an activity profile for an a priori defined gene set. The
assumption that all or at least a majority of genes in a gene set defined by its general
function follows a common gene trajectory is very strict and counterexamples may
easily be found. Imagine complex functions like embryonic development or immune
response, whose gene expression in healthy organisms needs to be well balanced and
fine-tuned. Hence, it is implausible that all genes related to those general processes
show the same (functional) expression trajectory at all possible time points. This
thesis focuses on the idea to identify a gene set activity with respect to a reference
at the examined time points and the therefor proposed methods are the subject of
the next chapter.



Chapter 4
Estimating Temporal Activation Profiles of Gene Sets

In contrast to the numerous approaches proposed in the literature to analyze gene
expression time series the objective of this thesis is to estimate a temporal activation
profile with respect to a reference for an a priori defined gene set. Most existing
methods which intent to make use of the knowledge provided by reasonably defined
gene sets focus on the clustering of genes with a common differential expression
profile or use a significance measure on the gene wise differential expression before a
common gene set enrichment test is applied (see chapter 3). Most common gene
set definitions are mentioned in section 2.2. It seems to be a promising approach
to estimate an activation profile over the examined time points for every gene set
of interest in order to obtain an exploratory view into the molecular functions
summarized by the gene set of the current definition. For instance, it allows the
researcher in a way of helicopter view to obtain a sight on the bigger picture of
biological functions or protein pathways without getting lost in the list of hundreds
of significant genes.
Since genes interact in a way that gene products of an early stage gene may

suppress the gene expression of their own genetic information, but promote the gene
expression of other genes (e.g. those in a following stage of the pathway), an average
gene expression profile seems not to be a good representation for the activation of a
gene set. The proposed approaches in this chapter therefore are derived from ideas
from enrichment testing for the analysis of two condition gene expression microarray
experiments, which are described in section 4.1.
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The proposed algorithms follow a three stage procedure, which is illustrated in
Figure 4.1 on the next page. The input of the algorithms includes the preprocessed
gene expression values for the time points and reference, the gene set definitions, and
parameters for testing and smoothing. The first step provides the information of
differential expression with respect to the reference for all genes and every time point
either qualitative (up, down, not different), ordinal (ranked gene list) or quantitative
(shrunken t-test values). The second step identifies gene sets which are enriched
with up or down expressed genes. The three algorithms use different statistical tests
to detect enrichment, either as over representation of differential expressed genes in
the sets (Fisher test) or as asymmetric distribution of the gene set genes across the
ranked list (segment test and GSEA like test). These profile algorithms are described
in sections 4.2 and 4.5. Smoothing of non-reliable alternating profiles, which are
hard to biologically interpret is the final step of the algorithms. The smoothing
algorithms, which are evaluated by a simulation study in chapter 5, are explained in
detail in section 4.3. A proposal to rank the resulting temporal activation profiles is
given in section 4.4.
All methods described in chapters 4 and 5 are implemented in R-code (using

R-version 2.14.3, see R Development Core Team (2012)) programmed by the author
and is available on request.
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Input
• Time series gene expression matrix
• Gene group annotation (definition of gene sets, e.g. GO)
• Parameters for multiple testing adjustment: αgenes, αsets
• Smoothing algorithm (including smoothing parameters)

Identification of differentially expressed genes
• Determine up and / or down expressed genes for every time point with

respect to the reference
• shrunken t-tests to find significant differences per gene and time point

T sets of significant
genes per time point

ranked gene list accord-
ing to differential expres-
sion per time point

G×T matrix of shrunken
t-statistic values

Identification of enriched gene sets
Test every gene set at every time point for enrichment with up and / or down
expressed genes and (optional) FDR-adjustment for multiple testing

Fisher test per gene set
and time point

segment test per gene
set and time point

GSEA like rotation test
per set and time point

Smoothing of alternating activation profiles
Apply algorithms to smooth alternating profiles that are biologically not
meaningful

Output
Symbolic temporal activation profile for every gene set (e.g. ’++oo--‘)

Figure 4.1: Schematic illustration of three possible algorithms for the estimation of
gene set activation profiles. The differences of the three methods are shown in the
intermediate steps enclosed by solid (threshold variant of the GSA-type algorithm),
dashed (non-threshold GSA-type algorithm), or dotted (GSEA by rotation testing)
line.
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4.1 Methods Adapted from Gene Set Testing For Two Condition
Gene Expression Experiments

Microarray studies conducted to compare only two conditions or respectively a
single bivariate experimental factor (e.g. healthy and diseased or stem cell and
differentiated cell) often provide much more replicates per condition than time
series experiments. Hence, in the gene set analysis (GSA) of such experiments
permutation and resampling approaches (either for the condition label or the genes)
are quite common to estimate the null distribution of an enrichment test. The order
of measurements is not arbitrary in time series experiments and the assumption
of the exchangeability of genes seems not to be justified, since the gene expression
is obviously correlated. Due to these reasons only those methods can be regarded,
which can abandon permutation and resampling.

Detection of Differentially Expressed Genes
Cui and Churchill (2003) give a review of most common statistical tests for differential
expression in gene expression experiments. In case of no replicates the relative gene
expression of case and control samples – the so called fold change – is applied. If
the expression values are assumed to be logarithmized to base two, the fold change
for a gene g is defined as:

FCg = 2xBg −xAg ,

where A and B denote the two different experimental conditions. If the assumption
of equal variances across the gene expression intensities is made (which is usually
not true), an average fold change can be applied.
The t-test is a standard method to detect differential expression if replicates are

available. Despite its optimality for normal distributed data it is also applicable for
other distributions. The test statistic is calculated as:
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Dt−test
g =

x̄Bg − x̄Ag
sdg

,

where sdg denotes the sample estimate of the standard deviation, provided by

sdg =
√
vAg /M

A + vBg /M
B vA/Bg = 1

MA/B − 1

MA/B∑
m=1

(
xA/Bgm − x̄A/Bg

)2

and the sampling means for gene g are given by

x̄A/Bg = 1
MA/B

MA/B∑
m=1

xA/Bgm .

These test statistic values take into account the variance of the measurements across
the samples. Due to the usually small sample size the estimated variances per gene
and condition are not stable and may lead to extreme large test statistic values
because sdg is small by chance for some genes. To account for this problem some
approaches were published to modify the standard t-test. Tusher, Tibshirani, and
Chu (2001) propose to add a constant sd0 in the denominator of the test statistic

DSAM
g =

x̄Bg − x̄Ag
sdg + sd0

and call the new statistic Significance Analysis of Microarrays (SAM). With some
computational costs it is possible to find the optimal value of sd0. Opgen-Rhein and
Strimmer (2007) apply a distribution-free shrinkage estimate to detect differential
gene expression. The gene wise sample estimate of the variance vg is replaced by a
shrinkage estimator

vshrink
g = λ̂vmedian + (1− λ̂)vg,
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with

λ̂ = min
1,

∑G
g=1 V̂ar(vg)∑G

g=1(vg − vmedian)2

 .
The term vmedian denotes the median of the vg across all genes and V̂ar(vg) is
calculated as follows

V̂ar(vg) = M

(M − 1)3

M∑
m=1

(wgm − w̄g) wgm = (xgm − x̄g) w̄g = 1
M

M∑
m=1

wgm.

Opgen-Rhein and Strimmer (2007) propose two versions for determining λ̂, namely
a separate calculation for both conditions (M = MA or M = MB) and a common
calculation M = MA +MB. In this work the variant with the separate estimation
across all conditions is preferred and referred to as

Dshrink
g =

x̄Bg − x̄Ag√
vshrink
g,A

MA + vshrink
g,B

MB

.

The activation profile algorithms (see section 4.2) use this last modified t-test
statistic to detect differentially expressed genes for the comparison of each time
point in the experimental setting with a common reference.

Detection of Gene Set Enrichment with Differentially Expressed Genes
Testing functional gene groups in two conditions gene expression experiments reduces
the dimensionality of the underlying statistical problem and typically increases power
compared with a single gene analysis. There are various approaches of gene set
testing in the literature (e.g. parametric analysis of gene enrichment (PAGE) by
S.-Y. Kim and Volsky (2005)). Ackermann and Strimmer (2009) describe the
standard framework of gene set enrichment analysis with a significance assessment
by sampling approaches. They list the typical gene set statistics used in a framework
with resampling significance assessment in the field of gene set testing and compare
their performance in combination with different gene level statistics and their
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transformations. According to Al-Shahrour, Carbonell, et al. (2008) Gene Set
Enrichment Analysis (GSEA) is one of the most popular enrichment tests. GSEA is
based on a Kolmogorov-Smirnov-type statistic for each considered gene set across a
ranked gene list (Subramanian, Tamayo, et al. 2005). The significance is evaluated
by repeating the algorithm on permutations on the phenotype assignments. Since
significance assessment by permutation and resampling methods seems not to be a
good choice in the context of gene expression time series experiments due to the
dependencies among time points and genes explained at the beginning of chapter 4,
the focus of this thesis lies on gene set methods avoiding such techniques. There
are a few approaches (e.g. Y.-T. Huang and X. Lin 2013) attemting to take the
covariance structure into account for the gene set analysis, but this methods are
not directly applicable to the time series setting due to the lack of observations in
relation to the large number of model parameters.

A contingency table is defined (see Table 4.1) by separating the gene universe Ğ
in differentially expressed (DE) genes and those which are not on the one hand and
in genes annotated to a gene set s and those which are not on the other hand. Since
the marginal totals are fix due to the a priori definition of the gene sets (threshold
definition for DE), the exact null distribution of NDE∈s – the unrealized number of
DE genes in gene set s – is hypergeometric (Rivals, Personnaz, et al. 2007). An
enrichment is considered if the probability of the random value NDE∈s to be equal

Table 4.1: Contingency table for Fisher’s exact test in the gene set enrichment
analysis.

∈ DE 6∈ DE ∑
∈ gene set s nDE∈s n12 |s|
6∈ gene set s n21 n22 G− |s|∑

nDE n\DE G
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or higher than the observed nDE∈s is very small. This probability is calculated as

pE = P (NDE∈s ≥ nDE∈s) = 1−
nDE∈s−1∑
i=0

(
|s|
i

)(
G−|s|
nDE−i

)
(
G
nDE

) .

In some applications the detection of a depletion with DE genes is desirable. The
probability

pD = P (NDE∈s ≤ nDE∈s) =
nDE∈s∑
i=0

(
|s|
i

)(
G−|s|
nDE−i

)
(
G
nDE

)
is small in case of a depletion. The values pE and pD are also known as the p-values
of a one-sided Fishers’s exact test. There exist different approaches for determining
a p-value for the simultaneous test for enrichment and depletion (Rivals, Personnaz,
et al. 2007; Hosack, Dennis, et al. 2003). The activation profile algorithms proposed
in this thesis use only the enrichment probabilities for up and down regulated genes.

Assessment of significance in a multiple experiment setting
The parallel hypothesis testing for many genes and many groups has to account for
an overall error rate for the assessment of significance to the single tests. Accepting
a usual significance level in the single tests yields many type-I-errors (i.e. reject
true null hypotheses). One strategy to account for multiple testing is the family
wise error rate (FWER), which limits the probability for the rejection of at least
one true null hypothesis. The strong control of the FWER for instance by the
Bonferroni-correction (Bonferroni 1936) is in many situations too restrictive and
will lead to many missing findings, in particular if the number of tests is large.

An approach of identifying as much true significant features as possible, while
limiting the proportion of false positives (rejection of true null hypotheses) among
all rejected hypotheses was introduced by Benjamini and Hochberg (1995). The
limit of the expected proportion of falsely rejected null hypotheses is called false
discovery rate (FDR). The FDR became the standard significance measure for the
simultaneous testing of multiple hypotheses in gene expression studies and various
procedures have been proposed to control this quantity. The parallel testing of
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gene expression differences makes FDR procedures desirable, which account for the
potential dependence between the genes and the corresponding test results. K. I.
Kim and Wiel (2008) conducted a simulation study analyzing the behavior of various
FDR controlling algorithms applied in the gene expression context under dependence.
The two-stage adaptive linear step-up procedure (TS-ABH) proposed by Benjamini,
Krieger, and Yekutieli (2006) shows the at least conservative estimation of the true
FDR under dependence without being anti-conservative.
The TS-ABH procedure uses the linear step-up procedure of Benjamini and

Hochberg (1995) to estimate the number of true null hypotheses nH0 and is briefly
described in the following with the terms of Table 4.2. The term FP denotes the
erroneously rejected null hypotheses and nĤ1

is the total number of rejected null
hypotheses. The false discovery rate (FDR) is defined as expected proportion of
falsely rejected null hypotheses among all rejections

FDR := E(Q), Q =

FP/nĤ1
, if nĤ1

> 0

0, if nĤ1
= 0

.

The step-up procedure makes use of the ordered observed p-values of the n hypothesis
tests

p(1) ≤ p(2) ≤ . . . ≤ p(n)

and rejects the first k hypotheses in this order for

k = max{i : p(i) ≤ qi/n}

to control the FDR at level q if such a k exists (otherwise accept all null hypotheses).

Table 4.2: Possible results of multiple testing for significance.

accept reject ∑
true null hypotheses TN FP nH0

true alternatives FN TP nH1∑
nĤ0

nĤ1
n
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The TS-ABH procedure uses the linear step-up procedure at the level q/q+1 in the
first stage and adopts the number of rejected hypotheses k I to estimate an upper
bound of true null hypotheses

n̂H0 := n− k I

The realization of this estimate is utilized in the second run of the linear step-up
procedure, but replacing the FDR threshold q by

q II := q

q + 1 · n

n̂H0

.

The k II of the second stage still controls the FDR at level q, but since k II ≥ k I the
two-step procedure provides a higher power (see Definition 6 in Benjamini, Krieger,
and Yekutieli 2006).

In accordance with Storey and Tibshirani (2003) a single-hypothesis significance
measure is denoted as q-value q(i) and calculated by choosing the smallest possible
FDR threshold q yielding a rejection of the hypothesis corresponding to p-value p(i)

(using the TS-ABH procedure; details are shown in Appendix A). This adjusted
p-value is the smallest FDR controlled by the adaptive two-stage procedure if the
ith test and all tests with a smaller p-value than p(i) would be rejected.

The following sections in chapter 4 provide three algorithms to assign a gene set
s with a simple activation profile AP, indicating the enrichment with up or down
regulated genes in the gene set with respect to a reference.

4.2 GSA-Type Algorithms for Determining Gene Set Activation
Profiles

In this section three algorithms are proposed for the estimation of gene set activation
profiles, which are closely related to the standard functional gene set testing described
in section 4.1. The first algorithm is based on the gene set enrichment idea and uses
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two FDR thresholds to combine the enrichment test results at every time point to
an activation profile per gene set. The second method is inspired by the threshold
free segmentation test proposed by Al-Shahrour, Díaz-Uriarte, and Dopazo (2005).
The third introduced method restricts the segmentation test approach of the second
procedure to the significant part of the differential expressed genes (with respect to
FDR threshold αgenes) and hence combines the two previous approaches.

Threshold Variant of the GSA-Type Activation Profile Estimation
The first step of the algorithm identifies seperately at every time point such genes,
which are significantly differentially up expressed or down expressed with respect to
a reference. In principle, every procedure yielding information about significant up
and down differential expression is suitable for this task. The information about the
direction of differential expression with respect to the reference in the time series
experiment is important due to the intention to estimate a gene set activation profile
indicating an enrichment with up or down expressed genes.

If replicates are available the shrinkage t-test of Opgen-Rhein and Strimmer (2007)
is applied on the differences to the reference

Dshrink(t)
g =

x̄(t)
g − x̄(Ref)

g

sdshrink
g

(for the possible reference types see section 2.3). This yields G·T test statistics. A
gene g is considered as up expressed at time point t if the test statistics results in a
positive value and denoted as down expressed for a negative value of the test statistic.
The significance of these differential expression tests is assigned by transforming the
test statistics to the q-values of the adaptive step-up procedure of Benjamini, Krieger,
and Yekutieli (2006) over all tests done on the gene level. The single test p-values
for each test are needed to apply the q-value procedure. These are determined in
the same way as in the one-sided standard (two sample) t-tests with respect to the
reference type. Let αgenes be the upper limit for the FDR across all shrinkage t-tests
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for the gene expression difference of a gene against the reference. The two sets

DE(t)
+ =

{
g : Dshrink(t)

g > 0 ∧ q(t)
g ≤ αgenes

}
DE(t)
− =

{
g : Dshrink(t)

g < 0 ∧ q(t)
g ≤ αgenes

}
include all significantly differentially expressed genes per time point t (with q(t)

g as
the q-value of gene g at time point t). If there are no replicates available, it is
possible to define DE(t)

+ and DE(t)
− by a fold change (FC)-threshold αgenes.

The second step identifies predefined gene sets, whose genes are overrepresented
among the significantly up or down expressed genes. Two enrichment tests per gene
set and time point are performed; one for the enrichment with up regulated genes
and one for the enrichment with down expressed genes. The one-sided Fisher’s exact
test is used to verify enrichment as shown in section 4.1. If nDE(t)

+ ∈s
and nDE(t)

− ∈s
denote the observed numbers of significantly up and down expressed genes

nDE(t)
+ ∈s

=
∣∣∣s ∩DE(t)

+

∣∣∣ nDE(t)
− ∈s

=
∣∣∣s ∩DE(t)

−

∣∣∣ ,
the Fisher test enrichment p-values for gene set s at time point t are given by

p
E(t)
s+ = 1−

n?−1∑
i=0

(
|s|
i

)(
G−|s|
n??−i

)
(
G
n??

) n? = nDE(t)
+ ∈s

n?? = nDE(t)
+

p
E(t)
s− = 1−

n?−1∑
i=0

(
|s|
i

)(
G−|s|
n??−i

)
(
G
n??

) n? = nDE(t)
− ∈s

n?? = nDE(t)
−

(compare the contingency table terms in Table 4.1).
The corresponding q-values (qE(t)

s+ , qE(t)
s− ) from the adaptive step-up procedure (see

section 4.1 or Benjamini, Krieger, and Yekutieli 2006) allow to control the FDR
over all 2 ·S·T tests with respect to an in advance determined threshold αsets.
The combination of the two enrichment tests per gene set s and time point t is
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transformed into a symbol characterizing the gene set activation

APs(t) :=



+ if qE(t)
s+ ≤ αsets and qE(t)

s− > αsets

− if qE(t)
s+ > αsets and qE(t)

s− ≤ αsets

± if qE(t)
s+ ≤ αsets and qE(t)

s− ≤ αsets

o if qE(t)
s+ > αsets and qE(t)

s− > αsets.

Concatenating the symbols across all time points in the experiment yields the gene
set activation profile

APs := [APs(1), . . . ,APs(T )] .

A profile like ’++oo--’ for a gene set s can easily be interpreted as overrepresentation
of up expressed genes for the first two time points in that gene set and enrichment
with down expressed genes for the last two time points, while the middle two time
point are not enriched with any of the two kinds of differentially expressed genes.
The direction (i.e. up or down expression) has always to be regarded as change with
respect to the reference and not to the previous time point in the examined time
series. In the following, this gene set activation profile algorithm is abbreviated with
2T-GSA.

Threshold-free Variant of the GSA-Type Activation Profile Estimation
The choice of the two thresholds αgenes and αsets has a substantial impact on the
resulting gene set activation profiles. It would be desirable if the researcher does not
have to choose a specific significance threshold. Further the activation profile should
be reasonable. Al-Shahrour, Carbonell, et al. (2008) propose for their Babelomics
web tool a threshold free enrichment test referred to as segmentation test. The
procedure proposed in the following is similar to the one in the article by Minguez,
Al-Shahrour, and Dopazo (2006), but the application in the article focuses on
identifying time intervals, where the genes in gene sets according to GO biological
processes are overexpressed. The method described in the following estimates a
symbolic activation profile for enrichment with down regulation and up regulation
in the considered gene sets.
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The procedure is based on an ordered list of features (e.g. genes or proteins)
according to their significance. This list is divided into two sets: on the one hand
the d most significant features and on the other hand the J − d other features,
for a varying d. Fisher’s exact test is applied on each partitioning of the gene
universe Ğ to identify a priori defined feature sets enriched with significant features.
The control of the FDR over all enrichment tests ensures a limited proportion of
false positive (FP) findings. The authors propose to test each feature set for 20
to 50 different values for d and assign the q-value of the most significant partition
as significance measure for the enrichment of the tested feature set. Al-Shahrour,
Díaz-Uriarte, and Dopazo (2005) present a more detailed description of the original
procedure.

The approach of the segmentation test is adopted to obtain an activation profile
procedure without the need to choose a specific threshold on the gene level. The
starting point is an ordered gene list according to the observed values of the shrinkage
t-test statistics

L
(t)
DE :=

{
g(1), . . . g(G) : Dshrink(t)

g(1)
≤ . . . ≤ Dshrink(t)

g(G)

}
.

Hence, the most down expressed genes with respect to the reference at time point
t are at the beginning and the most up regulated are at the end of the ordered
list. Since the number of enrichment tests is increased by the factor T (number of
time points), only 20 partitions are applied for the segmentation test. These are
defined by the 1, 4, . . . , 28 percentiles of the ordered gene list for the enrichment
with down expressed genes and analogously as 72, 75, . . . , 99 percentiles for the up
regulation. The FDR is controlled across all 40 ·T ·S enrichment tests by the
adaptive step-up procedure of Benjamini, Krieger, and Yekutieli (2006) at the level
αsets. In order to enable smoothing on the activation profile every gene set s is
assigned with two q-values from the step-up procedure, which are defined as

q̆
E(t)
s+ := min qE(t)

s,d , d ∈ {72, 75, . . . , 99},
q̆
E(t)
s− := min qE(t)

s,d , d ∈ {1, , 4, . . . , 28},
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where qE(t)
s,d denotes the q-value of the enrichment test using d as percentile for

partitioning the gene universe. This q-value definition assigns the q-value of the
most significant of the partitions considered. The activation profile is derived
analogously to the threshold variant of the approach

APtl
s (t) :=



+ if q̆E(t)
s+ ≤ αsets and q̆E(t)

s− > αsets

− if q̆E(t)
s+ > αsets and q̆E(t)

s− ≤ αsets

± if q̆E(t)
s+ ≤ αsets and q̆E(t)

s− ≤ αsets

o if q̆E(t)
s+ > αsets and q̆E(t)

s− > αsets

and concatenated across all time points in the experiment the gene set activation
profile for the non-threshold variant is defined as

APtl
s :=

[
APtl

s (1), . . . ,APtl
s (T )

]
.

This approach does not apply a single threshold for significance on the gene level,
but uses several thresholds for the partitioning of the gene universe. If the number of
tested partitions is not too large the power of detecting gene sets with an asymmetric
distribution across the ordered gene list may be higher than in the variant with a
single fixed significance threshold, despite the FDR control for a larger number of
tests. This approach is referred to as 1S-GSA algorithm in the following.

Threshold-Segmentation GSA-Type Activation Profile Estimation Considering the
Significance of Differential Expressed Genes
The simple threshold-free approach of the previous section using quantiles of the test
statistics for differential gene expression does not account for the significance of the
differences. Hence, the number of genes regarded for the gene set enrichment tests
is too large in case of only few genes changing their expression. In order to benefit
from both approaches, controlling the significance of the differential expression
with a threshold αgenes and the increased power from the segmentation test for the
identification of asymmetries in the gene set proportion of differential expressed genes,
the two methods are combined to a third method, which is called Two-threshold
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segmentation GSA-type activation profile algorithm (2S-GSA) method. Only those
genes, which are significantly differential expressed according to a TS-ABH FDR
threshold of αgenes are separated into ten segments at each extreme in order of their
test statistics Dshrink(t)

g at every time point. An enrichment test is applied for each
of these ten segments in up and ten segments in down regulation considering all
genes in the actual and in the more extreme segments as differential expressed. The
corresponding activation profile APts

s for a gene set s is constructed analogously to
the activation profiles APtl

s and AP.

4.3 Smoothing of GSA-Type Gene Set Activation Profiles

Due to the separate testing of the experimental time points activation profiles GSA-
type algorithms sometimes have an alternating structure (e.g. ’+o++o-o’). Such a
profile is hard to interpret and unlikely the biological truth for a process, especially
if the time points are close to each other. For instance in an embryonic development
microarray experiment it is not very likely, that a development process is turned on
and off repeatedly, but it is more likely, that the process has a starting point and an
end and is thereafter inactive in an adult individual. The reasons for alternating and
noncontinuous activation profiles are diverse. In a gene set including just a few genes,
the unavoidable variance in the differential expression of a single gene may cause the
misdetection of the enrichment with differentially expressed genes at a time point if
the gene is differentially expressed, but to a smaller amount than for the other time
points. The opposite case may also occur when one or more genes are randomly
differentially up expressed to a large extent and causes an overrepresentation with
up expressed genes in this gene set at the random time point. The small number
of replicates per gene increases this effect, but summarizing the information for all
genes of a gene set mitigates the influence of the single gene variation in particular
for gene sets of reasonable size. The enrichment approach provides a protection
against the influence of extreme outliers. Nevertheless, it is desirable to estimate a
reasonable non-fluctuating activation profile for gene sets of any size, in particular
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since the small sets are often the most specialized and hence more interesting for the
interpretation than the larger ones. A smoothing of the gene set activation profiles
of GSA-type yields more reasonable and interpretable profiles.
This section describes the methods considered for smoothing activation profiles

with an alternating unreasonable structure. The methods are originally designed for
the threshold variant of the GSA-type algorithm, but the summarizing methods are
also suitable for the non-threshold variant. The subprofiles considered for smoothing
are shown in Table 4.3. For each position considered for smoothing one of the
algorithms explained in the following is applied. Smoothing is only considered if a
non significant positions are adjacent to enriched positions with the same direction
of enrichment. Hence, in the profile ’+o+++-’ the second position is considered for
smoothing, but the last one is not. Smoothing is not considered if the lack of
significance (or the surplus) covers more than one position (e.g. in ’++oo++’) or
for smoothly changing profiles (e.g. in ’ooo---’). In case of long time series those
subprofiles may be reasonably considered for smoothing and the methods proposed
in the following can easily be adapted.
The strength of smoothing for the different algorithms is controlled by two

smoothing parameters λfill and λwipe, which have opposite influence of the smoothing
extent in dependence on the particular algorithm.

Table 4.3: Subprofiles in a gene set activation profile considered for smoothing. Two
directions of smoothing are distinguished. The fist smoothing direction in the second
and third column fills a enrichment gap in the profile (either for up expressed genes in
the second column or down expressed genes in the third column). The other smoothing
direction wipes out a significant enrichment for a single position in the activation
profile. The exact position considered for smoothing is emphasized by blue color.

direction fill wipe
position original smoothed original smoothed
begin o++.. +++.. +oo.. ooo..

o--.. ---.. -oo.. ooo..
middle ..+o+.. ..+++.. ..o+o.. ..ooo..

..-o-.. ..---.. ..o-o.. ..ooo..
end ..++o ..+++ ..oo+ ..ooo

..--o ..--- ..oo- ..ooo
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The smoothing methods can be divided into five categories, from which only
the first is also applied to the segmentation test variants (1S-GSA and 2S-GSA) of
the GSA-type gene set activation profile algorithm. All smoothing methods have
in common that they use the two adjacent profile positions to decide whether a
considered position is smoothed or not. The categories are

1. Summarization of the Fisher test q-values

2. Determination of gene continuity

3. Shift of genes in the Fisher test contingency table

4. Evaluating the distance from significance

5. Utilization of the sequential information in the time series.

Smoothing by Summarizing the Fisher Test q-Values
The first idea is to calculate a weighted mean of the (transformed) q-values of
the enrichment tests for the three time points around the position considered for
smoothing. The smoothing position is denoted as t. For simplification, we assume
in the following that t is neither the first nor the last time point. Let further be
APs(t) = + or APs(t− 1) = APs(t+ 1) = +, F the cumulative distribution function of
a standard normal distribution and F−1 its inverse. The weighted inverse normal
score mean (INSM) denoted by INSq

(t)
s+ is obtained as follows:

INS(t)
s+ := F−1(q(t)

s+)

INSq
(t)
s+ = F

0.5 INS(t−1)
s+ + wINS(t)

s+ + 0.5 INS(t+1)
s+

1 + w

 .
Hence, the weight is used for the inverse normal score of the q-value at the smoothing
position in contrast to the adjacent positions, whose weights sum up to 1. The
cumulative distribution function F projects the weighted mean back in the range of
q-values. The weight w is chosen according to the parameter λINS

wipe if APs(t) = + (and
APs(t− 1) = APs(t+ 1) = o) or as λINS

fill if APs(t) = o (and APs(t− 1) = APs(t+ 1) = +).
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This procedure is similar but different to Stouffer’s Z-score method with weights due
to the smoothing intention instead of an agreement for independent test decisions.
A natural alternative for the distribution function F would correspond to the χ2

distribution with one degree of freedom (due to testing in a 2×2 contingency table),
which is denoted by IXSq

(t)
s+. Applying a weighted geometric or arithmetic mean

directly to the q-values leads to similar results (GMq
(t)
s+ and AMq

(t)
s+).

Switching the position from APs(t) = o to APs(t) = + occurs only if INSq
(t)
s+ ≤ αsets,

and for the other direction smoothing occurs only if INSq
(t)
s+ > αsets.

Smoothing by Determination of Gene Continuity
The second idea for smoothing does not make use of a smoothing parameter. A
correction term is used to count all genes that are differentially up expressed in the
current gene set at time points t− 1 and t+ 1 but not for t, if APs(t) = o. In case of
APs(t) = + in the example setting above the correction term is given by the negative
number of genes in the gene set up expressed only for time point t but not for t− 1
or t+ 1:

ctconti :=


∣∣∣s ∩ ([DE(t+1)

+ ∩DE(t−1)
+

]
\DE(t)

+

)∣∣∣ , if APs(t) = o

−
∣∣∣s ∩ (DE(t)

+ \
[
DE(t+1)

+ ∪DE(t−1)
+

])∣∣∣ , if APs(t) = +
.

The enrichment test is recalculated for the new nconti
DE(t)

+ ∈s
= nDE(t)

+ ∈s
+ ctconti and

compensating the other contingency table entries under the condition of fixed
marginal sums.. The resulting p-value is transformed into a FDR-adjusted p-value
contiq

(t)
s+ as if all other enrichment p-values would have the same value as without

smoothing. The smoothing decision is made analogously to the inverse normal score
mean (INSM) method

contiAPs(t) =


o, if contiq

(t)
s+ > αsets ∧ APs(t) = +

+, if contiq
(t)
s+ ≤ αsets ∧ APs(t) = o

APs(t), otherwise.
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Thus, smoothing occurs only if the correction term leads to a significant q-value in
the case of filling the gap of significance in the profile or if the recalculation leads to
a non-significant q-value if the wipe out smoothing direction is used.

Smoothing by Shift of Genes in the Fisher Test Contingency Table
A shift of genes within the contingency table is the idea of the third method.
A correction term ctshift is used, similar to the gene continuity approach. Here,
in the case of potential smoothing, ctshift genes from the gene set are moved from
“differential expression” to “non-differential expression” or vice versa. The smoothing
parameter λwipe and λfill determine the proportion of genes shifted. In the exemplary
situations from above for a ’+o+’ subprofile or respectively a single ’+’ position
between two ’o’ positions the correction term is calculated as follows

ctshift :=


−max

{⌈
λwipe ·nDE(t)

+ ∈s

⌉
, nDE(t)

+

}
, if APs(t) = +

max
{⌈
λfill · (|s| − nDE(t)

+ ∈s
)
⌉
, G− nDE(t)

+

}
, if APs(t) = o

with d· e denoting upper Gaussian brackets and time point t as the middle time
point, which is considered for smoothing. It is bounded by the total numbers of
genes in the gene set and the total numbers of differentially up regulated genes at t
and the total number of the complementary not up expressed genes. Analogously to
the gene continuity smoothing the next step is the recalculation of the enrichment
test with

nshift
DE(t)

+ ∈s
= nDE(t)

+ ∈s
+ ctshift

and compensating the other contingency table entries under the condition of fixed
marginal sums. The resulting p-value is transformed into a q-value shiftq

(t)
s+ as if all

other enrichment p-values would have the same value as without smoothing. The
smoothed position shiftAPs(t) is determined analogously to the gene continuity and
q-value summarizing approaches.
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Smoothing by Evaluating the Distance from Significance
The fourth method calculates the “relative distance from significance” for the number
of differentially expressed genes in a gene set s at a time point t, where smoothing is
considered. A small distance should be an incentive for smoothing. In the example
situation of above, in which the smoothing method has to decide between enrichment
with up regulated genes (APs(t) = +) or no enrichment (APs(t) = o) the term

ňDE(t)
+ ∈s

:= min
{
nDE(t)

+ ∈s
: q

E(t)
s+ ≤ αsets

}

denotes the boundary for significant enrichment for gene set s at time point t. The
expression

d
(t)
s+ :=

nDE(t)
+ ∈s
− ňDE(t)

+ ∈s

min{|s| − nDE(t)
+ ∈s

, nDE(t)
+
− nDE(t)

+ ∈s
}

gives a distance from significant enrichment with up regulated genes, with respect
to the residual number of genes in group s and with respect to the residual number
of up regulated genes. This distance determines the smoothing decision depending
on the two threshold values λfill and λwipe:

distAPs(t) :=


o, if d(t)

s+ ∈ [0, λwipe) ∧ APs(t) = +

+, if d(t)
s+ ∈ [−λfill, 0) ∧ APs(t) = o

AP(t)
s , otherwise.

Smoothing by Using the Sequential Information in the Time Series
The last smoothing algorithm utilizes the sequential structure of the time series
to perform smoothing. For a gap time point t, associated for instance with a sub
profile ‘o+o’ (at time points t− 1, t, t+ 1) we test for differential gene expression
between time points t− 1 and t as well as for differential gene expression between
time points t and t + 1. More explicit, the corresponding gene set s is analyzed
with respect to an enrichment with differentially expressed genes, comparing time
point t with its two neighbors, respectively. This analysis can be performed in an
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undirected or directed manner. In the directed case, in the example, we test twice
for an enrichment with up regulated genes at time point t, once compared with time
point t− 1 and once with time point t + 1. For testing, the same combination of
shrinkage t-test and Fisher’s exact test as in the standard profile algorithm before
smoothing is used, while controlling the FDR at both the gene level and the gene
set level. If both comparisons yield no significant enrichment with respect to the
FDR thresholds αwipe (if APs(t) = +) or αfill (for APs(t) = o), then smoothing is
applied. In the undirected manner the direction of differential expression is not
taken into account and therefore two sided shrinkage t-tests are applied before the
enrichment tests. In order to control the FDR all gene sets considered for smoothing
at any of the examined time points have to be tested parallel for the enrichment
with sequential differential expression with respect to the corresponding neighboring
time points.

4.4 Ranking of GSA-Type Gene Set Activation Profiles

The outcome of the GSA-type gene set activation profile algorithms is an activation
profile per gene set. The combination of the gene set defining knowledge and
the estimated profile can be used to identify interesting findings and to generate
new hypotheses about the molecular genetic processes in the examined time series.
However, if the number of examined gene sets S is large, a ranking of the non-
constant-’o’ profiles would facilitate the analysis of the results. In order to identify
gene sets with a conspicuous enrichment with up expressed genes and discriminate
those from noticeable extreme findings with down regulated genes with respect
to the reference a score is proposed, which summarizes the shrunken t-statistics
for the significantly differentially expressed genes in the direction indicated by the
current profile position. The summarization is done by calculating the mean over
the medians of the statistics at the enriched time points and the score is denoted by
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Dmed
s for gene set s. It is defined by

Dmed
s := 1

|{t : APs(t) /∈ {’o’,’±’}}|
∑

t : APs(t)/∈{’o’,’±’}
median

{
Dshrink
g : g ∈ DE(t)

APs(t)
⋂
s
}
.

Both extreme tails of the Dmed
s score ranking are interesting. Low values for Dmed

s

indicate a clear under expression with respect to the reference at the stated positions
in the profile and a high value gives a hint towards clear over expression. It has to
be noted, that an activation profile, which has both enrichment types for instance
’+++–-’ would not achieve an extreme Dmed

s score. A second score accounts for
this by using the absolute test statistic values, which causes a loss of the direction
information, but allows a reliable ranking for mixed profiles

D|med|
s := 1

|{t : APs(t) 6= ’o’}|
∑

t : APs(t)/∈{’o’,’±’}
median

{∣∣∣Dshrink
g

∣∣∣ : g ∈ DE(t)
APs(t)

⋂
s
}
.

In praxis, both scores tend to rank small gene sets higher than larger ones. DE(t)
APs(t)

is used as the gene set corresponding to the most significant partition in the direction
indicated by the profile position APs(t) in the segmentation test variants of the
GSA-type activation profile algorithm.

4.5 Rotation-Test-Type Algorithm for Determining Gene Set
Activation Profiles

GSEA is one of the most popular gene set enrichment test approaches, but its
significance assessment is based on permutations, which cannot be applied even
on the time point wise comparison to reference testing, if the number of replicates
is small as is standard for time course microarray experiments. Dørum, Snipen,
et al. (2009) applied the rotation testing approach on the GSEA analysis of two
color microarray experiments for direct and indirect comparisons on the same chip



58 4 Estimating Temporal Activation Profiles of Gene Sets

(i.e. each array is hybridized with a common reference for both conditions or the
conditions are compared directly on the same wafer). The rotation test approach
was rediscovered and expanded in the linear model framework by Langsrud (2005).
Here it is used to apply the GSEA approach on the time point wise comparison of
gene expression with respect to reference in order to identify significant gene sets,
in which the up regulated or down expressed genes are overrepresented, while the
significance is obtained from rotation of the data instead of permutation.
The input for the GSEA algorithm is a ranked gene list of association measures

(correlation, signal-to-noise ratio etc.) with the phenotype (Subramanian, Tamayo,
et al. 2005). Here, the shrinkage t-statistics per time point t similar to the proposal
of Dørum, Snipen, et al. (2009) are considered directly. In order to aggregate the
differential expression information for a gene set s two statistics similar to the
maxmean statistic proposed by Efron and Tibshirani (2007) are used.

ES(t)
s− := 1

|s|
∑
g∈s

min
{
Dshrink(t)
g , 0

}
ES(t)

s+ := 1
|s|
∑
g∈s

max
{
Dshrink(t)
g , 0

}
.

The significance assessment is done in contrast to the original permutation approach
by a rotation test approach, in which the J × T matrix of shrunken t-statistics

Dshrink =


D

shrink(1)
1 · · · D

shrink(T )
1

...
D

shrink(1)
J · · · D

shrink(T )
J



across all time points is rotated by a random J × J rotation matrix Q and the
enrichment scores (ES(t),k

s− , ES(t),k
s− ) are recalculated for each set s and time point t.
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This is repeated for K = 1000 random rotations. The normalized enrichment scores

NES(t)
s− := ES(t)

s−

1/K∑K
k=1 ES(t),k

s−

NES(t)
s+ := ES(t)

s+

1/K∑K
k=1 ES(t),k

s−

are determined for all gene sets and time points and analogously for the rotated
enrichment scores (yielding NES(t),k

s− , NES(t),k
s+ ) in order to remedy gene set size

effects.
The calculation of a gene set enrichment q-value at time point t according to

Subramanian, Tamayo, et al. (2005) uses the distribution of NES(t),k
s+ (and NES(t),k

s+

for the up expression direction) over all K ·T ·S values as null distribution. The
q-values are computed by

q̌
E(t)
s− := min


∣∣∣NES(t),k

s− ≤ NES?−
∣∣∣ /K∣∣∣NES(t)

s− ≤ NES?−
∣∣∣ /S , 1


q̌
E(t)
s+ := min


∣∣∣NES(t),k

s+ ≥ NES?+
∣∣∣ /K∣∣∣NES(t)

s+ ≥ NES?+
∣∣∣ /S , 1


across all values for s ∈ {1, . . . , S}, t ∈ {1, . . . , T}, k ∈ {1, . . . , K}, while
NES?− = NES(t),k

s− (NES?+ = NES(t),k
s+ ) denotes the fixed normalized enrichment score

value for the gene set s at time point t. The rotation test type activation profile
AProt

s is estimated analogously to the GSA-type profiles (see section 4.2):

AProt
s (t) :=



+ if q̌E(t)
s+ ≤ αsets and q̌E(t)

s− > αsets

− if q̌E(t)
s+ > αsets and q̌E(t)

s− ≤ αsets

± if q̌E(t)
s+ ≤ αsets and q̌E(t)

s− ≤ αsets

o if q̌E(t)
s+ > αsets and q̌E(t)

s− > αsets.

A potentially necessary smoothing step is applied according to the smoothing of
the non-threshold GSA-type algorithm in section 4.3. The ranking is obtained
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by considering those genes as significant, which have a more extreme shrinkage
t-statistic value than the corresponding significant enrichment score ES(t)

s− or ES(t)
s+.

This promising approach is not given any further consideration in this thesis due to
its expected huge computational effort in the conducted simulation studies.

4.6 Modified STEM Algorithm for the Identification of Active
Gene Sets

The Short Time-series Expression Miner (STEM) is originally a web-tool for clus-
tering gene expression time trajectories according to their similarity with model
profiles (Ernst and Bar-Joseph 2006). The model profiles are determined indepen-
dent from the data, which allows for significance assessment by permutation testing.
Independently defined gene sets can be tested for enrichment with genes from one or
more (significant) model clusters by the standard Fisher test (see section 4.1). The
standard STEM procedure clusters only the dynamics of gene expression in time
(i.e. changes of gene expression over time), but not the level of gene expression. The
STEM procedure was originally designed for simple time series experiments without
replicates and therefore the variance of replicated measurements is not considered.

The original STEM algorithm by Ernst, Nau, and Bar-Joseph (2005) is modified
in this thesis in order to not only capture the dynamic of gene expression in time,
but also the (relative) level of gene expression at the time points in the time series
experiment. The main differences are the used similarity metric and the slightly
different generated model profiles.

The input for the STEM algorithm is a matrix with one value per gene and time
point. Here, the median of the replicates of gene expression differences with respect
to the available reference for each gene and time point is used. The median gene
expression differences may vary strongly between the genes under consideration.
Therefor, the median gene expression difference values are rescaled to the interval
[−1, 1] per time point in order to preserve the information about both the relative
level of gene expression and the dynamic in the course of time. This rescaled median
gene expression difference matrix is the input in the clustering step.
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The model profiles are generated in a similar way as in the original STEM
algorithm. The step width sw and the number of time points T determines the
number of potential model profiles. The original STEM procedure started at 0 (first
time point as reference for all other time points) and allowed at each time point a
whole numbered change of up to sw. In the modified version, which is used here,
the difference to an external reference is considered (compare section 2.3), hence the
first time point may have already a high difference to the reference. Therefor, the
starting point of the potential model profiles is an arbitrary value of the set{

2(i− (T + 1)/2)
T − 1 : i = 1, . . . , T

}

and the step width allowed to change the value in the model profile between two
adjacent time points is 2/T−2. The total number of generated model profiles is given
by

T · 3T−1.

Only such generated profiles are considered as model profiles, which are non-constant
and do not exceed the admissible interval of [−1, 1]. This number is still high, if
T grows (e.g. 702 for T = 6). Ernst, Nau, and Bar-Joseph (2005) propose to use
only a small selection of model profiles as cluster prototypes. Here, the number of
cluster prototypes is fixed to 40. The selection is chosen with a greedy algorithm,
which maximizes the minimum of the pairwise measured distance dSTEM between
two profiles of the selection. The applied distance function between two vectors y1

and y2

dSTEM(y1, y2) =

0.5 · ∑T
t=1

|y(t)
1 −y

(t)
2 |

T
, if y = const ∨ y2 = const

0.25 · (1− cor(y1, y2)) + 0.5 · ∑T
t=1

|y(t)
1 −y

(t)
2 |

T
, else

sets more attention on the profile level in relation to the profile shape in contrast to
the just correlation based proposal by Ernst, Nau, and Bar-Joseph (2005).
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In the following clustering step each gene is attached to the model profile, which
minimizes the distance dSTEM between the corresponding model profile and gene
vector from the gene expression difference matrix. A significance assessment for
the resulting clusters is achieved by a permutation test, which repeats the cluster
attachment for all permutations of the time points and calculates a p-value for each
cluster cli

pcli
STEM = P (X ≤ |cli|) X ∼ Bin

(
G,

∑T !
p=1|cl

p
i |

J ·T !

)
,

where |clpi | denotes the number of genes annotated to the ith model profile in the pth

permutation. An adjustment for multiple testing is done with the TS-ABH FDR
procedure and an FDR bound of 0.01 is controlled.
The last step is an enrichment test analogously to the test in section 4.1. Each

gene set is tested for enrichment of genes attached significant (FDR q-value below
0.01) gene clusters. The resulting p-values are adjusted for multiple testing with the
TS-ABH FDR method. Only those gene sets are considered as significantly enriched
with genes from one or more significant model clusters, if the corresponding FDR
q-value is below 0.01.

The major disadvantage of the STEM procedure is the circumstance, that constant
profiles (indicating no difference or constant difference to the reference) cannot be
captured in a constant model profile, since the time point permutation would not
affect such profiles. Ernst, Nau, and Bar-Joseph 2005 face this issue with an extensive
gene filtering procedure, which only selects dynamically changing genes. This type
of filtering is not used in this work.



4.7 The maSigFun Algorithm 63

4.7 The maSigFun Algorithm for the Estimation of Regression
Profiles for Gene Set Activity

M. Nueda, Sebastián, et al. (2009) describe three algorithms to analyze gene expres-
sion time series data on gene sets. The most simple approach is termed maSigFun.
It is the only one, which directly allows to report a gene set activation profile. The
method is based on a two-stage regression approach considering the gene set genes as
different observations of an underlying gene set expression profile. In this thesis the
dependent variable includes the differences in gene expression to the reference and
the time is the only independent variable in the regression model. In general, other
covariates can be included in the maSigFun procedure. The expression values of genes
within a set may vary strongly. Hence the data matrix is gene-wise standardized to
mean 0 and variance 1. Subsequently to the standardization the procedure follows
roughly the maSigPro algorithm of Conesa, M. J. Nueda, et al. (2006).
In the first stage a full linear regression model of polynomial degree 3 is fitted.

The gene sets are selected for the second stage if the F -test for the significance of
the link between gene expression differences to reference and the time factor can be
controlled by a TS-ABH FDR limit of 0.01.
The second stage uses variable selection (i.e. backward elimination) to improve

the model of the first stage in the selected gene sets. In this thesis, the variable
selection refers to the determination of the polynomial degree of the model. If the
unadjusted measure of determination R2 is larger than a moderate threshold, the
corresponding gene sets are considered as significant. Here the threshold is fixed at
0.5.
The maSigFun procedure identifies gene sets with a high level of co-expression

among the included genes. The fitted regression model represents the theoretical
temporal activation profile for the gene set based on the regression coefficients. This
can be compared with the median gene expression values in the gene set over time.
The main disadvantage of this method is the assumption that all genes included in
a particular gene set follow the same expression profile, which is not necessarily true
for all gene sets.





Chapter 5
Simulation Study

In time-course microarray experiments the truth is neither known for the activation
on the gene level nor for the activation on the more general level of pathways or
biological processes. Spike-in and dilution data sets were used for the validation of
microarray preprocessing methods. In the field of gene expression time series no such
study is known to the author and this approach would hardly be able to properly
model the complex reality of molecular genetic changes in living organisms. Hence,
simulations are an often used procedure to validate and compare analysis methods
for microarray time series. Due to the dependencies in the gene regulatory networks
and the interaction of genes, the commonly used approach to model a simple pattern
with normally distributed error seems not to capture the true molecular biology in
real cells.
The idea of Törönen, Pehkonen, and Holm (2009) to utilize the original gene

expression value from a real gene expression experiment in the case of gene set
testing in the two classes design is introduced in section 5.2. This idea is modified
for the situation of gene expression time series in two ways. The results for the
two conducted simulation studies are presented in sections 5.3 and 5.4. The next
section introduces the four gene expression time series experiments, whose data was
recycled in the two simulation studies.
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5.1 Short Characterization of the Four Recycled Example Data
Sets

Four gene expression time series experiments are used in this thesis; on the one hand
for applying the proposed methods and on the other hand as data basis for the two
large simulation studies. The data sets are all publicly available for free from the
above mentioned GEO data base. Mice are the subjects of all experiments, although
there is a large variety of species in gene expression time series (see Figure 2.3). The
species mus musculus is the higher mammal, which is widely used in biology as model
organism for analyzing the molecular genetics of mammals in general and human
diseases in particular. The commonly used inbred strains have a very homogeneous
genome. Therefore, they promise more reproducible gene expression values than
wild strains or humans. Particularly, the fixed species and technology allows to
draw conclusions from the data characteristics and different methods instead of
confounding effects from different species or different Affymetrix arrays.
The original data of four different gene expression time series is reused for the

two simulation studies in this chapter. The data sets differ in main characteristics
like the number of time points, the type of reference, the availability of replicates
and slightly with respect to the gene set universe due to filtering as is displayed in
Table 6.1 on page 140. All data sets result from mouse experiments with hybridized
Affymetrix mouse 430 2.0 arrays. The common preprocessing, the gene filtering, the
gene annotation, a detailed description including number of differentially expressed
genes and significant sets are given in chapter 6. Each data set is briefly described
in the following.

Aldosterone Heart Data Set (AH)
The GEO series GSE3440 provides data from a time series study conducted to
analyze the effect of Aldosterone on the gene expression of mouse heart cells. Two
groups of mice were examined in the experiment. The treatment group received
an injection with a single dose of 10 µg/kg Aldosterone, whereas the control group
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received the vehicle only. The mixed tissue of the hearts of five individuals per
group was hybridized on a single microarray for the time points 0.5, 1, 2, 3, 4, 5,
and 12 hours after injection. Hence, there are two measurements per time point
and gene available, one for the treatment group and one for the control group. The
lack of replicates requires to define significant differential expression by fold change.
The differences in gene expression between the two conditions are relatively small
across all time points. Therefore, exceeding a fold change of 1.5 is used as definition
for significant differential expression on basis of the gcRMA gene expression values.
This definition yields a moderate number of 173 to 903 up or down expressed genes
per time point as shown in Figure 6.5. The simple design of the experiment reduces
the expected variety of different gene set activation profiles. The missing replicates
hamper the validation of the differential expression, which cannot be compensated
by the complete reference time series. Nevertheless, this is a typical study design
and the simulations may reveal the abilities of the competing algorithms to explore
significant activation profiles in such a data situation.

Ovary Development Data Set (OD)
The embryonic development of mouse ovaries is the focus of the second experiment.
The GEO series GSE5334 includes 19 raw data .cel-files of hybridized Affymetrix
mouse 430 2.0 arrays. The RNA from the ovaries of three individual female mice was
examined at six time points: gestational days GDs 11, 12, 14, 16, 18 and postnatal
day PN 2. In contrast to the three replicates per time point only a single chip is
available as reference, whereas a mixed tissue sample of whole body RNA from
four male and four female mice 12 hours after birth was hybridized. Despite the
particular type of tissue in the focus of the experiment, a large number of genes show
significant differential expression as is demonstrated in Figure 6.6. This relatively
strong expression activity is observed due to the early stage in the ontogenesis and
leads to a high number of significant gene sets. Hence, it can be expected that
not all identified sets are closely related to the research question, but those sets
are very likely involved in the general embryonic development. The interest in the
performance of the profile algorithm in such a situation of overwhelming signals is
one reason for selecting this data set for the simulation studies.
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Skin Healing Data Set (SH)
The skin healing data set is one part of the gene expression experiment stored in
the GEO series GSE23006. The study was originally conducted to identify the
genetic differences between wound healing on skin and mucosa (on tongue). Here,
the gene expression information is split in two time series for each type of wounded
tissue. The first data set considers only the chips related to mice with wounded
skin. Three biological replicates are available before wounding and at time points
6 h, 12 h, 24 h, 3 d, 5 d, 7 d and 10 d after wounding. In contrast to the question
of the original study, here the focus lies on the changes during the healing of the
wounded skin in relation to the unwounded skin. The number of TS-ABH FDR
adjusted differentially expressed genes is small, between 2 and 30 for down regulation
and 8 to 132 for up expression (see Figure 6.7). However, the design of experiment
provides comparatively many measurements with three replicates for the reference
and each time point. The profile algorithms have to prove in the two simulation
studies whether the resulting profiles for the gene sets are robust and reliable in a
study with a very limited number of differentially expressed genes.

Tongue Healing Data Set (TH)
The second gene expression time series data set extracted from the GEO series
GSE23006 is focused on the molecular genetic changes during the healing of the
mucosa on mice tongues. The experimental design is identical to the SH data set
yielding a total of 24 hybridized Affymetrix mouse 430 2.0 arrays – three replicates
for the reference and each of 7 time points. Although originating from the same
study, the number of differential expressed genes is much higher for the tongue
healing group than for the skin healing cohort. The exact values are reported in
Figure 6.8 (97 to 1072 genes). The total numbers are significantly smaller than in
the ovary development data set, but regarding the fact that replicates are available
for each measurement this is almost an ideal data situation among the available
studies in data bases. Recycling those data and creating simulated gene sets with
corresponding inputed activation profiles should lead to signals that can be found
by all considered algorithms.
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5.2 Construction of a Gene Set Simulation Study by Recycling
of Given Gene Expression Time Series Data

There is no commonly accepted approach for simulating gene expression time series
data in the context of gene sets. The proposed simulation strategies adopt the
idea from Törönen, Pehkonen, and Holm (2009). It is proposed to use a real gene
expression data matrix for the generation of Gene Ontology benchmark datasets
with various types of positive signal. The simulation approach is called POSGODA.
It is based on the gene expression data from an experiment with two classes and the
GO gene set definitions. Briefly described, the algorithm in the first step randomly
chooses gene sets, which are not highly correlated (the intersection of the two sets is
empty or includes only few genes) and suitable to assume an enrichment p-value
in the parameter interval for positive enrichment signal. In the second step the
determined gene set signal p-value is approximately obtained by declaring significance
for the corresponding number of genes in the gene set.

The approach for the two conditions gene set simulations is adapted and expanded
to the time course design in two different ways. The intention is to stay as close as
possible to the real gene expression time series situation while enabling the control
of the gene set temporal activity. This activation profile has either the form of a
symbolic enrichment with up or down expressed genes for the time points, it follows
a regression profile found by the maSigFun approach (see section 3.3, page 34) or
comes from a model profile by the STEM approach (see section 3.2, page 32).
The construction of two simulation studies is described in the following sections.

The first evaluates the performance of the five profile algorithms in a setting of
an artificial gene set universe with fixed gene set size. A controlled number of
independent gene sets includes an a priori defined proportion of genes, which
contribute to a significant activation profile in the analysis of the four chosen data
sets. The spiked-in genes and the non-informative genes are recycled as complete
vector across all time points to create the data matrix in each simulation step. Hence,
the correlation between time points is preserved in the first simulation study.



70 5 Simulation Study

The second simulation is conducted for the evaluation of the smoothing algorithm
in the GSA-type algorithms. This is done in the framework of a gene set analysis
within the same gene set universe as used in chapter 6. The complete data matrices
from the four original experiments are recycled in each simulation step, in a way that
allows to input enrichment for chosen gene sets per permuting the gene expression
values per time point. Since the permutation occurs per time point, the original
dependence structure between the time points is lost. The gene sets defined by GO
are not independent, since all genes annotated to a GO term in a lower level are
also annotated to their ancestor terms in the directed acyclic graph representation.
This results in false positive results of the form, that a set not preset to a certain
activation pattern is active due to the high number of genes, which are shared with
its active neighbor gene set. Therefore, the second simulation type with dependent
gene sets is used for the comparison of the different smoothing algorithms in contrast
to the accuracy comparison of activation profile procedures on independent artificial
gene sets in the first simulation.

Simulation to Compare the Profile Algorithms

The first simulation study is conducted to compare the five competing gene set anal-
ysis methods: the Two-threshold GSA-type activation profile algorithm (2T-GSA),
the One-threshold segmentation GSA-type activation profile algorithm (1S-GSA),
the Two-threshold segmentation GSA-type activation profile algorithm (2S-GSA),
the modified STEM algorithm and the maSigFun procedure with each other. The
GSA-type methods are applied without smoothing. The simulation results are shown
in section 5.3.
The simulation is used to reveal the differences of the profile algorithms with

respect to their sensitivity to gene set size, their proportion of active genes in the
gene sets and the proportion of active gene sets in the whole gene set universe.
Independent gene sets are used to compare the performance of the five competitors
in order to avoid effects resulting from gene set overlap. In accordance with the
idea from Törönen, Pehkonen, and Holm (2009), which inspired the simulation
study for the evaluation of the smoothing methods, the data from original gene
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expression studies is recycled. In contrast to the second simulation study, the time
points are not considered independently, but the gene expression trajectories in
time are considered as units. Those gene expression trajectories which fit well to
the significant gene set activation profile of their own gene set are spiked-in into
artificial gene sets together with genes whose time trajectory does not show any
clear differential expression with respect to the reference. The algorithm for one
complete simulation turn is illustrated in Figure 5.1 and is described in more detail
in the following.

Input for the Simulation Algorithm for the Comparison of Profile Algorithms
The simulation study conducted for comparing the five competing profile algorithms
(maSigFun, STEM, 2S-GSA, 1S-GSA, 2T-GSA) is based on the real gene expression
time series experiments briefly described in section 5.1 (more details in chapter 6).
As shown in nodes one to three in Figure 5.1 a profile analysis applying each of the
five competing algorithms is carried out separately for the underlying gene expression
matrix of the selected data set (one of AH, OD, SH or TH).

The resulting significant gene sets of GSA-type are filtered to omit too small or too
large sets as prototypes for active gene sets in the simulation study. The gene sets are
limited to include at least 10 and at most 500 genes. Moreover, the activation profiles
of significant sets are filtered to include a minimum number of non-zero positions in
the activation profile in order to include only those significant sets as prototypes,
which are probably not identified by chance. In contrast to the second simulation
study the prototypes are not selected for their continuous activation profile, though
this type of profile results more often from the profile analysis of experimental data.
The significant gene sets resulting from STEM are only filtered according to the gene
set size limits mentioned above, whereas the few significant maSigFun gene sets are
not filtered at all. The gene set numbers per data set resulting from filtering (block
four in Figure 5.1) are listed in Table 5.1. Unfortunately, there are no significant
gene sets arising from the 2T-GSA and maSigFun algorithms after applying the
filtering procedure for the AH data. However, the data set investigating the effect
of aldosterone on the mouse heart gene expression experiment is included in the
simulation study.
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Figure 5.1: Simulation algorithm flow chart of the simulation for the comparison of
the competing profile algorithms.
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Profile analyses and filtering yields a number of SmaSigFun maSigFun prototypes,
SSTEM STEM prototypes, S2S−GSA 2S-GSA prototypes, S1S−GSA 1S-GSA prototypes
and S2T−GSA 2T-GSA prototypes. These are used as input in the simulation algo-
rithm (nodes six to ten in Figure 5.1) to select one prototype per algorithm for the
artificial active gene sets in the simulation data set.

Since only a certain proportion of gene sets in the simulation is supposed to obtain
an active differential expression profile with respect to the reference, non-differential
genes are needed. It would be too optimistic, if this set of genes would consist
only of those genes with a small agglomerated difference to the expression values
of the reference measurements. In the simulation all those genes are regarded as
uninformative or inconspicuous, which are not annotated to any of the prototype
gene sets. It has to be noted that some of these genes might be differential at some
time points, in particular if they are included in gene sets skipped by the filtering
process. This definition adds noise and allows for the occurrence of false positive
findings by the profile algorithms in the simulation study. The inconspicuous genes
are denoted by ǧ1, . . . , ǧŇ as illustrated in block five of Figure 5.1.

Table 5.1: Gene set numbers resulting from the filtering for the simulation study
to compare the five profile algorithms. All STEM and maSigFun gene sets are kept.
Only gene sets with a minimum of non-zero position are used as prototype in the
simulation study for the GSA-type algorithms and additionally the obtained groups
must fulfill the gene set size limits to be selected.

AH OD SH TH
min set size 10 10 10 10
max set size 500 500 500 500
min non-zero pos (GSA algorithms) 3 4 4 4
selected sets
2T-GSA 0 538 3 155
1S-GSA 3 705 205 413
2S-GSA 1 681 12 247
STEM 1 85 87 9
maSigFun 0 3 4 3
genes not in selected sets 12,439 3288 5861 5982
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The simulation parameters shown in field eleven of Figure 5.1 control the common
gene set size |s|SIM of all gene sets, the proportion of active gene sets pas and the
proportion of active (i.e. differentially expressed) genes pag in active gene sets in
the artificial gene set universe of the simulation. The parameter values are given in
Figure 5.1.

Generation of the Simulation Data Set
The simulation algorithm for the comparison of the five competing profile algorithms
generates an artificial gene expression matrix and the corresponding annotation to
artificial equal sized gene sets. The number of gene sets is determined by the number
of prototypes (one for each algorithm) and the proportion of active sets. Assuming
that five prototypes are available (for AH data the prototypes for maSigFun and
2T-GSA algorithms are missing, see Table 5.1) the number of gene sets in the
simulation data set is given by

SSIM = 5/pas

and the gene set size for each set is fixed at |s|SIM genes as shown in block 12 of
Figure 5.1.

The next step (node 13 in Figure 5.1) determines the inconspicuous genes for the
simulation study. The total number (assuming five prototypes) of

Go
SIM = (SSIM − 5 + 5 · [1− pag]) · |s|SIM

inconspicuous genes is selected randomly from the Ň inconspicuous genes identified
in step 5 of Figure 5.1, if Go

SIM ≤ Ň is fulfilled. The probability for selecting gene g
is given by

rog∑GoSIM
g=1 rog

,

where rog denotes the rank of sum of absolute gene expression differences to reference
for gene g. If Go

SIM > Ň , a number of Ň − Go
SIM genes is created by randomly
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selecting gene expression values per time point from the Go
SIM genes and used as

artificial uninformative gene expression trajectories in addition to the available Go
SIM

inconspicuous genes.
In order to obtain a proportion of pas gene sets with spiked in differentially

expressed genes a single prototype gene set from each of the five profile algorithms is
selected in each simulation turn. Beginning with selecting smaSigFun

? from the SmaSigFun

prototypes resulting from the maSigFun algorithm, a single set is randomly chosen
and deleted from the prototype candidates for the subsequent algorithms. The
selection order follows the top-down order of Figure 5.1 (maSigFun, STEM, 2S-GSA,
1S-GSA, 2T-GSA). The probability for selecting a set as prototype depends on its
size and the simulation parameter |s|SIM. It is given for the maSigFun algorithm
(analogously for the other algorithms) by

rmaSigFun
smaSigFun∑SmaSigFun

smaSigFun=1 r
maSigFun
smaSigFun

, rmaSigFun
smaSigFun := 1 + SmaSigFun − rank

(∣∣∣∣∣ |s|maSigFun

|s|SIM
− 1

∣∣∣∣∣
)

resulting in higher selection probability, when the prototype gene set size is similar
to the gene set size defined by the simulation parameter |s|SIM. Hence, the selection
process symbolized in block 14 of Figure 5.1 results in five prototype sets smaSigFun

? ,
sSTEM
? , s2S−GSA

? , s1S−GSA
? , s2T−GSA

? , which have shown significant profiles in the
analysis of the original gene expression time series experiment.

In step 15 of the flow chart in Figure 5.1 each active gene set obtains a total number
of pag · |s|SIM genes from the corresponding prototype selected in the previous step in
the simulation algorithm. The selection of spiked in gene expression values depends
on the underlying profile algorithm of each prototype set and the number of available
genes in the prototype set:

maSigFun

if |s|SIM · pag ≤ |s|maSigFun
? :

Include a random sample of |s|SIM · pag genes from the prototype set
smaSigFun
? into the artificial active gene set s̃maSigFun. The sample probabil-
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ity for a gene g from smaSigFun
? is chosen as

rmaSigFun
g∑|s|maSigFun

?
g=1 rmaSigFun

g

, rmaSigFun
g := |s|maSigFun

? + 1− rank(RSSg)

where RSSg denotes the residual sum of squares for the single gene g and
the model given from the maSigFun algorithm for the prototype gene set
smaSigFun
? . This allows for favoring genes with a good fit to the determined
gene set regression model.

if |s|SIM · pag > |s|maSigFun
? :

Sample λSIM
i from the interval (0, 1) and the two genes gSIM−1

i 6= gSIM−2
i

from smaSigFun
? for i = 1, . . . , |s|SIM · pag − |s|maSigFun

? . Include the convex
combinations

λSIM
i xgSIM−1

i
+ (1− λSIM

i )xgSIM−2
i

as artificial gene expression vectors in addition to the |s|maSigFun
? available

informative genes in the artificial gene set s̃maSigFun. This generation of
artificial genes provides intermediate gene expression trajectories similar
to those in the set. They will fit the maSigFun regression model if the
two sampled genes from the set smaSigFun

? fit the model, too.

STEM

if |s|SIM · pag ≤ |s|STEM
? :

Include a random sample of |s|SIM · pag genes from the prototype set
sSTEM
? into the artificial active gene set s̃STEM. The sample probability
for a gene g from sSTEM

? is chosen as

rSTEM
g∑|s|STEM

?
g=1 rSTEM

g

, rSTEM
g := |s|STEM

? + 1− rank
(
dSTEM(dg, m̂STEM

? )
)
,

where dg denotes the vector of differential expression across time points
(log2 FC or Dshrink

g ). This ensures that genes with a smaller distance to
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the prototype model profile m̂STEM
? annotated to sSTEM

? is selected more
likely than a gene with a larger distance.

if |s|SIM · pag > |s|STEM
? :

Spike in the gene expression values from all genes included in sSTEM
? and

include additional |s|SIM · pag − |s|STEM
? expression vectors from genes

annotated to the same model profile as sSTEM
? .

2S-GSA if |s|SIM · pag ≤ |s|STEM
? :

Include a random sample of |s|SIM · pag genes from the prototype set
s2S−GSA
? into the artificial active gene set s̃2S−GSA. The sample probability
for a gene g from s2S−GSA

? is chosen as

r2S−GSA
g∑|s|2S−GSA

?
g=1 r2S−GSA

g

with

r2S−GSA
g := rank

(
dTg ÃPs2S−GSA

?

)
and ÃPs(t) =


1 , ifAPs(t) = +

−1 , ifAPs(t) = −

0 , ifAPs(t) = o

.

This choice prefers genes, which follow the activation profile of s2S−GSA
?

to a more extreme extent, though ignoring non-differential positions.

if |s|SIM · pag > |s|2S−GSA
? :

Spike in the gene expression values from all genes included in s2S−GSA
? and

include additional |s|SIM · pag − |s|2S−GSA
? expression vectors from genes

annotated to gene sets with the same activation profile as s2S−GSA
? . If the

number of these additional genes is not sufficient, add all genes from sets
with the same activation profile and add the missing genes by successively
reducing the necessary number of positions agreeing with the activation
profile of s2S−GSA

? . It has to be noted that the gene choice depends on the
activation profiles of the gene sets and not on the differential expression
of the genes included in those sets.
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1S-GSA analogously to 2S-GSA

2T-GSA analogously to 2S-GSA

The steps 12 to 15 in Figure 5.1 result in a new gene expression matrix and
annotation information for 5/pas artificial gene sets of size |s|SIM as shown in field 16.
It has to be emphasized that the rows in the new matrix have whenever possible a
corresponding row with identical expression values in the data matrix of the original
experiment.

Run Profile Algorithms on Simulation Data Set
The artificial gene expression matrix, which mainly includes gene expression vectors of
the underlying gene expression time series experiment, is the basis for the application
of all five profile algorithm (see block 17 in Figure 5.1). The new artificial data
matrices includes less genes (rows) than the full gene expression matrix from the
original experiment. The significance limits for each profile algorithm are set to
the same values as in the original data analysis. Simulation data sets including a
small number of genes may identify a higher proportion of significant genes than
expected from the pag parameter, since the same FDR adjustment is applied on a
lower number of tests. This adds another kind of uncertainty to the simulation when
validating the performance in identifying the inputed gene sets in each simulation
turn.

The five competing algorithms are applied to the gene expression matrix generated
in each simulation turn. For each resulting significant gene set it is checked whether it
was generated from a prototype of the same algorithm. Moreover, for all algorithms
except maSigFun the information is kept whether the resulting profile match exactly
the input profile of the corresponding prototype set. Additionally, the simulation
algorithm notes, which other active sets were recognized and the number of false
positive sets, i.e. those artificial sets without inputed genes from originally significant
gene sets. These values are used to calculate accuracy measures as stated in step 18
of the flow chart in Figure 5.1.
Four overall accuracy measures are used for the validation of the five profile

algorithms in the simulation study. True positives (TP) is the term for the total of
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identified active gene sets, i.e. those genes which were generated from a significant
prototype set. True negatives (TN) is the designation for the number of those sets,
which are not identified as significant by the algorithm and were not inputed with
differentially expressed genes from a prototype. The total of gene sets which has
spiked in genes, but was not identified by the algorithm is denoted by false negatives
(FN). The number of incorrect identifications without any spiked in differentially
expressed genes is called false positives (FP). The true positive rate (TPR) is the
ratio of the correctly identified number of the five gene sets with active profile and
the total number of sets with spiked in profiles (TPR = TP/(TP + FN)) over all
1000 simulation turns with the same simulation parameters. The second measure
is the false discovery rate (FDR). The FDR is the ratio of gene sets identified
as significant but without spiked in information and all significant sets found by
the algorithm (FDR = FP/(FP + TP)). The accuracy (ACC) is the ratio of all
correctly identified sets (TP+TN) and all sets in the simulation study. The negative
predictive value (NPV) denotes the proportion of gene sets correctly identified as
non significant on all sets declared as non-significant by the certain algorithm. In
addition to this summarizing measures the TPR is calculated for each kind of spiked
in profile, i.e. the ratio is determined separately for each algorithm in identifying
the active profiles derived from each of the five algorithms.
The results of the simulation study to compare the five profile algorithms are

shown in section 5.3 beginning on page 85.

Simulation to Evaluate the Smoothing Algorithms

The smoothing methods proposed for smoothing the gene set activation profiles
of the GSA-approaches, which were introduced in section 4.3 (see pages 50ff.), are
evaluated by a simulation study described in the following. In the simulation setting,
the detection of differentially up and down expressed genes with respect to the
reference is controlled by a FDR of αgenes = 0.05 and for simplification a strict
unadjusted significance level threshold αsets is used for the Fisher tests (enrichment
with differentially expressed genes). This second threshold is selected as the p-value
equivalent to the FDR limit of 1%, which is applied in the application chapter 6. The
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idea is similar to the one from Törönen, Pehkonen, and Holm (2009). A flow chart
of the simulation algorithm with its twelve key stages is illustrated in Figure 5.2.
Gene sets are randomly chosen (while considering the gene set overlap of identical
genes) and a fixed smooth symbolic activation profile (e.g. ’+++ooo’) is assigned
to these gene sets. In a second step the gene set genes obtain test statistic values
(from the tests of differential gene expression with respect to the common reference),
which result in a significant enrichment at the time points according to the preset
profile. In this controlled scenario it can be evaluated, which smoothing algorithm
best recovers the preselected gene sets and their activation profiles.

More precisely, a data set dependent number of gene sets (see Table 5.10) limited
in size between 10 and 200 are selected under the constraint that all pair-wise gene set
correlations lie within the interval of [−0.1, 0] (stage 4 in Figure 5.2). The set-to-set
correlation is defined as the correlation of the two corresponding binary vectors of
length G. These vectors turn out to be 1 if the gene is part of the gene set and 0
otherwise. This prevents to choose gene sets with a large part of overlapping genes,
which would hinder the successful assignment of different preset profiles. Different
preset activation profiles are used at the same simulation run in accordance to the
results from analyzing real gene expression time course experiments. Each selected
gene set is associated with a randomly chosen prototype activation profile from a
pool, which is shown in Table 5.10. These profiles are denoted in the following as
preset profiles and true patterns in the simulation study. Each of the preset profiles
is used multiple times in the same simulation run in order to yield a more realistic
scenario with 10 to 90 gene sets with known activation profiles. To add noise in the
preset profiles, every non-significant position (i.e. the ‘o’ potions in ‘+++ooo’) in the
preset profiles is changed to a randomly chosen significant position with probability
2.5% (node 3 in Figure 5.2). The “mutated” profiles are used as prototypes for the
assignment of gene statistics from the original study to the selected gene sets (step
5 in Figure 5.2).
Subsequently, for each profile gene set pair and each time point, in which the

profile shows an enrichment with up or down expressed genes, all genes in the
gene set are annotated to one of the three types of significance gene sets per time
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Figure 5.2: Simulation algorithm flow chart of the simulation for validation of profile
smoothing algorithms. Here, 90 gene sets are assumed to be set to a preset activation
profile as intended for the OD data set.
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point. These sets include genes, which are designated to obtain a test-statistic value
signaling up expression (S(t)

+ ), down expression (S(t)
− ), or no differential expression

(S(t)
o ) at time point t. The number of up and down regulated genes is defined in

accordance with the data analysis in chapter 6 by the control of a (TS-ABH) FDR
value of αgenes = 0.05 or in case of the aldosterone heart data set exceeding a fold
change of 1.5. The lowest number yielding enrichment with respect to the unadjusted
significance threshold αsets (unadjusted Fisher test p-value corresponding to the
q-value threshold in application) in gene set s at time point t is denoted with

ň
(t,s)
DE(t)

+/−∈s
:= min

{
n

(t,s)
DE(t)

+/−∈s
: P

(
N

(t,s)
DE(t)

+/−∈s
≥ n

(t,s)
DE(t)

+/−∈s

)
≤ αsets

}

depending on the direction of the differential expression (i.e. ’+‘ or ’-‘) given by the
significant position in the profile. This number is the target of up or down expressed
genes in the gene set s at significant position t in order to obtain a not too strong
enrichment. The procedure is complicated by the fact that gene sets are treated
iteratively and a set can share genes with a set treated earlier. Consider a gene
group s and assume that the preset profile at time point t is ‘+’ (up regulation). Let
ň

(t,s)
DE(t)

+ ∈s
stand for the lowest number of up regulated genes in the group in order

to obtain significant enrichment with respect to given αgenes and αsets. The two
numbers

ď = ň
(t,s)
DE(t)

+ ∈s
−
∣∣∣s ∩ S(t)

+

∣∣∣ and ǎ =
∣∣∣(s \ (S(t)

+ ∪ S
(t)
− ∪ S(t)

o )
)∣∣∣ ,

denote the number of genes missing to achieve significant enrichment (ď) and the
number of genes available to obtain a different significance status (ǎ), i.e. not yet
included in the union S(t)

+ ∪ S
(t)
− ∪ S(t)

o . Three cases concerning the relation between
the two terms determine the division of the free (not yet assigned) genes in s to the
three significance sets:
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ď < 0: There are already more genes assigned to be up regulated than needed for
significant enrichment. The remaining group genes not yet included in S(t)

+ ,
S

(t)
− or S(t)

o are added to the list S(t)
o (not differentially expressed).

ď ≥ ǎ: In the case of less available group genes than needed for significant enrich-
ment, all free genes are annotated to S(t)

+ in order to be as close as possible
to enrichment (smoothing could correct this missed enrichment).

ď < ǎ: The number of d genes is sampled from the set of available group genes if
there are more free genes available than needed for significant group enrich-
ment. If some available genes were already among the up regulated genes
at the previous time point, their sampling probability is 75 %, otherwise
it is equal for all possible genes (uniform sampling). This sampling is the
major difference to the deterministic algorithm by Törönen, Pehkonen, and
Holm (2009) and the following steps extend their procedure.

The sampling (if ď < ǎ) prefers in case of a preset continuous activation profile
(e.g. ’+++...’) those genes in relation 3:1, which have a significant expression value
at neighboring previous time point. This procedure ensures that the same group
genes obtain more likely a significantly differential expression value if neighboring
time points are preset to enrichment with differential expression.
The gene sets S(t)

+ , S(t)
− and S(t)

o include all genes from the sampled gene sets for
those time points with a ’+‘ or ’-‘ in the corresponding “mutated” preset activation
profile at the current stage of the simulation algorithm. In the following step (step
9 in Figure 5.2) the original test statistic values from the time course experiment
are rearranged for every time point such that the estimated gene set activation
profiles match their “mutated” preset profiles with high probability. For every time
point in the original time series data an index list L(t)

DE = {g(1), . . . , g(G)} is created,
ordered increasingly according to the test-statistics of the tests for differential gene
expression. Three candidate sets are derived from this list, which are later used to
assemble the preselected gene groups with test statistic values such that enrichment
with up or down regulated genes according to their preset profiles is achieved with
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high probability. These candidate sets (see step 6 in Figure 5.2) are defined as

C
(t)
− := {g(1), . . . , g(bn(t)

DE+/Pdiffc)
}

C
(t)
+ := {g(J−bn(t)

DE−/Pdiffc)
, . . . , g(G)}

C(t)
o := L

(t)
DE \

(
C

(t)
+ ∪ C

(t)
−

)
.

For a randomly sampled item from the sets C(t)
+ or C(t)

− , by construction the proba-
bility for significant up or down regulation of this item is greater than or equal to
Pdiff , since n(t)

DE+ is the number of significantly up expressed genes and bn(t)
DE+/Pdiffc

is the smallest integer succeeding this number by the factor 1/Pdiff. In the conducted
simulation studies Pdiff is fix with Pdiff = 0.95. Each gene in the gene sets S(t)

+ ,
S

(t)
− and S(t)

o obtains a randomly chosen test statistic value from the corresponding
candidate sets C(t)

+ , C(t)
− and C(t)

o by sampling without replacement. All not yet
used statistic values (significant and non-significant) are pooled per time point and
randomly assigned to the genes from the set Ğ \

(
S

(t)
+ ∪ S

(t)
− ∪ S(t)

o

)
at each time

point. This procedure yields a new T × G matrix (step 10 in Figure 5.2), which
includes all original test statistic values from the real study in a reordered way to
spike-in positive signals of gene set activation. Depending on the original study
results there are gene sets, which have a non-zero activation profile by chance, since
only the preset gene sets are controlled (and only for non-zero positions).

The last two steps (11 and 12 in Figure 5.2) include the algorithms to estimate and
smooth the gene set activation profiles and the calculation of accuracy measures. The
output of a simulation consists of average numbers of true positives, true negatives,
false positives and false negatives regarding the originally preset profiles. Here, true
positives (TP) and false negatives (FN) are the number of profiles belonging to the
preselected gene groups that are correctly identified or not identified. True negatives
(TN) and false positives (FP) are the number of profiles belonging to the remaining
gene groups that fit or do not fit to a continuous non-significant profile (’oooooo’).
These values are used to derive sensitivity (TPR) as TP/(TP+FN), false positive rate
(FPR) as FP/(FP+TN) and accuracy (ACC) as (TN + TP)/(TP+FP+TN+FN)
to assess the quality of the overall algorithm and in particular in combination with
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the smoothing algorithm. The false discovery rate (FDR) defined as FP/(TP+FP)
would be high due to the construction of the simulation, in which all signals are
recycled and only a small proportion is used to assign a preset gene set activation
profile. Hence, this value would be misleading for the analysis of the simulation
results. An additional accuracy criterion is the positive predictive value restricted
to the preset profile types and a maximum similarity of 90% with preset gene
sets (PPVp90). Therein, false positive profiles are only those, which fit to one of the
used preset profiles and do share a maximum of 90% of their genes with any preset
gene set. Hence, false positive gene sets with a preset profile, which have more than
90% of their genes in common with a preset gene set do not count as FP. However,
this value ignores FPs that turn out to have another activation profile than the
prototypes in the input of the simulation study, but it reports the proportion of
correctly identified profiles, if the set of preset profiles would be the objective of
the activation profile analysis. The results of the simulation study are presented in
section 5.4.

5.3 Simulation Study to Compare the Methods

This section shows the results of the first simulation study, which compares the
five proposed profile algorithms in a realistic simulation scenario using recycled
original data from published experiments. The three algorithms based on gene set
analysis methods (2T-GSA, 1S-GSA, 2S-GSA) are applied without smoothing. The
STEM and maSigFun procedures are used as described in section 4.6 and section 4.7.
The simulation algorithm described in section 5.2 and an overview of all inputs
and outputs is given in Figure 5.1. 1000 simulation runs per parameter setting
are applied for each of the four gene expression time series data sets presented in
section 5.1 and analyzed in chapter 6. Each data set has its own characteristics and
therefore the results of the simulation study are reported separately for each data
set in the following.
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Aldosterone Heart Experiment
Two experimental groups are compared at seven time points without any replicates
in the gene expression time series experiment analyzing the effect of Aldosterone
on the mouse heart. The exceeding of a fold change of 1.5 is used to determine
differential expression due to the lack of replicates. The application of the five profile
algorithms and the filter rules for suitable prototype gene sets lead to the very low
number of four candidates (compare Table 5.1, while the 2S-GSA set is among the
1S-GSA sets). Due to the missing prototype sets, there is no spiked-in information
from a significant maSigFun set or a 2T-GSA set. Nevertheless, these algorithms
are applied to identify the active sets spiked-in with gene expression information
from the 1S-GSA, 2S-GSA and STEM prototypes as described in section 5.2.
Table 5.2 reports the overall true positive rate (TPR) and false discovery rate

(FDR) considering all identified gene sets with spiked-in information as true positive
(TP) and all gene sets found with a significant activation profile without spiked-in
differentially expressed genes as false positive (FP). It was not possible to spike in
genes from a significant maSigFun set or a significant 2T-GSA for the simulation
based on the Aldosterone heart data set. While the maSigFun procedure is not able
to identify any significant gene set (TPR=0 and FDR=0), the 2T-GSA method
leads to significant detections. The STEM algorithm has in general a low TPR far
below the levels of the GSA-type procedures. This observation is mitigated for larger
sets (|s|SIM) and fewer sets in the gene set universe (pas = 0.5). Table B.1 in the
Appendix reveals that the STEM algorithm only succeeds in detecting significant
gene sets with spiked-in genes from a former significant STEM gene set, but the
TPR for detecting STEM sets is even higher applying GSA-type algorithms.

In general, at least for the three GSA-type procedures the TPR is increasing with
increasing pag, e.g. the sensitivity is increased if more differentially expressed genes
are spiked-in in the chosen gene set. The TPR is higher for larger set sizes (|s|SIM)
and it seems to be advantageous if the proportion of active gene sets pas is not
set to 0.5, whereas STEM shows best sensitivity for the smallest gene set universe
(pas = 0.5). The FDR of the GSA-algorithms decreases for a rising number of genes
in the set, for an augmented pas and for larger values of pag.



Table 5.2: TPR and FDR for identifying spiked-in activation profiles in the simulation
to compare the five profile algorithms on basis of the AH data.

Aldosterone heart data TPR per pag FDR per pag
|s|SIM pas algorithm 0.1 0.2 0.4 0.6 0.8 1 0.1 0.2 0.4 0.6 0.8 1

10 0.05 2T-GSA 4.60 7.07 10.60 16.73 22.80 26.57 93.81 90.50 85.94 79.08 72.84 68.41
1S-GSA 19.10 22.50 27.97 36.13 45.73 57.03 94.37 93.44 91.86 89.66 87.04 84.20
2S-GSA 7.87 10.83 16.40 23.50 31.30 37.90 93.59 91.38 86.92 82.21 77.18 73.10
STEM 0.00 0.00 0.00 0.00 0.07 0.20 100.00 100.00 100.00 100.00 75.00 40.00
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00

0.1 2T-GSA 5.30 7.03 10.63 15.30 20.60 25.87 85.90 81.41 72.26 65.75 56.08 49.90
1S-GSA 25.77 31.57 39.33 48.77 59.07 69.93 89.19 86.90 83.85 80.25 76.49 73.18
2S-GSA 7.77 10.87 15.63 22.33 30.10 35.83 86.90 81.96 74.36 68.02 59.34 55.36
STEM 0.00 0.03 0.00 0.00 0.07 0.20 100.00 50.00 100.00 100.00 50.00 40.00
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00

0.25 2T-GSA 3.00 3.90 6.97 8.60 13.50 16.13 67.51 59.23 41.13 33.33 21.66 18.10
1S-GSA 26.13 29.93 36.80 44.87 55.33 62.77 71.63 68.84 61.79 55.93 48.73 42.92
2S-GSA 4.67 6.07 10.53 14.23 20.83 24.43 66.59 61.11 42.86 34.81 22.74 21.10
STEM 0.00 0.00 0.03 0.07 0.07 0.17 100.00 100.00 50.00 0.00 33.33 44.44
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00

0.5 2T-GSA 0.23 0.30 0.70 1.53 2.83 4.60 41.67 25.00 8.70 4.17 4.49 1.43
1S-GSA 15.63 17.67 23.03 26.43 31.93 39.90 47.24 41.82 31.24 25.75 19.29 17.22
2S-GSA 0.27 0.47 0.93 1.93 3.93 6.27 38.46 17.65 9.68 3.33 4.07 1.57
STEM 0.03 0.00 0.03 0.10 0.13 0.33 0.00 100.00 0.00 25.00 42.86 16.67
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00

20 0.05 2T-GSA 6.67 9.50 17.60 27.20 37.30 44.53 92.50 89.55 81.58 73.38 66.09 61.02
1S-GSA 21.13 26.87 39.70 54.00 68.23 80.00 94.34 92.90 89.48 86.15 82.87 80.06
2S-GSA 7.33 10.10 18.37 28.50 39.23 46.47 92.60 90.00 82.65 74.58 67.68 63.24
STEM 0.00 0.00 0.03 0.00 0.43 0.43 100.00 100.00 66.67 100.00 13.33 13.33
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00

0.1 2T-GSA 7.47 9.77 17.17 26.20 34.27 41.30 84.44 80.81 68.86 57.63 47.34 41.58
1S-GSA 27.23 32.60 43.30 59.40 73.50 84.63 88.36 85.80 81.94 75.76 71.38 67.39
2S-GSA 8.23 10.87 18.43 28.03 37.50 45.83 84.62 80.81 69.86 59.02 48.82 43.28
STEM 0.00 0.00 0.00 0.07 0.23 0.50 100.00 100.00 66.67 30.00 21.05
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00

0.25 2T-GSA 5.30 6.47 11.13 18.50 24.50 32.60 64.98 58.90 42.71 26.78 18.60 13.53
1S-GSA 21.57 24.50 35.63 49.43 61.33 75.80 72.03 68.39 57.19 45.70 39.33 31.96
2S-GSA 5.83 7.93 13.23 22.57 29.63 37.57 66.09 58.10 42.46 26.49 19.18 15.45
STEM 0.00 0.10 0.03 0.27 0.20 0.73 100.00 50.00 75.00 38.46 40.00 29.03
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00

0.5 2T-GSA 0.77 1.70 3.10 7.13 10.07 13.20 46.51 19.05 13.08 7.36 2.58 0.75
1S-GSA 24.97 28.73 35.90 45.27 55.37 68.07 44.64 38.87 30.47 22.62 17.07 12.59
2S-GSA 1.33 2.57 4.90 10.30 14.80 20.07 47.37 20.62 15.03 8.31 2.63 0.99
STEM 0.03 0.03 0.17 0.33 0.80 1.27 66.67 0.00 37.50 28.57 22.58 13.64
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00

50 0.05 2T-GSA 10.17 15.07 30.97 47.77 60.30 68.73 90.94 87.32 75.48 65.91 59.27 54.46
1S-GSA 27.37 38.43 61.33 81.73 94.37 99.50 93.96 91.67 87.31 83.16 80.69 79.16
2S-GSA 12.57 17.80 37.37 55.23 69.70 84.27 91.21 88.17 77.30 68.87 62.72 57.22
STEM 0.03 0.07 0.23 0.77 1.93 2.23 50.00 66.67 36.36 17.86 7.94 5.63
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00

0.1 2T-GSA 8.73 16.03 30.57 47.93 57.90 68.07 83.78 73.76 56.10 42.50 36.07 29.95
1S-GSA 26.90 36.63 59.03 80.27 93.37 99.03 87.59 83.36 74.69 67.42 63.04 60.09
2S-GSA 10.87 18.80 36.10 55.53 67.27 82.70 84.09 75.77 58.25 46.81 41.08 33.79
STEM 0.00 0.10 0.30 0.43 1.73 1.63 100.00 62.50 35.71 27.78 13.33 19.67
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00

0.25 2T-GSA 8.90 13.70 26.47 35.63 51.17 60.30 61.30 48.82 26.48 13.16 10.08 7.33
1S-GSA 34.03 42.83 63.13 76.93 92.57 97.77 69.69 62.39 48.66 34.28 32.96 28.46
2S-GSA 16.60 23.63 42.70 44.97 70.90 83.83 63.08 54.14 32.11 15.63 17.91 12.67
STEM 0.07 0.13 0.43 0.97 1.67 1.80 75.00 55.56 35.00 17.14 13.79 10.00
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00

0.5 2T-GSA 3.83 6.70 13.90 22.40 27.93 39.27 38.50 22.09 7.95 5.49 1.53 0.93
1S-GSA 30.40 35.37 51.93 67.57 75.00 91.70 41.73 34.79 23.14 17.03 6.33 7.99
2S-GSA 8.10 14.63 24.37 38.50 47.60 65.23 37.69 19.60 10.85 6.40 1.59 1.26
STEM 0.17 0.20 0.30 1.23 3.00 2.60 37.50 40.00 25.00 13.95 13.46 17.89
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00

100 0.05 2T-GSA 12.03 21.87 46.47 67.23 98.33 99.83 91.21 84.55 70.10 61.51 50.45 47.77
1S-GSA 35.40 49.13 77.00 93.90 99.87 100.00 93.34 90.91 86.15 83.03 81.42 81.02
2S-GSA 19.23 32.47 60.60 90.47 99.27 99.97 91.82 86.60 76.71 67.76 63.97 62.93
STEM 0.07 0.07 0.60 0.53 3.40 12.00 80.00 75.00 14.29 27.27 8.93 2.44
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00

0.1 2T-GSA 12.57 24.00 48.83 71.07 98.30 99.80 81.06 66.97 47.32 34.88 25.51 21.83
1S-GSA 33.57 49.60 77.60 95.23 99.83 100.00 86.63 81.33 71.84 66.19 62.71 60.47
2S-GSA 18.60 32.20 60.83 91.87 99.20 99.90 82.29 71.16 54.35 41.16 36.64 32.86
STEM 0.00 0.13 0.53 0.47 3.17 12.83 100.00 66.67 30.43 36.36 8.65 2.28
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00

0.25 2T-GSA 10.70 20.30 40.30 61.03 93.63 98.83 59.82 40.70 16.45 7.38 4.65 2.88
1S-GSA 39.80 54.60 81.03 94.37 99.90 100.00 67.50 58.39 44.01 31.02 29.25 24.15
2S-GSA 15.23 28.67 53.67 84.43 97.50 99.53 60.91 41.42 20.02 9.92 7.55 5.00
STEM 0.03 0.17 0.87 0.57 5.47 15.87 85.71 54.55 18.75 29.17 13.23 7.75
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00

0.5 2T-GSA 8.30 14.17 27.87 43.33 61.37 88.30 30.64 16.34 6.28 1.74 0.11 0.41
1S-GSA 32.10 41.03 65.70 81.80 92.20 99.53 39.74 30.41 16.80 9.38 2.61 4.63
2S-GSA 16.80 26.43 46.83 74.63 82.30 95.90 33.07 18.75 7.63 2.82 0.32 0.72
STEM 0.07 0.23 1.17 0.73 7.30 20.77 71.43 30.00 16.67 33.33 27.00 19.51
maSigFun 0.00 0.00 0.00 0.00 0.00 0.00



88 5 Simulation Study

The 1S-GSA method identifies all gene sets with spiked-in information in simu-
lation runs with a high pag and a sufficient gene set size (|s|SIM ≥ 50), but at the
cost of very high FDRs. The 2S-GSA algorithm performs similar or with slightly
worse TPR for the (|s|SIM = 100) simulations, but with a much lower FDR. The
FDR and TPR of the STEM procedure show in opposite to its competitors a rising
tendency if pas increases.

The accuracy (ACC) and negative predictive value (NPV) are reported in Table B.2
in the appendix. The NPV is only for the GSA-type algorithms clearly above the
trivial limit of 1− pas, whereas for STEM the NPV stays near to this border and is
constantly on this limit for maSigFun due to its non detection property. The overall
ACC for the GSA-methods lies below the trivial border of 1− pas if the gene set size
is smaller than 100 and pas = 0.05. In the case of a high pas (e.g. 0.5) the accuracy
of 1S-GSA is higher than the values of 2T-GSA and 2S-GSA, but for smaller values
this relation turns around due to the higher rate of false discoveries for the 1S-GSA
algorithm.
Despite to the weak signals found in the Aldosterone heart data set, the simula-

tion reveals clear differences between the performance of the five examined profile
algorithms. While 1S-GSA shows in general the highest sensitivity its false discovery
rate is clearly worse than the two other GSA algorithms. The STEM and maSigFun
procedures show no or only very weak sensitivity for the detection of gene sets
spiked-in with a moderate or even high proportion of genes from significant sets
found by GSA-type algorithms. At least for larger gene sets the algorithms 1S-GSA
and 2S-GSA are able to identify gene sets spiked-in with genes from significant sets
reported by STEM.

Ovary Development Study
The gene expression during embryonic development of the female reproductive
glands (ovaries) is examined at six time points with three replicates at each time
point. A single reference is available from a mixed tissue sample of male and
female individuals. Determining the differential expression and significant gene set
enrichment according to chapter 4 by the TS-ABH FDR limits of αgenes = 0.05 and
αsets = 0.01 leads to a relatively high number of significant sets for all competing



Table 5.3: TPR and FDR for identifying spiked-in activation profiles in the simulation
to compare the five profile algorithms on basis of the OD data.

Ovary development data TPR per pag FDR per pag
|s|SIM pas algorithm 0.1 0.2 0.4 0.6 0.8 1 0.1 0.2 0.4 0.6 0.8 1

10 0.05 2T-GSA 0.84 5.38 20.84 34.36 45.26 53.16 70.21 26.90 21.18 19.08 20.76 20.01
1S-GSA 12.70 20.72 52.56 71.46 77.94 81.10 93.63 89.92 77.19 70.57 68.29 66.54
2S-GSA 1.14 6.36 22.58 35.44 45.82 53.66 82.02 43.72 35.52 34.83 37.01 35.61
STEM 0.00 0.00 0.00 0.00 0.04 0.20 100.00 100.00 33.33 0.00
maSigFun 0.00 0.00 0.00 0.00 0.08 2.18 0.00 0.00

0.1 2T-GSA 0.92 10.14 32.48 49.72 62.78 68.16 70.13 22.71 13.94 10.16 9.33 9.46
1S-GSA 12.88 18.80 51.22 71.20 77.96 80.84 86.87 81.51 60.82 50.17 46.68 44.28
2S-GSA 1.70 14.82 37.96 52.66 64.22 69.18 75.57 33.72 25.77 21.07 20.64 19.05
STEM 0.00 0.00 0.00 0.02 0.04 0.30 100.00 66.67 60.00 0.00
maSigFun 0.00 0.00 0.00 0.00 0.10 1.68 0.00 0.00

0.25 2T-GSA 1.82 9.22 34.40 54.76 68.28 72.92 50.00 17.38 6.88 3.35 2.54 2.59
1S-GSA 16.40 29.08 58.72 71.18 77.14 79.88 66.95 50.93 29.24 23.05 19.53 18.95
2S-GSA 4.66 19.72 48.48 63.08 72.02 74.44 53.12 20.74 11.18 7.07 5.44 5.51
STEM 0.02 0.00 0.00 0.08 0.20 0.60 50.00 100.00 100.00 20.00 16.67 9.09
maSigFun 0.00 0.00 0.00 0.00 0.06 1.94 0.00 0.00

0.5 2T-GSA 2.40 7.52 24.36 46.18 62.98 71.08 26.38 9.62 2.87 1.16 0.79 0.53
1S-GSA 15.38 22.54 49.94 63.58 71.76 75.38 38.63 22.54 9.59 8.31 7.86 8.90
2S-GSA 6.14 17.88 44.02 59.70 70.72 74.04 27.08 11.22 3.25 2.03 1.70 1.28
STEM 0.00 0.00 0.04 0.08 0.32 0.90 100.00 33.33 55.56 23.81 25.00
maSigFun 0.00 0.00 0.00 0.00 0.06 2.16 0.00 0.00

20 0.05 2T-GSA 2.22 11.84 38.66 55.62 63.42 68.00 88.77 64.23 40.06 35.42 32.46 31.82
1S-GSA 18.02 40.00 71.00 79.76 81.68 82.50 91.94 83.37 73.15 69.79 68.59 67.39
2S-GSA 5.84 18.04 42.74 56.86 64.02 68.76 90.28 77.46 63.19 59.37 56.89 55.21
STEM 0.00 0.00 0.00 0.04 0.40 1.04 100.00 100.00 60.00 20.00 7.14
maSigFun 0.00 0.00 0.00 0.00 0.00 2.38 0.00

0.1 2T-GSA 4.18 18.38 43.48 60.44 67.62 71.00 23.16 12.89 9.72 9.82 9.70 9.00
1S-GSA 19.56 39.16 72.88 80.38 82.14 83.14 82.67 69.72 52.01 48.32 46.69 44.71
2S-GSA 4.90 20.58 46.22 61.48 68.06 71.62 35.36 23.49 19.65 20.30 19.42 19.87
STEM 0.00 0.00 0.00 0.16 0.60 1.42 100.00 100.00 100.00 38.46 14.29 8.97
maSigFun 0.00 0.00 0.00 0.00 0.02 2.66 0.00 0.00

0.25 2T-GSA 6.12 22.52 57.32 70.30 75.32 76.28 16.62 7.70 3.27 2.77 1.67 1.88
1S-GSA 20.72 42.98 72.98 79.14 81.28 81.90 62.13 40.14 24.79 21.66 19.86 20.04
2S-GSA 8.80 33.12 64.30 72.40 75.76 76.80 26.42 11.68 6.68 5.36 3.69 4.07
STEM 0.00 0.00 0.04 0.34 0.90 2.04 100.00 100.00 86.67 22.73 25.00 15.00
maSigFun 0.00 0.00 0.00 0.00 0.00 3.00 0.00

0.5 2T-GSA 5.44 17.48 48.70 65.26 71.98 76.06 11.11 3.74 0.77 0.61 0.61 0.58
1S-GSA 19.16 34.30 66.02 75.18 78.44 80.68 35.40 21.73 10.23 11.57 12.44 15.25
2S-GSA 15.50 36.68 63.14 71.82 75.04 77.56 12.23 5.37 2.08 1.70 1.39 1.70
STEM 0.02 0.02 0.22 0.74 2.18 4.52 75.00 50.00 38.89 39.34 33.13 36.34
maSigFun 0.00 0.00 0.00 0.00 0.02 3.32 0.00 0.00

50 0.05 2T-GSA 18.34 47.82 75.82 77.92 79.44 81.80 85.41 67.94 55.58 53.55 52.31 49.93
1S-GSA 33.46 63.18 81.70 83.54 85.18 87.32 88.84 80.40 74.95 73.95 72.65 71.14
2S-GSA 40.82 65.10 77.84 78.80 80.14 82.52 88.83 82.70 78.58 77.67 76.60 75.13
STEM 0.02 0.02 0.78 2.70 5.86 9.18 66.67 83.33 9.30 2.88 1.35 1.08
maSigFun 0.00 0.00 0.00 0.00 0.00 3.24 0.00

0.1 2T-GSA 15.86 46.22 74.40 76.96 78.28 79.94 69.14 41.72 28.67 25.08 23.15 18.88
1S-GSA 33.52 64.78 80.46 81.44 82.78 84.20 76.44 61.76 53.76 51.36 49.10 47.20
2S-GSA 38.74 63.18 75.52 77.50 78.94 80.88 73.24 60.32 53.28 47.49 43.87 38.15
STEM 0.02 0.04 0.34 1.32 3.38 5.08 85.71 75.00 22.73 13.16 5.59 5.22
maSigFun 0.00 0.00 0.00 0.00 0.00 4.08 0.00

0.25 2T-GSA 14.30 41.10 69.12 73.50 75.10 77.26 6.17 4.68 2.26 1.71 1.78 1.70
1S-GSA 42.22 69.82 80.70 81.52 83.32 84.30 46.68 30.64 23.78 22.92 22.62 22.40
2S-GSA 18.58 47.70 69.90 73.90 75.78 78.00 10.59 8.87 5.26 4.37 3.93 3.85
STEM 0.04 0.10 0.46 1.78 4.26 6.14 75.00 58.33 28.12 25.83 18.70 24.94
maSigFun 0.00 0.00 0.00 0.00 0.00 4.20 0.00

0.5 2T-GSA 15.90 40.92 68.42 74.56 76.84 77.80 1.49 1.06 0.58 0.40 0.62 0.64
1S-GSA 38.68 63.62 79.54 81.34 82.76 83.08 24.57 13.68 10.83 13.32 15.27 21.07
2S-GSA 27.86 55.46 73.36 75.64 77.34 78.38 3.67 2.32 1.42 1.12 1.45 1.68
STEM 0.10 0.18 1.24 4.34 7.14 11.00 54.55 62.50 34.04 38.35 48.78 57.82
maSigFun 0.00 0.00 0.00 0.00 0.00 4.20 0.00

100 0.05 2T-GSA 0.00 0.00 0.00 0.00 0.00 0.00
1S-GSA 52.16 76.22 80.68 81.56 83.92 86.62 87.30 81.93 80.18 79.04 77.51 75.90
2S-GSA 0.00 0.00 0.00 0.00 0.00 0.00
STEM 0.12 0.24 6.18 17.80 25.88 32.66 45.45 25.00 1.28 1.00 0.54 0.49
maSigFun 0.00 0.00 0.00 0.00 0.00 4.24 0.00

0.1 2T-GSA 30.68 63.48 77.68 79.78 83.54 85.86 62.10 43.04 36.35 33.39 31.19 30.09
1S-GSA 49.28 76.68 83.28 85.16 88.62 91.82 73.20 62.94 58.69 56.32 53.82 51.87
2S-GSA 54.62 73.64 78.54 80.68 84.22 86.52 74.83 67.52 63.75 61.60 59.43 57.04
STEM 0.06 0.32 2.82 7.84 12.20 16.84 57.14 27.27 2.08 1.51 1.77 1.29
maSigFun 0.00 0.00 0.00 0.00 0.00 5.36 0.00

0.25 2T-GSA 22.64 58.66 72.68 75.06 79.28 82.74 18.68 6.14 3.94 3.17 2.75 1.76
1S-GSA 55.18 78.04 81.86 83.14 86.90 90.00 45.01 32.78 28.81 28.43 26.93 29.69
2S-GSA 36.16 63.44 73.18 75.52 80.44 84.44 26.86 13.50 9.99 7.41 6.09 4.54
STEM 0.04 0.14 1.52 3.94 6.64 8.46 71.43 22.22 21.65 25.66 30.98 47.78
maSigFun 0.00 0.00 0.00 0.00 0.00 5.74 0.00

0.5 2T-GSA 23.84 56.78 72.44 75.06 77.18 79.12 0.83 0.46 0.49 0.69 0.49 0.78
1S-GSA 51.14 74.62 80.94 82.38 84.38 85.70 17.99 11.10 12.14 15.46 17.31 18.08
2S-GSA 34.38 64.70 73.36 75.62 77.96 80.38 2.16 1.04 1.19 1.28 1.34 1.50
STEM 0.10 0.48 3.18 7.96 11.68 16.48 61.54 50.00 39.31 49.94 64.19 66.88
maSigFun 0.00 0.00 0.00 0.00 0.00 5.78 0.00



Table 5.4: TPR per algorithm and type of spiked-in profile in the simulation to
compare the five profile algorithms on basis of the OD data.

Ovary development data TPR with pag = 0.2 TPR with pag = 0.6 TPR with pag = 1
|s|SIM pas algorithm 2T-GSA 1S-GSA 2S-GSA STEM maSigFun 2T-GSA 1S-GSA 2S-GSA STEM maSigFun 2T-GSA 1S-GSA 2S-GSA STEM maSigFun

10 0.05 2T-GSA 8.2 8.9 9.3 0.0 0.5 51.2 53.0 56.2 0.4 11.0 71.0 73.0 76.8 0.3 44.7
1S-GSA 27.0 27.4 26.5 8.4 14.3 97.7 94.6 96.7 7.4 60.9 99.9 99.8 99.9 9.2 96.7
2S-GSA 9.8 10.0 10.7 0.2 1.1 52.5 53.7 56.7 0.6 13.7 71.2 73.2 76.9 0.8 46.2
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 10.8

0.1 2T-GSA 14.6 16.0 17.8 0.2 2.1 70.2 72.1 74.1 0.3 31.9 88.0 90.5 91.4 1.1 69.8
1S-GSA 25.0 24.4 24.5 7.4 12.7 96.1 95.8 94.8 6.9 62.4 99.7 100.0 99.9 7.5 97.1
2S-GSA 21.3 23.1 25.0 1.0 3.7 73.1 74.6 76.9 0.6 38.1 88.4 90.9 91.6 1.8 73.2
STEM 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 1.3
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 8.2

0.25 2T-GSA 13.1 15.0 15.2 0.7 2.1 79.7 80.5 81.8 0.6 31.2 97.2 95.9 96.4 0.6 74.5
1S-GSA 41.3 38.4 38.7 9.1 17.9 95.6 96.0 95.7 5.2 63.4 100.0 99.0 99.7 5.9 94.8
2S-GSA 28.9 30.9 31.2 1.5 6.1 87.2 88.3 90.3 1.1 48.5 97.8 96.9 97.4 1.0 79.1
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.1 0.1 0.5 2.3
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 9.6

0.5 2T-GSA 11.1 12.4 9.8 0.2 4.1 71.3 67.6 69.7 0.6 21.7 94.8 96.0 94.3 0.7 69.6
1S-GSA 29.4 31.7 29.3 6.5 15.8 88.2 86.5 86.4 4.6 52.2 94.8 95.8 96.4 5.4 84.5
2S-GSA 25.7 27.5 26.3 1.4 8.5 87.1 85.3 86.0 1.0 39.1 97.2 98.5 97.8 0.9 75.8
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.3 0.2 1.8 2.2
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 10.6

20 0.05 2T-GSA 19.3 17.8 17.9 0.9 3.3 74.1 73.3 74.8 0.5 55.4 84.7 88.3 87.6 3.2 76.2
1S-GSA 57.7 54.6 55.4 8.2 24.1 99.8 99.5 99.6 5.7 94.2 99.8 100.0 100.0 12.7 100.0
2S-GSA 28.5 25.3 25.8 2.5 8.1 74.8 73.9 75.5 1.8 58.3 84.9 88.3 87.6 5.4 77.6
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.9 0.2 0.1 1.6 2.4
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9

0.1 2T-GSA 28.7 28.8 29.6 0.5 4.3 76.6 76.8 78.8 0.7 69.3 88.1 86.7 90.4 4.1 85.7
1S-GSA 57.0 52.2 54.4 7.4 24.8 99.7 99.4 100.0 7.3 95.5 99.9 100.0 100.0 15.8 100.0
2S-GSA 31.1 31.6 32.8 1.1 6.3 77.5 77.3 79.3 1.8 71.5 88.1 86.7 90.4 5.4 87.5
STEM 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.3 0.2 0.2 0.6 0.5 1.9 3.9
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3

0.25 2T-GSA 31.7 34.0 37.2 0.3 9.4 91.5 93.1 92.4 0.4 74.1 95.4 95.6 96.8 2.6 91.0
1S-GSA 61.2 57.8 59.6 7.4 28.9 99.7 99.5 99.6 4.5 92.4 100.0 100.0 100.0 9.8 99.7
2S-GSA 46.7 49.8 53.5 0.8 14.8 92.6 94.0 93.8 1.0 80.6 95.4 95.6 96.8 4.0 92.2
STEM 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.7 0.6 0.9 1.3 0.9 3.9 3.2
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.0

0.5 2T-GSA 24.5 27.4 26.9 0.5 8.1 89.6 89.4 89.6 0.5 57.2 96.4 98.9 98.7 0.9 85.4
1S-GSA 45.7 46.1 47.6 6.8 25.3 98.4 96.8 97.3 5.6 77.8 99.1 98.9 99.1 10.1 96.2
2S-GSA 50.4 54.2 58.1 1.4 19.3 96.2 96.2 95.9 1.0 69.8 97.9 99.1 99.2 1.4 90.2
STEM 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.2 1.4 1.9 1.3 1.5 1.2 13.8 4.8
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.6

50 0.05 2T-GSA 64.4 66.0 67.9 2.4 38.4 99.6 100.0 99.9 2.9 87.2 99.9 100.0 100.0 14.0 95.1
1S-GSA 82.9 83.4 83.8 8.8 57.0 99.9 100.0 100.0 17.8 100.0 100.0 100.0 100.0 36.6 100.0
2S-GSA 83.4 84.8 86.5 8.2 62.6 100.0 100.0 100.0 4.5 89.5 100.0 100.0 100.0 15.1 97.5
STEM 0.0 0.0 0.0 0.1 0.0 0.5 0.3 0.3 7.4 5.0 1.8 3.3 2.6 23.0 15.2
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.2

0.1 2T-GSA 66.4 63.1 68.4 1.6 31.6 97.0 97.3 97.7 2.0 90.8 96.6 97.8 98.2 11.0 96.1
1S-GSA 86.7 86.2 88.5 6.2 56.3 99.9 100.0 100.0 7.4 99.9 100.0 100.0 100.0 21.0 100.0
2S-GSA 81.9 82.5 83.8 6.4 61.3 97.3 97.4 97.7 3.4 91.7 96.7 97.8 98.2 14.0 97.7
STEM 0.0 0.0 0.1 0.1 0.0 0.6 0.3 0.4 3.0 2.3 1.7 2.8 2.6 14.3 4.0
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.4

0.25 2T-GSA 59.1 59.1 58.5 0.4 28.4 91.6 91.5 92.9 0.7 90.8 91.5 95.7 96.6 9.3 93.2
1S-GSA 92.7 92.2 93.4 7.1 63.7 99.9 99.9 100.0 7.8 100.0 100.0 100.0 100.0 21.5 100.0
2S-GSA 65.4 65.5 65.3 1.0 41.3 91.9 91.8 92.9 1.1 91.8 91.7 95.7 96.6 11.4 94.6
STEM 0.0 0.1 0.0 0.4 0.0 0.8 0.8 0.8 4.3 2.2 2.1 3.0 3.2 16.5 5.9
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.0

0.5 2T-GSA 55.9 58.4 57.4 0.3 32.6 93.1 95.6 97.6 0.5 86.0 95.3 99.4 98.9 2.5 92.9
1S-GSA 86.1 85.1 85.7 6.9 54.3 99.1 99.7 99.7 8.8 99.4 99.1 100.0 100.0 16.5 99.8
2S-GSA 73.0 75.9 76.1 0.8 51.5 94.9 96.4 98.1 0.7 88.1 97.0 99.5 98.9 3.0 93.5
STEM 0.0 0.0 0.1 0.6 0.2 0.8 1.7 1.8 13.3 4.1 4.3 5.8 4.1 32.5 8.3
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.0

100 0.05 2T-GSA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1S-GSA 96.3 95.6 95.8 4.8 88.6 99.9 100.0 100.0 7.9 100.0 100.0 100.0 100.0 33.1 100.0
2S-GSA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
STEM 0.0 0.2 0.0 0.7 0.3 8.4 9.0 9.4 32.7 29.5 22.3 24.3 24.2 52.7 39.8
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.2

0.1 2T-GSA 83.9 83.2 84.5 2.3 63.5 99.5 100.0 100.0 7.5 91.9 100.0 100.0 100.0 30.4 98.9
1S-GSA 94.8 94.6 95.5 10.6 87.9 99.9 100.0 100.0 25.9 100.0 100.0 100.0 100.0 59.1 100.0
2S-GSA 93.9 92.5 94.0 7.2 80.6 99.8 100.0 100.0 9.3 94.3 100.0 100.0 100.0 33.0 99.6
STEM 0.1 0.1 0.1 0.5 0.8 1.0 2.7 2.2 17.4 15.9 4.3 10.3 9.3 34.2 26.1
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.8

0.25 2T-GSA 76.5 76.8 77.6 0.3 62.1 91.6 93.4 93.6 3.9 92.8 92.9 97.2 97.3 31.5 94.8
1S-GSA 98.2 97.9 98.0 6.6 89.5 99.9 100.0 100.0 15.8 100.0 100.0 100.0 100.0 50.0 100.0
2S-GSA 81.3 81.3 82.7 1.2 70.7 91.6 93.4 93.6 4.7 94.3 93.1 97.2 97.4 37.4 97.1
STEM 0.1 0.1 0.0 0.3 0.2 1.7 2.5 1.5 9.3 4.7 2.7 5.9 5.6 18.7 9.4
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.7

0.5 2T-GSA 73.8 73.4 74.8 0.4 61.5 90.5 95.7 96.8 2.5 89.8 89.7 99.0 99.1 13.8 94.0
1S-GSA 94.6 94.3 95.9 6.1 82.2 99.3 99.9 100.0 12.8 99.9 99.4 99.9 100.0 29.2 100.0
2S-GSA 81.9 81.2 82.9 1.0 76.5 91.6 96.0 97.0 3.2 90.3 92.1 99.0 99.1 17.1 94.6
STEM 0.1 0.5 0.3 1.0 0.5 3.3 4.4 3.5 22.4 6.2 7.0 10.3 10.9 43.0 11.2
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.9
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algorithms. The number of prototype sets yielded by filtering these results and used
in the simulation is given in Table 5.1. All procedures provide prototype sets in
contrast to the Aldosterone heart experiment, whereas the small number of three sets
for the (regression) functional microarray significant profiles (maSigFun) algorithm
seems to be characteristic across all four gene expression time series experiments.
Applying the five profile algorithms in the simulation study described in section 5.2
yields results, which are elaborated in the following.

The overall true positive rate (TPR) and false discovery rate (FDR) are reported
in Table 5.3. All identified gene sets with spiked-in information are considered
as true positive (TP) and all gene sets found with a significant activation profile
without spiked-in differentially expressed genes are regarded as false positive (FP).
In general, the three GSA-type profile algorithms show significantly higher TPR and
FDR values than the STEM and maSigFun procedures except from some occasional
STEM misdetections, which lead to FDR values up to 100%. The identification of
gene sets with spiked-in genes from significant STEM sets hardly succeeds for any
algorithm even with pag = 1 as Table 5.4 reveals. The same table shows, that the
GSA-type procedures usually outperform the maSigFun algorithm in identifying sets
with spiked-in genes from significant maSigFun sets. The maSigFun procedure seems
to be limited to identify gene sets spiked-in with genes from significant maSigFun
sets. The three GSA-types detect spiked-in sets from the same types with a high
sensitivity even for lower values of pag, i.e. even for a smaller proportion of spiked-in
genes in the active set. There is a sensitivity order within the GSA-type algorithms,
in which the 1S-GSA procedure clearly outperforms the two competitors and 2S-GSA
shows in general a slightly better TPR than 2T-GSA.

There is an obvious anomaly for the algorithms 2T-GSA and 2S-GSA if the simu-
lation parameters are chosen as |s|SIM = 100 and pas = 0.05. No set with a significant
profile is identified throughout all simulation turns, which cannot be observed in this
extent for the simulations on basis of the other time series experiments. This occurs
most likely due to the combination of many true differentially expressed genes in the
basis data set and the fact that the proportion of 5% spiked-in sets is very close to
the chosen FDR limit for significant sets. This anomaly is ignored for the following
considerations.
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The TPR amplifies with increasing |s|SIG and rising pag in concordance with the
simulation results from the Aldosterone heart data. The relation between TPR
and the parameter pas cannot be described uniformly for all algorithms. While
the sensitivity for the STEM and maSigFun procedure is highest for the extreme
values of the parameter the opposite seems to hold for the profile algorithms of the
GSA-type. The differences for varied pas are small by contrast with alterations of
pag or |s|SIM.
Table 5.3 shows a constant FDR of 0% for the maSigFun algorithm. The FDR

of the GSA-algorithms increases for a rising number of genes in the set in contrast
to the findings of the Aldosterone simulation. Except for the STEM algorithm,
an increasing proportion of active genes (pag) abates the FDR. The rather high
FDR values in comparison with the other simulations can be explained by the high
number of differentially expressed genes found in the ovary development data, which
may lead to significant sets without spiked-in genes classified as false positives.
The reported FDR for the STEM procedure is very high if the proportion of true
significant sets is high (pas ≥ 0.25) or the proportion of spiked-in genes in active sets
is small.

The accuracy (ACC) and negative predictive value (NPV) are reported in Table B.3
in the appendix. Only the NPV of the GSA-type algorithms stands out distinctly
from the trivial limit of 1−pas, analogously to the Aldosterone simulation. Increasing
values of pag and |s|SIM enhance the NPV, while a rising pas have a reducing effect
due to the lower number of TNs in the gene set universe. The overall ACC for
all methods exceeds the trivial border of 1 − pas if the proportion of spiked-in
genes is sufficient (pag > 0.5) except for the GSA methods with |s|SIM ≥ 50 and
pas = 0.05. The accuracy order within the GSA-type methods is 2T-GSA before
2S-GSA and 1S-GSA, mainly due to the differences in the detection of FPs. The
1S-GSA method regularly fails the trivial ACC limit in cases of a small proportion
of active sets (pas ≤ 0.10). This occurs as a trade-off in relation to the outstanding
TPR performance and reveals a high number of false and true positives.

The ovary development time course experiment provides a high number of differ-
entially expressed genes. Due to the recycling characteristic of the simulation a high
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number of false positives and in consequence a high FDR value can be observed in
the simulation results. Nevertheless, the sensitivity of STEM and maSigFun is far
smaller than for the GSA-type algorithms. This fact is not compensated by the
smaller FDR values, since in general from an exploratory analysis of an expensive
study significant findings are appreciated despite the risk of (a controlled number
of) false findings. From this point of view, the algorithms 2T-GSA or 2S-GSA are
the instruments of choice.

Skin Healing Time Series
The gene expression time series study conducted to analyze the molecular genetic
process involved during wound healing is divided into two separate analyses in this
thesis. The first data set includes only individuals with injured skin (SH) and the
second analysis focuses on the experiments with wounded mucosa on mice tongues
(TH). The expression data from three microarrays is available for each of eight time
points. The time point before the surgical procedure is used as reference for all
compared methods. Analogously to the ovary development data set the TS-ABH
FDR limits determining differential gene expression and gene set enrichment are
chosen as αgenes = 0.05 and αsets = 0.01. Applying the five competing algorithms
and filtering the results as described in section 5.2 leads to the number of prototypes
per method given in Table 5.1. There are only three prototypes arising from the
2T-GSA algorithm and four maSigFun sets. Generally, from this experiment less
significant activation profiles result compared with the OD or TH data set. This
corresponds to the lower number of identified differentially expressed genes per time
point as reported in Figure 6.7. This fact leads to a lack of suitable genes to spike
in differentially expressed genes into active gene sets in the simulation, due to the
fact that only full gene trajectories are recycled in order to reproduce significant
activation profiles. This restriction arising from the data should be kept in mind
while examining the simulation results from comparing the five competing algorithms
in the following paragraphs.
Table 5.5 reports the overall true positive rate (TPR) and false discovery rate

(FDR), whereas all identified gene sets with spiked-in information are considered
as true positive (TP) and all gene sets found with a significant activation profile



Table 5.5: TPR and FDR for identifying spiked-in activation profiles in the simulation
to compare the five profile algorithms on basis of the SH data.

Skin healing data TPR per pag FDR per pag
|s|SIM pas algorithm 0.1 0.2 0.4 0.6 0.8 1 0.1 0.2 0.4 0.6 0.8 1

10 0.05 2T-GSA 10.24 23.30 39.08 45.22 49.96 53.82 52.59 33.12 20.02 15.89 13.02 10.72
1S-GSA 18.52 30.46 65.58 81.58 86.28 90.22 93.67 89.77 79.70 75.49 73.81 72.29
2S-GSA 10.40 24.44 41.38 47.44 52.48 56.56 53.90 34.30 23.09 18.38 15.08 12.34
STEM 0.00 0.00 0.00 0.04 0.10 0.18 100.00 100.00 0.00 16.67 10.00
maSigFun 0.00 0.00 0.00 0.02 0.22 15.78 0.00 0.00 0.00

0.1 2T-GSA 2.72 16.54 34.56 41.66 46.06 50.02 51.25 15.96 7.35 4.10 2.70 1.65
1S-GSA 19.40 26.90 62.40 80.42 85.60 88.10 86.30 81.50 64.40 56.55 53.82 52.17
2S-GSA 3.52 20.10 39.52 46.40 50.00 53.56 55.89 19.86 9.52 6.26 3.66 2.48
STEM 0.00 0.00 0.00 0.00 0.14 0.34 100.00 100.00 0.00 10.53
maSigFun 0.00 0.00 0.00 0.00 0.26 15.02 0.00 0.00

0.25 2T-GSA 1.50 8.88 24.56 31.74 36.66 42.28 43.61 8.07 1.37 0.81 0.27 0.09
1S-GSA 24.12 35.82 64.80 78.28 84.34 86.86 66.72 54.58 37.21 32.56 29.36 29.79
2S-GSA 2.64 15.74 31.24 38.90 43.92 48.18 44.77 6.75 2.13 1.22 0.36 0.17
STEM 0.00 0.00 0.00 0.02 0.14 0.48 100.00 100.00 100.00 0.00 0.00 0.00
maSigFun 0.00 0.00 0.00 0.00 0.34 15.48 0.00 0.00

0.5 2T-GSA 1.28 4.26 11.96 19.78 28.18 36.94 27.27 4.05 0.33 0.00 0.00 0.05
1S-GSA 19.94 26.58 47.18 62.02 69.84 73.94 43.70 32.02 18.26 16.75 16.46 18.32
2S-GSA 2.44 9.52 20.40 28.96 37.28 44.30 29.48 3.84 0.68 0.07 0.00 0.09
STEM 0.00 0.00 0.04 0.04 0.38 0.76 100.00 0.00 33.33 13.64 17.39
maSigFun 0.00 0.00 0.00 0.00 0.32 14.74 0.00 0.00

20 0.05 2T-GSA 11.52 29.64 42.46 51.16 54.90 57.90 21.20 13.23 10.27 6.57 5.83 4.64
1S-GSA 28.08 51.46 82.06 88.20 91.56 93.04 91.32 85.21 77.28 75.16 73.79 73.06
2S-GSA 11.72 30.28 45.30 53.66 57.04 59.46 21.24 12.99 9.72 7.07 5.78 4.44
STEM 0.00 0.00 0.02 0.24 0.44 0.96 100.00 66.67 7.69 0.00 2.04
maSigFun 0.00 0.00 0.00 0.00 0.14 18.48 0.00 0.00

0.1 2T-GSA 14.24 31.56 45.62 51.04 55.12 57.56 19.37 9.21 4.64 2.93 2.30 1.13
1S-GSA 25.60 50.74 80.90 88.18 90.44 93.10 83.70 71.63 59.06 56.02 53.51 52.02
2S-GSA 14.66 33.42 48.72 53.48 56.96 59.40 19.27 9.53 5.03 2.87 2.40 0.74
STEM 0.00 0.00 0.00 0.12 0.46 0.96 100.00 100.00 100.00 0.00 8.00 2.04
maSigFun 0.00 0.00 0.00 0.00 0.04 18.52 0.00 0.00

0.25 2T-GSA 7.48 21.46 33.32 42.92 49.22 54.12 9.22 2.72 0.48 0.19 0.04 0.15
1S-GSA 28.88 49.10 79.40 86.20 89.88 92.08 61.74 46.37 33.13 30.56 30.28 30.54
2S-GSA 8.94 26.96 39.42 48.16 52.94 55.94 9.70 2.74 0.40 0.12 0.08 0.11
STEM 0.00 0.00 0.06 0.32 0.44 1.00 100.00 100.00 50.00 0.00 8.33 9.09
maSigFun 0.00 0.00 0.00 0.00 0.10 18.38 0.00 0.00

0.5 2T-GSA 4.54 11.40 23.52 32.56 42.06 50.80 7.35 2.06 0.51 0.18 0.00 0.08
1S-GSA 24.12 37.70 67.80 79.88 86.56 89.84 39.37 28.27 17.44 17.97 19.57 23.99
2S-GSA 10.24 20.10 33.00 41.82 48.40 54.00 8.41 2.14 0.54 0.14 0.04 0.07
STEM 0.02 0.02 0.14 0.56 1.34 3.96 50.00 80.00 36.36 41.67 56.21 71.22
maSigFun 0.00 0.00 0.00 0.00 0.10 18.18 0.00 0.00

50 0.05 2T-GSA 8.98 24.78 43.56 48.20 50.74 52.12 4.26 2.52 3.16 2.35 2.39 1.92
1S-GSA 44.58 74.62 86.20 89.52 92.20 94.24 88.95 82.48 79.54 78.02 77.33 76.14
2S-GSA 9.38 25.26 45.26 50.28 53.20 55.00 4.29 2.17 1.74 1.22 0.86 0.79
STEM 0.00 0.04 0.46 2.16 3.62 5.76 100.00 50.00 14.81 3.57 2.69 2.37
maSigFun 0.00 0.00 0.00 0.00 0.00 19.76 0.00

0.1 2T-GSA 26.76 39.26 51.18 56.04 57.74 59.52 6.82 3.87 1.92 0.78 0.76 0.47
1S-GSA 47.42 78.24 88.20 91.92 94.72 95.58 77.13 66.14 60.14 57.97 56.18 55.06
2S-GSA 27.32 41.74 53.30 57.86 59.32 60.64 6.82 3.74 2.06 0.75 0.70 0.43
STEM 0.02 0.00 0.32 1.18 2.44 3.96 75.00 100.00 11.11 6.35 5.43 5.71
maSigFun 0.00 0.00 0.00 0.00 0.00 19.80 0.00

0.25 2T-GSA 24.90 38.96 49.14 53.96 57.00 60.30 3.64 1.27 0.16 0.11 0.11 0.00
1S-GSA 51.74 78.62 87.60 92.32 94.42 95.80 50.05 37.06 32.20 32.42 31.66 32.46
2S-GSA 28.80 42.72 52.58 56.48 58.68 60.04 3.68 1.48 0.15 0.14 0.10 0.00
STEM 0.00 0.04 0.28 0.66 2.84 6.40 100.00 66.67 30.00 45.90 63.68 76.81
maSigFun 0.00 0.00 0.00 0.00 0.00 19.82 0.00

0.5 2T-GSA 14.74 25.94 38.40 45.10 53.20 57.76 1.34 0.08 0.05 0.09 0.00 0.03
1S-GSA 45.16 68.78 85.06 91.34 93.88 95.54 29.02 19.86 18.16 20.41 23.74 25.97
2S-GSA 22.36 34.30 45.42 50.64 55.22 58.46 1.93 0.35 0.04 0.04 0.00 0.03
STEM 0.00 0.16 1.18 7.96 15.10 21.48 100.00 55.56 75.52 69.34 70.02 72.19
maSigFun 0.00 0.00 0.00 0.00 0.00 19.24 0.00

100 0.05 2T-GSA 8.42 17.90 28.68 32.62 38.54 42.68 42.49 45.19 45.43 43.41 38.83 35.88
1S-GSA 58.60 83.92 92.92 95.06 96.54 96.92 87.75 82.97 80.71 79.98 79.10 78.59
2S-GSA 9.02 19.92 30.36 34.76 39.40 43.54 40.66 42.23 43.76 41.00 37.56 34.17
STEM 0.02 0.66 5.82 13.82 18.18 21.34 90.91 17.50 2.68 1.29 1.41 1.57
maSigFun 0.00 0.00 0.00 0.00 0.00 19.24 0.00

0.1 2T-GSA 17.82 34.10 46.00 51.36 55.18 57.24 1.87 0.87 1.37 0.47 0.68 0.66
1S-GSA 61.60 82.54 89.30 91.64 94.82 95.60 75.15 67.90 64.90 62.79 60.66 59.59
2S-GSA 18.70 36.52 48.74 54.12 56.96 58.36 1.48 0.54 0.33 0.29 0.35 0.27
STEM 0.02 0.36 2.10 3.94 5.46 6.64 80.00 14.29 7.89 9.22 12.78 20.95
maSigFun 0.00 0.00 0.00 0.00 0.00 19.98 0.00

0.25 2T-GSA 32.14 44.12 52.58 55.40 58.98 63.10 1.59 0.27 0.30 0.04 0.10 0.09
1S-GSA 68.70 84.84 92.14 94.34 96.00 96.72 47.99 39.43 36.37 34.81 34.55 35.37
2S-GSA 35.38 47.78 54.88 56.52 59.28 61.32 1.50 0.25 0.25 0.04 0.07 0.03
STEM 0.00 0.14 1.48 4.68 10.46 16.22 100.00 68.18 54.88 78.13 84.84 88.26
maSigFun 0.00 0.00 0.00 0.00 0.00 19.90 0.00

0.5 2T-GSA 22.98 32.98 43.16 48.28 54.22 60.28 0.78 0.18 0.14 0.00 0.04 0.00
1S-GSA 56.60 79.90 89.60 93.74 95.46 97.24 23.37 17.29 17.75 18.59 22.19 24.73
2S-GSA 28.02 39.50 47.46 51.06 55.00 60.38 0.71 0.15 0.13 0.00 0.00 0.00
STEM 0.10 0.62 8.38 19.42 25.40 28.26 76.19 73.04 70.35 72.98 75.35 75.67
maSigFun 0.00 0.00 0.00 0.00 0.00 19.46 0.00



Table 5.6: TPR per algorithm and type of spiked-in profile in the simulation to
compare the five profile algorithms on basis of the SH data.

Skin healing data TPR with pag = 0.2 TPR with pag = 0.6 TPR with pag = 1
|s|SIM pas algorithm 2T-GSA 1S-GSA 2S-GSA STEM maSigFun 2T-GSA 1S-GSA 2S-GSA STEM maSigFun 2T-GSA 1S-GSA 2S-GSA STEM maSigFun

10 0.05 2T-GSA 43.9 25.1 35.3 0.6 11.6 77.6 53.2 70.3 0.7 24.3 87.4 64.8 83.0 1.0 32.9
1S-GSA 36.2 31.0 33.6 14.5 37.0 97.4 90.2 91.5 28.8 100.0 100.0 99.1 99.1 52.9 100.0
2S-GSA 45.8 26.4 37.3 0.6 12.1 81.1 56.4 73.8 0.8 25.1 91.1 67.2 88.3 1.1 35.1
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.9
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.7 0.0 2.0 0.1 75.1

0.1 2T-GSA 31.1 17.1 23.5 0.8 10.2 69.9 48.1 65.5 0.2 24.6 84.8 58.8 77.0 0.7 28.8
1S-GSA 31.6 27.2 29.1 14.3 32.3 96.1 88.1 90.5 27.6 99.8 99.9 97.9 98.6 44.1 100.0
2S-GSA 36.7 21.9 28.8 0.9 12.2 78.2 54.4 71.3 0.4 27.7 90.3 62.4 83.1 0.9 31.1
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 1.5
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0 1.1 0.1 71.2

0.25 2T-GSA 16.7 7.8 13.5 0.2 6.2 56.1 34.5 48.8 0.2 19.1 73.7 47.1 66.3 0.3 24.0
1S-GSA 45.9 36.1 41.9 15.0 40.2 95.9 85.2 88.3 22.4 99.6 99.0 97.0 97.4 40.9 100.0
2S-GSA 28.6 15.7 24.2 0.3 9.9 68.4 42.5 59.9 0.2 23.5 84.2 54.0 76.8 0.3 25.6
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 2.2
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.1 2.2 0.1 73.5

0.5 2T-GSA 8.7 4.5 4.4 0.4 3.3 35.2 19.6 27.0 0.1 17.0 62.1 34.9 51.7 0.1 35.9
1S-GSA 33.4 28.4 28.0 13.9 29.2 77.5 64.1 67.4 24.5 76.6 91.8 77.9 82.1 37.2 80.7
2S-GSA 19.0 10.3 11.4 0.4 6.5 53.4 26.3 43.6 0.3 21.2 78.2 43.6 65.8 0.1 33.8
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.0 1.2 2.5
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.2 1.5 0.0 70.4

20 0.05 2T-GSA 53.9 28.3 45.8 0.3 19.9 87.0 64.9 82.1 0.3 21.5 96.2 72.7 93.5 0.4 26.7
1S-GSA 64.7 51.2 56.5 19.2 65.7 100.0 98.4 99.3 43.3 100.0 100.0 100.0 100.0 65.2 100.0
2S-GSA 54.9 28.7 47.6 0.3 19.9 90.4 67.6 86.3 0.3 23.7 97.9 74.5 95.3 0.5 29.1
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.1 0.1 0.3 4.3
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 92.4

0.1 2T-GSA 55.9 30.1 49.5 0.3 22.0 88.1 60.4 81.8 0.3 24.6 96.2 71.1 92.1 0.6 27.8
1S-GSA 62.4 51.1 56.9 17.9 65.4 99.7 98.4 98.4 44.4 100.0 100.0 99.9 100.0 65.6 100.0
2S-GSA 59.4 32.4 52.7 0.3 22.3 92.9 62.0 85.5 0.3 26.7 98.6 73.7 94.4 0.7 29.6
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.1 0.1 0.1 0.3 4.2
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 92.5

0.25 2T-GSA 38.9 17.5 32.1 0.6 18.2 74.2 46.6 70.5 0.3 23.0 91.5 56.8 87.1 0.2 35.0
1S-GSA 57.9 51.0 54.0 20.8 61.8 99.3 97.4 97.4 36.9 100.0 100.0 99.2 99.8 61.4 100.0
2S-GSA 49.4 23.1 40.4 0.6 21.3 86.2 50.2 78.8 0.3 25.3 96.1 62.5 92.1 0.2 28.8
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.5 0.0 0.1 0.0 0.7 4.2
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 91.9

0.5 2T-GSA 21.0 10.5 14.9 0.3 10.3 60.8 24.5 52.2 0.3 25.0 81.8 45.8 76.4 0.1 49.9
1S-GSA 45.2 39.7 38.1 17.1 48.4 93.1 83.7 86.1 36.7 99.8 98.1 92.3 94.1 65.5 99.2
2S-GSA 38.7 17.9 29.0 0.4 14.5 78.5 34.4 67.4 0.4 28.4 92.5 55.0 86.4 0.1 36.0
STEM 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.7 2.0 0.0 0.3 0.0 8.0 11.5
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 90.8

50 0.05 2T-GSA 54.4 22.3 47.1 0.0 0.1 91.7 56.2 92.1 0.0 1.0 88.7 68.2 98.8 0.0 4.9
1S-GSA 93.7 81.0 87.1 17.3 94.0 100.0 100.0 100.0 47.6 100.0 100.0 100.0 100.0 71.2 100.0
2S-GSA 54.9 23.0 48.2 0.0 0.2 95.4 59.0 94.2 0.0 2.8 94.4 71.0 99.6 0.0 10.0
STEM 0.0 0.0 0.0 0.0 0.2 0.0 0.3 0.0 0.6 9.9 0.0 1.2 0.0 3.7 23.9
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.8

0.1 2T-GSA 72.2 41.9 67.7 0.3 14.2 93.8 67.9 96.1 0.2 22.2 95.8 74.8 99.5 0.8 26.7
1S-GSA 95.3 85.8 89.0 23.2 97.9 100.0 100.0 100.0 59.6 100.0 100.0 99.7 100.0 78.2 100.0
2S-GSA 76.8 44.6 72.0 0.3 15.0 96.3 71.5 97.5 0.2 23.8 97.7 76.4 100.0 0.8 28.3
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 5.5 0.0 1.1 0.0 2.8 15.9
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.0

0.25 2T-GSA 70.6 39.7 64.0 0.2 20.3 89.5 62.5 91.6 0.1 26.1 89.4 73.1 98.0 0.0 41.0
1S-GSA 95.9 84.9 91.3 25.5 95.5 100.0 99.7 99.9 62.0 100.0 100.0 99.9 100.0 79.1 100.0
2S-GSA 77.6 45.1 68.6 0.2 22.1 95.0 67.0 94.8 0.1 25.5 94.5 76.2 99.4 0.0 30.1
STEM 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.9 2.4 0.0 0.5 0.0 10.9 20.6
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.1

0.5 2T-GSA 48.3 21.6 42.4 0.1 17.3 74.5 41.0 82.6 0.0 27.4 76.8 58.2 96.4 0.2 57.2
1S-GSA 86.0 70.8 76.1 25.8 85.2 97.7 96.1 98.9 64.0 100.0 99.4 98.8 99.8 79.7 100.0
2S-GSA 65.4 30.2 55.7 0.1 20.1 88.1 49.1 90.9 0.0 25.1 86.9 65.4 98.4 0.2 41.4
STEM 0.0 0.0 0.0 0.3 0.5 0.2 0.5 0.0 18.5 20.6 0.1 3.5 0.0 45.8 58.0
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.2

100 0.05 2T-GSA 41.2 7.0 39.7 0.8 0.8 59.5 16.8 85.7 0.3 0.8 82.4 35.3 95.7 0.0 0.0
1S-GSA 97.4 91.5 97.1 37.2 96.4 98.2 99.7 100.0 77.4 100.0 100.0 100.0 100.0 84.6 100.0
2S-GSA 44.1 9.7 44.1 0.9 0.8 62.6 21.3 88.9 0.2 0.8 88.2 32.9 96.6 0.0 0.0
STEM 0.0 0.0 0.0 0.9 2.4 0.0 3.1 0.0 40.3 25.7 0.0 10.7 0.9 59.4 35.7
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.2

0.1 2T-GSA 70.7 27.0 72.3 0.1 0.4 85.6 64.0 98.7 0.0 8.5 99.2 72.5 100.0 0.0 14.5
1S-GSA 98.6 93.5 96.9 23.7 100.0 100.0 100.0 100.0 58.2 100.0 100.0 100.0 100.0 78.0 100.0
2S-GSA 75.5 30.4 75.5 0.0 1.2 91.4 67.5 99.4 0.0 12.3 99.9 73.9 100.0 0.0 18.0
STEM 0.0 0.0 0.0 0.2 1.6 0.0 1.0 0.1 1.9 16.7 0.0 3.8 0.1 3.7 25.6
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.9

0.25 2T-GSA 78.7 44.4 78.7 0.1 18.7 82.6 67.7 98.5 0.4 27.8 97.6 72.4 100.0 2.0 43.5
1S-GSA 99.2 95.0 98.1 32.1 99.8 100.0 99.8 100.0 71.9 100.0 100.0 100.0 100.0 83.6 100.0
2S-GSA 86.4 47.9 83.9 0.2 20.5 87.5 68.7 99.6 0.2 26.6 99.5 73.7 100.0 0.4 33.0
STEM 0.0 0.1 0.0 0.1 0.5 0.1 0.9 0.2 7.9 14.3 0.0 4.8 0.0 29.7 46.6
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.5

0.5 2T-GSA 62.3 21.4 63.1 0.1 18.0 61.1 48.4 95.4 0.0 36.5 79.2 58.8 99.0 1.5 62.9
1S-GSA 94.9 83.6 91.1 30.5 99.4 98.9 98.5 99.8 71.5 100.0 100.0 98.1 99.9 88.2 100.0
2S-GSA 75.3 29.1 72.6 0.2 20.3 74.9 53.0 98.8 0.0 28.6 92.8 62.4 100.0 1.1 45.6
STEM 0.0 0.1 0.0 1.7 1.3 0.0 3.0 0.0 47.0 47.1 0.2 6.6 0.6 72.9 61.0
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 97.3
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without spiked-in differentially expressed genes are treated as false positive (FP). In
contrast to the simulation based on the AH data set, prototype sets derived from
all methods are used to spike in original differential genes expression trajectories in
selected artificial gene sets. The 1S-GSA profile algorithm has both an outstanding
sensitivity and a very high FDR as shown in Table 5.5. The FDR equals 0% for the
maSigFun method, but the method’s sensitivity is restricted to the identification
of maSigFun generated sets including exclusively active genes (pag = 1) as can be
concluded from Table 5.6. The competing methods are for pag < 1 more sensitive
in detecting maSigFun sets. This holds also for the STEM algorithm in simulation
settings with small gene set sizes. The STEM procedure in general shows very low
sensitivity for the identification of the active sets build from significant GSA-type
prototypes. The 1S-GSA algorithm has a higher TPR performance than the STEM
procedure itself in identifying STEM sets across all simulation parameter settings
(see Table 5.6). The anomaly for the 2T-GSA and 2S-GSA algorithm, which occured
in the OD simulation, is found in this simulation only attenuated in form of a
ten percent loss in TPR and an exceptionally high FDR (compare Table 5.5 with
parameters |s|SIM = 100, pas = 0.05). Apart from this inconsistency, the general
effect of the simulation parameters is discussed in the following.

The sensitivity enhances with a growing proportion of spiked-in genes (increasing
pag) as expected and analogously to the simulations based on the AH and OD data
sets. Only the GSA-type algorithms show a meaningful TPR for small pag values.
Apart from the anomaly mentioned above, a rising share of active genes (larger pas)
dilutes the TPR for the GSA-type algorithms. For the STEM procedure, the TPR
seems to be maximal if pas is assigned to its maximal value. In this case, there are
only ten sets in the gene set universe, which facilitates the identification of the single
active set with spiked-in genes from an originally significant STEM gene set by
clustering. All methods have the tendency to yield a higher TPR for larger gene set
size |s|SIM. There is a characteristic order in the TPR values of the five competing
algorithms per specific constellation of simulation parameters. 1S-GSA performs
with the highest sensitivity followed with a significant gap by 2S-GSA and 2T-GSA.
All GSA-type methods clearly outperform the maSigFun and STEM algorithms.
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The FDR decreases in general for an increasing pag, an rising |s|SIM or an in-
cremented pas, but not for all instances. 1S-GSA and STEM turn out to show
extraordinary high FDR values for some parameter settings in contrast to the three
competing algorithms. Apart from the always 0% FDR of the maSigFun procedure,
the smallest false discovery rate is achieved by the 2S-GSA and 2T-GSA methods,
typically in this order except for the smallest examined gene set size (|s|SIM = 10).
The accuracies (ACCs) and negative predictive values (NPVs) are given in Ta-

ble B.4 in the appendix. The NPV is only for the GSA-type algorithms clearly above
the trivial limit of 1− pas, whereas for STEM the NPV it stays near to this bound
but falls clearly below it for |s|SIM ≥ 20 and pas = 0.5. The maSigFun procedure
rises only slightly above the trivial NPV limit and this exclusively for high pag values.
The ACC is only for some instances of the 1S-GSA and STEM algorithms below
the trivial limit of 1− pas. The maximal ACC value is commonly achieved by the
2S-GSA method with the exception of pas = 0.5 where 1S-GSA performs best. The
two algorithms 2T-GSA and 2S-GSA have very similar and high ACC values in
relation to STEM and maSigFun.

Despite of the small number of differentially expressed genes identified in the skin
healing data set, the simulation based on this data set finds clear differences between
the performance of the five examined algorithms. While 1S-GSA shows in general
the highest sensitivity its specificity and accuracy are clearly below the two other
GSA algorithms. The STEM and maSigFun procedures show in most settings only
very poor sensitivity for the detection of gene sets spiked-in with a moderate or
even high proportion of genes from significant sets found by GSA-type algorithms.
This result further strengthens the impression that the significant findings of the
maSigFun and STEM algorithms are limited to very specific types of signal while the
GSA-type algorithms are at least sensitive for the maSigFun signal type in addition
to their own specific profiles.

Tongue Healing Data Set
The gene expression time series study conducted to analyze the wounded mucosa on
mice tongue (TH) results in much larger numbers of significant genes per time point
than its sister data set (SH) as shown in Figure 6.8, but still by a magnitude smaller
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than in the ovary development experiment (compare Figure 6.6). The application of
the five competing algorithms and the subsequent filtering according to the procedure
given in section 5.2 lead to a moderate number of prototypes for each method except
the relative small number of significant gene sets identified by the STEM method.
The prototype numbers per algorithm are reported in Table 5.1. The middle position
between the case of high quantity of significant genes in the OD data set simulation
and the case of a very small quantity in the SH data set simulation supports the
validity of the results obtained by the simulation based on the TH gene expression
time series experiment. The simulation results are described in the following.

In comparison with the simulation results based on the other three data sets, the
TH simulation study yields higher TPR values for small sets and generally lower
FDR values particularly for small gene set sizes and with the exception of STEM
and 1S-GSA procedures. This finding can be understood by comparing Table 5.7
with Tables 5.2, 5.3 and 5.5. One reason why the 1S-GSA procedure stands out
from this general finding is that the method identifies differentially expressed genes
under each data condition due to a quantile criteria regardless of whether this is
really a significant difference. The STEM procedure has a similar drawback due
to its characteristic of obligatory allocation of each gene to a model profile, which
results in clusters independently of the differential expression of the included genes.
The sensitivity of the maSigFun is limited to gene sets including exclusively genes
from a former significant maSigFun gene set (i.e. pag = 1). This becomes even more
obvious in Table 5.8, which shows the TPR for the cross table of all algorithms and
origins of spiked-in genes. The effect of the simulation parameters on the different
accuracy measures is elaborated in the following paragraphs.
For all five competing algorithms the sensitivity (TPR) enhances with a rising

proportion of spiked-in differentially expressed genes in the active sets as reported in
Table 5.7. Excluding the anomaly known from the previous simulation studies with
parameters |s|SIM = 100 and pas = 0.05, the TPR for all algorithms except maSigFun
shows a tendency to increase with larger gene set size (|s|SIM). The differences in
TPR with respect to the proportion of active sets in the gene universe are inconsistent,
but at least for the GSA-type algorithm a moderate value (0.05 < pas < 0.5) seems



Table 5.7: TPR and FDR for identifying spiked-in activation profiles in the simulation
to compare the five profile algorithms on basis of the TH data.

Tongue healing data TPR per pag FDR per pag
|s|SIM pas algorithm 0.1 0.2 0.4 0.6 0.8 1 0.1 0.2 0.4 0.6 0.8 1

10 0.05 2T-GSA 13.28 29.72 51.82 61.28 68.76 72.22 24.20 16.66 12.20 7.38 6.17 5.20
1S-GSA 20.50 29.36 66.10 87.48 94.54 97.44 93.13 90.27 80.10 74.25 72.41 70.83
2S-GSA 13.28 29.70 52.12 62.62 69.84 72.94 24.29 16.71 12.64 8.53 7.18 5.96
STEM 0.00 0.00 0.00 0.00 0.00 0.06 100.00 100.00 0.00
maSigFun 0.00 0.00 0.00 0.00 0.20 20.54 0.00 0.00

0.1 2T-GSA 1.20 22.98 48.66 61.20 69.50 73.64 27.71 3.04 1.50 1.54 1.64 1.39
1S-GSA 18.96 28.72 63.80 86.54 94.60 97.10 86.82 80.81 63.37 54.80 51.10 49.02
2S-GSA 1.26 23.60 52.14 64.00 71.32 74.82 32.26 4.30 2.10 2.53 2.81 2.45
STEM 0.00 0.00 0.00 0.00 0.02 0.02 100.00 100.00 0.00 50.00
maSigFun 0.00 0.00 0.00 0.00 0.26 20.32 0.00 0.00

0.25 2T-GSA 1.20 12.96 40.46 55.62 65.70 71.50 11.76 3.57 0.78 0.22 0.30 0.14
1S-GSA 24.74 38.94 72.78 86.66 93.82 96.98 67.23 52.51 33.22 25.89 24.03 22.76
2S-GSA 1.76 21.40 48.78 60.12 69.58 73.72 14.56 2.73 1.09 0.53 0.49 0.27
STEM 0.00 0.00 0.00 0.02 0.02 0.04 100.00 66.67 66.67 33.33
maSigFun 0.00 0.00 0.00 0.00 0.24 19.86 0.00 0.00

0.5 2T-GSA 1.46 6.40 20.70 40.90 53.02 62.38 12.05 1.54 0.29 0.00 0.04 0.03
1S-GSA 19.96 28.96 56.86 73.80 84.00 88.58 41.29 28.60 13.51 10.28 9.60 10.87
2S-GSA 2.18 14.56 36.48 51.44 60.34 67.44 8.40 1.09 0.33 0.08 0.10 0.03
STEM 0.02 0.00 0.04 0.06 0.16 0.34 50.00 0.00 40.00 57.89 15.00
maSigFun 0.00 0.00 0.00 0.02 0.08 19.82 0.00 0.00 0.00

20 0.05 2T-GSA 12.76 39.16 59.84 68.54 72.60 74.26 4.20 4.02 2.92 4.17 4.75 4.40
1S-GSA 27.76 52.78 88.30 96.82 98.40 99.02 91.61 84.94 76.11 73.78 72.41 71.48
2S-GSA 12.76 39.16 59.84 68.56 72.74 74.34 4.20 4.02 2.92 4.25 5.34 4.81
STEM 0.00 0.00 0.00 0.02 0.12 0.22 100.00 100.00 0.00 0.00 0.00
maSigFun 0.00 0.00 0.00 0.00 0.08 20.08 0.00 0.00

0.1 2T-GSA 19.20 43.18 62.70 71.86 76.52 77.64 3.23 1.82 2.18 1.91 1.77 1.52
1S-GSA 25.94 50.36 87.46 95.90 98.28 99.28 84.18 72.07 57.19 52.68 51.33 49.92
2S-GSA 19.20 43.20 63.10 72.50 76.88 77.78 3.23 1.86 2.29 1.95 1.91 1.84
STEM 0.00 0.00 0.00 0.02 0.06 0.32 100.00 100.00 100.00 0.00 25.00 5.88
maSigFun 0.00 0.00 0.00 0.00 0.12 20.04 0.00 0.00

0.25 2T-GSA 11.68 35.16 59.28 72.08 76.42 79.08 2.18 0.51 0.27 0.08 0.13 0.03
1S-GSA 30.08 51.04 87.18 96.18 98.54 99.48 61.49 45.32 29.12 24.92 24.76 23.81
2S-GSA 12.12 39.58 62.36 73.78 77.40 79.46 2.26 0.55 0.42 0.14 0.23 0.05
STEM 0.00 0.00 0.00 0.02 0.14 0.54 100.00 100.00 0.00 50.00 6.90
maSigFun 0.00 0.00 0.00 0.00 0.06 20.12 0.00 0.00

0.5 2T-GSA 6.38 19.88 47.14 59.84 70.52 75.22 1.54 0.60 0.04 0.07 0.00 0.00
1S-GSA 25.30 41.38 78.74 91.70 96.92 98.60 37.68 24.27 13.45 12.73 13.42 15.70
2S-GSA 13.68 35.58 55.52 66.84 74.24 77.38 1.30 0.67 0.18 0.15 0.00 0.00
STEM 0.02 0.04 0.00 0.26 0.88 2.02 66.67 50.00 100.00 45.83 61.06 74.30
maSigFun 0.00 0.00 0.00 0.00 0.08 19.96 0.00 0.00

50 0.05 2T-GSA 36.64 55.90 68.04 71.60 73.68 74.52 6.91 9.46 11.27 8.91 7.85 7.36
1S-GSA 47.28 79.12 95.36 98.24 98.58 99.12 88.26 81.42 77.34 76.03 75.05 74.12
2S-GSA 36.64 55.90 68.24 71.78 73.68 74.68 6.91 9.46 12.47 9.98 8.70 8.41
STEM 0.00 0.00 0.14 0.28 0.84 1.22 100.00 100.00 12.50 0.00 2.33 4.69
maSigFun 0.00 0.00 0.00 0.00 0.00 20.08 0.00

0.1 2T-GSA 38.12 57.68 70.92 74.34 76.84 78.20 1.50 1.70 1.42 1.38 0.83 0.89
1S-GSA 48.18 83.30 97.16 98.86 99.62 99.90 76.91 64.01 57.49 54.97 53.02 51.73
2S-GSA 38.12 57.80 71.08 74.46 76.96 78.34 1.50 1.80 1.52 1.48 1.21 1.31
STEM 0.00 0.00 0.02 0.32 0.70 0.98 100.00 100.00 85.71 11.11 7.89 9.26
maSigFun 0.00 0.00 0.00 0.00 0.00 20.14 0.00

0.25 2T-GSA 36.20 55.66 73.70 78.48 79.98 80.62 0.39 0.43 0.27 0.20 0.02 0.02
1S-GSA 53.92 85.14 97.72 99.42 99.80 99.94 49.62 34.45 28.29 25.62 25.85 26.45
2S-GSA 36.80 58.16 74.86 78.72 80.10 80.70 0.54 0.45 0.32 0.23 0.07 0.02
STEM 0.00 0.02 0.16 0.52 1.26 2.48 100.00 66.67 33.33 49.02 71.36 90.47
maSigFun 0.00 0.00 0.00 0.00 0.00 20.12 0.00

0.5 2T-GSA 23.48 45.56 67.24 74.56 78.56 79.68 0.25 0.04 0.03 0.00 0.00 0.00
1S-GSA 45.88 78.38 96.12 99.02 99.48 99.66 27.91 15.65 14.03 15.18 17.04 19.87
2S-GSA 33.52 53.14 71.78 77.06 79.40 80.54 0.24 0.15 0.03 0.00 0.03 0.00
STEM 0.02 0.08 0.68 4.28 8.32 11.78 87.50 73.33 77.48 82.34 83.41 83.67
maSigFun 0.00 0.00 0.00 0.00 0.02 20.12 0.00 0.00

100 0.05 2T-GSA 0.66 2.18 10.08 23.22 35.58 45.28 80.00 64.84 45.40 32.66 29.07 29.07
1S-GSA 67.06 92.02 98.88 99.82 99.90 100.00 86.14 81.38 79.09 78.17 77.32 76.93
2S-GSA 0.60 2.28 10.88 25.74 38.66 47.62 81.48 60.28 35.85 23.39 23.42 25.66
STEM 0.04 0.50 6.82 15.04 21.86 29.62 80.00 24.24 2.85 1.70 1.26 0.67
maSigFun 0.00 0.00 0.00 0.00 0.00 20.18 0.00

0.1 2T-GSA 47.24 63.68 72.12 74.80 76.04 78.44 5.52 4.07 2.91 2.25 1.50 1.18
1S-GSA 63.64 87.64 96.94 97.84 97.56 97.86 74.53 66.21 61.97 59.95 59.03 58.47
2S-GSA 47.28 64.22 72.36 74.90 76.56 79.82 5.55 4.69 3.31 3.20 2.92 2.21
STEM 0.02 0.06 0.32 1.20 1.72 2.70 87.50 25.00 23.81 17.81 25.22 43.51
maSigFun 0.00 0.00 0.00 0.00 0.00 20.06 0.00

0.25 2T-GSA 44.64 64.88 76.52 78.58 79.36 79.82 0.62 0.46 0.03 0.10 0.08 0.10
1S-GSA 72.34 92.28 98.74 99.50 99.90 99.94 46.48 37.47 33.74 33.33 34.61 35.97
2S-GSA 45.38 66.44 76.76 78.76 79.48 80.16 0.61 0.48 0.08 0.13 0.13 0.10
STEM 0.02 0.04 0.46 3.10 6.72 9.88 80.00 84.62 79.46 89.46 93.40 93.86
maSigFun 0.00 0.00 0.00 0.00 0.00 20.10 0.00

0.5 2T-GSA 37.22 56.52 74.56 77.44 77.70 78.78 0.11 0.11 0.00 0.00 0.00 0.00
1S-GSA 61.92 87.68 98.12 99.30 99.64 99.80 21.30 14.74 15.05 17.68 22.87 26.70
2S-GSA 40.52 61.50 76.42 78.48 78.28 79.34 0.10 0.10 0.00 0.03 0.00 0.00
STEM 0.06 0.40 6.08 12.22 16.10 18.64 76.92 76.47 80.94 82.21 81.70 81.80
maSigFun 0.00 0.00 0.00 0.00 0.00 20.10 0.00



Table 5.8: TPR per algorithm and type of spiked-in profile in the simulation to
compare the five profile algorithms on basis of the TH data.

Tongue healing data TPR with pag = 0.2 TPR with pag = 0.6 TPR with pag = 1
|s|SIM pas algorithm 2T-GSA 1S-GSA 2S-GSA STEM maSigFun 2T-GSA 1S-GSA 2S-GSA STEM maSigFun 2T-GSA 1S-GSA 2S-GSA STEM maSigFun

10 0.05 2T-GSA 32.3 27.2 33.2 0.6 55.3 74.1 70.8 75.3 0.1 86.1 87.8 87.1 90.9 0.5 94.8
1S-GSA 32.8 31.7 33.0 19.7 29.6 91.5 91.8 91.8 63.7 98.6 99.7 99.4 99.7 88.4 100.0
2S-GSA 32.3 27.2 33.1 0.6 55.3 75.8 73.0 76.9 0.1 87.3 88.3 88.5 91.6 0.5 95.8
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 1.2 1.7 0.0 96.7

0.1 2T-GSA 20.4 19.0 22.8 0.0 52.7 76.2 67.7 75.5 0.7 85.9 89.7 89.7 91.4 1.4 96.0
1S-GSA 32.2 31.3 30.7 20.1 29.3 89.7 88.0 90.2 66.4 98.4 99.1 98.9 99.0 88.5 100.0
2S-GSA 21.2 20.1 23.8 0.0 52.9 79.8 72.1 80.1 0.9 87.1 91.3 91.6 93.5 1.9 95.8
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 1.4 1.5 0.0 95.9

0.25 2T-GSA 14.4 11.2 13.5 0.3 25.4 66.4 59.5 64.1 1.1 87.0 85.7 84.4 89.1 1.9 96.4
1S-GSA 44.1 40.6 42.2 27.1 40.7 90.6 89.4 89.4 66.8 97.1 97.8 97.7 98.4 91.1 99.9
2S-GSA 22.9 17.6 21.5 0.4 44.6 73.3 67.3 71.9 1.2 86.9 88.7 89.2 92.0 2.2 96.5
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.9 2.3 0.0 94.3

0.5 2T-GSA 9.1 7.9 6.8 0.1 8.1 45.5 38.9 44.4 1.3 74.4 72.0 69.0 75.7 1.6 93.6
1S-GSA 30.8 32.0 33.4 23.1 25.5 73.1 73.2 72.8 59.2 90.7 87.5 86.2 87.5 85.7 96.0
2S-GSA 16.5 14.4 15.4 0.3 26.2 58.9 52.7 59.0 1.4 85.2 80.5 78.0 83.4 2.5 92.8
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.0 0.0 0.9 0.7
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 1.8 1.4 1.8 0.0 94.1

20 0.05 2T-GSA 39.6 30.7 43.8 0.1 81.6 85.5 80.2 84.6 0.7 91.7 93.1 89.4 90.3 0.9 97.6
1S-GSA 61.7 57.6 59.8 28.1 56.7 99.4 99.0 99.1 86.6 100.0 100.0 100.0 99.9 95.2 100.0
2S-GSA 39.6 30.7 43.8 0.1 81.6 85.5 80.3 84.6 0.7 91.7 93.1 89.7 90.3 0.9 97.7
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.0 0.4 0.4
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.0 99.9

0.1 2T-GSA 45.8 38.9 48.1 0.1 83.0 89.3 85.7 91.3 0.3 92.7 96.4 94.8 95.9 1.8 99.3
1S-GSA 57.0 56.6 55.2 30.0 53.0 98.7 98.8 99.3 82.8 99.9 100.0 99.9 100.0 96.5 100.0
2S-GSA 45.9 38.8 48.2 0.1 83.0 89.9 87.3 91.4 0.4 93.5 96.5 95.2 95.9 1.9 99.4
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.8 0.6
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 99.9

0.25 2T-GSA 35.0 31.2 35.7 0.2 73.7 87.9 84.0 91.0 1.3 96.2 97.5 96.8 97.9 3.8 99.4
1S-GSA 57.7 56.2 53.7 31.4 56.2 98.7 97.6 98.1 86.5 100.0 99.9 100.0 100.0 97.5 100.0
2S-GSA 39.9 34.6 39.8 0.2 83.4 90.6 87.6 92.5 1.9 96.3 98.1 97.5 98.2 4.0 99.5
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 1.9 0.6
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 99.9

0.5 2T-GSA 25.1 21.0 20.5 0.3 32.5 71.1 62.6 71.0 1.6 92.9 89.3 89.0 94.0 4.5 99.3
1S-GSA 44.5 44.4 40.6 33.6 43.8 90.7 88.4 91.0 89.0 99.4 98.0 98.0 99.1 98.0 99.9
2S-GSA 38.0 34.5 38.2 0.4 66.8 82.2 75.4 81.8 2.0 92.8 93.7 92.9 96.5 4.7 99.1
STEM 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.7 0.6 0.1 0.2 0.1 8.9 0.8
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 99.1

50 0.05 2T-GSA 67.1 59.9 68.3 0.4 83.8 86.3 88.0 88.1 0.4 95.2 89.8 89.9 91.6 2.0 99.3
1S-GSA 87.1 84.6 88.3 39.6 96.0 100.0 100.0 100.0 91.2 100.0 100.0 100.0 100.0 95.6 100.0
2S-GSA 67.1 59.9 68.3 0.4 83.8 86.4 88.1 88.4 0.4 95.6 90.1 90.0 91.6 2.3 99.4
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8 0.5 0.2 0.7 0.3 3.2 1.7
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 100.0

0.1 2T-GSA 70.9 61.0 71.2 0.1 85.2 90.6 91.0 91.4 0.1 98.6 96.0 95.9 95.6 3.8 99.7
1S-GSA 89.4 86.8 90.5 51.0 98.8 100.0 100.0 100.0 94.3 100.0 100.0 100.0 100.0 99.5 100.0
2S-GSA 71.2 61.1 71.4 0.1 85.2 90.7 91.1 91.6 0.1 98.8 96.1 96.0 95.7 4.2 99.7
STEM 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.0 0.7 0.4 0.3 0.4 0.3 2.7 1.2
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 100.0

0.25 2T-GSA 66.7 57.3 68.4 0.3 85.6 96.6 96.3 98.0 1.9 99.6 98.9 98.9 99.4 5.9 100.0
1S-GSA 90.8 88.9 90.7 57.3 98.0 100.0 100.0 100.0 97.1 100.0 100.0 100.0 100.0 99.7 100.0
2S-GSA 70.4 61.4 72.8 0.3 85.9 97.2 96.7 98.2 2.0 99.5 99.0 98.9 99.4 6.2 100.0
STEM 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 1.6 0.8 0.4 0.6 0.6 9.7 1.1
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 100.0

0.5 2T-GSA 54.0 40.8 49.5 0.2 83.3 91.2 85.0 94.7 2.6 99.3 93.8 97.4 99.5 7.7 100.0
1S-GSA 79.9 74.7 79.6 61.8 95.9 98.3 99.5 99.5 97.8 100.0 99.1 99.7 100.0 99.5 100.0
2S-GSA 65.4 53.4 62.5 0.3 84.1 94.3 91.6 97.2 3.0 99.2 97.1 98.0 99.7 7.9 100.0
STEM 0.0 0.0 0.0 0.3 0.1 0.0 0.1 0.1 19.6 1.6 1.9 1.8 0.6 48.7 5.9
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 100.0

100 0.05 2T-GSA 3.0 1.7 2.3 0.1 3.8 14.4 16.4 31.3 0.0 54.0 28.1 43.6 66.3 7.8 80.6
1S-GSA 94.9 93.7 95.1 76.4 100.0 100.0 100.0 100.0 99.1 100.0 100.0 100.0 100.0 100.0 100.0
2S-GSA 3.1 3.1 3.0 0.0 2.2 20.5 22.6 33.8 0.0 51.8 36.8 52.3 68.8 0.3 79.9
STEM 0.1 0.0 0.0 1.4 1.0 4.1 3.8 3.5 45.7 18.1 19.7 20.8 15.8 72.3 19.5
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 100.0

0.1 2T-GSA 79.3 74.3 78.3 0.7 85.8 90.7 92.4 90.9 0.5 99.5 94.6 97.3 96.8 3.6 99.9
1S-GSA 97.5 95.4 97.5 47.8 100.0 100.0 100.0 100.0 89.2 100.0 100.0 100.0 100.0 89.3 100.0
2S-GSA 80.4 74.9 78.7 0.7 86.4 91.1 92.4 90.9 0.6 99.5 96.1 97.9 97.2 8.0 99.9
STEM 0.0 0.0 0.0 0.1 0.2 0.1 0.3 0.2 3.4 2.0 0.7 1.3 0.4 8.6 2.5
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 100.0

0.25 2T-GSA 78.4 75.0 81.0 0.2 89.8 96.1 98.2 97.5 1.1 100.0 98.0 98.0 99.3 3.8 100.0
1S-GSA 98.4 97.2 98.4 67.5 99.9 100.0 100.0 100.0 97.5 100.0 100.0 100.0 100.0 99.7 100.0
2S-GSA 81.0 77.4 83.0 0.2 90.6 96.7 98.2 97.5 1.4 100.0 98.7 98.0 99.3 4.8 100.0
STEM 0.0 0.0 0.0 0.2 0.0 0.1 0.6 0.2 12.3 2.3 0.8 0.6 0.6 42.9 4.5
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 100.0

0.5 2T-GSA 67.1 56.7 71.0 0.1 87.7 91.0 94.9 98.9 2.5 99.9 90.5 98.9 99.9 4.6 100.0
1S-GSA 91.6 87.9 92.5 67.8 98.6 99.2 99.5 100.0 97.8 100.0 99.3 100.0 100.0 99.7 100.0
2S-GSA 74.2 66.0 78.7 0.2 88.4 93.7 96.4 99.6 2.8 99.9 93.2 99.3 99.9 4.3 100.0
STEM 0.0 0.1 0.0 1.8 0.1 1.0 1.5 0.7 53.3 4.6 3.3 3.9 0.9 75.9 9.2
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 100.0
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to yield highest sensitivity. In agreement with the results of the previous simulations
usually the 1S-GSA procedure performs with highest over all TPR values followed
by 2S-GSA and 2T-GSA algorithms, which achieve both a very similar TPR level.
The STEM and maSigFun procedures show a much worse ability in identifying
active sets with spiked-in information found by other algorithms than their own
(see Table 5.8). Hence, their overall TPR lies clearly below the values of the three
GSA procedures. Only the sensitivity of the GSA-type methods turn out to be
robust against a dilution of the proportion of spiked-in genes in active sets to a
small value for pag. This property is particularly true for larger gene sets, because
a small number of differentially genes can be detected as enrichment with more
power in larger sets. Gene sets with spiked in genes from significant STEM sets are
only identified with high confidence by the 1S-GSA algorithm as is apparent from
Tables 5.7 and 5.8.

The outstanding sensitivity of the 1S-GSA algorithm has to be paid with ex-
traordinary high FDR values, which are regularly by a magnitude higher than the
reasonable values for the other GSA-type methods, which take into account the
significance of the differential expression. As Table 5.7 states, there are literally
no false discoveries applying the maSigFun procedure. STEM shows a very high
proportion of false discoveries if the parameters |s|SIM and pas become larger. In
these simulation settings a significant set is harder to detect due to its enrichment
with genes from a particular model cluster, since a smaller number of genes results
in significant enrichment and the number of sets becomes smaller. At least for
the GSA-type algorithms, an increase of pag reduces the FDR. A decreasing FDR
can also be observed for the GSA-type methods with incremented values of pas

(except for the known anomaly with |s|SIM = 100 and pas = 0.05). The 2T-GSA and
the 2S-GSA algorithm show very similar FDR values across all simulation settings,
whereas the 2T-GSA algorithm has a slight advantage.

Table B.5 in the appendix reports the overall accuracy (ACC) and negative
predictive value (NPV) values under each simulation setting. It turns out that
the STEM procedure and the 2T-GSA fall below the trivial ACC limit for some
parameter constellations, whereas this is observed for STEM in combination with
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large pas values and for 1S-GSA in settings with small pas values. The maSigFun
algorithm surpasses the limit of 1− pas only for a high proportion of active genes
(pag ≥ 0.8) spiked-in into the corresponding active sets. The two algorithms 2T-GSA
and 2S-GSA show very similar ACC performance, but are the only ones that achieve
a considerable distance to the trivial limit across all simulation parameter settings.
The NPV values of the STEM procedure stated in Table B.5 are very close to the
trivial limit of 1− pas for small gene set sizes but fall considerably below this border
if the gene set size is incremented and the proportion of active sets becomes high
(pas ≥ 0.25). The maSigFun procedure shows only for large proportions of active
genes (pag ≥ 0.8) a substantial increase over the trivial ACC limit. The best NPV
performance is achieved by the three GSA-type algorithms across all simulation
settings, whereas the NPV of the 1S-GSA algorithm clearly exceeds the 2S-GSA
method, which achieves similar or slightly better values than the 2T-GSA procedure.
In summary, the simulation based on the tongue healing data set has proven

to be appropriate to examine the differences between the five competing profile
algorithms in a realistic simulation setting. The 1S-GSA method shows by far
highest sensitivity for all types of spiked-in significant gene sets and performs with
highest NPV values across all parameter settings. The drawback of the method is
the very low specificity and the disappointing accuracy measurements in contrast
to the two other GSA methods. Spiked-in genes from significant STEM sets are
only detected by the 1S-GSA and STEM procedure, where the latter needs larger
set sizes and a higher proportion of active sets (pas) to achieve reasonable TPR
values. The maSigFun method is restricted to identify significant sets exclusively
spiked-in with informative genes from an originally significant maSigFun gene set
(pag = 1). This is only realistic for small gene sets as emphasized in data analysis
chapter 6. The best accuracy is observed for the GSA-type methods, which take
into account the significance of the differential expression. Commonly, the 2S-GSA
method slightly outperforms the 2T-GSA algorithm in terms of accuracy, sensitivity
and NPV.
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Summary of Simulation Results for the Comparison of the Five Profile Algorithms
Looking only at the best performing profile algorithm in the simulation results
reveals a very heterogeneous picture across the chosen parameters and data sets.
Figure 5.3 shows the best performing profile algorithm in terms of accuracy (ACC)
and FDR for each data set and simulation parameter setting in a heat map. STEM
seems to be the superior profile algorithm for the largest gene group setting and
pas = 0.05, but only because of the fact that virtually no gene set was assigned with
a significant activation profile by this method. The FDR of maSigFun is smallest
among all algorithms for the same reason (omitted in case of no significant gene set
activation profiles). By disregarding those simulation parameter settings, where the
three GSA-type algorithms identified a lot more false positives than true positives,
the dominance of these algorithm type becomes clear for the accuracy and FDR (even
more clearly for sensitivity and specificity, not shown). While 2T-GSA performs
with a substantial advantage for the FDR, the ACC is higher for the 2S-GSA and
1S-GSA. The latter seems to be best for the not very common situation, where
one half of the analyzed gene sets is active across the experimental time period
(pas = 0.5).

Despite the differences of the four data set bases for the simulation study, there
are common characteristics in the simulation results. An increasing sensitivity
and specificity is observed for an enhanced proportion of differentially expressed
genes in the active gene sets across all simulations. This property is true only
with restrictions for the modified STEM procedure, which turns out to be not very
reliable in the simulation setting. The maSigFun procedure is reliable, but only in
the very restricted case that almost all genes in the gene set fit well to a common
model, which is not very often the case in the gene expression time series analyses.
The claim in the original paper (M. Nueda, Sebastián, et al. 2009) that 70% to
80% changing genes would be sufficient for a high sensitivity cannot be confirmed,
although the R2 value was chosen at a moderate level of 0.5. In general, it turns out
that the profile of larger gene sets can be correctly identified easier by all methods
if the proportion of spiked-in informative genes is hold fix. The sometimes large
deviations in the specific accuracy values with identical parameter constellation can
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Figure 5.3: Heat Map of the profile algorithm performance in terms of ACC and
FDR in the different settings of the simulation to compare the five algorithms ( STEM ,
maSigFun , 2T-GSA , 1S-GSA , 2S-GSA ). Each combination of simulation param-
eters is represented by four colored fields, wherein the upper left corner marks the
best performing algorithm on the AH data set. The other three fields represent
clockwise the superior profile algorithm for the simulations based on the OD, TH and
SH experiments.
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be explained by differences in the data quality of the underlying gene expression
time series data sets.

The 1S-GSA procedure has an outstanding sensitivity, which includes the ability
to detect genes sets spiked-in with STEM genes, but with the drawback of the by far
highest FDR values among all profile algorithms. The two methods which take into
account the significance of the differential expression at the different time points
perform with an acceptable sensitivity in relation to the three competitors and with
best accuracy and relative good specificity values. They suffer from a simulation
specific anomaly, which results from the TS-ABH FDR adjustment in a simulation
setting with only few significant sets. All in all, the GSA-type algorithms clearly
dominate the two competing methods from the literature. The reservation must
be made, however, that the right detection of the significant gene set may not be
equated with the identification of the true (spiked-in) profile. For instance, the
98.2% TPR in Table 5.8 (|s|SIM = 20, pas = 0.25, pag = 1, 2S-GSA-2S-GSA) shrinks
to 8.1% when considering only exact matches of the yielded and spiked-in profiles
as true positives, as shown in Table 5.9. Table 5.9 reveals that the recall of the
exact matching of the spiked-in prototype profile and the application of the profile
algorithms in the simulation runs turns out to be very data set dependent. Although
the overall TPR is not maximal in the simulation results of the OD data set, the
recall for exact matches clearly surpasses the recall values for the other data sets, in
general. The 1S-GSA algorithm outperforms the other GSA-type algorithms for the
most cases in the simulation based on the OD data at least for the gene set sizes
below 100. This does not hold for the other data sets, where 1S-GSA dominates the
recall only on those sets, where also a 1S-GSA prototype was used. In relation to the
recall rates considering all reported active sets with spiked-in genes as TPs, STEM
shows by far the highest recall performance stating only exact matches as TPs. This
can be explained by the clustering step in the STEM procedure and the simulation
algorithm, which spikes-in whole gene trajectories fitting well to the identified model
profile. The quality of the resulting profiles with the different GSA-type procedures
may be improved by smoothing the profiles as examined in the second simulation
study, which follows.



Table 5.9: TPR (or recall) for the exact profile matching of the spiked-in gene set
with the identified profile in the simulation to compare the profile algorithms. The
method maSigFun is missing due to the continuous character of the resulting model
parameters. The columns contain the type of spike-in information and the rows show
the recall when applying the current algorithm. The matching of the attached STEM
model profiles is only compared with the corresponding STEM profile of the spiked-in
gene set information. The other possible algorithm-input combinations of the AH
simulation are omitted (all 0%).

Exact Recall with pag = 1 AH Ovary development data Skin healing data Tongue healing data

|s|SIM pas algorithm STEM 2T-GSA 1S-GSA 2S-GSA STEM 2T-GSA 1S-GSA 2S-GSA STEM 2T-GSA 1S-GSA 2S-GSA STEM

10 0.05 2T-GSA 36.4 39.6 38.8 16.8 4.0 14.8 13.2 9.2 11.2
1S-GSA 53.2 64.0 56.0 0.4 14.8 4.4 8.4 14.0 8.0
2S-GSA 39.2 41.6 40.4 16.0 6.0 14.4 14.0 10.8 12.4
STEM 0.4 0.0 0.0 0.0

0.1 2T-GSA 38.4 54.4 49.6 14.4 9.2 15.2 7.6 6.8 10.4
1S-GSA 49.2 64.0 56.0 3.2 18.8 4.0 6.8 13.2 4.8
2S-GSA 41.6 56.4 52.8 20.4 10.8 16.8 10.0 10.8 12.8
STEM 0.4 0.0 0.0 0.0

0.25 2T-GSA 50.4 63.2 55.2 10.8 2.4 15.2 9.6 8.0 9.6
1S-GSA 53.6 69.2 63.2 6.4 17.6 4.0 4.0 15.6 4.4
2S-GSA 51.6 66.0 59.2 18.8 5.2 16.4 9.6 7.2 11.6
STEM 0.4 0.0 0.0 0.4

0.5 2T-GSA 45.2 39.2 40.4 8.8 0.4 7.6 3.2 4.0 2.8
1S-GSA 46.0 49.2 45.6 8.4 6.8 6.8 4.4 5.2 3.6
2S-GSA 50.8 52.0 50.0 14.8 2.8 14.0 7.6 5.2 4.0
STEM 0.8 0.0 0.0 0.0

20 0.05 2T-GSA 47.6 58.4 54.0 28.8 8.4 30.4 14.0 11.6 16.4
1S-GSA 56.4 66.0 61.6 0.0 13.2 1.2 6.4 14.0 6.4
2S-GSA 47.6 58.8 53.2 29.6 8.0 28.8 14.0 12.0 16.0
STEM 2.0 0.8 0.0 0.0

0.1 2T-GSA 50.8 58.4 53.6 27.6 4.4 23.2 11.2 12.8 10.0
1S-GSA 58.0 63.2 58.4 0.0 17.6 0.8 2.8 16.4 4.4
2S-GSA 51.2 58.4 53.6 24.8 5.6 24.8 12.0 13.2 10.0
STEM 1.6 0.4 0.0 0.8

0.25 2T-GSA 51.2 60.8 60.0 14.8 3.6 18.0 10.4 12.0 7.2
1S-GSA 54.4 63.2 59.6 1.2 12.8 3.2 4.8 19.6 4.8
2S-GSA 50.4 61.6 59.6 19.2 7.2 20.0 8.8 13.2 9.2
STEM 2.4 0.4 0.0 0.8

0.5 2T-GSA 49.6 61.2 50.8 8.4 2.4 14.0 6.4 7.2 6.4
1S-GSA 49.2 63.2 53.6 2.4 12.8 3.6 4.0 11.6 4.8
2S-GSA 53.2 64.0 53.6 16.4 4.4 16.8 8.0 10.4 10.4
STEM 4.8 2.0 0.0 8.8

50 0.05 2T-GSA 56.4 65.2 62.4 43.6 4.4 61.6 14.8 17.6 9.6
1S-GSA 59.2 63.6 61.6 0.0 12.0 0.0 6.8 22.8 7.6
2S-GSA 57.6 65.6 62.4 40.8 4.0 63.6 14.4 17.6 9.6
STEM 7.6 4.8 0.8 2.8

0.1 2T-GSA 52.8 65.2 58.0 15.6 10.8 24.0 11.6 20.4 4.4
1S-GSA 53.6 65.2 58.0 0.0 6.4 0.0 6.4 23.6 3.2
2S-GSA 50.0 65.2 57.6 18.4 8.8 23.2 11.6 20.4 4.0
STEM 6.8 3.6 1.2 2.8

0.25 2T-GSA 52.0 63.2 62.8 6.8 10.0 17.6 10.0 23.6 8.4
1S-GSA 52.0 68.0 64.0 0.0 8.0 0.0 2.8 24.0 4.4
2S-GSA 53.2 63.2 62.8 10.4 8.4 20.8 10.4 23.2 8.4
STEM 5.6 4.4 0.0 7.6

0.5 2T-GSA 57.6 64.0 67.2 4.0 4.8 14.8 10.8 14.8 9.2
1S-GSA 59.2 64.4 66.4 0.0 8.8 0.4 2.4 18.0 5.2
2S-GSA 58.0 63.6 66.0 7.2 3.6 14.0 8.0 16.0 9.2
STEM 7.2 10.0 0.8 45.2

100 0.05 2T-GSA 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.0 10.8
1S-GSA 64.4 72.0 64.4 0.0 13.2 0.0 6.4 22.0 7.2
2S-GSA 0.0 0.0 0.0 0.0 0.4 5.6 0.0 0.0 6.8
STEM 35.6 0.4 0.4 1.6

0.1 2T-GSA 61.2 73.2 64.0 37.6 9.2 42.0 11.2 20.0 6.8
1S-GSA 60.8 72.0 63.6 0.0 5.2 0.0 5.6 20.4 5.2
2S-GSA 59.6 72.8 64.0 39.6 7.6 40.8 11.2 19.6 6.4
STEM 36.0 4.8 0.4 8.0

0.25 2T-GSA 61.2 68.0 66.0 4.8 6.4 8.0 5.2 22.0 5.2
1S-GSA 60.4 67.6 67.2 0.0 6.4 0.0 2.0 20.0 4.4
2S-GSA 58.0 68.0 66.0 8.0 5.6 8.8 4.8 20.8 5.2
STEM 43.6 8.4 0.4 45.6

0.5 2T-GSA 44.8 69.2 66.4 4.0 6.4 14.4 4.4 14.0 10.4
1S-GSA 46.8 68.8 67.2 0.0 7.2 0.0 2.0 17.2 6.4
2S-GSA 48.4 69.2 66.4 10.8 7.6 18.8 5.6 15.6 10.0
STEM 58.4 11.2 1.2 73.2
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5.4 Simulation Study to Evaluate the Smoothing Algorithms

The second simulation study in this thesis is conducted to validate the smoothing
algorithms in the three proposed GSA-type gene set activation profile algorithms.
The construction of the simulation study is described in section 5.2. The simulation
study uses all measured gene expression values from one of the four application
data sets briefly described in section 5.1 and the corresponding gene set definitions
given in chapter 6 (e.g. see Table 6.1 for an overview). The used three activation
profile algorithms (2T-GSA, 1S-GSA and 2S-GSA) are defined in chapter 4. This
simulation study is neither conducted to compare the data sets nor to compare
the profile algorithms, but it shows the benefit of smoothing for the accuracy of
the resulting gene set activation profiles. The compared smoothing methods are
explained in section 4.3. There are different smoothing parameters examined for
each data set and smoothing method in the simulation scenario. On each data
set 2500 simulation runs for each combination of data set and pair of smoothing
parameters within a smoothing method are used to calculate the sensitivity and
specificity regarding the identification of preset activation profile prototypes. The
preset profiles are selected in consideration of the number of identified up and down
regulated genes at the examined time points in the data sets and are shown in
Table 5.10. On the one hand continuous profiles are chosen, which can be re-created
by the smoothing approaches. On the other hand at least one preset profile per data
set cannot be achieved by the proposed smoothing techniques (e.g. ++oo-- for OD
experiment data). The factors in Table 5.10 are used to multiply the use of each
preset profile in the each simulation setting. They are chosen in consideration of
the overall number of differentially expressed genes in the four experiments in order
to obtain a maximal number of sets with preset profile, but without exceeding the
number of originally available differentially expressed genes. The determination of
the used smoothing parameters is explained in the next subsection.
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Table 5.10: Preset activation profile per data set used in the simulation study to
validate the smoothing algorithms. Each profile is the prototype activation profile for
a number of factor gene sets, which leads to the given total number of preset gene
sets.

Aldosterone
effect

Ovary
development

Skin
healing

Tongue
healing

Preset
Profiles

---o+++
++++ooo
ooo----
+++++++
-------
++ooo--

---+++
+++ooo
ooo---
++++++
------
++oo--

++++ooo
+++oooo
++ooooo
+oooooo
o--oooo

--o-+++
++++ooo
ooo----
+++++++
-------
++ooo--

Factor 5 15 2 8
Total 30 90 10 48

Parameter Selection for Smoothing Methods in Simulation Study

The smoothing algorithm parameters λfill and λwipe determine the extent of smoothing
for each method (except the parameterless smoothing by forcing continous differential
expression status for all genes in the gene set (GE)). The smoothing decision of a
smoothing algorithm with fixed smoothing parameters depends on three numbers:
the total of differentially expressed genes in the gene set, the overall number of
differentially expressed genes and the gene set size. Only the last one is constant over
the three time points, which are regarded in the smoothing decision. An adaptive
choice of smoothing parameters in dependence on the gene set size and the total
numbers of differential expressions would be desirable, but increases the complexity
and the computational effort especially for the extensive simulation study. However,
the parameters are supposed to be constant for all gene sets and time points within
one algorithm and data set. The smoothing is applied in order to increase the
reliability of the gene set activation profiles resulting from the proposed GSA-type
profile algorithms in section 4.2. The first simulation study is conducted to evaluate
the smoothing algorithms and to find suitable fixed smoothing parameters for each
data set. The starting parameters chosen for this simulation study are determined
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in a random based procedure below. The final parameters for each simulation study,
data set and smoothing method are listed in Table B.6 (pp. 226 in the Appendix).

Determining Smoothing Parameters via GSP
The selection criterion for determining the smoothing parameter is the general
smoothing proportion (GSP) value aggregated across the whole gene set universe
defined for the underlying data set. The GSP is calculated separately for each
combination of data set, smoothing algorithm, smoothing direction (i.e. distinguish-
ing between the effect of λfill and λwipe) and smoothing parameter. The assumed
number of differential expressed genes is hold constant as median of differentially
expressed genes at all time points (3194 in the ovary development data set, 456 in
the aldosterone heart data set, 16 in the skin healing data set, 711 in the tongue
healing data set) for the calculation of the GSP. The significance limit is chosen as
the p-value analogue to the TS-ABH FDR limit in the application (AH: 1.031 10−5,
OD: 5.4872 10−4, SH: 9.22 10−6, TH: 2.3441 10−4). A total of 8000 enrichment test
p-value triples possible regarding the given gene set size and suitable for smoothing
(e.g. one p-value below significance border and two above or vice versa) are randomly
generated for each given gene set size (restricted to those gene set sizes, where
smoothing may occur with respect to the fixed number of differentially expressed
genes). That means, first all possible p-values in the enrichment test for the fixed
gene set size and total number of differentially expressed genes are determined. If
there are values below the data set dependent significance border, 8000 triples are
generated, in which each p-value from below and above the border separately had the
same probability to be selected. This is done twice, once for the case of smoothing
by adding a significant position (fill: two p-values below αsets, one above) and once
for the case of smoothing by erasing a significant position (wipe: one p-value below
αsets, two above). The smoothing algorithm with a fixed smoothing parameter is
applied on all triplets across all gene set sizes and the proportion of smoothing events
is determined for a given smoothing parameter (λfill, λwipe). The whole procedure
is repeated three times and the resulting mean proportion of smoothing events is
thereafter weighted with the set size frequency. The aggregated weighted sum of
smoothing proportions across all gene set sizes is denoted as general smoothing
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proportion and lies between 0 and 1. In the following, percentage values are used
for displaying the GSP. Those methods that need the number of differentially
expressed genes in the group or the full contingency table respectively, restore the
corresponding values from the p-values in the triplet. The directed and undirected
sequential difference smoothing methods are disadvantaged, because their smoothing
decision is based on another sampling according to the original time point to time
point differences in the data set.

Smoothing with a shift in contingency table (FS)

log2 λfill

G
SP

in
%

20

40

60

80

-5 -4 -3 -2 -1

aldosterone heart

-5 -4 -3 -2 -1

ovary development

-5 -4 -3 -2 -1

skin healing

-5 -4 -3 -2 -1

tongue healing

Figure 5.4: Hexbin Plot of the cumulated smoothing proportion in dependence of
the smoothing parameter λfill for the smoothing due to a shift in contingency table and
the four used data sets. Hexbin Plots use shaded hexagons to represent the number of
observations on the covered area (darker areas symbolize more points). This form of
visualization is chosen in order to emphasize the functional relationship and mitigate
the impression of variation in a normal scatter plot. The smoothing parameter values,
which correspond with the objective GSPs (horizontal lines) in the green spline curve
are used in the simulation setting. There could not be found any λfill in the greedy
search as suitable smoothing parameter for the skin healing data set, which leads to
a general smoothing proportion of less than 50%. There are also missing parameter
ranges for the other data sets. Hence, there are less parameter combinations possible
for the simulation to validate this smoothing method than for the other smoothing
algorithms.

A greedy search algorithms varies the smoothing parameter and calculates the
resulting GSP for each smoothing algorithm and data set. The calculated GSP
values show a variance due to the random character of the creating algorithm, which
is variable in dependence of parameter region, data set and smoothing algorithm.
The objective values for the GSP are 2.5, 5, 7.5, 10, 15, 20, 25, 30, 35, 40, 45,
50, 60, 70, 80 and 90% for each smoothing algorithm, direction and data set. A
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smoothing spline model is used to obtain a certain smoothing parameter for each
GSP objective value from the greedy search results. These objective values cannot
be fulfilled for all smoothing methods and data sets as demonstrated for instance in
Figure 5.4 or Figures B.1 to B.16 in the appendix. The method failed to identify
suitable parameters in case of the SU and SD smoothing for the tongue healing data
and in the case of the SD algorithm also for the skin healing data. Therefore, the
determined smoothing parameters from the aldosterone heart data are recycled in
the given cases.

The segmentation algorithms (1S-GSA and 2S-GSA) can only be combined with
the averaging smoothing methods (AM, GM, IN and IX), since the other smoothing
procedures assume a fixed number of differentially expressed genes.

Each possible combination from pairs of λfill and λwipe in Table B.6 for each of the
three profile algorithms is used in the simulation to validate the impact of smoothing
in terms of sensitivity and specificity, predictive value and accuracy.

Simulation Results

The four data sets used as basis for the simulation study to validate the smoothing
methods differ in numbers of time points, numbers of differentially expressed genes
and slightly in the defined gene sets (see chapter 6). The smoothing parameters, the
number and patterns of preset activation profiles are adapted to the specific data set
situation. Hence, the validation of the smoothing algorithm is considered separately
on each data set.
As remarked earlier, the disclosure of the surprisingly high FDR values would

be misleading. The high number of false positives (FPs), i.e. the number of not
preset gene sets with a non-constant o-profile, occur due to the construction of the
simulation study. The gene sets are not independent, for instance all genes from
a gene set defined by a GO term are included in all parent terms, too. Hence, by
fulfilling the preset profile in a gene set, it is likely that related terms inherit the
profile (or at least some significant positions) and are counted as FPs. The second
reason is the recycling of all gene values from the underlying data set, i.e. not all
differentially expressed genes belong to the preset gene sets. Hence, an occasional
enrichment of not preset genes is possible. Nevertheless, this construction of a
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simulation study is more realistic than spiking in signal for only a few gene sets and
adding artificial random noise.
In the following, four accuracy measures are discussed on the basis of the corre-

sponding plots, which show the simulation results. The sensitivity or true positive
rate (TPR) presents the proportion of preset gene sets, whose preset profile was
identified correctly by the profile algorithm and the subsequent smoothing. The
specificity or one minus false positive rate (1-FPR) states the proportion of constant-
o-profiles (i.e. true negative (TN) sets) among the gene sets without a preset profile.
The accuracy (ACC) combines both ratios and denotes the proportion of all correctly
identified profiles (TP + TN) among all profiles. The fourth measure is the positive
predictive value restricted to the preset profile types and a maximum similarity of
90% with preset gene sets (PPVp90). This value gives the proportion of correctly
identified gene sets annotated to any of the preset profile prototypes considering
only those findings as FP, which do share a maximum of 90 % of genes with any
preset gene set. The focus does not lie on the absolute values of these four measures
but on the way and extent they are affected by the different combination of data
set, profile algorithm and smoothing procedure.

Aldosterone Heart Data Set
The particular characteristic of this data set is the missing of replicated measurements
(M = 1) and hence the use of a fold change (1.5) to identify up and down regulated
genes. The number of differentially expressed genes applying this threshold is given
in Figure 6.5 on page 150. The first three time points show a rising trend for up
regulated genes, whereas the number of down regulated genes exceeds except for
the two hours measurement the number of up regulated genes. All time points
show a sufficient number of differentially expressed genes. Hence, the selected preset
activation profile prototypes in Table 5.10 are attainable in the simulation study
based on this data set.

The Figures B.17 to B.32 in the appendix show four accuracy measures for every
threshold algorithm in combination with the proposed smoothing algorithms for
the corresponding smoothing parameter pairs (see Table B.6). Generally, the effect
of all smoothing methods on the specificity (1-FPR) is small as demonstrated by
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the flat surface of the corresponding plots. The same holds for the ACC, since
the number of TNs is by far larger than the number of TPs. The largest range of
smoothing effect on sensitivity can be observed for the weighted inverse normal
score mean smoothing (IN) in the 2T-GSA and the 2S-GSA profile algorithms,
although the maximal sensitivity values are reached by the weighted arithmetic
mean smoothing (AM). The effect on the PPVp90 measure is small but similar for
all methods: a stronger smoothing in the fill direction (i.e. turning non-significant
positions to significant) decreases the PPVp90, whereas an increasing smoothing
in the wipe direction (i.e. turn a significant position between two non-significant
positions to not significant) has only a minor effect on the PPVp90. This is exemplary
shown in Figure 5.5 for the IN smoothing following the 2T-GSA profile algorithm.
There is no smoothing algorithm or even smoothing parameter combination, which
improves the PPVp90 value. This does not mean that correctly identified profiles
are biased by the smoothing and a wrong (e.g. not preset) profile results, since at
the same smoothing a gain in sensitivity can be observed. The loss in PPVp90 can
be explained by a smoothing effect, which annotates preset profiles to not preset
gene sets (with less than 90% gene coverage with preset sets) in a larger number
than smoothing preset gene sets to their correct preset profile.

The parameter pair that maximizes the accuracy (ACC) is given in Table 5.11 for
each profile algorithm and smoothing method in the simulation based on the aldos-
terone heart data set. In general, the smoothing increases sensitivity, specificity and
accuracy in relation to the profile algorithms without smoothing, whereas the PPVp90

is decreased by all smoothing methods. The extent of the improvements varies be-
tween the different profile and smoothing algorithms. The weighted arithmetic mean
smoothing (AM) performs with the highest sensitivity in all three applied activation
profile algorithms. It increases the TPR by 11.06% for the 2T-GSA profile algorithm,
by 3.83% for the 1S-GSA algorithm and by 27.04% for the 2S-GSA algorithm (see
Table 5.11). The distance to an hypothetical oracle algorithms knowing always
whether to smooth and in which direction (wipe out or fill in significant positions)
is comparatively small for 2T-GSA (2.91%) and 1S-GSA (1.12%), whereas for the
2S-GSA occurs a larger deviation of 7.32% (compare Table 5.11 and best TPR value
in Figure 5.5).
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Figure 5.5: Accuracy Plots for the AH data with profile algorithm 2T-GSA and
smoothing algorithm IN. The x– and z-axis illustrate increasing smoothing extent,
i.e. the objective GSP grows in positive direction from 2.5% to 90% achieved by
the correspondingly chosen smoothing parameters λfill and λwipe. The vertical y-axis
indicates the sensitivity (TPR), specificity (1-FPR), PPVp90 or accuracy (ACC) in
% as result of 2500 simulation runs with the parameter combination of the smoothing
method IN, given in Table B.6. Maximum (green), minimum (yellow), best (blue, only
TPR) values are given in addition to the values without smoothing (gray) right to the
surfaces. The sensitivity increases with increasing smoothing in the fill direction, while
the PPVp90 decreases in this direction. The specificity (1-FPR) and ACC increase to
a small extent in the wipe direction of smoothing.

The improvement in specificity is not maximal for the AM smoothing, but with
99.50% for the 2T-GSA (99.64% for 1S-GSA and 98.98% for 2S-GSA) the values
are very close to the best performing methods (SD: 99.61%, IX: 99.77% for 1S-GSA
and IX: 99.21% for 2S-GSA), whereas these smoothing methods perform poorly
in the sensitivity. The PPVp90 measure is decreased by all smoothing methods
to a moderate extent (to a minimum of 80.31% for GM smoothing and 1S-GSA
profiles). The observation that the number of not preset gene sets with a preset
profile increases more than the number of correctly identified preset gene sets is
due to the fact that the maximum possible number of TPs is small (i.e. limited
by the number of preset sets) in comparison with the potential number of FPs (all
not preset gene sets). The SD smoothing in combination with the 2T-GSA profile
algorithm and the IX smoothing for the remaining two algorithms yield the smallest
loss in PPVp90, but the corresponding TPR values are very low. Hence, the AM
algorithm that reduces the PPVp90 by 4.84% for the 2T-GSA profiles, 3.65% for the
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Table 5.11: Best parameter combination of the applied smoothing methods in the
simulation to validate the smoothing on the aldosterone heart data set. The left
column shows the type of algorithm. The next columns show the smoothing method
and the parameter combination also including the corresponding general smoothing
proportion in %. The resulting values of the sensitivity or true positive rate (TPR),
the specificity or 1 - false positive rate (FPR), the PPVp90 and the accuracy (ACC)
are shown in the most right columns. The shown parameter pair within one smoothing
algorithm was selected by maximal ACC. Maximum values are colored.

data: AH λfill in% λwipe in% TPR 1-FPR PPVp90 ACC

2T
-G

SA

none 7.30 98.55 89.44 98.17
GE 13.62 99.22 87.76 98.87
AM 0.0021 40.0 80.0904 90.0 18.36 99.50 84.60 99.16
GM 0.3295 90.0 0.2770 90.0 16.99 99.59 85.50 99.25
IN 0.3166 80.0 0.4647 90.0 16.89 99.59 85.59 99.24
IX 0.3183 90.0 0.2625 90.0 9.09 99.60 83.89 99.23
FD 0.7936 90.0 27.9746 80.0 17.02 99.18 83.73 98.84
FS 0.0412 20.0 0.4502 90.0 16.67 99.59 86.76 99.24
SU 0.9203 7.5 0.9265 7.5 17.94 99.55 84.40 99.21
SD 1.0059 20.0 0.9802 20.0 7.32 99.61 88.02 99.22

1S
-G

SA

none 3.71 98.93 87.14 98.54
AM 0.0181 25.0 80.0904 90.0 7.54 99.64 83.49 99.26
GM 0.5778 80.0 0.2770 90.0 4.85 99.76 80.31 99.36
IN 0.4608 70.0 0.4647 90.0 4.91 99.75 80.83 99.36
IX 23.0178 2.5 0.2625 90.0 3.83 99.77 83.89 99.37

2S
-G

SA

none 29.72 97.61 85.75 97.33
AM 0.0046 35.0 80.0904 90.0 56.76 98.98 80.40 98.80
GM 0.3295 90.0 0.2770 90.0 54.98 99.17 80.99 98.99
IN 0.3166 80.0 0.4647 90.0 54.91 99.16 81.03 98.98
IX 0.3183 90.0 0.2625 90.0 37.17 99.21 81.12 98.95

1S-GSA profiles and 5.35% for the 2S-GSA profiles seems to be acceptable regarding
the advantage in sensitivity, although the selected AM smoothing results in the
smallest increase in ACC except of the GE smoothing.

The weighted arithmetic mean smoothing (AM) algorithm is used in the following
for the analysis of the aldosterone heart data set with parameters, which correspond
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to a smoothing of 40% in the fill direction and a smoothing of 90% in the wipe
direction of smoothing in combination with the 2T-GSA profile algorithm (for
1S-GSA: 25% and for 2S-GSA: 35% in the fill direction) as listed in Table 5.15 on
page 129.

Ovary Development Data Set
This data set consists of six time points in contrast to seven time points in the other
studies. The number of differentially expressed genes is much higher (2431 to 3971
while controlling a TS-ABH FDR of 5 %) than for the aldosterone heart data set
and the two skin healing data sets (see Figure 6.6 on page 154). This allows for
more preset gene sets as stated in Table 5.10. Furthermore, the high number of
differentially expressed genes is recycled in the simulation study and hence a false
positive enrichment for not preset gene sets may be more likely.

The Figures B.33 to B.48 in the appendix show four accuracy measures for every
GSA-type profile algorithm in combination with the proposed smoothing algorithms
for the corresponding smoothing parameter pairs (see Table B.6). Analogously to the
aldosterone heart data set, the effect of all smoothing methods on the specificity and
accuracy is small (maximum range is 4.93% for specificity and 5.09% for ACC in
the combination of 2S-GSA with IN smoothing) as demonstrated by the flat surface
of the corresponding plots (e.g. Figure 5.6). For every combination of smoothing
and profile algorithm the sensitivity, specificity and accuracy lie above the value
without smoothing, while the PPVp90 is decreased below the level without smoothing,
in general. The largest range of smoothing effect on sensitivity is again observed
for the weighted inverse normal score mean smoothing (IN) and all three profile
algorithms, but the maximum TPR is observed for the weighted arithmetic mean
smoothing (AM) for all profile types. The decreasing of the PPVp90 occurs mainly
in the fill direction of smoothing as demonstrated for the weighted inverse normal
score mean smoothing (IN) algorithm in Figure 5.6 in an exemplary fashion. There
are some other patterns for other smoothing methods, for instance an increasing
PPVp90 with growing smoothing extent in the fill direction for the FD smoothing
in combination with the 2T-GSA profile algorithm (maximum still below the value
without smoothing, see Figure B.37 on page 240).
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Table 5.12: Best parameter combination of the applied smoothing methods in the
simulation to validate the smoothing on the ovary development data set. The left
column shows the type of algorithm. The next columns show the smoothing method
and the parameter combination also including the corresponding general smoothing
proportion in %. The resulting values of the sensitivity or true positive rate (TPR),
the specificity or 1 - false positive rate (FPR), the PPVp90 and the accuracy (ACC)
are shown in the most right columns. The shown parameter pair within one smoothing
algorithm was selected by maximal ACC. Maximum values are colored.

data: OD λfill in% λwipe in% TPR 1-FPR PPVp90 ACC

2T
-G

SA

none 9.73 96.20 81.25 95.12
GE 15.57 97.95 83.42 96.92
AM 0.0047 35.0 86.3824 90.0 27.53 98.44 79.72 97.56
GM 0.2618 90.0 0.2635 90.0 25.06 99.23 79.96 98.30
IN 0.1302 90.0 0.6924 90.0 26.22 99.15 79.60 98.24
IX 0.2874 90.0 0.2289 90.0 13.61 99.26 79.85 98.20
FD 0.7758 80.0 16.9952 80.0 26.24 99.09 78.96 98.18
FS 0.3471 45.0 0.3467 90.0 26.22 99.05 79.21 98.14
SU 0.1882 80.0 0.0965 90.0 26.10 99.05 79.42 98.14
SD 0.0332 90.0 0.1059 80.0 26.79 98.52 78.13 97.62

1S
-G

SA

none 19.33 93.78 85.17 92.85
AM 0.0047 35.0 86.3824 90.0 35.48 97.58 75.88 96.80
GM 0.2618 90.0 0.2635 90.0 32.74 98.76 76.87 97.94
IN 0.1302 90.0 0.6924 90.0 34.02 98.65 76.28 97.84
IX 0.2874 90.0 0.2289 90.0 23.38 98.82 82.12 97.88

2S
-G

SA

none 17.67 92.67 81.44 91.73
AM 0.0078 30.0 86.3824 90.0 41.56 97.11 75.95 96.42
GM 0.2618 90.0 0.2635 90.0 39.11 98.57 76.57 97.83
IN 0.2149 80.0 0.6924 90.0 39.61 98.43 76.82 97.69
IX 0.2874 90.0 0.2289 90.0 24.59 98.64 79.86 97.72
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Figure 5.6: Accuracy Plots for the OD data with profile algorithm 2S-GSA and
smoothing algorithm IN. The x– and z-axis illustrate increasing smoothing extent,
i.e. the objective GSP grows in positive direction from 2.5% to 90% achieved by
the correspondingly chosen smoothing parameters λfill and λwipe. The vertical y-axis
indicates the sensitivity (TPR), specificity (1-FPR), PPVp90 or accuracy (ACC) in
% as result of 2500 simulation runs with the parameter combination of the smoothing
method IN, given in Table B.6. Maximum (green), minimum (yellow), best (blue, only
TPR) values are given in addition to the values without smoothing (gray) right to the
surfaces. The sensitivity increases with increasing smoothing in the fill direction, while
the PPVp90 decreases with increasing smoothing in the fill direction. The specificity
(1-FPR) and accuracy (ACC) increase to a small extent in the wipe direction of
smoothing.

The parameter pair that maximizes the accuracy (ACC) is given in Table 5.12
for each profile algorithm and smoothing algorithm in the simulation based on the
ovary development data set. Analogously to the other data sets, the smoothing
increases sensitivity, specificity and accuracy in relation to the profile algorithms
without smoothing. Whereas the PPVp90 is decreased by the smoothing methods
except for GE smoothing, which shows a 2.17% higher PPVp90. The extent of the
improvements in TPR, 1-FPR and ACC varies between the different profile and
smoothing algorithms. The weighted arithmetic mean smoothing (AM) performs
with the highest sensitivity in all three applied activation profile algorithms. The
TPR is increased by 17.8% for the 2T-GSA profile algorithm, by 16.15% for the
1S-GSA algorithm and 23.89% for the 2S-GSA algorithm in relation to the cor-
responding algorithm without smoothing. The distance to a hypothetical oracle
algorithm knowing always whether to smooth and in which direction (wipe out or
fill in significant positions) is for all three profile algorithms on a similar moder-
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ate level (2T-GSA: 4.21%, 1S-GSA: 4.19%, 2S-GSA: 4.22%). The improvement
in specificity by the AM smoothing is clearer (2T-GSA: 2.24%, 1S-GSA: 3.82%,
2S-GSA: 4.44%) than in the aldosterone heart data set. The weighted inverse χ2

score mean smoothing (IX) procedure yields maximal specificity improvement with
3.06% for the 2T-GSA (5.04% for 1S-GSA and 5.97% for 2S-GSA), but the IX
algorithm performs poorly in the sensitivity.
The loss in PPVp90 for the segmentation profile algorithms (1S-GSA, 2S-GSA)

is higher than for the 2T-GSA algorithm. The GE smoothing algorithm results
even in an increase of the PPVp90 for the 2T-GSA profile algorithm. Applying the
2T-GSA profile algorithm in combination with the selected AM smoothing reduces
the PPVp90 from 81.25% without smoothing to 79.72%. The AM smoothing in
combination with the 1S-GSA procedure yields a PPVp90 decrease of 9.29% or
in combination with the 2S-GSA profile algorithm a PPVp90 decrease of 5.49%.
The PPVp90 level is generally smaller than for the first simulation data set. The in
relation higher number of FPs can be explained by the higher number of differentially
expressed genes, which are all recycled in each simulation step.

The sensitivity performance is the reason for applying only the weighted arithmetic
mean smoothing (AM) algorithm in the following. The parameters differ for the
three activation profile algorithms and correspond to a smoothing of 35% GSP
for 2T-GSA and 1S-GSA in the fill direction of smoothing, whereas the 2S-GSA
algorithm should have an objective GSP of 30% in this direction. In the wipe
smoothing direction the smoothing parameter λwipe is supposed to yield a GSP of
90% for all three profile algorithms. The parameter values are shown in Table 5.15.

Skin Healing Data Set
The low number of differentially expressed genes as shown in Figure 6.7 is the
particular characteristic of this data set. The number of differentially up expressed
genes (controlling a TS-ABH FDR of 5%) does not exceed 132 and the number of
down expressed genes is maximally 30 and minimally 2 at the seven time points in
the study. This hampers to select continuous preset profiles, which may be restored
in the simulation setting and identified by the profile algorithms. The used preset
profiles are focused on prototypes with up regulation as presented in Table 5.10.
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Furthermore, the low number of up expressed genes at the early time points may
be almost completely assigned to the preset gene sets, what results in a generally
higher sensitivity. Whereas, the later time points are not considered in preset profiles
and may lead together with the down regulated genes to a high number of false
findings, since one single differentially expressed gene probably leads to a significant
enrichment of the corresponding gene set.
Figures B.49 to B.64 in the appendix show four accuracy measures for every

profile algorithm in combination with the proposed smoothing procedures for the
corresponding smoothing parameter pairs (see Table B.6). Analogously to the other
data sets, the effect of all smoothing methods on the specificity and accuracy is small
as demonstrated by the flat surface of the corresponding plots. The sensitivity of the
1S-GSA profile algorithm is remarkably low (<0.14%) for every smoothing method.
This reveals the danger of ignoring significance on the gene level by this profile
algorithm. The two-threshold methods perform with a much higher sensitivity on
this data set. The increasing TPR in dependence of an increasing smoothing in the
fill direction can be observed analogously to the other data sets, in particular for the
AM, SU, SD and FD smoothing procedures. The PPVp90 value is increased by all
smoothing methods above the level without smoothing, although the PPVp90 level
is clearly lower than for the other examined data sets. In contrast to the results for
the other data sets, the increase in PPVp90 is affected mainly with smoothing in
the wipe direction for the skin healing simulations at least in the parameter regions
with a low GSP (see Figure 5.7). The low PPVp90 values can be explained with
the relatively low number of differentially expressed genes. This in turn means that
already one or two of these genes may cause a significant enrichment, since all gene
values are recycled in each simulation step. A second reason is the simple preset
profile +oooooo, which is very likely to result by chance for not preset gene sets.
The smoothing in the wipe direction may erase some of the incorrectly identified
(false positive) gene sets with preset profiles. Hence, the smoothing algorithms are
able to improve the PPVp90.
The parameter pair that maximizes the ACC is given in Table 5.13 for each

profile algorithm and smoothing algorithm in the simulation based on the skin
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Figure 5.7: Accuracy Plots for the SH data with profile algorithm 2T-GSA and
smoothing algorithm GM. The x– and z-axis illustrate increasing smoothing extent,
i.e. the objective GSP grows in positive direction from 2.5% to 90% achieved by
the correspondingly chosen smoothing parameters λfill and λwipe. The vertical y-axis
indicates the sensitivity (TPR), specificity (1-FPR), PPVp90 or accuracy (ACC) in
% as result of 2500 simulation runs with the parameter combination of the smoothing
method IN, given in Table B.6. Maximum (green), minimum (yellow), best (blue, only
TPR) values are given in addition to the values without smoothing (gray) right to
the surfaces. The sensitivity increases with increasing smoothing in the fill direction,
while the PPVp90 increases mainly in the wipe directions of smoothing. The specificity
(1-FPR) and accuracy (ACC) increase to a small extent in the wipe direction of
smoothing.

healing data set. The 1S-GSA profile algorithm has in contrast to the results of
the simulation based on the other data sets very poor results, which is due to
the fact that this method ignores the significance on the gene level and identifies
enrichment on the basis of quantiles of extreme gene expression differences. In this
data set the number of significantly differentially expressed genes is very small in
comparison with the number of genes related to the used quantiles. Hence, too
many genes were considered as differential in the enrichment test and the true gene
sets (spiked only with the smallest significant number of significantly differentially
expressed genes) cannot be identified. This is a general weakness of the 1S-GSA
profile algorithm, which affects especially studies with low numbers of differentially
expressed genes. For both other profile algorithms, the sensitivity is increased by all
smoothing procedures. In contrast to the simulation studies based on the first two
data sets the 2T-GSA algorithm leads to higher sensitivity values than the 2S-GSA
algorithm. This occurs probably due to the optimistic assumption, that the 2T-GSA
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Table 5.13: Best parameter combination of the applied smoothing methods in the
simulation to validate the smoothing on the skin healing data set. The left column
shows the type of algorithm. The next columns show the smoothing method and the
parameter combination also including the corresponding general smoothing proportion
in %. The resulting values of the sensitivity or true positive rate (TPR), the specificity
or 1 - false positive rate (FPR), the PPVp90 and the accuracy (ACC) are shown in
the most right columns. The shown parameter pair within one smoothing algorithm
was selected by maximal ACC. Maximum values are colored.

data: SH λfill in% λwipe in% TPR 1-FPR PPVp90 ACC

2T
-G

SA

none 55.85 99.25 13.68 99.19
GE 60.17 99.31 14.28 99.26
AM 0.0002 90.0 8.8592 90.0 65.93 99.67 37.81 99.63
GM 0.8438 90.0 0.1428 90.0 61.93 99.68 38.43 99.63
IN 0.5093 90.0 0.2135 90.0 63.54 99.68 38.52 99.63
IX 0.8103 90.0 0.1504 90.0 56.45 99.68 37.26 99.62
FD 0.4954 90.0 4.5754 80.0 65.58 99.68 38.71 99.63
FS 0.0872 60.0 0.4312 80.0 65.34 99.68 38.99 99.63
SU 0.1129 90.0 0.1147 90.0 65.94 99.65 34.79 99.60
SD 0.0827 90.0 0.0826 90.0 65.21 99.64 34.61 99.60

1S
-G

SA

none 0.10 99.96 2.41 99.82
AM 0.0008 70.0 8.8592 90.0 0.05 100.00 18.31 99.86
GM 35.1406 2.5 0.2950 70.0 0.02 100.00 10.64 99.86
IN 19.6587 2.5 0.3712 80.0 0.02 100.00 10.64 99.86
IX 35.8762 2.5 3.8835 7.5 0.02 100.00 10.64 99.86

2S
-G

SA

none 41.00 99.25 9.94 99.17
AM 0.0004 80.0 8.8592 90.0 49.30 99.71 32.48 99.64
GM 0.8438 90.0 0.1428 90.0 45.52 99.71 31.99 99.64
IN 0.5093 90.0 0.2135 90.0 46.51 99.71 32.22 99.64
IX 0.8103 90.0 0.1504 90.0 41.60 99.71 30.46 99.63

knows the real significance border and the 2S-GSA algorithm has to adjust for the
different segments, which indicate significant differential expression. The increase of
sensitivity for the weighted arithmetic mean smoothing (AM) algorithm is ranked
on second place concerning the 2T-GSA algorithm, but its improvement in relation
without smoothing is with 10.08% only 0.01% worse than for the SU method, which
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performs best. In the 2S-GSA simulation runs, the AM increases the TPR by 8.3%,
which is clearly better than the three competitors. The distance of the AM TPR to
a hypothetical oracle algorithm knowing always whether to smooth and in which
direction (wipe out or fill in significant positions) is relatively small with around
90% of the possible optimum. The specificity is on a very high level for all selected
combinations of smoothing method and parameters and hence the corresponding
improvement is not as clear as in the other data sets. The maximum observed
specificity is yielded by the GM, IN, IX, FD and FS for the 2T-GSA algorithm
(99.68%) or by AM, GM, IN and IX for the 2S-GSA algorithm (99.71%). The
maximal ACC value is analogously achieved by a couple of methods (99.63% for AM,
GM, IN, FD, FS with 2T-GSA profiles and 99.64% for AM, GM, IN with 2S-GSA
profiles). The FS smoothing performs best for PPVp90 measure in combination with
the 2T-GSA algorithm, but Figure B.54 in the appendix reveals that the smoothing
parameter seems to hardly affect the accuracy performance of the four accuracy
measures. The AM smoothing is the best PPVp90 performer for the unreliable
1S-GSA profile algorithm and the 2S-GSA algorithm. The AM procedure improves
the PPVp90 measure significantly by 24.13% for the 2T-GSA profiles, by 15.9% in
combination with the 1S-GSA algorithm and 22.54% for the 2S-GSA profiles.
The 1S-GSA profile algorithm seems not to work properly in this data set as

demonstrated by the poor sensitivity performance. Therefore, in the following on
the skin healing data smoothing is considered only for the 2T-GSA and 2S-GSA
profile algorithms. The weighted arithmetic mean smoothing (AM) algorithm seems
to be a proper choice in both cases. The parameters applied for the two activation
profile methods correspond to a GSP of 90% in the fill direction and the 2T-GSA
algorithm and 80% for the 2S-GSA respectively, whereas the smoothing extent in
the wipe direction is supposed to result in a GSP of 90%.

Tongue Healing Data Set
Although the skin healing data and the tongue healing data were collected from the
same study (see section 6.5), their numbers of differentially expressed genes vary
greatly. Even at the last time point, with lowest number of differentially expressed
genes in the tongue healing data set, there are more genes identified as differentially
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expressed as in the maximal time point in the skin healing data (compare Figures 6.7
and 6.8). This allows for a higher number and more variants of preset profiles as
stated in Table 5.10.
Figures B.65 to B.80 in the appendix show four accuracy measures for every

threshold algorithm in combination with the proposed smoothing algorithms for
the corresponding smoothing parameter pairs (see Table B.6). Analogously to
the other data sets, the effect of all smoothing methods on the specificity and
accuracy is small, as demonstrated by the flat surface of the corresponding plots.
Similar to the previous considerations does the fill direction of smoothing affect the
sensitivity, while the wipe direction has a minor influence on specificity and accuracy
see Figure 5.8 (with exception of IX and FS algorithms where both parameters affect
TPR and ACC to a very small extent).

The improvement in sensitivity in dependence on increasing smoothing in the fill
direction can be observed analogously to the other data sets, in particular for the AM,
IN, SU, SD and FD smoothing procedures. The PPVp90 values are decreased below
the level without smoothing by all methods except for some smoothing parameters
in the combination of the 1S-GSA profile algorithm with AM smoothing as is shown
in Figure 5.8. In general, the shape of the PPVp90 surface is inconsistent for the
smoothing algorithms, e.g. the PPVp90 is decreasing with increasing smoothing in
both directions of smoothing for the SD procedure (see Figure B.72 on page 253)
while the PPVp90 of FD smoothing seems to be influenced only by the fill direction
of smoothing (see Figure B.69 on page 252).
The parameter pair that maximizes the accuracy (ACC) is given in Table 5.14

for each profile algorithm and smoothing algorithm in the simulation based on the
tongue healing data set. The sensitivity is maximal with the AM smoothing in all
profile algorithm simulations, i.e. in relation to the case without smoothing the true
positive rate (TPR) is 22.29% higher for the 2T-GSA algorithm, 13.14% higher for
the 1S-GSA algorithm and 22.83% higher for the 2S-GSA algorithm. The distance
to a hypothetical oracle algorithm knowing always whether to smooth and in which
direction (wipe out or fill in significant positions) is relatively large with 5.3%
(2T-GSA), 5.54% (1S-GSA) and 8.08% (2S-GSA). The maximal improvement
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Table 5.14: Best parameter combination of the applied smoothing methods in the
simulation to validate the smoothing on the tongue healing data set. The left column
shows the type of algorithm. The next columns show the smoothing method and the
parameter combination also including the corresponding general smoothing proportion
in %. The resulting values of the sensitivity or true positive rate (TPR), the specificity
or 1 - false positive rate (FPR), the PPVp90 and the accuracy (ACC) are shown in
the most right columns. The shown parameter pair within one smoothing algorithm
was selected by maximal ACC. Maximum values are colored.

data: TH λfill in% λwipe in% TPR 1-FPR PPVp90 ACC

2T
-G

SA

none 19.01 95.42 89.94 96.31
GE 29.74 96.89 88.90 96.44
AM 0.0098 40.0 25.3714 90.0 41.30 98.45 86.14 98.07
GM 0.5755 90.0 0.2147 90.0 34.18 98.66 86.09 98.23
IN 0.2984 90.0 0.3634 90.0 37.87 98.65 85.90 98.25
IX 0.6211 90.0 0.1865 90.0 23.52 98.69 86.95 98.19
FD 0.2908 50.0 30.2826 80.0 39.17 98.64 85.25 98.24
FS 0.0457 25.0 0.5012 90.0 36.85 98.67 88.41 98.26
SU 0.4502 50.0 0.0950 90.0 37.96 98.47 86.56 98.07
SD 0.0827 90.0 0.0826 90.0 37.02 98.26 85.14 97.86

1S
-G

SA

none 2.94 95.66 76.73 95.73
AM 0.0428 25.0 25.3714 90.0 16.08 99.05 78.20 98.50
GM 3.2836 25.0 0.2147 90.0 9.59 99.37 71.70 98.77
IN 1.7584 30.0 0.3634 90.0 10.39 99.35 72.49 98.76
IX 37.5894 2.5 0.1865 90.0 8.59 99.39 70.94 98.79

2S
-G

SA

none 18.29 93.43 84.32 94.31
AM 0.0169 35.0 25.3714 90.0 41.12 97.61 78.88 97.23
GM 0.5755 90.0 0.2147 90.0 37.89 97.92 79.21 97.52
IN 0.4691 80.0 0.3634 90.0 38.29 97.91 79.26 97.52
IX 0.6211 90.0 0.1865 90.0 24.66 97.98 79.59 97.49
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Figure 5.8: Accuracy Plots for the TH data with profile algorithm 1S-GSA and
smoothing algorithm AM. The x– and z-axis illustrate increasing smoothing extent,
i.e. the objective GSP grows in positive direction from 2.5% to 90% achieved by
the correspondingly chosen smoothing parameters λfill and λwipe. The vertical y-axis
indicates the sensitivity (TPR), specificity (1-FPR), PPVp90 or accuracy (ACC) in
% as result of 2500 simulation runs with the parameter combination of the smoothing
method AM, given in Table B.6. Maximum (green), minimum (yellow), best (blue,
only TPR) values are given in addition to the values without smoothing (gray) right
to the surfaces. The sensitivity increases with greater smoothing in the fill direction,
while the ACC and specificity increase to a small extent with λwipe. The PPVp90
varies in the fill directions of smoothing and is above the value without smoothing
only for a ralatively small parameter range.

in specificity is yielded by the weighted inverse χ2 score mean smoothing (IX)
procedure, but its sensitivity performance is worst among all ACC selected smoothing
methods. The AM smoothing increases the specificity by 3.03% in the 2T-GSA
profile algorithm simulation, by 3.39% in the simulation linked to the 1S-GSA
algorithm and 4.18% in the 2S-GSA simulation. The ACC is not maximal for
the selected AM smoothing, but it yields a clear improvement (very close to the
best methods) of 1.76% (2T-GSA), 2.77% (1S-GSA) and 2.92% (2S-GSA). The
PPVp90 value can only be improved for the combination of AM smoothing with
the 1S-GSA profiles (+1.47%), but in general the PPVp90 values are smaller for
the 1S-GSA profile algorithm than for the procedure 2S-GSA, and the latter are
smaller than the PPVp90 values of the 2T-GSA method. The 2T-GSA and the
2S-GSA profile algorithms work under the optimistic case that the threshold for the
true significantly differentially expressed genes is known in contrast to the quantile
definition of 1S-GSA. Despite the fact that the segmentation test approaches
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(1S-GSA and 2S-GSA) adjust for their different definitions of differential expression
they identify more false positive values than the 2T-GSA method as can be concluded
from the PPVp90 values for the AM smoothing and the 2T-GSA and the 2S-GSA
profiles. This can be explained by the construction of the simulation study, which
uses exactly the enrichment threshold of the 2T-GSA procedure to spike in enriched
gene sets. Nevertheless, the applied smoothing algorithms improve the case without
smoothing for all three algorithms as should be shown by this simulation.

The AM smoothing algorithm shows by far the best sensitivity performance for all
three profile algorithms. Therefore, the weighted arithmetic mean smoothing (AM)
procedure is exclusively used in combination with the tongue healing data in the
following. The smoothing parameters correspond to a GSP of 90% for the wipe
direction of smoothing and for the other direction the objective GSP depends on the
profile algorithm, i.e. 40% for the 2T-GSA procedure, 25% for the 1S-GSA method
and 35% for the 2S-GSA algorithm. The smoothing parameters satisfying these
requests are listed in Table 5.15.

Overall Conclusions per Smoothing Method
The simulation to compare the smoothing methods yields results, which are very
complex due to the large number of algorithms, smoothing parameter values and
the four different evaluation data sets. Figure 5.9 shows a performance heat map
of the best ACC performers for each pair of smoothing algorithm and data set
(see Tables 5.11, 5.12, 5.13, and 5.14). Especially the results obtained from the
SH based simulations stand out. The AM smoothing is in most cases performing
with the best sensitivity (TPR) and IX smoothing is superior in specificity (1-FPR).
Regarding the accuracy, the smoothing algorithms with moderate sensitivity like
GM and IN perform better, whereas the PPVp90 value is with exception of the SH
results maximal without any smoothing. The simulation study results are analyzed
separately for each method in more detail below.
Table 5.15 shows the selected smoothing methods in combination with the cor-

responding smoothing parameters selected from the results of the simulation to
evaluate the smoothing methods. In general, a strong smoothing in the wipe direction
seems to be advantageous in all determined simulation settings in order to obtain a
high accuracy. A moderate extent of smoothing seems to be more reliable in the
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Figure 5.9: Heat Map of the smoothing algorithm performance in terms of sensi-
tivity (TPR), specificity(1-FPR), PPVp90 and accuracy (ACC) across all four data
sets. The performance of the smoothing method applying the accuracy maximizing
parameter combinations (compare Tables 5.11, 5.12, 5.13, and 5.14) is ranked for each
accuracy measure and profile algorithm. The colored rectangle for each combination
of smoothing algorithm and accuracy measure is subdivided into four colored fields
wherein the upper left corner marks the performance in the simulation based on the
AH data set. The other three fields represent clockwise the simulation results for the
OD, TH and SH experiments. High values are shown in dark green and the smallest
value is illustrated in pure yellow.
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Table 5.15: Smoothing methods and smoothing parameters selected on basis of the
simulation study to evaluate the smoothing methods. Parameter values have to be
adopted to the used enrichment significance level (αsets) and the expected number of
differential genes. See Table 5.16 for the smoothing parameters applied in application
chapter 6.

Algorithms Parameters (GSP in %)
Data Profile Smoothing λfill λwipe

AH 2T-GSA AM 0.0021 (40) 80.0904 (90)
1S-GSA AM 0.0181 (25) 80.0904 (90)
2S-GSA AM 0.0046 (35) 80.0904 (90)

OD 2T-GSA AM 0.0047 (35) 86.3824 (90)
1S-GSA AM 0.0047 (35) 86.3824 (90)
2S-GSA AM 0.0078 (30) 86.3824 (90)

SH 2T-GSA AM 0.0002 (90) 8.8592 (90)
1S-GSA
2S-GSA AM 0.0004 (80) 8.8592 (90)

TH 2T-GSA AM 0.0098 (40) 25.3714 (90)
1S-GSA AM 0.0428 (25) 25.3714 (90)
2S-GSA AM 0.0169 (35) 25.3714 (90)

other direction at least for the weighted arithmetic mean smoothing (AM). The
specific values for the smoothing parameters applied in chapter 6 are determined
by the analogous greedy search procedure as the simulation study parameters (see
p. 109), but with the significance limit set to αsets = 0.01 in accordance with the
selected FDR limit in the application part. The eight hexbin plots in Figure 5.10
show the results from the greedy search algorithm for the AM smoothing algorithm.
Table 5.16 on the following page lists the used parameter values for analyzing the
four data sets. The parameters are determined suitable for the enrichment test
significance border of αsets = 0.01 for the TS-ABH FDR q-values. A generalization
of finding suitable parameters for the weighted mean approaches for analyzing other
data sets is given at the end of section 5.5.
The weighted arithmetic mean smoothing (AM) algorithm is used for all data

sets because of its outstanding sensitivity performance in the simulations based
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Table 5.16: Smoothing parameters applied in the data analysis in chapter 6 and
derived from the simulation results (see Table 5.15) in consideration of the q-value
enrichment test limit of αsets = 0.01 in the used data sets.

Algorithms Parameters (GSP in %)
Data Profile Smoothing λfill λwipe

AH 2S-GSA AM 0.1252 (35) 3.4166 (90)
OD 2S-GSA AM 0.0462 (30) 11.2813 (90)
SH 2T-GSA AM 0.0738 (90) 0.2290 (90)
TH 2S-GSA AM 0.1388 (35) 3.5679 (90)

on the aldosterone heart, ovary development and tongue healing data and still
relative good sensitivity in the difficult SH data set. The AM smoothing did not
yield best specificity and accuracy in the simulation study (except for the skin
healing simulation), but leads always to a clear improvement. Therefore, this
type of smoothing can be recommended in general, in particular if the number of
differentially expressed genes is not too small.
The smoothing by forcing continous differential expression status for all genes

in the gene set (GE) is the only smoothing algorithm without any parameter to
determine the smoothing extent. It was able to improve the accuracy values in
all four simulations. The GE smoothing was always among the best performing
methods regarding the PPVp90 values with exception of the difficult SH simulation.
The GE smoothing should be considered in order to avoid the effort of determining
good smoothing parameters for another method, because of its simplicity and the
fact that any smoothing turns out to be better than no smoothing.

The weighted geometric mean smoothing (GM) shows an outstanding performance
for the ACC values at least for the 2S-GSA profile algorithm. The same is true in
combination with 2T-GSA profiles for the simulation with the aldosterone heart and
the ovarian development data. Unfortunately, the sensitivity is clearly below the
values for the AM and IN smoothing methods. Hence, the GM smoothing can be
recommended if the focus lies on a maximal ACC and the number of differentially
expressed genes is large.
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Figure 5.10: Hexbin Plots of the general smoothing proportion (GSP) in dependence
of the logarithmized smoothing parameters λfill and λwipe for the weighted arithmetic
mean smoothing and the four used data sets (with αsets = 0.01). Hexbin Plots
use shaded hexagons to represent the number of observations on the covered area
(darker areas symbolize more points). This form of visualization is chosen in order
to emphasize the functional relationship and mitigate the impression of variation in
a normal scatter plot. The smoothing parameter values, which correspond with the
objective GSPs in the green spline curve are used in the data analysis in chapter 6
and are listed in Table 5.15.

The weighted inverse normal score mean smoothing (IN) shows in general a similar
response to the variation of the two smoothing parameters as the AM algorithm, but
does never achieve maximal or almost maximal sensitivity values in any simulation,
but IN outperforms the AM procedure in terms of specificity and ACC in most cases.
It can be concluded to use IN as an alternative for the AM smoothing.
The weighted inverse χ2 score mean smoothing (IX) performs with the worst

sensitivity among all applied smoothing methods, but still slightly increases the
TPR in relation to the profile analyses without smoothing. In contrast to the
sensitivity the specificity is in all cases maximized by this procedure. However,
the bad sensitivity and the non-response on parameter changes make this method
unsuitable for a reasonable smoothing.
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The smoothing on basis of the (relative) distance to significance in the enrichment
test (FD) is except for the aldosterone heart data set among the three most sensitive
smoothing methods in Tables 5.11 to 5.14. The restricted smoothing parameter
range (see Figure B.15) prevents a general recommendation in favor for this method
in combination with the 2T-GSA activation profile algorithm.
The smoothing using a shift of (not) differentially expressed genes in the Fisher

enrichment test (FS) shows the best performance in terms of specificity, accuracy
and PPVp90 for the difficult simulation setting based on the skin healing data set
(see Table 5.13) and is not far behind the best performer of the other studies. The
generally restricted range of the smoothing parameter is accompanied by a low effect
of the smoothing parameters on the analyzed accuracy measures. On the one hand it
seems that the FS smoothing performs well in the simulation independent from the
actually chosen parameter and on the other hand the differential expression status
of a single gene seems to be in most cases the key factor for a smoothing event. All
in all the FS smoothing is a simple and effective smoothing algorithm, which can
be used without much care for selecting the optimal smoothing parameters. The
method’s strength lies in analyzing data sets with few differentially expressed genes,
but the disadvantage is its limitation to the 2T-GSA algorithm, since this principle
cannot be easily transfered to the segmentation procedures.

The smoothing using sequential tests for enrichment with undirected differential
expression (SU) has an inconsistent performance for the different simulations. While
showing the best sensitivity in the skin healing simulation, it has only middle ranks
for the other data sets and accuracy measures. In contrast to the other simulations,
the simulation parameters seem to have no effect for the aldosterone heart simulation.
This indicates that an application of this smoothing algorithm on a study without
replicates needs more effort to identify smoothing parameters which influence the
smoothing extent. This restricts the general usability of this smoothing method.
The smoothing using sequential tests for enrichment with directed differential

expression (SD) performs with the exception of the ovary development simulation
worse than the SU algorithm, although it uses more detailed information in a similar
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way. It suffers from the same disadvantages as the SU smoothing algorithm and is
due to its worse performance less recommended.

5.5 Joint Conclusions from Both Simulation Studies

This section provides a brief summary of the two comprehensive simulation studies
structured according to type of algorithm and smoothing for the three GSA-type
profile algorithms.

The Modified STEM Method
The STEM procedure is applied in a slightly modified manner in order to capture both
similar gene expression trajectories (identified by correlation) and similar expression
levels (identified by mean distance). STEM does only slightly benefit from a raise
in signal strength, because its construction as a clustering method, the only such
method in the comparison. Only larger gene sets spiked in (virtually) completely
with genes following the model pattern are reliably detected as the comparison
simulation study revealed and even in those cases the FDR was extraordinary high.
However, cluster based methods and STEM in particular might be better suited
to detect transcription factors or common gene regulatory principles than gene set
activation.

The maSigFun Procedure
The regression based procedure in combination with the chosen R2 level of 0.5 is
very reliable in identifying small gene sets with a common (to all included genes)
and clear gene expression pattern virtually without FPs. These restrictions are
not desirable for an exploratory activation profile algorithm, which searches for
activation within a large gene set universe, but may be useful in studies conducted
to identify those small parallel expressed gene sets (e.g. regularized by the same
transcription factor).
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The 1S-GSA Algorithm
The segmentation test idea applied for the estimation of gene set activation profiles
results in an outstanding sensitivity for detecting spiked in expression trajectories
from significant gene sets identified by the GSA-type algorithms, by the maSigFun
procedure and to a remarkable extent by STEM (larger than STEM itself). The
extraordinary high sensitivity comes at the expense of a very high FDR. The
sensitivity grows in general with increasing number of informative (i.e. differentially
expressed) genes and slightly proportional to the number of genes in the set. The
drawback of the method is the missing consideration of significance in the tested
segments as the simulation studies based on the SH data set reveal. Due to its
tendency to identify many FPs the 1S-GSA profile algorithm must be applied with
care, in particular for gene expression studies with only few differentially expressed
genes (< 200 per time point).

The 2T-GSA Method
The simple idea of transferring the widespread enrichment test idea in form of
subsequent enrichment tests on the activation profile analysis of time series data has
shown a generally good performance in both simulation studies. The FDR lies clearly
below the values of the GSA-type competitors, but the same holds for the sensitivity,
which is detracting its usefulness. The consideration of the significance of differential
expression makes this procedure more reliable in particular for studies with a low
number of differentially expressed genes. Although not conducted to compare the
GSA-type methods, the resulting accuracy measures of the second simulation study
provide a hint that the 2T-GSA profile algorithm is superior to the segmentation
procedures in the wound healing data sets. This should be generalizable to situations
with a low to moderate number of differentially expressed genes at the study time
points.

The 2S-GSA Procedure
The promising approach of combining the sensitive segmentation test procedure with
a significance threshold to avoid a large proportion of false positives falls a bit below
expectations. The FDR performance is clearly better than in the 1S-GSA algorithm,
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but worse than for 2T-GSA. In particular, the ability to detect STEM source signals
is much weaker than for the competing segmentation method. Nevertheless, the
2S-GSA activation profile algorithm does outperform the simple 1S-GSA procedure
in combination with a reasonable smoothing for the smoothing simulations based on
the AH and OD data sets. This is supposed to be generally valid for gene expression
time series studies with a large number of differentially expressed genes.

Smoothing by Enforcing Gene Wise Continuity
This naive type of smoothing provides a reasonable improvement in accuracy, whereas
the distance to the best performing smoothers is quite large. The restriction that the
GE smoothing is only combinable with 2T-GSA profiles is advantageous in a way,
since both procedures are simple (no smoothing parameters) and straight forward
(easy to explain to a user).

Smoothing by Sequential Testing
Both smoothing algorithms that use undirected (e.g. no distinction of up and
down regulation) (SU) or directed (SD) tests of differential expression between the
smoothing position and neighboring time points need the most effort to be calculated
and to determine adequate smoothing parameters. On the one hand is one of these
sophisticated procedures the best performer in sensitivity regarding the SH based
simulation, but on the other hand the PPVp90 value lies clearly below the level of
competitors with a comparable sensitivity. The difficult determination of reliable
smoothing parameter (e.g. within AH simulation) and the difficulty to extend the
smoothing algorithm to other profile algorithms than 2T-GSA with manageable
effort limit the general applicability of these smoothing methods.

Smoothing According to Distance to Significance or by Shifting Genes
The common idea of FD and FS smoothing is to soften the strict significance border
of the enrichment tests if a gene set is considered for smoothing at a certain time
point. This hard limit is only existent in the 2T-GSA algorithm and therefore these
smoothers are limited to 2T-GSA profiles. Regarding the PPVp90 values the FS
smoothing outperforms the more sophisticated FD smoothing for the ACC-optimized
parameter selection, but this cannot be stated for the other considered measures. All
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in all, both methods show medium performance and the simulation study revealed
no hint why to prefer these smoothing algorithms.

Smoothing by Applying Weighted (Score) Means
Applicable on level of p– or q-values the idea of weighted means (directly or on
scores) is the most flexible of all proposed, which can in addition become more
flexible through a wide range of comparatively easy to compute smoothing param-
eters. Despite this flexibility is in common to the four smoothing algorithms, the
performances are quite different. While the (weighted) mean of the χ2-scores seems
to be the natural choice, because of the close relation of the hyper geometrical and
the χ2

1-distribution, the sensitivity is the worst among all smoothing algorithms
in the simulation study. In comparison, the weighted inverse normal score mean
smoothing (IN) performed clearly better than IX or GM (with exception of the SH
simulation), but still with obvious distance to the procedure averaging directly on
the significance measures. The reason for this performance lack should be searched
in the different level of decision (p– or q-value) and averaging (Normal-scores), which
allows less power in smoothing extent than the direct proceeding on the significance
measures. The AM smoothing outperforms the other weighted mean approaches in
terms of TPR in all simulation settings. It is preferred in the following, because of
its high sensitivity performance and fast parameter determination.

Generalized Function for the Smoothing Parameter Determination of AM, GM and IN
Smoothing
The comprehensive procedure to determine the smoothing parameters as described
in section 5.4 (pp. 108) increases the computation effort and time. An easy way
to obtain reasonable parameters would be desirable. The smoothing extent is in
addition to the smoothing parameter dependent on the number of genes in the
gene universe, the gene set sizes and the number of differentially expressed genes.
Assuming that the determined OD gene set universe is representative for many types
of studies, Table 5.17 gives the parameters for functions to determine smoothing
parameters in dependence of the general smoothing proportion (GSP), the total
number of genes G, the proportion of differentially expressed genes p̃ag in % and
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the significance limit to determine a gene set as significantly enriched αsets. The
functions are estimated from a linear model fit to the results from the extensive
application of the greedy search algorithm from the first part of section 5.4, e.g. for
the fill direction of AM smoothing:

λAM
fill (GSP, G, p̃ag, αsets) = exp

(
µAM

fill + βAM,GSP
fill · log GSP

+ βAM,G
fill · logG

+ β
AM,p̃ag
fill · log p̃ag

+ βAM,αsets
fill · logαsets

)
.

Table 5.17: Coefficients of the smoothing parameter generating functions based on a
greedy search algorithm and the OD gene set universe (see section 6.1). R2 denotes
the measure of determination in the regression model.

smoothing direction µ.. β.,GSP
. β.,G. β.,p̃ag

. β.,αsets
. R2

AM fill 3.499−0.991 −0.020 −0.183 0.212 0.93
AM wipe −0.195−0.878 0.002 0.370−0.676 0.88
GM fill 0.645−0.826 0.00015−0.277 0.064 0.56
GM wipe −0.106−0.623 −0.011 0.231−0.162 0.66
IN fill −6.527−2.843 −0.026 −0.919 0.524 0.79
IN wipe −0.012−0.799 −0.017 0.337−0.143 0.93

The smoothing parameters resulting from the functions determined by the regres-
sion coefficients in Table 5.17 should be considered as approximation regarding the
domain of

GSP ∈ (0, 1), G ∈ [103, 5 · 104], p̃ag ∈ [0.01, 0.25] and αsets ∈ [10−4, 0.25],

which was the domain for the greedy search algorithm. The wide domain results in
quite large differences of those values derived by the approximation with the function
in relation to the determined smoothing parameters stated in Table 5.16 and applied
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in application. Smoothing oriented at these parameters should be considered at least
for the wipe direction in order to discard the often high number of false discoveries
with a single significant position. Additionally, it is important for the application of
these parameter generating functions that the gene set universe is not too different
in terms of gene set size distribution from the used gene set universe in the OD data
set. This condition should be fulfilled for all typical GO gene set definitions, but
on gene set universes with a greater proportion of small sets (e.g. only KEGG sets)
more caution must be exercised in applying the parameter generating functions.



Chapter 6
Application of the Gene Set Activation Profiles Estimation on
Gene Expression Time Series Experiments

The laboratory mouse (mus musculus) is one of the most popular model organisms
in biology. The proposed methods for the activation profile estimation of gene sets
are applied on three freely available mouse experiments. The raw data sets are freely
available in the GEO data base. The three experiments hybridized Affymetrix mouse
430 2.0 microarrays in different time series designs. The chip contains expression data
for 45,101 probe sets. Not all probe sets can be used in the proposed algorithms due
to the gene set focus and the non-uniqueness of some gene to probe set annotations.
The details of the filtering are presented in section 6.1 and an overview about the
total numbers of genes and sets per data set is given in Table 6.1.
A brief introduction for the data sets and the results of the application of the

selected algorithm in combination with the selected smoothing according to the
results of the simulation studies (see Table 5.16) for the estimation of temporal
activation of gene sets is presented in sections 6.3, 6.4 and 6.5.

6.1 Filtering the Gene Universe

From the three microarray experiments described in the last three sections of
chapter 6, four different gene expression data sets are created to demonstrate
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and validate the existing and newly proposed methods for estimating gene set
activation profiles. The first data set examines the effect of Aldosterone on the gene
expression in heart cells. The second study was conducted to study the embryonic
development of the mouse ovary. The last experiment focuses on the molecular
biological differences in the healing of skin and mucosa (on the tongue) cells after
wounding. In this thesis data for both injuries is analyzed separately, i.e. there is
one data set corresponding to the skin healing and one related to the tongue healing.

Affymetrix mouse 430 2.0 microarrays were hybridized and scanned to obtain the
data for the four data sets. Using data of the same chip simplifies the annotation of
the gene identifiers to the Affymetrix probe sets and consequently the annotation
of the probe sets to the different kinds of gene set definitions. Hence, the source
of differences between the four data sets is not the chip type, but the kind of
experiment.
Table 6.1 gives a summary of the four data sets concerning the experimental

design, the number of used genes, and the number of gene sets used in simulation
studies (see chapter 5) and for estimation of gene set activation profiles. Although all
four data sets are generated from the same chip type, the number of used probe sets

Table 6.1: Summary of the four data sets used for the estimation of temporal
activation profiles of gene sets.

Mouse ovarian Aldosterone
effect

Skin healing Tongue
healing

time points T 6 7 7 7
replicates M 3 1 3 3
reference single

experiment
single time
series

replicated
control

replicated
control

probe sets J 12,976 12,974 12,979 12,976
GO BP sets 6378 6378 6378 6378
KEGG sets 220 220 220 220
BioCarta sets 214 212 212 212
Reactome sets 256 257 257 256
BioCyc sets 150 145 147 151
total sets 7218 7212 7214 7217
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(here equivalently denoted with genes) and gene sets varies between the experiments.
These differences occur due to the probe set filtering which is explained in the
following. A scheme of filtering the Affymetrix probe sets and creating the analyzed
gene sets is given in Figure 6.1 on the next page.

Entrez Gene Uniqueness Filtering
The Affymetrix mouse 430 2.0 microarray includes a total of 45,101 probe sets.
Not all of these features represent a real gene product, e.g. some are used for
quality assessment of the chip data and some are included because of similar gene
products in other species. Some genes occur in variants, for instant single nucleotide
polymorphisms (SNPs), in which only a single nucleic base distinguishes between
the different DNA-sequences keeping the other bases constant. This may influence
the function of the gene, but must not. However, these circumstances caused
the manufacturer Affymetrix to include a multiple of probe sets on the chip for
interrogating the gene expression of a single gene in some cases. An unconsidered
reproduction of the same information unit would heavily bias the result in an
analysis that focuses on group enrichment strategies. One way to reduce the probe
set universe to unique gene product features is the mapping of the Affymetrix probe
set identifiers to the Entrez Gene identifiers and the subsequent filtering to a one to
one mapping.
As shown in Figure 6.1, for 38,535 chip probe sets there is a mapping to exactly

one of 20,877 Entrez Gene IDs available. This mapping is unique for 11,133 features.
The remaining 9744 Entrez Gene IDs have at least two chip features annotated
(27,402 probe sets). The first filtering step accounts for the probe set quality,
which is characterized by the probe set identifier suffix (Yu, F. Wang, et al. 2007).
The highest reliability have probe sets with the _at suffix that represent unique
transcript variants. The suffixes _a_at and _s_at characterize probe sets that
recognize multiple alternative transcripts from a single gene. The suffix _x_at is
not specific for a single gene and hence the least reliable. The filtering process
keeps only probe sets with the highest available suffix class (i.e. _at > _a_at >
_s_at > _x_at). For 2255 Entrez Gene IDs only a single feature results from this
procedure. The remaining 18,848 probe sets annotate to a total of 7489 Entrez
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features on chip
45,101

with Entrez Gene ID
38,535 [20,877]

unique features per
Entrez Gene ID

11,133

multiple features
per Entrez Gene ID

27,402 [9744]

Affymetrix ID
suffix filtering
_at > a_at >
s_at > x_at

unique features per
Entrez Gene ID

2255

multiple features
per Entrez Gene ID

18,848 [7489]

choose feature with
maximum median of
replicates over time

unique features per
Entrez Gene ID

7489

unique features with
gene set assignment

AH: 17,109 in 11,894 sets
OD: 17,108 in 11,900 sets
SH: 17,110 in 11,897 sets
TH: 17,107 in 11,899 sets

gene sets with at
least 4 features

AH: 17,107 in 7212 sets
OD: 17,107 in 7218 sets
SH: 17,108 in 7214 sets
TH: 17,105 in 7217 sets

unique gene sets without
root node exclusives

AH: 12,974 in 6596 sets
OD: 12,976 in 6604 sets
SH: 12,977 in 6596 sets
TH: 12,976 in 6599 sets

Figure 6.1: Scheme of filtering microarray features (Affymetrix probe sets) in order
to obtain unique Entrez Gene representants with an gene set annotation according to
the definition of GO biological process, KEGG, BioCyc, Reactome and Biocarta. The
numbers vary slightly between the data sets aldosterone heart (AH), ovary development
(OD), skin healing (SH) and tongue healing (TH). The number of unique Entrez Gene
IDs is printed in brackets.
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Gene IDs. These undergo the second filtering step. Since here a one-to-one mapping
strategy is applied in contrast to an averaging strategy a unique Affymetrix probe
set must represent a single Entrez Gene ID. The maximum of the time point wise
medians (of the replicates per time point) is chosen as criterion to decide which
feature is used as representative for the Entrez Gene ID. This is done in order to
keep the probe set with the highest signal of transcript presence in the experiment.
This leads in total to 20,877 probe set features with unique Entrez Gene ID.

In this thesis the gene set definitions from the GO biological processes ontology,
KEGG pathways, BioCarta pathways, Reactome pathways and the MetaCyc data
base for mice are used (see section 2.2). In dependence on the data set a total of
17,107 (TH) to 17,110 (SH) probe sets have an annotation to 11,894 (AH) to 11,900
(OD) gene sets (compare Figure 6.1). The differences between the data sets occur
due to the preceding filtering steps and the fact that the gene set annotations is not
based on the Entrez Gene IDs, but on Affymetrix IDs. Therefore, some genes are
selected by the filtering procedures, which do not have a gene set annotation or even
another annotation than another probe set with the same Entrez Gene ID. The idea
of analyzing gene sets is only meaningful if the set size is not too small in order to
reasonably summarize the information of the included genes. Here, a gene set must
include at least four genes to be considered in the analysis. This results in 17,105
(TH) to 17,108 (SH) probe sets linked to 7212 (AH) to 7218 (OD) gene sets. The
last step skips those genes, which are only annotated to the biological processes root
node (GO:0008150). This is the most general gene set and would include virtually
all probe sets, which prevents this group from becoming significantly enriched in
an enrichment test. At the end of the filtering procedure there are 12,974 (AH)
to 12,977 (SH) probe sets available grouped into 6596 (AH and SH) to 6604 (OD)
unique gene sets, i.e. this number of gene sets omits those including exactly the
same genes. Although the numbers do not vary much, the number of probe sets
used in all four data sets is only 11,154 due to the second filtering step. The Venn
diagram in Figure 6.2 presents the overlap of probe sets with respect to the four used
data sets. The number of gene sets depending on the definition (i.e. GO, KEGG,
BioCarta, Reactome or BioCyc) is given in Table 6.1 on page 140.
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Figure 6.2: Venn diagram, presenting the overlap in used Affymetrix mouse 430
2.0 probe sets after filtering regarding the four exemplary data sets: Aldosterone
heart (AH), ovary development (OD), skin healing (SH) and tongue healing (TH).
The majority of here distinguished probe sets are annotated to the same gene (with
respect to the Entrez Gene ID).

6.2 Summary Over All Profile Algorithms and Data Sets

Five ways for the estimation of gene set activation profiles from gene expression time
series are proposed in this thesis. As the smoothing does not result in new active gene
sets, Table 6.2 lists the results from applying the five competing algorithms described
in chapter 4 without smoothing for the GSA-type algorithms. The diagonal states
the number of exclusively identified sets per method in the corresponding row, which
is maximal in all four application cases for the 1S-GSA algorithm. The identification
regards to any non-zero activation profile, significant enrichment from model cluster
(STEM) or significant regression model (maSigFun). In particular the extraordinary
high number of identified sets in relation to the competing methods for the SH
data set reveals the risk to report to many sets as significant when ignoring the
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Table 6.2: Table of intersection proportions for the five profile algorithms applied
on the four examined data sets, e.g. for the SH data the identified 1S-GSA gene sets
include 75% of the four gene sets found by the maSigFun algorithm, wheras a single
gene set is exclusively identified by the maSigFun approach. Entries in shaded cells
are absolute numbers. Omitted values are 0.

profile included proportion of gene sets reported by
data algorithm 2T-GSA 1S-GSA 2S-GSA STEM maSigFun Total
AH 2T-GSA 0 43.00 70.16 91

1S-GSA 97.80 98 84.68 207
2S-GSA 95.60 50.72 17 124
STEM 1 1
maSigFun 0 0

OD 2T-GSA 8 76.72 79.62 34.33 1177
1S-GSA 97.71 71 97.32 35.07 66.67 1499
2S-GSA 98.56 94.60 21 35.82 66.67 1457
STEM 3.91 3.14 3.29 83 134
maSigFun 0.13 0.14 1 3

SH 2T-GSA 1 4.19 22.09 58
1S-GSA 98.28 1056 98.80 56.91 75.00 1361
2S-GSA 94.83 18.07 3 13.01 249
STEM 5.14 6.43 53 123
maSigFun 0.22 1 4

TH 2T-GSA 4 53.85 76.85 7.69 66.67 838
1S-GSA 97.73 508 93.26 61.54 66.67 1521
2S-GSA 96.66 64.63 56 15.38 66.67 1054
STEM 0.12 0.53 0.19 5 13
maSigFun 0.24 0.13 0.19 1 3

significance of differential expression as done by 1S-GSA. This can be observed to a
smaller extent for the other data sets, too. In general, gene sets stated by 1S-GSA
include a large part of the gene sets with significant profiles reported by 2T-GSA
and 2S-GSA. The maSigFun procedure yields in all studies the smallest number of
significant gene sets. Furthermore, in concordance with the simulation study, at
least for the OD and TH data set two thirds of the reported sets are also identified
by the segmentation test algorithms. The total number of STEM determined gene
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sets is not proportional to the GSA-type algorithms, since the totals for the wound
healing data sets are small for STEM and TH data and high for the SH data set
and for 2T-GSA or 2S-GSA the other way around. The proportion of STEM stated
sets, which are also identified by the competing profile algorithms is only for the
wound healing data examples and the 1S-GSA algorithm above 50% whereas in the
OD experiment all GSA type algorithms cover at least one third of the STEM sets.

2T-GSA

1S-GSA

2S-GSA

STEM
maSigFun

smoothed
universe

|s|
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4 4100
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Figure 6.3: Boxplots of gene set sizes for all significant profiles and all profile
algorithms (first five without smoothing and the applied smoothing according to
Table 5.16). The boxplots at bottom show the gene set sizes in the gene set universe
S̆. Outliers are omitted.

Figure 6.3 shows boxplots of the gene set sizes of the reported sets with a
significant activation profile categorized according to profile algorithm and data
set. In distinction to gene sets reported by the maSigFun procedure, for the STEM
algorithm small gene sets are detected less frequently. The chosen minimum set size
of four genes seems to be not sufficient for the STEM algorithm, which is another
disadvantage in addition to its inferiority in terms of reproducibility in the first
simulation study. The 2T-GSA algorithm shows apart from the SH data set the
broadest inter quartile range of set sizes. This can be observed due to the smaller
total number of reported significant profiles, whereas the additional discoveries of
the segmentation algorithms are often among the more prevalent small gene sizes as
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Table 6.3: Gene sets with significant activation profile after smoothing according to
procedures stated in Table 5.16 on page 130 and subdivided by gene set definition for
all four application data sets. The value pdef describes the proportion of significant
profiles from all gene sets of the same gene set definition type (e.g. the two significant
KEGG sets are 0.91% of all KEGG sets in the gene set universe). The proportion of
the significant sets of one definition of the whole gene set universe S̆ is denoted with
pS̆ (e.g. the seven significant BioCyc gene sets of the OD profile analysis account for
0.1% of the gene set universe).

Data GO BP KEGG Reactome BioCarta BioCyc Total
AH significant 99 3 2 1 0 105

pdef in % 1.55 1.36 0.78 0.47 0
pS̆ in % 1.37 0.04 0.03 0.01 0

OD significant 1128 81 72 12 7 1300
pdef in % 17.69 36.82 28.12 5.61 4.67
pS̆ in % 15.63 1.12 1 0.17 0.1

SH significant 44 2 4 0 0 50
pdef in % 0.69 0.91 1.56 0 0
pS̆ in % 0.61 0.03 0.06 0 0

TH significant 772 38 19 13 0 842
pdef in % 12.1 17.27 7.42 6.13 0
pS̆ in % 10.7 0.53 0.26 0.18 0

Total (definition) 6378 220 212-214 256-257 145-151

the boxplots of the gene set sizes of the whole gene set universes suggest. Whereas
the boxplots for the replicated data sets become (slightly) wider due to applying
the selected smoothing, the opposite occurs for the AH data set without replicates.
In the latter case it turns out that the smoothing procedure discards mainly large
sets with only one significant position and keeps the majority of sets with less genes
(compare Figure 6.4 on the next page).

Table 6.3 reports the resulting significant gene set profiles after smoothing (with
parameters from Table 5.16) categorized according to the five different types of gene
set definition. The Gene Ontology biological process gene sets have the highest
proportion regarding the whole gene set universe (pS̆) in all four application examples.



148 6 Application of Gene Set Activation Profile Estimation

The same is true only for AH data in relation to the available number of gene sets
of the same gene set definition. This proportion is maximal for the KEGG gene
set definition in case of the OD and TH data and for Reactome in case of the
SH data. Gene sets resulting from the BioCyc definition are only reported with
significant activation profiles in the OD experiment. This can be explained with the
distribution of gene set sizes. The BioCyc gene set definition leads to gene sets with
a maximum size of 20 genes, which is on the one hand small in comparison to the
alternative gene set definitions and on the other hand only a very clear enrichment
with differentially expressed genes at the examined time points will be identified by
the profile algorithms, which include a TS-ABH FDR adjustment for the high total
number of applied tests.
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Figure 6.4: Scatter plot of gene set sizes and corresponding D|med|
s score of gene sets

with significant reported gene set activation profile. The scale is different for the AH
plot, because the fold change is used as measure for differential expression instead of
the Dschrink

g statistic in the case of a non-replicated time series experiment.

In the detailed analysis of the gene set activation profiles in the following sections,
a ranking based on the D|med|

s and Dmed
s scores is used to sort the identified gene

set activation profiles according to their extent of differential expression. Although
both scores use only the statistics of significantly differentially expressed genes at
identified enriched positions, the high score values can be observed only for gene
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sets with small numbers of genes annotated. Figure 6.4 shows four scatter plots for
the link between the D|med|

s score and the gene set size. The highest scattering with
the higher score values can be observed for gene set sizes below 1000 among all four
experiments. The absolute highest scores result for the profiles of the OD data sets,
which can be taken as indication for the intensity of the molecular biologic differences
during the time series experiment. The relatively small difference between the two
wound healing data sets in central location of the score values cannot be explained by
the different applied activation profile algorithms. The smoothed 2T-GSA procedure
was applied on the SH data, whereas the more sophisticated smoothed 2S-GSA
method was used on the TH data set, but the score values result from the statistics
of differential gene expression in both cases. Hence, the few identified significant
SH activation profiles include genes with stronger differential expression in relation
to the reference than the majority of the reported significant profiles from the TH
study. There is a single zero score value in each of the scatter plots of the OD and
SH data sets. This is an artifact of the 2S-GSA algorithm in combination with
smoothing. The statistic value of differentially expressed genes are only stored at
non-zero profile positions to minimize the computational effort. In these two cases
an activation profile like oo+o+o was smoothed to ooo+oo and hence at the former
non-significant enriched fourth position the statistics to calculate the scores had
not been saved. Therefore, the score is calculated to zero. This is an infrequent
phenomenon due to the implementation of the segmentation algorithms and can
be ignored since the scores are used only for a ranking of the identified significant
activation profiles.
The following three sections discuss the resulting activation profiles separately

for each experiment in more detail in order to take into account the individual
characteristics of the studies and results.
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6.3 Aldosterone Effect on Mouse Heart Gene Expression

The first gene expression study analyses the genetic mechanisms in the mouse heart
following an administration of the steroid hormone aldosterone under a 3% NaCl
diet. The experiment was constructed as two-group-comparison. The subjects of the
experimental group were injected with a physiologic dose of aldosterone (10 µg/kg).
The subjects of the control group got an injection with the vehicle only. Five male
mice of each experimental group were scarified at 0.5, 1, 2, 3, 4, 5 and 12 hours after
injection. The RNA of all five mice hearts was extracted and hybridized on a single
Affymetrix mouse 430 2.0 array. Hence, a single measurement for each time point
and group is available in the data set. The raw data was published in November of
2005 as GEO series GSE3440. Originally, the study was analyzed with the CAGED
algorithm (Turchin, Guo, et al. 2006). Turchin, Guo, et al. (2006) report 12 genes
with a similar gene expression trajectory over time (down regulated between 1 h and
3 h). The differential expression of representative genes was successfully validated
by quantitative real time RT-PCR.
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Figure 6.5: Bar chart of the total numbers of down (n(t)
DE−) and up (n(t)

DE+) expressed
genes with respect to the untreated reference exceeding a fold change of 1.5 for the
aldosterone effect on mouse heart data set.
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Figure 6.5 shows the total number of differentially expressed genes categorized
in up and down regulation if a fold change (FC) threshold of 1.5 is applied. The
FC limit is lower than the observed gene expression ratios for the 12 reported genes
in the original contribution, but those genes are among the identified differentially
expressed genes. The modus in down regulation is achieved one hour after injection
while the number of up regulated genes increases until two hours and clearly falls
after this time point. The eventually falsely reported differentially expressed genes
will only have a minor effect on the reported gene sets, since the activation profile
analysis is focused on the gene set level and enrichment tests are used.

Table 6.4 lists the resulting gene set activation profiles from the 2S-GSA algorithm
(TS-ABH FDR limit: αsets = 0.01) smoothed with AM method and smoothing
parameters λfill = 0.1252 and λwipe = 3.4166. Despite the quite large numbers of
differentially expressed genes in Figure 6.5, there is no hint for an enrichment with
differential expression at the last time point (12 h) for any gene set. The total
number of non-zero profiles is with 105 quite small, but consistent with the weak
signals in terms of the extent of differential expression (FC values). 30 gene sets show
an enrichment with down regulated gene expression at the second time point (1 h).
Although the maximum of up regulated genes occurs at the third time point (2 h) as
shown in Figure 6.5, the second most frequent profile is ooo+ooo with 25 gene sets
and there are only 15 gene sets with the profile oo+oooo, i.e. an enrichment with
up regulation at the third time point. The analysis does not yield any continuous
differentially expressed profiles in contrast to the activation profile analyses on the

Table 6.4: The 13 2S-GSA activation profiles after smoothing with AM (λfill = 0.1252,
λwipe = 3.4166) resulting from the AH data set.

Profiles # Profiles # Profiles #
ooooooo 7107 oo+oooo 11 -o-oooo 1
o-ooooo 30 o-o+ooo 8 o-+oooo 1
ooo+ooo 25 -oooooo 7 o-o-ooo 1
ooo-ooo 15 ooooo+o 4 ooo+o-o 1

oooo+oo 1
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Table 6.5: Top 12 of Dmed
s -ranked up regulated and top 8 down regulated gene

set activation profiles resulting from a 2S-GSA profile algorithm combined with AM
smoothing on the AH data. The single set stated significant with the STEM procedure
is reported at bottom.
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GO:0035456 1 ooo+ooo response to interferon-beta 15 X X 7 7

GO:0035458 2 ooo+ooo cellular response to
interferon-beta

14 X X 7 7

GO:0051856 3 ooo+ooo adhesion to symbiont 8 X X 7 7

GO:0044403 4 ooo+ooo symbiosis, encompassing mu-
tualism through parasitism

87 7 X 7 7

GO:0051825 5 ooo+ooo adhesion to other organism
involved in symbiotic inter-
action

8 X X 7 7

GO:0001562 8 ooo+ooo response to protozoan 17 X X 7 7

GO:0042832 9 ooo+ooo defense response to proto-
zoan

15 X X 7 7

GO:0044419 10 ooo+ooo interspecies interaction be-
tween organisms

104 X X 7 7

GO:0051702 11 ooo+ooo interaction with symbiont 37 7 X 7 7

REACT:GRB2 12 ooooo+o genes involved in GRB2 10 X X 7 7

GO:0009605 31 o-ooooo response to external stimu-
lus

796 7 X 7 7

GO:0048870 29 o-ooooo cell motility 750 X X 7 7

GO:0051674 30 o-ooooo localization of cell 750 X X 7 7

GO:0040011 28 o-ooooo locomotion 898 X X 7 7

GO:0002523 27 o-ooooo leukocyte migration involved
in inflammatory response

7 7 7 7 7

GO:0050900 26 o-ooooo leukocyte migration 144 7 X 7 7

GO:0006935 15 o-ooooo chemotaxis 324 7 X 7 7

GO:0042330 16 o-ooooo taxis 325 7 X 7 7

GO:0030595 6 o-ooooo leukocyte chemotaxis 94 7 X 7 7

GO:0060326 7 o-ooooo cell chemotaxis 120 7 X 7 7

KEGG:00982 ooooooo drug metabolism - cy-
tochrome P450

67 7 7 X 7
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three replicated data sets. The AM smoothing algorithm was applied only to two
profiles in the fill direction, but did not result in a continuous profile, whereas the
smoothing in wipe direction withdraws 19 gene sets from the list of non-zero profiles.

Table 6.5 lists 21 gene sets with a non-zero activation profiles with together with
the gene set size, a brief description of the gene set definition and the information
which profile algorithms reported the gene set with a significant profile. The
table is sorted according to the extreme ranges of the Dmed

s score introduced in
section 4.4. A complete list of results can be found in Table B.7 in the Appendix.
The single gene set identified exclusively by the STEM algorithm is shown at bottom
in Table 6.5. This KEGG gene set is enriched in a cluster, which starts with
down expression with respect to reference and increases thereafter (STEM model
profile: −2/3 − 1/3 0 0 − 1/3 0 0). The majority of high ranked gene sets enriched
with up regulated genes in Table 6.5 are related to an immune response similar to
those occurring as reaction on an infection or contact with a symbiont. All these
gene sets share the common profile ooo+ooo and are recognized at least by the
two segmentation type algorithms. The eight gene sets with a down regulation
in their activation profile are all reported with the same profile: o-ooooo. With
exception of the GO:0009605 set with description “response to external stimulus” all
gene sets are involved in biological processes related to cell movement. In relation
to the listed genes with up regulation the gene set sizes are clearly larger. Only
the interesting 7 genes including set GO:0002523 (“leukocyte migration involved
in inflammatory response”) is an exception of this general rule. As summary
over all reported gene set activation profiles (see Table B.7) it turns out that
one hour after aldosterone injection (in relation to injection without the steroid
hormone) the response to an external stimulus (e.g. “leukocyte migration”, “immune
response”) is down regulated, but three hours after the injection the immune response
occurs due to an increased expression of genes in related gene sets (“response to
interferon-beta”, “immune response”). This observation is supported by the gene
sets with o-o+ooo activation profile, which are for instance GO:0006950 (“response
to stress”), GO:0050896 (“response to stimulus”), GO:0006952 (“defense response”)
or GO:0006954 (“inflammatory response”). The only significant gene set with a
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connection to the steroid hormone injection is GO:0032371 (“regulation of sterol
transport”) with the reported activation profile oo+oooo.

The analysis of the AH data set has proven to be challenging due to the weak signals
(differential expression) and the lack of replicated measurements in the study. Turchin,
Guo, et al. (2006) discuss that the blood aldosterone concentration also increases
in the control group due to the stress of the injection, which probably mitigates
the differences on the gene expression level. Nevertheless, the resulting gene set
activation profiles show a reasonable linkage to the experiment and the inflammatory
processes known in connection with the salt diet, although the observation period
was limited to twelve hours, which may lead to missing long-term effects.

6.4 Embryonic Mouse Ovary Development Experiment

GD 11

3215
2939

GD 12

3691

2946

GD 14

3971

3201

GD 16

3175

2431

GD 18

3578

3079

PN 2

3416
3188

500

1500

2500

3500

n
(t

)
D

E
−
an

d
n

(t
)

D
E

+

Time points t for the ovary development data set

Figure 6.6: Bar chart of the total numbers of significantly down (n(t)
DE−) and up

(n(t)
DE+) regulated genes with respect to the mixed reference measurement at postnatal

day PN 0.5 controlling a TS-ABH FDR of 0.05 for the embryonic ovary development
data set.

The GEO series GSE5334 includes 19 raw data .cel-files of hybridized Affymetrix
mouse 430 2.0 arrays. The study was conducted to learn more about the molecular
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biological processes in the ovary development. The RNA from the pair of ovaries
from three different female mice was hybridized on the microarrays at each of the
six time points: gestational days GDs 11, 12, 14, 16, 18 and postnatal day PN 2. A
single chip was hybridized as reference with a mix of the whole body RNA of four
female and four male mice at approximately 12 hours after birth. Unfortunately,
there is no original contribution, which reports results originating from this data
set. The analyzed tissue in this experiment is narrowly defined, which allows to
focus on the gene set activation profiles closely related to the ovary and its biological
processes.

Figure 6.6 shows the absolute numbers of differentially expressed genes per time
point and direction of regulation. Differential expression is determined with the
Dshrink
g statistic (see section 4.2) while controlling the TS-ABH FDR across all tests

at a level of αgenes = 0.05. The number of significantly up and down regulated genes
is clearly above 2000 across all time points as expected in a development experiment
in contrast with a single static measurement (reference after birth). The numbers
of differentially expressed genes are high in comparison with the other experiments
analyzed in this contribution. The large number of differentially expressed genes
must not inevitably lead to an extraordinary large number of a priori defined gene
sets with a significant activation profile, although this is observed in the following.
Table 6.6 reveals the most frequent activation profiles resulting from a 2S-GSA

profile analysis combined with an AM smoothing with parameters λfill = 0.0462 and
λwipe = 11.2813. The TS-ABH FDR is controlled at level 0.01 across all enrichment

Table 6.6: The 14 most frequent 2S-GSA activation profiles after smoothing with
AM (λfill = 0.0462, λwipe = 11.2813) resulting from the OD data set.

Profiles # Profiles # Profiles #
oooooo 5918 -ooooo 33 +ooooo 21
------ 478 ---ooo 30 ooo--- 21
++++++ 256 +++ooo 27 --oooo 18
++oooo 55 ooooo- 25 +++oo+ 16
oo---- 44 oo++++ 22 others 254
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tests. The maximum frequency among the 1300 non-zero activation profiles is
achieved by the continuous down regulated profile (------) followed by the profile
where all time points show a significant enrichment with significantly up expressed
genes (++++++). Generally, profiles with a continuous segment are in the majority in
contrast to the results from the AH profile analysis. Those continuous profiles are
very likely not generated by chance and hence provide a more reliable insight in the
gene set activity during the examined time series experiment than single position or
irregularly alternating profiles do.
The large number of non-zero activation profiles makes it difficult to provide

a deep insight in the analysis results. Table 6.7 lists 26 genes sets – ten to each
extreme of the ranking according to the Dmed

s scores from section 4.4 and another
six hand-picked from the STEM results. The top 100 according to the D|med|

s score
are recorded in Table B.8 in the Appendix (the complete result table is available
in the electronic version of the document). There are six GO gene sets whose term
description reveals a direct link to the female reproductive system among the ten
top ranked gene sets with up regulated positions in their profiles. Since also piRNA
is closely related to the germ line cell (Lau, Seto, et al. 2006) this number can be
enlarged to seven. The top ranked gene set with up regulation GO:0007066 includes
only four genes, has the term description: “female meiosis sister chromatid cohesion”
and its enrichment with significantly up regulated genes turns out to occur already at
gestational day 14, whereas the other reproduction related gene sets become active
after birth or in case of GO:0009566 (“fertilization”) at GD 18. The appearance of
the well-fitting gene sets on a high position in the ranking emphasizes the adequacy
of both the activation profile algorithm and the ranking method. This observation
gives confidence that new findings are based on the underlying molecular genetic
processes and not by chance, although there is no biological view in form of an
original contribution based on this data set available for comparison purposes. The
top ranked gene sets are relatively small (< 100) with some exceptions, which was a
general finding in all data sets due to the score calculation (see section 6.2). The
majority of significant sets is characterized with an activation profile with one or
more positions enriched with down regulated genes and the ten top ranked profiles
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of this class in Table 6.7 obtain in summary a higher rank due to the D|med|
s score

than the profiles with up regulated positions. Interestingly, among the top ten sets
with a down regulated position there are only three GO sets, but three Reactome
sets and four sets from the BioCarta gene set definition. The extraordinary high
total number of continuously down and up regulated profiles across all examined
time points can be explained with the type of reference. The mixed-tissue reference
sample was taken after the embryonic development process finished and hence the
molecular genetic differences must be larger than if the reference had been another
embryonic tissue (e.g. brain or muscle). One of the 20 top ranked gene sets was also
identified by the maSigFun procedure (GO:0034587 “piRNA metabolic process”),
whereas the STEM algorithm reports rather larger gene sets as referred in section 6.2.
Six of these gene sets, which are also identified by all GSA-type algorithms, are
added to the top ranked profiles in Table 6.7. The GO term descriptions are mainly
related to general developmental issues like proliferation, migration or motility. The
largest gene set – GO:0048734 – listed with 2646 genes encompasses the quite general
description “system development”.
The analysis of the ovary development experiment shows that the enrichment

method is able to identify appropriate gene sets with a reasonable profile and the
applied ranking supports the researcher by the identification of meaningful profiles
even when the list of significant findings is large.
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Table 6.7: Top 10 of Dmed
s -ranked up regulated and top 10 down regulated gene

set activation profiles resulting from a 2S-GSA profile algorithm combined with AM
smoothing on the OD data. The six hand-picked additional sets at the bottom show
interesting gene sets with lower ranking.
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GO:0007066 10 oo+ooo female meiosis sister chro-
matid cohesion

4 7 X 7 7

GO:0015671 60 o+oooo oxygen transport 6 7 X 7 7

GO:0048608 71 ooooo+ reproductive structure de-
velopment

202 7 X 7 7

GO:0009566 74 oooo++ fertilization 82 7 X 7 7

GO:0022602 75 ooooo+ ovulation cycle process 74 7 X 7 7

GO:0042698 76 ooooo+ ovulation cycle 78 7 X 7 7

GO:0048511 79 ooooo+ rhythmic process 160 7 X 7 7

GO:2000194 83 ooooo+ regulation of female go-
nad development

6 7 X 7 7

GO:0007130 104 oo++++ synaptonemal complex as-
sembly

13 X X 7 7

GO:0034587 108 oo++++ piRNA metabolic process 9 7 X 7 X

REACT:
COMMON

11 ------ genes involved in common
pathway

13 X X 7 7

BioCarta:
INTRINSIC

9 ------ intrinsic prothrombin ac-
tivation pathway

16 X X 7 7

BioCarta:
EXTRINSIC

8 ------ extrinsic prothrombin ac-
tivation pathway

13 7 X 7 7

continued on next page . . .
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. . . continued from previous page
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BioCarta:
AMI

7 ------ acute myocardial infarc-
tion

15 X X 7 7

GO:0050790 6 o-oooo regulation of catalytic ac-
tivity

1427 7 X 7 7

BioCarta:
FIBRINOLYSIS

5 ------ fibrinolysis pathway 10 7 X 7 7

GO:0042542 4 --oooo response to hydrogen per-
oxide

52 7 X 7 7

REACT:GRB2 2 --oooo genes involved in GRB2 11 7 X 7 7

REACT:
P130CAS

3 --oooo genes involved in p130Cas
linkage to MAPK signal-
ing for integrins

11 7 X 7 7

GO:0070301 1 -ooooo cellular response to hydro-
gen peroxide

30 7 X 7 7

GO:0003002 1216 o+oooo regionalization 285 X X X 7

GO:0008283 867 oo---- cell proliferation 1207 X X X 7

GO:0016477 952 oo---- cell migration 695 X X X 7

GO:0030154 907 oo---- cell differentiation 2202 X X X 7

GO:0048870 888 oo-oo- cell motility 750 X X X 7

GO:0048731 719 o----- system development 2646 X X X 7

6.5 Gene Expression During Wound Healing in Skin and Tongue

The GEO series GSE23006 includes the data of a wound healing experiment in mice.
The study was conducted to analyze the gene expression during wound healing in
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two different tissues, skin and oral mucosa on the mouse tongue (L. Chen, Arbieva,
et al. 2010). The differences in the healing of both tissues is well known in mice and
human, for instance the oral mucosa heals more rapidly and with less or without
any scar formation. In contrast to the original research question focused on the
comparison between the two tissues, in this thesis the gene expression time series is
analyzed separately for both tissues. For each tissue 24 Affymetrix mouse 430 2.0
arrays were hybridized. Three biological replicates are available before wounding and
at time points 6 h, 12 h, 24 h, 3 d, 5 d, 7 d and 10 d after wounding. Analogously to
the original contribution, the measurements before wounding are used as reference
in the following analyses. The new focus are the changes in gene expression of a
priori defined gene sets during wound healing either in mouse skin or mouse oral
mucosa (tongue).

In the original analysis by L. Chen, Arbieva, et al. (2010) a one-way ANOVA test
was used to identify differential expression with respect to the unwounded reference
and accounting for a FDR limit of 5%. In contrast to the high number of differentially
expressed genes in the original contribution, the set of differentially expressed genes
identified by the Dshrink

g statistic in this thesis is small. This observation illustrates
the effect of the instable variance estimation based on only a few replicates. L. Chen,
Arbieva, et al. (2010) use a further filtering step on the gene list, which aligns the
total numbers of differentially expressed genes in both approaches. In contrast
to the original paper, the number of differential expressed probe sets was higher
applying the Dshrink

g statistic for the analysis of the data set investigating the gene
expression during tongue healing in mice (TH) than in the data set investigating
the gene expression during skin healing in mice (SH), although the pattern across
the examined time points are very similar (compare Figures 6.7 and 6.8).
The original analysis uses the web based application DAVID (Sherman, D. W.

Huang, et al. 2007) to assess gene set enrichment and functional annotation analysis
(i.e. the grouping of main gene functions among a long gene list) for five k-means
clusters in both experimental subgroups. Although the type of gene set analysis
differs greatly from the proposed gene set activation profile estimations in this thesis,
accordances and nonconformities in the identified gene sets are reported in the
following two separate subsections for each type of wounding.
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Figure 6.7: Bar chart of the total numbers of significantly down (n(t)
DE−) and up

(n(t)
DE+) regulated genes with respect to the uninjured skin reference measurement at

time point 0 controlling a TS-ABH FDR of 0.05 for the mouse skin healing data set.

The total numbers of significantly down and up regulated genes per time point
for the SH data is shown in Figure 6.7. In comparison with the findings of the
other three data sets and particular with the associated TH data, the total numbers
per time point are extraordinarily low. Starting with a low number at 6h after
wounding (down: 4; up: 32), a steep raise is observed for time points 12 h and 24 h,
whereas the maximum is higher for up regulation (132) than for down expression
(30). The second half of the time series shows only a few differentially expressed
genes. Hence, this data set is an example for a profile analysis based on only few
differentially expressed genes, which must not be a sign of low quality, since the
underlying molecular genetic processes can be more refined for the examined tissue.
Nevertheless, the activation profile analysis should report reasonable gene sets, even
if the results are less robust due to the low number of genes which may cause
significant enrichment.
The resulting profiles from applying the 2T-GSA profile algorithm (FDR limit

αsets = 0.01) with a subsequent AM smoothing (λfill = 0.0738 and λwipe = 0.229)
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Table 6.8: The 10 2T-GSA activation profiles after smoothing with AM (λfill = 0.0738,
λwipe = 0.2290) resulting from the SH data set.

Profiles # Profiles # Profiles #
ooooooo 7167 +++oooo 9 oo++ooo 3
o++oooo 11 ++++ooo 6 o-ooooo 2
oo+oooo 10 o+ooooo 6 ooooo+o 2

ooo+ooo 1

are summarized in Table 6.8. In accordance with the observed distribution of
differentially expressed genes (Figure 6.6) the profiles stating an enrichment with up
regulated genes in the first half of the time series represent the majority of identified
profiles. An enrichment with down regulated genes is reported only for two gene set
activation profiles featuring a single significant position at 12 h. There are only two
profiles, which refer to an enrichment with up regulated genes with respect to the
unwounded reference tissue at a late time point, i.e. seven days after wounding. All
other 46 reported profiles show at least at one of the three time points with more
than 50 significantly up regulated genes (12h to 3d) an enrichment position. In
contrast to the profiles from the AH data set, here the continuous profiles account
for the major proportion, whereas around one half of all profiles with an enrichment
at 6 h are a product of smoothing.

Table 6.9 lists 25 gene sets with their reported activation profile, the term descrip-
tion from the gene set definition source, the gene set size, the rank according to the
D|med|
s score and the information which profile algorithm identifies this gene set in

addition to the chosen 2T-GSA method. The top 20 gene sets are chosen according
to their extreme position in the Dmed

s score ranking and the hand picked five sets
at the bottom of the table show interesting or typical findings of the competing
STEM and maSigFun algorithms. The key word description of the two top ranked
gene sets are mentioned with a similar expression pattern in the original contri-
bution of L. Chen, Arbieva, et al. (2010). The gene sets KEGG:04620 (“Toll-like
receptor signaling pathway”), GO:0006954 (“inflammatory response”), GO:0009611
(“response to wounding”) and GO:0006935 (“chemotaxis”) are also reported by L.
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Chen, Arbieva, et al. (2010) in their cluster based enrichment analysis with an early
up regulation (compare also the full list of activation profiles in Table B.9 in the
Appendix). The same holds for the gene sets related to chemokine and cytokine.
The gene set activation profile analysis reports in addition gene sets related to cell
motion (e.g. GO:004011 “locomotion” or GO:0060326 “cell chemotaxis”) or the
late up regulated “keratinization” process (GO:0031424). The gene set sizes of the
top ranked sets are slightly larger than for the other data sets, although a single
differentially expressed gene in the set would lead to a significant enrichment and
the proportion of small sets is by far larger than the proportion of medium and large
sets (see Figure 6.3). The set sizes of the significant STEM sets are quite large as
typical for the findings of STEM. The identified sets are usually also detected by
one or both segmentation algorithms and are mainly connected to cell division or
related processes (four sets are given in Table 6.9). The maximum gene set size of
the significant maSigFun profiles is 7, for the set REACT:DEATH, see Table 6.9.
This small size for reported sets is typical for the maSigFun procedure across all
applied analyses.
The activation profile analysis with the 2T-GSA algorithm has on the one hand

proved to be a little conservative in comparison to the other GSA-type algorithm or
the STEM procedure in terms of number of significant findings. On the other hand,
the feared effect of reporting thousands of gene sets with only a single differentially
expressed gene included (due to the small overall number of differentially expressed
genes) did not occur. The TS-ABH FDR adjustment and the smoothing protect
from an overwhelming number of (potentially false) discoveries even in the case of a
very low number of differentially expressed genes.
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Table 6.9: Top 18 of Dmed
s -ranked up regulated and the only two down regulated

gene set activation profiles resulting from a 2T-GSA profile algorithm combined with
AM smoothing on the SH data. The five hand-picked additional sets at the bottom
show interesting gene sets identified by STEM or maSigFun.
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KEGG:04620 1 oo+oooo Toll-like receptor signal-
ing pathway

93 X X 7 7

GO:0031424 2 ooooo+o keratinization 25 X X 7 7

REACT:
CHEMOKINE

3 +++oooo genes involved in
chemokine receptors
bind chemokines

36 X X 7 7

REACT:
PEPTIDE

4 +++oooo genes involved in peptide
ligand-binding receptors

115 X X 7 7

REACT:
GPCR

5 o++oooo genes involved in GPCR
ligand binding

250 X X 7 7

GO:0050715 7 o++oooo positive regulation of cy-
tokine secretion

46 X X 7 7

GO:0050714 8 o++oooo positive regulation of pro-
tein secretion

71 X X 7 7

GO:0040011 6 o++oooo locomotion 898 X X 7 7

KEGG:04060 9 +++oooo cytokine-cytokine recep-
tor interaction

219 X X 7 7

GO:0006954 10 o++oooo inflammatory response 341 X X 7 7

GO:0030593 12 ++++ooo neutrophil chemotaxis 44 X X 7 7

GO:0050663 13 o++oooo cytokine secretion 72 X X 7 7

continued on next page . . .
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. . . continued from previous page
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GO:0050707 14 o++oooo regulation of cytokine se-
cretion

61 X X 7 7

GO:0050708 15 o++oooo regulation of protein se-
cretion

103 X X 7 7

GO:0051222 16 o++oooo positive regulation of pro-
tein transport

138 X X 7 7

GO:0030595 17 ++++ooo leukocyte chemotaxis 94 X X 7 7

GO:0060326 18 ++++ooo cell chemotaxis 120 X X 7 7

REACT:
STRIATED

19 ooooo+o genes involved in striated
muscle contraction

20 X X 7 7

GO:0000910 50 o-ooooo cytokinesis 77 X X 7 7

GO:0033205 48 o-ooooo cell cycle cytokinesis 27 X X 7 7

GO:0010558 ooooooo negative regulation of
macromolecule biosyn-
thetic process

845 X 7 X 7

GO:0032502 ooooooo developmental process 3505 X 7 X 7

GO:0051301 ooooooo cell division 405 X X X 7

GO:0007067 ooooooo mitosis 278 X X X 7

REACT:
DEATH

ooooooo death receptor signalling 7 X 7 7 X

Tongue Healing

The total numbers of differentially expressed genes in both directions – up and down
regulation – for the skin healing data set is shown separately for each examined time
point in Figure 6.8. The Dshrink

g test statistic controlled at a TS-ABH FDR limit
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Figure 6.8: Bar chart of the total numbers of significantly down (n(t)
DE−) and up

(n(t)
DE+) regulated genes with respect to the uninjured skin reference measurement at

time point 0 controlling a TS-ABH FDR of 0.05 for the mouse tongue healing data
set.

of 5% yields a relatively uniform distribution with exception of the results at 10 d
where the total number of differentially expressed genes is clearly smaller. At 12 h
after the tongue injury the detection of up and down regulated genes is nearly equal,
but for all other time points the up direction clearly dominates. In comparison with
the above analyzed data sets, the total numbers are in a medium range, hence the
determined activation profiles should not be affected by a lack or an abundance of
differentially expressed features.

The 2S-GSA profile algorithm uses a segmentation test on the as significant stated
genes from Figure 6.8 separately per time point, whereas the TS-ABH FDR is
limited to 1% across all enrichment tests and the AM smoothing method is used
to smooth the profiles to more reliable and continuous profiles (λfill = 0.1388 and
λwipe = 3.5679). Gene set activation profiles enriched up regulated genes at one
or more positions are predominant among both the most frequent profiles listed
in Table 6.10 and the whole set of profiles. Continuous profiles with up regulated
positions at the early time points represent the nine most frequently occurring
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categories. The only profile with down regulated positions among the fourteen most
abundant profiles in Table 6.10 is o-o----, although the smoothing evaluates a
change of this profile in both directions. This finding is on the one hand a strong
hint that this is a true biological pattern or at least the hybridization at the third
time point (24 h) was weaker for some reason so that some true down regulated
genes are missed. On the other hand it is shown that the smoothing algorithm is
well balanced and does not correct every considered position.

The total number of 842 gene sets with a significant activation profile is too large
to discuss all profiles in detail. Analogously to the previous analyzed data sets, the
ranking according to the both extremes of the Dmed

s score is used to identify gene set
profiles with a clear difference to the reference across the reported enriched positions.
A list of the top ten gene sets for each extreme is given in Table 6.11 and the top
100 activation profiles are recorded in the Appendix in Table B.10 with a link to the
complete list in the electronic version of this document. The top ranked gene sets
enriched with up regulated genes in their activation profiles include again only a
small number of genes (clearly below 100), whereas there are three gene sets with
more than 100 genes in the top ten of profiles with down regulation (see Table 6.11).
The gene set MetaCyc:PWY-5687 (“pyrimidine ribonucleotides interconversion”) in
Table 6.11 containing four genes is exclusively detected by the maSigFun procedure,
but does not show an easily accessible connection to the known wound healing
processes. Nor the other two maSigFun exclusive sets do. The same holds for the
three other gene sets, which were identified (also) by the STEM algorithm, but

Table 6.10: The 14 most frequent 2S-GSA activation profiles after smoothing with
AM (λfill = 0.1388, λwipe = 3.5679) resulting from the TH data set.

Profiles # Profiles # Profiles #
ooooooo 6375 +++++oo 53 o-o---- 25
++++ooo 105 o++oooo 49 ++ooooo 18
+++oooo 77 +oooooo 37 ooo+ooo 18
++++++o 59 o+++ooo 31 ooooo+o 17
+++++++ 54 oo++ooo 27 others 272
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show a very inconspicuous 2S-GSA profile. In analogy to the results from the other
three data sets, STEM has the tendency to report larger gene sets than the other
competing algorithms.

There are noticeable many interrupted activation profiles among the top ten ranked
profiles with down regulated positions. A direct and specific link to the wound
healing process cannot be stated without deeper biologic knowledge. The impression
that the smoothing was not successful at the most suitable profile positions is
biased due to the fact that the top ranked profiles exhibit a very strong differential
expression and enrichment. Hence, the profiles with successful smoothing appear
further down the ranked list.

Table 6.11: Top 10 of Dmed
s -ranked up regulated and top 10 down regulated gene

set activation profiles resulting from a 2S-GSA profile algorithm combined with AM
smoothing on the TH data. The four hand-picked additional sets at the bottom show
interesting gene sets identified by STEM or maSigFun.
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KEGG:04621 1 o++oooo NOD-like receptor signal-
ing pathway

51 7 X 7 7

GO:0035457 2 +++oooo cellular response to
interferon-alpha

4 7 X 7 7

GO:0010573 3 ++++ooo vascular endothelial
growth factor production

16 X X 7 7

GO:0010574 4 ++++ooo regulation of vascular en-
dothelial growth factor
production

16 X X 7 7

GO:0001660 5 o+++ooo fever generation 12 X X 7 7

GO:0031649 6 o+++ooo heat generation 17 X X 7 7

continued on next page . . .
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. . . continued from previous page
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GO:0071354 7 ++ooooo cellular response to
interleukin-6

10 7 X 7 7

GO:0031622 8 o+++ooo positive regulation of
fever generation

8 7 X 7 7

GO:0031652 9 o+++ooo positive regulation of heat
generation

10 X X 7 7

REACT:
STRIATED

10 ooo++++ genes involved in striated
muscle contraction

20 X X 7 7

GO:0030071 253 ooooo-o regulation of mitotic
metaphase/anaphase
transition

22 7 X 7 7

GO:0007346 248 o-oo--o regulation of mitotic cell
cycle

218 X X 7 7

GO:0031577 241 o-oo--- spindle checkpoint 22 X X 7 7

GO:0090068 214 o-oo--- positive regulation of cell
cycle process

90 X X 7 7

KEGG:04614 209 o-ooooo renin-angiotensin system 17 7 7 7 7

GO:0051640 208 o-o---- organelle localization 118 7 X 7 7

GO:0045786 186 ooooo-o negative regulation of cell
cycle

277 X X 7 7

GO:0051303 162 oooo--o establishment of chromo-
some localization

19 X X 7 7

GO:0050000 163 oooo--o chromosome localization 19 X X 7 7

GO:0051310 139 oooo--o metaphase plate congres-
sion

16 7 7 7 7

continued on next page . . .
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. . . continued from previous page
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MetaCyc:
PWY-5687

ooooooo pyrimidine ribonu-
cleotides interconversion

4 7 7 7 X

GO:0006818 ooooooo hydrogen transport 89 7 7 X 7

KEGG:00280 797 o-ooooo Valine, leucine and
isoleucine degradation

47 X X X 7

REACT:
INTEGRATION

ooooooo genes involved in integra-
tion of energy metabolism

137 7 X X 7

Among the top ten ranked profiles with up regulated positions only the gene
sets GO:0035457 and GO:71354 are related to the inflammatory response identi-
fied in early up-regulated class of the original paper by L. Chen, Arbieva, et al.
(2010), but all identified gene sets of the original contribution can be confirmed in
the full list of significant gene set activation profiles. These are for instance from
the early up-regulated class: GO:0006954 (“inflammatory response”), GO:0009611
(“response to wounding”), KEGG:04620 (“Toll-like receptor signaling pathway”),
GO:0001816 (“cytokine production”), KEGG:04060 (“cytokine-cytokine receptor
interaction”) or GO:0006935 (“chemotaxis”), which are all reported with the common
(smoothed) activation profile ++++++o. There are also main agreements among the
reported enrichments in the late up-regulated class. The term key words of the gene
set activation profiles GO:0030198 (ooo++++, “extracellular matrix organization”),
GO:0032964 (oooo+++, “collagen biosynthetic process”), KEGG:04512 (o-o++++,
“ECM-receptor interaction”) and GO:0007154 (+-++++++ “cell communication”) had
been reported by L. Chen, Arbieva, et al. (2010) in their original k-means cluster
enrichment analysis. The last profile contains a ± position, which occurs only in
less than 5% of the profiles and usually in large gene sets (e.g. 3547 genes in
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GO:0007154) with a more comprehensive GO term definition. The perfectly reason-
able gene set terms with a significant enrichment with clearly differentially expressed
genes: GO:0010573 (++++ooo, “vascular endothelial growth factor production”) and
GO:0031649 (o+++ooo, “heat generation”) are among the new findings from the
2S-GSA profile algorithm not mentioned by the original paper (L. Chen, Arbieva,
et al. 2010), but fit well in the wider context of the wound healing process (Gurtner,
Werner, et al. 2008). This may be understood as evidence that the exploratory gene
set activation profile algorithm is able to contribute to the identification of new
molecular genetic processes gene expression time series studies in general and in the
by far not completely understood process of wound healing in particular.





Chapter 7
Discussion and Summary

This contribution emphasizes the increasing importance of gene expression time
series and predefined gene sets with known functionality in the analysis of molecular
genetic processes. The need for an exploratory and explicit gene set analysis approach
on this type of data is not yet recognized in the relevant literature. The available
methods focus either on a single gene analysis or on the identification of co-regulated
clusters. Gene set analysis is popular in two-group comparison experiments, but
rather neglected in gene expression time series. Here, three gene set activation
profile algorithms are proposed against the background of well established methods
from the two groups gene set analysis. The algorithms are compared with two
state-of-the-art techniques for the analysis of gene expression time series, although
the intention is different for all approaches.

Three algorithms are proposed for the analysis of predefined Gene Ontology (GO),
KEGG, BioCarta, Reactome, BioCyc or alternative definitions of gene sets in gene
expression time series, which include commonly only a small number of time points
(4 to 12) and replicates (1 to 5). The three introduced algorithms identify in the first
step all differentially expressed genes with respect to a reference (e.g. by fold change
or shrinkage t-test) per time point. The second step applies two enrichment tests for
each time point, which identify either a significant enrichment with significant up
regulated genes (+), a significant enrichment with down expressed genes (-), both
(±) or no enrichment (o). The concatenation of these symbols across all time points
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results in the gene set activation profile. The three proposed profile algorithms
differ only in the type of enrichment test (Fisher test: 2T-GSA, segmentation test:
1S-GSA and segmentation test satisfying a significance limit: 2S-GSA). The FDR
is controlled at every step of the algorithm for the large number of tests. The
STEM procedure introduced by Ernst, Nau, and Bar-Joseph (2005) clusters all gene
expression vectors according to data independent chosen model profiles and uses a
Fisher test to identify those gene sets, which are significantly enriched with genes
from significant clusters. M. Nueda, Sebastián, et al. (2009) describe the maSigFun
algorithm, which uses a two step regression procedure to estimate a linear model in
dependence of the time for the gene set on basis on the standardized gene expression
vectors annotated to the gene set.

The first of two extensive simulation studies compares two widespread algorithms
– STEM and maSigFun – with the new profile algorithms. A main result is that
maSigFun favors small sets with genes virtually perfectly fitting to a linear model,
whereas STEM identifies due to its clustering mechanism mainly larger gene sets
with a high proportion of genes close to the common model profile. The three
introduced activation profile algorithms show a reasonable accuracy. The accuracy
improves with increasing extent of truly differentially expressed gene trajectories.
The limitation should be noted that the threshold free variant suffers from a high
number of false positives if the number of true differential expression signals is
low. It is important to note that the intention of the five methods differs. The
maSigFun procedure is successful in the identification of strictly co-regulated genes
(and a common transcription factor), but with the limitation that the co-regulated
gene sets must be known in advance. The method’s statistical power is not very
high due to its strict control of type-I-error, which is mitigated in this thesis by
the control of the FDR. The STEM algorithm, and even more all cluster based
methods, also intends to identify functionally related or co-regulated genes, but
without the primary objective to use the available knowledge about such structures.
It is intrinsic to those methods that the identification of smaller clusters as significant
is more difficult than the detection of large gene sets following the same expression
trajectory in time. The subsequent analysis of a priori defined gene sets on the
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identified cluster suffers from the same impairment, since usually only the significant
clusters are used in this second step.
The second simulation study reveals the success of nine different smoothing

methods in combination with the proposed gene set activation profile algorithms.
The smoothing does not identify additional gene sets, but a strong smoothing in the
wipe direction (i.e. reject up or down positions) improves sensitivity by reducing the
number of false positives. The additional smoothing in the fill direction provides
more reasonable activation profiles if the assumption of continuity in biological
processes is fulfilled for the current experiment. This assumption may not hold for
rare time series studies with cell types known to be “out of control” or mis-regulated
like in cancer cells. Other examples compromising the continuity assumption are
designs of experiments in which the time interval between the selected time points
are too large to cover the main molecular genetic processes. Nevertheless, the
smoothing parameters are optimized by the simulation results and smoothing leads
to reasonable results in applications, where the selected smoothing method does
not fill every suitable non continuous activation profile. An adaptive choice of the
smoothing parameter in dependence on the number of significant genes per time
point and the current gene set size could lead to further improvements. This is a
promising starting point for future research. The proposed ranking of the reported
gene sets turned out to yield a useful sorting of the significant results. Among the
high ranked positions are known processes from the original contributions or gene
sets with functions that fit very well to the time series experiment.
The application of the activation profile algorithm accounting for significance in

differential expression proves to report gene sets known from the initial original
contribution. Furthermore, more reasonable gene sets with an enrichment with
up or down regulated genes across the observed time period are identified. The
different characteristics (e.g. type of reference) of the used data sets can be seen as
evidence for the wide application range for the gene set activation profile algorithms.
In particular, the 2S-GSA procedure in combination with a suitable smoother
equips the researcher with a useful exploratory tool. The algorithm identifies the
molecular genetic processes on a gene set level and allows to benefit from the a priori
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available knowledge. This works effectively and reliably in a situation with much less
observations than needed for a reasonable modeling approach. The profile algorithms
can be directly applied on gene expression multi-dose studies. The procedures for
examination of differential expression and gene set analysis may be easily exchanged
with other methods more suitable in the user’s opinion.

The quality of each method, which involves a priori knowledge depends on the
quality of the used annotations. In this thesis only data from hybridized Affymetrix
arrays is used, but the proposed algorithms are directly transferable on time series
data generated by other high throughput techniques. Even the annotation of the
probes and probe sets on the microarray can be improved or at least quality controlled
as proposed by Yu, F. Wang, et al. (2007). Moreover, the gene set annotations are
in a permanent change due to the steady inclusion of current research results. On
the one hand, this has a negative effect on the comparison to earlier analyses. On
the other hand, the used gene set information is as up to date as possible, which
improves the reliability and usefulness of the results. The here applied Bioconductor
annotation packages are only updated biannually, but Kumar, Holm, and Toronen
(2013) recently published the software GOParGenPy, which provides an easy way to
use the most recent GO annotation data. Quality problems of gene set annotations
and other pitfalls in the microarray analysis were first discussed by Khatri and
Drăghici (2005) and Allison, Cui, et al. (2006).
The desirable property to account for all dependencies referring to genes, time

points and gene sets is difficult or impossible due to the very limited numbers of
observations in typical gene expression time series experiments. However, some
newer methods provide models for the gene set enrichment using covariance matrices
(Y.-T. Huang and X. Lin 2013, e.g.). This topic is another promising research field
together with the decorrelating characteristic of the rotation test approach, which
was only briefly discussed in this thesis.

Unfortunately, the true functional molecular genetic processes are not known for
gene expression time series and therefore a second confirmation of analysis results
is common and usually done by RT-PCR, protein level measurements or a second
microarray experiment with new cases in the same design of experiment. Since these
procedures are time and cost intensive, a good exploratory analysis of the data allows
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to focus on the either new, relevant or unexpected functions. The proposed gene set
profile algorithm simplify the complex gene expression time series and gene (set)
annotation information to a symbolic profile, indicating enrichment with up or down
regulated genes per time point position. The loss in information due to averaging
and dimension reduction reduces noise and allows for more interpretable, meaningful
and more robust results. Figure 7.1 illustrates the way from the expression values
to the gene set activation profile for one set of genes stated significant in the tongue
healing data set.
It has to be mentioned that the independence assumption in the enrichment set,

which uses the genes instead of the observation units as sampling model is rightly
criticized as unrealistic (e.g. by Goeman and Bühlmann 2007). The alternative in
form of resampling-based methods (with observations as sampling model) would
lead to a discrete p-value distribution with a few values, due to the common lack
of replicates. Hence, a strong evidence for enrichment at least after adjustment for
FDR would be impossible to obtain. The formulation of a concrete null hypothesis
for the profile algorithms was intentionally omitted. The competitive hypothesis
(“gene in the set are at most as often differentially expressed as the genes outside
the set”) of the enrichment test is used subsequently for each comparison with the
reference. Two alternatives are for instance the self-contained test (“No gene in
the set is differentially expressed”) or the most restrictive modeling approach that
assumes all genes in the set following the same pattern. Both have proven to result
in too many or respectively virtually no findings, which both are not desirable in an
exploratory analysis.

Figure 7.1 shows the outline of the proposed and applied gene set activation profile
algorithms for the concrete example of the gene set GO:0031649 (“heat generation”).
The set was stated with profile o+++ooo in the application section 6.5. The plots
highlight the fact that not all genes in the set contribute to the activation profile
pattern. Furthermore, the activation of the function would have been missed if the
assumption that all genes in the set follow the same pattern had been made. This
is the main difference compared to most competing algorithms for detecting gene
expression changes on the level of gene sets in the literature. The example shows
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Figure 7.1: Plots as outline for the GSA-type gene set activation profile analysis
at the example of gene set GO:0031649 (“heat generation”, 17 genes). The gcRMA
corrected expression values are used for a time point wise t-test comparison to the
common reference (0 h). The raw p-values are transformed to TS-ABH FDR q-values
adjusting for the high number of tests. The dashed line displays the significance
threshold for up regulation (αgenes = 0.05). The five to six genes exceeding this
limit lead to significant enrichments (compare activation profile in Table 6.11) in the
segmentation test at time points 12 h to 3 d.

also that a small number of significantly differentially expressed genes may lead to
significant positions in the gene set activation profile. The enrichment test depends
in addition on the overall number of differentially expressed genes in the data set
at the current time point. The smoothing algorithm did not lead to a change of
the activation profile, which seems to be a plausible decision regarding the p-values
plot. All in all, Figure 7.1 provides an insight on the noisiness and the difficulty of
making the activity-decision for a smaller gene set. Hence, the proposed gene set
activity profiles algorithms are a usable exploratory tool for the gene set analysis on
gene expression time series experiments.
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Appendix A
FDR q-value in the Two-Stage Adaptive Benjamini Hochberg
Linear Step-up Procedure

The calculation of the FDR q-value in the two-stage adaptive linear step-up procedure
of Benjamini, Krieger, and Yekutieli (2006) (TS-ABH) is presented in the following.
The value q(i) is defined as the smallest FDR bound, which is controlled by the
two-stage-procedure while rejecting the i-th smallest p-value.
Table A.1 shows the calculation of the FDR q-values q(i) for an example with

n = 10 tests. The number of rejected hypotheses in linear step-up procedure of the

Table A.1: Example for the q-value calculation in the TS-ABH FDR procedure.

1st stage 2nd stage
(i) p(i) q̃ I

(i) = p(i)n/i q̃(i) k I
(i) q̃ II

(i) k II
(i) q(i)

1 0.001 0.010 0.0101 1 0.0111 1 0.0101
2 0.006 0.030 0.0309 3 0.0429 4 0.0215
3 0.007 0.023 0.0239 3 0.0333 3 0.0215
4 0.015 0.038 0.0390 4 0.0625 4 0.0270
5 0.200 0.400 0.6667 5 0.8000 7 0.3158
6 0.400 0.667 1.0000 6 1.0000 10 0.6667
7 0.500 0.714 1.0000 7 1.0000 10 0.6667
8 0.800 1.000 1.0000 10 1.0000 10 0.9048
9 0.900 1.000 1.0000 10 1.0000 10 0.9048
10 0.950 0.950 1.0000 10 1.0000 10 0.9048
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first stage controlling a FDR of q̃ is given by

k = max{i : p(i) ≤ q̃/(1 + q̃) · i/n}. (a)

This is equivalent with

k = max{i : p(i)n/i ≤ q̃/1 + q̃}

and hence the values q̃ I
(i) = p(i)n/i show the lowest critical values, which lead to a

rejection of H(i)
0 in the first stage controlling a FDR limit of

q̃(i) = r̃(q̃ I
(i)) = (1− q̃ I

(i))−1 − 1 = (1− p(i)n/i)−1 − 1.

Since the first stage uses q̃ I
(i) = q̃(i)/(1 + q̃(i)) as critical FDR value and not q̃(i) the

recalculation by function r̃ is needed. Applying the FDR limit of q̃(i) in the TS-ABH
procedure leads to k I

(i) rejections in the first stage in Table A.1.
The k I

(i) is used to calculate a new critical value q̃ II
(i) in the second stage linear

step-up procedure as product of the old critical value and the quotient (n−k I
(i))/k I

(i):

q̃ II
(i) =


1, if k I

(i) = n

min
{

1, q̃ I
(i)

n−k I
(i)

k I
(i)

}
, else.

The number of rejected hypotheses in the second stage controlling a FDR of q̃(i) is
given with

k II
(i) = max

{
j : q̃ I

(j) ≤ q̃ II
(i)

}
or in words as the last critical value of the first stage below the ith critical value of
the second step.

In Table A.1 on the preceding page, the smallest p-value p(1) leads to the critical
value q̃ I

(1) = 0.010, which is the smallest critical value in the first stage. Hence,
k I

(1) = 1 and the second step would allow a new critical value of q̃ II
(1) = 0.01. There are

no other critical values of the first step, which are smaller than q̃ II
(1). Therefore k II

(1) = 1
and the corresponding FDR q-value of the TS-ABH procedure is q(1) = q̃(1) = 0.01.

The first stage critical value of the third hypothesis is smaller than the correspond-
ing value for the second hypothesis. The step up procedure rejects the hypotheses
with the increasing p-value, fulfilling condition in equation (a), hence both hypothesis
can be rejected controlling a FDR of q̃(3) = 0.0239. Actually, the minimal controlled
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FDR bound, which allows to reject the third (and second) hypothesis, is even smaller
and occurs when the first stage allows one (k I

(1) = 1), but the second stage three
rejections (k II

(1) = 3). This value is calculated from q̃ I
(3) and k I

(1) by

q(3) = r̃

((n− k I
(1))q̃ I

(3)

n

)
=
(

1−
(n− k I

(1))q̃ I
(3)

n

)−1

− 1 = 0.0215,

which leads to the smallest FDR bound controlled while rejecting the first hypothesis
in the first stage and the next two hypotheses in the second stage. Analogously, all
other q-values can be determined. Generally, the q-value can be computed by

q(i) =


min{1,min

j

{
r̃
(
q I

(j)

)
: i ≤ k II

(j)

}
}, if i = 1

min{1,min
j

{
r̃
(
q I

(j)

)
: i ≤ k II

(j)

}
, r̃
(

(n−k I
(i−1))q̃

I
(i)

n

)
}, if i > 1.





Appendix B
Figures and Tables

Detailed tables for the simulation to compare the five profile
algorithms

The following page shows the detailed true positive rates for identifying the five
types of spiked in gene set with active profile with each of the competing profile
algorithms based on the AH simulation.

Thereafter, four pages show the overall ACC and NPV values for the five algorithms
in the simulation study to compare the profile algorithms.



Table B.1: TPR per algorithm and type of spiked in profile in the simulation to
compare the five profile algorithms on basis of the AH data.

Aldosterone heart data TPR with pag = 0.2 TPR with pag = 0.6 TPR with pag = 1
|s|SIM pas algorithm 2T-GSA 1S-GSA 2S-GSA STEM maSigFun 2T-GSA 1S-GSA 2S-GSA STEM maSigFun 2T-GSA 1S-GSA 2S-GSA STEM maSigFun

10 0.05 2T-GSA 8.9 8.6 3.7 25.2 21.1 3.9 40.0 35.7 4.0
1S-GSA 24.2 26.2 17.1 40.2 38.7 29.5 59.4 60.2 51.5
2S-GSA 12.5 13.3 6.7 33.3 28.5 8.7 52.4 47.9 13.4
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 2T-GSA 9.0 8.2 3.9 21.8 20.2 3.9 36.8 36.2 4.6
1S-GSA 34.0 33.8 26.9 55.0 55.0 36.3 76.9 75.7 57.2
2S-GSA 13.3 12.8 6.5 30.1 28.4 8.5 48.7 47.3 11.5
STEM 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.6
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25 2T-GSA 5.4 4.3 2.0 12.0 12.2 1.6 23.2 22.8 2.4
1S-GSA 33.3 33.3 23.2 52.9 50.1 31.6 68.0 69.5 50.8
2S-GSA 8.4 7.2 2.6 20.7 18.4 3.6 33.8 33.3 6.2
STEM 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.5
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5 2T-GSA 0.3 0.4 0.2 2.4 2.2 0.0 7.7 5.6 0.5
1S-GSA 18.8 18.3 15.9 28.9 31.8 18.6 46.4 43.8 29.5
2S-GSA 0.6 0.5 0.3 3.1 2.7 0.0 9.8 8.0 1.0
STEM 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 1.0
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20 0.05 2T-GSA 11.4 11.2 5.9 36.2 38.2 7.2 67.3 59.4 6.9
1S-GSA 27.9 28.9 23.8 59.7 58.5 43.8 83.5 81.8 74.7
2S-GSA 11.9 11.5 6.9 37.5 39.0 9.0 68.0 60.3 11.1
STEM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 2T-GSA 12.6 10.3 6.4 37.5 33.4 7.7 60.3 58.0 5.6
1S-GSA 33.4 36.0 28.4 62.9 63.7 51.6 87.7 86.1 80.1
2S-GSA 13.1 12.3 7.2 39.1 34.4 10.6 64.1 62.7 10.7
STEM 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 1.5
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25 2T-GSA 7.2 8.8 3.4 27.8 24.1 3.6 49.6 43.6 4.6
1S-GSA 25.8 26.2 21.5 55.5 51.9 40.9 81.0 80.3 66.1
2S-GSA 9.0 10.1 4.7 32.5 28.7 6.5 54.9 49.8 8.0
STEM 0.0 0.2 0.1 0.0 0.0 0.8 0.0 0.0 2.2
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5 2T-GSA 2.2 1.8 1.1 9.8 10.6 1.0 21.0 17.7 0.9
1S-GSA 31.6 31.4 23.2 52.8 49.0 34.0 72.7 71.1 60.4
2S-GSA 3.5 2.8 1.4 14.3 14.4 2.2 30.0 25.1 5.1
STEM 0.0 0.1 0.0 0.1 0.0 0.9 0.0 0.0 3.8
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

50 0.05 2T-GSA 20.7 18.8 5.7 67.6 66.7 9.0 93.9 91.4 20.9
1S-GSA 40.5 41.9 32.9 87.0 84.7 73.5 99.3 99.6 99.6
2S-GSA 23.1 21.5 8.8 74.0 71.9 19.8 96.4 94.4 62.0
STEM 0.0 0.0 0.2 0.0 0.0 2.3 0.0 0.0 6.7
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 2T-GSA 22.7 18.9 6.5 68.3 67.0 8.5 92.3 90.4 21.5
1S-GSA 40.8 39.6 29.5 85.1 84.5 71.2 99.2 99.2 98.7
2S-GSA 26.3 22.4 7.7 74.9 71.8 19.9 94.3 93.3 60.5
STEM 0.0 0.0 0.3 0.0 0.0 1.3 0.0 0.0 4.9
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25 2T-GSA 19.1 16.3 5.7 52.7 48.8 5.4 84.8 82.9 13.2
1S-GSA 47.8 46.7 34.0 85.2 82.7 62.9 98.7 99.0 95.6
2S-GSA 31.0 28.9 11.0 62.0 60.0 12.9 93.2 92.0 66.3
STEM 0.0 0.1 0.3 0.0 0.0 2.9 0.0 0.0 5.4
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5 2T-GSA 8.1 8.3 3.7 35.3 29.8 2.1 57.5 53.7 6.6
1S-GSA 40.5 36.0 29.6 74.5 68.8 59.4 92.4 92.8 89.9
2S-GSA 17.7 16.8 9.4 54.6 48.8 12.1 73.4 71.8 50.5
STEM 0.2 0.0 0.4 0.0 0.0 3.7 0.0 0.0 7.8
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

100 0.05 2T-GSA 27.9 29.7 8.0 89.0 87.9 24.8 99.7 99.8 100.0
1S-GSA 52.0 54.6 40.8 97.2 97.2 87.3 100.0 100.0 100.0
2S-GSA 41.3 41.0 15.1 94.4 92.9 84.1 99.9 100.0 100.0
STEM 0.0 0.0 0.2 0.0 0.0 1.6 0.1 0.1 35.8
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 2T-GSA 32.9 31.8 7.3 90.7 88.7 33.8 99.7 99.7 100.0
1S-GSA 55.1 53.1 40.6 98.2 97.1 90.4 100.0 100.0 100.0
2S-GSA 41.4 41.1 14.1 94.3 94.3 87.0 99.8 99.9 100.0
STEM 0.0 0.0 0.4 0.0 0.0 1.4 0.2 0.0 38.3
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25 2T-GSA 26.7 27.4 6.8 81.2 79.7 22.2 97.4 99.1 100.0
1S-GSA 59.5 61.3 43.0 97.6 96.9 88.6 100.0 100.0 100.0
2S-GSA 36.4 37.9 11.7 89.8 87.8 75.7 99.0 99.6 100.0
STEM 0.0 0.1 0.4 0.0 0.0 1.7 0.5 0.1 47.0
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5 2T-GSA 20.2 17.4 4.9 59.5 58.7 11.8 82.4 87.0 95.5
1S-GSA 46.1 43.0 34.0 87.5 87.2 70.7 99.1 99.5 100.0
2S-GSA 36.4 30.1 12.8 79.6 76.0 68.3 93.5 94.2 100.0
STEM 0.0 0.0 0.7 0.0 0.0 2.2 1.0 0.5 60.8
maSigFun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0



Table B.2: ACC and NPV for identifying spiked in activation profiles in the simula-
tion to compare the five profile algorithms on basis of the AH data.

Aldosterone heart data ACC per pag NPV per pag
|s|SIM pas algorithm 0.1 0.2 0.4 0.6 0.8 1 0.1 0.2 0.4 0.6 0.8 1

10 0.05 2T-GSA 91.74 91.99 92.29 92.67 93.08 93.45 95.05 95.17 95.35 95.66 95.97 96.17
1S-GSA 79.96 80.09 80.62 81.14 81.92 82.65 95.13 95.32 95.65 96.13 96.71 97.38
2S-GSA 89.65 89.80 90.37 90.75 91.27 91.75 95.09 95.24 95.54 95.90 96.31 96.66
STEM 94.99 95.00 94.99 94.99 94.99 95.00 95.00 95.00 95.00 95.00 95.00 95.01
maSigFun 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00

0.1 2T-GSA 87.30 87.62 88.29 88.59 89.43 90.01 90.16 90.34 90.71 91.13 91.67 92.18
1S-GSA 71.33 72.22 73.51 75.06 76.69 77.91 90.25 90.98 91.98 93.20 94.53 95.93
2S-GSA 85.62 86.15 87.03 87.48 88.62 89.14 90.20 90.52 91.02 91.65 92.45 93.02
STEM 89.99 90.00 89.99 89.99 90.00 90.01 90.00 90.00 90.00 90.00 90.01 90.02
maSigFun 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00

0.25 2T-GSA 74.19 74.56 75.52 76.08 77.44 78.14 75.18 75.39 76.03 76.39 77.40 77.95
1S-GSA 65.04 65.95 69.33 71.98 75.68 78.89 76.01 76.95 79.19 81.51 84.71 87.16
2S-GSA 73.84 74.13 75.66 76.66 78.67 79.47 75.30 75.56 76.55 77.32 78.78 79.52
STEM 74.98 74.98 75.00 75.02 75.01 75.01 75.00 75.00 75.00 75.01 75.01 75.02
maSigFun 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00

0.5 2T-GSA 50.03 50.10 50.32 50.73 51.35 52.27 50.02 50.05 50.16 50.37 50.69 51.16
1S-GSA 50.82 52.48 56.28 58.63 62.15 65.80 50.48 51.46 53.77 55.25 57.57 60.41
2S-GSA 50.05 50.18 50.42 50.93 51.88 53.08 50.03 50.09 50.21 50.47 50.96 51.59
STEM 50.02 49.98 50.02 50.03 50.02 50.13 50.01 49.99 50.01 50.02 50.01 50.07
maSigFun 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

20 0.05 2T-GSA 91.22 91.41 91.98 92.61 93.23 93.74 95.12 95.26 95.67 96.16 96.68 97.06
1S-GSA 78.45 78.76 80.09 80.91 81.90 82.94 95.15 95.49 96.28 97.14 98.02 98.75
2S-GSA 90.78 90.96 91.54 92.24 92.85 93.33 95.13 95.27 95.69 96.21 96.77 97.14
STEM 94.99 94.99 95.00 95.00 95.02 95.02 95.00 95.00 95.00 95.00 95.02 95.02
maSigFun 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00

0.1 2T-GSA 86.69 86.86 87.92 89.06 90.35 91.19 90.28 90.49 91.23 92.13 92.97 93.68
1S-GSA 72.05 73.57 74.69 77.38 79.02 80.98 90.50 91.25 92.54 94.62 96.43 97.92
2S-GSA 86.29 86.51 87.57 88.77 90.17 91.09 90.30 90.55 91.31 92.27 93.26 94.11
STEM 90.00 89.98 89.98 89.99 90.01 90.04 90.00 90.00 90.00 90.00 90.02 90.04
maSigFun 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00

0.25 2T-GSA 73.87 74.30 75.71 77.93 79.72 81.88 75.39 75.66 76.65 78.25 79.59 81.40
1S-GSA 66.51 67.88 72.01 76.96 80.39 85.05 75.71 76.59 79.68 83.63 87.06 91.61
2S-GSA 73.62 74.23 75.87 78.61 80.65 82.67 75.40 75.84 76.98 79.03 80.63 82.44
STEM 74.98 75.00 74.98 75.02 75.02 75.11 74.99 75.01 75.00 75.04 75.03 75.12
maSigFun 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00

0.5 2T-GSA 50.05 50.65 51.32 53.28 54.90 56.55 50.03 50.33 50.67 51.71 52.58 53.51
1S-GSA 52.42 55.23 60.08 66.02 71.98 79.13 51.56 53.42 56.80 61.32 66.50 73.85
2S-GSA 50.07 50.95 52.02 54.68 57.20 59.93 50.03 50.48 51.04 52.48 53.90 55.53
STEM 49.98 50.02 50.03 50.10 50.28 50.53 49.99 50.01 50.02 50.05 50.14 50.27
maSigFun 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

50 0.05 2T-GSA 90.41 90.56 91.78 92.77 93.63 94.33 95.24 95.48 96.32 97.19 97.86 98.31
1S-GSA 75.09 75.77 76.97 78.91 80.01 81.07 95.31 96.00 97.45 98.79 99.63 99.97
2S-GSA 89.11 89.25 90.51 91.65 92.62 93.58 95.29 95.56 96.59 97.54 98.33 99.13
STEM 95.00 95.00 95.00 95.03 95.09 95.10 95.00 95.00 95.01 95.04 95.09 95.11
maSigFun 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00

0.1 2T-GSA 86.36 87.10 89.15 91.25 92.52 93.90 90.35 91.06 92.54 94.32 95.37 96.46
1S-GSA 73.70 75.31 78.48 81.42 83.41 84.99 90.67 91.87 94.66 97.38 99.11 99.87
2S-GSA 85.34 86.00 88.57 90.67 92.04 94.05 90.43 91.20 93.01 95.03 96.30 98.02
STEM 89.97 89.99 90.01 90.03 90.15 90.12 90.00 90.01 90.03 90.04 90.15 90.14
maSigFun 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00

0.25 2T-GSA 73.70 75.16 79.23 80.97 86.36 88.88 75.84 76.88 79.80 80.23 85.77 88.15
1S-GSA 63.95 67.94 75.83 82.76 86.77 89.72 77.07 80.02 86.69 90.76 97.16 99.15
2S-GSA 72.06 73.93 80.62 82.72 88.86 92.92 76.51 78.08 83.00 82.44 90.72 94.68
STEM 74.97 74.99 75.05 72.94 75.35 75.40 75.00 75.01 75.07 72.90 75.30 75.33
maSigFun 75.00 75.00 75.00 72.73 75.00 75.00 75.00 75.00 75.00 72.73 75.00 75.00

0.5 2T-GSA 50.72 52.40 56.35 60.55 56.50 69.45 50.37 51.25 53.43 55.98 47.89 62.13
1S-GSA 54.32 58.25 68.15 76.85 81.96 91.87 52.92 55.66 63.71 72.65 71.13 91.73
2S-GSA 51.60 55.53 60.70 67.93 68.10 82.20 50.86 53.04 56.20 61.29 55.71 74.04
STEM 50.03 50.03 50.10 50.52 41.52 51.02 50.02 50.02 50.05 50.26 40.56 50.52
maSigFun 50.00 50.00 50.00 50.00 40.00 50.00 50.00 50.00 50.00 50.00 40.00 50.00

100 0.05 2T-GSA 89.36 90.11 91.88 92.99 94.91 95.43 95.28 95.80 97.10 98.20 99.91 99.99
1S-GSA 71.95 72.89 74.90 76.72 78.12 78.66 95.60 96.51 98.41 99.58 99.99 100.00
2S-GSA 85.16 86.13 88.05 90.02 91.15 91.51 95.42 96.16 97.74 99.45 99.96 100.00
STEM 94.99 94.99 95.03 95.02 95.15 95.58 95.00 95.00 95.03 95.02 95.16 95.57
maSigFun 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00

0.1 2T-GSA 85.88 87.53 90.50 93.30 96.46 97.19 90.64 91.80 94.36 96.75 99.80 99.98
1S-GSA 71.61 73.35 77.97 80.88 83.19 84.70 91.13 93.14 96.91 99.34 99.98 100.00
2S-GSA 83.22 85.28 88.84 92.76 94.18 95.10 90.91 92.37 95.48 99.04 99.91 99.99
STEM 89.99 89.99 90.03 90.02 90.29 91.25 90.00 90.01 90.05 90.04 90.28 91.17
maSigFun 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00

0.25 2T-GSA 73.69 76.59 83.09 88.05 97.27 98.98 76.08 78.21 83.03 87.04 97.89 99.61
1S-GSA 64.28 69.49 79.33 86.89 89.65 92.04 78.31 83.11 92.57 97.55 99.96 100.00
2S-GSA 72.88 77.10 85.06 93.22 97.38 98.58 76.52 79.68 86.08 94.30 99.15 99.84
STEM 74.96 74.99 75.17 72.82 76.16 78.63 74.99 75.02 75.15 72.82 75.99 78.02
maSigFun 75.00 75.00 75.00 72.73 75.00 75.00 75.00 75.00 75.00 72.73 75.00 75.00

0.5 2T-GSA 52.32 55.70 63.00 71.28 76.78 93.97 51.23 53.11 57.64 63.65 63.29 89.49
1S-GSA 55.47 61.55 76.22 86.67 93.84 97.35 53.73 58.19 71.66 83.41 89.17 99.51
2S-GSA 54.25 60.17 71.48 86.23 89.22 97.60 52.43 56.07 64.39 79.41 78.95 96.03
STEM 49.95 50.07 50.47 50.18 42.76 57.87 49.97 50.03 50.23 50.09 40.83 54.52
maSigFun 50.00 50.00 50.00 50.00 40.00 50.00 50.00 50.00 50.00 50.00 40.00 50.00



Table B.3: ACC and NPV for identifying spiked in activation profiles in the simula-
tion to compare the five profile algorithms on basis of the OD data.

Ovary development data ACC per pag NPV per pag
|s|SIM pas algorithm 0.1 0.2 0.4 0.6 0.8 1 0.1 0.2 0.4 0.6 0.8 1

10 0.05 2T-GSA 94.94 95.17 95.76 96.31 96.67 96.99 95.03 95.25 95.99 96.65 97.18 97.58
1S-GSA 86.30 86.79 88.74 90.00 90.50 90.99 95.15 95.58 97.32 98.38 98.74 98.92
2S-GSA 94.80 95.07 95.51 95.83 95.95 96.20 95.04 95.29 96.06 96.68 97.19 97.58
STEM 95.00 95.00 95.00 95.00 95.00 95.01 95.00 95.00 95.00 95.00 95.00 95.01
maSigFun 95.00 95.00 95.00 95.00 95.00 95.11 95.00 95.00 95.00 95.00 95.00 95.10

0.1 2T-GSA 89.88 90.72 92.72 94.41 95.63 96.10 90.06 90.89 92.98 94.68 96.00 96.56
1S-GSA 82.77 83.59 87.17 89.95 90.97 91.66 90.34 90.96 94.39 96.64 97.42 97.76
2S-GSA 89.64 90.73 92.48 93.86 94.75 95.29 90.10 91.29 93.46 94.93 96.11 96.63
STEM 90.00 90.00 89.99 90.00 90.00 90.03 90.00 90.00 90.00 90.00 90.00 90.03
maSigFun 90.00 90.00 90.00 90.00 90.01 90.17 90.00 90.00 90.00 90.00 90.01 90.15

0.25 2T-GSA 75.00 76.82 82.97 88.22 91.62 92.75 75.23 76.65 81.93 86.82 90.39 91.67
1S-GSA 70.80 74.72 83.61 87.47 89.61 90.30 76.14 79.19 86.98 90.63 92.48 93.33
2S-GSA 74.84 78.64 85.59 89.57 91.97 92.53 75.56 78.60 85.08 88.88 91.36 92.04
STEM 75.00 75.00 75.00 75.02 75.04 75.13 75.00 75.00 75.00 75.01 75.04 75.11
maSigFun 75.00 75.00 75.00 75.00 75.02 75.48 75.00 75.00 75.00 75.00 75.01 75.37

0.5 2T-GSA 50.77 53.36 61.82 72.82 81.24 85.35 50.39 51.75 56.76 64.89 72.88 77.50
1S-GSA 52.85 57.99 72.32 78.91 82.82 84.01 51.63 54.68 65.42 72.13 76.88 79.00
2S-GSA 51.93 57.81 71.27 79.23 84.75 86.54 51.01 54.34 63.77 71.02 77.14 79.23
STEM 49.97 50.00 50.01 49.99 50.11 50.30 49.98 50.00 50.01 49.99 50.06 50.15
maSigFun 50.00 50.00 50.00 50.00 50.03 51.08 50.00 50.00 50.00 50.00 50.02 50.55

20 0.05 2T-GSA 94.23 94.53 95.64 96.26 96.65 96.81 95.06 95.52 96.83 97.68 98.08 98.32
1S-GSA 85.63 86.98 88.88 89.77 90.17 90.60 95.39 96.59 98.33 98.83 98.95 99.00
2S-GSA 92.58 92.80 93.47 93.69 93.98 94.20 95.15 95.73 96.96 97.68 98.06 98.31
STEM 94.99 95.00 95.00 95.00 95.02 95.05 95.00 95.00 95.00 95.00 95.02 95.05
maSigFun 95.00 95.00 95.00 95.00 95.00 95.12 95.00 95.00 95.00 95.00 95.00 95.11

0.1 2T-GSA 90.29 91.57 93.88 95.39 96.04 96.40 90.37 91.66 94.06 95.76 96.50 96.85
1S-GSA 82.62 84.90 89.39 90.52 91.02 91.59 90.93 93.01 96.80 97.68 97.89 98.02
2S-GSA 90.22 91.43 93.49 94.58 95.17 95.39 90.42 91.84 94.29 95.83 96.51 96.88
STEM 89.99 90.00 89.99 90.01 90.05 90.13 90.00 90.00 90.00 90.01 90.05 90.13
maSigFun 90.00 90.00 90.00 90.00 90.00 90.27 90.00 90.00 90.00 90.00 90.00 90.24

0.25 2T-GSA 76.22 80.16 88.84 92.07 93.51 93.70 76.09 79.37 87.47 90.94 92.37 92.64
1S-GSA 71.68 78.54 87.23 89.31 90.29 90.34 77.04 82.63 91.08 93.02 93.73 93.92
2S-GSA 76.41 82.19 89.92 92.07 93.22 93.38 76.50 81.55 89.22 91.47 92.46 92.75
STEM 74.98 74.97 74.94 75.06 75.15 75.42 74.99 74.99 74.99 75.06 75.15 75.36
maSigFun 75.00 75.00 75.00 75.00 75.00 75.75 75.00 75.00 75.00 75.00 75.00 75.57

0.5 2T-GSA 52.38 58.40 74.16 82.43 85.77 87.81 51.23 54.62 66.01 74.14 78.04 80.62
1S-GSA 54.33 62.39 79.25 82.67 83.65 83.08 52.54 57.93 73.13 78.41 80.47 81.56
2S-GSA 56.67 67.30 80.90 85.29 86.99 88.11 53.66 60.73 72.80 77.80 79.85 81.47
STEM 49.98 50.00 50.04 50.13 50.55 50.97 49.99 50.00 50.02 50.07 50.28 50.50
maSigFun 50.00 50.00 50.00 50.00 50.01 51.66 50.00 50.00 50.00 50.00 50.01 50.84

50 0.05 2T-GSA 90.55 92.32 94.05 94.41 94.62 95.01 95.64 97.18 98.68 98.79 98.88 99.01
1S-GSA 83.36 85.20 86.86 87.32 87.94 88.61 96.09 97.81 98.91 99.02 99.12 99.25
2S-GSA 80.81 82.70 84.62 85.24 85.89 86.66 96.38 97.85 98.65 98.71 98.80 98.95
STEM 95.00 95.00 95.03 95.13 95.29 95.45 95.00 95.00 95.04 95.13 95.28 95.44
maSigFun 95.00 95.00 95.00 95.00 95.00 95.16 95.00 95.00 95.00 95.00 95.00 95.15

0.1 2T-GSA 88.03 91.31 94.45 95.12 95.47 96.13 91.13 94.16 97.14 97.43 97.58 97.77
1S-GSA 82.48 86.01 88.69 89.54 90.29 90.89 92.25 95.76 97.63 97.77 97.94 98.12
2S-GSA 83.27 86.71 88.94 90.74 91.72 93.10 92.84 95.62 97.08 97.36 97.55 97.80
STEM 89.99 89.99 90.02 90.11 90.32 90.48 90.00 90.00 90.03 90.12 90.30 90.46
maSigFun 90.00 90.00 90.00 90.00 90.00 90.41 90.00 90.00 90.00 90.00 90.00 90.37

0.25 2T-GSA 78.34 84.77 91.88 93.05 93.44 93.98 77.73 83.50 90.62 91.85 92.30 92.92
1S-GSA 76.31 84.75 88.88 89.32 89.74 89.99 81.99 89.92 93.44 93.72 94.29 94.61
2S-GSA 79.09 85.77 91.51 92.63 93.17 93.72 78.53 84.96 90.77 91.91 92.46 93.10
STEM 74.98 74.99 75.07 75.29 75.82 76.02 75.00 75.01 75.08 75.30 75.75 76.05
maSigFun 75.00 75.00 75.00 75.00 75.00 76.05 75.00 75.00 75.00 75.00 75.00 75.80

0.5 2T-GSA 57.83 70.24 84.01 87.13 88.18 88.65 54.26 62.76 75.93 79.67 81.12 81.76
1S-GSA 63.04 76.77 84.94 84.42 83.92 80.45 58.77 71.20 81.53 82.42 83.15 82.14
2S-GSA 63.40 77.07 86.15 87.39 88.10 88.52 57.83 68.90 78.79 80.28 81.35 82.03
STEM 49.99 49.94 50.30 50.82 50.17 47.96 49.99 49.97 50.15 50.42 50.09 48.83
maSigFun 50.00 50.00 50.00 50.00 50.00 52.10 50.00 50.00 50.00 50.00 50.00 51.07

100 0.05 2T-GSA 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00
1S-GSA 79.68 81.54 82.72 83.70 84.74 85.69 96.99 98.49 98.79 98.86 99.01 99.18
2S-GSA 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00
STEM 95.00 95.01 95.30 95.88 96.29 96.62 95.01 95.01 95.29 95.85 96.25 96.58
maSigFun 95.00 95.00 95.00 95.00 95.00 95.21 95.00 95.00 95.00 95.00 95.00 95.20

0.1 2T-GSA 88.04 91.55 93.33 93.98 94.57 94.89 92.46 95.89 97.46 97.70 98.13 98.39
1S-GSA 81.47 84.64 86.50 87.53 88.53 89.29 93.79 97.06 97.91 98.16 98.59 98.99
2S-GSA 79.22 82.06 84.04 85.13 86.09 87.17 94.20 96.59 97.26 97.55 98.01 98.31
STEM 90.00 90.02 90.28 90.77 91.20 91.66 90.00 90.03 90.25 90.71 91.11 91.54
maSigFun 90.00 90.00 90.00 90.00 90.00 90.54 90.00 90.00 90.00 90.00 90.00 90.48

0.25 2T-GSA 79.36 88.70 92.42 93.15 94.26 95.32 79.21 87.75 91.58 92.27 93.49 94.53
1S-GSA 77.50 85.00 87.19 87.53 88.72 88.00 85.04 92.26 93.64 94.06 95.34 96.32
2S-GSA 80.72 88.39 91.27 92.37 93.81 95.10 81.79 88.81 91.58 92.31 93.78 95.01
STEM 74.98 75.02 75.28 75.64 75.91 75.18 75.00 75.02 75.26 75.66 76.08 76.15
maSigFun 75.00 75.00 75.00 75.00 75.00 76.44 75.00 75.00 75.00 75.00 75.00 76.09

0.5 2T-GSA 61.82 78.26 86.04 87.27 88.40 89.25 56.72 69.77 78.33 79.95 81.36 82.64
1S-GSA 69.96 82.65 84.88 83.66 83.36 83.39 64.50 78.13 82.33 82.82 84.05 85.01
2S-GSA 66.81 82.01 86.24 87.32 88.45 89.58 60.20 73.78 78.82 80.24 81.78 83.43
STEM 49.97 50.00 50.56 50.01 45.37 41.60 49.98 50.00 50.29 50.01 47.23 44.41
maSigFun 50.00 50.00 50.00 50.00 50.00 52.89 50.00 50.00 50.00 50.00 50.00 51.49



Table B.4: ACC and NPV for identifying spiked in activation profiles in the simula-
tion to compare the five profile algorithms on basis of the SH data.

Skin healing data ACC per pag NPV per pag
|s|SIM pas algorithm 0.1 0.2 0.4 0.6 0.8 1 0.1 0.2 0.4 0.6 0.8 1

10 0.05 2T-GSA 94.94 95.59 96.47 96.83 97.12 97.37 95.46 96.10 96.88 97.19 97.42 97.62
1S-GSA 82.22 83.16 85.41 86.52 87.15 87.74 95.23 95.91 97.95 98.90 99.18 99.42
2S-GSA 94.91 95.58 96.45 96.84 97.16 97.43 95.47 96.15 96.99 97.29 97.55 97.76
STEM 95.00 95.00 95.00 95.00 95.00 95.01 95.00 95.00 95.00 95.00 95.00 95.01
maSigFun 95.00 95.00 95.00 95.00 95.01 95.79 95.00 95.00 95.00 95.00 95.01 95.76

0.1 2T-GSA 89.99 91.34 93.18 93.99 94.48 94.92 90.22 91.49 93.20 93.90 94.34 94.73
1S-GSA 79.72 80.84 84.95 87.58 88.58 89.20 90.61 91.45 95.44 97.60 98.23 98.54
2S-GSA 89.91 91.51 93.54 94.33 94.81 95.22 90.27 91.80 93.68 94.36 94.73 95.09
STEM 90.00 90.00 90.00 90.00 90.01 90.03 90.00 90.00 90.00 90.00 90.01 90.03
maSigFun 90.00 90.00 90.00 90.00 90.03 91.50 90.00 90.00 90.00 90.00 90.02 91.37

0.25 2T-GSA 75.09 77.03 81.05 82.87 84.14 85.56 75.21 76.66 79.89 81.45 82.56 83.86
1S-GSA 68.94 73.19 81.60 85.12 87.32 87.50 76.83 80.01 88.14 92.35 94.42 95.24
2S-GSA 75.12 78.65 82.64 84.60 85.94 87.02 75.37 78.01 81.32 83.06 84.24 85.27
STEM 74.99 75.00 75.00 75.00 75.03 75.12 75.00 75.00 75.00 75.00 75.03 75.09
maSigFun 75.00 75.00 75.00 75.00 75.09 78.87 75.00 75.00 75.00 75.00 75.06 78.02

0.5 2T-GSA 50.40 52.04 55.96 59.89 64.09 68.46 50.20 51.04 53.17 55.49 58.20 61.32
1S-GSA 52.23 57.03 68.32 74.77 78.04 78.68 51.35 54.37 62.88 69.74 74.09 76.20
2S-GSA 50.71 54.57 60.13 64.47 68.64 72.13 50.36 52.40 55.64 58.46 61.46 64.22
STEM 50.00 49.96 50.02 50.01 50.16 50.30 50.00 49.98 50.01 50.01 50.08 50.15
maSigFun 50.00 50.00 50.00 50.00 50.16 57.37 50.00 50.00 50.00 50.00 50.08 53.98

20 0.05 2T-GSA 95.42 96.26 96.88 97.38 97.58 97.75 95.54 96.42 97.05 97.49 97.68 97.83
1S-GSA 81.64 82.75 85.14 86.06 86.69 87.04 95.71 97.06 98.91 99.28 99.49 99.58
2S-GSA 95.43 96.29 97.02 97.48 97.68 97.84 95.55 96.45 97.19 97.61 97.78 97.91
STEM 95.00 95.00 95.00 95.01 95.02 95.05 95.00 95.00 95.00 95.01 95.02 95.05
maSigFun 95.00 95.00 95.00 95.00 95.01 95.92 95.00 95.00 95.00 95.00 95.01 95.89

0.1 2T-GSA 91.08 92.84 94.34 94.95 95.38 95.69 91.27 92.91 94.29 94.83 95.24 95.49
1S-GSA 79.42 82.26 86.42 87.59 88.63 89.22 91.17 94.00 97.62 98.52 98.81 99.14
2S-GSA 91.12 92.99 94.61 95.19 95.56 95.90 91.31 93.09 94.59 95.08 95.43 95.68
STEM 90.00 89.99 90.00 90.01 90.04 90.09 90.00 90.00 90.00 90.01 90.04 90.09
maSigFun 90.00 90.00 90.00 90.00 90.00 91.85 90.00 90.00 90.00 90.00 90.00 91.70

0.25 2T-GSA 76.68 80.22 83.29 85.71 87.30 88.51 76.38 79.22 81.81 84.01 85.52 86.73
1S-GSA 70.57 76.66 85.02 87.06 87.71 87.90 78.08 83.50 92.68 95.00 96.27 97.04
2S-GSA 77.00 81.55 84.81 87.02 88.22 88.97 76.66 80.38 83.19 85.26 86.44 87.19
STEM 74.98 75.00 75.00 75.08 75.10 75.22 74.99 75.00 75.01 75.06 75.08 75.18
maSigFun 75.00 75.00 75.00 75.00 75.02 79.59 75.00 75.00 75.00 75.00 75.02 78.61

0.5 2T-GSA 52.09 55.58 61.70 66.25 71.03 75.38 51.07 52.96 56.63 59.71 63.32 67.02
1S-GSA 54.23 61.42 76.74 81.19 82.75 80.74 52.64 57.75 72.68 80.39 85.45 87.58
2S-GSA 54.65 59.83 66.41 70.88 74.19 76.98 52.46 55.48 59.84 63.21 65.96 68.48
STEM 50.00 49.97 50.03 50.08 49.81 47.08 50.00 49.98 50.02 50.04 49.90 48.43
maSigFun 50.00 50.00 50.00 50.00 50.05 59.09 50.00 50.00 50.00 50.00 50.03 55.00

50 0.05 2T-GSA 95.43 96.21 97.11 97.35 97.47 97.56 95.43 96.19 97.11 97.34 97.47 97.54
1S-GSA 79.29 81.17 82.55 83.59 83.89 84.67 96.53 98.39 99.13 99.34 99.51 99.64
2S-GSA 95.45 96.23 97.22 97.48 97.64 97.73 95.45 96.21 97.20 97.45 97.60 97.69
STEM 95.00 95.00 95.02 95.10 95.18 95.28 95.00 95.00 95.02 95.10 95.17 95.27
maSigFun 95.00 95.00 95.00 95.00 95.00 95.99 95.00 95.00 95.00 95.00 95.00 95.95

0.1 2T-GSA 92.48 93.77 95.02 95.56 95.73 95.92 92.46 93.67 94.85 95.34 95.51 95.69
1S-GSA 78.75 82.54 85.51 86.51 87.33 87.85 93.37 97.17 98.48 98.97 99.33 99.44
2S-GSA 92.53 94.01 95.22 95.74 95.89 96.04 92.51 93.91 95.06 95.53 95.67 95.81
STEM 90.00 90.00 90.03 90.11 90.23 90.37 90.00 90.00 90.03 90.11 90.22 90.36
maSigFun 90.00 90.00 90.00 90.00 90.00 91.98 90.00 90.00 90.00 90.00 90.00 91.82

0.25 2T-GSA 80.99 84.61 87.27 88.48 89.23 90.08 79.93 83.07 85.50 86.69 87.46 88.31
1S-GSA 74.98 83.08 86.50 87.01 87.67 87.44 83.72 92.23 95.42 97.08 97.87 98.37
2S-GSA 81.92 85.52 88.12 89.10 89.66 90.01 80.76 83.94 86.35 87.33 87.89 88.25
STEM 74.97 74.99 75.04 75.02 74.47 71.30 74.99 75.00 75.05 75.09 75.23 74.87
maSigFun 75.00 75.00 75.00 75.00 75.00 79.95 75.00 75.00 75.00 75.00 75.00 78.91

0.5 2T-GSA 57.27 62.96 69.19 72.53 76.60 78.87 53.93 57.45 61.88 64.55 68.12 70.30
1S-GSA 63.35 75.87 83.09 83.96 82.33 81.01 59.79 72.66 84.45 89.84 92.04 93.71
2S-GSA 60.96 67.09 72.70 75.31 77.61 79.22 56.19 60.32 64.69 66.95 69.07 70.65
STEM 49.97 49.98 48.77 44.98 39.92 32.86 49.98 49.99 49.37 47.12 43.26 36.04
maSigFun 50.00 50.00 50.00 50.00 50.00 59.62 50.00 50.00 50.00 50.00 50.00 55.32

100 0.05 2T-GSA 95.11 95.16 95.24 95.38 95.70 95.94 95.39 95.83 96.34 96.53 96.83 97.04
1S-GSA 76.94 78.75 80.21 80.76 81.56 82.06 97.28 98.93 99.53 99.68 99.78 99.80
2S-GSA 95.14 95.27 95.34 95.53 95.78 96.05 95.42 95.93 96.42 96.64 96.87 97.08
STEM 94.99 95.03 95.28 95.68 95.90 96.05 95.00 95.03 95.28 95.66 95.87 96.02
maSigFun 95.00 95.00 95.00 95.00 95.00 95.96 95.00 95.00 95.00 95.00 95.00 95.92

0.1 2T-GSA 91.75 93.38 94.54 95.11 95.48 95.69 91.63 93.18 94.34 94.87 95.25 95.46
1S-GSA 77.53 80.79 82.42 83.70 84.86 85.46 94.89 97.65 98.56 98.89 99.32 99.42
2S-GSA 91.84 93.63 94.86 95.40 95.68 95.82 91.71 93.41 94.61 95.15 95.44 95.58
STEM 89.99 90.03 90.19 90.35 90.47 90.49 90.00 90.03 90.19 90.35 90.49 90.58
maSigFun 90.00 90.00 90.00 90.00 90.00 92.00 90.00 90.00 90.00 90.00 90.00 91.83

0.25 2T-GSA 82.91 86.00 88.11 88.84 89.73 90.76 81.53 84.29 86.34 87.06 87.97 89.05
1S-GSA 76.33 82.40 84.87 85.99 86.33 85.95 88.32 94.17 96.92 97.78 98.42 98.69
2S-GSA 83.71 86.91 88.69 89.12 89.81 90.33 82.25 85.17 86.92 87.34 88.05 88.58
STEM 74.99 74.96 74.92 71.99 62.98 48.58 75.00 75.01 75.17 74.82 72.95 68.01
maSigFun 75.00 75.00 75.00 75.00 75.00 79.97 75.00 75.00 75.00 75.00 75.00 78.93

0.5 2T-GSA 61.40 66.46 71.55 74.14 77.10 80.14 56.45 59.86 63.75 65.91 68.59 71.57
1S-GSA 69.67 81.60 85.13 86.17 84.12 82.65 65.59 80.56 88.58 92.62 94.13 96.10
2S-GSA 63.91 69.72 73.70 75.53 77.50 80.19 58.10 62.29 65.54 67.14 68.97 71.62
STEM 49.89 49.47 44.25 33.49 23.87 20.18 49.94 49.73 46.65 37.12 23.05 14.43
maSigFun 50.00 50.00 50.00 50.00 50.00 59.73 50.00 50.00 50.00 50.00 50.00 55.39



Table B.5: ACC and NPV for identifying spiked in activation profiles in the simula-
tion to compare the five profile algorithms on basis of the TH data.

Tongue healing data ACC per pag NPV per pag
|s|SIM pas algorithm 0.1 0.2 0.4 0.6 0.8 1 0.1 0.2 0.4 0.6 0.8 1

10 0.05 2T-GSA 95.45 96.19 97.23 97.82 98.21 98.41 95.63 96.42 97.52 98.00 98.38 98.56
1S-GSA 82.13 82.84 85.00 86.76 87.32 88.04 95.33 95.84 97.97 99.25 99.67 99.85
2S-GSA 95.45 96.19 97.23 97.84 98.22 98.42 95.63 96.42 97.53 98.06 98.43 98.59
STEM 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00
maSigFun 95.00 95.00 95.00 95.00 95.01 96.03 95.00 95.00 95.00 95.00 95.01 95.99

0.1 2T-GSA 90.07 92.23 94.79 96.02 96.83 97.26 90.10 92.11 94.60 95.86 96.72 97.15
1S-GSA 79.41 80.78 85.34 88.16 89.57 90.37 90.53 91.62 95.62 98.34 99.33 99.64
2S-GSA 90.07 92.25 95.10 96.23 96.93 97.29 90.11 92.17 94.94 96.15 96.90 97.27
STEM 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
maSigFun 90.00 90.00 90.00 90.00 90.03 92.03 90.00 90.00 90.00 90.00 90.02 91.87

0.25 2T-GSA 75.26 78.12 85.04 88.88 91.38 92.85 75.22 77.48 83.43 87.11 89.73 91.32
1S-GSA 68.49 73.97 84.15 89.09 91.03 92.10 76.81 80.80 90.65 95.29 97.76 98.90
2S-GSA 75.37 80.20 87.06 89.95 92.31 93.38 75.31 79.21 85.39 88.26 90.78 91.94
STEM 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.01
maSigFun 75.00 75.00 75.00 75.00 75.06 79.97 75.00 75.00 75.00 75.00 75.05 78.92

0.5 2T-GSA 50.63 53.15 60.32 70.45 76.50 81.18 50.32 51.63 55.76 62.85 68.03 72.66
1S-GSA 52.96 58.68 73.99 82.67 87.54 88.89 51.78 55.44 67.87 77.75 85.06 88.65
2S-GSA 50.99 57.20 68.18 75.70 80.14 83.71 50.50 53.89 61.13 67.30 71.59 75.43
STEM 50.00 50.00 50.02 50.01 49.97 50.14 50.00 50.00 50.01 50.01 49.98 50.07
maSigFun 50.00 50.00 50.00 50.01 50.04 59.91 50.00 50.00 50.00 50.01 50.02 55.50

20 0.05 2T-GSA 95.61 96.88 97.90 98.28 98.45 98.54 95.61 96.89 97.93 98.37 98.58 98.66
1S-GSA 81.23 82.75 85.35 86.22 87.01 87.54 95.67 97.14 99.28 99.81 99.90 99.94
2S-GSA 95.61 96.88 97.90 98.28 98.43 98.53 95.61 96.89 97.93 98.37 98.58 98.66
STEM 95.00 95.00 95.00 95.00 95.01 95.01 95.00 95.00 95.00 95.00 95.01 95.01
maSigFun 95.00 95.00 95.00 95.00 95.00 96.00 95.00 95.00 95.00 95.00 95.00 95.96

0.1 2T-GSA 91.86 94.24 96.13 97.05 97.51 97.64 91.76 94.06 96.01 96.96 97.45 97.57
1S-GSA 78.79 82.04 87.06 88.91 89.46 90.03 91.14 93.94 98.42 99.49 99.78 99.91
2S-GSA 91.86 94.24 96.16 97.11 97.54 97.63 91.76 94.06 96.06 97.03 97.49 97.59
STEM 90.00 90.00 90.00 90.00 90.00 90.03 90.00 90.00 90.00 90.00 90.01 90.03
maSigFun 90.00 90.00 90.00 90.00 90.01 92.00 90.00 90.00 90.00 90.00 90.01 91.84

0.25 2T-GSA 77.85 83.75 89.78 93.01 94.08 94.77 77.24 82.22 88.04 91.48 92.71 93.48
1S-GSA 70.52 77.19 87.84 91.06 91.53 92.10 78.28 84.03 95.37 98.60 99.46 99.81
2S-GSA 77.96 84.84 90.53 93.42 94.31 94.86 77.33 83.23 88.84 91.96 92.99 93.59
STEM 74.98 75.00 75.00 75.00 75.00 75.12 75.00 75.00 75.00 75.00 75.02 75.10
maSigFun 75.00 75.00 75.00 75.00 75.02 80.03 75.00 75.00 75.00 75.00 75.01 78.97

0.5 2T-GSA 53.14 59.88 73.56 79.90 85.26 87.61 51.62 55.49 65.41 71.34 77.23 80.14
1S-GSA 55.00 64.06 83.25 89.16 90.95 90.12 53.14 59.67 80.50 91.26 96.50 98.31
2S-GSA 56.75 67.67 77.71 83.37 87.12 88.69 53.63 60.76 69.19 75.08 79.52 81.55
STEM 49.99 50.00 49.95 50.02 49.75 48.09 49.99 50.00 49.97 50.01 49.87 49.01
maSigFun 50.00 50.00 50.00 50.00 50.04 59.98 50.00 50.00 50.00 50.00 50.02 55.54

50 0.05 2T-GSA 96.70 97.50 97.97 98.23 98.37 98.43 96.77 97.72 98.34 98.52 98.63 98.67
1S-GSA 79.59 81.62 83.50 84.34 85.10 85.76 96.70 98.67 99.71 99.89 99.91 99.95
2S-GSA 96.70 97.50 97.93 98.19 98.33 98.39 96.77 97.72 98.35 98.53 98.63 98.68
STEM 95.00 95.00 95.01 95.01 95.04 95.06 95.00 95.00 95.01 95.01 95.04 95.06
maSigFun 95.00 95.00 95.00 95.00 95.00 96.00 95.00 95.00 95.00 95.00 95.00 95.96

0.1 2T-GSA 93.75 95.67 96.99 97.33 97.62 97.75 93.56 95.50 96.87 97.22 97.49 97.63
1S-GSA 78.77 83.51 86.58 87.82 88.72 89.28 93.45 97.83 99.63 99.85 99.95 99.99
2S-GSA 93.75 95.67 97.00 97.33 97.60 97.73 93.56 95.52 96.88 97.24 97.50 97.65
STEM 90.00 90.00 89.99 90.03 90.06 90.09 90.00 90.00 90.00 90.03 90.06 90.09
maSigFun 90.00 90.00 90.00 90.00 90.00 92.01 90.00 90.00 90.00 90.00 90.00 91.85

0.25 2T-GSA 84.02 88.85 93.38 94.58 94.99 95.15 82.46 87.11 91.93 93.30 93.74 93.93
1S-GSA 75.20 85.10 89.79 91.30 91.25 91.00 84.27 94.50 99.14 99.78 99.92 99.98
2S-GSA 84.15 89.48 93.66 94.64 95.01 95.17 82.59 87.75 92.26 93.37 93.78 93.96
STEM 74.98 75.00 75.02 75.00 74.53 69.73 74.99 75.00 75.03 75.07 75.04 73.92
maSigFun 75.00 75.00 75.00 75.00 75.00 80.03 75.00 75.00 75.00 75.00 75.00 78.97

0.5 2T-GSA 61.71 72.77 83.61 87.28 89.28 89.84 56.64 64.75 75.32 79.72 82.35 83.11
1S-GSA 64.06 81.92 90.22 90.65 89.52 87.47 60.31 79.81 95.60 98.82 99.35 99.55
2S-GSA 66.72 76.53 85.88 88.53 89.69 90.27 60.05 68.07 77.99 81.34 82.92 83.71
STEM 49.94 49.93 49.17 42.16 33.24 25.72 49.97 49.96 49.58 45.54 38.81 31.01
maSigFun 50.00 50.00 50.00 50.00 50.01 60.06 50.00 50.00 50.00 50.00 50.01 55.59

100 0.05 2T-GSA 94.90 94.91 95.08 95.60 96.05 96.34 95.02 95.09 95.46 96.09 96.70 97.17
1S-GSA 77.51 79.50 81.25 82.12 82.97 83.32 97.83 99.47 99.93 99.99 99.99 100.00
2S-GSA 94.90 94.94 95.24 95.89 96.34 96.56 95.02 95.10 95.51 96.22 96.85 97.29
STEM 94.99 95.02 95.33 95.74 96.08 96.47 95.00 95.02 95.32 95.72 96.05 96.43
maSigFun 95.00 95.00 95.00 95.00 95.00 96.01 95.00 95.00 95.00 95.00 95.00 95.97

0.1 2T-GSA 94.45 96.10 97.00 97.31 97.49 97.75 94.45 96.11 96.99 97.27 97.40 97.66
1S-GSA 77.74 81.59 83.90 85.14 85.70 86.01 95.15 98.33 99.59 99.71 99.68 99.72
2S-GSA 94.45 96.11 96.99 97.24 97.43 97.80 94.45 96.16 97.01 97.28 97.46 97.80
STEM 89.99 90.00 90.02 90.09 90.11 90.06 90.00 90.01 90.03 90.11 90.15 90.22
maSigFun 90.00 90.00 90.00 90.00 90.00 92.01 90.00 90.00 90.00 90.00 90.00 91.84

0.25 2T-GSA 86.09 91.14 94.12 94.62 94.83 94.94 84.41 89.51 92.74 93.33 93.56 93.70
1S-GSA 77.38 84.25 87.11 87.44 86.76 85.95 89.56 96.94 99.50 99.80 99.96 99.98
2S-GSA 86.28 91.53 94.17 94.66 94.84 95.02 84.59 89.93 92.81 93.39 93.60 93.80
STEM 74.98 74.95 74.67 69.20 52.91 39.69 75.00 74.99 74.97 73.85 68.72 62.29
maSigFun 75.00 75.00 75.00 75.00 75.00 80.03 75.00 75.00 75.00 75.00 75.00 78.97

0.5 2T-GSA 68.59 78.23 87.28 88.72 88.85 89.39 61.42 69.68 79.72 81.59 81.77 82.49
1S-GSA 72.58 86.26 90.37 88.99 85.05 81.72 68.61 87.32 97.78 99.12 99.49 99.69
2S-GSA 70.24 80.72 88.21 89.23 89.14 89.67 62.69 72.19 80.92 82.29 82.16 82.88
STEM 49.93 49.55 40.13 27.88 22.11 17.43 49.96 49.77 44.13 33.16 25.10 16.62
maSigFun 50.00 50.00 50.00 50.00 50.00 60.05 50.00 50.00 50.00 50.00 50.00 55.59
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Hexbin Plots for the fill direction of smoothing

Hexbin Plots use shaded hexagons to represent the number of observations on the
covered area. In the following plots, this kind of figure is used to visualize the pattern
and deviation of the functional relation of the smoothing parameter λfill and the
general smoothing proportion for the proposed smoothing methods and the four data
sets, where the smoothing was applied. The general smoothing proportion (GSP) is
a weighted mean of the smoothing proportions yielded by smoothing three samples
of 8000 smoothing constellations triples for a fixed group size and a fixed smoothing
parameter while the number of differential expressed genes is fixed to the median of
differential expressed genes (both up and down) in each data set. The weights are
chosen according to the number of the fixed group size in the corresponding data
set. Details are given in section 5.4.

Smoothing by weighted arithmetic mean (AM)
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Figure B.1: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λfill for the arithmetic mean smoothing and the four used
data sets..
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Smoothing by weighted geometric mean (GM)
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Figure B.2: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λfill for the geometric mean smoothing and the four used
data sets.

Smoothing by weighted inverse normal score mean (IN)
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Figure B.3: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λfill for the inverse normal score smoothing and the four
used data sets.

Smoothing by weighted inverse χ2 score mean (IX)
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Figure B.4: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λfill for the inverse χ2 score smoothing and the four used
data sets.
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Smoothing using the undirected sequential differences (SU)
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Figure B.5: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λfill for the undirected sequential difference smoothing
and the four used data sets.

Smoothing using the directed sequential differences (SD)
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Figure B.6: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λfill for the directed sequential difference smoothing and
the four used data sets.

Smoothing according to the distance to significance (FD)
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Figure B.7: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λfill for the distance to significance smoothing and the
four used data sets.
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Smoothing with a shift in contingency table (FS)
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Figure B.8: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λfill for the shift in contingency table smoothing and the
four used data sets.

Hexbin Plots for the wipe direction of smoothing

Hexbin Plots use shaded hexagons to represent the number of observations on the
covered area. In the following plots, this kind of figure is used to visualize the pattern
and deviation of the functional relation of the smoothing parameter λwipe and the
general smoothing proportion for the proposed smoothing methods and the four data
sets, where the smoothing was applied. The general smoothing proportion (GSP) is
a weighted mean of the smoothing proportions yielded by smoothing three samples
of 8000 smoothing constellations triples for a fixed group size and a fixed smoothing
parameter while the number of differential expressed genes is fixed to the median of
differential expressed genes (both up and down) in each data set. The weights are
chosen according to the number of the fixed group size in the corresponding data
set as described in section 5.4 (pp. 108).
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Smoothing by weighted arithmetic mean (AM)
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Figure B.9: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λwipe for the arithmetic mean smoothing and the four
used data sets.

Smoothing by weighted geometric mean (GM)
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Figure B.10: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λwipe for the geometric mean smoothing and the four
used data sets.

Smoothing by weighted inverse normal score mean (IN)
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Figure B.11: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λwipe for the inverse normal score smoothing and the four
used data sets.
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Smoothing by weighted inverse χ2 score mean (IX)
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Figure B.12: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λwipe for the inverse χ2 score smoothing and the four
used data sets.

Smoothing using the undirected sequential differences (SU)
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Figure B.13: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λwipe for the undirected sequential difference smoothing
and the four used data sets.

Smoothing using the directed sequential differences (SD)
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Figure B.14: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λwipe for the directed sequential difference smoothing and
the four used data sets.
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Smoothing according to the distance to significance (FD)
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Figure B.15: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λwipe for the distance to significance smoothing and the
four used data sets.

Smoothing with a shift in contingency table (FS)
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Figure B.16: Hexbin Plot of the general smoothing proportion (GSP) in dependence
of the smoothing parameter λwipe for the shift in contingency table smoothing and
the four used data sets.
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Figures of smoothing evaluation simulation results

This appendix section includes the 3D surface accuracy plots, which show the
sensitivity (TPR), specificity (1-FPR), PPVp90 and accuracy (ACC) for the smooth-
ing parameter combinations resulting from Table B.6. The section is divided in
subsections regarding the data set and activation profile algorithm used for the
simulation. Each figure consists of four subplots, i.e. one for each accuracy measure.
The maximum and minimum in each plot are marked with color on the smoothing
value plain and the corresponding values are labeled at the north-eastern y-axis
together with the value without smoothing (in gray). The basement axes give the
extend of smoothing within the current simulation setting, i.e. they are linked to
the smoothing parameters λwipe (symbolized as ↓ o + o

o o o ↓) and λfill (symbolized asy + o +
+ + +

y) by the corresponding general smoothing proportion (GSP). The additional
value of the best possible sensitivity value is added for the sensitivity plots. This
value will be reached if all smoothing positions would be smoothed towards the
preset pattern if possible, i.e. this would be the sensitivity of a oracle smoothing
method, which knows the true profile in the current simulation setting. The shown
surfaces cover only the smoothing parameter area, which is available for the current
smoothing method. On the vertical limiting plot sides the smoothing parameters are
shown corresponding their GSP as dashed vertical lines. The dashed horizontal lines
display the minimum, the maximum, the 25%, 50% and the 75% quantiles of the
current accuracy measure in the plot. This auxiliary lines help to better assess the
height value of the 3D surface. The marked maximum for the ACC surface plot is
chosen as best smoothing parameter combination for the current smoothing method
and data set listed in Tables 5.11 to 5.14.
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Aldosterone effect on heart data set

Two-threshold GSA-type activation profile algorithm (2T-GSA)
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Figure B.17: Accuracy Plots with data: AH, profile algorithm: 2T-GSA, smoothing
algorithm: AM. Detailed figure description at section start on page 232.
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Figure B.18: Accuracy Plots with data: AH, profile algorithm: 2T-GSA, smoothing
algorithm: GM. Detailed figure description at section start on page 232.
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Figure B.19: Accuracy Plots with data: AH, profile algorithm: 2T-GSA, smoothing
algorithm: IN. Detailed figure description at section start on page 232.
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Figure B.20: Accuracy Plots with data: AH, profile algorithm: 2T-GSA, smoothing
algorithm: IX. Detailed figure description at section start on page 232.
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Figure B.21: Accuracy Plots with data: AH, profile algorithm: 2T-GSA, smoothing
algorithm: FD. Detailed figure description at section start on page 232.
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Figure B.22: Accuracy Plots with data: AH, profile algorithm: 2T-GSA, smoothing
algorithm: FS. Detailed figure description at section start on page 232.
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Figure B.23: Accuracy Plots with data: AH, profile algorithm: 2T-GSA, smoothing
algorithm: SU. Detailed figure description at section start on page 232.
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Figure B.24: Accuracy Plots with data: AH, profile algorithm: 1S-GSA, smoothing
algorithm: SD. Detailed figure description at section start on page 232.
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One-threshold segmentation GSA-type activation profile algorithm (1S-GSA)

TPR in %
8.27
3.81
8.66

3.71

1-FPR in %
99.64
99.12
98.93

PPVp90 in %
86.1
81.78
87.14

y + o +
+ + +

y
(λfill)

ACC in %

↓ o + o
o o o ↓ (λwipe)

99.26
98.73
98.54

Figure B.25: Accuracy Plots with data: AH, profile algorithm: 1S-GSA, smoothing
algorithm: AM. Detailed figure description at section start on page 232.
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Figure B.26: Accuracy Plots with data: AH, profile algorithm: 1S-GSA, smoothing
algorithm: GM. Detailed figure description at section start on page 232.
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Figure B.27: Accuracy Plots with data: AH, profile algorithm: 1S-GSA, smoothing
algorithm: IN. Detailed figure description at section start on page 232.
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Figure B.28: Accuracy Plots with data: AH, profile algorithm: 1S-GSA, smoothing
algorithm: IX. Detailed figure description at section start on page 232.

Two-threshold segmentation GSA-type activation profile algorithm (2S-GSA)
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Figure B.29: Accuracy Plots with data: AH, profile algorithm: 2S-GSA, smoothing
algorithm: AM. Detailed figure description at section start on page 232.
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Figure B.30: Accuracy Plots with data: AH, profile algorithm: 2S-GSA, smoothing
algorithm: GM. Detailed figure description at section start on page 232.
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Figure B.31: Accuracy Plots with data: AH, profile algorithm: 2S-GSA, smoothing
algorithm: IN. Detailed figure description at section start on page 232.
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Figure B.32: Accuracy Plots with data: AH, profile algorithm: 2S-GSA, smoothing
algorithm: IX. Detailed figure description at section start on page 232.
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Embryonic ovary development data set

Two-threshold GSA-type activation profile algorithm (2T-GSA)
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Figure B.33: Accuracy Plots with data: OD, profile algorithm: 2T-GSA, smoothing
algorithm: AM. Detailed figure description at section start on page 232.
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Figure B.34: Accuracy Plots with data: OD, profile algorithm: 2T-GSA, smoothing
algorithm: GM. Detailed figure description at section start on page 232.
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Figure B.35: Accuracy Plots with data: OD, profile algorithm: 2T-GSA, smoothing
algorithm: IN. Detailed figure description at section start on page 232.
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Figure B.36: Accuracy Plots with data: OD, profile algorithm: 2T-GSA, smoothing
algorithm: IX. Detailed figure description at section start on page 232.
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Figure B.37: Accuracy Plots with data: OD, profile algorithm: 2T-GSA, smoothing
algorithm: FD. Detailed figure description at section start on page 232.
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Figure B.38: Accuracy Plots with data: OD, profile algorithm: 2T-GSA, smoothing
algorithm: FS. Detailed figure description at section start on page 232.

TPR in %
30.83

12.48

31.74

9.73

1-FPR in %
99.07
96.52
96.2

PPVp90 in %
80.59
76.31
81.25

y + o +
+ + +

y
(λfill)

ACC in %

↓ o + o
o o o ↓ (λwipe)

98.14
95.47
95.12

Figure B.39: Accuracy Plots with data: OD, profile algorithm: 2T-GSA, smoothing
algorithm: SU. Detailed figure description at section start on page 232.
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Figure B.40: Accuracy Plots with data: OD, profile algorithm: 1S-GSA, smoothing
algorithm: SD. Detailed figure description at section start on page 232.
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One-threshold segmentation GSA-type activation profile algorithm (1S-GSA)
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Figure B.41: Accuracy Plots with data: OD, profile algorithm: 1S-GSA, smoothing
algorithm: AM. Detailed figure description at section start on page 232.
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Figure B.42: Accuracy Plots with data: OD, profile algorithm: 1S-GSA, smoothing
algorithm: GM. Detailed figure description at section start on page 232.
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Figure B.43: Accuracy Plots with data: OD, profile algorithm: 1S-GSA, smoothing
algorithm: IN. Detailed figure description at section start on page 232.
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Figure B.44: Accuracy Plots with data: OD, profile algorithm: 1S-GSA, smoothing
algorithm: IX. Detailed figure description at section start on page 232.

Two-threshold segmentation GSA-type activation profile algorithm (2S-GSA)
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Figure B.45: Accuracy Plots with data: OD, profile algorithm: 2S-GSA, smoothing
algorithm: AM. Detailed figure description at section start on page 232.
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Figure B.46: Accuracy Plots with data: OD, profile algorithm: 2S-GSA, smoothing
algorithm: GM. Detailed figure description at section start on page 232.
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Figure B.47: Accuracy Plots with data: OD, profile algorithm: 2S-GSA, smoothing
algorithm: IN. Detailed figure description at section start on page 232.
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Figure B.48: Accuracy Plots with data: OD, profile algorithm: 2S-GSA, smoothing
algorithm: IX. Detailed figure description at section start on page 232.
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Skin healing data set

Two-threshold GSA-type activation profile algorithm (2T-GSA)
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Figure B.49: Accuracy Plots with data: SH, profile algorithm: 2T-GSA, smoothing
algorithm: AM. Detailed figure description at section start on page 232.
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Figure B.50: Accuracy Plots with data: SH, profile algorithm: 2T-GSA, smoothing
algorithm: GM. Detailed figure description at section start on page 232.
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Figure B.51: Accuracy Plots with data: SH, profile algorithm: 2T-GSA, smoothing
algorithm: IN. Detailed figure description at section start on page 232.
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Figure B.52: Accuracy Plots with data: SH, profile algorithm: 2T-GSA, smoothing
algorithm: IX. Detailed figure description at section start on page 232.
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Figure B.53: Accuracy Plots with data: SH, profile algorithm: 2T-GSA, smoothing
algorithm: FD. Detailed figure description at section start on page 232.
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Figure B.54: Accuracy Plots with data: SH, profile algorithm: 2T-GSA, smoothing
algorithm: FS. Detailed figure description at section start on page 232.
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Figure B.55: Accuracy Plots with data: SH, profile algorithm: 2T-GSA, smoothing
algorithm: SU. Detailed figure description at section start on page 232.
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Figure B.56: Accuracy Plots with data: SH, profile algorithm: 1S-GSA, smoothing
algorithm: SD. Detailed figure description at section start on page 232.
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One-threshold segmentation GSA-type activation profile algorithm (1S-GSA)
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Figure B.57: Accuracy Plots with data: SH, profile algorithm: 1S-GSA, smoothing
algorithm: AM. Detailed figure description at section start on page 232.
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Figure B.58: Accuracy Plots with data: SH, profile algorithm: 1S-GSA, smoothing
algorithm: GM. Detailed figure description at section start on page 232.
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Figure B.59: Accuracy Plots with data: SH, profile algorithm: 1S-GSA, smoothing
algorithm: IN. Detailed figure description at section start on page 232.
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Figure B.60: Accuracy Plots with data: SH, profile algorithm: 1S-GSA, smoothing
algorithm: IX. Detailed figure description at section start on page 232.

Two-threshold segmentation GSA-type activation profile algorithm (2S-GSA)
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Figure B.61: Accuracy Plots with data: SH, profile algorithm: 2S-GSA, smoothing
algorithm: AM. Detailed figure description at section start on page 232.
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Figure B.62: Accuracy Plots with data: SH, profile algorithm: 2S-GSA, smoothing
algorithm: GM. Detailed figure description at section start on page 232.
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Figure B.63: Accuracy Plots with data: SH, profile algorithm: 2S-GSA, smoothing
algorithm: IN. Detailed figure description at section start on page 232.
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Figure B.64: Accuracy Plots with data: SH, profile algorithm: 2S-GSA, smoothing
algorithm: IX. Detailed figure description at section start on page 232.
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Tongue healing data set

Two-threshold GSA-type activation profile algorithm (2T-GSA)
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Figure B.65: Accuracy Plots with data: TH, profile algorithm: 2T-GSA, smoothing
algorithm: AM. Detailed figure description at section start on page 232.
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Figure B.66: Accuracy Plots with data: TH, profile algorithm: 2T-GSA, smoothing
algorithm: GM. Detailed figure description at section start on page 232.
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Figure B.67: Accuracy Plots with data: TH, profile algorithm: 2T-GSA, smoothing
algorithm: IN. Detailed figure description at section start on page 232.
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Figure B.68: Accuracy Plots with data: TH, profile algorithm: 2T-GSA, smoothing
algorithm: IX. Detailed figure description at section start on page 232.
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Figure B.69: Accuracy Plots with data: TH, profile algorithm: 2T-GSA, smoothing
algorithm: FD. Detailed figure description at section start on page 232.
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Figure B.70: Accuracy Plots with data: TH, profile algorithm: 2T-GSA, smoothing
algorithm: FS. Detailed figure description at section start on page 232.
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Figure B.71: Accuracy Plots with data: TH, profile algorithm: 2T-GSA, smoothing
algorithm: SU. Detailed figure description at section start on page 232.
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Figure B.72: Accuracy Plots with data: TH, profile algorithm: 1S-GSA, smoothing
algorithm: SD. Detailed figure description at section start on page 232.
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One-threshold segmentation GSA-type activation profile algorithm (1S-GSA)
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Figure B.73: Accuracy Plots with data: TH, profile algorithm: 1S-GSA, smoothing
algorithm: AM. Detailed figure description at section start on page 232.
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Figure B.74: Accuracy Plots with data: TH, profile algorithm: 1S-GSA, smoothing
algorithm: GM. Detailed figure description at section start on page 232.

TPR in %
15.64
8.5

21.62

2.94

1-FPR in %
99.36
96.9
95.66

PPVp90 in %
76.53
70.85
76.73

y + o +
+ + +

y
(λfill)

ACC in %

↓ o + o
o o o ↓ (λwipe)

98.76
96.32
95.05

Figure B.75: Accuracy Plots with data: TH, profile algorithm: 1S-GSA, smoothing
algorithm: IN. Detailed figure description at section start on page 232.
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Figure B.76: Accuracy Plots with data: TH, profile algorithm: 1S-GSA, smoothing
algorithm: IX. Detailed figure description at section start on page 232.

Two-threshold segmentation GSA-type activation profile algorithm (2S-GSA)
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Figure B.77: Accuracy Plots with data: TH, profile algorithm: 2S-GSA, smoothing
algorithm: AM. Detailed figure description at section start on page 232.

TPR in %
39.52

21.77

49.2

18.29

1-FPR in %
97.96
95.46
93.43

PPVp90 in %
81.61
78.02
84.32

y + o +
+ + +

y
(λfill)

ACC in %

↓ o + o
o o o ↓ (λwipe)

97.52
94.97
92.93

Figure B.78: Accuracy Plots with data: TH, profile algorithm: 2S-GSA, smoothing
algorithm: GM. Detailed figure description at section start on page 232.
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Figure B.79: Accuracy Plots with data: TH, profile algorithm: 2S-GSA, smoothing
algorithm: IN. Detailed figure description at section start on page 232.
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Figure B.80: Accuracy Plots with data: TH, profile algorithm: 2S-GSA, smoothing
algorithm: IX. Detailed figure description at section start on page 232.
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Tables of significant smoothed profiles

This appendix section includes the significant gene set activation profiles resulting
from applying the simulation based selected profile algorithms and smoothing
procedures for each of the four application data sets. All tables are ordered according
to a decreasing D|med|

s score. Only the 100 most differentially expressed significant
sets are printed for OD and TH data sets due to the large number of significant gene
sets. The complete table is embedded in the electronic version of the document only.

Aldosterone heart data set

Table B.7: All 105 significant gene set activation profiles resulting from a 2S-GSA
profile algorithm combined with AM smoothing on the AH data.

ID Profile Description |s| 2T
-G

SA

1S
-G

SA

ST
EM

m
aS

ig
Fu

n

GO:0035456 ooo+ooo response to interferon-beta 15 X X 7 7

GO:0035458 ooo+ooo cellular response to interferon-
beta

14 X X 7 7

GO:0051856 ooo+ooo adhesion to symbiont 8 X X 7 7

GO:0044403 ooo+ooo symbiosis, encompassing mu-
tualism through parasitism

87 7 X 7 7

GO:0051825 ooo+ooo adhesion to other organism in-
volved in symbiotic interaction

8 X X 7 7

GO:0030595 o-ooooo leukocyte chemotaxis 94 7 X 7 7

GO:0060326 o-ooooo cell chemotaxis 120 7 X 7 7

GO:0001562 ooo+ooo response to protozoan 17 X X 7 7

GO:0042832 ooo+ooo defense response to protozoan 15 X X 7 7

GO:0044419 ooo+ooo interspecies interaction be-
tween organisms

104 X X 7 7

GO:0051702 ooo+ooo interaction with symbiont 37 7 X 7 7

REACT:GRB2 ooooo+o genes involved in GRB2 10 X X 7 7

continued on next page . . .



258 B Figures and Tables

. . . continued from previous page

ID Profile Description |s| 2T
-G

SA

1S
-G

SA

ST
EM

m
aS

ig
Fu

n

REACT:
P130CAS

ooooo+o genes involved in p130Cas link-
age to MAPK signaling for in-
tegrins

10 X X 7 7

GO:0035457 ooo+o-o cellular response to interferon-
alpha

4 7 X 7 7

GO:0006935 o-ooooo chemotaxis 324 7 X 7 7

GO:0042330 o-ooooo taxis 325 7 X 7 7

GO:0009607 ooo+ooo response to biotic stimulus 369 X X 7 7

GO:0042742 ooo+ooo defense response to bacterium 102 X X 7 7

GO:0050830 ooo+ooo defense response to Gram-
positive bacterium

37 X X 7 7

GO:0051707 ooo+ooo response to other organism 338 X X 7 7

GO:0071346 ooo+ooo cellular response to interferon-
gamma

22 7 X 7 7

GO:0034341 ooo+ooo response to interferon-gamma 37 X X 7 7

GO:0051704 ooo+ooo multi-organism process 512 X X 7 7

KEGG:04610 ooooo+o complement and coagulation
cascades

69 X X 7 7

BioCarta:
ACTINY

oo+oooo Y branching of actin filaments 700 X X 7 7

GO:0050900 o-ooooo leukocyte migration 144 7 X 7 7

GO:0002523 o-ooooo leukocyte migration involved
in inflammatory response

7 7 7 7 7

GO:0040011 o-ooooo locomotion 898 X X 7 7

GO:0048870 o-ooooo cell motility 750 X X 7 7

GO:0051674 o-ooooo localization of cell 750 X X 7 7

GO:0009605 o-ooooo response to external stimulus 796 7 X 7 7

GO:0032101 o-ooooo regulation of response to exter-
nal stimulus

301 7 7 7 7

GO:0030198 o-ooooo extracellular matrix organiza-
tion

137 X X 7 7

continued on next page . . .
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. . . continued from previous page

ID Profile Description |s| 2T
-G

SA

1S
-G

SA

ST
EM

m
aS

ig
Fu

n

GO:0043062 o-ooooo extracellular structure organi-
zation

137 X X 7 7

GO:0009611 o-ooooo response to wounding 549 X X 7 7

GO:0050727 o-ooooo regulation of inflammatory re-
sponse

145 7 7 7 7

GO:0007155 o-ooooo cell adhesion 726 7 7 7 7

GO:0022610 o-ooooo biological adhesion 731 7 X 7 7

GO:0018149 o-ooooo peptide cross-linking 25 7 7 7 7

GO:0006631 o-ooooo fatty acid metabolic process 264 7 7 7 7

GO:0044255 o-ooooo cellular lipid metabolic process 634 7 7 7 7

GO:0009617 ooo+ooo response to bacterium 228 X X 7 7

GO:0048871 o-ooooo multicellular organismal home-
ostasis

137 X X 7 7

GO:0016337 o-ooooo cell-cell adhesion 261 7 7 7 7

GO:0045087 ooo+ooo innate immune response 237 X X 7 7

GO:0050873 oo+oooo brown fat cell differentiation 28 7 7 7 7

GO:0006953 ooooo+o acute-phase response 38 X X 7 7

GO:0009615 ooo+ooo response to virus 114 7 7 7 7

GO:0019216 oo+oooo regulation of lipid metabolic
process

178 7 X 7 7

GO:0043200 o-ooooo response to amino acid stimu-
lus

39 7 7 7 7

GO:0006952 o-o+ooo defense response 639 X X 7 7

GO:0002376 o-o+ooo immune system process 1140 X X 7 7

GO:0044283 o-+oooo small molecule biosynthetic
process

337 X X 7 7

GO:0042221 o-o+ooo response to chemical stimulus 1821 X X 7 7

GO:0070887 o-o+ooo cellular response to chemical
stimulus

913 X X 7 7

GO:0034097 ooo+ooo response to cytokine stimulus 278 X X 7 7

GO:0001101 o-ooooo response to acid 54 7 7 7 7

continued on next page . . .
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KEGG:05144 ooo+ooo Malaria 43 X X 7 7

GO:0071345 ooo+ooo cellular response to cytokine
stimulus

210 X X 7 7

GO:0006955 o-o+ooo immune response 572 X X 7 7

GO:0016477 o-ooooo cell migration 695 X X 7 7

GO:0006928 o-ooooo cellular component movement 876 X X 7 7

GO:0009888 ooo-ooo tissue development 1040 7 X 7 7

GO:0010033 ooo+ooo response to organic substance 1107 X X 7 7

GO:0071310 ooo+ooo cellular response to organic
substance

675 X X 7 7

GO:0007507 ooo-ooo heart development 336 7 7 7 7

GO:0046364 oo+oooo monosaccharide biosynthetic
process

54 X 7 7 7

GO:0072358 ooo-ooo cardiovascular system develop-
ment

662 X X 7 7

GO:0072359 ooo-ooo circulatory system develop-
ment

662 X X 7 7

KEGG:05150 o-ooooo staphylococcus aureus infec-
tion

46 X X 7 7

GO:0006954 o-o+ooo inflammatory response 341 X X 7 7

GO:0006897 oo+oooo endocytosis 358 X X 7 7

GO:0010324 oo+oooo membrane invagination 358 X X 7 7

GO:0001568 ooo-ooo blood vessel development 443 X X 7 7

GO:0050896 o-o+ooo response to stimulus 4884 X X 7 7

GO:0032374 oo+oooo regulation of cholesterol trans-
port

27 X X 7 7

GO:0032371 oo+oooo regulation of sterol transport 27 X X 7 7

GO:0016044 oo+oooo cellular membrane organiza-
tion

551 X X 7 7

GO:0061024 oo+oooo membrane organization 553 X X 7 7

GO:0045444 oo+oooo fat cell differentiation 106 X X 7 7
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GO:0006950 o-o+ooo response to stress 1801 X X 7 7

GO:0060255 ooo-ooo regulation of macromolecule
metabolic process

3416 X X 7 7

GO:0031532 o-ooooo actin cytoskeleton reorganiza-
tion

40 7 7 7 7

GO:0048514 ooo-ooo blood vessel morphogenesis 385 7 X 7 7

GO:0001944 o-o-ooo vasculature development 468 X X 7 7

GO:0048583 o-ooooo regulation of response to stim-
ulus

1787 X X 7 7

GO:0080090 ooo-ooo regulation of primary
metabolic process

3638 X X 7 7

GO:0031323 ooo-ooo regulation of cellular
metabolic process

3684 X X 7 7

GO:0019222 ooo-ooo regulation of metabolic pro-
cess

4207 X X 7 7

GO:0002682 ooo+ooo regulation of immune system
process

590 X X 7 7

GO:0050789 ooo-ooo regulation of biological process 6841 7 X 7 7

GO:0032268 ooo-ooo regulation of cellular protein
metabolic process

977 7 7 7 7

GO:0048523 ooo-ooo negative regulation of cellular
process

2382 X X 7 7

GO:0048519 ooo-ooo negative regulation of biologi-
cal process

2612 X X 7 7

GO:0048585 ooo-ooo negative regulation of response
to stimulus

618 X X 7 7

GO:0008283 o-ooooo cell proliferation 1207 X X 7 7

GO:0044237 -oooooo cellular metabolic process 7240 X X 7 7

GO:0044260 -oooooo cellular macromolecule
metabolic process

5235 X X 7 7

continued on next page . . .
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GO:0043170 -oooooo macromolecule metabolic pro-
cess

5877 X X 7 7

GO:0006139 -oooooo nucleobase-containing com-
pound metabolic process

4241 X X 7 7

GO:0071843 oooo+oo cellular component biogenesis
at cellular level

189 X 7 7 7

GO:0090304 -oooooo nucleic acid metabolic process 3396 X X 7 7

GO:0034641 -oooooo cellular nitrogen compound
metabolic process

4560 X X 7 7

GO:0006807 -oooooo nitrogen compound metabolic
process

4644 X X 7 7

GO:0010467 -o-oooo gene expression 3374 X X 7 7

Ovary development data set

Table B.8: Top 100 significant gene set activation profiles according to the D|med|
s

score resulting from a 2S-GSA profile algorithm combined with AM smoothing on the
OD data. The complete list is available (in electronic version only) .
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GO:0070301 -ooooo cellular response to hydrogen
peroxide

30 7 X 7 7

REACT:GRB2 --oooo genes involved in GRB2 11 7 X 7 7

REACT:
P130CAS

--oooo genes involved in p130Cas link-
age to MAPK signaling for in-
tegrins

11 7 X 7 7

GO:0042542 --oooo response to hydrogen peroxide 52 7 X 7 7

continued on next page . . .
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BioCarta:
FIBRINOLYSIS

------ fibrinolysis pathway 10 7 X 7 7

GO:0050790 o-oooo regulation of catalytic activity 1427 7 X 7 7

BioCarta:
AMI

------ acute myocardial infarction 15 X X 7 7

BioCarta:
EXTRINSIC

------ extrinsic prothrombin activa-
tion pathway

13 7 X 7 7

BioCarta:
INTRINSIC

------ intrinsic prothrombin 16 X X 7 7

GO:0007066 oo+ooo female meiosis sister chro-
matid cohesion

4 7 X 7 7

REACT:
COMMON

------ genes involved in common
pathway

13 X X 7 7

GO:0044236 oooo-- multicellular organismal
metabolic process

60 7 X 7 7

GO:0010916 -ooooo negative regulation of very-
low-density lipoprotein parti-
cle clearance

4 7 X 7 7

GO:0010915 -ooooo regulation of very-low-density
lipoprotein particle clearance

4 7 X 7 7

GO:0032374 ------ regulation of cholesterol trans-
port

27 X X 7 7

GO:0032371 ------ regulation of sterol transport 27 X X 7 7

GO:0032963 ooooo- collagen metabolic process 49 7 X 7 7

GO:0050881 ------ musculoskeletal movement 24 X X 7 7

GO:0050879 ------ multicellular organismal move-
ment

24 X X 7 7

GO:0003009 ------ skeletal muscle contraction 14 X X 7 7

GO:0010896 ------ regulation of triglyceride
catabolic process

7 7 X 7 7
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GO:0010901 ------ regulation of very-low-density
lipoprotein particle remodel-
ing

4 7 X 7 7

GO:0006094 ------ gluconeogenesis 35 X X 7 7

GO:0019319 ------ hexose biosynthetic process 43 X X 7 7

REACT:
MUSCLE

------ genes involved in muscle con-
traction

30 X X 7 7

GO:0030299 ------ intestinal cholesterol absorp-
tion

9 X X 7 7

GO:0051336 ------ regulation of hydrolase activ-
ity

738 X X 7 7

GO:0006111 ooo-oo regulation of gluconeogenesis 15 7 X 7 7

GO:0045103 ooo--- intermediate filament-based
process

28 7 X 7 7

BioCarta:
UCALPAIN

ooo--o uCalpain and friends in Cell
spread

13 7 X 7 7

GO:0030194 ------ positive regulation of blood co-
agulation

16 X X 7 7

GO:1900048 ------ positive regulation of hemosta-
sis

16 X X 7 7

REACT:
STRIATED

------ genes involved in striated mus-
cle contraction

20 X X 7 7

GO:0006942 o-oooo regulation of striated muscle
contraction

24 7 X 7 7

GO:0050892 ------ intestinal absorption 18 X X 7 7

GO:0051346 ------ negative regulation of hydro-
lase activity

275 X X 7 7

GO:0050996 ------ positive regulation of lipid
catabolic process

18 X X 7 7

GO:0052548 ------ regulation of endopeptidase ac-
tivity

261 X X 7 7
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GO:0052547 ------ regulation of peptidase activ-
ity

280 X X 7 7

GO:0046503 ------ glycerolipid catabolic process 22 X X 7 7

GO:0006941 ------ striated muscle contraction 55 X X 7 7

GO:0051918 ------ negative regulation of fibrinol-
ysis

7 7 X 7 7

GO:0019433 ------ triglyceride catabolic process 13 X X 7 7

GO:0034372 ------ very-low-density lipoprotein
particle remodeling

9 X X 7 7

REACT:
RECYCLING

-oo--- Genes involved in Recycling of
bile acids and salts

8 7 X 7 7

GO:0050820 ------ positive regulation of coagula-
tion

19 X X 7 7

GO:0033344 ------ cholesterol efflux 33 X X 7 7

GO:0010466 ------ negative regulation of pepti-
dase activity

184 X X 7 7

GO:0046461 ------ neutral lipid catabolic process 15 X X 7 7

GO:0046464 ------ acylglycerol catabolic process 15 X X 7 7

GO:0044269 ------ glycerol ether catabolic pro-
cess

15 X X 7 7

GO:0010898 ------ positive regulation of triglyc-
eride catabolic process

6 7 X 7 7

GO:0010951 ------ negative regulation of en-
dopeptidase activity

171 X X 7 7

GO:0006642 -ooooo triglyceride mobilization 6 7 X 7 7

GO:0030300 ------ regulation of intestinal choles-
terol absorption

6 X X 7 7

GO:0033700 ------ phospholipid efflux 11 7 X 7 7

REACT:
CHYLOMICRON

------ genes involved in chylomicron-
mediated lipid transport

15 X X 7 7

continued on next page . . .
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GO:0043086 ------ negative regulation of catalytic
activity

472 X X 7 7

KEGG:04972 ------ Pancreatic secretion 100 X X 7 7

GO:0015671 o+oooo oxygen transport 6 7 X 7 7

GO:0030195 ------ negative regulation of blood co-
agulation

25 X X 7 7

GO:1900047 ------ negative regulation of
hemostasis

25 X X 7 7

GO:0033275 ooo--- actin-myosin filament sliding 8 7 X 7 7

GO:0070252 ooo--- actin-mediated cell contrac-
tion

10 7 X 7 7

KEGG:04975 ------ fat digestion and absorption 45 X X 7 7

GO:0006936 ------ muscle contraction 148 X X 7 7

GO:0034370 ------ triglyceride-rich lipoprotein
particle remodeling

10 X X 7 7

GO:0046364 ------ monosaccharide biosynthetic
process

54 X X 7 7

GO:0045723 oo---- positive regulation of fatty
acid biosynthetic process

15 7 X 7 7

GO:0065005 ------ protein-lipid complex assem-
bly

12 7 X 7 7

GO:0048608 ooooo+ reproductive structure devel-
opment

202 7 X 7 7

GO:0051917 ------ regulation of fibrinolysis 10 X X 7 7

MetaCyc:
PWY-4984

o----o urea cycle 4 7 X 7 7

GO:0009566 oooo++ fertilization 82 7 X 7 7

GO:0022602 ooooo+ ovulation cycle process 74 7 X 7 7

GO:0042698 ooooo+ ovulation cycle 78 7 X 7 7

GO:0006508 ------ proteolysis 819 X X 7 7

continued on next page . . .
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GO:0045104 ------ intermediate filament cy-
toskeleton organization

27 7 X 7 7

GO:0048511 ooooo+ rhythmic process 160 7 X 7 7

GO:0010872 ------ regulation of cholesterol esteri-
fication

9 X X 7 7

GO:0010873 ------ positive regulation of choles-
terol esterification

7 X X 7 7

GO:0042730 ------ fibrinolysis 14 X X 7 7

GO:2000194 ooooo+ regulation of female gonad de-
velopment

6 7 X 7 7

GO:0006559 o-oo-- L-phenylalanine catabolic pro-
cess

6 7 X 7 7

GO:0032368 ------ regulation of lipid transport 49 X X 7 7

GO:0034435 ------ cholesterol esterification 12 X X 7 7

GO:0034434 ------ sterol esterification 12 X X 7 7

GO:0034433 ------ steroid esterification 12 X X 7 7

GO:0030162 ------ regulation of proteolysis 156 X X 7 7

GO:0019751 oooo-o polyol metabolic process 37 X X 7 7

GO:0007586 ------ digestion 68 X X 7 7

GO:0034442 oooo-o regulation of lipoprotein oxida-
tion

4 7 X 7 7

GO:0045780 oooo-o positive regulation of bone re-
sorption

12 7 X 7 7

GO:0046852 oooo-o positive regulation of bone re-
modeling

12 7 X 7 7

GO:0015918 ------ sterol transport 53 X X 7 7

GO:0030301 ------ cholesterol transport 53 X X 7 7

GO:0046486 ------ glycerolipid metabolic process 219 X X 7 7

GO:0097006 ------ regulation of plasma lipopro-
tein particle levels

41 X X 7 7

GO:0044241 ------ lipid digestion 11 X X 7 7
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GO:0051919 ------ positive regulation of fibrinol-
ysis

4 7 X 7 7

Skin healing data set

Table B.9: All 50 significant gene set activation profiles according to the D|med|
s score

resulting from a 2S-GSA profile algorithm combined with AM smoothing on the OD
data.
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KEGG:04620 oo+oooo Toll-like receptor signaling
pathway

93 X X 7 7

GO:0031424 ooooo+o keratinization 25 X X 7 7

REACT:
CHEMOKINE

+++oooo genes involved in Chemokine
receptors bind chemokines

36 X X 7 7

REACT:
PEPTIDE

+++oooo genes involved in Peptide
ligand-binding receptors

115 X X 7 7

REACT:GPCR o++oooo genes involved in GPCR ligand
binding

250 X X 7 7

GO:0040011 o++oooo locomotion 898 X X 7 7

GO:0050715 o++oooo positive regulation of cytokine
secretion

46 X X 7 7

GO:0050714 o++oooo positive regulation of protein
secretion

71 X X 7 7

KEGG:04060 +++oooo cytokine-cytokine receptor in-
teraction

219 X X 7 7

GO:0006954 o++oooo inflammatory response 341 X X 7 7
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GO:0009605 o++oooo response to external stimulus 796 X X 7 7

GO:0030593 ++++ooo neutrophil chemotaxis 44 X X 7 7

GO:0050663 o++oooo cytokine secretion 72 X X 7 7

GO:0050707 o++oooo regulation of cytokine secre-
tion

61 X X 7 7

GO:0050708 o++oooo regulation of protein secretion 103 X X 7 7

GO:0051222 o++oooo positive regulation of protein
transport

138 X X 7 7

GO:0030595 ++++ooo leukocyte chemotaxis 94 X X 7 7

GO:0060326 ++++ooo cell chemotaxis 120 X X 7 7

REACT:
STRIATED

ooooo+o genes involved in striated mus-
cle contraction

20 X X 7 7

GO:0009611 o++oooo response to wounding 549 X X 7 7

GO:0050900 ++++ooo leukocyte migration 144 X X 7 7

GO:0007249 oo+oooo I-kappaB kinase/NF-kappaB
cascade

155 X X 7 7

GO:0006952 +++oooo defense response 639 X X 7 7

GO:0002690 oo++ooo positive regulation of leuko-
cyte chemotaxis

41 X X 7 7

GO:0002688 oo++ooo regulation of leukocyte chemo-
taxis

47 X X 7 7

GO:0002376 +++oooo immune system process 1140 X X 7 7

GO:0006935 ++++ooo chemotaxis 324 X X 7 7

GO:0042330 ++++ooo taxis 325 X X 7 7

GO:0006955 +++oooo immune response 572 X X 7 7

GO:0001816 +++oooo cytokine production 333 X X 7 7

GO:0001817 +++oooo regulation of cytokine produc-
tion

295 X X 7 7

GO:0010627 oo+oooo regulation of intracellular pro-
tein kinase cascade

493 X X 7 7

continued on next page . . .



270 B Figures and Tables

. . . continued from previous page

ID Profile Description |s| 1S
-G

SA

2T
-G

SA

ST
EM

m
aS

ig
Fu

n

GO:0043122 oo+oooo regulation of I-kappaB
kinase/NF-kappaB cascade

124 X X 7 7

GO:0001775 oo+oooo cell activation 521 X X 7 7

GO:0045321 oo+oooo leukocyte activation 461 X X 7 7

GO:0002274 oo+oooo myeloid leukocyte activation 102 X 7 7 7

GO:0002684 oo+oooo positive regulation of immune
system process

383 X X 7 7

GO:0006950 o+ooooo response to stress 1801 X X 7 7

GO:0002682 oo+oooo regulation of immune system
process

590 X X 7 7

GO:0050896 +++oooo response to stimulus 4884 X X 7 7

GO:0002443 o+ooooo leukocyte mediated immunity 181 X 7 7 7

GO:0032940 o+ooooo secretion by cell 527 X X 7 7

GO:0051223 o+ooooo regulation of protein transport 233 X X 7 7

GO:0009306 o+ooooo protein secretion 133 X X 7 7

GO:0002252 o+ooooo immune effector process 310 X X 7 7

GO:0050921 oo++ooo positive regulation of chemo-
taxis

66 X X 7 7

GO:0002687 ooo+ooo positive regulation of leuko-
cyte migration

59 X X 7 7

GO:0033205 o-ooooo cell cycle cytokinesis 27 X X 7 7

GO:0046654 oo+oooo tetrahydrofolate biosynthetic
process

5 7 7 7 7

GO:0000910 o-ooooo cytokinesis 77 X X 7 7

Tongue healing data set
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Table B.10: Top 100 significant gene set activation profiles according to the D|med|
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score resulting from a 2S-GSA profile algorithm combined with AM smoothing on the
OD data. The complete list is available (in electronic version only) .
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KEGG:04621 o++oooo NOD-like receptor signaling
pathway

51 7 X 7 7

GO:0035457 +++oooo cellular response to interferon-
alpha

4 7 X 7 7

GO:0010573 ++++ooo vascular endothelial growth
factor production

16 X X 7 7

GO:0010574 ++++ooo regulation of vascular endothe-
lial growth factor production

16 X X 7 7

GO:0001660 o+++ooo fever generation 12 X X 7 7

GO:0031649 o+++ooo heat generation 17 X X 7 7

GO:0071354 ++ooooo cellular response to
interleukin-6

10 7 X 7 7

GO:0031622 o+++ooo positive regulation of fever gen-
eration

8 7 X 7 7

GO:0031652 o+++ooo positive regulation of heat gen-
eration

10 X X 7 7

REACT:
STRIATED

ooo++++ genes involved in striated mus-
cle contraction

20 X X 7 7

GO:0032846 oo+oooo positive regulation of homeo-
static process

59 X X 7 7

REACT:
MUSCLE

ooo++++ genes involved in muscle con-
traction

31 X X 7 7

GO:0001659 o+++ooo temperature homeostasis 29 7 X 7 7

GO:0002673 ++++ooo regulation of acute inflamma-
tory response

46 X X 7 7

GO:0002526 ++++ooo acute inflammatory response 88 X X 7 7

GO:0055074 o++oooo calcium ion homeostasis 242 X X 7 7

GO:0035455 +++++oo response to interferon-alpha 6 X X 7 7

GO:0006953 ++++ooo acute-phase response 38 X X 7 7

continued on next page . . .
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GO:2000242 o++oooo negative regulation of repro-
ductive process

42 7 7 7 7

GO:0050792 o++oooo regulation of viral reproduc-
tion

42 7 7 7 7

GO:2000503 o++oooo positive regulation of natural
killer cell chemotaxis

5 X X 7 7

GO:0008347 o+ooooo glial cell migration 13 7 X 7 7

GO:0048524 o++oooo positive regulation of viral re-
production

32 7 7 7 7

GO:0019058 o++oooo viral infectious cycle 51 7 7 7 7

GO:0031620 ++++ooo regulation of fever generation 9 X X 7 7

GO:0031650 ++++ooo regulation of heat generation 11 X X 7 7

GO:0071346 +++oooo cellular response to interferon-
gamma

22 X X 7 7

GO:0051856 +++oooo adhesion to symbiont 8 X X 7 7

GO:0051825 +++oooo adhesion to other organism in-
volved in symbiotic interaction

8 X X 7 7

GO:0051702 +++oooo interaction with symbiont 37 X X 7 7

GO:0034340 +++oooo response to type I interferon 8 X X 7 7

GO:0007610 +++oooo behavior 485 7 X 7 7

BioCarta:
GRANULOCYTES

o++oooo adhesion and diapedesis of
granulocytes

9 X X 7 7

GO:0002675 +++++oo positive regulation of acute in-
flammatory response

23 X X 7 7

GO:0071621 o++oooo granulocyte chemotaxis 11 X X 7 7

KEGG:05160 +++oooo hepatitis C 127 X X 7 7

GO:0032897 o++oooo negative regulation of viral
transcription

14 7 X 7 7

GO:0002831 +++oooo regulation of response to biotic
stimulus

44 X X 7 7

continued on next page . . .
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GO:0035458 ++++ooo cellular response to interferon-
beta

14 X X 7 7

GO:0043491 +++oooo protein kinase B signaling cas-
cade

86 X X 7 7

GO:0010759 o++oooo positive regulation of
macrophage chemotaxis

8 X X 7 7

GO:0071622 o++oooo regulation of granulocyte
chemotaxis

10 7 X 7 7

GO:0071674 o++oooo mononuclear cell migration 10 7 X 7 7

GO:0010758 o++oooo regulation of macrophage
chemotaxis

9 X X 7 7

GO:0071675 o++oooo regulation of mononuclear cell
migration

9 X X 7 7

GO:0006910 ooo++oo phagocytosis, recognition 12 7 X 7 7

KEGG:04623 +++oooo cytosolic DNA-sensing path-
way

47 X X 7 7

GO:0022415 o++oooo viral reproductive process 76 X X 7 7

GO:0042832 ++++ooo defense response to protozoan 15 X X 7 7

KEGG:05323 +++oooo rheumatoid arthritis 78 X X 7 7

BioCarta:
EGF

+oooooo EGF signaling pathway 10 7 X 7 7

BioCarta:
INSULIN

+oooooo insulin signaling pathway 11 7 X 7 7

BioCarta:
PDGF

+oooooo PDGF signaling pathway 11 7 X 7 7

BioCarta:
TPO

+oooooo thrombopoietin signaling path-
way

11 7 X 7 7

GO:0001562 ++++ooo response to protozoan 17 X X 7 7

GO:0016032 o++oooo viral reproduction 94 X X 7 7

GO:0048246 o++oooo macrophage chemotaxis 16 X X 7 7

GO:0034341 ++++ooo response to interferon-gamma 37 X X 7 7

continued on next page . . .
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GO:0002691 ++++ooo regulation of cellular extrava-
sation

6 X X 7 7

GO:0006873 oo++ooo cellular ion homeostasis 498 7 X 7 7

GO:0035747 +++oooo natural killer cell chemotaxis 6 X X 7 X
GO:2000501 +++oooo regulation of natural killer cell

chemotaxis
6 X X 7 X

GO:0045123 ++++ooo cellular extravasation 19 X X 7 7

GO:2000108 o++oooo positive regulation of leuko-
cyte apoptosis

15 X X 7 7

REACT:
CHEMOKINE

++++ooo genes involved in chemokine
receptors bind chemokines

36 X X 7 7

GO:0030003 +++oooo cellular cation homeostasis 312 X X 7 7

GO:0055080 +++oooo cation homeostasis 364 7 X 7 7

GO:0046903 o++oooo secretion 600 X X 7 7

GO:0030574 oo+oooo collagen catabolic process 17 X X 7 7

GO:0044243 oo+oooo multicellular organismal
catabolic process

20 7 X 7 7

GO:0043922 o+ooooo negative regulation by host of
viral transcription

12 7 7 7 7

GO:2000403 o++oooo positive regulation of lympho-
cyte migration

12 X X 7 7

GO:0048247 +++oooo lymphocyte chemotaxis 17 X X 7 7

GO:0006875 +++oooo cellular metal ion homeostasis 276 X X 7 7

GO:0055065 +++oooo metal ion homeostasis 293 X X 7 7

GO:0006911 o++++oo phagocytosis, engulfment 18 7 X 7 7

GO:0050691 +++oooo regulation of defense response
to virus by host

15 7 X 7 7

GO:0055082 oo+oooo cellular chemical homeostasis 533 7 7 7 7

GO:0016525 ++++ooo negative regulation of angio-
genesis

51 7 X 7 7

GO:0035456 +++++oo response to interferon-beta 15 X X 7 7
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GO:0042119 o++oooo neutrophil activation 15 X X 7 7

GO:0045429 ++++ooo positive regulation of nitric ox-
ide biosynthetic process

30 X X 7 7

GO:0032966 o+ooooo negative regulation of collagen
biosynthetic process

4 7 X 7 7

GO:0010713 o+ooooo negative regulation of collagen
metabolic process

4 7 X 7 7

GO:0044252 o+ooooo negative regulation of multi-
cellular organismal metabolic
process

4 7 X 7 7

GO:0045807 o+++ooo positive regulation of endocy-
tosis

68 X X 7 7

GO:0090026 o+++ooo positive regulation of mono-
cyte chemotaxis

6 X X 7 7

GO:0051607 +++oooo defense response to virus 62 X X 7 7

GO:0043032 +oooooo positive regulation of
macrophage activation

11 7 X 7 7

GO:0006874 +++oooo cellular calcium ion homeosta-
sis

234 X X 7 7

GO:0032940 o+++ooo secretion by cell 527 X X 7 7

GO:0072503 ++++ooo cellular divalent inorganic
cation homeostasis

250 X X 7 7

GO:0043615 oo++ooo astrocyte cell migration 6 7 7 7 7

GO:0032677 ++++ooo regulation of interleukin-8 pro-
duction

32 X X 7 7

KEGG:04062 ++++ooo chemokine signaling pathway 172 X X 7 7

GO:0007204 +++oooo elevation of cytosolic calcium
ion concentration

161 X X 7 7

GO:0051480 +++oooo cytosolic calcium ion home-
ostasis

176 X X 7 7

continued on next page . . .



276 B Figures and Tables

. . . continued from previous page

ID Profile Description |s| 2T
-G

SA

1S
-G

SA

ST
EM

m
aS

ig
Fu

n

GO:0051897 +++oooo positive regulation of protein
kinase B signaling cascade

50 X X 7 7

GO:0051896 ++ooooo regulation of protein kinase B
signaling cascade

67 X X 7 7

GO:0072507 +++oooo divalent inorganic cation
homeostasis

258 X X 7 7
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nĤ1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
number of rejected null hypotheses in a multiple testing setting.

p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
p-value of a statistical test.

pag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
proportion of (active) differential expressed genes in active gene sets in
simulation study for the comparison of profile algorithm.

p̃ag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Term of the proportion of differentially expressed genes to put into the function
to determine the AM smoothing parameters based on a linear regression
estimation.

pas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
proportion of (active) gene sets with spiked in differentially expressed genes
in simulation study for the comparison of profile algorithm.

pD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
one-sided p-value for depletion in the Fisher’s exact test.

pdef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
proportion of gene sets according to the set of gene sets of the same definition
type (e.g. KEGG)..

Pdiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
the probability of assigning an up or down expressed test statistic (with
respect to αgenes) to a gene selected for up or down expression in the preset
profile (in simulation to evaluate smoothing method).

pE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
one-sided p-value for enrichment in the Fisher’s exact test.

p
E(t)
s+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

enrichment test p-value for enrichment of up regulated genes in gene set s at
time point t.

p
E(t)
s− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

enrichment test p-value for enrichment of down regulated genes in gene set s
at time point t.



289

pS̆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
proportion of gene sets according to the whole gene set universe S̆..

Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
unknown proportion of erroneously rejected true null hypotheses in a multiple
testing setting.

q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
threshold for the control of the FDR or q-value adjusted p-value for a single
test in a multiple experiment setting., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
FDR-q-value: smallest FDR, which can be controlled with the TS-ABH
procedure while rejecting the corresponding hypothesis and all others with a
more extreme test statistic.

Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
random (J × J) rotation matrix.

q(t)
g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

q-value of the one-sided shrinkage t-test on the gene level.

q II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
critical threshold in the second stage of the TS-ABH procedure.

q
E(t)
s+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

enrichment test q-value for enrichment of up regulated genes in gene set s at
time point t.

q̆
E(t)
s+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

q-value of the enrichment test with up expressed genes in the non-threshold
GSA variant for gene set s at time point t.

q̌
E(t)
s+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

enrichment q-value in the rotation test GSEA type algorithm for overrepre-
sentation of up regulated genes in gene set s at time point t.

AMq
(t)
s+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

weighted arithmetic mean of q-values in a neighborhood of a activation profile
position considered for smoothing.

contiq
(t)
s+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
recalculated q-value of the smoothing approach, which forces continuity in
significant gene expression differences., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
recalculated q-value of the gene shift smoothing approach.



290 B Figures and Tables

GMq
(t)
s+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

weighted geometric mean of q-values in a neighborhood of a activation profile
position considered for smoothing.

INSq
(t)
s+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

weighted inverse normal score mean of q-values in a neighborhood of a
activation profile position considered for smoothing.

IXSq
(t)
s+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

weighted inverse χ2
1 score mean of q-values in a neighborhood of a activation

profile position considered for smoothing.

q
E(t)
s− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

enrichment test q-value for enrichment of down regulated genes in gene set s
at time point t.

q̆
E(t)
s− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

q-value of the enrichment test with down expressed genes in the non-threshold
GSA variant for gene set s at time point t.

q̌
E(t)
s− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

enrichment q-value in the rotation test GSEA type algorithm for overrepre-
sentation of down regulated genes in gene set s at time point t.

q
E(t)
s,d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

q-value of the segmentation enrichment test with partitioning according to d
in the non-threshold GSA variant for gene set s at time point t.

R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
unadjusted measure of determination in the regression model.

r2S−GSA
g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

rank for determining the sample probability for the spike-in genes from the
2S-GSA prototype gene set in the simulation study to compare the five
competing profile algorithms.

rmaSigFun
g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

rank for determining the sample probability for the spike-in genes from the
maSigFun prototype gene set in the simulation study to compare the five
competing profile algorithms.



291

rog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
rank of summarized gene expression difference to reference for an inconspicu-
ous gene in simulation to compare the five competing profile algorithms.

rSTEM
g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

rank for determining the sample probability for the spike-in genes from
the STEM prototype gene set in the simulation study to compare the five
competing profile algorithms.

rmaSigFun
smaSigFun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

rank for determining the sample probability for the maSigFun prototype gene
set smaSigFun in the simulation study to compare the five competing profile
algorithms.

RSSg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
residual sum of squares for a single gene g and the corresponding maSigFun
model used in the simulation study to compare the five competing profile
algorithms.

S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
total number of gene sets in the gene set universe S̆.

s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
gene set of the gene set universe S̆ = {s1, . . . , sS}.

S
(t)
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

gene set, containing those genes, which are designated to be up expressed in
a simulation turn (evaluation of smoothing algorithms).

S
(t)
− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

gene set, containing those genes, which are designated to be down expressed
in a simulation turn (evaluation of smoothing algorithms).

S1S−GSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
number of 1S-GSA prototype gene sets in the profile algorithm comparing
simulation.

s̃1S−GSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
active gene set with spiked-in genes from a gene set with a significant 1S-GSA
profile in the simulation study to compare the five competing profile algo-
rithms.



292 B Figures and Tables

S2S−GSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
number of 2S-GSA prototype gene sets in the profile algorithm comparing
simulation.

s̃2S−GSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
active gene set with spiked-in genes from a gene set with a significant 2S-GSA
profile in the simulation study to compare the five competing profile algo-
rithms.

S2T−GSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
number of 2T-GSA prototype gene sets in the profile algorithm comparing
simulation.

s̃2T−GSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
active gene set with spiked-in genes from a gene set with a significant 2T-GSA
profile in the simulation study to compare the five competing profile algo-
rithms.

S̆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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active gene set with spiked-in genes from a gene set with a significant STEM
profile in the simulation study to compare the five competing profile algo-
rithms.

sw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
step width for the STEM algorithm.

T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
total number of time points.

t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
index of time points (1, . . . , T ).

TN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
number of accepted true null hypotheses in a multiple testing setting.

TP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
number of rejected true alternative hypotheses in a multiple testing setting.

vg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
sample estimate for the variance of the expression of gene g., . . . . . . . . . . . 40
estimate for the variance of the multiple expression measurements for gene g.

vmedian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
median over the variance estimates vg across all genes.

w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
a weight parameter in the INSM smoothing (either λfill or λwipe).

x̄g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
arithmetic mean of the expression of gene g.

xtgm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
preprocessed and hence logarithmized gene expression value (time point t,
gene g, replicate m).
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