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1  Motivation 

 

In order to understand the significance and purpose of the field of science that I have been 

working on I would like to provide you with a short overview over the history of nuclear 

magnetic resonances and of the development of their optical detection. Afterwards, I will 

proceed to presenting the importance and need of nanostructures, which is a technology 

that is included in our everyday life. The last part will give examples where research in the 

field of quantum mechanics leads to usable devices which are currently marketed.  

 

1.1 A short history of nuclear magnetic resonances and their optical detection 

A Nobel Prize is not only the result of a long journey through experimental and theoretical 

work. It's more like a beginning (of much work) for other scientists. I'm referring to the 

Nobel Prize in physics in 1902, when Hendrik Antoon Lorentz and Pieter Zeeman were 

honored "in recognition of the extraordinary service they rendered by their researches into 

the influence of magnetism upon radiation phenomena" [1]. Pieter Zeeman studied the 

spectral lines of a gaseous substance under the influence of an external magnetic field [2].  

Thereby he found a splitting of one spectral line into three spectral lines under the influence 

of an external magnetic field. Nowadays this effect is called the "Zeeman effect". Later, 

Hendrik Lorentz took an interest in these measurements. Consequently, in 1896, he 

proposed a model of an atom containing charged vibrating particles, bound to a center. 

Nowadays these vibrating charged particles are called "electron". At that time (1896), 

however, the idea of an atom consisting of different particles was new. The proposed theory 

of H. Lorentz could even be used to calculate the charge- to- mass relation (e/m) of the 

observed particle. But the experimental results showed more than could be explained by this 

theory. The spectral lines of some elements split up not only three times but even more 

often. And as more and more elements were studied, the experiments showed that the 

spectral lines of most elements split up in more than three spectral lines. Therefore, there 

had to be a fundamental error in the existing theory. It took about thirty years to formulate 

the new theory, the theory of quantum mechanics, which could explain the Zeeman-effect. 

So physicists started to work on a new theory. In 1913 Niels Bohr could explain the spectrum 

of the hydrogen atom with a theory where only a discrete set of energy levels are allowed 

for the electrons [3]. He introduced the principal quantum number "n" which counts the 

orbits that an electron is allowed to occupy.  His idea that an electron which is bound to a 

nucleus can only have a discrete energy distribution/ occupy a discrete energy level was a 

completely new idea. Although the later development of quantum mechanics showed that 

one quantum number is not enough to describe the inner structure of an atom the quantum 

theory by Bohr is still regarded as a pioneering work for quantum mechanics. Arnold 

Sommerfeld introduced two more quantum numbers  the azimuthal quantum number "l" 
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and the magnetic quantum number "m" [4] [5]. Later in 1921 the Stern-Gerlach experiment 

demonstrated the so called "spin" as an intrinsic property of the electron [6]. Thereby the 

fourth and last quantum number was found.  A set of four quantum numbers is sufficient to 

describe a system, like bound electrons of an atom, by quantum mechanical equations [7]. 

Having identified the basics to describe matter on a nanoscale, scientists established new 

methods in spectroscopy and further developed the theory. The results of these researches 

in this field of physics were honored by many Nobel Prizes. 

In 1939 Isidor I. Rabi discovered the molecular-beam magnetic-resonance detection 

method [8]. For the first time an oscillating magnetic field was used to study the magnetic 

properties of atomic nuclei, nowadays this concept is a standard technique. In 1944 his work 

was honored with the Nobel Prize [9]. In 1952 Felix Bloch and Edward Mills Purcell where 

honored with the Nobel Prize for the development of the magnetic resonance method for 

the application on solids and liquids [10]. Following these discoveries, the method of 

magnetic resonance detection was introduced also in other fields of science like chemistry, 

where it became one of the most important methods to analyse the structure of chemical 

compounds [11]. Another example for the wide application of the method of magnetic 

resonance detection is its use in medicine, where Magnetic Resonance Imaging has become 

one of the most precise methods to image the human body [12]. Alfred Kastler was honored 

in 1966 for studying the spatial orientation and manipulation of the nuclear spin. What was 

striking about his experiments was that Alfred Kastler used optical methods to reach a 

precision that was orders of magnitude higher than the results that could be obtained 

without the use of an optical irradiation [13].  

A method called "optical pumping" was developed to reach a high precision. Optical 

pumping is a process in which the angular momentum of polarized light is transferred to spin 

oriented particles that are split in energy due to a magnetic field. This transfer causes an 

inversion of population for the Zeeman split states. This means that the spin orientation of 

the charged particles becomes polarized in space in relation to the orientation of the 

incoming light and the magnetic field. The manipulation of the nuclear spin system by this 

process is called dynamic nuclear polarization (DNP) [14]. In Table 1-1 some of the most 

important achievements that are correlated with optical pumping and NMR are listed.  

 

 

 

 

 



8 
 

 

1968 
 

Dynamic nuclear polarization in semiconductors 
 

G.Lampel, Phys.Rev.Lett. 20, 491 
(1968) 

1972 
 

First optically detected NMR in Ga0.7 Al0.3 As crystals 
A.I.Ekimov, V.I.Safarov, Sov. Phys. 

JETP Lett. 15, 179 (1972) 

1982 
 

Optically detected NMR signal in bulk GaAs 
 

D. Paget Phys. Rev B 25, 4444 
(1982) 

1986 
 

“All-optical” NMR experiments in bulk GaAs 
 

V.K. Kalevich, Sov. Phys. Solid State 
28, 1947 (1986) 

1990 
 

First optically detected NMR signal in GaAs 
quantum-well 

 

G. P. Flinn et. al. JOL 45, 218-220 
(1990) 

1997 
 

First optically detected NMR signal in single 
GaAs/AlGaAs quantum dot 

 

D.Gammon et al. Science 277, 85 
(1997) 

2010 
 

First optically detected NMR signal in 
(InGa)As/GaAs quantum-dot  ensemble 

 

K. Flisinski et al. Phys. Rev B 82, 
081308 (2010) 

Table 1-1 Publications that give a trace about the development of optically detected and/or induced NMR 

 

 

Nowadays optical pumping is still used to attain the highest sensitivity in NMR 

measurements, like this thesis and other latest results of research can show [15, 16] .  

Having presented a short summary of the history of the discovery of nuclear magnetic 

resonances and of the development of their optical detection, I would like to proceed now 

by outlining the importance of nanostructures for the scientific and technological progress. 

 

1.2  The importance of nanostructures 

Based on the findings mentioned above the understanding of matter has developed from 

research on a macroscopic scale down to research on a nano-scale. But not only the 

knowledge but also the possibility of manipulation of matter on a nanoscale has become an 

everyday business. The development of the transistor gives a good example of how a 

process of miniaturization can enhance not only the functionality of devices and lower the 

cost of production and disposition. It can also enhance the quality of life for the common run 

of mankind. One just needs to think about a cell phone or a mp3-player. The first idea of a 

semiconductor transistor was published by Julius Edgar Lilienfeld in 1927 [17]. At that time, 

however, the industrial production of such a device was not yet possible. In 1948 Walter H. 

Brattain and John Bardeen published a study on the first working semiconductor transistor 

that was also the biggest transistor ever built [18]. But the capacities of research and 

manufacturing developed very fast, so that in 1954 (two years before W.  Brattain, J. 
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Bardeen and William Bradford Shockley were awarded the Nobel prize [19]) every citizen 

could buy the first transistor radio which consisted of four transistors [20] and in 1955 the 

Bell Labs announced the first computer based on transistors [21]. As time went by, the 

transistors became smaller and smaller. Thereby a prediction of Gordon Moore became a 

law [22]. Since about 40 years the amount of transistors on an integrated circuit has doubled 

every two years. This development is illustrated by the fact that the processor of a personal 

computer consists of approximately 592 million transistors [23]. For these purposes the size 

of a transistor needs to be very small. The size is about 45 nm [24]. However, by the time the 

process of miniaturization will probably cease. This supposition is based on the fact that the 

smallest structure of stable matter that is so far known, the atom, was used to build a 

transistor [25, 26]. Two research groups have shown that a single atom is enough to build a 

transistor. Therefore, enhancing the capability of computer technology is not "only" done by 

miniaturization of the used devices. Instead, the development should proceed in many 

directions: both the further development of already existing technologies and the research 

of new technologies. In the search of new technologies one particular idea, which I will 

outline in the following, gave rise to a wholly new branch of research.  

Up to now, only one of the characteristics of the electron has been used to transport 

information: the electric charge. But the electron also owns the spin as an intrinsic property 

[6]. Moreover, up to now the semiconducting materials used for logical operation were 

macroscopic, so that the effects of the spin could be ignored. In the range of several tens of 

nanometers, however, quantum mechanical effects start to dominate the physical 

conditions of the system [27]. Therefore it is possible to use not only the electric charge but 

also the spin of the electron for signal processing and logical operations in semiconducting 

electronic devices [28]. The research field occupied with this idea is called spintronic. The 

first commercial useful discovery (the giant magnetoresistance) was honored with a Nobel 

Prize in 2007 [29]. An outlook on the development and practical use of spintronic devices 

will be given in the following chapter. Now I would like to focus merely on the idea of 

spintronic and present a puristic way for observation of spin related phenomena. The 

interest of scientists operating in the field of spintronics is to trace the way of a spin oriented 

carrier, like the electron, that was induced into the material of interest [30]. The variety of 

materials is enormous (e.g. semiconducting, ferromagnetic, or paramagnetic materials ...), 

just like the amount of possible spatial confinements for the spin oriented particles. The 

puristic idea is to choose a nanostructure that allows the observation of quantum 

mechanical effects without the influence of the shape of the structure. The simplest 

geometric object with these attributes is a dot. The dot, as a geometric object, has no 

elongation in space. It is a zero dimensional object. Such objects cannot be constructed in 

reality. However, an approximation of a “dot shaped” structure, that can be constructed in 

reality is the so called "quantum dot” (QD). Quantum dots have no spatial preferences. 

Therefore it is equally elongated in all spatial dimensions. A typical QD has a diameter of ten 

to several tens of nanometers. Nanostructures with a dot shape are the primary geometrical 

objects in which elementary particles, like electrons, occupy discrete energy levels and obey 
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Hund’s rules as the states are filled [31, 32]. This illustrates that although the electrons in 

nanostructures are not bound to one particular atom, but interact with all given atoms 

within the nanostructure, they behave just like electrons bound to an atom. While electrons 

bound to an atom interact with a single nucleus, electrons within a quantum dot interact 

typically with      nuclei [33]. Under special conditions, as specified in chapter 3.2.2, a 

quantum dot can be occupied by one electron or one hole. This allows observing and 

manipulating quantum properties even for single particles. A single spin in a solid 

confinement can be seen as a realization of a quantum memory and is therefore one of the 

most promising candidates for the realization of spintronic and quantum information 

processing devices [34, 35]. However, some limitations for the use of the spin in quantum 

memory devices have been identified. One limitation is the coherence time of the electron, 

which has a typical    time of 20 ns [36]. Due to the strong localization of a charge carrier in 

a quantum dot the interaction of the charge carrier with the nuclei cannot be neglected [37, 

36]. One possibility to enhance the coherence time is to manipulate the nuclear spin system 

by the use of dynamic nuclear polarization (DNP) to assume certain configurations [38, 39, 

40].   

Important questions that arise in this context are: How long can the polarized nuclei stay 

polarized? What determines and influences the relaxation time of the depolarization of the 

previously polarized nuclei? How can the DNP process be manipulated?  

Semiconductor materials like gallium arsenide are often used for electronic devices 

because of the possibility to create nanostructures that are very pure. Moreover a large 

variety can be obtained by tuning the electron energy by doping these semiconductor 

nanostructures with different atoms. Because of the discrete energy levels of the electrons 

and the energy of the bandgap these nanostructures provide means of optical initialization 

and detection of charge carriers occupying the quantum dot. In addition, polarization optics 

can be used to induce and detect the spin orientation of polarized charged carriers.  

Having explained the idea of spintronics, I would like to proceed now to the presentation of 

some practical applications of the findings based on the research of spintronics. 

 

1.3 Practical applications in Spintronics 

In 1988, Albert Fert and Peter Grünberg independently discovered the Giant 

Magnetoresistance [41, 42]. This effect can be used to create highly sensitive magnetic field 

sensors [43, 44]. Since 1997 such sensors are commercially used for common hard drives to 

reach the highest data capability [45]. Other results in spintronics are also used nowadays in 

commercial applications, but are of a smaller economic importance than the hard drives 

mentioned above. The key word for this chapter is Magnetoresistive Random Access 

Memory (MRAM) [46].  
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MRAM is a 64 Mbit non-volatile media that uses magnetic polarization rather than 

electric charge for infinite reading and writing operations. Consequently, it is possible to 

store data for tens of years without electric power consumption. This device that is working 

at room temperature promises fast random writing and access speeds with low power 

consumption. A read out of these magnetic bits is possible by using magnetic tunnel 

junctions (MTJ) [47]. Superlattice structures of ferromagnetic and non-conducting oxides 

build a tunneling barrier for the electron. The tunneling which conserves the spin of the 

electron is only possible, if the spin orientation of the ferromagnetic material and the 

tunneling electron is the same. Depending on the structures built and materials used the 

superlattice structures can be used as detection heads for magnetic fields [48] or strain 

detection [49] with a high sensitivity and spatial resolution in the nanometer range. All these 

devices deal with highly spin polarized electrons. To build integrated circuits based on spin 

polarization is theoretically possible [50], but there is a need to control and manipulate the 

spin current. Integrated circuits based on electric current use transistors to attain this end. 

For spin current based integrated circuits it is necessary to use spin-transistors. Several 

research groups have succeeded in building spin-transistors that operate at room 

temperature by using sandwich structures of ferromagnetic and insulating materials [51] or 

even traditional semiconductor materials like silicon [52]. A spin transistor is a spin sensitive 

device that can control and switch electric current. Different research groups hold different 

opinions on how a spin transistor should be constructed,  whether silicon [52] or a sandwich 

structure of MgO/FeCo should be used for its construction [53] or whether modified MOS-

transistors with added magnetic layers out of               on the source and drain. 

Compared to an ordinary MOS-transistor the modified MOS-transistor is even smaller in size 

(several tens of nanometers) with lower power consumption [54]. Publications about silicon 

quantum dots working as spin transistors at room temperature show [52] that traditional 

semiconductor materials are still interesting for spintronic devices.  
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2 Theoretical Background 

 

2.1 Nuclear interactions 

The main aspect of this thesis is the manipulation of the nuclear spin system in quantum 

dots and the interaction of this manipulated system with the resident electron of a quantum 

dot. For an analysis and interpretation of the observed effects it is sufficient to determine a 

Hamiltonian  ̂ that contains three parts, namely the Zeeman interaction  ̂ , the quadrupole 

interaction  ̂  , the hyperfine interaction  ̂  .  

 ̂   ̂   ̂   ̂    (2.1) 

Each part represents an interaction that influences the energy levels of the nuclear spin 

system. The influence of each interaction is discussed in subchapters separately. 

 

2.1.1  Zeeman interaction 

The first part  ̂  appears for nuclei in a static homogenous external magnetic field   .   ̂  is 

due to an interaction of the nuclear spin and  the static external magnetic field. Neglecting 

nuclear-nuclear and other interactions this term is expressed as 

 ̂            ̂  (2.2) 

where      is the gyromagnetic ratio of the proton and   is the Planck constant. This is the 

ratio of the magnetic dipole moment    to the nuclear spin  , which exist for every nucleus 

with a non-zero nuclear spin. 

           (2.3) 

Some values of     for different nuclei are exemplarily shown in Table 2-1. According to the 

usual convention the z-direction is defined in the laboratory frame by the direction of the 

static homogenous external magnetic field   .  ̂ is the nuclear spin operator, where the 

three spatial components are denoted  ̂ ,  ̂  and  ̂  and have the cyclic commutation 

relations 

  ̂   ̂      ̂   (2.4) 
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Nucleus 
Natural 
Isotopic 

Abundance[%] 
Spin I 

     ⁄  
[kHz/G] 

Q 
[        ] 

      60.4 3/2 1.022 +0.17 

      39.6 3/2 1.298 +0.10 

      100 3/2 0.729 +0.31 

       4.3 9/2 0.931 +0.8 

       95.7 9/2 0.933 +0.8 

      100 5/2 1.050 +0.33 

      100 5/2 1.109 +0.14 

Table 2-1 Examples of the gyromagnetic ratio and the quadrupole moment Q with the corresponding nuclear 
isotopes [55]. Detailed information about the quadrupole moment Q is given in chapter 2.1.2. 

 

Under the influence of    the degenerate nuclear spin states | ⟩ split in different energy 

levels. This effect is known as the Zeeman-splitting. In respect to the direction of    the 

nuclear spin states | ⟩ are split in equidistant energy levels, which are given by  

            (2.5) 

           (2.6) 

Here    is the Larmor frequency of a nucleus with the spin quantum number I. The operator 

 ̂  has 2I+1 eigenstates | ⟩ (resulting in 2I+1 energy levels separated in energy by   ). As a 

convention the lower energy states correspond to higher (positive) m values [56]. The 

expectation values of the components perpendicular to the z-axis ( ̂ ,  ̂ ) show an oscillating 

behavior in time with a frequency given by eq. (2.5). As shown in Table 2-1 every nucleus can 

be assigned its own gyromagnetic ratio    . Therefore it is possible to identify the nuclei by 

knowing their Larmor frequency.  

In contrast to the values of  ̂  and  ̂  the expectation values for  ̂  are stationary. The 

classical interpretation is a precession of a magnetic dipole around the z-axis. In a static 

homogenous external magnetic field the population of the energy levels for an ensemble of 

identical nuclei is given by the Boltzmann distribution after reaching the thermal equilibrium. 
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For a two level system which is given by a nuclear spin I=1/2, for the population       and 

      of the eigenstates         and         results  

     

     
         ⁄  (2.7)  

where T is the absolute temperature of the ensemble and    is the Boltzmann constant [57]. 

For     nuclei (protons) in a magnetic field of 5T            . At room temperature 

               . Equation (2.7) shows a difference in population in this case of about 

one part in    . This example shows the intrinsically low sensitivity which is a well-known 

problem for experiments involving magnetic properties of nuclear populations (such as in 

common NMR). There are two possibilities to enhance the differences in population. The 

first possibility involves the increase of    which in turn increases linearly the distance in 

energy of the Zeeman-levels. As shown in eq. (2.7), a larger     causes a larger difference in 

population. The second possibility to enhance the differences in population is to increase the 

quantity of the nuclei that are under the influence of   . Even such a small difference in 

population is sufficient to create a nuclear magnetization parallel to   .  The thermal 

equilibrium magnetization for an ensemble of nuclei with I=1/2 is given by  

   
     

      

    
   (2.8) 

   is the number of nuclei per unit volume.  

 

2.1.2 Quadrupole interaction 

For nuclei with spin I > 1/2 asymmetric charge distribution leads to a quadrupole moment Q. 

Nuclei with a quadrupole moment become sensitive to an electric field gradient (EFG). 

Up to now the electric charge of the nuclei, which leads to an interaction with electric 

fields, has been neglected. The interaction energy W of the nucleus in this electrostatic 

potential      is given by the integral over the volume. 

  ∫          
     (2.9) 

      is the nuclear charge density distribution. Expanding      at the center position of 

the nuclear charge distribution in a Taylor series gives 

                  
 

 
∑  
 

   (
   

      
)      (2.10) 
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The sources of the electric field lie outside the nucleus. Therefore      in the region of 

the nucleus. According to the Taylor series the interaction energy can be expressed as 

               
 

 
∑   (

   
   

)
 

  

  

  (2.11) 

 q is the total charge of the nucleus, p is the nuclear electric dipole (EDM) moment and     is 

the nuclear electric quadrupole moment tensor. The first term gives the total electric charge 

of the nucleus. It describes the electrostatic interaction of a point shape nucleus and the 

electric potential     . For a point charge this would be the only term. The quantum 

mechanical expression of the EDM is 

  ∑∫       |        |
           

 

   

   (2.12) 

ψ is the normalized wave function of a stationary state of the nucleus with the atomic 

number Z and mass number A.  The nuclear charge is carried by protons each having a 

charge   . 

      ∑         

 

   

   (2.13) 

      is, denoting the co-ordinates of the protons by   , the charge density of the protons. 

Since the parity of a stationary state is defined by +1 or -1 it can be shown that the 

transformation         gives p = -p or p equal to zero. So the first non zero term in the 

multipole expansion is the third term of the expansion corresponding to the electric 

quadrupole moment Q. With the quantum mechanical expression [58]  

     ∑∫    (           ) 
|        |

          

 

   

   (2.14) 

The quadrupole moment tensor     is symmetric (       ) and the trace of     is zero 

(             ). All the elements of     (i,j = 1,2,3 ) can be expressed in terms of the 

element    . This value is called the nuclear electric quadrupole moment and is denoted by 

Q. Moreover it can be shown that Q can be expressed in terms of the spin vector I of the 

nuclear state as 

   
 

 
          (2.15) 
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It is important to note that Q is only non-zero for nuclear spins    , as shown in eq.  (2.15). 

Eq. (2.11) shows that the quadrupole interaction term vanishes without a quadrupole 

moment of the nucleus. This means that nuclear transitions of I=+1/2> to I=-1/2> are not 

affected in first order. In solids with cubic symmetry, like GaAs, the quadrupole interaction 

also vanishes. In this case, however, the vanishing of the quadrupole interaction takes place 

due to the vanishing of the electric field gradient tensor    .  

    
 

 
∑   

  

(
   
   

)
 

                (2.16) 

  
 

 
∑   (

   

      
)
   

 

  
 

 
∑                     

  

 

In general the electric field gradient is a 3x3 tensor which has a diagonal form in a properly 

chosen co-ordinate system. These three diagonal components (           ) must obey 

Laplace's equation, so that the sum of these components becomes zero  

 
 
 

   
 
 
 
 

   
 
 
 
 

   
    (2.17) 

In the special case of a crystal with a cubic unit cell symmetry all off-diagonal elements of     

are zero and the three diagonal elements are equal. With regard to eq.(2.17) no quadrupolar 

interaction can occur in a cubic crystal. Nonetheless, due to strain in nanostructures, like 

quantum dots, the cubic symmetry of the unit cell is broken. The consequence of a broken 

symmetry is a change of the EFG. The EFG tensor is now dominated by the direction and 

intensity of the strain in the lattice structure. According to the Voigt notation the EFG tensor 

is defined by [59] 

 

   ∑                   

 

   (2.18) 
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The     tensor can be extracted from nuclear acoustic resonances [60]. It relates the EFG 

tensor     to the strain tensor   of the lattice. Shulman et al. have shown that the S tensor 

only has two independent elements,     and     [61]. In the special case of GaAs quantum 

dots it is possible to use a cylindrically symmetric QD model and the transversal isotropic 

approximation in the continuum elasticity theory. With these approximations the strain 

within a quantum dot is oriented only in the growing direction (z-axis) of the quantum dot, 

so that the EFG tensor can be written as 

             (2.19) 

Nuclei with spin I=1 or higher can have a non-zero quadrupole moment. The classical picture 

is that the charge distribution of nuclei with a spin I>=1 is no longer spherical, like in nuclei 

with spin I=1/2. With spin I>=1 the charge distribution becomes spheroid like (cigar-shape). 

The elongation of the charge distribution leads to an electric quadrupole moment Q which 

interacts with an electric field gradient (EFG). The energy of the electric quadrupole 

interactions depends on the orientation of the quadrupole moment relative to the EFG. A 

charge distribution whose symmetry axis is parallel to the direction of the EFG will give a 

positive     (prolate shape), while a charge distribution whose symmetry axis is 

perpendicular to the direction of the EFG (oblate shape) will give rise to a negative    . The 

influence of the quadrupole interactions on the Zeeman splitting leads to a splitting of the 

nuclear spin-states that is no longer equidistant in energy, like shown in  

 

Figure 2-1  (left) Zeeman splitting without quadrupole interaction for nuclei with spin   
 

 
. Red arrows 

indicate the possible transitions which are equidistant in energy. (right) Zeeman splitting with quadrupole 

interaction for nuclei with spin   
 

 
. Each transition indicated with a red arrow got its own distance in energy 

(           ). 
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2.1.3 Hyperfine interaction 

The third term  ̂   of eq.(2.1) is derived from the mutual interaction of the nuclear spin I 

and the electron spin S. The general form of this Hamiltonian is 

 ̂        ̂   ̂  (2.20) 

    has two contributions            . Electrons with a S-type wave function 

contribute to    and electrons with P-type wave function contribute to   . Although the 

influence of the P-type electrons is very weak, some research groups have shown that it may 

not be neglected completely [62]. Other research groups have even shown that holes with a 

P-type wave function interact with nuclei via the hyperfine interaction [63]. Because of the 

overlap of their S-type wave function and the nuclear spin, in this thesis only contributions of 

S-type electrons are taken into account. Due to this overlap the influence of S-type electrons 

on the nuclei is much larger than the influence of electrons with a P-type wave function.    

can be calculated as 

               |    |
    (2.21) 

   is the gyromagnetic ratio of the electron,    is a proportionality coefficient, |    |  is the 

probability of presence of an electron which is located at the position of a nucleus. For some 

applications later in the text it is more suitable to use ladder operators  

 

 ̂      [
 

 
( ̂   ̂   ̂   ̂ )   ̂   ̂ ]  (2.22) 

The typical timescale of the hyperfine interaction is        [64] and the two major effects of 

the hyperfine interaction are (i) inelastic relaxation of the electron spin via the so called "flip-

flop" process (ii) the Overhauser shift of the electron spin resonance frequency [65]. The 

mathematical formulation of these two effects can be seen in eq.(2.22). The first part of the 

mathematical formulation including the ladder operators ( ̂   ̂    ̂  and  ̂   ̂    ̂ ) 

describes a dynamic process of adding or subtracting an angular momentum of the electron 

to the nuclear spin system. The total angular momentum is conserved in this process. This 

process leads to the so called "dynamic nuclear polarization" (the DNP is also known as the 

Overhauser effect [66]). The initialization of an angular momentum to the electron can be 

achieved optically by excitation with circularly polarized light. The second part of the 

mathematical formulation  ̂   ̂  is called the Zeeman interaction between nuclear and 

electron spin, because polarized nuclei act on the electron as an effective magnetic field, 

which is called the Overhauser field [67, 68, 69]. A spin polarized electron also acts on the 

nuclei as an effective magnetic field, which is called the Knight field [66]. The Overhauser 

field can be expressed by  
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   ⟨ ⟩

    
   (2.23) 

where ⟨ ⟩ is the average nuclear spin and    is the effective g-factor of conduction electrons. 

In case of an Overhauser field that consists of different species of nuclei, the total 

Overhauser field is a sum over all species. In a single self-assembled InGaAs/GaAs QD it can 

reach about 3T [71].  

The Knight field    can be expressed by 

            ∑  
 

 | (  )|
 
   (2.24) 

where ∑   is the sum over all contributing electrons.    is the electron spin of each electron j 

and | (  )|
 
 is the probability of the presence of each electron j at the location  . The closer 

a spin polarized electron is located to a nucleus, the stronger the interaction of the Knight 

field on this nucleus will be. Conduction band electrons have a S-type wave function. In the 

center of a quantum dot their probability of presence is the highest. For nuclei at the center 

of a quantum dot this interaction suffices to suppress the dipole-dipole interaction of 

neighboring nuclei, which is the main source for nuclear depolarization. Under the influence 

of the Knight field a nuclear polarization is possible even without an external magnetic field 

[66]. Furthermore the Knight field gives a contribution to the total magnetic field, which 

leads to a Knight shift of the resonances for nuclei in NMR measurements [72, 73].  

 

2.1.4 Interaction with nuclear fluctuation field 

As mentioned above, the polarized nuclei can be summarized to an effective nuclear field 
known as the Overhauser field. In experiments a nuclear polarization of 100% was not 
observed up to now.  

 
But polarizations close to 100% could be achieved, which is sufficient to observe a 

weakening of effects that depolarize the Overhauser field (even in the absence of a 

continuous electron spin polarization in the quantum dot) [74]. The spin direction of the 

unpolarized nuclei changes randomly. For timescales much longer than the nuclear spin 

correlation time, which is in the order of       , the unpolarized nuclei give no contribution 

to the Overhauser field. At such time scales the sum of the spin vectors can be averaged to 

zero. But the electron spin lifetime is orders of magnitude smaller than the nuclear spin 

correlation time. At time scales of the electron spin lifetime the sum of unpolarized nuclear 

spin vectors is non zero and pointing in a constant direction. The result is an interaction of 

the electron and an effective magnetic field which is called the frozen fluctuation field     

[37].  Several theoretical studies show that the dominant mechanism of electron spin 
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polarization decay in quantum dots at low temperatures is due to the interaction with the 

frozen fluctuation field     if external magnetic fields do not exceed     [75]. It is possible 

to estimate the magnitude of     for a quantum dot made of N identical nuclear spins I. The 

average amplitude of the nuclear fluctuation field is given by  

     
 

    

 

√ 
√         (2.25) 

The maximum Overhauser field is reached when all nuclear spins are polarized  

  
    

 

    
      (2.26) 

For InAs and GaAs quantum dots the maximum Overhauser field is in the range of several 

Tesla. As a result       
    √ , which corresponds to an effective field of typically several 

tens of  mT [76]. The radiative lifetime of charge carriers in quantum dots is orders of 
magnitude shorter than the time that is needed to change the direction of     ( 100   ) 
[77]. During this time charge carriers can coherently precess around    . Due to fast 
precession only the projection of electron spin onto the field is conserved. The magnitude 
and the direction of the fluctuating field are randomly distributed in the QD ensemble. 
Therefore, in the absence of other fields, such as the external magnetic field and the field of 
nuclear polarization, the depolarization of the electron spin by the fluctuating field reduces 
the observable z component of spin polarization to 1/3 of its initial value [37, 78]. In a 
quantum dot ensemble the amplitude and the direction of     in every quantum dot are 
different. Therefore the total magnetic field is different for every quantum dot. The total 
magnetic field for the residual electron is a sum of the frozen fluctuating field, the 
Overhauser field and the external magnetic field. The result is a decay of the average 
electron spin 〈    〉 in a quantum dot ensemble. In measurements acquired under 
experimental conditions the signal is typically collected over several seconds. The 
consequence is an integration over many different constellations of the frozen fluctuation 
field which gives a coherence time   

  of the order of     . The effect of averaging can be 
eliminated by using spin-echo techniques. Under such experimental conditions coherence 
times of the order of      at            can be found [79]. Theory and experiments can 
show that the hyperfine interaction with     is the main source for electron decoherence in 
quantum dot structures [76].  

  

2.1.5 Spin temperature 

 

As mentioned above, in the presence of a constant external magnetic field    the nuclear 

spin states are no longer degenerate. In order to describe the nuclear spin system under the 

influence of    as a thermodynamic system with a certain temperature, the nuclei need to 

interact with each other so that a thermal equilibrium is achieved. The model of a spin 

temperature is valid for isolated systems where the number of particles and energy is 
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conserved [80, 81]. The interaction that can establish a thermal equilibrium in the nuclear 

spin system is the dipole-dipole interaction [82]. It is given by  

 ̂   
  
 

 
∑

     

    
(         

                 

    
 )

   

   (2.27) 

where     is the translation vector between the nuclei   and   . The influence of this 

interaction on the nuclear spin system can be separated in two parts [83]. One part of the 

interaction is spin conserving and leads to a spin diffusion that tends to make the nuclear 

polarization uniform in space. The total energy of the nuclear spin system does not change 

by the dipole-dipole interaction, but differences in population of the Zeeman levels are 

reduced. Problems with the application of this model appear in systems where the Zeeman 

levels are not equidistant since then the energy absorbed by one nucleus in a transition 

between the Zeeman levels is different from that released by the other. If the differences of 

the Zeeman levels are not too large, the energy conservation can be still fulfilled by the 

Heisenberg uncertainty principle. But the probability of transitions decreases with an 

increasing of the energy mismatch. The other part of the interaction is spin non-conserving 

and leads to a depolarization of nuclear spins in magnetic fields      , where    is the 

"local field" which is created in the position of a nucleus by the neighbouring nuclei. For bulk 

GaAs,    is on the order of 0.1 mT [84] and leads to a precession period of a nuclear spin on 

the order of       . This is an intrinsic time scale for the nuclear spin system in which a 

thermal equilibrium is established. For a system with non-equilibrium nuclear spin 

polarization that is not influenced by any other interactions, this time is needed to 

depolarize all components of the nuclear spin system. It is called the    dipole-dipole 

relaxation time. For       the time    is the transverse relaxation time, because it 

determines the decoherence of the spin component perpendicular to    [77]. It was 

experimentally shown that in self-assembled quantum dots the strain induced nuclear 

quadrupole interaction can increase the    time [85]. The nuclear spin temperature is 

conserved during the spin-lattice relaxation time   . This time denotes the isolation of the 

nuclear spin system to the crystal lattice. The relation between    and    is important for the 

legitimation to describe the nuclear spin system as a thermodynamic system. Therefore    

needs to be larger than   . In this case the nuclear spin system can achieve thermal 

equilibrium and be described by one spin temperature so that the relaxation process to the 

lattice can be treated as a small perturbation of the system. In theory is       [86, 87]. 

Experiments could prove that in bulk GaAs    is on the order of minutes [88, 89]. In bulk 

silicon    is even on the order of days [90]. The situation changes for nuclei in n-doped 

quantum dots (or at a donor center). In this situation the quantum dot is permanently 

occupied by an electron and the coupling to the lattice is effectively mediated by the 

electron spin. The    time is much shorter in this case and becomes comparable with the    

time [91, 40]. However, if a changing of the nuclear spin temperature occurs, it has an 

influence on the population of the Zeeman levels. Thereby the magnetic quantum number I 

of a nucleus relative to    is increased, while the magnetic quantum number of another 
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nucleus is decreased. No additional energy needs to be added, as it is also in the case of 

collisions between molecules in an ideal gas.  In other words, the dipole-dipole interaction is 

responsible for nuclear spin diffusion. The population of the Zeeman levels is given by the 

Boltzmann distribution for each spin temperature.  

 

 

2.2 Negative circular polarization 

As mentioned in the previous section, all quantum dot samples used in this thesis are n-

doped. The quantum dots of the sample used have a diameter of about 10 – 30 nm and a 

height of several nm. Since in an InAs-GaAs system the exciton Bohr radius is 10 – 20 nm, the 

size of the quantum dots is small enough for the three- dimensional quantum confinement 

effect [92]. Under a three-dimensional quantum confinement the allowed energy levels 

become discrete values for particles occupying the quantum dot. Electrons trapped in a 

quantum dot create shell structures that are occupied in accordance to the generalized 

Hund’s rules, similar to electrons bound to an atom [93, 94, 95, 96]. Therefore 

nanostructures like quantum dots are also called "artificial atoms" [97, 98]. The band 

structure of a certain material is given by the periodic repetition of the unit cell. In bulk 

material the assumption of an infinite repetition, resulting in symmetry operations, gives a 

correct description of the band structure. Quantum dots have a small spatial extent and 

consist of a finite and countable repetition of the unit cell, which leads to a reduction of 

symmetry operations. As a result, the band structure of the bulk material differs from the 

band structure of the quantum dot. Many research groups investigate theoretically and 

experimentally the electronic structure and spin effects of electrons in quantum dots. A 

powerful tool for theoretical studies is the density functional theory (DFT) and the 

(extended) Hartree-fock theory [99, 100]. Experimentalists often use spectroscopic methods 

like the far- infrared spectroscopy. For pyramidal self-assembled InAs-GaAs quantum dot 

structures a model is constructed to calculate exchange and correlation terms of the many-

body Hamiltonian by the use of the local spin density approximation (LSDA) [101]. In 

comparison with the results achieved experimentally using far-infrared spectroscopy, this 

theoretical model shows good agreement [102]. Besides, a Monte Carlo simulation 

quantifying the error introduced by LSDA justifies the use of LSDA calculations to test models 

of self-assembled dots against current experimental measurements [103]. Experimental and 

theoretical investigations have shown that the shape and deformation of quantum dots have 

a dramatic influence on the energy levels of holes and electrons [104, 105]. A more detailed 

analysis of self-assembled In(Ga)As/(Al,Ga)As quantum dots shows a correlation of the 

quantum dot symmetries and the possibility of an exciton state mixing. Quantum dots with a 

high symmetry belong to the     group with an in-plane rotational symmetry. This 

symmetry can be broken down to      or    by an uniaxial deformation, for example induced 

by strain. In the simple case of the     symmetry excitons with total spin | ∑  | =1 and 
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| ∑  |=2 do not mix with each other. In the case of a fully broken symmetry it is no longer 

meaningful to distinguish between excitons with | ∑  | =1 and | ∑  |=2 due to the strong 

mixing of the eigenstates. A more detailed analysis is provided in [106]. This thesis handles 

nuclear spin phenomena where effects of exciton state mixing are not considered. The 

following description of optical selection rules is given for quantum dots with a rotational 

symmetry     and is sufficient for the studied quantum dots in this thesis. 

In n-doped quantum dots the absorption of a photon leads to the creation of a trion state 

consisting of two electrons in the conduction band and a hole in the valence band, also 

called a negatively charged trion   . In this case three charged particles can interact with 

each other. The two electrons of the trion interact by the spin-spin interaction, which leads 

to a fine-structure of the trion. Besides there is the electron-hole interaction [107, 108, 109, 

110]. In analogy to an exciton there are also different constellations of a trion. The 

constellations of the trion are characterized by the population of different energy levels of a 

quantum dot with different spin orientations. When both electrons of the trion occupy the 

ground-state of the conduction band and the hole occupies the ground-state of the valence 

band, it is called a "cold" trion. Due to the Pauli exclusion principle, the spin orientations of 

the electrons are opposite to each other, so that the total spin is zero. Therefore electron-

hole spin interactions can be neglected. The emission of a "cold" trion constellation, due to 

an electron-hole recombination, is called the ground-state emission. The resident electron, 

resulting from the delta-doping, always occupies the ground-state of the conduction band. 

However, the photoexcited electron can also occupy the first excited state of the conduction 

band. The exchange interaction between these electrons leads to an energy splitting of the 

trion states. In comparison the electron-hole exchange interaction is one order of magnitude 

smaller [108]. In this constellation, the energy of the trion is larger than in the "cold" trion 

constellation. Therefore it is called an excited trion or a "hot" trion. An overview of the 

different “hot” trion constellations and the corresponding energies are given in Figure 2-3 

and Figure 2-2. 
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Figure 2-2 Energy levels of the “hot” trion with a hole spin           . The energy difference      of the 

ground-state    and the excited state   
  is typically several tens of meV. The electron-electron exchange 

interaction splits the excited state of the trion into a single state   
  with total spin  ∑     and a triplet state, 

which is shown in Figure 2-3. The energy splitting      is typically several meV. The electron-hole interaction 
   is typically several hundred µeV. 

 

Additionally, one can also control the spin orientation of the photoexcited electron by the 

use of circularly polarized light. Depending on the total spin  ∑   of the recombining 

electron-hole pair a "dark" or "bright" trion can be formed. The total spin is conserved 

during a recombination. It can have the value of  ∑   | | or  ∑   | |. Photons, however, 

can only have a spin angular momentum of   . As a consequence only the recombination 

with a total spin of   ∑   | | is radiative and releases a circularly polarized photon. The 

recombination with a  ∑   | | is non-radiative, because as a boson it is only possible to 

have an angular momentum of   . Examples of "dark" and "bright" trions are given in Figure 

2-3.  

 

Figure 2-3 A hole spin            enables three constellations of the “hot trion”. Depending on the total 
spin  ∑  of the “hot trion” a bright and a dark recombination is possible.  
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The radiative decay time of the trion state is up to 1 ns, which is comparable to that of an 

exciton. During this time, an optical spin manipulation [111] and an optical spin readout are 

possible [112, 113]. In an undoped quantum dot the possibilities of coherent electron spin 

manipulation are limited by the radiative lifetime of the exciton. In n-doped quantum dots 

the resident electrons show a possibility of coherent spin manipulation for  10 ns. In this 

case, the limiting factor is given by the hyperfine interaction of the electron with the nuclear 

spin fluctuation. This time is surprisingly short, because the nuclear spin fluctuation field 

changes on a timescale of several hundreds of nanoseconds [114, 115].  

 

2.2.1 Effect of negative circular polarization (NCP) 

The effect of negative circular polarization (NCP) is observed after excitation of a sample 

with circularly polarized light of one helicity, if the resulting photoluminescence that can be 

detected has a stronger intensity of the opposite helicity. In other words, if the sample is 

excited with    polarized light, then the photoluminescence of the sample has    

polarization light. Different models have been realized to describe the NCP-effect. 

Admittedly, there are differences between the models describing the NCP-effect. However, 

the existing models consent with regard to two aspects. 

The first common aspect describes the fact that the NCP-effect has only been observed 

on n-doped nanostructures [109, 110, 116]. Nowadays, the observation of this effect is seen 

as a proof that the sample is n-doped with one electron per nanostructure. For highly n-

doped nanostructures a disappearance of the NCP-effect was observed [117]. The second 

aspect describes the appearance of a spin flip that is followed by an electron relaxation to 

the ground-state of the valence band.  
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Figure 2-4  Step 1.1 shows the relaxation of an electron-hole pair that was excited into the wetting layer. The 
relaxation of the photoexcited electron to the ground-state of the conduction band is not possible due to the 
same spin orientation of the resident electron and the photoexcited electron (constellation of a “hot trion”). In 
step 1.2 a spin flip process is shown, which allows the photoexcited electron to relax into the ground-state. The 
recombination of the “cold trion” in step 1.3 leads to a negative circular polarization. Step 2.1 shows a 
relaxation of the photoexcited electron-hole pair to the ground-state of the quantum dot, which leads to a 
formation of a “cold trion”. The recombination in step 2.2 leads to a positive circular polarization. 

 

In the following chapters three models of the NCP-effect for n-doped quantum dots will be 

outlined to show the different basic approaches.  

 

Model A 

This model mainly fits for resonant excitation to the ground-state of the conduction band of 

the quantum dot, besides for structures having a shallow potential well like quantum wells 

with slight fluctuations of thickness [118]. At points of thickness fluctuations the potential 

slightly differs from the surrounding material [64]. It only considers the resonant excitation 

of an electron to the ground-state of the conduction band. Due to the resident electron in 
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the ground-state only electrons with an opposite spin direction can be excited by a photon. 

One of the three possible recombinations comprises a spin flip which is followed by the NCP-

effect, as it is shown in Figure 2-5. All possible recombinations occur with the same 

probability. 

 

Figure 2-5 Constellations of a trion in an n-doped quantum dot. Constellation (a)-(d) gives a bright 
recombination, in contrast (e) and (f) lead to a dark recombination. The probability of each constellation is 
listed for every model separately. A minus sign (-) indicates a negative circular recombination. 

 

Self-assembled quantum dots with an excited electron-hole pair in the wetting layer cannot 

be described by this model, because other formations of the trion are not considered [119]. 

 

Model B 

This model is suitable for n-doped self-assembled quantum dots where a trion is formed due 

to an excitation in the wetting layer. It is assumed that after the relaxation of the electron to 

the ground-state the electron spin is still oriented while the hole spin has been randomized 

during the relaxation to the ground-state. As illustrated in Figure 2-5 four different trion 

constellations occur with equal probability. The states (a), (b) and (f) lead to radiative 

excitation, whereas (e) leads to a dark recombination. (a) and (b) will result in the same 

circular polarization as the excitation light. The state (f) shows the NCP-effect. It was 

experimentally shown that within the first 20 ps after the excitation the photoluminescence 

has the same circular polarization as the excitation light. After 20 ps the intensity drops 

rapidly and for times up to  1 ns a rising of NCP is detected after which it decays [109]. The 

fast recombination was identified as state (b). It is an electron-hole spin flip process which 

allows for the excited electron to relax very quickly into the ground-state. The slower 

recombination of about  1 ns was identified as state (e). For the dark state (e) the 

asymmetric exchange interaction is much smaller, so that the spin-flip process is due to the 

spin-orbit coupling. This recombination will result in NCP, so that the overall net circular 

polarization will be 50% and the majority of the remaining electrons will be spin-down. 
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Model C 

This model is also suitable for n-doped self-assembled quantum dots. It is assumed that a 

photo-excited electron keeps its spin orientation during the relaxation from the wetting-

layer to the ground-state of the quantum dot, just like in model B. The main difference to 

the model B concerns the dark trion state (f). In the case of two electrons with the same spin 

orientation, with one electron occupying the ground-state and the other electron occupying 

the first excited state, the exchange interaction of the hole with the two electrons 

completely suppresses the independent hole spin relaxation. Due to the suppressed 

relaxation the probability of the generation of a dark trion equals zero [120]. In the case of 

two electrons that both occupy the ground-state and are coupled so that the total spin is 

zero, the exchange interaction is almost negligible. Then the hole spin can relax with a 

probability q.  

As shown in Figure 2-5 the only constellation in which NCP occurs is state (b).    

represents all quantum dots where the resident electron has the same spin orientation as 

the photoexcited electron. Quantum dots with an opposite orientation of the resident 

electron do not contribute to the NCP-effect and are represented by   . The amplitude of 

the detected negative circular polarization        is proportional to   –   , because a 

positive circularly polarized emission will mix with a negative circularly polarized emission. 

During a detection such mixing of circularly polarized emission leads to a decrease of 

negative circularly polarized light. One should keep in mind that not all quantum dots of one 

sample have one resident electron, but that through the detection of the NCP-effect only 

those quantum dots who have a resident electron are studied.  

 

2.2.2 Influence of the transverse magnetic field on the NCP-effect (Hanle-effect) 

In the considerations presented so far, the optical axis was the quantization-axis and only 

two orientations of the spin were possible. The presence of a magnetic field leads to an 

interaction with the magnetic moment of the particles and induces the Larmor precession. 

The magnetic field     
  is the total magnetic field that acts on the electron and is a sum of 

the Overhauser   , the nuclear fluctuation field     and the externally applied magnetic 

field     

    
                   (2.28) 

and determines the quantization-axis for the Larmor precession. Interactions based on the 

electron spin are absent for a system of coupled electrons with the total spin equal to zero, 

as given in a constellation of a cold trion. After an electron-hole recombination has taken 

place the only remaining electron in the ground-state is the resident electron. The total spin 



29 
 

is given now by the resident electron which has a non-zero spin so that an interaction with 

    
  occurs and the resident electron precesses with the Larmor frequency   .  

     |  |     
  ⁄   (2.29) 

The Larmor precession of the resident electron is interrupted when a second electron is 

injected into the ground-state, e. g. a photo excited electron. The duration of the Larmor 

precession is given by     . The amplitude of the negative circular polarization      is 

proportional to 〈  〉, the time-average z-component of the resident electron that precess 

with the Larmor frequency. It is also possible to determine the time dependent value       

in a static magnetic field     
   (  

    
    

 ) that has three components in space [121].  

      
  

     
   

[   
       

   (  
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     ]  (2.30) 

The values of       depend on the absolute value of    and the angle α, between     
  and 

the z-axis. For a better understanding of this formula one can consider the following 

example: given the simplified condition that     
  only consists of one component   , so that 

the magnetic field     
  is perpendicular to the initialized electron spin and given that the 

sample is excited with    polarized light, then the possible values of       are     

           . For   in the range of           the value          can be reached, for 

α in the range of             the value of         . For α= 90° the value of       

  . An increase of     
  leads to an increase of the angle α, because then the time      is not 

influenced by the magnetic field, while the precession frequency increases. As a 

consequence of the increased magnetic field     
 , the value of       is reduced, therefore 

the measured amplitude      is also reduced. For the first time this dependence of      on 

the magnetic field under these simplified conditions was described by W. Hanle. Therefore it 

is called the Hanle-effect. Measurements which detect the degree of polarization under the 

influence of a magnetic field perpendicular to the initialized spin are called Hanle-

measurements and the resulting curves are called Hanle-curves [122]. The shape of      in 

the dependence on   
   is a Lorentzian curve, which is given by the following equation 
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Figure 2-6  Precession of an electron spin due to the magnetic field     
 . The gray area indicates the extent of 

precession of    within the magnetic field     
  until the precession is interrupted by the formation of a “cold 

trion”. (a) indicates the situation with a shorter      time than in case of (b). The vector           indicates the 

maximum position of    within the Larmor precession. The projection    indicates the average value of all 
electrons of the quantum dot ensemble. (b) indicates the situation with a longer      time than in case of (a). 

The whole area of the precession is gray, which indicates that    fulfills at least one period of precession. In this 
case the magnitude of the projection    is smaller than in case of (a). 
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  is the effective transverse spin lifetime of the electron and consists of 

 

  
  

 

  
 

 

  
, where 

   is the recombination lifetime and    is the spin relaxation time [123]. If the g-factor of the 

precessing electron is known, then the effective transverse spin lifetime can be extracted 

from the measurement by determining the half width at half maximum      of the Hanle-

curve. The dependence of      and   
  is given by  
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  (2.32) 

The Hanle-curves obtained in this thesis cannot be analyzed with eqs.(2.31) and (2.32) 

because the requirement of the magnetic field being perpendicular to the initialized electron 

spin is not fulfilled at every point of the Hanle-curve. In this thesis the conditions given 

experimentally are more complex since not only the magnitude of the different components 

of     
  changes with the externally applied magnetic field, but also the direction of the 
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components of     
  changes in time. A more detailed discussion of these circumstances is 

given in secs. 4.2.4 , 4.1.2 and 4.1.3. 

It is important to distinguish between two types of excitation, because experiments show 

that the nuclear polarization depends on the type of laser used for excitation (ref. to sec. 

4.5.1). For the first type of excitation (i) a continuous wave laser is used, with the spectral 

width being less than 1nm. In this case the electron-hole pairs are excited continuously. For 

the second type of excitation (ii) a pico second laser is used, where every 12.5 ns a light 

pulse with a spectral width of several tens of nanometers hits the sample. In this case the 

electron-hole pairs are excited discontinuously. 

In case of excitation with a CW-laser (i), in every quantum dot the spin precession of the 

resident electron starts at a different time, due to the continuous excitation. This precession 

is a not coherent process. Consequently, the projection of    on the z-axis has a different 

length for every quantum dot. Therefore the detection of      will be proportional to an 

average value of      . For simplicity reasons, this average value will be called   . The time 

     between consecutive excitation events, that create an electron-hole pair, depends on 

the CW-laser power density. Reducing the excitation power density reduces also the 

probability of an electron-hole excitation, resulting in a smaller amount of electron-hole 

pairs that can relax to the ground-state. For low excitation power densities      is larger than 

for high excitation power densities. The less electron-hole pairs relax to the ground-state, 

the smaller is the probability to find two coupled electrons occupying the ground-state. The 

recombination lifetime of a ground-state electron-hole pair is         [120], so after this 

time only the resident electron occupies the ground-state of the QD. The larger the 

difference of      and   , the longer is the duration of the Larmor precession      of the 

resident electron. A smaller      leads to a smaller      time. An estimation of      for an 

average CW-laser power density, as it is used for the studied samples, is given in sec. 4.3.2. 

The estimation in sec. 4.3.2 shows that an average CW-laser power density leads to a smaller 

     time than a pico second laser excitation (ii) with a repetition rate of 12.5 ns.  

For an excitation with a pico second laser (ii) the time      is determined by the repetition 

rate of the laser. Due to the above mentioned relation of      and      and the fact that the 

pulse duration of the pulsed laser is  125 fs, the duration of the Larmor precession is also 

determined by the repetition rate of the pulsed laser. Under such conditions the resident 

electron can precess several periods, even in magnetic fields smaller than 1 Tesla. The 

smallest magnetic field that acts permanently on the electron is the nuclear fluctuating field, 

which is several tens of millitesla. Here the precession period has a duration of several 

nanoseconds, so that even without an external magnetic field more than one precession is 

possible.  

By excitation with circularly polarized light above the bandgap of the quantum dot an 

electron-hole pair is created. The angular momentum of the circularly polarized light is 

conserved by this process, which leads to an orientation of the electron and hole spin along 
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the excitation axis. Excitation with    polarized light leads to an angular momentum transfer 

of +ħ and creates an electron spin -1/2 and a hole spin +3/2. Table 2-2 shows the 

configurations of the electron and hole spins that result from an excitation with    or    

polarized light. 

Photon helicity Expression Polarization Rotation of E       

      Right circular    Right handed -1/2 +3/2 
      Left circular    Left handed +1/2 -3/2 

Table 2-2  Summary of definitions concerning circular polarized light. Rotation of the   field vector defined for 
the light wave propagating towards the observer and the corresponding spin orientation of the excited 
electron-hole pair. 
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3 Experimental setup and samples 

This section presents the setup that is used to obtain the experimental data that are 

presented in this thesis. The first part separates the used devices into optical, electronic and 

cryogenic devices and gives detailed information about the usage. Afterwards introductory 

measurements are presented, which give a first insight into the used samples and 

parameters that have an influence on the collected data. This section gives a standard set of 

conditions which are necessary to obtain a usable signal. At the end is a section about self-

assembled quantum dots. A discussion about the general possibilities of growing 

nanostructures, which points out the growing technique for the used quantum dot 

structures is given as a prelude. At the end of this section is a detailed presentation about 

the growing conditions of the used quantum dots. 

3.1 The setup 

 

3.1.1 Optical elements 

An illustration of the Hanle measurement setup is shown in Figure 3-1. The superconducting 

magnet inside the cryostat gives a homogeneous magnetic field parallel to the x-axis. The 

optical axis is parallel to the z-axis, so that all optical elements lie within the xz-plane. The 

sample is mounted on the height of the optical axis and the surface of the sample is oriented 

orthogonally to it. In this position the growing direction of the quantum dots is parallel to 

the optical axis and orthogonal to the magnetic field of the superconducting magnet.  

 

Figure 3-1 Schematic illustration of the optical elements used in the setup to obtain Hanle-curves and PL 
spectra. The different colors of the laser beam and the photoluminescence indicate different wave lengths. A 
more detailed description of the elements is given in the main text. 
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The optical elements can be divided into three groups: the excitation group, the 

manipulation of the beam group and the detection group.  

The excitation group is separated into two parts, depending on whether a CW-laser 

excitation or a pulsed laser excitation is used. For the CW-laser excitation a pump laser and a 

titanium-sapphire-laser are used. As a pump laser the solid-state Nd:YAG laser (Verdi V5, 

Coherent) is used that operates at 532 nm and gives an output of 5W. The TiSa laser 

(Tekhnoscan) can be tuned in a range of 750 – 850 nm. The pulsed laser is a modelocked TiSa 

femtosecond laser with a pulse repetition rate of 12.5 ns (repetition frequency = 80 MHz) 

and a pulse duration of  125 fs (Coherent, Cameleon). It is tunable in the range of 720 – 950 

nm. 

The laser beam can be manipulated in intensity by the use of an acousto-optic modulator 

(AOM). The crystal of the AOM is transparent for the laser light and is periodically deformed 

by a piezo- element with a frequency of 80 MHz. This deformation causes fluctuations of the 

density of the crystal. These fluctuations of density can move in the crystal as a plane wave 

forwards and backwards and thereby create a stationary density wave. Thus, a periodic 

structure with regions of high and low density is established.  In comparison to regions of a 

lower density, regions of a higher density have a different refraction index for an incoming 

light beam. The periodic structure acts on an incoming light beam like a Bragg grating so that 

the beam starts to interfere with the reflected light of the beam. The AOM can be connected 

to a function generator, so that the amplitude of the laser beam can be controlled by the 

function generator. The ramp up (ramp down) time to reach the highest (lowest) intensity of 

the outcoming beam is about 100 ns.  For a good optical adjustment of the AOM, the 

outcoming light can completely be blocked. The angle between the incoming light and the 

crystal surface needs to be about 15°. The EOM can rotate the polarization plane by 90° so 

that horizontally polarized light becomes vertically polarized. Applying an electric field to the 

four crystals of the EOM causes a change of the refraction index so that the electric field 

component of light can be delayed in relation to the magnetic field component. A linear 

relation between the change of the refractive index and the applied electric field is called the 

Pockels-effect. A quadratic dependence between the change of the refractive index and the 

applied electric field is called the Kerr-effect. Both effects are present in the used EOM 

(LM0202, Linos), but the Pockels-effect is dominant. The naturally given but in this case 

unwanted birefringence effect of a crystal is compensated by four crystals in a row. The 

change of polarization from horizontal to vertical polarization takes less than 2 ns. The 

shortest modulation frequency is limited by the digital pulse amplifier (LIV20, Linos) that can 

apply voltage to the crystals of the EOM with a maximum frequency of 500 kHz. In 

combination with a λ/4 waveplate one can excite the sample with right and left handed 

circular polarization. The EOM can handle light in a range of 650 - 1000 nm.  
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To detect the degree of circular polarization from the ground state energy of the 

quantum dots it is needed to : 

1. Separate the   and    components of the photoluminescence (PL). 

2. Select the ground excitation of the quantum dots of the signal spectrum. 

3. Detect the intensity of the ground state excitation of the quantum dots. 

 

The operation frequency of the photoelastic modulator (PEM) is 50 kHz. During this 

period a piezo crystal induces strain to the fused silica plate crystal of the PEM. When the 

fused silica crystal is compressed it operates as a λ/4 wave plate ( 5 µs after the trigger 

signal). When the fused silica crystal is stretched it operates as a -λ/4 plate ( 15 µs after the 

trigger signal). After 5 µs the    polarized PL is converted to vertically polarized light and the 

   polarized PL is converted to horizontally polarized light. Figure 3-2 shows the complete 

modulation process of the PEM. Because of the Glan-Thompson prism behind the PEM only 

vertically polarized light can pass the prism. The combination of a PEM and Glan-Thompson 

prism allows to separate the    and    polarized light of the PL.  

 

Figure 3-2       and       indicate the development of the PL polarization due to the modulation of the PEM. 
At the beginning of the modulation (t=0) the polarization for          and for         . The blue sine 
curve indicates the phase of the PEM. The horizontal and vertical arrows indicate that the PL polarization 
changes to horizontally and vertically linear polarized light at the corresponding position of the PEM. The 
positions of the gated detection relative to the PEM are shown at the bottom of the Figure. 
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For a spectral resolution of the PL a half meter spectrometer (Acton 500) with three 

different gratings (300 g/mm, 600 g/mm and 1200 g/mm) can be used. The higher the 

density of the grating, the stronger the incoming light is dispersed and the spectral 

resolution becomes higher. For every measurement in this thesis a grating with 600 g/mm 

suffices. The computer program "WinSpec/32" is used to show the spectra of the PL 

collected by a nitrogen cooled silicon CCD (400x1340 pixel). The grating spectrally splits the 

light in a horizontal direction. Therefore only the horizontal resolution of the SI-CCD is 

important.  The signal of the vertical pixels can be integrated, so that the effective resolution 

of the SI-CCD  is 1x1340 pixels. By the program "WinSpec/32" it is also possible to determine 

a central wavelength and to direct only the intensity of the central wavelength to an 

avalanche photodiode (SPCM-AQR-14, Perkin Elmer). The avalanche photodiode shows a 

linear relationship between the output voltage and counted photons up to a counting rate of 

    photons/second.  

 

3.1.2 Electronic elements 

The function generator (AFG 3022, Tektronix) has two channels, channel A and Channel B. 

Channel A is used to send the modulation signal to the EOM, while channel B is used to 

generate the RF signal for the RF-coil. A TTL square wave signal is sent to trigger the EOM. 

The maximum output in the high Z regime of channel B is 10 V peak to peak. The two signals 

of channel A/B always have a defined phase that can be changed depending on the 

measurement conditions. The output of channel A is also connected to the first input of a 

signal counting device (PicoHarp 300, PicoQuant), providing a total of three inputs. The 

second input of the PicoHarp is the trigger signal of the PEM and the third input is the signal 

of the avalanche photodiode. A connection with the computer is given through the output of 

the PicoHarp. Depending on the measurement protocol a set of different programs can be 

used to operate with the PicoHarp.  
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Figure 3-3 Schematic illustration of the electric elements used in the setup to obtain Hanle-curves. A more 
detailed description of the elements is given in the main text. 

 

The EOM can be used in two different operation modes. In both operation modes the 

PicoHarp continuously collects the counts of the avalanche photodiode. The counts are 

weighted, depending on the phase of the PEM. The weighting oscillates with a sine function 

of equal frequency as the PEM modulation and with a maximal amplitude of 1. During the 

time when the PEM operates as a +λ/4 (or –λ/4) waveplate the weighting is 1 for    (or   )  

polarized PL, since only then    (  ) polarized light can pass the Glan-Thompson prism 

(compare Figure 3-2). Later a self-programmed software uses the weighted counts of the    

(  ) polarized PL to calculate the polarization degree of the PL. 

 

  
     

     
  (3.1) 

In the first operation mode the EOM sustains one polarization during the measurement. In 

the second operation mode the function generator sends the square shaped modulation 

signal which is fixed in frequency to the EOM and the PicoHarp. The modulation signal of the 

PEM is also sent to the PicoHarp, so that the PicoHarp receives information about the phase 

and modulation frequency of both modulators. The signal of the function generator is not 

synchronized with the PEM and is different in frequency. The result is a moving in time of 

the region where the PEM operates as a λ/4 waveplate over the modulation of the EOM. As 

long as the modulation frequency of the EOM is different from the modulation frequency of 

the PEM, every position of the polarization modulation created by the EOM can be reached 

by the position where the PEM operates as a λ/4 waveplate.  
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The superconducting magnet within the RTI cryostat (Oxford) is oriented in a Voigt 

geometry and connected to a power supply (Bop 100-10MG, Kepco) with a maximum 

current of 10 A. With a conversion factor of 15.1 A/T magnetic fields in a range of 1 Tesla can 

be achieved. The RF-coils are powered by a high Z output (output B) of the function 

generator with a maximum output of 10 V peak to peak. 

 

3.1.3 Cryostat 

The Magneto-optical cryostat (RTI) has a 12 liter reservoir for liquid helium.  A vacuum pump 

(Model IP54, Firma Leroy Somer) can be connected to this reservoir in order to reach the 

lambda point, where helium becomes superfluid. It is possible to attain temperatures down 

to 1.6 K when the vacuum pump operates at maximum performance. Using a Pt-100 resistor 

near the sample position, the temperature can be detected by four-terminal sensing. 

Superfluid helium nearly has a perfect thermal conductivity, thus there is no gradient of 

temperature within the superfluid helium. This has two advantages for magneto-optical 

measurements. At first, the superfluid helium serves as a very efficient cooling for the laser 

light excited sample and the superconducting magnets. Secondly, the superfluid helium can 

only evaporate on the boundary layer between the gaseous and superfluid helium. There are 

no bubbles due to boiling of the superfluid helium that could disturb the PL or the excitation 

of the sample by laser light. There are two provisions necessary to prevent the helium from 

vaporizing too fast. The first provision is a cylindrical nitrogen cooled copper cloak around 

the helium reservoir that shields the helium from thermal radiation. The second provision is 

a vacuum chamber with a vacuum of about      mbar around the helium and nitrogen 

reservoir. It can be achieved by a turbo vacuum pump (Model TSH-071, Pfeiffer). 

 

3.1.4 Introductory measurements for signal maximization 

All of the presented measurements in this thesis are Hanle-curves obtained by detecting the 

circularly polarized luminescence of self-assembled (In,Ga)As/GaAs quantum dot structures 

in superfluid helium at temperatures of        . The two samples studied have an identical 

growing structure and differ only in the annealing temperature. Sample #980 is annealed at 

980°C and sample #900 is annealed at 900°C (for details concerning the growing conditions 

refer to sec. 3.2.2). Each sample has a set of four parameters that can be optimized to obtain 

the maximum amplitude possible of circularly polarized photoluminescence     .  
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These four parameters are: 

1. Variation of the excitation density, 

2. Variation of the detected wavelength, 

3. Variation of the excitation wavelength, 

4. Variation of the laser spot position on the sample. 

The optimal excitation wavelength for sample #980 is 838nm (1.49 eV) with a detection 

wavelength of 871 nm (1.42 eV). The optimal excitation wavelength for sample #900 is 846 

nm (1.47 eV) with a detection wavelength of 924 nm (1.34 eV). The tuning of the excitation 

density and the laser spot position on the sample depend on the requirements of the 

measurement and influence the total polarization degree of      by  5%. If not mentioned 

otherwise, the excitation density is tuned to a value where      reaches its maximum 

amplitude at        . A further increase of the excitation density leads to a saturation of 

the      amplitude, which indicates the highest level possible of electron spin polarization. 

For sample #980 the maximum electron polarization is reached at a time averaged intensity 

of 1.5 mW, for sample #900 at 10 mW. A higher excitation power leads to a decrease of 

    .  

 

 

3.2 Self-assembled quantum dots 

As described in the introduction, due to their limited expansion in space, quantum dot 

structures act on electrons and holes like potential wells in all spatial directions. Discrete 

energy levels and spatial localization are two main features of charge carriers in quantum 

dots. There is a large variety both of construction processes of such nano structures and of 

the used materials. Typical compositions are InP/InGaP [124], Ge/Si [125], InSb/GaSb [126], 

GaSb/GaAs [127], InAlAs/AlGaAs [128] for 3-5 semiconductors and CdSe/ZnSe [129] for 2-6 

semiconductors. One of the most important techniques for growing nanostructures is the 

molecular beam epitaxy (MBE), because it grants a very slow epitaxial growing and a large 

variety of possibilities of postprocessing the structures. The main part of a MBE growing 

machine is the vacuum chamber with a ultra-high vacuum of       mbar. Several effusion 

cells reach inside this chamber of which each contains a different element that can 

evaporate on the substrate. The process of evaporating can be controlled by the heater and 

the shutter of the effusion cell. For improvement of a homogeneous growing process the 

sample is mounted on a rotatable sample holder. A mass spectrometer and an electron 

beam source, the RHEED (reflection high energy electron diffraction), are located close to 

the sample for controlling the growing process. The Bragg reflection of the electron beam 

gives a characteristic pattern of the first monolayers of the sample depending on the 
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crystalline structure of the sample surface. By the intensity of the reflected beam it is 

possible to map the growing process, since only the flattest and most homogeneous surface 

gives the strongest Bragg reflection. The deposition of material on the substrate can be 

characterized by the relation of three parameters, namely the material    and the substrate 

   surface energies and the energy of material/substrate interface    . For the trivial case of 

homoepitaxy growing, which means deposition of the same material on the substrate as the 

substrate consists of,       and      . In the case of heteroepitaxial growing it is 

possible to distinguish between three modes of growing conditions [130]. 

 

1. Volmer-Weber (         ) [131], 

2. Frank-Van der Merwe (         ) [132], 

3. Stranski-Krastanow (mixture of Frank-Van der Merwe and Volmer-Weber mode) [133]. 

 

The Volmer-Weber mode is possible if the lattice mismatch of the deposited material and 

the substrate is large in comparison to the other modes. To lower the interface energy and 

their own surface energy the deposited atoms are bound stronger to each other than to the 

substrate. As a result, islands of deposited atoms on the substrate are created, preferentially 

on locations that lower the activation energy for nucleation like crystal defects, atomic steps 

or impurities. The small islands grow larger rather than coating the substrate surface.  

The Frank Van der Merwe mode is possible if the lattice mismatch is weak. It is also called 

a layer by layer growth. It means that the deposited atoms completely cover the surface of 

the substrate before a second monolayer starts to grow. This process is called a "wetting" of 

the substrate. But with a rising number of monolayers also the strain within the deposited 

layers increases. Each composition of the substrate and deposited material has a critical 

thickness where the layer by layer growth is no longer possible. The resulting dislocation of 

deposited atoms leads to a fluctuating  surface thickness of the deposited atoms. These 

fluctuations are called "natural quantum dots" [134]. 

 

3.2.1 Stranski-Krastanow mode  

At the beginning of the growing process with this method [135] is the relation       

    , but with a rising number of monolayers strain effects start to influence   . Then the 

left side of the inequality needs to be replaced by the total energy                    . By 

definition               is always negative and        
 

  is always positive.   and   are 

coefficients given by the Poisson ratio, shear modulus of the substrate and the free energy 

of the surface that describe the shape of the islands [136]. Due to the different evolution of 

   and         with increasing volume V of deposited material,        changes sign at a critical 
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volume   . The inequality in the case of      can be written as                . This 

indicates the appearance of a growing island. Because of the wetting process at the 

beginning of the Stranski-Krastanow mode the quantum dots grow on the so called wetting 

layer and not directly on the substrate. An example of further specifics of  thin film growth 

modes and separation of wetting and cluster nucleation is given by H. Marcia et al [137]. 

With the three growing modes, several growing techniques can be realized. Because of the 

large number of growing techniques only a few possible techniques will be mentioned in this 

thesis. After growing a wetting layer on the substrate it is possible to use electron beam 

lithography or wet chemical etching to modulate the structure of the surface [138]. This 

method is time expensive and requires several working stages. However, it allows the 

construction of individually shaped structures.  

The cleaved-edge overgrowth (CEO) process is a three step process. The first step is a 

common growing of a quantum well on a substrate in (001) direction. Afterwards the sample 

is removed from the growing chamber and thinned from the backside to about 100 µm. In 

the second step the sample is mounted back in the growing chamber, but this time with the 

(110) direction turned on top. An in situ cut exposes a new (110) surface. Finally a second 

growing process leads to the formation of quantum dots or a quantum well, depending on 

the growing parameters [139]. In contrast to the quantum dots obtained on a (001) 

substrate, the same growing conditions applied on a (110) substrate lead to misfit 

dislocations and much bigger island structures [140, 141]. The shape of quantum dots 

obtained on a (001) substrate is lens-shaped and more homogeneous in size than on a (110) 

substrate. Growing of quantum dots on a (110) substrate leads to a trapezoidal-shape. A 

growing of a quantum well in the third step of CEO on the (110) substrate leads to the 

formation of a T-shape structure where electronic states are quantum mechanically confined 

[142]. This quantum-wire shows nearly ideal quantum transport characteristics [143]. This 

growing technique is very time expensive and affords the study of electronic states in 

quantum wires formed by an arbitrary combination of two constituent quantum wells with 

different thicknesses [144].  

3.2.2 Studied quantum dots 

In this thesis, the self-assembled quantum dots are an example of the Stranski-Krastanow 

mode. The quantum dots are grown on a (001) GaAs substrate that is heated to a 

temperature of about 600°C during the growing process. At first, alternating layers of AlAs 

and GaAs quantum wells are grown. Because of the small lattice mismatch of about 0.3% 

between AlAs and GaAs, the growing process can be controlled well, so that the material can 

be deposited monolayer by monolayer on the substrate. This ensures a flat surface for the 

following growth of the quantum dots. Because of a lattice mismatch of 7% between InAs 

and GaAs the deposition of Indium and Arsenic atoms on a GaAs surface leads to quantum 

dot formation by the Stranski-Krastanow mode. The quantum dots of the sample used have 

a diameter of about 10 – 30 nm and a distance of 30 – 100 nm and are delta doped with 

silicon. The doping leads to a permanent occupation of one electron per quantum dot. After 
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the delta doping the quantum dots are covered with a GaAs capping layer. As shown in Table 

3-1 the presented structure is repeated twenty times so that the average density of the 

quantum dots is        ⁄            ⁄  .  

Layer T [°C] Duration [s] Thickness[nm] Repetition 

GaAs substrat - - - - 
GaAs 660 531.9 100  
AlAs 660 20 2 Start 20x 
GaAs 660 5.3 1 End 20x 
AlAs 660 20 2  
GaAs 660 425.5 80  

    Start 20x 
InAs 590 4 0.3 16x 
GaAs 580 42.6 8  
GaAs 660 42.6 8  

Si-Delta 660 4 0  
GaAs 660 340.4 64 End 20x 
AlAs 660 20 2 Start 20x 
GaAs 660 5.3 1 End 20x 
GaAs 660 531.9 100  

GaAs:Si 660 79.8 15  
Table 3-1 Growing conditions for quantum dots out of the series #11955. 

 

Due to twenty layers of quantum dots, inciding light can interact with more quantum dots in 

comparison to a sample with one layer of quantum dots. This results in a higher intensity of 

photoluminescence and a stronger rotation angle in Faraday and Kerr rotation 

measurements.  

Up to this point the conditions of sample growing are the same for every sample of the 

production series #11955. The differences between the samples are given by a set of various 

annealing temperatures in the range of 800 – 1000 °C. The results for this thesis are based 

on measurements with samples annealed at 900 °C and 980°C. As an example for the #11955 

series several Scanning Transmission Electron Microscopy (STEM) images are presented in 

the appendix for the sample annealed at 820°C. Figure 0-1 and Figure 0-2 show a larger 

image of the sample to give an overview of the quantum dot structures. The darker regions 

in Figure 0-3 and Figure 0-4 are associated with strain. The darker the region, the stronger is 

the strain. Figure 0-3 shows a quantum dot with a symmetric strain (parallel to the growing 

direction), while the quantum dot in Figure 0-4 shows an asymmetric direction (not parallel 

to the growing direction). The analysis of images of many quantum dots shows that typically 

the dots are symmetric or strongly asymmetric. The annealing process is the final step of the 

growing process where the sample is heated for several seconds ( 30 sec.) at a constant 

temperature without deposing any material on the sample. As a result of the heating some 

of the indium atoms of the dots are replaced by gallium atoms of the capping layer. In case 

of an equal timeframe for each heating, the amount of replaced atoms depends only on the 
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temperature used. The higher the temperature used, the larger is the amount of replaced 

atoms. These quantum dots that then consist of three isotopes are typically called 

            quantum dots. Strictly speaking the quantum dots are already impurified by 

gallium after the capping process. But the amount of gallium atoms is so small that the 

photoluminescence spectrum only becomes slightly widened. The annealing process 

enhances and unifies the impurity of the quantum dots caused by the gallium atoms which 

leads to a narrowing of the photoluminescence spectrum and shifts the light emission of the 

quantum dots to higher energies [121]. The probability of presence for electrons within a 

quantum dot also changes for samples with different annealing temperatures. Temperatures 

higher than 820°C increase the area of possible electron localization. With a larger area of 

electron localization the amount of nuclei increases which are influenced by the electrons 

trapped in the quantum dot. At the same time the probability of presence for a certain 

position is lower after the annealing process. Thus every nucleus has a smaller hyperfine 

interaction with the electron after the annealing process [145].  
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4 Results 

 

 

4.1 Dynamic nuclear polarization of spin       and       ensembles 

In this section the influence of the Overhauser field on the Hanle-curve excited with a CW-

laser is presented. 

This Overhauser field consists of two components that are perpendicular to each other. 

One component (     ) is parallel, the other component (     ) is perpendicular to the 

externally applied magnetic field   . Due to the different dynamics of buildup and decay 

time and their different magnitude, that depends on the value of   , the two components 

can be treated as separate ensembles of polarized nuclei. In context with the experiments 

presented in chapter 4.4.3, the       component can be identified as a polarization of spin 

      nuclei and the       component as a polarization of spin       nuclei [168]. In 

the first part of this section measurements are shown that deal with the buildup time of 

nuclear polarization. In the second part of this section the dependence of the Hanle-curve on 

the “dark time” is presented. By that it is possible to determine the decay time of nuclear 

polarization. The following section (sec. 4.1.1) will present a model that enables to separate 

the effect of       and       on the Hanle-curve, so that the decay and buildup times can 

be discussed later in the text. 

In order to analyze the time dependence of the Hanle- curve under continuous wave laser 

excitation, sample #900 is excited with    polarized light. The excitation protocol is a 

periodic repetition of amplitude modulation of the laser light, in which the excitation time 

           is followed by a "dark time"         . During the "dark time" the excitation 

is completely interrupted. The only function of the dark time is to erase all effects that could 

occur during the excitation of the sample. The signal is accumulated for 1 ms.  
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Figure 4-1  Degree of polarization measured as a function of magnetic field    and time after the start of 
pumping. The grayscale bar on the right indicates the magnitude of     . The measurement is obtained with 
sample #900 under excitation at 1.47 eV, detected at 1.34 eV at temperature         [168].   

 

The time resolution is also limited to 1 ms, so that the development of      can be traced 

fifty times during the excitation duration of 50ms. For every step on the time axis the 

external magnetic field    is swept from -100 mT to +100 mT in steps of        . The 

development of the Hanle-curve during the first 30ms of excitation is shown in Figure 4-1. 

After 30 ms no significant change of the Hanle-curve is detectable (ref. to Figure 4-3), 

because of that only the first 30 ms are shown in Figure 4-1. The first milliseconds after the 

excitation is switched on the Hanle-curve only consists of the central peak at        , 

which has a half width at half maximum of several mT. During the excitation, dips around the 

central peak appear. The formation of a second local maximum appears, so that the shape of 

the Hanle-curve becomes W-like. The curve becomes wider and reaches a maximum width 

after       . After this time the Hanle-curve is identical to a Hanle-curve obtained under 

CW-laser excitation without dark time. 
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Figure 4-2  Hanle curves at constant excitation time      = 50 ms, parameterized by dark time    (indicated at 
each curve): (a) complete curves; (b) central portions of curves. The arrow points to the lowest point of a dip in 
a Hanle curve. The solid curves are drawn for clarity. The inset in (a) shows the excitation protocol for the 
measured Hanle-curves. The curves were obtained with sample #900 under excitation at 1.47 eV, detected at 
1.34 eV at temperature T=1.8 K [168]. 

 

The excitation protocol, shown in the inset of Figure 4-2(a), consists of an excitation time 

    =50 ms that is interrupted by a dark time. The excitation time remains constant for every 

measurement, while the dark time is varied  from           to         . The degree of 

polarization was measured as a function of the dark time. Accumulation of the signal takes 

place at the first ms of the excitation. Figure 4-2(a) shows the Hanle-curves obtained 

applying four different dark times. The shorter the dark time, the more the curve obtained 

resembles the Hanle-curve under CW-laser excitation. An increase in dark time smoothes 

out the W-shape and reduces the width of the Hanle-curve. Dark times that exceed        

have no further effect on the Hanle-curve. It should be noted that an increase of the dark 

time causes two opposite effects on the Hanle-curve depending on the position of the 

external magnetic field   . For           an increase of the dark time leads to a 

decrease of the polarization degree. For           an increase of the dark time leads to 

an increase of the polarization degree.  

 

 

4.1.1 Longitudinal and transverse component of nuclear polarization 

Section 4.1 has shown that the dynamics of nuclear polarization depend on the magnitude of 

  . It shows also that the effect of nuclear polarization leads to a decrease of      for small 

values of |  |       , but for larger |  | a nuclear polarization leads to an increase of 

    . Such observations give rise to the assumption that polarized nuclei could consist of 

two sub-ensembles. This section will present an analysis of experimental data which 

separates the two ensembles of nuclear polarization and identifies them as the longitudinal 

and transversal component of nuclear polarization (relative to the externally applied 
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magnetic field   ). The following phenomenological model will include also the 

contributions of nuclear spin fluctuations on the Hanle effect, which is not the case in other 

publications [123, 84, 146].  

This model is validated both by the experimental data showing that the nuclear spin 

fluctuation field is independent of the applied field    and by good quantitative agreement 

with results of other studies [147, 148]. Using this model to analyze experimental results, 

detailed information about the rise and decay times of each component of nuclear 

polarization in quantum dots in a transverse magnetic field (relative to the optical axis) were 

obtained. The rise and decay times of the component parallel to the applied field were 

found to be almost equal (approximately 5 ms). However, the dynamics of the transverse 

component are much more complicated: the corresponding rise and decay times differ 

widely and have opposite dependence on magnetic field strength. Furthermore, the 

magnitude of the transverse component created by continuous wave (CW) pumping 

significantly increases with applied field strength. This unexpected behavior of nuclear 

polarization is attributed to nuclear spin relaxation via interaction with photo excited 

carriers. Information on the behavior of the transverse component       of the nuclear 

field can be extracted by analyzing the width of the Hanle-curve. It is clear from Figure 4-1 

and Figure 4-2 that the curve width reaches a maximum under CW pumping by a beam of 

constant circular polarization and decreases with increasing dark time when the pump beam 

is modulated. Its large width has been attributed to the formation of a transverse 

component       of the nuclear field, stabilized by quadrupole splitting of nuclear spin 

states along the optical axis [149, 85]. The longitudinal component       plays no significant 

role in strong applied magnetic fields [123, 150]. Therefore, the dynamics of       and 

      can be inferred separately from the behavior of electron spin polarization in weak 

and strong fields, respectively. Accordingly, in order to analyze experimental data, 

expressions are required that relate the degree of electron spin polarization to the 

magnitudes of the corresponding DNP components. To derive expressions for nuclear spin 

components, it can reasonably be assumed that the only time invariant component of the 

electron spin is its projection on     
  because of its high precession frequency. The 

measured degree of luminescence polarization scales linearly with the invariant spin 

projection on the viewing direction, as illustrated by the following equation:  

        
     (

      
 

    
 )

 

  (4.1) 

In this equation,    quantifies the degree of optically induced spin orientation and θ is the 

angle between the viewing direction and the total field     
            , which 

included also the nuclear fluctuation field [37]. In the absence of regular fields    and   , 

electron spin dynamics are completely determined by nuclear spin fluctuations. A magnetic 

field applied perpendicular to the optical axis (along the x-axis) substantially changes the 
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time averaged electron spin polarization. The calculated field dependence of    can be 

described by a bellshaped curve accurately fitted by eq.(4.1) with 

(      
 )

 
 〈     

 〉   (4.2) 

where 〈     〉 is the ensemble average of the nuclear spin fluctuation field z component 

squared and 

     
      

  〈   
 〉   (4.3) 

with 〈   
 〉  〈     

 〉  〈     
 〉  〈     

 〉. Thus, the mean ratio approximated by the ratio 

of means in (4.1), 

〈  〉    
〈(      

 )
 
〉

〈     
   〉

  (4.4) 

yields a satisfactory result under conditions specified in the above. Approximation (4.4) 

holds in the presence of a regular field   , with a periodically time- varying numerator: 

 

                  (4.5) 

where     is the component of the total nuclear field perpendicular to the applied field and 

   is the frequency of nuclear spin precession induced by the applied field. The electron 

pumping rate was higher than the nuclear precession frequency in the entire range of 

applied magnetic field magnitudes used in the experiments described here. Therefore, the 

numerator in eq.(4.4) can be represented as 

〈(      
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where the nuclear fluctuation field is assumed to be statistically isotropic.  

〈   
 〉  〈    

 〉  〈    
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 〉   (4.7) 

Analogously, the ensemble average of the total field squared, expressed by the denominator 

in (4.4), can be expressed as 

〈     
   〉            

  〈    
 〉       

  〈    
 〉   (4.8) 

In summary, the degree of electron spin polarization can be represented by the general 

expression 
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  (4.9) 

Experimental data can be analyzed by simplifying expression (4.9) in two special cases 

depending on the magnitude of   . According to [123], the longitudinal component       

of the nuclear field only appears in the W-profile region of the Hanle-curve, where the 

applied field is negligible compared to the nuclear spin fluctuation field [37]. Then, it holds 

for this region that 
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 . (4.10) 

In strong applied magnetic fields (where         ), the degree of polarization becomes 
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   〈    
 〉

 . (4.11) 

Thus, the time dependence of ρ in strong and weak magnetic fields is examined to 

determine the respective kinetics of the longitudinal and transverse components of nuclear 

polarization. The analysis of time dependent nuclear polarization is based on the assumption 

that the increase in each component of nuclear polarization after the start of pumping and 

its decay during the dark time can be described by the expressions 

                      ⁄      (4.12) 

                   ⁄     (4.13) 

where    and    is the corresponding characteristic buildup and decay time, respectively. In 

the case of a weak magnetic field, the numerator and denominator in (4.10) are divided by 

〈    
 〉 . Then the following parameters are introduced:   

   
     
 

〈    
 〉

   (4.14) 

   
     
 

〈    
 〉

 .  (4.15) 

These equations serve to find respective expressions describing the rise and decay of the 

longitudinal component of nuclear polarization as follows: 
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        ⁄      
 . (4.17) 

The transverse component of nuclear polarization almost vanishes in weak magnetic fields, 

so that the parameter a can be neglected in analysis of experimental data. For this reason 

the time dependence of this parameter is omitted in the formulas above. Expression (4.11), 

valid for strong applied magnetic fields, can be rewritten analogously by introducing 

  
   (       ⁄ )

 
    

            ⁄        
  (4.18) 

 

  
         ⁄     

          ⁄      
  (4.19) 

to describe the rise and decay of the transverse component of nuclear polarization, 

respectively. Thereby is       
      

 ⁄  and     〈    
 〉      

 ⁄ . In summary, using the 

expressions derived above, it is possible to fit the measured time- dependent degrees of 

polarization to evaluate nuclear spin relaxation times  , as well as effective nuclear spin 

fluctuation fields and dynamic nuclear polarization. 

 

 

4.1.2 Build up dynamics of nuclear polarization 

Figure 4-3 and Figure 4-4 show the results of an analysis of the time-dependent Hanle-curves 

in Figure 4-1, measured after the start of optical pumping. The values of   are refined by 

taking into account luminescence depolarization due to contributions from neutral quantum 

dots. 
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Figure 4-3  Time dependence of      during an excitation pulse of 50 ms duration that is interrupted by a dark 
time of         . The excitation protocol is given in Figure 4-2. Symbols represent experimental results for 
   = 2 mT and 50 mT; the solid curves are approximations given by eqs. (4.16) and (4.18). The curves were 
obtained with sample #900 under excitation at 1.47 eV, detected at 1.34 eV at temperature         [168].  

 

The time-dependent degree of polarization determined from experimental data can be fitted 

by eq. (4.16) only if the transverse component of the nuclear field is sufficiently weak, 

     
  〈   

 〉. This is the case for a low field condition,         . Using the resulting 

approximation, the characteristic rise time for      
  is estimated to be |  |      , and the 

parameter       (ref. to eq..  (4.15)). The behavior of longitudinal polarization is 

relatively simple. After the start of optical pumping, this component increases with a 

characteristic time of approximately 6 ms to a limit magnitude corresponding to an effective 

nuclear field of 30 mT to 40 mT. After the end of pumping, the longitudinal component 

decays over a similar time scale. Under high field conditions (        ), where the 

transverse component of nuclear polarization plays the dominant role, the measured data 

can be fitted by function (4.18). As an example for the low and high field regime, Figure 4-3 

shows the dynamics of      at 2 mT and 50 mT. The parameters a' and c' calculated by 

fitting the polarization history for each applied magnetic field strength were then used to 

determine the limit magnitude of the transverse component of nuclear polarization,  

             ⁄    (4.20) 

the RMS effective nuclear spin fluctuation field, 

        √〈    
 〉  

  

  
     (4.21) 

and their dependence on the magnetic field. Figure 4-4(a) shows          and         as 

functions of the applied magnetic field. It is clear that the limit magnitude         of the 

transverse component of nuclear polarization increases approximately from 10 mT to 50 mT 

with an applied field between 20 mT and 100 mT, whereas the effective nuclear spin 
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fluctuation field         remains almost constant at around 25 mT irrespective of the applied 

field strength. This value is in good agreement with data reported in [147], 

 
Figure 4-4  (a) Limit magnitudes of the transverse nuclear field component          (rectangles) and the 

nuclear spin fluctuation field         (triangles) vs. applied field, obtained by analyzing kinetics of spin 

polarization after the start of pumping (ref. to Figure 4-1). (b) Field dependence of the buildup time     of the 
transverse nuclear field         (circles) component. The solid curves are drawn for clarity. The curves were 
obtained with sample #900 under excitation at 1.47 eV, detected at 1.34 eV at temperature T=1.8 K [168]. 

 

where the RMS nuclear spin fluctuation field was estimated at approximately 20 mT for 

quantum dots of a similar type. Using this value and c ≈ 1.5 as obtained above, the maximum 

parallel nuclear field can be calculated as follows:              . Figure 4-4(b) shows the 

buildup time    of the transverse component of nuclear polarization. It demonstrates that 

the buildup time increases linearly from approximately 2.5 ms to 15 ms with an applied field 

between  20 mT and 100 mT. The transverse nuclear field component       is identified as 

a polarization of nuclear spin states       (detailed discussion in sec. 4.1.3). Such nuclear 

spin states are more strongly influenced by an electric field gradient than spin states     

 . As a consequence, the Zeeman splitting is like in Figure 4-43 and nuclear spin states 

      do not split in small external magnetic fields. Without a splitting in energy of these 

nuclear states a difference in occupation of the Zeeman levels is not possible, which also 

disables a polarization of these nuclear states. This behavior is illustrated in Figure 4-4(a). An 

extension of the solid line in Figure 4-4(a) shows that               is reached at 

       . This means that such small fields of    have a negligibly small influence on 

nuclear spin states       in comparison to the interaction of the quadrupole moment of 

these states and the electric field gradient. In Figure 4-4(b) an extrapolation of the solid line 

leads to a buildup time        at        . The correct interpretation is that at 

        the only magnetic field that could enable a Zeeman splitting of the nuclear spin 

states is the Knight field   . But the Knight field is only        , so it is not large enough 

to split nuclear spin states      . The buildup time        means that a buildup of 

nuclear polarization is not possible. The solid lines in Figure 4-4(a), (b) are not drawn in the 
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range of small    because an experimental proof of the behavior of          and       is 

not possible due to the fact that in such small    the magnitude of      and       is larger 

than          and overlays the effect of         . 

 

4.1.3 Decay of nuclear polarization 

An analogous procedure was used to analyze the shape of the Hanle-curve as a function of 

dark time. Experimental data was converted into spin polarization kinetics for several values 

of the applied magnetic field strength (as in Figure 4-3), and the resulting curves were fitted 

by eqs.(4.17) and (4.19). The curves in Figure 4-5 are examples of such fits.  

 
Figure 4-5  Time evolution of      in dependence of the dark time. The different symbols represent 
experimental data at several values of   . The corresponding value of    is written at each curve (solid line) 
which is an approximation given by eq. (4.17) and (4.19). The curves were obtained with sample #900 under 
excitation at 1.47 eV, detected at 1.34 eV at temperature         [168]. 

 

The fitting parameters were used to evaluate the initial longitudinal and transverse nuclear 

fields, as well as the corresponding decay times. The decay time of the longitudinal 

component calculated by using the data for         was found to be           , which 

is close to the corresponding rise time reported above. However, the decay time of the 

transverse component of nuclear polarization differs significantly from its rise time. 

Moreover, its time variation in an applied magnetic field exhibits an opposite trend: whereas 

the rise time increases with field strength (ref. to Figure 4-4(b)), the decay time rapidly 

decreases (ref. to Figure 4-6(b)). Accordingly, these times are approximately equal in strong 

magnetic fields but differ by a factor of several tenths at   = 20 mT.  
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Figure 4-6  (a) Field dependence of the initial magnitude       (rectangles) of the transverse nuclear field and 
the nuclear spin fluctuation field     (triangles), obtained by analyzing kinetics of spin polarization after the 
end of pumping. (b) Field dependence of the       (circles) decay time. The solid curves are drawn for clarity. 
The curves were obtained with sample #900 under excitation at 1.47 eV, detected at 1.34 eV at temperature 
        [168].  

 
 

The origin of this behavior is unclear up to now. But the reader should be reminded about a 

relaxation mechanism already given in the literature [40], where the presence of a single 

electron in a quantum dot is shown to increase the rate of nuclear spin relaxation by more 

than two orders of magnitude. In this case, the single electron is the resident electron of the 

used quantum dot structures. During the dark time the single resident electron is exposed to 

the nuclear spin system, which is in a different situation than during the excitation. It is 

possible that this mechanism depends on the precession frequency of the nuclei, therefore 

on the external field   .  

Remarkably, despite the difference in behavior between decay times, both the limit 

magnitudes of the DNP components and their variation with magnetic field strength in 

experiments on nuclear polarization decay are in good agreement with those determined by 

measuring nuclear polarization buildup (compare Figure 4-4(a) and Figure 4-6(a)). A slight 

difference between nuclear field magnitudes measured in experiments on polarization 

buildup and decay should rather be attributed to a minor difference in optical excitation 

intensity (which was not intended) between experiments of these two types. Standard 

models of nuclear polarization buildup are generally based on the classical model of angular 

momentum precession in isotropic space [123]. The condition of spatial isotropy is violated 

in the quantum dots examined in this study because nuclei are affected by the field gradient 

due to the strain resulting from a mismatch between the lattice constants of the quantum 

dots and barrier layers and the exchange of nuclei due to the annealing process. Up to date 

theoretical approaches of optically induced nuclear spin polarization try to involve the 

quadrupole interactions, but there are still many unresolved problems [151]. In the 

experiments considered in this thesis all nuclei of the sample have a quadrupole moment 
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due to a nuclear spin of       or higher. The electric field gradient (ref. to sec. 2.1.2) splits 

nuclei, which have nonzero quadrupole moments, into Kramers doublets |   ⁄ ⟩ , |   ⁄ ⟩… 

etc. In an applied magnetic field, the Zeeman splitting in the doublets strongly depends on 

the relative orientation of the gradient axis and the magnetic field vector. This dependence 

can be described phenomenologically by introducing an anisotropic g-factor [152]. The 

anisotropy associated with the doublets |   ⁄ ⟩ is relatively weak: the difference between 

the g-factor components parallel and perpendicular to the gradient axis is not greater than a 

factor of 2 [82, 153]. Dynamics of these states should not be too different from the nuclear 

spin dynamics invoked to explain the W-profile of the Hanle-curve [84]. In the present study, 

one is naturally led to hypothesize that orientation of these particular states is responsible 

for the buildup of the component of nuclear polarization parallel to the applied field 

manifesting itself by the development of a W-profile. This hypothesis is consistent with the 

relatively simple dynamical pattern of the longitudinal component of nuclear polarization 

observed in our experiments. The g-factor anisotropy associated with the states, |   ⁄ ⟩, 

|   ⁄ ⟩...etc., is much stronger than with the doublets |   ⁄ ⟩, as demonstrated in relatively 

weak magnetic fields. In a magnetic field parallel to the gradient axis, the splitting of these 

states linearly increases with field strength and the corresponding g-factor is similar to that 

in the absence of a gradient. This is not the case in the presented measurements, because 

the structure growth direction is perpendicular to the external magnetic field   , while the 

strain, which is the main reason for the electric field gradient, is directed along the growth 

direction. In this case the magnetic field is perpendicular to the electric field gradient, which 

results in a highly nonlinear function of the g-factor depending on the external magnetic 

field   . This means that the splitting of the |   ⁄ ⟩ , |   ⁄ ⟩...etc. nuclear spin states 

almost vanishes in fields on the order of a few millitesla [82, 153]. In terms of the classical 

model, this means almost no precession of angular momenta associated with these states in 

a field of this kind. Suppression of precession impedes nuclear spin relaxation, which is 

generally attributed to local magnetic field effects (e.g., ref. to [154]). In effect, the 

transverse component of polarization of the nuclear states split off by quadrupole 

interactions can be stabilized to some degree in weak magnetic fields [149, 85]. A 

superlinear increase in splitting of these states with field strength enhances the probability 

of spin relaxation. The ensuing higher relaxation rate may be responsible for the shorter 

      decay times observed with increasing magnetic field strength in our experiments (ref. 

to  Figure 4-6(b)).  

 

 

4.2 Effect of nuclear fluctuation field     on the Hanle-curve 

The aim of the experiments presented in the following chapter is to analyze the behavior of 

the W-shape of the Hanle-curve after excitation with a CW-laser for different constant 

magnetic fields    directed along the optical axis (z-axis).  
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   is applied by a pair of Helmholtz coils that can be tuned in the range of          

     . Sample #980 is studied in the range of                . Figure 4-7 shows 

an overview of the effect of    on a larger scale of   . Each curve shows the pronounced W-

structure consisting of the narrow central peak and two maxima positioned symmetrically in 

relation to the peak. The HWHM of the central peak without the additional magnetic field    

is less than 1 mT. In comparison to a Hanle-curve obtained without   , a negative value 

         leads to an increase of      all over the curve. In contrast, a positive value 

         leads to a decrease of     .  

 

Figure 4-7 Overall shape of Hanle curves measured at different longitudinal magnetic fields    indicated at each 
curve. The inset shows the configuration of the experiment. The curves were obtained with sample #980 under 
excitation at 1.49 eV, detected at 1.42 eV at temperature         [155]. 

 

With focus on the W-structure of the Hanle-curve, an increase of    leads to an increase of 

the width of the central-peak to approximately 4 mT, irrespective of the sign of   . The 

experiment shows that application of a positive    is accompanied by a monotonous 

increase of the width of the central peak and of the dips near the peak. The depth of the dips 

remains almost unchanged. At negative   , the behavior of the dips is not monotonous. The 

change of    from      to       results in almost total disappearance of the dips without 

noticeable change of their width. A further increase of the    value to        leads to the 

increase of both depth and width of the dips. 

 

 

4.2.1 Introduction to standard cooling model 

The analysis of experimental data has confirmed the prediction of ref. [37] about the 

significant influence of nuclear spin fluctuations on the electron spin orientation due to 

strong localization of the electron in QDs. The observed behavior is considerably different 
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from that in extended semiconductor alloys studied in many works (ref. [123]). In extended 

semiconductor alloys the electron density is spread out over a huge number of nuclei and 

the effect of the nuclear spin fluctuations (NSF), as a rule, is negligibly small. The 

experimental Hanle-curves are compared with the results of calculations using two models, 

one including NSF and the other one taking into account only mean Overhauser fields. In 

both theories, the mean Overhauser field has been calculated within the spin temperature 

approach. 

The concept of a spin temperature is used since the late 1940's [156] and has been 

adapted to many different systems [157, 80, 158, 159, 160, 161, 162, 163].  Lowering the 

spin temperature corresponds to a considerable magnetization along the magnetic field or 

opposite to it (depending on the sign of the spin temperature), which gives rise to the 

Overhauser field acting on the electron spin. The Overhauser field is parallel or antiparallel 

to the nuclear spin, depending on the sign of the electron g-factor. In particular, it is 

antiparallel for the negative sign of   , as in our case. The total magnetic field     
  that acts 

on the nuclei is the sum of the external field    and the Knight field   . If    is strictly 

perpendicular to the optical axis (like in the Voigt-geometry used in this experiments), then 

the nuclear spin cooling occurs only due to the Knight field. Besides, the electron spin 

dynamics is determined by the total magnetic field     
  that acts on the electron, which is 

the sum of    and   . Such an interdependency of the system leads to coupled equations 

[123].  
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Here,      is the half width at half maximum (HWHM) of the Hanle-curve in the absence of 

the nuclear field.   ,    and    are the electron g-factor, the Bohr magneton, and the 

electron spin lifetime, respectively.   is the reciprocal temperature of the nuclear spin 

system, and parameter    is the effective field of totally polarized nuclei affecting the 

electron spin. The magnitude of    is determined by the properties of the particular 

electron-nuclear spin system and should not depend on external conditions. The term    
  

describes the interaction between nuclear spins causing the relaxation of nuclear 

polarization, where    is the local field, resulting from the next neighbouring nuclei acting 

on other nuclei. The solution of these equations yields a cubic equation for the average 

projection of the electron spin onto the direction of observation. The equation that applies 

in case the magnetic field    is perpendicular to the optical axis is given in ref. [123]. A 

simple generalization of the equation is possible in case an additional magnetic field    

directed along the optical axis: 
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   is the initial electron spin orientation created by excitation, and    is the projection of the 

electron spin on the z-axis averaged over time. 

 

4.2.2 Standard cooling model  

To model the experimentally measured Hanle-curve, the eq. (4.22) is solved numerically and 

   is obtained as a function of the transverse magnetic field     for different values of the 

longitudinal magnetic field in the range from               . The following values of 

the other parameters were used in the calculations:      ⁄ ,    ⁄         ,    

        , and         . The value of    ⁄   extracted from the measurement corresponds 

to the electron spin life time    of the order of        , which is several orders of magnitude 

smaller than the real value in the structures of this type (ref. to [164]). The difference of the 

   ⁄  to similar structures appears due to a build up of the Overhauser field (ref. to sec. 2.1.3) 

and is a sign of nuclear polarization. Examples of the calculated dependences are shown in 

Figure 4-8. 
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Figure 4-8  Comparison of the calculated curves according to the standard cooling model (solid lines) with the 
measured data for (a) positive and (b) negative longitudinal external field   . The corresponding values of    
are given for each curve. The curves were obtained with sample #980 under excitation at 1.49 eV, detected at 
1.42 eV at temperature         [155]. 

 

However, they only partially reproduce the behavior of the measured Hanle-curves.  For 

positive    ( ref. to Figure 4-8(a)) the calculated curve roughly follows the measured Hanle-

curve and for negative    the calculated curve  is completely different from the measured 

Hanle-curve. To find a reason for the discrepancy between the calculated and the measured 

curves it is necessary to pay attention to the directions of the magnetic fields present.    is 

codirected to the Knight field due to the helicity of excitation used in our experiments, which 

determines the spin direction of the excited electron. The analysis also shows that in this 

case the nuclear field    is codirected to the external magnetic field and thus “amplifies” it. 

This amplification results in a gradual decrease of spin polarization and, correspondingly, of 

PL polarization beyond the central peak with rising |  |, as seen both from the calculations 

and from the measured curves. When    is negative, the total field     
  has a component 

that is antiparallel         
 ) to the Knight field. When this antiparallel component reaches the 

magnitude of the Knight field it compensates it (according to ref. [123, 84]) and nuclear spin 

cooling is not possible in this case. This should result in the disappearance of the W-

structure, as it is indeed seen in Figure 4-8(b) for the Hanle-curve calculated for          . 

At more negative   , the W-structure reappears, but the additional maxima run away from 

the central peak with increasing amplitude of   , maintaining the same amplitude as the 

central peak. This behavior of the calculated Hanle-curves is explained by the fact that in this 

case the nuclear field    is directed against the total effective magnetic field     
  affecting 

the nuclei. The x component of the nuclear field      is compensated by the external 

transverse magnetic field    at some magnitude of   , giving rise to the additional maxima. 

The efficiency of the nuclear-spin pumping increases with the increase of |  |. As a 

result,      increases, and the positions of the compensation points where           are 

shifted to larger |  |. 
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These numerical results, however, are in strong contradiction to our experimental 

observations (ref. to Figure 4-8). The central peak of the measured Hanle-curves is higher 

than the other parts of the Hanle-curve at any negative     At this point it is important to 

stress that the disagreement between the theory and the experiment cannot be eliminated 

for any set of values of the adjustable parameters. Therefore this contradiction is of principal 

importance and indicates that the model of mean nuclear field ignores some mechanism 

causing depolarization of the electron spin at a non-zero transverse magnetic field, including 

points where it is totally compensated by the nuclear field. The discrepancy is evident also 

from the unrealistically large value of    ⁄  needed to fit, at least partly, the experimental 

Hanle-curves within the mean-field model. 

 

4.2.3 Extended cooling model considering nuclear fluctuating field     

In contrast to the model presented in sec. 4.2.2     
  is enhanced by the nuclear fluctuation 

field     and given by     
              . The origin of the fluctuation field     is 

the random change of orientation of the unpolarized nuclei. In bulk materials the amount of 

unpolarized nuclei that interact with the electron is so large that the effect is averaged to 

zero. But for nanostructures like quantum dots the amount of unpolarized nuclei is so small 

that on the one hand the effect of each unpolarized nucleus is not compensated by another 

unpolarized nucleus. On the other hand the magnetic field that appears due to the 

uncompensated nuclei is so large that the effect on the electron is not negligible (for more 

details ref. to sec. 2.1.4). The estimates given in refs. [165, 78] for similar QDs show that the 

average magnitude of the fluctuating nuclear field is in the order of tenths of millitesla. The 

frequency of the electron spin precession about the field is orders of magnitude larger than 

the time of relaxation    of the electron spin. Therefore the width of the Hanle-curve is 

determined by the fluctuating nuclear field rather than by the electron spin relaxation. This 

allows to fit the experimental curves without using nonrealistic values of    as was done in 

the previous chapter for the standard cooling model. An effective optical pumping can 

create a dynamic nuclear polarization, whose magnitude can considerably exceed the 

nuclear spin fluctuations. If the transverse magnetic field is zero, the effective field of 

nuclear polarization is directed along the optical axis and is able to suppress the effect of 

nuclear spin fluctuation (NSF). This results in the increased amplitude of the central peak of 

the Hanle-curve. In particular, the electron spin polarization at the point of mutual 

compensation of the external field and the field of nuclear polarization is smaller than the 

polarization at zero   . This qualitative consideration explains the small amplitudes of the 

additional maxima of the Hanle-curves, which cannot be explained by the standard cooling 

model. In order to include NSF in the theory, the following facts are used. The buildup time 

of the nuclear polarization is much longer than the correlation time of the nuclear spin 

fluctuation, which is, in turn, orders of magnitude longer than the electron spin lifetime. For 

this reason, the nuclear spin temperature can be calculated using the value of the electron 

mean spin averaged over possible realizations of the NSF, while each NSF realization can be 
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considered “frozen” (i.e., the evolution of nuclear spin during the electron spin lifetime can 

be neglected) [37]. The dependence of the average electron spin polarization on the 

transverse external magnetic field within this approximation is a bell-like curve, which can be 

well fitted by a Lorentzian: 

      
〈     

 〉

   〈   
 〉

  (4.26) 

Here is 〈   
 〉  〈     

 〉  〈     
 〉  〈     

 〉 where 〈      
 〉 is the squared α’ component (α’ 

= x,y,z) of the NSF averaged over the QD ensemble. Equation ((4.26) has a simple 

geometrical interpretation. In each QD with realization of a particular fluctuating field    , 

only the projection of the electron spin onto the total field     
         survives: 

         , where   is the angle between the vector     
  and the z-direction. Some 

generalization of eq.(4.26) is required to describe the electron spin polarization under the 

used experimental conditions. We need to take into account the regular nuclear field    

with non-zero components      and      created by the dynamic polarization of nuclei. 

Similar to the standard mean-field model it is assumed for simplicity reasons that the 

electron density is homogeneously distributed over the nuclei (the so-called box model 

approximation [166]), which allows to neglect the spatial variation of the Knight field. As 

another generalization it is assumed that all nuclear species are described with a single spin 

temperature. In contrast to the NSF field, this nuclear field    has a certain direction. Its 

components are either added to or subtracted from the respective components of the 

external magnetic field, depending on the experimental conditions. The constant magnetic 

field    that is applied by a pair of Helmholtz-coils and varied in a range of          

     is also included in this model.  
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As for the standard cooling model the regular nuclear field   , which is determined by 

eq.(4.23), is assumed to be directed along the total effective field     
  acting on the nuclei, 

which consists of     
           . In this case the Knight field is given by        . 
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The equation above allows to obtain the following expressions for the x and z components of 

the nuclear field: 
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  (4.30) 

  ,       , and    
  were considered fitting parameters and varied to get the best 

correspondence with the experimentally obtained Hanle-curves. The coefficient    is given, 

in principle, by              
 ⁄ , where ζ is the electron density on a nuclear site [123]. 

The negative sign means that the direction of the Knight field is opposite to that of the 

electron spin. Since the electron density depends on the QD size, which can vary from dot to 

dot, the value of ζ is unknown a priori. Equations (4.27),(4.28), (4.29) and (4.30) contain the 

Cartesian components of the electron spin and of the dynamic nuclear polarization as 

unknown quantities. The Cartesian components of the electron spin and of the dynamic 

nuclear polarization are found by numerical solution of equations (4.27),(4.28), (4.29) and 

(4.30) for transverse magnetic fields in the range from                  and for 

several values of the longitudinal magnetic field used in experiment. 

In the calculations, the coefficient    has been chosen such that the Knight field 

compensates the z component of the magnetic field at the point where the dips near the 

central peak of the Hanle-curve disappear (ref. to Figure 4-9).  

 

 

 



63 
 

  
Figure 4-9  Comparison of the calculated curves according to the extended cooling model which included the 
NSF (solid lines) with the measured data for (a) negative and (b) positive longitudinal external field   . The 
corresponding values of    are given for each curve. The inset shows the central part of experimental and 
calculated Hanle-curves in the case of mutual compensation of    and   . The fitting parameters are 

          √〈   
 〉                . The curves were obtained with sample #980 under excitation at 

1.49 eV, detected at 1.42 eV at temperature         [155]. 

 

For comparison of the calculated results with the experimental data the calculated values 

of    are multiplied by a factor    , which takes into account the reduced magnitude of PL 

polarization.This reduction is presumably due to the fact that some QDs are charged 

neutrally and that their PL is non polarized.    = 0.2 ± 0.02 for curves measured at negative 

   and    = 0.16 ± 0.01 for positive values of   . The latter curves were measured at a 

slightly lower power of excitation. The possible reason for the pump-power dependence of 

    is the creation of photoinduced electrons, which slightly change the fraction of charged 

QDs. 

The Equations (4.27), (4.28), (4.29)and (4.30) are interconnected cubic equations. Their 

solution is unstable in the most general case, complicating the determination of fitting 

parameters. For simplicity reasons, the calculations are performed in two steps. In the first 

step, the x component of the electron spin is excluded from the equations because it weakly 

affects the nuclear polarization. In addition, the small difference in orientation of effective 

fields     
  and     

  is neglected. Besides, a fitting parameter is introduced which 

characterizes the real nuclear field acting on the electron spin: 
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This reduces the system of equations to one equation of fifth order for   . 
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Equation (4.32) is numerically solved, which allows to determine the range of possible values 

for quantities    and      . In the second step, the whole system of equations (4.27), (4.28), 

(4.29) and (4.30) is solved and their real roots are used for modeling the Hanle-curves, 

slightly varying the fitting parameters determined in the first step. The best coincidence with 

the experimental data is achieved with virtually the same values of    and       as in the 

first step of the fitting. 

 

4.2.4 Conclusions: Comparison of experimental data and the extended cooling model 

As demonstrated in the examples of the calculated Hanle-curves shown in Figure 4-9, 

reasonable agreement between calculated and measured curves is observed for positive as 

well as for negative   . Some deviations from experiment occur for magnetic fields 

              , where the theoretically calculated amplitude of the central peak is 

considerably smaller than the central peak observed experimentally (see inset in Figure 

4-9a). The strong decrease of the peak amplitude obtained in the calculations is due to the 

depolarization of the electron spin by the nuclear spin fluctuations, when the longitudinal 

component of the total field disappears and the nuclear field does not build up. Experiments 

also show a decrease of the central peak of about 20%, which is, however, significantly 

smaller than the one predicted theoretically. A possible reason for this discrepancy between 

the theory and the experiment could be related to the spread of Knight fields in the QD 

ensemble, which is ignored in theory. Another possible reason is the polarization of 

quadrupole-split nuclear spin states, which can stabilize the electron spin polarization [85]. 

Further study is needed to clarify this problem. The good overall correspondence of the 

simulated and measured Hanle-curves confirms the validity of the extended cooling model 

developed. The NSF amplitude √   
  extracted from the fitting is close to 25 mT for all the 

measured Hanle-curves fitted for different   .  This value is somewhat larger than the one 

obtained in another experiment with similar quantum dots [167]. A possible reason for this 

overestimation of the NSF amplitude is the increase of the wings of the Hanle-curves due to 

polarization of quadrupole–split nuclear spin states, which becomes noticeable at magnetic 

fields |  |          and larger and leads to an enhancement of      in this range [168]. 

The validity of the assumption of an isotropic distribution of NSF is verified by replacing 
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〈     
 〉   〈     

 〉 in the numerator of eq.(4.32) and optimizing the factor  . The optimal 

value of   was found to be in the range from 1.2 to 1.4. It can be supposed that some 

asymmetry in space of the distribution of NSF can also be due to the quadrupole stabilization 

of nuclear spins. The quadrupole stabilization of nuclear spins is mainly directed along the 

growing direction (z-axis) of the sample, since the strain which is one of the main reasons for 

the quadrupole stabilization is directed along this direction. There are traces of effects that 

can be interpreted as quadrupole effects of the nuclei, but the small range   , that is used 

for the fitting, still justifies a negligence of the quadrupole effects in the model used. In this 

range of    the effects of quadrupole stabilization on the measurement are negligibly small 

in comparison to the NSF, as shown by the comparison of the fitted curves. Furthermore it is 

possible to get a clear idea about the vector representation of the time-averaged electron 

spin and nuclear polarization in the system under study. Figure 4-10 schematically shows the 

evolution of the respective vectors under variation of the transverse magnetic field    and 

for zero longitudinal field. For uniformity, the electron spin and the nuclear polarization are 

presented as effective fields,    and   , respectively. 

 

Figure 4-10  (Color online) Evolution (a) of Knight field    and (b) of nuclear field    at      under changing 
external magnetic field   . Values of    (in  mT) are given for some positions of the evolution curves. The step 
between points is not constant. Arrows show respective    and    vectors. The curves were obtained with 
sample #980 under excitation at 1.49 eV, detected at 1.42 eV at temperature         [155]. 

 
 

The nuclear field at zero    is controlled only by the Knight field, which is directed along the 

z axis. When a small transverse magnetic field,       is applied, the nuclear field deviates 

from the z axis, so that its x component becomes orders of magnitude larger than the 

magnetic field    . For example,            at          ; see Figure 4-10(b). This is a 

clear illustration of the “amplification” of the external magnetic field by the nuclear field. 

The electron spin polarization follows the nuclear field, which becomes quickly tilted with 

the magnetic field and depolarizes the electron spin. This behavior of the electron spin 

explains the small width of the central peak of the Hanle-curve. For a further increase of the 
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magnetic field, the magnitude of the nuclear field rapidly drops so that |  |  |  |       

     .  

Application of    with a magnitude larger than that of the Knight field significantly 

changes the behavior of the electron and nuclear polarizations, as demonstrated in Figure 

4-11 for |  |      .  

 

Figure 4-11  (Color online) Evolution of (a) and (b) the electron and (c) and (d) nuclear fields for application of 
negative [(a) and (c)] and positive [(b) and (d)] longitudinal magnetic fields with relatively large magnitudes. 
Like in Figure 4-10 the diagrams are shown only for positive    . The curves were obtained with sample #980 
under excitation at 1.49 eV, detected at 1.42 eV at temperature         [155]. 

 

An increase of the transverse magnetic field    is accompanied by inclination and 

reduction of the Knight field; however, the reduction is not as fast as at      . The 

direction of the Knight field inclination depends on the sign of the longitudinal magnetic 

field; see Figure 4-11(a) and Figure 4-11(b). The nuclear field    is directed along the z-axis 

at zero transverse magnetic field and has the maximal value                 at 

positive    when the Knight field and the longitudinal magnetic field add up (ref. to Figure 

4-11d). At opposite (negative) sign of   , when the fields are subtracted from each other, the 
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total effective field acting on the nuclei is smaller, which results in some reduction of the 

nuclear polarization (ref. to Figure 4-11c). The direction of inclination of the nuclear field is 

also dependent on the sign of   . In particular, the x component of the nuclear field is 

negative at negative   , so that compensation of the external magnetic field    occurs at 

         . This compensation results in partial restoration of the electron spin 

polarization and its reorientation along the z-axis; (ref. to Figure 4-11a). The decrease of the 

magnitude of the Knight field relative of its initial value at           is the effect of the 

nuclear spin fluctuations, as discussed above. 

 

4.3 Suppression of nuclear pumping 

The idea of the experiment presented in the following section is to create short excitation 
pulses with a CW-laser and to find a setting where the time of excitation     is too short for 
nuclear polarization. Such a setting depends on the relation of the modulation frequency 
    and    . This situation where no nuclear polarization occurs is given for             
and           . Such timescale of modulation is reasonable as the typical timescale of 
nuclear spin dynamics is in the order of hundreds of µs (ref. to sec. 2.1.5). The experiments 
are performed on sample #980.  

 

4.3.1 Experimental observations 

It is also possible to combine the amplitude modulation with the polarization modulation, so 

that one pulse of excitation is   polarized and the next following pulse is    polarized. In 

contrast to sec. 4.1, the timescale for the modulation period        is in the range of µs.  

 
Figure 4-12  (a) Excitation protocol for measurement with pure amplitude modulation (AM). (b) with amplitude 
modulation combined with  polarization modulation (AM+PM). Blue and red rectangles indicate   and    
polarized light excitation with equal intensity and equal duration. 

 

As an introduction to the new regime measurements with pure AM in this timescale are 

presented first. Then two types of measurements in which the same modulation frequency 

was used are compared with each other. For the one of these measurements a pure AM was 

applied, while for the other measurement a combination of PM+AM was used. The 
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excitation protocol in Figure 4-13 shows the repetition time of polarized light pulses     and 

the duration      can be varied. With a constant modulation time     and an increasing of 

the excitation time     , the excitation becomes similar to the excitation described in sec. 

4.4. 

 
Figure 4-13  (Color line) Hanle-curves measured in CW regime (black curve), polarization modulation of 
excitation (    = 40 µs, blue curve), and polarization and amplitude modulation of excitation (    = 20 µs,     
= 5 μs, red curve). The curves were obtained with sample #980 under excitation at 1.49 eV, detected at 1.42 eV 
at temperature         [167]. 

 

The blending of the excitation protocol can be also traced by the shape of the Hanle-curve. 

This process of blending can be characterized in two steps. Increasing      in a range up to 

 70% of the modulation period leads to an formation of a W-structure at the center position 

of the Hanle-curve (around        ). The width of the Hanle-curve is not influenced in 

this regime (short pulse regime). If the excitation time      exceeds  70% of the modulation 

period    , a second regime starts (long pulse regime). In this regime the W-structure is 

nearly completely developed, but there is still a difference to the W-structure of a Hanle-

curve obtained under pure PM. The main effect that can be observed in the long pulse 

regime is the widening of the Hanle-curve. It is remarkable that a dark time of 250 ns leads 

to a significant difference to the Hanle-curve obtained under CW excitation (ref. to Figure 

4-14). Each curve is measured during 0.5 µs of excitation, so that for the long excitation 

regime it is possible to measure at the beginning and at the end of the excitation pulse. The 

comparison shows that there is no measurable development of the Hanle-curve during an 

excitation pulse, but that the Hanle-curve is built up at the very beginning of the excitation 

pulse. This indicates that the system reaches a state of equilibrium under the special 

excitation protocol (ref. to Figure 4-14).  
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Figure 4-14  Hanle-curves obtained with          . Red curve is detected during the first 0.5 µs of the 
excitation pulse. Blue curve is detected during the last 0.5 µs of the excitation pulse. The curves were obtained 
with sample #980 under excitation at 1.49 eV, detected at 1.42 eV at temperature        . 

 

 

Figure 4-15  Hanle-curves obtained with          . The different durations      of the excitation pulse are 
labeled for each curve within the figure. Part (a) presents the short pulse regime, while part (b) presents the 
long pulse regime and a Hanle-curve obtained under CW excitation. The curves were obtained with sample 
#980 under excitation at 1.49 eV, detected at 1.42 eV at temperature        . 

 

Another parameter that influences the width and the amplitude      of the Hanle-curve is 

the excitation power     . As shown for the short pulse regime in Figure 4-16 an increase of 

     leads to a widening of the Hanle-curve and simultaneously to an increase of     .  
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Figure 4-16  (color lines) Hanle-curves obtained under AM with          and            for different 
excitation power. The curves were obtained with sample #980 under excitation at 1.49 eV, detected at 1.42 eV 
at temperature        . 

 

At approximately           the amplitude of      is saturated, so that a further increase 

of      results in a widening of the Hanle-curve. The curve can be fitted by a Lorentzian curve 

       
  

  (
  

   ⁄
)

 . Here    is the initialized electron spin and      is the half width at half 

maximum (HWHM) which is varying from 2 mT to 10 mT for          –      . Figure 4-17 

shows that, in the regime of short excitation pulses, an additional modulation of polarization 

has no influence on the shape of the Hanle-curve.  

 
Figure 4-17  Blue and red Hanle-curve are obtained for with          and           . The excitation pulses 
for the red curve are always    polarized, while the excitation pulses for the blue curve alternate in 
polarization, so that a    pulse is followed by a    pulse. In comparison to the modulated Hanle-curves is 
Hanle-curve shown obtained under CW excitation (black curve). The curves were obtained with sample #980 
under excitation at 1.49 eV, detected at 1.42 eV at temperature        . 
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4.3.2 Conclusions 

The introductory measurements with pure AM give an useful overview over nuclear spin 

dynamics and show that the nuclear spin dynamics depend on the magnitude of   . Within a 

range of about                 , the nuclear spin responds faster to the circularly 

polarized light via the hyperfine interaction than in larger fields of   . In this range of about 

                , an increase of      leads to a decrease of     . As already 

mentioned in ref. [84] and shown in sec. 4.2.4, the appearance of a W-structure is regarded 

as a reliable evidence for nuclear polarization. This leads to the interpretation that a buildup 

of nuclear polarization leads to a decrease of     . This is in agreement to ref. [153], where 

for the same sample the use of RF-fields under CW-laser excitation leads to a depolarization 

of the nuclear spin system in approximately the same range of   . This depolarization of the 

nuclear spin system causes an increase of     . In the range of          a longer 

excitation time      is required to observe an effect. In contrast to the smaller values of   , 

an increase of      leads to an increase of     . The different dynamics and opposite 

influences on      due to nuclear polarization lead to the assumption of two different sub 

ensembles of nuclei that interact with the electron in different ways, depending on the 

magnitude of   . This assumption has been validated by measurements and calculations 

performed for this thesis [168] [167]. In the smaller range of    nuclear spin states  |   ⁄ ⟩ 

are responsible for the influence on     , while for larger values of          is dominated 

by     |   ⁄ ⟩ states (ref. to sec. 4.1.1). 

The detection at the beginning and at the end of the excitation pulse results in the same 

shape of the Hanle-curve. For a correct interpretation of the Hanle-curve one should keep in 

mind that for each point of the Hanle-curve the sample is continuously excited according to 

the excitation protocol and the luminescence is accumulated for 7 sec. The dynamic process 

of nuclear polarization takes place within the first second of excitation, when the modulated 

laser light hits the sample for the first time. But at the point of time when the measurements 

presented in this chapter are taken the nuclear polarization is already saturated. However, 

different relations of the dark time and the excitation time result in different shapes of the 

Hanle-curve. The longer the excitation time within the modulation period, the closer the 

curve resembles a Hanle-curve obtained under CW-laser excitation without any modulation. 

This means that even for            , with a dark time of 7.5 µs, some nuclear polarization 

is restored during the dark time. This accumulated nuclear polarization gives rise to the W-

structure. The only exception is the curve with            , which has a Lorentzian shape. 

At such conditions every nuclear polarization that could appear during the 0.5 µs of 

excitation is depolarized during the 9.5 µs of dark time. Even alternation of polarization, so 

that one pulse is    polarized and the next following pulse is    polarized, has no influence 

on the shape of the Hanle-curve. If there was a nuclear polarization that remained longer 

than one excitation period, the alternating polarization would lead to a different shape of 

the Hanle-curve, because an alternating polarization influences the nuclear polarization in a 

different way than an excitation with one polarization (ref. to sec. 4.4). In the following text, 

such Hanle-curves, which show no sign of nuclear polarization, will be called “electron-peak” 
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or in short form “e-peak”. From the fitting of the Hanle-curve obtained with              

and              it is assumed that the width of the Hanle-curve is not determined by 

nuclear polarization but by the dephasing time    of the electron spin. From the fitting with 

S=S0/(1+(B/B1/2)2) and the electron g-factor |  |      the time           can be 

calculated. This value is reasonable, because in such small external fields the dephasing of 

the electron spin is mainly caused by the electron spin precession about the frozen magnetic 

field of the nuclei [37]. The time of 1.9 ns can be also interpreted as the average time 

between the excitation events.  

 

4.4 Resonant pumping of nuclear spins 

In this section a possibility to manipulate the component of the nuclear spin that is 

transverse to the external field    by optical excitation is presented. The optical 

manipulation leads to a coherent precession of the transverse component for every nucleus 

whose Larmor precession frequency is equal to the modulation frequency. This effect is 

called resonant pumping of nuclear spin. In sec. 4.4.2 an RF-field is added to the optical 

modulation which leads to an amplification of the resonant pumping effect but the principle 

of the observed effect is still the same.  

In all experiments where the modulation of polarization (PM) is used the polarization 

changes between the two circular polarizations,    and    . The relation between the two 

polarizations always remains the same, so that the sample is excited for an equal amount of 

time with both polarizations. The only parameter that is varied from measurement to 

measurement is the period of modulation.  

 

Figure 4-18  Excitation protocol for measurement with polarization modulation (PM). Blue and red rectangles 
indicate   and    polarized light excitation with equal intensity and equal duration. 

 

The alternating excitation with    and    polarized light is realized in the range of 2.5 kHz to 

200 kHz. To calculate      it is needed to measure the intensity of right- and left-handed 

polarized photoluminescence. In this setup it is not possible to measure these two 

components at the same time. Therefore one component is measured during the whole 

excitation with    polarized light and the other component is measured during the whole 
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excitation with    polarized light. The Hanle-curves thereby obtained are average curves. 

Dynamics of the electron-nuclei system during the excitation time cannot be detected. In 

comparison to the Hanle-curve obtained under CW-laser excitation with the same excitation 

intensity the polarization degree of the photoluminescence in smaller external magnetic 

field is already zero for a PM excitation. The Hanle-curve measured under modulated 

polarization of excitation (blue curve in Figure 4-13) shows two strong additional maxima at 

about |  |       . At small modulation frequencies    , the Hanle-curve consists of a 

central peak and hardly visible sidebands. Its dependence on modulation frequency,    , is 

illustrated in Figure 4-19.  

 

Figure 4-19  (Color online) (a) Hanle-curves measured at modulated polarization of excitation with     = 2.5 
kHz (black curve), 12.5 kHz (blue curve), 50 kHz (red curve), and 200 kHz (green curve). Inset shows a scheme 
illustrating the pumping of nuclear field. The curves were obtained with sample #980 under excitation at 1.49 
eV, detected at 1.42 eV at temperature         [167]. 

 

At small    , the Hanle-curve consists of a central peak and hardly visible sidebands (black 

curve in Figure 4-19. As the modulation frequency rises, the sidebands become more 

pronounced while their amplitude decreases so that they disappear again at            . 

Simultaneously the central peak becomes wider and new shoulders appear (color lines in 

Figure 4-19). 

 

4.4.1 Conclusions 

The effect of modulated optical excitation on electron-nuclear spin systems has been studied 

earlier for bulk semiconductors [123, 169] and quantum wells [170, 171]. In these works, the 

effect was observed as dispersion-like peculiarities superimposed on a smooth Hanle-curve. 

The authors treated the effect as the nuclear magnetic resonance (NMR). In contrast to 

conventional NMR measurements these are "all optical" measurements, in which the 

effective alternative magnetic field, which is normally induced by a pair of radiofrequency 
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coils, is induced optically. For this purpose the sample is excited with alternating circular 

polarized light, so that the initialized spin direction of the excited electron is either polarized 

in +z or -z direction depending on the helicity of the optical polarization. The direction of the 

Knight-field is bound to the spin direction of the electron. Therefore the alternating Knight-

field replaces the function of an alternating magnetic field applied by a pair of RF-coils and 

equalizes populations of nuclear spin sublevels at exactly resonant conditions. This is the 

case when the modulation frequency     equals the Larmor precession of the nuclei. No 

pumping of nuclear spin system occurs when the modulation frequency is far from the 

resonance. 

The effect observed in the experiments performed for this thesis is rather different. There 

are clear resonances beyond the e-peak rather than dispersion-like peculiarities. A 

noticeable difference to the previously mentioned structures like quantum wells or bulk 

material is the considerably larger hyperfine interaction in QDs under study, which results in 

more effective optical pumping and noticeable polarization of nuclear spins. This effect can 

simply be understood considering the dynamics of an electron spin and nuclear spins with I = 

1/2 (see inset in Figure 4-19). The polarized electron polarizes nuclear spins via hyperfine 

interactions. Simultaneously, the electron feels the nuclear polarization as an effective 

magnetic field, the Overhauser field   , and rapidly precesses about the total field, 

    
       , so that only the spin projection on this field is saved. Hyperfine interactions 

with such electrons can pump both the      and      components of the nuclear field. The 

     component can only be pumped when the frequency of modulation of optical 

polarization coincides with the Larmor frequency    of the nuclear spin precession. In this 

case, the      component is pumped along the +z direction during one half period of optical 

excitation, as long as the electron spin is pointing into the same direction. A pumping along -

z direction occurs during the other half period of modulation, when the polarization of 

excitation changes and the electron spin is pointing into the other direction. A building up of 

     leads to a stabilization of the electron spin along the z-direction which in turn leads to 

an increase of     . 

  

 

Figure 4-20 Schematic illustration for resonant pumping of nuclear spin. The initialized spin direction of the 
electron    is codirected to the nuclear spin    and to the externally applied RF-field due to the chosen 
polarization (     ) of the excitation light. The Larmor frequency of the nuclear spin is equal to the 
polarization modulation frequency of the optical excitation. 
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The direction of the      component is independent of the initial orientation of the electron 

spin and only determined by the signs of the electron and nuclear g-factors. It is directed 

against the external magnetic field in the studied QDs. The efficiency of pumping of this 

component depends on the x-projection of the electron spin on the total field     
  and 

increases when      becomes large enough, which is possible in resonant conditions. This 

experiment shows that the polarization dynamics in QDs is totally different from that 

observed earlier for bulk materials and QWs. There is real resonant pumping of the nuclear 

spin system, which results in strong increase (not decrease, like in ref. [170, 171]) of nuclear 

polarization at strictly resonant conditions. The effect described is called "resonant pumping 

of the nuclear spin" and can be amplified by an additional RF-field excitation synchronized 

with the PM as described in the following chapter. A more detailed analysis of this effect is 

also given in the following chapter. 

 

4.4.2 Amplified  resonant pumping of nuclear spin 

The synchronized modulation of a sinusoidal RF-field                      with 

polarization modulation, is studied in the range of         2.5 kHz to 1 MHz.  

 

Figure 4-21  Excitation protocol for measurement with polarization modulation combined with RF excitation 
(PM+RF). Blue and red rectangles indicate   and    polarized light excitation with equal intensity and equal 
duration. Green sinusoidal curve represents the RF excitation with equal modulation period      like the 
modulation of polarization but shifted with a certain phase   . 

 

The limiting factor for the modulation frequency is the used pulse generator of the electro-

optical modulator. The behavior of the Hanle-curve is studied in this frequency range of 

modulation for different phases    between the polarization modulation and the RF 

excitation. The intensity of excitation and the intensity of the RF-field is adjusted to every 

modulation frequency in a small range to obtain the most distinct Hanle-curve. As shown in 

Figure 4-22, a very high excitation intensity      or a very strong RF-field lead to a bloating of 

the Hanle-curve. In contrast, a very weak excitation intensity      leads to a low polarization 

degree of the Hanle-curve which makes the analysis impossible. The influence of a very weak 

RF-field on the Hanle-curve does also not suffice for clear analysis.  
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Figure 4-22 All Hanle-curves measured with 50 kHz of PM+RF modulation with the same phase   . The 
different excitation powers and RF amplitudes are shown for each curve. The curves were obtained with 
sample #900 under excitation at 1.47 eV, detected at 1.34 eV at temperature        . 

 

The two studied samples show a similar behavior on the excitation protocol, where sample 

#980 gives a more pronounced response to the modulation. Figure 4-23 and Figure 4-24 

show the dependence of the shape of the Hanle-curve on the phase between for two 

modulation frequencies.  

 

Figure 4-23  All Hanle-curves measured with 600 kHz of PM+RF modulation with the same power of excitation 
and the same RF amplitude but different phase   . The different phase    is shown for each curve. The curves 
were obtained with sample #980 under excitation at 1.49 eV, detected at 1.42 eV at temperature        . 
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Depending on the phase   , the resulting Hanle-curve is either wider or more narrow than a 

Hanle-curve obtained under polarization modulation without RF-field excitation. The case of 

a widening of the Hanle-curve with a hysteresis behavior is observed for sample #980 for the 

whole frequency range of modulation (ref. to Figure 4-24).  

 

 

Figure 4-24  All Hanle-curves measured with 1 MHz of PM+RF modulation with the same power of excitation 

and the same RF amplitude but different phase   . The different phase    is shown for each curve. For each 

curve except the cyan curve the Sweeping direction of    is directed from negative to positive values. The cyan 

curve shows the hysteresis like behavior and is swept from positive to negative values of   . The curves were 

obtained with sample #980 under excitation at 1.49 eV, detected at 1.42 eV at temperature        . 

 

Sample #900 also shows a widening and narrowing of the Hanle-curve in the dependence on 

the phase    but the hysteresis behavior is less pronounced. For a                the 

asymmetric shape is hardly visible, so that the hysteresis behavior can only be observed for 

              . For higher modulation frequencies only a symmetric widening and 

narrowing is observable.  

0

0.05

0.10

0.15

0.20

-60 -30 0 30 60

 =120°
 =0°
 =80°
 =180°
 =180°

B
x
 [mT]

A
N

C
P



78 
 

 

Figure 4-25  All Hanle-curves measured with 333 kHz of PM+RF modulation with the same power of excitation 
and the same RF amplitude but different phase   . The different phase    is shown for each curve. The 
curves were obtained with sample #900 under excitation at 1.47 eV, detected at 1.34 eV at temperature 
       . 

 

If the polarization modulation has a different frequency than the RF-field modulation no 

phase can be defined between the two modulations and the Hanle-curve shows no influence 

in this case (ref. to Figure 4-26).  

 

Figure 4-26  All Hanle-curves measured with 300 kHz of PM modulation and 400 kHz of RF modulation with the 
same power of excitation and the same RF amplitude but different phase   . The different phase    is shown 
for each curve. The curves were obtained with sample #900 under excitation at 1.47 eV, detected at 1.34 eV at 
temperature        . 
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4.4.3 Conclusions 

A joint effect of RF+PM modulation has also been observed in 1976 for bulk AlGaAs crystals 

as a change of the Hanle-curve in small magnetic fields [162]. 

 

Figure 4-27  Effect of    -field on Hanle-curve measured at        = 250 kHz. The dark and light blue curves 
are measured at application of cophased    -field (Δϕ=20°) with amplitude           . Arrows show 
direction of the NCP change when the magnetic field is scanned from negative to positive values and in reverse 
direction. The red curve is measured at the antiphased    -field (Δϕ = -160°). The green curve is measured 
with no RF-field. The black curve is the electronic Hanle-curve. The curves were obtained with sample #980 
under excitation at 1.49 eV, detected at 1.42 eV at temperature         [167]. 

 

It has been interpreted as an effect related to nuclear polarization. The following 

interpretation of the role of the RF-field is based on the model of hyperfine interactions as 

described in [119]. In the term of the hyperfine interaction (ref. to eq.(2.20)) there is the 

scalar product of the nuclear spin and the electron spin. Therefore, in case of a 

perpendicular orientation of the nuclear spin and the electron spin, no hyperfine interaction 

occurs. In the Voigt geometry (as in all measurements performed), the magnetic field is 

perpendicular to the optical axis, so that the excited electron is oriented along the optical 

axis. The external field is the quantization axis for the nuclei, so that the only component of 

the nuclear spin that cannot be averaged to zero is directed along the external field. In such 

a situation a hyperfine interaction cannot occur, due to the perpendicular orientation of 

both spin vectors. However, a magnetic field (like the RF-field) that is directed along the 

optical axis and acts on the nuclei, tilts the total magnetic field for the nuclei out of the 

perpendicular orientation to the optical axis, which gives rise to the hyperfine interaction. 

The role of the RF-field depends on the phase    between the PM- and RF-modulation. In a 

situation where the Hanle-curve obtained under PM+RF-modulation is wider than a Hanle-

curve obtained under pure PM, the RF-field amplifies the Knight-field (ref. to blue curve in 

Figure 4-27). Then, the total field     
  for the nuclei is given by     

           . Due 
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to the constant phase   ,    and     are summarized to a an effective magnetic field      

that is alternating in direction but not in amplitude for a fixed        and fixed   . In a 

situation, where the Hanle-curve obtained under PM+RF-modulation is narrower than a 

Hanle-curve obtained under pure PM, the RF-field compensates the Knight-field (ref. to red 

curve in Figure 4-27).  

In order to prove experimentally that the     field is crucial for the effects observed, two 

more measurements are performed. In the first measurement the     field is replaced by a 

constant magnetic field along the z-axis. In the second measurement the     field is 

replaced by an RF-field along the x-axis. In both cases it is not possible to obtain similar 

effects as could be obtained applying the     field. The resonances observed at large 

absolute values of   , which were considerably magnified by the     field cannot be 

explained by transitions |    ⟩  |    ⟩ in nuclei of elements of the QDs under study. 

Quantum dots under study contain several types of nuclei (including isotopes), namely,  

   
  ,    

  ,    
  ,    

   ,    
   , so that the variety of nuclear spin transitions which can 

contribute to the observed Hanle-curves is large enough. This variety is increased further in 

these QDs due to large quadrupole splitting of nuclear spin states which influences the 

energy distance of the Zeeman levels. The strain is directed along the growth axis (z-axis) 

that is perpendicular to   . It determines the quadrupole splitting for all the types of nuclei 

including their isotopes (ref. to sec. 2.1.2). Calculations show  that the Zeeman splitting of 

states|    ⟩ is increased in this case by factor “2” in small magnetic fields and the Zeeman 

splitting of states |    ⟩ is strongly nonlinear [ref. to Figure 4-28] [153].  

 

Figure 4-28  Calculated Zeeman splitting of quadrupole-affected nuclear spin states of    
   assuming that the 

quadrupole splitting is due to strain aligned along z axis,     = 0.01 [153]. 

 

Transitions |    ⟩  |    ⟩ give rise to resonances, whose magnetic field position can be 

calculated using relation:          , where    is the gyromagnetic ratio for nucleus N. 

Transitions |    ⟩  |    ⟩ can also give resonances due to an admixture of |    ⟩ 

states in the magnetic field. The field position of the resonances however strongly depends 
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on quadrupole splitting. The resonances may be responsible for the wide part of Hanle-

curve, since the larger magnetic field is required to split states |    ⟩. This consideration 

has been used for analysis of resonances observed in Hanle-curves. An example of the 

analysis is given in Figure 4-29. Although the amplitude of resonances cannot be uniquely 

determined, the fitting clearly shows that the    
   resonance is most intensive. This 

conclusion is in agreement with the observation obtained previously using another 

technique [153]. 

 

Figure 4-29  Analysis of Hanle-curve obtained by              . The black dotted line is the experimental 
data. The colored and gray Gaussian functions are the obtained fits. Detailed information about the analysis is 
given in the main text. The curves were obtained with sample #980 under excitation at 1.49 eV, detected at 
1.42 eV at temperature         [167]. 

 

Similar results are obtained for other frequencies of polarization modulation. Figure 4-29 

shows the analysis of the Hanle-curve measured at application of the RF-field. The dip of the 

Hanle-curve at      is a result of a subtraction of two Hanle-curves, namely the RF+PL 

modulated Hanle-curve subtracted from the "electron peak". The "electron peak" is a Hanle-

curve without any influence of a nuclear polarization, as explained in detail in sec. 4.3.2.  The 

Hanle-curve that results from such a subtraction only shows effects that arise from nuclear 

polarization.  

The central part of the Hanle-curve obtained is modeled by resonances|    ⟩  |    ⟩, 

the wide part is modeled by resonances |    ⟩  |    ⟩ for In and Ga nuclei, as well by 

resonances |    ⟩  |    ⟩ for In nuclei. The resonance positions were considered as 

fitting parameters. This analysis is performed for all the experimental data obtained. To 

calculate the strain in the sample it is assumed that the electric field gradient is only strain 

induced,            and determined by the strain    .     is the principal component of the 

so-called S tensor which can be extracted from nuclear acoustic resonances [60]. Using a 

cylindrically symmetric QD model [78] and the transversal isotropic approximation [172] in 

continuum elasticity theory, the value of the strain is estimated to be         , which is in 
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good agreement with that estimated in ref. [153]. The resonance for    
   can be identified 

most reliably and its magnetic field dependence (ref. to Figure 4-30) is well described by the 

theoretical assumptions. The least accordance to the model is given by the resonances of 

   
   as shown in Figure 4-30. The problem arises from the fact that the strain is not the only 

reason that leads to an electric field gradient (ref. to sec. 2.1.3). Another reason for an 

electric field gradient is the exchange of nuclei due to the annealing process. The unit cell of 

GaAs shows that As has four Ga-nuclei as next neighboring nuclei. It is not possible to 

predict, which and how many of the four Ga-nuclei are replaced by In-nuclei during the 

annealing process, because the exchange is a random process. The influence of the 

exchanged nuclei leads to tilting of the electric field gradient relative to the external 

magnetic field    for the As-nuclei, which in turn influences the quadrupole splitting.  

 

Figure 4-30  (Color online) (a) The positions of resonances |    ⟩  |    ⟩ (crosses), |    ⟩  |    ⟩ and 
|    ⟩  |    ⟩ (circles) extracted from experiments. Solid lines show theoretical calculations for     = 0.01. 
Dashed line is the calculated dependence for resonance |    ⟩  |    ⟩ in As nuclei with one In and three 
Ga neighbors. The curves were obtained with sample #980 under excitation at 1.49 eV, detected at 1.42 eV at 
temperature         [167]. 

 

 

4.5 Nuclear spin pumping under pulsed laser excitation 

In contrast to all previously mentioned results, the results presented in this section are not 

yet published. The collected knowledge about the interaction of electron and nuclei in 

quantum dots during this thesis can be used to analyze the observed effects, but there are 

still open questions that remain. In the first part of this section Hanle-curves obtained by a 

CW-laser excitation and a pulsed-laser excitation will be compared (ref. to secs. 4.5.1 and 

4.5.2). The second part (sec. 4.6) presents data obtained with an extended version of the 

excitation protocol that is used for amplified resonant pumping. The extension is a RF-coil 

directed along the y-axis and the possibility to show the evolution of      during the 

excitation. All measurements with pulsed laser excitation are obtained with sample #900. 
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4.5.1 Comparison of pulsed- and CW-laser excitation without modulation 

In order to compare the two different laser types it is important to have equal framework 

conditions for both excitations. The external magnetic field    is swept in the same range 

with the same steps and a sweeping time   =10 sec/point. The sample is put into superfluid 

helium and the temperature of the sample is controlled by using a needle valve. By detecting 

the PL with a lens that is focused on one spot on the sample it is possible to always excite 

the same spot on the sample. One problem that appears is finding the criterion for the 

comparison of the excitation energy. The pulsed laser excites the sample with a short pulse 

(in the femtosecond range) with a high energy density. In between the excitation pulses the 

sample is not excited for 12.5 ns. The CW-laser excites the sample continuously with a lower 

energy density. One possibility for comparison of the two different laser types is to use for 

each laser the same time averaged excitation power. However, this comparison proves not 

to be suitable in our case, since excitation with the same time averaged excitation power 

leads to a different shape for the PL spectrum of the quantum dots. Therefore the ratio of 

the emission intensity from the ground-state and the excited state is different for the two 

lasers. A more similar condition would be a situation where the relation of the emission 

intensity of the ground-state and the excited states does not change due to a change of the 

laser. At first, the excitation power of a pulsed laser of 0.5 mW is compared with the 

excitation power of a CW-laser of 10 mW. In this case, the relation of the emission intensity 

of the ground-state and the excited states does not change due to a change of the laser (ref. 

to Figure 4-31)  

 

Figure 4-31  PL spectrum of sample #900 obtained be CW-laser and pulsed-laser excitation (excited at 1.47 eV) 
at temperature        . Represents a weak excitation intensity with luminescence of the ground- and first 
excited-state of the quantum dot exciton.  
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Secondly, the excitation power of a pulsed laser of 10 mW is compared with the excitation 

power of a CW-laser of 100 mW. In this case, however, the P-shell emission of the pulsed 

laser excitation is more intense than the S-shell emission. It is impossible to achieve such a 

situation using a CW-laser excitation even under 200 mW excitation, which is the highest 

stable excitation power that can be applied using the CW-laser. A drop to a CW-laser 

excitation of 100 mW leads to nearly no change in the relation of the emission intensity of 

the PL.  Therefore a comparison of a 10 mW pulsed laser with a 100 mW CW-laser excitation 

is performed.  

 

Figure 4-32  PL spectrum of sample #900 obtained be CW-laser and pulsed-laser excitation (excited at 1.47 eV) 
at temperature        . Represents a strong excitation intensity with luminescence of the ground-, first and 
second excited-state of the quantum dot exciton.  

 

Another problem for comparison that appears is the different spectral width of the two laser 

beams. The pulsed laser has a spectral width of     nm, the CW-laser has a spectral width 

of    nm. For the following experiments the width of the pulsed laser is narrowed by a 

grating (2000 gr/mm) and a set of razors which cuts out the unused laser light, resulting in 

an equal spectral width of the pulsed laser and the CW-laser.  
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Figure 4-33  Hanle-curves obtained by CW-laser (green curve) and by pulsed-laser excitation with a constant 
circular polarization. The different excitation powers (values are averaged over time) are given for each curve. 
The curves were obtained with sample #900 under excitation at 1.47 eV, detected at 1.34 eV at temperature 
       . 

 

Two important differences can be observed in the shape of the Hanle-curve. The first 

observed difference is that in comparison to the excitation with a CW-laser the Hanle-curve 

obtained by pulsed laser excitation has no W-shape (ref. Figure 4-33 and Figure 4-34). The 

second observed difference is that the Hanle-curve obtained under pulsed laser excitation is 

asymmetric concerning the zero position of    in contrast to a CW-laser excitation (ref. 

Figure 4-33 and Figure 4-34). 

 

Figure 4-34  Hanle-curves obtained by CW-laser (green curve) and by pulsed-laser excitation with a constant 
circular polarization. The different excitation powers (values are averaged over time) are given for each curve. 
The curves were obtained with sample #900 under excitation at 1.47 eV, detected at 1.34 eV at temperature 
       . 
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4.5.2 Conclusions 

The W-structure is a mark of a nuclear polarization that appears along the optical axis due to 

the Knight-field (ref. to sec. 4.2.4.). The missing of the W-structure could indicate a missing 

of such a nuclear polarization. In previous [153] and current studies (ref. to sec. 4.4) spin 

|    ⟩ nuclei are responsible for a nuclear polarization that occurs in small fields of 

         . These spin states show a faster buildup and decay time (ref. to sec. 4.3.2, 

Figure 4-15, 4.1.2 and 4.1.3) than spin states    |    ⟩. Another point that should be 

taken into account is that in ref. [40], a single electron could increase the decay time of 

nuclear polarization by several orders of magnitude. The last point that is to mention is the 

fast carrier relaxation to the ground-state in quantum dots on the order of tens of 

picoseconds [173, 174] and the fast recombination of about 1 ns [175]. That leads to the 

statement that a carrier photoexcited into the wetting layer would recombine within  1 ns. 

This information can be adapted to the studied system of n-doped quantum dots that are 

excited with a pulsed laser with circularly polarized light. 

On average every quantum dot of the self-organized ensemble is occupied by one 

electron. In combination with a pulsed-laser excitation (which excites the sample every 12.5 

ns with pulse duration of  125 fs) the quantum dot is occupied with one electron for  11 

ns. The situation is different compared to a CW-laser excitation. In this context it would be 

useful to make a more detailed estimation about the time of excitation events that take 

place for a moderate CW-laser excitation than in sec. 4.3.2, where it is estimated to be 

     . So if a single electron really can increase the decay time of nuclear polarization it 

could cancel nuclear polarization of spin states |    ⟩ (in the worst case) when during an 

excitation the quantum dots are mainly occupied only by the resident electron. It is still 

remarkable that an excitation event that takes place every  11 ns creates a different nuclear 

polarization than a excitation event that takes place every      . The nanosecond timescale 

indicates that the depolarization mechanism is not a dipole-dipole interaction of nuclear spin 

(typical timescale        ) but a hyperfine interaction (typical timescale         ). Due to 

the scalar product     in the hyperfine term this interaction is absent when the electron 

spin S=0. This is the case when the quantum dot is occupied by the resident electron and the 

photoexcited electron in the ground-state of the quantum dot. Such a situation can be 

interpreted as a perturbation of the hyperfine interaction, which is periodic in the case of a 

pulsed laser excitation (every 12.5 ns) and random in the case of a CW-laser excitation. A 

further study of such fast depolarization mechanism for the nuclear spin system would be 

interesting. 

The asymmetry of the Hanle-curve obtained by a pulsed-laser could be a sign of a tilted 

sample (relative to   ) [123] or a sign of a nuclear polarization of nuclear spin states 

   |    ⟩, that are stabilized by quadrupole interactions (ref. to sec. 4.4.3). A tilted 

sample would give also an asymmetric shape with a CW-laser excitation, which is not the 

case. So, the only explanation left is a polarization of nuclear spin states    |    ⟩. But in 
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contrast to a smooth decay of      for a CW-laser excitation (where also nuclear spin states 

   |    ⟩ are polarized) the change of      shows a jump up behavior for a pulsed-laser 

excitation. A similar abrupt behavior of the Hanle-curve without a W-structure was observed 

by Krebs [146], but these measurements are performed on single p-doped self-assembled 

InAs/GaAs quantum dots by observing µ-spectroscopy of individual quantum dots excited 

quasiresonantly by a CW-TiSa laser. Such a system is comparable to single n-doped quantum 

dots excited with a pulsed laser under the aspect that during the main time of excitation a 

single electron occupies the quantum dot. The feature observed in [146] was identified by a 

transverse component of nuclear polarization (relative to   ). In our case the nuclear spin 

states    |    ⟩ also create a transverse component of nuclear polarization, but further 

studies are required to support this statement. 

 

 

4.6 Modulated excitation with pulsed laser  

For the following experiments a pulsed laser was used for excitation instead of a CW-laser. In 

the experiments presented first, polarization modulated excitation was synchronized with RF 

excitation. Afterwards, experiments with pure polarization modulated excitation will be 

shown and compared with PM+RF modulation experiments for some regions of the Hanle-

curve. Averaged over time the excitation density is 10 mW for every experiment. The RF-

coils used along the y- and z-axis in these experiments are split coils with thirty turns on each 

side with a total diameter of       (ref. to Figure 0-5). In analogy to sec. 4.4.2 the settings 

for the modulation are the same, unless otherwise mentioned. The aim of the following 

section is to show the development of      at a fixed modulation frequency of      

     . The modulation frequency of            is pointed out exemplarily for an effect 

that is present in the range of              to approximately            . The 

excitation time for one polarization is            . 

 

4.6.1 Polarization modulated excitation synchronized with RF excitation (PM+RF) 

In addition to the polarization modulation a sinusoidal RF-field                      

synchronized with the polarization modulation and directed along the z-axis with     being 

parallel to the optical-axis and perpendicular to   , or along the y-axis with     being 

perpendicular to the optical-axis and perpendicular to    is applied. For both RF-fields the 

phase       and both configurations are studied with sample #900. Due to the use of the 

PicoHarp and a new software it is possible to detect the development of the Hanle-curve 

during the modulation. The change of      during the modulation period is shown in Figure 

4-35 for different   .  
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Figure 4-35  Development of      for different magnetic fields (indicated at each curve) obtained by    
   . The arrows point at characteristic positions during the excitation (No.1 = 1 µs, No.2 = 135 µs, No.3 = 190 

µs, No.4 = 450 µs, No.1’ = 503 µs, No.2’ = 637 µs, No.3’ = 692 µs, No.4’ = 950 µs). The curves were obtained 
with sample #900 under excitation at 1.47 eV, detected at 1.34 eV at temperature        . 

 

 

 

Figure 4-36  Hanle-curve measurements obtained by        for the positions No.1, No.2, No.3, No.4 and 

No.3’ of the modulated laser beam (ref. to Figure 4-35). The      values of the cyan color curve are multiplied 
by -1 for a better comparison to the other curves. The curves were obtained with sample #900 under excitation 
at 1.47 eV, detected at 1.34 eV at temperature        . 
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Figure 4-37  Hanle-curve measurements obtained by        for the positions No.1, No.2, No.3, No.4 and 
No.3’ of the modulated laser beam (ref. to Figure 4-35). The      values of the cyan color curve are multiplied 
by -1 for a better comparison to the other curves. The curves were obtained with sample #900 under excitation 
at 1.47 eV, detected at 1.34 eV at temperature        . 

 

The time resolution in the following experiments is 1 µs. However the presented curves 

always show a signal integrated over 10 µs due to the noise in the signal. Figure 4-38 

compares the signal for the first µs of the modulation and the first ten µs of modulation. The 

shape of the curves is identical except that the curve that has been obtained without 

averaging the signal shows more noise. An averaging over 10 µs is sufficient to lower the 

experimental noise and is still short enough to analyze the dynamics of the system. 

 

Figure 4-38  Comparison of the same experimental data but different averaging in time. The curves were 
obtained with sample #900 under excitation at 1.47 eV, detected at 1.34 eV at temperature        .  
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For        modulation the behaviour of      in the range of -5.6 mT to 10.5 mT differs 

from its behavior in the other range of   . In the following text, such regions will be called 

"regions of interest".  

 

 

Figure 4-39  The red curve gives the development of      at           obtained by        modulation. 

For a better comparison of the dip position (one in each polarization of excitation) the red curve has been 
shifted backwards by 500 µs and to the positive values of      (blue curve). The curves were obtained with 
sample #900 under excitation at 1.47 eV, detected at 1.34 eV at temperature        . 

 

 

Figure 4-39 shows drops of      during the modulation which reaches the minimum 

position at about  189 µs and  684 µs in the region of interest. There is one drop in each 

polarization of excitation and the distance in time of these drops is approximately 500 µs. 

The position of the drops is the same within each polarization. The whole region of    at 

       modulation (averaged over 10 µs) shows no change in      during the 

modulation period (ref. to Figure 4-37), because of the bad signal to noise ratio.  As shown in 

Figure 4-40 an averaging over 100 µs leads to a increase of the signal to noise ratio so that 

the observation of a variation of      during the modulation period becomes possible.  
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Figure 4-40  Hanle-curve measurements obtained by        for different times of the excitation (indicated 
at each curve). In contrast to Figure 4-37 the presented curves are averaged over 100 µs. The curves were 
obtained with sample #900 under excitation at 1.47 eV, detected at 1.34 eV at temperature        . 

 

Within the region of interest, which in this case reaches from    0 mT to    70 mT, a 

development of      is detectable. The changing of      in time is most present in the 

region of    0 mT to         . This is approximately the same region of interest like for 

       modulation. It seems obvious to compare the similar regions of interest for 

      ,        and PM modulation to see the development of      during the time 

of modulation (ref. to Figure 4-41).  

 

Figure 4-41  Time dependence of      for “the region of interest”, that contains of                       . 
This region is detected for three different modulations, namely the pure polarization modulation (PM), the 
polarization modulation with     excitation (      ) and polarization modulation with     excitation 

(      ). The curves were obtained with sample #900 under excitation at 1.47 eV, detected at 1.34 eV at 
temperature        . 
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To have a proof that the development of      for the different excitation protocols is not 

only an effect of averaging of the Hanle-curve but a “true” effect that is only present in “the 

region of interest” the same process of analyzing the data is obtained for a different region 

of the Hanle-curve. The new region is given by                      , which has the 

same width as “the region of interest”.  

 

Figure 4-42  Time dependence of      for the region of                      . This region is detected for 
three different modulations, namely the pure polarization modulation (PM), the polarization modulation with 
    excitation (      ) and polarization modulation with     excitation (      ). The curves were 

obtained with sample #900 under excitation at 1.47 eV, detected at 1.34 eV at temperature        . 

 

Figure 4-42 shows no dependence of      during the different modulation protocols even 

though the analysis is the same as for the “region of interest”. 

 

4.6.2 Conclusions 

The change of      for        modulation appears in a region of about            

     . The modulation protocol is the same as used for “amplified resonant pumping” (ref. 

to sec. 4.4.2) except that the RF-coil is directed along the y-axis and the excitation laser is a 

pulsed laser. For the principle of an amplified resonant pumping of nuclear spins it should 
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both of these axes are perpendicular to the applied field   . Experiments however show that 

there is a difference. The DNP, obtained with the pulsed laser excitation, differs from the 

results obtained by CW-laser excitation even if the excitation protocol for both excitation 

types is the same (compare secs. 4.4.2. and 4.6.1). The lack of a consistent theory  of the 
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that is usable for both types of excitation (CW- and pulsed-excitation) is given in [176]. The 

graded box model describes a QD system that consists of  100 nuclei and one resident 

electron in the ground-state of the QD. This amount of nuclei is sufficient to reproduce the 

interaction of the resident electron with the nuclei-spin bath including the interaction of the 

nuclear fluctuation field    .  The results of the graded box model in [176] are useful to 

reproduce the DNP of a real QD consisting of      nuclei and one resident electron. Up to 

now only the results of        under pulsed laser excitation can be reproduced by the 

graded box model in [176]. For a        modulation under pulsed laser excitation the 

graded box model assumes a nuclear polarization along the optical axis (z-axis) that 

alternates with a frequency equal to the modulation frequency      from negative to 

positive values of      as the only present nuclear polarization. The resulting magnetic field 

of this nuclear polarization stabilizes the electron spin along the optical axis which leads to 

an increase of     . This stabilization effect is only present if the magnitude of      exceeds 

the magnitude of the nuclear fluctuation field    . The case of an exceeding magnitude of 

    in comparison to the magnitude of      is indicated by a lowering of     , because in 

this case the precession of the electron spin is mainly along a different direction than the z-

axis, which leads to a decrease of the z-component of the electron spin. Figure 4-35 shows 

that at         and         of one modulation period a minimum value of      appears. In 

sec. 4.1.2 the magnitude of the nuclear fluctuation field     is estimated to be  25   . The 

magnitude of      needs to be larger than this value to be the dominant magnetic field for 

the electron and support a stabilization of the electron spin along the z-axis. The good 

agreement of experimental results and the graded box model give the reason for the 

assumption that the graded box model can be further developed to reproduce the dynamic 

of        and PM under pulsed laser excitation.  

The nuclear spin states that are responsible for nuclear polarization along the z-axis under 

       modulation can be identified as follows: If the modulation frequency is equal to 

the Larmor precession of the polarized nuclei, like it is for the effect of resonant pumping of 

the nuclear spin (ref. to sec. 4.4.3), this would give a Larmor precession of 1 kHz in a 

magnetic field of                . Such small Larmor frequencies can only be 

obtained for strong quadrupole influenced nuclear spin states       (ref. to Figure 4-43). 
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Figure 4-43  Calculation of Zeeman splitting influenced by quadrupole interaction. The calculation is based on a 
quantum dot model where the strain is directed only along the growing direction             with 
         [167]. 

 

A closer identification of the nuclear spin states that are responsible for nuclear polarization 

along the z-axis is not possible. Further theoretical studies on the experimental data are 

required. 
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5 Summary 

Nuclei and electrons trapped in quantum dots create a strongly interacting spin system due 

to the strong localization of electrons in quantum dots. Due to strain in self-assembled 

(In,Ga, As)GaAs quantum dots quadrupole interactions appear which have a significant 

influence on the nuclear spin system. Therefore it is no longer possible to describe the 

nuclear spin system as one system with certain characteristics like a buildup time and decay 

time. Instead, in the case of strain the nuclear spin system can be separated into two 

subsystems, one with a spin states |    ⟩ which is weakly influenced by quadrupole 

interactions and the other with a spin states    |    ⟩ which is strongly influenced by 

quadrupole interactions. Each subsystem possesses different dynamics: while the buildup 

and decay time of spin |    ⟩ states are almost equal (approximately 5 ms) to each other, 

the buildup and decay time of spin states    |    ⟩ differ widely and have opposite 

dependence on magnetic field strength. Furthermore, the magnitude of this subsystem with  

spin states    |    ⟩ increases significantly with applied field strength. Therefore one can 

subdivide the Hanle-curve in two parts depending on the magnitude of   . For large external 

magnetic fields (         ), the Hanle-curve is dominated by the dynamics of spin states 

   |    ⟩, for small values           the influence of spin states |    ⟩ is dominant. 

In small    fields, the effect of the nuclear fluctuation field     is observable as well.     is 

a typical feature of nanostructures which on the one hand possess an amount of nuclei that 

is small enough so that the random orientation of unpolarized nuclei is not averaged to zero. 

On the other hand the amount of unpolarized nuclei is large enough to create a magnetic 

field that changes randomly in direction.  

The analysis of experimental data has confirmed the prediction of ref. [33] about the 

significant influence of     on the electron spin due to the strong localization of the 

electron in quantum dots. The magnitude of the Knight-field in the studied quantum dots is 

      and enables an Overhauser-field    due to nuclear polarization at         along 

the optical-axis (z-axis) with a magnitude of          . As long as an angular 

momentum is initialized continuously in the system by circularly polarized light, it is 

impossible to suppress the orientation of the nuclear spin system neither by a continuous 

excitation with a broadband RF-field nor by a fast changing excitation of           

polarized light.  

The most surprising result is the fast decay time of nuclear polarization. An interruption of 

the excitation beam on a nanosecond scale leads to a noticeable decay of nuclear 

polarization. As a result Hanle-curves can be obtained with short excitation pulses without a 

noticeable nuclear polarization. This fast decay mechanism is present for a system where the 

nuclear spins interact with a single electron. In relation to this phenomenon strong 

differences for the nuclear polarization are detected when either pulsed- or CW-lasers are 

used for excitation due to the short excitation time in relation to the repetition rate of the 

pulsed-laser. In the literature one can hardly find a trace about such fast decay mechanism 

so further study is necessary. A new effect of resonant pumping of nuclear states in 

quantum dots is observed, where a pure polarization modulation influences mainly the spin 
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   |    ⟩ states. An additional RF-field along the optical axis considerably enhances the 

polarization of    |    ⟩ states, which leads to a hysteresis- like behavior of the Hanle-

curve. The resonant pumping of nuclear states can also be interpreted as a coherent 

precession of nuclear spins which have a Larmor precession frequency equal to the 

modulation frequency. 
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Appendix 

The following figures shows Scanning Transmission Electron Microscopy (STEM) images of 

one sample of the series #11955 annealed at 820°C. At the end of this section is a picture of 

the self-made RF-coil, that was used to obtain the experimental results with the pulsed laser 

and        and       modulation. 

 

Figure 0-1 Side view of the sample obtained by using Scanning Transmission Electron Microscopy (STEM). A 
100 nm thick piece of sample is prepared (2/3 of the sample is still usable). Aperture spot size is 20 nm and the 
pixel size is 2.9 nm. A larger part of unscattered beam is collected by the ring-type detector in order to reverse 
the contrast of the image. 
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Figure 0-2 Side view of the sample obtained by using Scanning Transmission Electron Microscopy (STEM). A 
100nm thick piece of sample is prepared (2/3 of the sample is still usable). Aperture spot size is 1.6nm and the 
pixel size is 1.7nm. 
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Figure 0-3 High-Resolution Transmission Electron Microscopy. Reflex [110]. In this reflex, the contrast 
mainly shows the distribution of the strain in the crystal lattice. In comparison to Figure 0-4 the strain is more 
symmetric. The growth direction is aligned to bottom. The darker area corresponds to larger strain. 
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Figure 0-4  High-Resolution Transmission Electron Microscopy. Reflex [110]. In this reflex, the contrast 
mainly shows the distribution of the strain in the crystal lattice. In comparison to Figure 0-3 the strain is more 
tilted. The growth direction is aligned to bottom. The darker area corresponds to larger strain. Analysis of 
images of many QDs shows that typically the dots are symmetric (Figure 0-3) or strongly asymmetric (Figure 
0-4). 
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Figure 0-5  The RF-coils for z- and y-direction. The scale is given by the ruler in the background.  
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Abbreviations  

 

   Angle between      and the z-axis                            

[a.u.] arbitrary units              

A  mass number                                                                 

     amplitude of negative circular polarization photoluminescence 

     hyperfine prefactor 

    hyperfine prefactor for S-type wave function particle 

    hyperfine prefactor for p-type wave function particle 

   reciprocal temperature of the nuclear spin system       

    local magnetic field due to neighboring nuclei 

    the effective field of totally polarized nuclei affecting the electron spin 

    Overhauser field 

     nuclear fluctuation field 

    constant external magnetic field (without specification in direction) 

     half width at half maximum of the Hanle curve       

    the Knight field   

    external magnetic field along x-axis 

    external magnetic field along y-axis 

    external magnetic field along z-axis 

      x component of the nuclear field 

      z component of the nuclear field 

  
    maximum Overhauserfield 

    
   total magnetic field acting on the nuclear spin system 

    
   the total magnetic field acting on the electron          

     sum of the Overhauser   , the nuclear fluctuation field     and the 

externally applied magnetic field      



118 
 

 

      transverse component of nuclear polarization 

        limit magnitude of the transverse component of nuclear polarization    

       limit magnitude of the parallel component of nuclear fluctuation field 

    frozen fluctuation field                          

    phase shift of        modulation and drops of                                           

     hot trion energy splitting of ground-state and excited state   

   reciprocal temperature of the nuclear spin system 

   strain tensor 

e. g.  for example 

    distance in energy of the Zeeman levels 

     polarization modulation frequency 

    gyromagnetic ratio of the electron 

    gyromagnetic ratio for nucleus N   

    material energy                                         

    substrate energy                                        

     material/substrate interface energy     

    Landé-Faktor electron 

    Effective Landé-Faktor 

    Planck constant 

 ̂  Hamiltonian of the sum of hyperfine, quadrupole and Zeeman interaction 

 ̂    Hamiltonian of the hyperfine interaction 

 ̂   Hamiltonian of the quadrupole interaction 

 ̂   Hamiltonian of the Zeeman interactio 

 ̂  nuclear spin operator 

 ̂   x-component of the nuclear spin operator 
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 ̂   y-component of the nuclear spin operator 

 ̂   z-component of the nuclear spin operator 

    Boltzmann constant 

    proportional coefficient  

l  quantum number l 

    Bohr magneton    

m  quantum number m 

    thermal equilibrium magnetization 

 ∑    total spin of the recombining electron-hole pair 

n  quantum number n 

    # of quantum dots with parallel resident electron spin orientation to the 

  photoexcited electron 

    # of quantum dots with opposite resident electron spin orientation to the 

  photoexcited electron 

NCP  negative circular polarization 

      population of nuclear spin -1/2 states 

      population of nuclear spin -1/2 states 

     electrostatic potential 

ψ  normalized wave function of a stationary state of the nucleus 

     frequency of nuclear spin precession induced by the applied field 

    Larmor frequency 

      excitation power 

q  probability of hole spin relaxation  

     electric field gradient tensor 

Q  quadrupole moment 

QD  quantum dot 

     quadrupole moment tensor 
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      nuclear charge density distribution 

    co-ordinates of the protons 

    right circular polarized light 

    right circular polarized light 

     one element of the S tensor 

    electron spin   

    hole spin 

    Initial electron spin orientation   

    z-component of electron spin       

〈  〉  time averaged z-component of electron spin  

      time dependent z-component of electron spin 

    spin relaxation time    

    recombination lifetime     

      time of consecutive excitation events  

|  |  characteristic rise time for         

    sweeping time of          

      excitation time     

    dark time 

   temperature  

    the electron spin lifetime                

    negative charged trion 

    spin-lattice relaxation time 

    transverse relaxation time 

  
   Effective transverse spin lifetime               

      Duration of the Larmor precession 

W  interaction energy of the nucleus 

ζ  electron density on a nuclear site 
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Z  atomic number 
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