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Abstract

We analyze a homogenization limit for the linear wave equation of second
order. The spatial operator is assumed to be of divergence form with an oscil-
latory coefficient matrix aε that is periodic with characteristic length scale ε;
no spatial symmetry properties are imposed. Classical homogenization the-
ory allows to describe solutions uε well by a non-dispersive wave equation on
fixed time intervals (0, T ). Instead, when larger time intervals are considered,
dispersive effects are observed. In this contribution we present a well-posed
weakly dispersive equation with homogeneous coefficients such that its so-
lutions wε describe uε well on time intervals (0, T ε−2). More precisely, we
provide a norm and uniform error estimates of the form ‖uε(t)−wε(t)‖ ≤ Cε
for t ∈ (0, T ε−2). They are accompanied by computable formulas for all co-
efficients in the effective models. We additionally provide an ε-independent
equation of third order that describes dispersion along rays and we present
numerical examples.

Keywords: wave equation, large time homogenization, dispersive model, Bloch
analysis

MSC: 35B27, 35L05

1 Introduction

Waves in heterogeneous media exhibit dispersion. This fact is well-known in physics
and it can be observed also for waves that are described (microscopically) by the
classical, non-dispersive wave equation. Our aim in this contribution is to cast
the effect in mathematical terms, to present a well-posed, dispersive effective wave
equation, and to provide computable formulas for the (homogeneous) coefficients
in the effective equation.

Our analysis concerns solutions uε : Rn × (0,∞) → R, n ∈ {1, 2, 3}, of the
linear wave equation in periodic media,

∂2
t u

ε(x, t) = ∇ · (aε(x)∇uε(x, t)) . (1.1)
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The medium is characterized by a positive, symmetric coefficient matrix field
aε : Rn → Rn×n. We are interested in periodic media with a small periodicity
length-scale ε > 0, and assume that aε(x) = aY (x/ε) where aY : Rn → Rn×n is
periodic with the periodicity of the unit cell Y = (−π, π)n. Except for positivity,
matrix symmetry, and periodicity, no assumptions on aY (.) are made (in contrast to
our earlier paper [12], where certain spatial symmetries are exploited). Our interest
is to describe the solutions uε for large times, t ∼ ε−2. For classical homogenization
results (derivation of effective equations on fixed time intervals) we refer to [6, 17]
and mention here that, due to energy conservation, even classical homogenization
results for the wave equation are much more involved than corresponding results
e.g. for the heat equation (the “intermediate case”, the wave equation with damp-
ing is considered in [19]). To simplify the exposition, we work here with smooth
coefficients aε, noting that the regularity of the coefficient is crucial in observability
results, see [7].

In order to have a well-defined object uε, we must complement the wave equation
with an initial condition. For notational convenience, we restrict our analysis to a
vanishing initial velocity, i.e. to initial data

uε(x, 0) = f(x), ∂tu
ε(x, 0) = 0 . (1.2)

In our mathematical results, we will assume smoothness of f . More precisely, we
assume that f ∈ L2(Rn) ∩ L1(Rn) has the Fourier representation

f(x) =
1

(2π)n/2

∫
Rn

F0(k) e+ik·x dk , (1.3)

where F0 : Rn → C has compact support K ⊂ Rn.
We note that our assumptions imply the smoothness f ∈ C∞(Rn). Less regular

initial data can be treated with the help of our results, exploiting the linearity of
the equations: Decomposing initial data with bounded energy into two parts, our
results can be applied to the smooth part, while the other part generates an error
that is, for all times, small in energy norm.

Known results on dispersive models

The contribution [16] started a series of articles [13, 14, 15, 16] which is concerned
with the derivation of dispersive models for the wave equation. The authors per-
form asymptotic (two-scale) expansions of uε in ε and obtain with their formal
calculations a fourth order equation of the form

∂2
tU

ε = AD2U ε − ε2CD4U ε , (1.4)

where A and C are homogeneous coefficients and D denotes spatial derivatives.
They call this equation “bad Boussinesq equation”, a well-chosen name, considering
the fact that the equation is ill-posed (in the homogenization process, a positive
matrix A and a non-positive tensor C appear). We note that in the earlier article
[21] this equation also appears (with a sign typo) as a result of a Bloch analysis,
but it is not further analyzed in [21]. In [13, 14, 15, 16] various approaches for a
further (analytical and numerical) exploitation of equation (1.4) are investigated:
regularizations, non-local approximations, and multiple time scales.
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The first rigorous result that establishes a dispersive model for the wave equa-
tion (1.1) appeared in [18]. In that work, which is concerned with the one-
dimensional case, the well-posed dispersive equation (1.10) below is formulated and
an error estimate similar to (2.1) is derived. The method of proof is very different
from our approach here (which is as in [12]): Adaption operators are constructed
and used to adapt smooth solutions of the homogeneous dispersive system to the
periodic medium. After the adaption, direct energy procedures can be applied.

Another mathematical derivation of dispersive limits is performed in [4, 5]. The
wave equation is scaled as in our setting (time scales of order ε−2 are investigated),
but the initial data are assumed to be oscillatory at scale ε and are described by
Bloch wave packets. In this setting, the effective diffraction can be described by a
Schrödinger equation for the envelope function. Another scaling of the system is
analyzed in [2], where large potentials instead of large time spans are considered.

Bloch analysis

The central tool in a Bloch analysis is the Bloch expansion of an arbitrary function
(in our case the solution uε). While in a Fourier expansion one uses the dual
variable k ∈ Rn, the Bloch expansion uses two dual variables, k and m. Since
m ∈ N0 is an additional parameter, the other parameter varies only in a restricted
domain, the Brillouin zone, k ∈ Z := (−1/2, 1/2)n. The basis functions eik·x of the
Fourier analysis are replaced by solutions ψm(., k) of the Bloch eigenvalue problem

− (∇y + ik) · (aY (y)(∇y + ik)ψm(y, k)) = µm(k)ψm(y, k) . (1.5)

Here ψm(., k) : Y → C is a periodic function, ψm(., k) ∈ H1
per(Y ), 0 ≤ µ0(k) ≤

µ1(k) ≤ . . . are the ordered, real eigenvalues.
Bloch wave homogenization theory establishes that the effective behavior of uε

in the limit ε→ 0 is characterized solely by the behavior of the smallest eigenvalue
µ0(k) in a neighborhood of k = 0 ∈ Z. For such results in classical homogenization
settings, we refer to [3, 8, 9, 10, 11]. In Fig. 1 we plot the Bloch wave functions
ψ0(y, k) for k = (1/2, 0) and k = (1/2, 1/2). For an illustration of the eigenvalue
structure see Fig. 2 (a).

Figure 1: The Bloch wave ψ0(y, k) at k = (1/2, 0) in (a) and (b) and at k =
(1/2, 1/2) in (c) and (d) corresponding to µ0 for aY from (4.8).

The Bloch wave homogenization method was used for an analysis of higher order
effects of the heterogeneity of the medium in the influential article [21]. That article
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does not formulate a well-posed dispersive effective equation (hence, in particular,
it does not provide an error estimate), but it gives a lot of insight into the dispersive
limit: Even the effective long time behavior of uε is characterized by µ0(k) and its
behavior near k = 0. Expanding µ0(k) in a Taylor series around k = 0, we may
write

µ0(k) =
∑

Almklkm +
∑

Clmnqklkmknkq +O(|k|6) , (1.6)

where odd derivatives vanish due to the symmetry µ0(k) = µ0(−k), sums are over
repeated indices. The matrix A and the tensor C provide the coefficients in the
formal equation (1.4), where CD4 is the spatial fourth order operator

CD4 =
∑

Cijkl∂i∂j∂k∂l . (1.7)

While A is positive definite and symmetric, C turns out to be negative semi-definite,
a fact that is shown in [10]. As a consequence, the differential operator AD2 is
negative and the operator −ε2CD4 is non-negative. For this reason, equation (1.4)
is ill-posed.

Let us be more precise about the arguments in the Bloch analysis: We start
with the Bloch expansion of the solution uε. Using the coefficients f̂ εm(k) of a
Bloch expansion of the initial values f and the Bloch eigenfunctions ψ̃m that have
L2(Y )-norm 1 we may write

uε(x, t) =
∞∑
m=0

∫
Z/ε

f̂ εm(k)ψ̃m(x/ε, εk)eik·x Re
(
eit
√
µm(εk)/ε

)
dk . (1.8)

For a justification, see Lemma 2.1 of [12]. In the next steps, this formula is sim-
plified for small ε > 0: One realizes, to leading order in ε, that only m = 0 has to
be considered, that f̂ εm can be replaced by the Fourier transform F0 of the initial
values, and that ψ̃0 can be replaced by the constant (2π)−n/2. Expanding finally
µ0(εk) in ε, one finds the following expression, which can be used to define an
approximate solution vε.

vε(x, t) := (2π)−n/2
1

2

∑
±

∫
K

F0(k)eik·x exp

(
±it
√∑

Almklkm

)

× exp

(
± iε2

2
t

∑
Clmnqklkmknkq√∑

Almklkm

)
dk .

(1.9)

The equation (1.4) with tensors A and C is constructed in such a way that (for-
mally) the function vε is a solution up to errors of order ε4.

Rigorous approximation results

A rigorous mathematical analysis can be performed when the equation (1.4) is
transformed into a well-posed equation, using the replacement AD2U ε ≈ ∂2

tU
ε to

re-write the operator CD4. The first utilization of this trick for a rigorous result
seems to be in the treatment [18] in the one-dimensional case. More recently, we
were able to exploit the same trick in arbitrary dimension in [12] (under quite
strong spatial symmetry assumptions on the coefficient field aY (.)).
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In that contribution, we use a rigorous Bloch wave analysis to show that vε of
(1.9) approximates uε in appropriate norms. In a second step, we show with energy
methods that vε is close to the solution wε of the well-posed, weakly dispersive
equation

∂2
tw

ε = AD2wε + ε2ED2∂2
tw

ε − ε2FD4wε . (1.10)

The positive semi-definite and symmetric tensors E and F are constructed in such
a way that

− CD4 = ED2AD2 − FD4 . (1.11)

Together, the two estimates provide an estimate for uε − wε. This shows that the
weakly dispersive equation (1.10) is a valid replacement for the original equation
(1.1) on large time intervals.

New results

In the article at hand, we obtain the long-time homogenization result for very gen-
eral coefficient fields aY (.). In particular, we show that the well-posed equation
(1.10) provides the effective description of solutions for large times, characteriz-
ing dispersion in arbitrary dimension and without spatial symmetry assumptions.
Furthermore, we provide explicit formulas for the effective coefficients.

Decomposition lemma and approximation result. In order to show the
approximation result, we can rely on the Bloch wave analysis of [12]. The only new
ingredient is a considerably developed decomposition lemma: Lemma 2.5 below
yields that, without any structural assumptions on C, the differential operator CD4

can be written as in (1.11) for appropriate semi-definite and symmetric tensors E
and F (using the given positive, symmetric matrix A). In particular, the lemma
allows to decompose the operator CD4 also when the coefficients aY (.) have no
spatial symmetries.

Once the decomposition lemma is established, we can apply results of [12]. We
obtain that (1.10) is well-posed and that solutions wε approximate the solutions
uε. More precisely, from the analysis of [12], we obtain an error estimate of the
form ‖uε(t) − wε(t)‖ ≤ C0ε uniformly in t ∈ (0, T ε−2) in general periodic media.
This approximation result is stated and proved in Section 2.

An ε-independent third order dispersive equation. Our aim in Section 3 is
to provide a simplified model in which no ε-dependence occurs. The approximation
result of Theorem 2.2 below allows to analyze, instead of the solution uε of the
original problem, the solution wε of the weakly dispersive equation (1.10). In
Section 3 we analyze wε in two dimensions in polar coordinates. On every ray
through the origin, for an appropriate scaling of the solution, we can perform the
limit ε→ 0. The result is an equation that determines the shape of pulses, namely
a linear third order equation (a linearized KdV-equation). All coefficients in this
equation are computable from the coefficient field aY .

Algorithms to compute effective quantities. In Section 4 we present an
algorithm that provides the homogeneous coefficients in all effective equations, i.e.
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A and C (in a more direct form than as derivatives of the Bloch eigenvalue), the
coefficients E and F , and the coefficients of the linearized KdV-equation.

The numerical results of Section 4 compare solutions to the original problem
with solutions to the effective problems. We find a remarkable qualitative and
quantitative agreement also for moderate ε, and the correct experimental conver-
gence rates for ε→ 0.

2 A weakly dispersive effective equation

In Section 2.1 we formulate our main result. The main part of its proof can be
obtained by applying results of [12]; this is the subject of Subsection 2.2. The new
ingredient is the decomposition lemma, which is shown in Subsection 2.3.

2.1 Main approximation result

We emphasize that the set Y ⊂ Rn, the reciprocal cell Z := (−1/2, 1/2)n ⊂ Rn,
and the support K ⊂ Rn are fixed data of the problem. Given is also the coefficient
field aY that determines aε(x) = aY (x/ε).

Assumption 2.1. The coefficient field aY : Rn → Rn×n is Y -periodic for the
cube Y := (−π, π)n ⊂ Rn and has the regularity aY ∈ C1(Rn,Rn×n). The ma-
trix aY (y) is symmetric for every point y ∈ Rn, i.e. (aY (y))ij = (aY (y))ji for
all i, j ∈ {1, ..., n}. The field is positive definite: for some γ > 0 there holds∑n

i,j=1(aY (y))ijξiξj ≥ γ|ξ|2 for every y ∈ Rn and every ξ ∈ Rn.

Our main approximation result is stated in the following theorem. The result is
very similar to the main theorem in [12]. The difference is that we do not assume
any spatial symmetry of aY (.) (such as a reflection symmetry in each coordinate
direction or symmetry with respect to exchanging coordinate axes). We note that
dimensions n > 3 can be treated by assuming higher regularity properties.

Theorem 2.2 (Approximation). Let ε = εl → 0 be a sequence of positive numbers
and n ∈ {1, 2, 3} be the dimension. Let the medium aY : Rn → Rn×n satisfy
Assumption 2.1 and let the initial data f : Rn → R be as in (1.3). We use the
coefficient matrices A and C defined in (1.6). Let E and F be positive semi-definite
such that (1.11) holds (the existence is established in Lemma 2.5 below). Then the
following holds:

1. Well-posedness Equation (1.10) with initial condition (1.2) has a unique
solution wε for all positive times (see Theorem 2.4 below for function spaces).

2. Error estimate Let wε be the solution of (1.10), and let uε be the solution
of (1.1) for the same initial condition (1.2). Then, with a constant C0 =
C0(aY , T0, f), there holds the error estimate

sup
t∈[0,T0ε−2]

‖uε(., t)− wε(., t)‖L2(Rn)+L∞(Rn) ≤ C0ε . (2.1)

Here we use, for two Banach spaces with norms ‖.‖X and ‖.‖Y , the weaker
norm ‖u‖X+Y := inf{‖u1‖X + ‖u2‖Y : u = u1 + u2}. Such a norm appears in our
main theorem 2.2, since different contributions to the error uε − wε are measured
in different norms.
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2.2 Proof of Theorem 2.2

The following corollary is the central result of the Bloch analysis. It is derived with
mathematical rigor in [12]; it provides a comparison between the solution uε of the
heterogeneous wave equation with the explicitely defined function vε.

Theorem 2.3 (Corollary 2.5 of [12]). Let Assumption 2.1 be satisfied. Let uε be
the solution of (1.1) and let vε be defined by (1.9). Then

sup
t∈[0,T0ε−2]

‖uε(., t)− vε(., t)‖L2(Rn)+L∞(Rn) ≤ C0ε. (2.2)

The following theorem is based on energy methods. It provides the comparison
between the solution wε of the weakly dispersive (homogeneous) equation and the
explicit function vε.

Theorem 2.4 (Theorem 3.3 of [12]). Let A,C,E, F be tensors with the properties:
A ∈ Rn×n is symmetric and positive definite,

∑
ij Aijξiξj ≥ γ|ξ|2 for some γ > 0,

E ∈ Rn×n and F ∈ Rn×n×n×n are positive semi-definite and symmetric, C ∈
Rn×n×n×n allows the decomposition (1.11). Then the following holds.

1. Well-posedness. For the initial datum f ∈ H2(Rn), the equation

∂2
tw

ε − AD2wε − ε2∂2
tED

2wε + ε2FD4wε = 0 ,

wε(., 0) = f, ∂tw
ε(., 0) = 0

(2.3)

has a unique solution wε ∈ L∞(0, T0ε
−2;H2(Rn)) ∩W 1,∞(0, T0ε

−2;H1(Rn)).

2. Approximation. Let vε be defined by (1.9) where F0 and f are related by
(1.3). Let wε be a solution of (2.3). Then there holds

sup
t∈[0,T0ε−2]

‖∂t(vε − wε)(., t)‖L2(Rn) + sup
t∈[0,T0ε−2]

‖∇(vε − wε)(., t)‖L2(Rn) ≤ C0ε
2 (2.4)

with a constant C0 that is independent of ε.

Theorem 2.2 is a consequence of the above results and a new decomposition
lemma that is shown in the next subsection.

The estimate (2.2) provides that ‖uε − vε‖ is of order ε. The norms coincide
with the ones in the claim (2.1). It therefore remains to estimate the difference
‖vε − wε‖.

We define A and C through (1.6) and note that A is positive definite and
symmetric. The decomposition result of Lemma 2.5 below allows to construct E
and F such that (1.11) is satisfied. This means that Theorem 2.4 can be ap-
plied. It provides the well-posedness claim and the estimate (2.4), which shows
that norms of derivatives of vε−wε are of order ε2. The norms can be transformed
with an interpolation lemma (see Lemma 3.4 in [12]); the result is an estimate for
supt∈[0,T0ε−2] ‖vε(., t)− wε(., t)‖L2+L∞ of order ε. We therefore obtain (2.1).
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2.3 Decomposition lemma

Our aim is to construct coefficient tensors E ∈ Rn×n and F ∈ Rn×n×n×n such that
the differential operator CD4 can be re-written as in (1.11). We impose that E
and F are positive semi-definite and symmetric, i.e.

n∑
i,j,k,l=1

Fijklξijξkl ≥ 0 for every ξ ∈ Rn×n , Fijkl = Fklij , (2.5)

and similarly
∑n

i,j=1Eijηiηj ≥ 0 for every η ∈ Rn and Eij = Eji. The sym-
metry relations must hold for all indices i, j, k, l ∈ {1, ..., n}. In this section,
n ∈ {1, 2, 3, 4, . . .} can also be larger than 3.

Lemma 2.5 (Decomposability). Let A ∈ Rn×n be a symmetric and positive definite
matrix and let C ∈ Rn×n×n×n be arbitrary. Then there exist symmetric and posi-
tive semi-definite tensors E ∈ Rn×n and F ∈ Rn×n×n×n such that the differential
operator CD4 can be written as in (1.11).

The proof of the above lemma consists of two steps. In the first and essential
step we show that the decomposability result holds for diagonal matrices A ∈ Rn×n

and with rotated derivative operators. In the second step, general matrices A are
treated by diagonalization.

Lemma 2.6 (Decomposability for diagonal matrices A). Let A be a positive definite
diagonal matrix, A = diag(a1, a2, ..., an). Let S ∈ SO(n) be an orthogonal matrix
and let C ∈ Rn×n×n×n be arbitrary. Then there exist symmetric and positive semi-
definite tensors E ∈ Rn×n and F ∈ Rn×n×n×n such that

−CD̃4 = ED̃2AD̃2 − FD̃4 . (2.6)

Here, the operator D̃ := SD denotes a rotated derivative.

Proof of Lemma 2.6. Step 1: Reduction to matrices C with only one non-trivial
entry. We note that the relation (2.6) is additive in the following sense: Let C(1)

and C(2) be two matrices, and let (2.6) be satisfied for C(m) with tensors E(m) and
F (m), m ∈ {1, 2}. Then (2.6) holds for C(1) +C(2) with the two tensors E(1) +E(2)

and F (1) + F (2). We exploit here that the sum of symmetric, semi-definite tensors
is again symmetric and semi-definite.

This observation implies that it is sufficient to consider a tensor C that has only
one non-trivial entry. We denote a tensor with only one entry 1 in the canonical
way as eα ⊗ eβ ⊗ eγ ⊗ eδ. An arbitrary tensor C can be written as a sum, C =∑

αβγδ Cαβγδ eα ⊗ eβ ⊗ eγ ⊗ eδ. After constructing tensors E(α,β,γ,δ) and F (α,β,γ,δ)

according to the one-entry tensor Cαβγδ eα⊗eβ⊗eγ⊗eδ, we find E and F according
to C by a summation, E =

∑
αβγδ E

(α,β,γ,δ) and F =
∑

αβγδ F
(α,β,γ,δ).

In the following construction, we restrict ourselves to a fixed choice of indices,
(α, β, γ, δ) ∈ {1, ..., n}4. For a number c ∈ R, we can consider a tensor C of the
form C = c eα ⊗ eβ ⊗ eγ ⊗ eδ.

Our aim is to re-write the differential operator −CD̃4 = c D̃αD̃βD̃γD̃δ. We
use here D̃i :=

∑n
j=1 Sij∂xj for the i-th component of the rotated gradient. In the

following, {a}+ := max{0, a} denotes the positive part of a number a ∈ R.
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Step 2: Construction of E and F for C = c eα⊗ eβ⊗ eγ⊗ eδ, where at least two
indices coincide.

Case 1. The indices α, β, γ, δ contain two different pairs, i.e. (α, β, γ, δ) =
(i, i, j, j) or (α, β, γ, δ) = (i, j, i, j) or (α, β, γ, δ) = (i, j, j, i) for i, j ∈ {1, ..., n}.
We restrict ourselves to (α, β, γ, δ) = (i, i, j, j), the permutations define the same
operator CD̃4. We define the tensors E = E(α,β,γ,δ) and F = F (α,β,γ,δ) through

Eii :=
{−c}+

aj
, Fijij := {c}+ , Fimim :=

{−c}+

aj
am ,

for all m ∈ {1, ..., n} with m 6= j. All other entries of E and F are set to zero.

Properties of E and F . By definition E and F are symmetric and positive
semi-definite. A direct calculation yields the decomposition property:

ED̃2AD̃2 − FD̃4

=

(
{−c}+

aj
D̃2
i

)(∑
m

amD̃
2
m

)
− {c}+D̃

2
i D̃

2
j −

∑
m 6=j

{−c}+

aj
amD̃

2
i D̃

2
m

= {−c}+D̃
2
i D̃

2
j +

∑
m 6=j

{−c}+

aj
amD̃

2
i D̃

2
m − {c}+D̃

2
i D̃

2
j −

∑
m 6=j

{−c}+

aj
amD̃

2
i D̃

2
m

= ({−c}+ − {c}+) D̃2
i D̃

2
j = −cD̃2

i D̃
2
j = −CD̃4 .

Case 2. The indices α, β, γ, δ contain three identical entries, i.e. (α, β, γ, δ) =
(i, i, i, j) or (α, β, γ, δ) = (i, i, j, i) or (α, β, γ, δ) = (i, j, i, i) or (α, β, γ, δ) = (j, i, i, i)
for i, j ∈ {1, ..., n} with i 6= j. We restrict ourselves to (α, β, γ, δ) = (i, i, i, j)
since the other cases define the same differential operator. We define the tensors
E = E(α,β,γ,δ) and F = F (α,β,γ,δ) through

Eij := Eji := − c

2ai
=: c̃ , Eii := Ejj := |c̃|

Fimim := Fjmjm := |c̃| am for all m ∈ {1, ..., n}
Fimjm := Fjmim := c̃am for all m ∈ {1, ..., n} with m 6= i.

All other entries of E and F are set to zero.

Properties of E and F . By definition, E and F are symmetric. Concerning
the positive semi-definiteness of E and F we calculate, for arbitrary ξ ∈ Rn and
ζ ∈ Rn×n,∑

l,m

Elmξlξm = |c̃|ξ2
i + |c̃|ξ2

j + 2c̃ξiξj ≥ |c̃|ξ2
i + |c̃|ξ2

j −
(
|c̃|ξ2

i + |c̃|ξ2
j

)
= 0,∑

l,m,p,q

Flmpqζlmζpq =
∑
m

|c̃|amζ2
im +

∑
m

|c̃|amζ2
jm +

∑
m6=i

2c̃amζimζjm

≥
∑
m

|c̃|amζ2
im +

∑
m

|c̃|amζ2
jm −

∑
m 6=i

(|c̃|amζ2
im + |c̃|amζ2

jm) ≥ 0 .
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Concerning the decomposition property we calculate

ED̃2AD̃2 − FD̃4

=

(
|c̃|D̃2

i + |c̃|D̃2
j −

c

ai
D̃iD̃j

)(∑
m

amD̃
2
m

)
−
∑
m

|c̃|am(D̃2
i D̃

2
m + D̃2

j D̃
2
m) +

∑
m6=i

am
c

ai
D̃iD̃jD̃

2
m

=
∑
m

|c̃|am(D̃2
i D̃

2
m + D̃2

j D̃
2
m)− cD̃3

i D̃j −
∑
m 6=i

am
c

ai
D̃iD̃jD̃

2
m

−
∑
m

|c̃|am(D̃2
i D̃

2
m + D̃2

j D̃
2
m) +

∑
m6=i

am
c

ai
D̃iD̃jD̃

2
m = −cD̃3

i D̃j = −CD̃4 .

Case 3. The indices α, β, γ, δ contain two identical entries, the other entries
are different. We restrict ourselves to the case (α, β, γ, δ) = (i, i, j, k) with three
different indices i, j, k ∈ {1, ..., n}, permutations of the indices define the same
operator. We define the tensors E = E(α,β,γ,δ) and F = F (α,β,γ,δ) through

Ejk := Ekj := − c

2ai
=: c̃, Ekk := Ejj := |c̃|

Fkmkm := Fjmjm := |c̃|am, for all m ∈ {1, ..., n}
Fkmjm := Fjmkm := c̃am for all m ∈ {1, ..., n} with m 6= i.

All other entries of E and F are set to zero.
Properties of E and F . By definition, E and F are symmetric. Concerning

the positive semi-definiteness of E and F , we calculate for arbitrary ξ ∈ Rn and
ζ ∈ Rn×n∑

l,m

Elmξlξm = |c̃|ξ2
k + |c̃|ξ2

j + 2c̃ξkξj ≥ 0 ,∑
l,m,p,q

Flmpqζlmζpq =
∑
m

|c̃|amζ2
km +

∑
m

|c̃|amζ2
jm +

∑
m 6=i

2c̃amζkmζjm ≥ 0 .

Regarding the decomposition property we calculate

ED̃2AD̃2 − FD̃4

=

(
|c̃|D̃2

k + |c̃|D̃2
j −

c

ai
D̃kD̃j

)(∑
m

amD̃
2
m

)
−
∑
m

|c̃|am(D̃2
kD̃

2
m + D̃2

j D̃
2
m) +

∑
m 6=i

am
c

ai
D̃kD̃jD̃

2
m

=
∑
m

|c̃|am(D̃2
kD̃

2
m + D̃2

j D̃
2
m)− cD̃kD̃jD̃

2
i −

∑
m6=i

am
c

ai
D̃kD̃jD̃

2
m

−
∑
m

|c̃|am(D̃2
kD̃

2
m + D̃2

j D̃
2
m) +

∑
m 6=i

am
c

ai
D̃kD̃jD̃

2
m = −cD̃kD̃jD̃

2
i = −CD̃4 .

Step 3: Construction of E and F for C = c eα⊗eβ⊗eγ⊗eδ, where no two indices
coincide. We treat now the case (α, β, γ, δ) = (i, j, k, l) with pairwise different
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indices i, j, k, l ∈ {1, ..., n}; our aim is to rewrite the operator CD̃4 = cD̃iD̃jD̃kD̃l.
We obtain corresponding matrices in two steps: (a) We define a positive semi-
definite, symmetric tensor F̂ ∈ Rn×n×n×n in such a way that C̄ := C − F̂ has only
non-trivial entries at positions with repeated indices. (b) We apply Step 2 of this
proof to the remainder C̄, which provides Ē and F̄ with −C̄D̃4 = ĒD̃2AD̃2−F̄ D̃4.
The desired tensors E = E(α,β,γ,δ) and F = F (α,β,γ,δ) are then obtained as E := Ē
and F := F̄ + F̂ .

We set

F̂ijkl := F̂klij :=
1

2
c , F̂ijij := F̂klkl :=

1

2
|c| . (2.7)

All other entries of F̂ are set to zero. The symmetry of F̂ is obvious; regarding
positivity we calculate∑

m,p,q,r

F̂mpqrζmpζqr =
1

2
|c|ζ2

ij +
1

2
|c|ζ2

kl + cζijζkl ≥ 0 .

It remains to check that Step 2 of this proof can be applied to the remainder
C̄ := C − F̂ . We evaluate

CD4 − F̂D4 = c D̃iD̃jD̃kD̃l −
[
c D̃iD̃jD̃kD̃l +

1

2
|c|D̃2

i D̃
2
j +

1

2
|c|D̃2

kD̃
2
l

]
= −1

2
|c|
(
D̃2
i D̃

2
j + D̃2

kD̃
2
l

)
.

This operator has nontrivial entries only for repeated indices, it therefore posesses
a decomposition by Step 2. This concludes the proof of the lemma.

With Lemma 2.6 at hand we are in the position to prove the general decompo-
sition result of Lemma 2.5.

Proof of Lemma 2.5. The symmetry of A implies that A is diagonalizable: there
exists an orthogonal matrix S ∈ SO(n) such that

A = ST ÃS with Ã = diag(a1, a2, ..., an).

Since A is positive definite, the eigenvalues ai are positive. Our aim is to apply
Lemma 2.6 with the diagonal matrix Ã and a tensor C̃, which is defined from C
with the transformation S. Lemma 2.6 provides tensors Ẽ and F̃ that can be
transformed back into the desired tensors E and F .

Step 1: Construction of C̃. Here, we denote the space of matrices by M :=
Rn×n. The tensor C defines a linear map C : M →M through C(ei⊗ej))kl = Cijkl.
We define a transformed tensor C̃ : M →M through

C̃ : M 3 B 7→ S · C(STBS) · ST ∈M . (2.8)

As we show next, with D̃ := SD, the corresponding differential operators coin-
cide, CD4 = C̃D̃4. We use the convention that sums are over repeated indices.

C̃D̃4 =
∑

(C̃(ei ⊗ ej))klD̃iD̃jD̃kD̃l

=
∑

SkαC(ST · ei ⊗ ej · S)αβSlβD̃iD̃jD̃kD̃l

=
∑

SkαSiγSjδ C(eγ ⊗ eδ)αβSlβ SiξDξ SjζDζ SkηDη SlθDθ

=
∑

C(eγ ⊗ eδ)αβDαDβDγDδ = CD4 .

(2.9)
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Step 2: Application of Lemma 2.6. Since Ã is diagonal, we can apply Lemma
2.6 with the data Ã, S, and C̃. We find symmetric, positive semi-definite tensors
Ẽ ∈ Rn×n and F̃ ∈ Rn×n×n×n such that, with D̃ := SD,

−C̃D̃4 = ẼD̃2ÃD̃2 − F̃ D̃4. (2.10)

We can now define the desired tensors E and F through E := ST ẼS and

F : M 3 B 7→ ST · F̃ (SBST ) · S ∈M . (2.11)

Since F̃ is obtained from F by the same formula as C̃ is obtained from C, cf. (2.8),
the calculation of (2.9) yields F̃ D̃4 = FD4.

Regarding the operator ẼD̃2 we calculate

ẼD̃2 =
∑

(SEST )ijD̃iD̃j =
∑

SiαEαβSjβSikDkSjlDl

=
∑

EklDkDl = ED2 .

The calculation can also be applied to A = ST ÃS and provides ÃD̃2 = AD2. We
conclude that relation (2.10) coincides with

−CD4 = ED2AD2 − FD4 .

This is the decomposition result for the tensors C and A. We remark that, since
S ∈ SO(n) is an orthogonal matrix, the symmetry and positive semi-definiteness
of Ẽ and F̃ carry over to E and F . This concludes the proof of the general
decomposition lemma.

3 An ε-independent effective equation

The aim of this section is to carry the analysis of the weakly dispersive effective
equation one step further. We will introduce moving frame coordinates which will
allow us to follow the main pulse of wε along rays through the origin. Performing
the limit ε → 0 in distributional sense will provide an ε-independent linear third
order equation (a linearized KdV-equation) that describes the effective shape of
the pulse in dependence on the ray direction.

In the following we will restrict ourselves to the analysis of the two-dimensional
case with even symmetry,

aY (y1, y2) = aY (−y1, y2) = aY (y1,−y2) for all y ∈ R2. (3.1)

The above symmetry assumption, which is in particular satisfied in the case of a
laminated structure, guarantees that the effective coefficients A and C have the
form (cf. proof of Lemma 2.6 in [12])

A = diag(a1, a2), (3.2)

Ciiii =: αi, Cijij = Cijji = Ciijj =: β for i, j ∈ {1, 2} with i 6= j. (3.3)

All other entries of C, that are not mentioned above, vanish.
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We expect that the main pulse of wε, solution to the weakly dispersive equation,
propagates with a direction-dependent speed according to the anisotropic matrix
A = diag(a1, a2). We introduce appropriate elliptic coordinates (r, ϕ) through

(x1, x2) = (r
√
a1 cosϕ, r

√
a2 sinϕ). (3.4)

The above coordinate transform is chosen in such a way that the main pulse of wε

at time t is located along the ellipse that is given as the level set {x ∈ R2|r = t}.
In order to perform a fine analysis of the dynamics of the pulse, we rewrite wε as a
function of (r, ϕ, t) and use a moving frame in the radial variable r. More precisely,
given the solution wε, we define W ε through

W ε(r, ϕ, t) :=

{
wε
(
r + t

ε2
, ϕ, t

ε2

)
for r > −tε−2

0 for r ≤ −tε−2 .
(3.5)

The time scaling t/ε2 accounts for the fact that the dispersive effects of wε are
weak, i.e. slow in time. The main result of this section is the following. Provided
that W ε has a distributional limit W , then W is characterized by an ε-independent
linearized KdV-eqation.

Proposition 3.1 (Effective behavior in the moving frame). Let the medium
aY : R2 → R2×2 be evenly symmetric in the sense of (3.1). Let wε(r, ϕ, t) be
the solution to the weakly dispersive wave equation (2.3), expressed in elliptic co-
ordinates. Let W ε(r, ϕ, t) be defined by (3.5). Assume that W ε has a limit in the
sense of distributions,

W ε ⇀W in D′(R× R× (0, T )).

Then the distribution U := ∂rW satisfies the following linearized cylindrical
Korteweg-de-Vries-equation (linearized KdV-equation) in distributional sense

∂tU +
1

2t
U − 1

2
κ(ϕ)∂3

rU = 0. (3.6)

Here, the dispersion coefficient κ is given by

κ(ϕ) := 6β
cos2 (ϕ)

a1

sin2 (ϕ)

a2

+ α1
cos4 (ϕ)

a2
1

+ α2
sin4 (ϕ)

a2
2

. (3.7)

The angle-dependent coefficient κ(ϕ) can also be expressed with C,

κ(ϕ) =
∑
ijkl

Cijklξiξjξkξl for ξ =

(
1
√
a1

cos(ϕ),
1
√
a2

sin(ϕ)

)
. (3.8)

It can be understood as a measure for the amount of dispersion along the ray
Rϕ := {x = (r

√
a1 cosϕ, r

√
a2 sinϕ) | r ∈ (0,∞)}. Note that, due to the negative

semi-definiteness of C, the dispersion coefficient is always nonpositive: κ(ϕ) ≤ 0
for every angle ϕ.

In the proof of the above proposition we will need some elementary formulas,
collected in the following remark.
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Remark 3.2 (Derivatives in elliptic coordinates). Let (r, ϕ) denote the elliptic
coordinates defined in (3.4). Then the following relationship between derivatives in
Cartesian and elliptic coordinates holds:

∂x1 =
1
√
a1

(
cosϕ∂r −

1

r
sinϕ∂ϕ

)
, (3.9)

∂x2 =
1
√
a2

(
sinϕ∂r +

1

r
cosϕ∂ϕ

)
, (3.10)

AD2 = a1∂
2
x1

+ a2∂
2
x2

= ∂2
r +

1

r
∂r +

1

r2
∂2
ϕ . (3.11)

For general derivatives of order γ = γ1 + γ2 with γ1, γ2 ∈ N0 one has

∂γ1x1∂
γ2
x2

=
1

(
√
a1)γ1(

√
a2)γ2

P γ1,γ2
(
cosϕ, sinϕ, ∂r, ∂ϕ,

1
r

)
=

1

(
√
a1)γ1(

√
a2)γ2

(
cosγ1 (ϕ) sinγ2 (ϕ)∂γr + P̃ γ1,γ2(cosϕ, sinϕ, ∂r, ∂ϕ,

1
r
)
)
,

(3.12)

where P γ1,γ2 and P̃ γ1,γ2 are polynomials and P̃ γ1,γ2 can be written as

P̃ γ1,γ2(cosϕ, sinϕ, ∂r, ∂ϕ,
1
r
) =

γ∑
k=1

Qγ1,γ2
k (cosϕ, sinϕ, ∂r, ∂ϕ)

1

rk
,

where Qγ1,γ2
k is a polynomial in cosϕ, sinϕ, ∂r, ∂ϕ of degree at most 2γ.

Equations (3.9)–(3.11) are elementary identities for elliptic coordinates; (3.12)
follows easily by an induction argument. In the decomposition of P γ1,γ2 , we wrote
the term of highest order in ∂r explicitely, with the result that all other terms
(collected in P̃ γ1,γ2) contain non-vanishing powers of 1

r
.

A consequence of the formulas (3.9)-(3.12) is the following.

Lemma 3.3. Let wε and W ε be related by moving frame coordinates as in (3.5)
and let W be a distributional limit of W ε as in Proposition 3.1. Let γ1, γ2 ∈ N0

and γ = γ1 + γ2. Then the following distributional convergence holds

(
∂γ1x1∂

γ2
x2
wε
)(

r +
t

ε2
, ϕ,

t

ε2

)
⇀

cosγ1 (ϕ) sinγ2 (ϕ)

(
√
a1)γ1(

√
a2)γ2

∂γr W

for ε→ 0 in D′(R× R× (0, T )).

Proof. We recall the definition W ε(r, ϕ, t) = wε
(
r + t

ε2
, ϕ, t

ε2

)
. The formula for

∂γ1x1∂
γ2
x2

of Remark 3.2 provides(
∂γ1x1∂

γ2
x2
wε
) (
r + t

ε2
, ϕ, t

ε2

)
=

1

(
√
a1)γ1(

√
a2)γ2

[
cosγ1 (ϕ) sinγ2 (ϕ) (∂γrw

ε)
(
r + t

ε2
, ϕ, t

ε2

)
+Rε(r, ϕ, t)

]
,

(3.13)
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where Rε(r, ϕ, t) is of the form

Rε(r, ϕ, t) :=

γ∑
k=1

(Qγ1,γ2
k (cosϕ, sinϕ, ∂r, ∂ϕ)wε)

(
r + t

ε2
, ϕ, t

ε2

) 1

(r + t
ε2

)k

=

γ∑
k=1

Qγ1,γ2
k (cosϕ, sinϕ, ∂r, ∂ϕ)W ε(r, ϕ, t)

(
ε2

ε2r + t

)k
.

The last equality holds, since the derivatives ∂r, ∂ϕ act on wε as they act on W ε.
Since W ε converges to W in the sense of distributions, also all derivatives con-

verge in the distributional sense. We conclude Qγ1,γ2
k (cosϕ, sinϕ, ∂r, ∂ϕ)W ε(r, ϕ, t)

⇀ Qγ1,γ2
k (cosϕ, sinϕ, ∂r, ∂ϕ)W in the distributional sense on R × R × (0, T ) for

every k. In particular, exploiting that ε2

ε2r+t
is of order ε2 for every t > 0, we obtain

Rε ⇀ 0 in D′(R× R× (0, T )).
The same argument implies for the term containing only r-derivatives

(∂γrw
ε)
(
r + t

ε2
, ϕ, t

ε2

)
= (∂γrW

ε) (r, ϕ, t) ⇀ ∂γrW in D′(R× R× (0, T )).

This allows to pass to the distributional limit in (3.13), which concludes the proof
of the lemma.

Proof of Proposition 3.1. We start from the weakly dispersive equation

∂2
tw

ε − AD2wε − ε2∂2
tED

2wε + ε2FD4wε = 0.

The general idea of the proof is to transform the above equation into the elliptic
coordinates of (3.4), to rewrite it in terms of W ε(r, ϕ, t) = wε

(
r + t

ε2
, ϕ, t

ε2

)
, and

to pass to the distributional limit.
Step 1: The term (∂2

tw
ε − AD2wε): We start with the evaluation of time-

derivatives of wε, using the chain rule on wε(r, ϕ, t) = W ε(r − t, ϕ, tε2),

(∂2
tw

ε)(r + t
ε2
, ϕ, t

ε2
) = ∂2

rW
ε(r, ϕ, t)− 2ε2∂t∂rW

ε(r, ϕ, t) + ε4∂2
tW

ε(r, ϕ, t).
(3.14)

Combining this result with (3.11), we find

(∂2
tw

ε − AD2wε)
(
r + t

ε2
, ϕ, t

ε2

)
=

= ∂2
rW

ε(r, ϕ, t)− 2ε2∂t∂rW
ε(r, ϕ, t) + ε4∂2

tW
ε(r, ϕ, t)

−
(
∂2
rW

ε(r, ϕ, t) +
1

r + t
ε2

∂rW
ε(r, ϕ, t) +

1

(r + t
ε2

)2
∂2
ϕW

ε(r, ϕ, t)

)
= −ε2

(
2∂t∂rW

ε(r, ϕ, t) +
1

ε2r + t
∂rW

ε(r, ϕ, t)

)
+ ε4

(
∂2
tW

ε(r, ϕ, t)− 1

(ε2r + t)2
∂2
ϕW

ε(r, ϕ, t)

)
.

We divide by ε2 and take the distributional limit, exploiting that, by assumption,
W ε ⇀W in D′(R× R× (0, T )). We obtain

1

ε2
(∂2
tw

ε − AD2wε)
(
r + t

ε2
, ϕ, t

ε2

)
⇀ −2∂t∂rW −

1

t
∂rW (3.15)
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for ε→ 0 in D′(R× R× (0, T )).

Step 2: The term −ε2∂2
tED

2wε + ε2FD4wε: In view of the scaling in (3.15),
we have to analyze the distributional limit of −ED2∂2

tw
ε + FD4wε.

We recall that, by our construction of E and F , the term can be written as
CD4wε + Rε with some remainder Rε that vanishes in the distributional limit as
ε→ 0. Indeed, exploiting the solution property of wε and the decomposition (1.11)
one obtains

−ED2∂2
tw

ε + FD4wε = CD4wε + ε2
(
−ED2ED2∂2

tw
ε + ED2FD4wε

)
. (3.16)

In particular, inserting an argument in scaled variables,

− (ED2∂2
tw

ε)
(
r + t

ε2
, ϕ, t

ε2

)
+ (FD4wε)

(
r + t

ε2
, ϕ, t

ε2

)
= (CD4wε)

(
r + t

ε2
, ϕ, t

ε2

)
+Rε,

(3.17)

where the remainder Rε is given by

Rε = ε2
[
−(ED2ED2∂2

tw
ε)
(
r + t

ε2
, ϕ, t

ε2

)
+ (ED2FD4wε)

(
r + t

ε2
, ϕ, t

ε2

)]
= −ε2

(
∂2
r − 2ε2∂t∂r + ε4∂2

t

) (
(ED2ED2wε)

(
r + t

ε2
, ϕ, t

ε2

))
+ ε2(ED2FD4wε)

(
r + t

ε2
, ϕ, t

ε2

)
.

In the second equality we used relation (3.14). In this form we can ap-
ply Lemma 3.3 to Rε. We obtain that (ED2ED2wε)

(
r + t

ε2
, ϕ, t

ε2

)
and

(ED2FD4wε)
(
r + t

ε2
, ϕ, t

ε2

)
have distributional limits. In particular, taking into

account the ε2-factor in the above formula, we conclude the convergence Rε ⇀ 0
in D′(R× R× (0, T )) as ε→ 0.

Regarding the term (CD4wε)
(
r + t

ε2
, ϕ, t

ε2

)
in (3.17) one can directly apply

Lemma 3.3 with γ = 4. Using the explicit form of C from (3.3), we find

(CD4wε)
(
r + t

ε2
, ϕ, t

ε2

)
⇀

(
6β

cos2 (ϕ)

a1

sin2 (ϕ)

a2

+ α1
cos4 (ϕ)

a2
1

+ α2
sin4 (ϕ)

a2
2

)
∂4
rW

in D′(R× R× (0, T )), as ε→ 0.

Step 3: Conclusion. Summing up the various terms, we find that the distribu-
tion W satisfies the equation

−2∂t∂rW −
1

t
∂rW +

(
6β

cos2 (ϕ)

a1

sin2 (ϕ)

a2

+ α1
cos4 (ϕ)

a2
1

+ α2
sin4 (ϕ)

a2
2

)
∂4
rW = 0 .

For U := ∂rW we obtain the equation

∂tU +
1

2t
U − 1

2

(
6β

cos2 (ϕ)

a1

sin2 (ϕ)

a2

+ α1
cos4 (ϕ)

a2
1

+ α2
sin4 (ϕ)

a2
2

)
∂3
rU = 0 .

This concludes the proof of Proposition 3.1.

4 Calculation of approximate solutions

In this section we discuss practical aspects of determining the coefficients in the
effective dispersive equation (1.10). We present a numerical method and compare
solutions uε of the original wave equation (1.1) with solutions wε of (1.10).
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4.1 Cell problems

The decomposition lemmas 2.5 and 2.6 show that the coefficient tensors A,E and
F of the weakly dispersive effective equation can be calculated from A and C,
i.e. by the second and fourth derivatives of the Bloch eigenvalue µ0(k) at k = 0.
This fact makes the effective tensors computable in terms of cell-problems. In the
following calculation we differentiate (1.5) with respect to k and integrate in y to
obtain formulas for A and C. The result will be a practical algorithm to determine
A and C. We will also transform Lemmas 2.5 and 2.6 into an algorithm that can
be used to calculate E and F .

For a wave parameter k ∈ Z = (−1/2, 1/2)n we consider the Bloch eigenvalue
problem (1.5) for m = 0, i.e.

− (∇y + ik) · (aY (y)(∇y + ik)ψ0(y, k)) = µ0(k)ψ0(y, k), (4.1)

where µ0(k) ∈ R is the smallest eigenvalue for each k ∈ Z.

Remark 4.1. For k = 0, the eigenvalue is µ0(0) = 0 and the eigenfunction ψ0(·, 0)
is a constant function. We normalize eigenfunctions so that

〈ψ0(·, k)〉Y :=
1

|Y |

∫
Y

ψ0(y, k) dy = 1 , (4.2)

in particular we obtain ψ0(·, 0) ≡ 1. The normalization is possible in a neighborhood
of k = 0, since averages of the first eigenfunction ψ0(·, k) do not vanish for small
|k|. The eigenvalue map k 7→ µ0(k) ∈ R and the eigenfunction map k 7→ ψ0(·, k) ∈
L2(Y ) are analytic, see [11].

Due to Remark 4.1, it is legitimate to determine derivatives of µ0 by differ-
entiating the eigenvalue problem (4.1) in k. We use standard multi-index no-
tation with N0 = {0, 1, 2, ...}: a multi-index α = (α1, ..., αn) ∈ Nn

0 has length
|α| := α1 + α2 + ...+ αn and defines a differential operator ∂α of order |α| (deriva-
tives ∂j = ∂kj are with respect to k ∈ Rn), ∂α := ∂α1

1 ∂α2
2 ...∂αn

n . We define, for
α ∈ Nn

0 ,

µα0 := ∂αµ0|k=0 , ψα0 := ∂αψ0|k=0 .

Differentiating the normalization (4.2), we obtain that the averages of the higher
order derivatives vanish,

〈ψα0 〉Y = 0 for all α ∈ Nn
0 , α 6= 0.

We additionally define the differential operators

A(k) := −(∇y + ik) · (aY (y)(∇y + ik)) ,

Aα := ∂αA|k=0 .

Lemma 4.2 (The operators Aα). Let ej denote the j-th Euclidean unit vector.
The operators Aα with |α| ≤ 2 are

A0f = −∇y · (aY∇yf),

Aejf = −i [(aY∇yf) · ej +∇y · (aY ejf)]

Aei+ejf = 2(aY )ijf

for i, j = 1, ..., n, where f : Rn → R is an arbitrary smooth function. All operators
Aα with |α| ≥ 3 vanish identically.
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Proof. The formula for A0 is obtained from the definition of A(k) by setting k = 0.
Concerning the first order derivatives of A(k) we calculate

∂jA(k)f = −iej · (aY (∇y + ik)f)− i(∇y + ik) · (aY ejf)

= −i [ej · (aY (∇y + ik)f) + (∇y + ik) · (aY ejf)] .

Inserting k = 0 provides the claim about Aej . For the second order derivatives of
A(k) we calculate

∂i∂jA(k)f = −i2[ej · (aY eif) + ei · (aY ejf)] = ((aY )ji + (aY )ij)f = 2(aY )ijf,

where the last equality holds due to the symmetry of aY .

We next want to obtain equations that characterize the functions ψα0 . In order
to calculate derivatives of products, we will use the Leibniz formula in the following
form: For every multi-index α ∈ Nn

0 and sufficiently smooth functions f, g : Rn → C
there holds

∂α(fg) =
∑
β∈Nn

0

(
α

β

)
∂βf ∂α−βg .

We use the binomial coefficient
(
α
β

)
:=
(
α1

β1

)(
α2

β2

)
. . .
(
αn

βn

)
, the (partial) ordering β ≤

α :⇔ βi ≤ αi for every i ∈ {1, ..., n}, and note that
(
α
β

)
6= 0 is non-vanishing only

for β ≤ α. In particular, in the following calculations, all sums over multi-indices
are finite sums. Summation of multi-indices is performed in the standard way as
α± β := (α1 ± β1, . . . , αn ± βn).

With the operator A(k), we can write equation (4.1) as A(k)ψ0(y, k) =
µ0(k)ψ0(y, k). Taking partial derivatives with respect to k with the Leibniz formula,
we find the following result.

Lemma 4.3 (Cell Problems for ψα0 ). Let α ∈ Nn
0 be a multi-index. Then the

function ψα0 satisfies the relation

A0ψα0 +
n∑
j=1

αjAejψ
α−ej
0 +

n∑
i≤j=1

(
α

ei + ej

)
Aei+ejψα−ei−ej0 =

∑
β∈Nn

0

(
α

β

)
µβ0ψ

α−β
0 .

Inserting the operators from Lemma 4.2 and using µ0
0 = µ0|k=0 = 0, this equation

reads

−∇y · [aY∇yψ
α
0 ] = i

n∑
j=1

αj

[
(aY∇yψ

α−ej
0 ) · ej +∇y ·

(
ψ
α−ej
0 aY ej

)]
− 2

n∑
i≤j=1

(
α

ei + ej

)
(aY )ijψ

α−ei−ej
0 +

∑
06=β∈Nn

0

(
α

β

)
µβ0ψ

α−β
0 .

(4.3)

In our next step we obtain formulas for µα0 in terms of ψβ0 and µβ0 with β < α.
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Lemma 4.4 (Formulas for µα0 ). Let α ∈ Nn
0 be a multi-index. In the case α = 0

we have µα0 = µ0
0 = 0. For |α| ≥ 1 there holds

µα0 = 0 if |α| is odd, (4.4)

µα0 = 2
n∑

i≤j=1

(
α

ei + ej

)〈
(aY )ijψ

α−ei−ej
0

〉
Y
− i

n∑
j=1

αj

〈
aY∇yψ

α−ej
0

〉
Y
· ej

if |α| is even. (4.5)

Proof. The statement for µ0
0 has already been observed, cf. Remark 4.1. For odd

|α|, the symmetry µ0(−k) = µ(k) for all k ∈ Z implies µα0 = 0 (compare e.g.
Remark 2.7 in [12]). For even |α|, the formula is a consequence of relation (4.3).
Indeed, we can reorganize (4.3), writing the term with β = α in the last sum
explicitely, and find

µα0ψ
0
0 =−∇y · [aY∇yψ

α
0 ]− i

n∑
j=1

αj

[
(aY∇yψ

α−ej
0 ) · ej +∇y ·

(
ψ
α−ej
0 aY ej

)]
+ 2

n∑
i≤j=1

(
α

ei + ej

)
(aY )ijψ

α−ei−ej
0 −

∑
1≤|β|≤|α|−1

(
α

β

)
µβ0ψ

α−β
0 .

We integrate this relation over the periodicity cell Y , exploiting 〈ψ0
0〉Y = 1 and

〈ψα0 〉Y = 0 for all α 6= 0. Furthermore, we use that the integral over the two terms
in divergence form vanishes by periodicity, and obtain (4.5).

The above formulas allow to calculate all unknowns ψα0 and µα0 in a recursive
scheme. From Lemmas 4.3 and 4.4, we extract the following algorithm for the
computation of the tensors A and C.

Algorithm 1. (Computation of A and C) The tensors A and C can be computed
in five steps.

1. For j ∈ {1, . . . , n}, solve (4.3) for α = ej, i.e.

−∇y · [aY∇yψ
ej
0 ] = i∇y · (aY ej) .

2. For i, j ∈ {1, . . . , n}, evaluate (4.5) for α = ei + ej, i.e.

Aij =
1

2
µ
ei+ej
0 =

〈
(aY )ij −

i

2

(
(aY∇yψ

ej
0 ) · ei + (aY∇yψ

ei
0 ) · ej

)〉
Y

.

3. For i, j ∈ {1, . . . , n}, solve (4.3) for α = ei + ej, i.e.

−∇y · [aY∇ψ
ei+ej
0 ] =i

[
(aY∇yψ

ej
0 ) · ei + (aY∇yψ

ei
0 ) · ej

+∇y · (ψ
ej
0 aY ei) +∇y · (ψei0 aY ej)

]
− 2(aY )ij + µ

ei+ej
0 .
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4. For i, j, k ∈ {1, . . . , n}, solve (4.3) for α = ei + ej + ek,

−∇y · [aY∇yψ
ei+ej+ek
0 ] =

= i
[
(aY∇yψ

ej+ek
0 ) · ei + (aY∇yψ

ei+ek
0 ) · ej + (aY∇yψ

ei+ej
0 ) · ek

+∇y · (ψ
ej+ek
0 aY ei) +∇y · (ψei+ek0 aY ej) +∇y · (ψ

ei+ej
0 aY ek)

]
− 2

(
(aY )ijψ

ek
0 + (aY )ikψ

ej
0 + (aY )jkψ

ei
0

)
+ µ

ei+ej
0 ψek0 + µei+ek0 ψ

ej
0 + µ

ej+ek
0 ψei0 .

5. For i, j, k, l ∈ {1, . . . , n}, evaluate (4.5) for α = ei + ej + ek + el to find

Cijkl =
1

24
µ
ei+ej+ek+el
0

=
1

24

〈
2
(

(aY )ijψ
ek+el
0 + (aY )ikψ

ej+el
0 + (aY )ilψ

ej+ek
0

+(aY )jkψ
ei+el
0 + (aY )jlψ

ei+ek
0 + (aY )klψ

ei+ej
0

)
− i
(

(aY∇yψ
ej+ek+el
0 ) · ei + (aY∇yψ

ei+ek+el
0 ) · ej

+(aY∇yψ
ei+ej+el
0 ) · ek + (aY∇yψ

ei+ej+ek
0 ) · el

)〉
Y

.

The elliptic problems in Steps 1,3, and 4 are posed on Y with periodic boundary
conditions and with the condition of zero mean, i.e.

〈ψej0 〉Y = 〈ψei+ej0 〉Y = 〈ψei+ej+ek
0 〉Y = 0.

In the above algorithm we have used the fact that µα0 = 0 for all α with |α| =
1 and |α| = 3. The above cell-problems are complex valued, but the resulting
tensors A and C are real. The fact that values of ψα0 and µα0 do not change upon
permutations of the entries α1, α2, . . . , αn, allows to reduce the number of problems
to be solved in Steps 3 and 4: The relevant number is

(
n+1

2

)
and

(
n+2

3

)
rather than n2

and n3. Moreover, spatial symmetries of aY (.) can reduce the number of problems
further: If aY (.) is even in both variables, aY (y1, y2) = aY (−y1, y2) = aY (y1,−y2)
for all y ∈ Y , then all derivatives of µ0 at k = 0 involving an odd number of
derivatives in one direction vanish, and only Aii, Ciiii, and Ciijj = Cijij = Cjiij for
i, j ∈ {1, . . . , n} are potentially nonzero.

At this point, we have presented a scheme to compute the effective tensors
A and C with the help of a sequence of cell-problems. We conclude this section
with the outline of an algorithm (based on the proofs of Lemmas 2.5 and 2.6) that
provides formulas for the effective coefficient tensors E and F .

Algorithm 2. (Computation of E and F ) The tensors E and F can be computed
in four steps.

1. Determine S ∈ SO(n) such that A = ST ÃS with Ã = diag(a1, a2, ..., an).
Define C̃ by (2.8).
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2. Loop over all indices 1 ≤ α, β, γ, δ ≤ n such that no two indices coincide (an
empty set in dimension n ≤ 3). Use (2.7) to compile F̂ and set C̄ := C − F̂ .

3. Loop over all remaining indices 1 ≤ α, β, γ, δ ≤ n. Corresponding to Ã and
C̄, compile Ē and F̄ from the explicit formulas of Cases 1-3 in the proof of
Lemma 2.6.

4. Set Ẽ := Ē and F̃ = F̄ + F̂ . Obtain E := ST ẼS and F from (2.11).

4.2 Numerical results in 2D

In the following, we present numerical results for all the three parts of the homog-
enization problem: The computation of the original ε-problem, the computation
of effective coefficients with the help of cell-problems, and the computation of
the weakly dispersive effective problem. The methods vary, we use finite element
schemes and finite difference schemes, see e.g. [20]. We refer also to [1] for a recent
analysis of numerical methods and further references. Our results show an excellent
agreement between solutions uε of (1.1) and solutions wε of (1.10).

The initial conditions for all the tests below are

uε(x, 0) = wε(x, 0) = e−4(x21+x22), ∂tu
ε(x, 0) = ∂tw

ε(x, 0) = 0. (4.6)

The periodicity cell is Y = [−π, π]2 in the y−variables and εY in the x−variables.
All the tests are carried out for the case of even symmetry in aY , i.e. aY (−y1, y2) =
aY (y1,−y2) = aY (y1, y2) for all y ∈ Y , so that for the even initial data in (4.6) prob-
lems (1.1) and (1.10) can be reduced to one quadrant with homogeneous Neumann
boundary conditions along the coordinate axes x1 = 0, x2 = 0. The computational
domain Ω is rectangular with two sides coinciding with the negative x1 and x2

axes. At the remaining two sides of the rectangle we use homogeneous Dirichlet
boundary conditions. The size of Ω is chosen so that the solution remains localized
in Ω until the final computation time. The function aY is chosen piecewise constant
in all tests; the observed error convergence agrees with (2.1) although Theorem 2.2
treats only differentiable fields aY .

The even symmetry of aY in both y1 and y2 causes that A is diagonal and C
has only eight nonzero entries, see (3.2)–(3.3):

Aii =: ai , Ciiii =: αi , i ∈ {1, 2} ,
C1122 = C2211 = C1212 = C2121 = C1221 = C2112 =: β ,

with all other entries of A and C zero. A choice of E and F according to Algorithm
2 is

E11 =
{−α1}+

a1

+ 3
{−β}+

a2

, E22 =
{−α2}+

a2

+ 3
{−β}+

a1

, E12 = E21 = 0,

F1111 = {α1}+ + 3
a1

a2

{−β}+, F2222 = {α2}+ + 3
a2

a1

{−β}+,

F2121 =
a1

a2

{−α2}+ + 3{β}+, F1212 =
a2

a1

{−α1}+ + 3{β}+

(4.7)

with all other entries of F being zero. We use these tensors in the numerical tests
below. Note that αi ≤ 0 holds for i ∈ {1, 2}, hence {−αi}+ = −αi and {αi}+ = 0.
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Numerical method

The values aj, αj, and β for j = 1, 2 are computed via Algorithm 1, where the
elliptic equations in Steps 1, 3, and 4 are discretized by linear finite elements using
the PDE-Toolbox of Matlab. The periodic boundary conditions are implemented by
modifying the stiffness matrix and the load vector corresponding to homogeneous
Neumann boundary conditions. In all tests a uniform discretization conforming
to the material geometry is generated with the Matlab function poimesh, i.e. the
elements are all right angled, have equal size and the discontinuity lines of aY
intersect no elements. The element size is given by specifying the spacings h1 and
h2, i.e. the lengths of the triangle legs in poimesh.

The original wave equation (1.1) is discretized in space also via linear finite
elements using the PDE-Toolbox of Matlab with uniform elements (generated by
poimesh) conforming to the geometry. The values of h1 and h2 are given for each
example below.

For the weakly dispersive problem (1.10), which has constant coefficients, we use
the fourth order centered finite difference discretization in space for both the second
order and fourth order derivatives. In all tests we use the spacing dx1 = dx2 = 0.2
for (1.10).

The time discretization of both (1.1) and (1.10) is done via the second order
Leap-Frog method in two step formulation, e.g. for (1.1) the semi-discrete problem
is thus

u(n+1) = 2u(n) − u(n−1) + (dt)2∇ · (aε∇u(n)),

where u(n) ≈ uε(t = n · dt). For the initialization of the scheme we use the second
order Taylor expansion

u(1) = u(0) + (dt)2∇ · (aε∇u(0)),

according to the initial condition ∂tu
ε(x, 0) = 0. For (1.1) we use the time step

dt = min{0.01, h1/4, h2/4}, for (1.10) we use dt = 0.02.

ε-Convergence of the error

Here, our aim is to determine experimentally the convergence rate of the approxi-
mation error ‖uε(t) − wε(t)‖L2(Ω). To this end we fix a periodic coefficient matrix
field aY . With the identity matrix I := idR2 we set aY (y) = ãY (y)I, where ãY is
defined through a rectangular geometry,

ãY (y) =
1

2
+ b(y)− 1

|Y |

∫
Y

b(y)dy, b(y) =

{
1.6 for y ∈ [−11π

13
, 11π

13
]× [−π

3
, π

3
],

0.2 otherwise,

(4.8)

which is illustrated in Fig. 3 (a).
Our best numerical approximation of the effective coefficients is

a1 ≈ 0.281, a2 ≈ 0.179, α1 ≈ −0.273, α2 ≈ −0.044, β ≈ 0.024.

These values have been computed with h1 = 2π/208 and h2 = 2π/192. Within
rounding to three decimal places the values do not change with a further mesh
refinement.
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We solve (1.1) and (1.10) for the values ε = 0.2, 0.17, 0.15, 0.12, 0.1, 0.07 up to
times t = 12.5, 17.3, 22.5, 35, 50, 100 ≈ ε−2/2, respectively. To keep the computa-
tional expense within limits, we use the discretization h1 = 2πε/13, h2 = 2πε/12
in the simulations of (1.1). Using the same number of uniform elements in the cell
problems as in each periodic cell in (1.1), i.e. discretizing Y by 2× 13× 12 = 312
uniform elements, we obtain the values

a1 ≈ 0.2784, a2 ≈ 0.1506, α1 ≈ −0.369, α2 ≈ −0.034, β ≈ 0.032. (4.9)

We calculate solutions to the weakly dispersive equation (1.10) with the values
(4.9) rather than with the converged coefficient values; this is justified by the fact
that (4.9) are the effective coefficients for the particular discretization. Formulas
(4.7) and the values in (4.9) produce the effective coefficients

E11 = 1.3256, E22 = 0.2257, F1111 = F2222 = 0, F2121 = 0.1588, F1212 = 0.2957.

We can now investigate the convergence of the error in ε: The L2(Ω)-error ‖uε(t)−
wε(t)‖L2(Ω) at the final time t = ε−2/2 is plotted in Fig. 2. As Fig. 2 (b) shows, the
convergence is close to linear in accordance with estimate (2.1).

Figure 2: (a) The first three eigenvalues µ0(k), µ1(k), µ2(k) of (1.5) for aY from (4.8).
(b) Experimental convergence in ε of the error eε := ‖(uε − wε)(t = ε−2/2)‖L2(Ω). A
logarithmic scale is used on both axes. The line with slope 1.1 was obtained by a lin-
ear interpolation of the error in the logarithmic scale for the 5 smallest ε-values. The
experimental rate is thus eε ∼ ε1.006.

In Fig. 3 the solutions uε and wε are plotted for ε = 0.07 at t = 100. In both
plots we see clearly the main pulse located along an ellipse, we see the dispersive
oscillations behind the main pulse, and we see that the dispersion is weakest along a
ray that has an approximate angle π/4. Due to the weak dispersion along this ray,
the main pulse has its maximal amplitude in this direction (compare also Fig. 6).
An excellent agreement of the two calculations is observed.
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Figure 3: (a) Illustration of the geometry and of the function aY (.) from (4.8). (b)
The solution uε of the wave equation in a highly oscillatory medium. (c) The solution
wε of the weakly dispersive wave equation with constant coefficients. The geometry is as
in (4.8), the plots are for ε = 0.07 and t = 100.

Further numerical examples

We consider two more geometries. For a cross-shaped geometry as illustrated in
Fig. 4, (a), we set aY (y) := ãY (y)I with

ãY (y) =

{
2 for y ∈ [−7π

9
, 7π

9
]× [−2π

9
, 2π

9
] ∪ [−2π

9
, 2π

9
]× [−7π

9
, 7π

9
],

0.2 otherwise.
(4.10)

Figure 4: (a) Illustration of the geometry that defines the function aY (.) in (4.10). (b)
The solution uε(x, t = 40) for ε = 0.07. (c) The solution wε(x, t = 40) for ε = 0.07.

The additional symmetry aY (y1, y2) = aY (y2, y1) for all y ∈ Y implies the
relations a1 = a2 and α1 = α2, see Lemma 2.6 in [12]. Algorithm 1 provides, with
Y discretized by 2 × 182 = 648 uniform elements of size h1 = h2 = 2π/18, the
values

a1 = a2 ≈ 0.3816, α1 = α2 ≈ −0.1970, β ≈ 0.0394. (4.11)

To check the accuracy, we calculated the values also using a fine resolution with
2 × 360 × 360 uniform elements. The fine resolution provides a1 = a2 ≈ 0.406,
α1 = α2 ≈ −0.235, β ≈ 0.044, and the first three decimal places do not change
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upon further refinement. Similarly to the example in Subsection 4.2, the discretiza-
tion error in (4.11) is quite large. Nevertheless, we use these coefficients for the
calculation of the solution wε of (1.10). The solution is compared to uε, which is
computed with the corresponding spatial discretization h1 = h2 = 2πε/18. The
results at time t = 40 for ε = 0.07 are plotted in Fig. 4, (b) and (c).

We finally consider a laminated structure aY (y) = ãY (y)I with

ãY (y) =

{
2 for y ∈ [−π, π]× [−2π

5
, 2π

5
],

0.2 otherwise,
(4.12)

compare Fig. 5 (a). Effective coefficients are obtained by Algorithm 1, Y is dis-

Figure 5: (a) Illustration of the function aY (.) of (4.12). (b) The solution uε(x, t = 40)
for ε = 0.07. (c) The solution wε(x, t = 40) for ε = 0.07.

cretized with 2× 12× 16 = 384 uniform elements (h1 = 2π/12, h2 = 2π/16):

a1 ≈ 0.8750, a2 ≈ 0.3019, α1 ≈ −1.9185, α2 ≈ −0.0933, β ≈ 0.1448. (4.13)

The converged values (with four reliable digits, computed with 2×140×180 uniform
elements) are: a1 ≈ 0.9200, a2 ≈ 0.3125, α1 ≈ −1.9645, α2 ≈ −0.1170, β ≈ 0.1599.
The effective coefficients determined using (4.7) and (4.13) are

E11 = 2.1925, E22 = 0.3091, F1111 = F2222 = 0, F2121 = 0.7050, F1212 = 1.0964.

Equation (1.1) was discretized in space using h1 = 2πε/12 and h2 = 2πε/16, the
solutions uε and wε are computed using the above coefficients; they are plotted for
t = 40 and ε = 0.07 in Fig. 5, (b) and (c).

Dependence of the dispersion on the propagation angle

The rate of dispersion depends on the angle of propagation. Here, we have to
distinguish the angle ϕ of the elliptic coordinates and the corresponding angle φ
in polar coordinates (describing the observable angle of the ray). We measure the
angles such that φ = 0 corresponds to the negative x1-axis. The two angles are
related by tan(φ) =

√
a2/a1 tan(ϕ). The dependence of the dispersion on the angle

can be observed in the numerical results: we see few oscillations in a propagation
angle of approximately φ = π/4, more oscillations along rays that are aligned with
the coordinate axes, i.e. at angles φ = 0 and φ = π/2. The angle of minimal
dispersion can be obtained by minimizing κ = κ(ϕ) of (3.7).
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Figure 6: Solutions uε and wε for ε = 0.07 at t = 100 for the rectangle geometry (4.8)
along two rays: (a) φ = 0; (b) φ = φm ≈ π/4 + 0.002.

To illustrate the angular dependence, we consider the rectangular geometry
(4.8) and the two rays corresponding to ϕ = 0 and ϕ = ϕm, the minimizer of
κ(.). We plot uε and wε for ε = 0.07 and t = 100 in Fig. 6. One can see clearly
a much smaller dispersion at the angle φm ≈ π/4 + 0.002 corresponding to ϕm.
Additionally, we observe a much larger error in the aligned direction ϕ = 0. The
values of the dispersion coefficient are κ(0) ≈ −4.762 and κ(ϕm) ≈ −0.175.

For the laminate structure (4.12) we compare the solutions along three direc-
tions in Fig. 7, namely the horizontal direction φ = 0 along which the structure
is constant, the vertical direction φ = π/2, orthogonal to the laminates, and an
intermediate direction φm that corresponds to the minimizer ϕm ≈ π/4− 0.153 of
κ. The values of the dispersion coefficient are κ(0) ≈ −2.506, κ(π/2) ≈ −1.024,
and κ(ϕm) ≈ 0.02. The analytical values of κ are always non-positive, hence the
positive value κ(ϕm) is caused by discretization errors.
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