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Abstract

E-optimal experimental designs for a second order response surface model with k ≥ 1

predictors are investigated. If the design space is the k-dimensional unit cube, Galil

and Kiefer (1977a) determined optimal designs in a restricted class of designs (defined

by the multiplicity of the minimal eigenvalue) and stated their universal optimality as

a conjecture. In this paper we prove this claim and show that these designs are in fact

E-optimal in the class of all approximate designs. Morever, if the design space is the

unit ball, E-optimal designs have not been found so far and we also provide a complete

solution to this optimal design problem.

The main difficulty in the construction of E-optimal designs for the second order response

surface model consists in the fact that for the multiplicity of the minimum eigenvalue

of the “optimal information matrix” is larger than one (in contrast to the case k =

1) and as a consequence the corresponding optimality criterion is not differentiable at

the optimal solution. These difficulties are solved by considering nonlinear Chebyshev

approximation problems, which arise form a corresponding equivalence theorem. The

extremal polynomials which solve these Chebyshev problems are constructed explicitly

leading to a complete solution of the corresponding E-optimal design problems.

Keywords and phrases : response surface models, optimal designs, E-optimality, extremal poly-

nomial, duality, nonlinear Chebyshev approximation
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1 Introduction

Response surface methodology has become a standard tool in the analysis of experimental data.

These models are used to study the influence of several input factors on a response variable

by approximating complex functional relationships by “simple” linear or quadratic multivariate

polynomial regression models, which are usually denoted as first or second order response surface

models [see for example Myers and Montgomery (2002)]. Numerous authors have worked on

the construction of efficient and optimal experimental designs for response surface models. For

first-order models 2k factorial and fractional factorial 2k−p designs of resolution III are optimal

with respect to the D-, G- and I-optimality criteria [see Anderson-Cook et al. (2009)]. On the

other hand, for the second order response surface model the situation is more complicated and

intuitively reasonable designs with a “simple” structure such as central composite designs are

not optimal.

For this model approximate designs in the sense of Kiefer (1974) have been investigated by

several authors, where the methodology and optimal designs differ by the design space and

optimality criterion under consideration (typical a k-dimensional cube, ball or simplex). D-

optimal approximate designs for the second order polynomial regression model on the ball and

cube have been determined explicitly by Kiefer (1959, 1961), Kiefer and Wolfowitz (1959),

Kono (1962), Farrel et al. (1967) [see also Rafajlowicz and Myszka (1988), Lim and Studden

(1988) and Dette and Röder (1997) who determined optimal product designs for multivariate

polynomial regression models in more general situations]. In particular, it is shown that D-

optimal designs on a ball are at the same time rotatable designs. Considerably less attention

has been paid to other optimality criteria. Laptev (1974), Denisov and Popov (1976) and

Golikova and Pantchenko (1977) investigated A- and Q-optimal designs numerically, Galil and

Kiefer (1977b) determined numerically rotatable optimal designs for the second order response

surface model, while Draper et al. (2000) and Draper and Pukelsheim (2003) investigated

optimal design problems in second order mixture models. On the other hand, the explicit

determination of optimal designs in the class of all approximate designs with respect to other

criteria than the D-criterion seems to be a very hard problem, which has only been solved in

rare circumstances.

In this paper we study E-optimal designs for the second order response surface models on the

k-dimensional cube and ball. Among Kiefer‘s Φp-criteria [see Kiefer (1974)] the E-optimality

criterion is not differentiable if the multiplicity of the minimum eigenvalue of the informa-

tion matrix of the optimal design is larger than 1. This property makes the determination of

E-optimal designs to an extremely hard and challenging problem. In fact an analytical con-

struction of E-optimal designs for linear regression models is very difficult and has only been
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achieved in the one-dimensional case for a limited number of linear and nonlinear models [see

Melas (1982), Dette (1993), Pukelsheim and Studden (1993), Dette and Haines (1994), among

others]. For models with more than one predictor results can only be found sporadically in

the literature. For example, Cheng (1987) and Dette and Studden (1993) identified E-optimal

spring balance and chemical balance weighing designs. Galil and Kiefer (1977a) considered

the second order response surface model on the cube with k predictors and determined the

E-optimal designs in the class of all designs, for which the corresponding information matrix

has a minimum eigenvalue of multiplicity k(k + 1)/2. However, to our best knowledge, the

answer to the question, if these designs are in fact E-optimal in the class of all designs is still

open. For the ball the situation is even worse, and only E-optimal designs in the class of all

rotatable designs are available [see for example Galil and Kiefer (1977b)]. These designs are

in fact not globally optimal and the determination of E-optimal designs for the second order

response surface model on the ball is an open and challenging problem.

The goal of the present paper is to provide complete answers to these questions and to charac-

terize the structure and properties of E-optimal designs for the second order response surface

model. Our approach relies on a specific duality result for E-optimal designs, which relates

the optimal design problem to a nonlinear Chebyshev approximation problem [see Melas (1982,

2006) or Pukelsheim (2006)]. In the dual problem one has to determine a nonnegative polyno-

mial with minimal sup-norm in a specific class of nonnegative (multivariate) polynomials, that

is

(1.1) P =
{
fT (x)Zf(x) | trace(Z) = 1; Z ≥ 0

}
,

where x denotes the k-dimensional predictor, f(x) is the vector of regression functions in the

second order response surface model and Z is a nonnegative definite matrix of appropriate

dimension. This Chebyshev approximation problem is nonlinear and therefore extremely hard

to solve explicitly. For the solution of the E-optimal design problem this “optimal” polynomial,

which is called extremal polynomial throughout this paper, will be constructed explicitly in

Section 3 and 4 if the design space is the cube and ball, respectively. As a consequence, we

are able to provide a complete solution of these E-optimal design problems. In general there

exist several E-optimal designs which usually have a large number of support points. For this

reason particular attention is paid to the problem of constructing E-optimal designs with a

small number of support points.
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2 Optimal designs for response surface models

We consider the common linear regression model of the form

(2.1) E(Y |x) = fT (x)θ,

where Y denotes the (one-dimensional) response and the explanatory variable x varies in a

compact design space, say X ⊂ Rk. In (2.1) the vector f(x) = (f1(x), . . . , fm(x))T ∈ Rm is

the vector of regression functions and θ = (θ1, . . . , θm)T ∈ Rm denotes a vector of unknown

parameters. We assume that N independent observations are available according to the model

(2.1) where at each experimental condition x the response y is a realization of a normal dis-

tributed random variable Y with expectation given by (2.1) and (constant) variance σ2 > 0.

An approximate designs in the sense of Kiefer (1974) is defined as probability measure on the

design space X with finite support. The support points, say x(1), . . . , x(s), of an approximate

design ξ define the locations where observations are taken, while the weights give the corre-

sponding relative proportions of total observations to be taken at these points. If the design ξ

has masses ωi > 0 at the different points x(i) (i = 1, . . . , s) and N observations can be made by

the experimenter, the quantities ωiN are rounded to integers, say Ni, satisfying
∑s

i=1Ni = N ,

and the experimenter takes Ni observations at each location x(i) (i = 1, . . . , s). The information

matrix of an approximate design ξ is defined by

M(ξ) =

∫
X
f(x)fT (x)dξ(x) ∈ Rm×m,(2.2)

and it is well known [see Jennrich (1969)] that under appropriate assumptions of regularity (in

particular det(M(ξ)) > 0 and limNi,N→∞Ni/N = ωi > 0) the covariance matrix of the least

squares estimator is approximately given by σ2 M−1(ξ)/N , where N denotes the total sample

size.

Optimal designs maximize an appropriate statistical meaningful functional, say Φ, of the infor-

mation matrix. Among the the numerous criteria which have been proposed in the literature

for this purpose [see Silvey (1980), Pázman (1986) or Pukelsheim (2006) among others] we

consider in this paper the E-optimality criterion

(2.3) Φ−∞(ξ) = λmin(M(ξ)).

This criterion arises as a special case of Kiefer’s Φp-optimality criteria, which are defined for

p ∈ (−∞, 1] as

(2.4) Φp(M) =
[
m−1tr(Mp(ξ))

]1/p
=
(
m−1

m∑
i=1

λpi (M(ξ))
)1/p

,
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that is Φ−∞(ξ) = limp→−∞Φp(ε) [see Kiefer (1974)]. In equation (2.4) the quantities λ1(M(ξ)),

. . . , λm(M(ξ)) denote the eigenvalues of the information matrix M(ξ) and λmin(M(ξ)) its corre-

sponding minimum eigenvalue. In contrast to the Φp-criteria with p ∈ (−∞, 1] the E-optimality

criterion is not differentiable if the multiplicity of the minimum eigenvalue of the matrix M(ξ) is

larger than 1 and this property makes the determination of E-optimal designs to an extremely

hard problem. In fact, E-optimal designs have been determined for a limited number of linear

and nonlinear regression models [see the references cited in the introduction]. An important

tool for the determination of E-optimal designs is the following equivalence theorem which has

been proved by several authors [see Melas (1982) or Pukelsheim (2006) for example].

Theorem 2.1 Let ξ∗ denote a design and λmin(M(ξ∗)) the minimum eigenvalue of the information

matrix M(ξ∗) with multiplicity s. The design ξ∗ is E-optimal if and only if there exist orthonormal

eigenvectors q0, . . . , qs−1 of the matrix M(ξ∗) corresponding to λmin(M(ξ∗)) and nonnegative weights

w0, . . . , ws−1 with sum 1 such that the “extremal polynomial”

d(x, ξ) = fT (x)(q0, . . . , qs−1) diag(w0, . . . , ws−1)(q0, . . . , qs−1)
T f(x) =

s−1∑
i=0

wi(f
T (x)qi)

2

satisfies for all x ∈ X the inequality

(2.5) d(x, ξ) ≤ λmin(M(ξ∗)).

Moreover, the maximum on the left hand side of (2.5) is attained at the support points of the E-optimal

design ξ∗.

Remark 2.1 It follows from general equivalence theory developed in convex design theory [see

Pukelsheim (2006)] that there exists a duality between the E-optimal design problem and a

nonlinear Chebyshev approximation problem, that is

(2.6) max
ξ
λmin(M(ξ)) = minPZ∈P max

x∈X
|PZ(x)|

where P = {PZ(x) = fT (x)Zf(x) | Z ∈ Rm×m, Z ≥ 0, trace(Z) = 1} denotes a subset of the

nonnegative “polynomials”. In fact if there is equality in (2.6) for a pair (ξ∗, Z∗), then ξ∗ is an

E-optimal design and PZ∗ a solution of the nonlinear Chebyshev approximation problem. This

explains the name “extremal polynomial” in Theorem 2.1.

The second order response surface model with a k-dimensional predictor appears as a special

case of model (2.1), that is

(2.7) E[Y |x] =
2∑

‖α‖1=0

θαx
α,
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where α = (α1, . . . , αk)
T ∈ {0, 1, 2}k is a multi-index xα = xα1 · · · xαk and ‖α‖1 = α1 + . . .+αk.

In this case the corresponding vector of regression function in the general linear model (2.1) is

given by

f(x) = (1, x21, . . . , x
2
k, x1, . . . , xk, x1x2, . . . , xk−1xk) ∈ Rm,(2.8)

where m = (k+1)(k+2)
2

, x = (x1, . . . , xk)
T . In the following section we consider optimal designs

for the second order regression model (2.7), where the design spaces are the unit ball with

respect to the maximum norm || · ||∞ and the Euclidean norm || · ||2, that is

(2.9) X = B∞(1) := {x ∈ Rk| ‖x‖∞ ≤ 1}, X = B2(1) := {x ∈ Rk| ‖x‖2 ≤ 1}.

It turns out that designs with certain symmetry properties play a particular role for the con-

struction of E-optimal designs. Throughout this paper we call a design symmetric if for any

(α1, . . . , αk) ∈ {0, 1, 2}k with ‖α‖1 = |α1|+ . . .+ |αk| ≤ 2 the moments∫
X
xα1
1 , . . . , x

αk
k ξ(dx)

are invariant with respect to all permutations of α1, ..., αk and vanish if there is at least one odd

index among α1, . . . , αk. In the following discussion let I` ∈ R`×` denote the identity matrix and

1` = (1, . . . , 1)T ∈ R` denotes the vector with all elements equal to 1, then a straightforward

calculation shows that the information matrix of a symmetric design in model (2.7) is of the

form

(2.10) M(ξ) =

∫
X
f(x)fT (x)ξ(dx) =


1 a1Tk 0 0

a1k H 0 0

0 0 aIk 0

0 0 0 bI k(k−1)
2

 ∈ Rm×m,

where m = (k+1)(k+2)
2

, H = H(c; b) = (c− b)Ik + b1k1
T
k ∈ Rk×k denotes a circulant matrix with

diagonal and off-diagonal elements c and b, respectively, and the entries a, b and c in (2.10) are

given by

(2.11) a =

∫
X
x21ξ(dx), b =

∫
X
x21x

2
2ξ(dx), c =

∫
X
x41ξ(dx).

It is easy to see that the entries in this matrix satisfy the inequalities

(2.12) 1 > a ≥ c > b > 0, c+ b(k − 1) > ka2.
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Designs with information matrix of the form (2.10) will serve as candidates for E-optimal

designs. Consider for example the case k = 1, where model (2.7) reduces to the well known

one-dimensional quadratic regression model θ0 + θ1x
2 + θ2x. If the designs space is given

by X = [−1, 1] and the design ξ puts masses 1/5, 1/5 and 3/5 at the points −1, 1 and 0,

respectively, the corresponding information matrix is given by

M(ξ∗) =


1 2

5
0

2
5

2
5

0

0 0 2
5

 .

It was shown by Kiefer (1974) that this design is in fact E-optimal for the univariate quadratic

regression model and the minimum eigenvalue λmin = 1
5

has multiplicity s = 1. For a similar

statement in the univariate polynomial regression model of degree d ≥ 2 see Pukelsheim and

Studden (1993).

However, in the case k ≥ 2 the multiplicity of the minimum eigenvalue of the matrix (2.10)

is larger than 1 and as consequence the corresponding optimality criterion is not differentiable

at the matrix M(ξ) given by (2.10). This makes the determination of E-optimal designs

substantially more difficult. For example, Galil and Kiefer (1977a) determined the E-optimal

design on the cube B∞(1) in the subclass of all designs with information matrix of the form

(2.10), where its minimum eigenvalue has multiplicity k(k+1)
2

(these calculations will be briefly

presented at the beginning of the following section). To our best knowledge the question, if the

solution obtained by these authors in the restricted class yields in fact an E-optimal design for

the second order response surface model in the class of all approximate designs on the cube,

has not been answered. Moreover, the E-optimal design problem for second order regression

models seems to be completely unsolved if the design space is given by the unit ball B2(1).

In the following two sections we will present a complete solution to these problems. For this

purpose we proceed in the following sections in two steps:

(I) In a first step a candidate for the E-optimal design in the class of all designs with infor-

mation matrix of the form (2.10) is identified. If the design space is given by the cube

our arguments coincide with those of Galil and Kiefer (1977a) and are presented here for

the sake of completeness.

(II) In a second step the E-optimality of the candidate design found by Galil and Kiefer

(1977a) is proved by an application of Theorem 2.1. This requires the determination of

an appropriate basis of the eigenspace corresponding to the minimum eigenvalue of M(ξ)

and the construction of the corresponding extremal polynomial in (2.6).
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The E-optimal designs for the second order response surface model will be identified in terms

of the masses that they assign to specific sets which depend on the design space under consid-

eration. Because in many applications it is desirable to obtain optimal designs with a minimal

number of support points we add a third step if the design space is the cube, that is

(III) Identification of designs with a minimal number of support points.

3 E-optimal designs on the cube

In this section we consider the second order response surface model (2.1) on the design space

X = B∞(1) = [−1, 1]k. We start with a determination of a “good” candidate for an E-optimal

symmetric design. Our arguments are similar to those given in Galil and Kiefer (1977a) and

presented here for the sake of completeness (note that these authors only identified the candidate

design and in the following we will prove its optimality in the class of all approximate designs).

Observing the representation of the corresponding information matrix (2.10) the eigenvalues of

the matrix M(ξ) are given by a, b, and the eigenvalues by its upper (k + 1)× (k + 1) block,

(3.1) M11(ξ) =

 1k a1Tk

a1k H

 ,

where H = H(c; b) = (c − b)Ik + b1k1
T
k . Define D = [1 − c − (k − 1)b]2 + 4ka2 > 0, then all

eigenvalues of the information matrix of a symmetric E-optimal design are given by

λ0 =
1 + c+ (k − 1)b+

√
D

2
, λ1 =

1 + c+ (k − 1)b−
√
D

2
,(3.2)

λ2 = . . . = λk = c− b, λk+1 = . . . = λ2k = a, λ2k+1 = . . . = λm = b.

Note that λ0 > λ1 and that λ1 and λ2 are increasing functions of c. Observing (2.12) we therefore

obtain c = a and the problem of maximizing the minimum eigenvalue of M(ξ) reduces to the

maximization of

(3.3)

λmin(M(ξ)) = min
{1 + a+ (k − 1)b−

√
D

2
, a− b, a, b

}
= min

{1 + a+ (k − 1)b−
√
D

2
, a− b

}
,

where the constant D is now represented as D = [1 − a − (k − 1)b]2 + 4ka2 and the second

equality in (3.3) follows from 0 < a − b < a [see (2.12)]. Motivated by the solution of similar

maximin problems, we suppose that λ1 = λ2, which gives

λ1 = λ2 = a−
−(1− a) +

√
(1− a)2 + 4a2

2
=

1 + a−
√

(1− a)2 + 4a2

2
.
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Maximization of (3.3) subject to λ1 = λ2 finally yields for the elements of the matrix M(ξ)

a = 2
5
, b = 1

5
, and for its eigenvalues

λ0 = 1 +
k

5
, λ1 = . . . = λk =

1

5
, λ2k+1 = . . . = λ k(k−1)

2

=
1

5
, λk+1 = . . . = λ2k =

2

5
,(3.4)

where the corresponding multiplicities of λ0, λ1, λk+1 are given by 1, k(k+1)
2

and k, respectively.

Hence we obtain as a candidate for an E-optimal information matrix the matrix M(ξ∗) in

(2.10) with a = c = 2
5
, b = 1

5
, where the minimum eigenvalue is given by λmin(M(ξ∗)) = 1

5
.

This means that the information matrix under consideration has a minimal eigenvalue with

multiplicity k(k+1)
2
≥ 3 whenever k ≥ 2. The following result gives an answer to the question if

the determined values for a and b yield in fact to an E-optimal information matrix.

Theorem 3.1 Any design ξ∗ with an information matrix M(ξ∗) of the form (2.10) and a = c = 2
5

b = 1
5 is E-optimal for the second order response surface model (2.7) on the k-dimensional unit cube.

In particular Theorem 2.1 holds with

d(x, ε) =
1

5

(
1− 4

k

k∑
i=1

x2i (1− x2i )
)
.(3.5)

The Proof of Theorem 3.1 is complicated and deferred to Section 5.1. Note that in contrast

to the D-optimality criterion the optimal values for a and b do not depend on a dimension of

the design space. This fact has been independently observed by Denisov and Popov (1976) and

Galil and Kiefer (1977a), who identified the correct E-optimal information matrix but did not

prove its optimality.

In the next step we determine designs with corresponding information matrix specified in

Theorem 3.1. For this purpose we call a point x ∈ Rk a barycenter of depth 0 ≤ j ≤ k if j

coordinates are equal to 0 and the remaining k − j coordinates are equal to ±1 [see Galil and

Kiefer (1977a)]. The set of all barycenters of depth r is denoted Er and for its cardinality we

introduce the symbol

(3.6) nr := |Er| =
(
k

r

)
2k−r, r = 0, 1, ..., k.

It was shown by Kiefer (1960) and Farrel et al. (1967) that the support of every Φp-optimal

design for the second order response surface model on the cube is a subset of the set

(3.7) E =
k⋃
j=0

Ej.

Moreover, there always exists a symmetric optimal design. Throughout this section we will

describe these symmetric designs on the cube in terms of the (k + 1)-dimensional vector ξ =
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(ξ0, ..., ξk), where ξi represents the mass assigned by the design to the set Ei of barycenters

of depth i, that is ξi = ξ(Ei) (i = 0, . . . , k). It turns out that there always exists an E-

optimal design supported at at most three sets Ei. For this purpose we define for integers

0 ≤ r1 < r2 < r3 ≤ k the matrix

Ar1,r2,r3 =


1 1 1

k−r1
k

k−r2
k

k−r3
k
,

k−r1
k

k−r1−1
k−1

k−r2
k

k−r2−1
k−1

k−r3
k

k−r3−1
k−1


Lemma 3.1 There exists integers 0 ≤ r1 < r2 < r3 ≤ k such that the system of linear equations

Ar1,r2,r3ξ =
(
1,

2

5
,
1

5

)T
(3.8)

has a unique solution ξ∗ = (ξ∗1 , ξ
∗
2 , ξ
∗
3)T satisfying ξ∗i ≥ 0,

∑3
i=1 ξi = 1. Any design with masses

ξ(Eri) = ξ∗i , i = 1, 2, 3,(3.9)

is E-optimal for the second order response surface model (2.7).

Proof. Let ξ denote a symmetric design and note that the moments in the matrix M(ξ) defined

in (2.10) have the representation

(3.10) 1 =
k∑
r=0

ξr, a =
k−1∑
r=0

arξr, b =
k−2∑
r=0

brξr,

where ξr = ξ(Er) is the measure of the set Er of barycenters of depth r and

(3.11) ar :=

(
k − 1

r

)
2k−r, r ∈ {0, . . . , k − 1}, br :=

(
k − 2

r

)
2k−r, r ∈ {0, . . . , k − 2}.

By (3.10) and a remark on page 124 of Galil and Kiefer (1977a) there exists symmetric design

ξ and three sets Er1 , Er2 and Er3 such that (3.10) is satisfied for a = 2
5

and b = 1
5
. A simple

calculation shows that in this case the system of equations in (3.10) is equivalent to (3.8), which

has a unique solution because det(A) = (r1−r2)(r1−r3)(r2−r3)
k2(k−1) 6= 0. 2

It should be noted that not any solution of (3.8) will yield a vector of admissible weights

(ξr1 , ξr2 , ξr3) = (ξ(Er1), ξ(Er2), ξ(Er3)) (some components could be negative). Moreover, in

general there exist many triples (r1, r2, r3), such that the system (3.8) has a solution with non-

negative components and any such triple yields to at least one symmetric E-optimal design.
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For example, if (r1, r2, r3) is such a triple with corresponding solution (ξ(Er1), ξ(Er2), ξ(Er3))

of (3.8), then a design ξ which assigns masses

ωri,j = ξ({xri,j}) =
ξ(Eri)

nri
; j = 1, . . . , nri ; i = 1, 2, 3;

to all points x(ri,1) . . . x(ri,nri )
∈ Eri is an E-optimal design for the second order response surface

model (2.7) on the unit cube [−1, 1]k, where nj =
(
k
j

)
2k−j denotes the number of elements of

the set Ej (j = 0, . . . , k). The number of support points of such a design is given by

N(r1, r2, r3) =
3∑
i=1

(
k

ri

)
2k−ri

and usually rather large. For this reason it is of interest to find designs with a minimal number

of support points [see Farrel et al. (1967) or Pesotchinsky (1975)]. A reasonable approach to this

problem is to look for E-optimal designs which are supported at only two sets of barycenters,

say Er1 and Er2 . Because it can easily be shown that for a triple (r1, r2, r3) with an admissible

solution of (3.8) the weights ξ(Eri) are given by

(3.12) ξ(Er1) =
1

5
· 2k2 + k − 3k(r2 + r3) + 5r2r3

(r2 − r1)(r3 − r1)
, i = 1, 2, 3,

it follows that symmetric E-optimal designs supported at only two sets of barycenters can be

obtained from the Diophantine equations

(3.13) 2k2 + k − 3k(s+ t) + 5st = 0

for s, t = 0, . . . , k. These equations have been solved numerically by Galil and Kiefer (1977a)

if k ≤ 25 (see Table 1 in this reference). It should be pointed here that there does not always

exist a solution of (3.13) (for example for k = 2, 6, or 8). Moreover, in general it is not clear

that a solution of (3.13) necessarily yields to an E-optimal design with a minimal number of

support points. For this reason we display in Table 1 the E-optimal symmetric designs with

a minimal number of support points for second order response surface models with k ≤ 24

predictors. For example, if k = 5, the design with a minimal number of support points in only

two sets has N(2, 5) = 81 support points in the set E2 and E5 [see Galil and Kiefer (1977a)],

while the design with the minimal number of N(0, 3, 5) = 73 support points in the sets E0, E3

and E5.

Remark 3.2 Based on our numerical results we found a remarkable structure for the E-optimal

designs with a minimal number of support points for the second order response surface model

with k predictors, whenever k 6= 3. The E-optimal design for the second order response surface
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k (r, s, t) ξ(Er) ξ(Es) ξ(Et) k (r, s, t) ξ(Er) ξ(Es) ξ(Et)

1 (0, 1,−)
2

5

3

5
− 13 (0, 9,−)

2

15

13

15
−

2 (0, 1, 2)
1

5

2

5

2

5
14 (0, 9, 14)

25

225

182

225

18

225

3 (−, 1, 3) −
3

5

2

5
15 (0, 10, 15)

3

25

21

25

1

25

4 (0, 3,−)
1

5

4

5
− 16 (0, 11,−)

7

55

48

55
−

5 (0, 3, 5)
2

15

10

15

3

15
17 (0, 11, 17)

18

165

136

165

11

165

6 (0, 4, 6)
3

20

15

20

2

20
18 (0, 12, 18)

7

60

51

60

2

60

7 (0, 5,−)
4

25

21

25
− 19 (0, 13,−)

8

65

57

65
−

8 (0, 5, 8)
9

75

56

75

10

75
20 (0, 13, 20)

49

455

380

455

26

455

9 (0, 6, 9)
2

15

12

15

1

15
21 (0, 14, 21)

4

35

30

35

1

35

10 (0, 7,−)
1

7

6

7
− 22 (0, 15,−)

3

25

22

25
−

11 (0, 7, 11)
8

70

55

70

7

70
23 (0, 15, 23)

32

300

253

300

15

300

12 (0, 8, 12)
5

40

33

40

2

40
24 (0, 16, 24)

9

80

69

80

2

80

Table 1: Symmetric E-optimal designs with a minimal number of support points for second

order response surface models with k ≤ 24 predictors.
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l = +1 l = 0 l = −1

ξ(E0) ξ(Es) ξ(Ek) ξ(E0) ξ(Es) ξ(Ek) ξ(E0) ξ(Es) ξ(Ek)

1
5
· q+2
2q+1

3
5
· 3q+1
2q+1

0 1
5
· q+3

2q
3
5
· 3q−1

2q
1
5q

1
5
· q
2q−1

1
5
· (3q−1)(3q−2)

q(2q−1)
2
5q

Table 2: Conjecture for the structure of E-optimal designs with a minimal number of support

points for second order response surface models with k = 1, 2 and k ≥ 4 predictors, where

k = 3q + l and s = 2q + l and l = 0,±1.

model with a minimal number of support points is always supported at the sets E0 and Ek

and a third set Es. If k = 3q + l where l = 0,±1, then s = 2q + l. The particular structure

is displayed in Table 2, which also contains the weights assigned by the E-optimal design to

these sets.

Example 3.1 Galil and Kiefer (1977a) presented in Table 2 of their paper E-optimal designs

(obtained as limits of Φp-optimal designs as p → −∞). Note that not all designs in this class

have the minimal number of support points. For example, if k = 6 the E-optimal design

obtained by Galil and Kiefer (1977a) puts masses 0.040, 0.400 and 0.560 at the sets E0, E2 and

E5 respectively and has 316 support points. The E-optimal design obtained from Table 2 puts

masses ξ(E0) = 0.15, ξ(E4) = 0.75, ξ(E6) = 0.10 and has only 125 support points.

4 E-optimal designs on the unit ball

In this section we consider the E-optimal design problem for the second order response surface

model on the k-dimensional ball B2(1) = {x ∈ Rk : ‖x‖2 ≤ 1}. The general strategy for the

solution of the optimal design problem will be similar as the one given for the cube and we

start identifying a good candidate for the E-optimal design. If the design space is the ball,

then the sets Eri of barycenters of depth ri will be replaced by three sets F0, Fk−1 and Fk as

candidate sets for the support of E-optimal designs. Here F0 consists of the 2k vertices x =

(± 1√
k
, ...,± 1√

k
)T ∈ Rk of the cube B∞(

√
2) inscribed in k-dimensional ball B2(1), Fk−1 consists

of the centers ±ei of the (k − 1)-dimensional faces of B∞(1) (here ei = (0, . . . , 0, 1, 0, . . . , 0)T

denotes the ith unit vector) and Fk contains only the center of the ball. Note that the cardinality

of these sets are given by

(4.1) |F0| = 2k, |Fk−1| = 2k, |Fk| = 1.

As a consequence, there is no necessity to search for the minimally supported designs on the

unit ball.

13



Consider a symmetric design ξ which is supported on the sets F0, Fk−1 and Fk introduced

in the previous paragraph. Its information matrix M(ξ) in the second order response surface

model (2.1) is of the form (2.10) with corresponding eigenvalues given by (3.2) where D =

[1− (c− b)− kb]2 + 4ka2 > 0. Moreover, from the definition of ξ we have for the entries defined

in the matrix (2.10)

(4.2) a = k−1ξ(F0) + ξ(Fk−1), b = k−2ξ(F0), c = k−2ξ(F0) + ξ(Fk−1),

and it now follows

(4.3) ξ(Fk−1) = a− kb = c− b.

Substituting this identity into expression (3.2) for λ1 yields

(4.4) λ1 =
1 + a−

√
(1− a)2 + 4ka2

2
.

Therefore, the problem of determining an E-optimal (symmetric) design in the class of measures

supported at the sets F0, Fk−1 and Fk reduces to the maximization of (note that a > b because

otherwise by (2.12) and (4.3) we would obtain ξ(Fk−1) = 0, hence a = b = c, which is impossible)

(4.5) λmin(M(ξ)) = min
{1 + a−

√
(1− a)2 + 4ka2

2
, c− b, b

}
,

where 0 ≤ a, b, c ≤ 1. In order to construct a good candidate, say ξ∗, for the E-optimal

information matrix we assume that for the optimal design all elements in (4.5) are identical,

which yields by a straightforward calculation (observing (4.3)) for the elements in the matrix

(2.10)

(4.6) a =
k + 1

k2 + 2k + 2
, b =

1

k2 + 2k + 2
, c =

2

k2 + 2k + 2
.

In this case

(4.7) λmin(M(ξ∗)) =
1

k2 + 2k + 2

is the minimal eigenvalue of the matrix M(ξ∗) with multiplicity s = k(k+1)
2

. Since this solution

has been obtained under the constraint that the designs is supported at the sets F0, Fk−1 and

Fk and that all elements in (4.5) are identical, it is not clear that the resulting information

matrix is in fact E-optimal. In a second step we establish this optimality. In order to explain

the general principle we begin with an example.
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Example 4.1 Consider the second order response surface model with k = 2 predictors. Thus,

we have m = 6 regression functions, the minimum eigenvalue is given by λmin = 1
10

, with

multiplicity s = 3. For a corresponding orthogonal basis in Theorem 2.1 we choose

q0 = (2,−3,−3, 0, 0, 0)T , q1 = (0,−1, 1, 0, 0, 0)T , q2 = (0, 0, 0, 0, 0, 1)T ,

which yields ‖q0‖2 = 22, ‖q1‖2 = 2, ‖q2‖2 = 1 and for the extremal polynomial

(4.8) d(x, ε) =
w0

‖q0‖2
(

2− 3
2∑
j=1

x2j

)2
+

w1

‖q1‖2
(x21 − x22)2 +

w2

‖q2‖2
(x1x2)

2.

The vector of weights w is identified by the condition that there must be equality in (2.5) for

the support points of the E-optimal design and the condition w0 + w1 + w2 = 1. Using the

points x(0) = (0, 0)T ∈ F0 and x(1) = (1, 0)T ∈ F1 we obtain for the vector w = (11
20
, 3
20
, 6
20

) and

d(x, ε) =
1

10

(
1− 3

( 2∑
i=1

x2i

)(
1−

2∑
i=1

x2i

))
=

1

10
(1− 3‖x‖22(1− ‖x‖22)).

Obviously, we have for all x with ‖x‖2 ≤ 1

d(x, ε) ≤ 1

10
= λmin(M(ξ)),

and by Theorem 2.1 any design with information matrix of the form (2.10) with a = 3
10

, b = 1
10

,

c = 2
10

is E-optimal for the second order response surface model on the ball.

The following result provides a similar statement in the general case. Its proof is complicated

and therefore deferred to Section 5.2.

Theorem 4.1 Let ξ∗ denote a symmetric design on the ball B2(1), which puts masses

(4.9) ξ(F0) =
k2

k2 + 2k + 2
, ξ(Fk−1) =

1

k2 + 2k + 2
, ξ(Fk) =

2k + 1

k2 + 2k + 2

at the sets F0, Fk−1 and Fk, respectively, then ξ∗ is E-optimal for the second order response surface

model on the k-dimensional unit ball. Moreover, the minimal eigenvalue of the matrix M(ξ∗) is given

by (4.7) with multiplicity s = k(k+1)
2 and the extremal polynomial in Theorem 2.1 can be chosen as

(4.10) d(x, ε) =
1

k2 + 2k + 2

{
1− 2(k + 1)

k
||x||22(1− ||x||22)

}
.

We conclude this section with a brief discussion of rotatable designs, which are defined as

designs for which the dispersion function U : B2(1) → R; x → U(x, ξ) = fT (x)M−1(ξ)f(x) is

invariant with respect to orthogonal transformations, that is

(4.11) U(x, ξ) = U(Ox, ξ), ∀x ∈ Rk,
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whenever O is an orthogonal k × k matrix. Note that this property is equivalent to the fact

that the function U(x, ξ) depends only of the radius ||x||2. The following result characterizes

the rotatability of a symmetric design with information matrix of the form (2.10) and will be

used to investigate if E-optimal designs in the class of all rotatable designs are also E-optimal

in the class of all symmetric designs.

Lemma 4.2 Let ξ denote a symmetric design on the ball B2(r) of radius r > 0 with information

matrix of the form (2.10). Then the design ξ is rotatable for the second order response surface

model, if and only if the condition

(4.12) c = 3b

is satisfied. Moreover, the uniform distribution on sphere ∂B2(r) denoted by U(∂B2(r)) defines

a rotatable design.

Proof. Let ξ denote a design with information matrix (2.10). A simple calculation shows that

the inverse of the k × k upper block (3.1) of the matrix M(ξ) is given by

M−1
11 (ξ) =

 κ q1Tk

q1k G

 ,

where κ = (c+ b(k − 1))/Q0, q = −a/Q0, Q0 = c− b + (b− a2)k, and G = (d− e)Ik + e1k1
T
k

is a circulant matrix with diagonal elements d and off-diagonal elements e defined by

e =
a2 − b

(c− b)Q0

, d = Q−10 − e(k − 1),

respectively. As a consequence, we obtain for the function U the representation

U(x, ξ) = fT (x)M−1(ξ)f(x) = κ + (a−1 + 2q)||x||22 + (b−1 + 2e)
k∑
i<j

(xixj)
2 + d

k∑
i=1

x4i

= κ + (a−1 + 2q)||x||22 +
( 1

2b
+ e
)
||x||42 +

(
d− e− 1

2b

) k∑
i=1

x4i .

Now the design is rotatable if and only if the function U(x, ξ) depends only on the radius ||x||2,
that is

0 = d− e− (2b)−1 = (3b− c)/2b(c− b),

which proves the first part of the assertion. The second part follows by a straightforward cal-

culation of the moments of the uniform distribution on the sphere ∂B2(r). 2
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Galil and Kiefer (1977b) have determined the E-optimal rotatable designs on the ball B2(r) for

the second order response surface model (2.7), which are given by

ξ∗(α) = (1− α)ξ({0}) + αU(∂B2(r)),

where the parameter α is defined by

(4.13) α =


k(k + 1)(k + 2)

(k + 1)r4 + k(k + 2)2
, r2 ≤ k + 2,

k(r2 − 1)

r2(r2 + k − 1)
, r2 ≥ k + 2.

If the design space is given by the unit ball B2(1) this design is not E-optimal in the class of

all designs. In fact the symmetric E-optimal design ξ∗ determined in Theorem 4.1 does not

satisfy condition (4.12) and is therefore not rotatable. The minimum eigenvalue of the matrix

M(ξ∗) is given by (4.7), while the minimum eigenvalue of the E-optimal design in the class of

all rotatable designs is given by

λmin(M(ξ(α))) =
k + 1

k3 + 4k2 + 5k + 1
<

1

k2 + 2k + 2
= λmin(M(ξ∗)).

We finally note that there exists a difference between the E- and D-optimality criterion with

respect to the property of rotatability. In contrast to the E-optimal design the D-optimal

design for the second order response surface model on the ball B2(1) is also rotatable [see

Kiefer (1960)].
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5 Appendix: Proofs of Theorems 3.1 and 4.1

5.1 Proof of Theorem 3.1

Throughout the proof we assume k ≥ 2, the case k = 1 has been treated in Pukelsheim and

Studden (1993), for example. Recall the definition of the vector of regression functions (2.8)

in model (2.1) and note that for the optimal design ξ∗ under consideration we have a = 2
5

and b = 1
5

in the matrix (2.10) with minimum eigenvalue given by λmin(M(ξ∗)) = 1
5

(see the

discussion at the beginning of Section 3). Consequently, a possible candidate q0, . . . , qs−1 for

the basis of the eigenspace corresponding to λmin(M(ξ∗) is given by

(5.1) Q = (q0, . . . , qs−1) =

 Gk×(k+1) 0k×k 0
k× k(k−1)

2

0 k(k−1)
2
×(k+1)

0 k(k−1)
2
×k I k(k−1)

2

T

,

with an appropriate matrix Gk×(k+1) ∈ Rk×k+1 (here and throughout this section 0r×s denotes

the matrix with all entries given by 0). This means that the unit vectors ei = (0, . . . , 0, 1, 0, . . . , 0)T

are eigenvectors of the matrix M(ξ∗) for i = 2k + 2, . . . ,m = (k+1)(k+2)
2

. It turns out that it is
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reasonable to use a vector of weights, which is of the form

(5.2) w = (w0, w1, ..., wk−1, 0, ..., 0)T ∈ Rs.

in Theorem 2.1. Observing (5.1) it then follows that for vectors of this type only the k + 1

functions

{1, x21, . . . , x2k}

will appear in the corresponding extremal polynomial. We now construct the remaining part

of the orthogonal basis in (5.1) by choosing the block matrix

(5.3) Gk×(k+1) =

 k −2 −2 1Tk−1

0k−1 −1k−1 L

 ∈ Rk×k+1,

where the matrix L = (Lij)
k−1
i,j=1 ∈ R(k−1)×(k−1) is defined by

Lij =


−1 i+ j < k,

k − i i+ j = k,

0 i+ j > k.

This gives for the eigenvectors q0, . . . , qk−1 (defined by the first k rows of the matrix Q in (5.1))

‖q0‖2 = k2 + 4k, ‖qr‖2 = (k − r)(k − r + 1), r = 1, ..., k − 1.

With the notation bi(x) = (qTi f(x))2 the extremal polynomial in Theorem 2.1 has the repre-

sentation

(5.4) d(x, ε) =
k−1∑
i=0

wibi(x),

where we have used (5.2) and the function b0, . . . , bk−1 are given by

b0(x) =
(
k − 2

k∑
i=1

x2i

)2
· 1

‖q0‖2
,

br(x) =
(k−r∑
i=1

x2i − (k − r)x2k−r+1

)2
· 1

‖qr‖2
, r = 1, ..., k − 1.(5.5)

The coefficients wi in the polynomial (5.4) are now determined by the condition d(x, ξ) =

λmin(M(ξ)) = 1
5

at the points x(r) = (0, . . . , 0, 1, . . . , 1)T with ‖x(r)‖1 = r and the fact that∑k−1
i=0 wi = 1. This leads to the matrix equation

(5.6) B(w0, . . . , wk−1)
T = J0,
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where J0 = (1
5
, ..., 1

5
, 1)T ∈ Rk and the matrix B = (Bir)

k−1,k−1
i,r=0 is a lower triangular matrix

with non-vanishing elements

Bir =



k

k + 4
i = 0, r = 0,

(k − 2i)2

k2 + 4k
i = 1, ..., k − 2, r = 0,

(k − i)2

(k − r)(k − r + 1)
i = 1, ..., k − 2, r = 1, ..., i,

1 i = k − 1, r = 0, ..., k − 1.

A simple calculation shows (w0, . . . , wk−1)
T = B−1J0 = 1

5k
(k + 4, 4, 4, ..., 4) ∈ Rk and w =

(k+4
5k
, 4
5k
, . . . , 4

5k
, 0, . . . , 0)T is the vector which will be used for the calculation of a candidate for

the extremal polynomial. For this purpose we introduce the notation

(5.7) αr =
wr
‖qr‖2

=


1

5k2
r = 0,

4

5k(k − r + 1)(k − r)
r = 1, ..., k − 1,

and a tedious but straightforward algebra yields for the polynomial (5.4) the representation

d(x, ε) = α0

(
k − 2

k∑
i=1

x2i

)2
+

k−1∑
r=1

αr

(k−r∑
i=1

x2i − (k − r)x2k−r+1

)2
=

1

5

(
1− 4

k

k∑
i=1

x2i (1− x2i )
)
,

which coincides with (3.5). As a consequence, we obtain for all x ∈ [−1, 1]k

d(x, ξ∗) ≤ λmin(M(ξ∗)) =
1

5
,

and by Theorem 2.1 the matrix M(ξ∗) is an E-optimal information matrix. �

5.2 Proof of Theorem 4.1.

The proof proceeds in a similar way as the proof of Theorem 3.1 but differs in some essential

details from it. To be precise, recall that for the design ξ∗ under consideration the mini-

mal eigenvalue of its information matrix M(ξ∗) is given by λmin(M(ξ∗)) = 1
k2+2k+2

and has

multiplicity s = k(k+1)
2

. As in the proof of Theorem 3.1 we consider the matrix defined by
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(5.1) as a candidate for an orthonormal basis of the corresponding eigenspace. For the matrix

Gk×(k+1) ∈ Rk×k+1 we now use

Gk×(k+1) =

 k −(k + 1) −(k + 1)1Tk−1

0k−1 1k−1 L

 ,(5.8)

where L = (Lij)
k−1
i,j=1 ∈ R(k−1)×(k−1) is a lower triangular matrix with non-vanishing elements

Lij =

−i i = j,

1 i > j.
(5.9)

Consequently, we have

‖q0‖2 = k2 + k(k + 1)2,

‖qr‖2 = r(r + 1), r = 1, ..., k − 1, ‖qr‖2 = 1, r = k, ..., s− 1,

and with the notation bi(x) := (fT (x)qi)
2 the candidate for the extremal polynomial in (2.5)

has the representation

(5.10) d(x, ξ∗) =
s−1∑
i=0

wibi(x),

where (recall the definition of the vector f in (2.8))

b0(x) =
(
k − (k + 1)

k∑
i=1

x2i

)2
· 1

‖q0‖2
,

br(x) =
( r∑
i=1

x2i − rx2r+1

)2
· 1

‖qr‖2
, r = 1, ..., k − 1,

bk−2+i+j(x) = (xixj)
2, i = 1, . . . , k − 1; j = i+ 1, . . . , k

(note that the eigenvectors corresponding to bk−2+i+j satisfy ‖qr‖ = 1).

For determination of coordinates of the vector w we use again the fact that there must be

equality in condition (2.5) of Theorem 2.1 for the support points of an E-optimal design. For

the point x(0) = 0 ∈ Rk the condition d(x(0), ε) = λmin(M(ξ∗)) and (5.10) then yields

(5.11) w0 =
k2 + 3k + 1

k(k2 + 2k + 2)
.

We now try to find a candidate for the remaining weights under the additional assumption that

p1 := w1 = . . . = wk−1 and p2 := wk = . . . = ws−1. Because the sum of all weights is 1, this

gives the equality

(5.12) w0 + (k − 1)p1 +
k(k − 1)

2
p2 = 1.
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Finally, we use one more point x(1) = (1, 0, . . . , 0)T ∈ Fk−1 in the condition d(x(1), ξ
∗) =

λmin(M(ξ∗)) to obtain the equation

(5.13) w0 + p1

k−1∑
r=1

‖qr‖−2 = λmin(M(ξ∗)) =
1

k2 + 2k + 2
.

Since
∑k−1

r=1 ‖qr‖−2 = 1− k−1, we finally obtain from (5.11)-(5.13) for the weights

(5.14)

w0 =
k2 + 3k + 1

k(k2 + 2k + 2)
, w1 = . . . = wk−1 =

k + 1

k(k2 + 2k + 2)
, wk = . . . = ws−1 =

2(k + 1)

k(k2 + 2k + 2)
.

Substituting these expressions in (5.10) yields by a straightforward calculation

(5.15) d(x, ξ∗) =
1

k2 + 2k + 2

(
1− 2(k + 1)

k
‖x‖22(1− ‖x‖22)

)
as a candidate for the extremal polynomial. Obviously, we have

d(x, ξ∗) ≤ 1

k2 + 2k + 2
= λmin(M(ξ∗))

for all x ∈ B2(1), and by Theorem 2.1 the information matrix M(ξ∗) defined in (2.10) with

moments (4.6) is E-optimal for the second order response surface model on the ball. 2
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