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Abstract

The autocorrelation function (acf) and the partial autocorrelation function (pacf) are
elementary tools of linear time series analysis. The sensitivity of the conventional sample
acf and pacf to outliers is well known. We review robust estimators and evaluate their
performances in different data situations considering Gaussian scenarios with and without
outliers in a simulation study.
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1. Introduction

The autocorrelation function (acf) and the partial autocorrelation function (pacf) are
elementary tools of linear time series analysis. The graphical presentation as a correlogram
gives an idea of the linear dependencies between pairs of observations in different time
lags. A sinusoidal shape indicates a seasonality, whereas a slowly decaying function points
at possible long range dependence or non-stationarity. Besides descriptive purposes, the
autocorrelation and the autocovariance function (Brockwell, 2009) can be used for model
identification (see Box et al., 1994, pp. 184–188), for fitting autoregressive models using the
Yule-Walker equations, for determining the periodogram (see, e.g., Brockwell and Davis, 2006,
pp. 234–238, and Wei, 1990, pp. 265–267), for detecting periodicities (Vecchia and Ballerini,
1991), for clustering or classifying time series (Caiado et al., 2006), and for predicting future
values of the time series (Brockwell, 2009).

The sensitivity of the conventional estimators, the sample acf and pacf, to outliers is well
known (see Chan, 1992, Deutsch et al., 1990, or Maronna et al., 2006, pp. 247–257). A single
outlier can drive the sample autocorrelation at every time lag h towards zero, whereas h+ 1
or more successive outliers can make it arbitrarily close to one, both making the estimation
worthless. Several robust alternatives have been proposed in the literature to overcome
this problem. We review such approaches and evaluate their performances in different data
situations. We aim at some guidance which estimator to apply in which data situation.
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Section 2 introduces some notation and background which will be used to describe
the robust procedures for estimating the acf and pacf in Section 3. Section 4 presents
simulations to asses the accuracy and robustness of these estimators, while Section 5 draws
some conclusions.

2. Background and Notation

Let (Xt)t∈Z denote a real-valued time series. We assume (Xt)t∈Z to be second order
stationary, meaning that the mean and the variance are constant and do not depend on the
observation time t, i.e. E(Xt) = µ and Var(Xt) = σ2 <∞ for all t ∈ Z, while the autocovari-
ance and hence the autocorrelation depend on the time lag only, i.e. Cov(Xt+h, Xt) = γ(h)
and Cor(Xt+h, Xt) = ρ(h) for all t, h ∈ Z. Because of ρ(h) = ρ(−h), only positive time lags
h ∈ N0 need to be considered. Both the autocovariance and the autocorrelation function of a
stationary process are always positive-semidefinite, i.e., for every k ∈ N the matrix

Γ(k) = (Γ
(k)
i,j )i,j=1,...,k+1 with Γ

(k)
i,j = γ(i− j) (1)

is positive-semidefinite. For a stationary time series the usual relation

Cor(Xt+h, Xh) =
Cov(Xt+h, Xt)√

Var(Xt+h) · Var(Xt)
implies ρ(h) =

γ(h)

γ(0)
. (2)

This allows us to translate estimators of the autocovariances into estimators of the autocor-
relations and vice versa, if an estimate of the variance γ(0) is available.

For a vector of observations X = (X1, . . . , Xn), let X be the arithmetic mean, X̃p the
p-quantile, 0 < p < 1, and X̃ = X̃0.5 the sample median. Furthermore, let X(1), . . . , X(n)

denote the ordered sample in ascending order and Rt the rank of Xt, t = 1, . . . , n.
The sample analogues of γ(h) and ρ(h) are the empirical or sample autocovariances and

autocorrelations γ̂(h) and ρ̂(h) (in the simulation study abbreviated as: emp. acf), which
are given by

γ̂(h) =
1

n

n−h∑
t=1

(Xt −X)(Xt+h −X), (3)

ρ̂(h) =
γ̂(h)

γ̂(0)
, h ∈ N .

The denominator n is used in the formula for γ̂(h) instead of the more intuitive number of
cross-products n−h, since this guarantees positive-semidefiniteness of the resulting functions
γ̂ and ρ̂ for the price of an increased bias. In Schlittgen and Streitberg (2001, p. 244) an
asymptotic formula for the bias of the sample acf of Gaussian processes is derived:

Bias(ρ̂(h)) = − 1

n

(
hρ(h) +

(
∞∑

i=−∞

ρ(i) + 2ζ(h)

)
(1− ρ(h))

)
+O(n−2), (4)
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where ζ(h) =
∑∞

i=−∞ ρ(i)ρ(i+ h). Equation (4) indicates that a small n and a large positive,
slowly decaying acf cause a large negative bias. The estimator is asymptotically unbiased for
fixed h as n goes to infinity. The asymptotic distribution of the sample autocorrelation can
be found for example in Brockwell and Davis (2006, Theorems 7.2.1 & 7.2.2). Calculation of
the empirical acf is recommended only for n ≥ 50 and h ≤ n/4 (Box et al., 1994, p. 32).

The sample acf can also be derived from a multivariate covariance estimation. This
approach has some desirable features when carried out robustly, as will be seen later on. The
matrix Γ(k) of the first autocovariances (see (1)) can be estimated by building a data matrix
from the lagged observations. Let X̃t, t ∈ Z, denote the centered observations. We use the
sample mean X for centering, if not stated otherwise. Defining

Z ′k =


X̃1 X̃2 · · · X̃k+1 · · · X̃n 0 · · · 0

0 X̃1 · · · X̃k · · · X̃n−1 X̃n
. . . ...

... . . . . . . ...
...

... . . . 0

0 · · · 0 X̃1 · · · X̃n−k X̃n−k+1 · · · X̃n

 ∈ R(k+1)×(n+k), (5)

the ordinary positive-semidefinite sample autocovariance matrix is obtained from Pearson’s
product moment covariance estimator

Γ̂(k) = Z′kZk/n. (6)

Application of the known identity for correlation matrices,

Ξ
(k)
i,j = Γ

(k)
i,j /

√
Γ
(k)
i,i · Γ

(k)
j,j , (7)

yields the estimation Ξ̂(k). It is positive-semidefinite but does not have the Toeplitz structure
with constant off-diagonals, albeit by definition all values of the h-th off-diagonal estimate
ρ(h). An intuitive solution is averaging the values across each off-diagonal, i.e.

ρ̂(h) =
1

k − h+ 1

k−h+1∑
i=1

Ξ̂
(k)
i,i+h, (8)

though positive-semidefiniteness gets possibly lost then.
A model for stationary autocorrelation functions is the autoregressive moving average

(ARMA) process, which is defined by

Xt = φ0 +

p∑
i=1

φiXt−i +

q∑
i=1

θiat−i + at, (9)

with parameters φ0, φ1, . . . , φp, θ1, . . . , θq ∈ R, and innovations (at)t∈Z forming white noise,
that is a stationary sequence of uncorrelated random variables with mean zero and variance
σ2.
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Of special interest is the AR process where q = 0 (Brockwell, 2011), since from it another
identity for ρ can be derived. If all solutions z of 1− φ1z − . . .− φpzp = 0 are outside the
complex unit circle, then (9) models a stationary process with marginal mean

µ =
φ0

1− φ1 − . . .− φp
. (10)

The Yule-Walker equations relate the coefficients φ1, . . . , φp of an AR(p) model to the first p
autocorrelations ρ(1), . . . , ρ(p). They are obtained by setting φ0 = 0, multiplying (9) with
Xt−h, h = 1, . . . , p, taking expectations and dividing by γ(0),

ρ(1) = φ1 + φ2ρ(1) + . . .+ φpρ(p− 1) (11)
ρ(2) = φ1ρ(1) + φ2 + . . .+ φpρ(p− 2)

...
ρ(p) = φ1ρ(p− 1) + φ2ρ(p− 2) + . . .+ φp.

Autocorrelations of higher order can be extrapolated using the recursion

ρ(h) = φ1ρ(h− 1) + φ2ρ(h− 2) + . . .+ φpρ(h− p), h = p+ 1, p+ 2, . . . (12)

Even if (Xt) is not an AR process of order p, fitting such a model can still be beneficial.
Let πp,0 +

∑p
i=1 πp,iXt−i denote the best approximation of Xt by an AR(p) model in the sense

of mean squared error for any p ∈ N. Then

X̂t = πh−1,0 +
h−1∑
i=1

πh−1,iXt−i (13)

is the best linear prediction of Xt given the past and analoguesly

X̂t−h = πh−1,0 +
h−1∑
i=1

πh−1,iXt−h+i (14)

the best linear prediction of Xt−h given the future up to time t. The resulting residuals

Uh,t = Xt − X̂t and Vh,t = Xt−h − X̂t−h (15)

are called forward respectively backward residuals. They define the partial autocorrelation
function (pacf)

π(h) = πh,h =

{
Cor(Xt+1, Xt), h = 1

Cor(Uh,t, Vh,t), h ≥ 2
, (16)

which is another important tool for model building. It measures the correlation of Xt and
Xt+h after eliminating the linear effects of all intervening observations Xt+1, . . . , Xt+h−1.
Unlike the acf, the pacf only needs to be bounded between -1 and 1 to be valid (Ramsey,
1974).
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A connection between the acf and pacf is given by the Durbin-Levinson algorithm. For a
stationary process with µ = 0, γ(0) > 0 and γ(h)→ 0 for h→∞ it reads

π(h) =

(
ρ(h)−

h−1∑
i=1

πh−1,iρ(h− i)

)
v−1h−1, h ≥ 2,

where

 πh,1
...

πh,h−1

 =

 πh−1,1
...

πh−1,h−1

− π(h)

πh−1,h−1...
πh−1,1


and vh = vh−1(1− π(h)2), (17)

with πh,h = π(h). The recursion starts with π(1) = ρ(1) and v0 = 1. The other way round,
the acf can be derived from the pacf using the relationship given by Masarotto (1987)

ρ(h) =
h−1∑
i=1

πh−1,iρ(h− i) + π(h)

(
1−

h−1∑
i=1

πh−1,iρ(i)

)
. (18)

Instead of estimating the partial autocorrelations (16) from the sample acf, Burg proposed
an alternative estimator (see Makhoul, 1981) for π(h) as

π̂(h) = 2

n∑
t=h+1

Uh,tVh,t

n∑
t=h+1

[U2
h,t + V 2

h,t]

. (19)

Note that this is nothing else than a correlation estimator for the forward and backward
residuals as the denominator estimates the sum of their variances.

In summary, the above equations allow construction of (robust) autocorrelation estimators
by estimating ρ either directly, or by estimating the pacf π and using (18), or by fitting an
AR model of sufficiently large order p and applying (11) and (12).

3. Robust autocorrelation estimators

Different proposals for robust estimation of autocorrelations and partial autocorrelations
have been derived using different ideas. We review such approaches in the following.

3.1. Estimation based on univariate transformations
An intuitive idea of limiting the influence of outliers is rejecting or at least downweighting

particularly large and small values of the time series, where outlyingness will be relative
to the marginal distribution of Xt, ignoring the serial dependence. Such transformations
reduce the effects of outliers on the sample acf, but produce a bias which does not vanish
asymptotically. An exact bias correction is often not available, so we need to rely on
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asymptotical approximations or simulations for this. For more details see the section about
implementation.

A robust estimator of autocovariances and autocorrelations can be constructed using
univariate trimming (abbr.: Trim), that is omitting terms in the sum in (3) which correspond
to the most extreme observations,

γ̂(α)(h) =
1∑n−h

t=1 L
(α)
t L

(α)
t+h

{
n−h∑
t=1

(
Xt − X̄(α)

) (
Xt+h − X̄(α)

)
L
(α)
t L

(α)
t+h

}
,

where X̄(α) =
1∑n

t=1 L
(α)
t

n∑
t=1

XtL
(α)
t and L(α)

t =

{
1, X(g) < Xt < X(n−g+1)

0, else
,

with g = bα · nc for some 0 ≤ α < 0.5. Chan and Wei (1992) proposed trimming constants
α between 0.01 and 0.1, depending on the suspected percentage of outliers. As usually,
larger fractions α increase robustness but decrease the efficiency of the estimator at clean
samples without outliers. The acf is estimated dividing the trimmed autocovariance by the
trimmed variance γ̂(α)(0). Simulations indicate that without a bias correction the estimator
is significantly biased for n = 50 (see also Chan and Wei, 1992), and it is easily seen that the
bias does not vanish asymptotically if α is fixed.

For obtaining high robustness, Chakhchoukh (2010) suggested substituting the sum in
the sample acf by the median, calculating

ρ̂(h) =
med(X̃1X̃1+h, . . . , X̃n−hX̃n)

med(X̃2
1 , . . . , X̃

2
n)

,

where X̃t is the centered time series, for example using the median. This estimator (abbr.:
Mediancor) can be seen as a limiting case of the above trimming based estimator, with
α = 0.5. For an asymptotically consistent estimation of ρ(h) a nonlinear transformation of
ρ̂(h) is necessary, which needs to be determined numerically.

With the aim of robust fitting of time series models, Bustos and Yohai (1986) introduced
the so called residual autocovariances (RA-estimators), which can also be used for estimating
the acf. Albeit being defined more generally, this approach boils down to a more sophisticated
transformation of the time series (for the general definition see Bustos and Yohai, 1986).
Instead of trimming a constant amount of the largest and smallest observations, observations
are downweighted only if being unusually large or small. Note that the amount of rejected
observations depends on the sample itself. For the transformed time series Yt, t = 1, . . . , n,
one gets

Yt = ψ

(
Xt −m

s

)
(20)

where m and s are suitable estimators for µ and γ(0). The median and the median absolute
deviation about the median (MAD) are common robust choices for this (for definitions and
properties see for example Morgenthaler, 2011). Conventional choices of the transformation
function ψ are the Huber function

ψ(x) = ψc1(x) = sign(x) min(|x|, c1) (21)
6



and Tukey’s bisquare function

ψ(x) = ψc2(x) =

{
x(1− x2/c22)2, 0 ≤ |x| ≤ c2

0, |x| > c2.
(22)

The resulting estimators are abbreviated by RA-Huber and RA-Tukey. The objective of
Bustos and Yohai (1986) was not estimation of the acf, so a bias correction was not proposed.
However, tuning parameters like c1 = 1.37 for the Huber function and c2 = 4.68 for Tukey’s
function modify a Gaussian time series only slightly in the absence of outliers, so that the
resulting bias is small.

3.2. Estimation based on signs and ranks
For the purpose of model selection Garel and Hallin (1999) introduced rank based

statistics, which can also be applied for acf estimation. Construction of ranks means a special
data transformation as treated in the previous subsection. Nevertheless we present this
approach separately together with sign based estimators since both are popular utilities from
nonparametric statistics and often mentioned together. Additionally, bias corrections are
known explicitly at least for Gaussian processes.

Since we are more interested in estimation than in testing, we use a slightly different
definition than Garel and Hallin (1999), namely

ρ̂(h) = c
1

n

n−h∑
i=1

J(Ri/(n+ 1)) · J(Ri+h/(n+ 1)) (23)

with c = 1/
∑n

i=1 J(Ri/(n+ 1))2 and J a score function. Van der Waerden scores

J(x) = Φ−1(x), x ∈ (0, 1),

where Φ(x) is the cumulative distribution function of a standard normal, lead to asymptotically
optimal tests under normality (Garel and Hallin, 1999), and the asymptotical Gaussian
efficiency of the resulting estimator is higher than those of other rank based estimators
(Ferretti et al., 1991). However, the related Gaussian rank correlation (abbr.: GRCor) is
not very robust against outliers (Boudt et al., 2012).

More widely used are the Spearman scores J(x) = x − (n + 1)/2, which result in an
autocorrelation estimator based on the popular Spearman’s ρ (abbr.: Spearman). Whereas
van der Waarden scores yield an asymptotically unbiased estimation in the normal case,
Spearman’s ρ needs to be transformed by f(x) = 2 sin (πx/6), see for example Croux and
Dehon (2010).

Further popular nonparametric correlation estimators are Kendall’s τ (abbr.: Kendall)

ρ̂(h) =
1

(n− h)(n− h− 1)

∑
i>j

sign ((Xi −Xj)(Xi+h −Xj+h))
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and the quadrant correlation (abbr.: Quadrant)

ρ̂(h) =
1

n− h

n−h∑
i=1

sign
(

(Xi − X̃)(Xi+h − X̃)
)
.

For both estimators the transformation with f(x) = sin
(
1
2
πx
)
yields unbiasedness under

the bivariate normal distribution, and also for a wider range of distributions (Mottonen
et al., 1999). A disadvantage of such transformations is that they can destroy the positive-
semidefiniteness of the estimators.

3.3. Estimation based on partial autocorrelation
Autocorrelation estimators constructed from pairwise correlation estimators possibly lack

positive-semidefiniteness as mentioned before. Valid estimation of the pacf is easier, since it
only needs to ensure estimates within -1 and 1. This motivates estimating the pacf first, as
suggested by Masarotto (1987) and Mottonen et al. (1999). Both approaches apply relation
(18) between pacf and acf with initialization π̂(1) = ρ̂(1). The difference is the choice of the
correlation estimator for π(h) based on the identity (16).

An M-estimator as a variant of the Burg estimator (19) was proposed by Masarotto
(1987):

π̂(h) = 2

n−h∑
t=1

Wh,t(Xt − X̂t)(Xt+h − X̂t+h)

n−h∑
t=1

Wh,t[(Xt − X̂t)
2 + (Xt+h − X̂t+h)

2]

, (24)

whereWh,t = w(dht(b)/s
2
ht) with weight function w(x) = 3/(1+x), dht(b) = U2

ht+V
2
ht−2bUhtVht

and sht satisfying
n∑

t=h+1

w(dht(b)/s
2
ht)dht(b) = 2(n− h)s2ht.

Masarotto (1987) argues that this estimator (abbr.: PA-M) is consistent and asymptotically
normal at least under normality, and that the estimation will be positive-semidefinite for
sufficiently large n. Asymptotical confidence bands can be constructed numerically. As an
alternative, Mottonen et al. (1999) proposed sign and rank based correlation estimators, e.g.
Spearman’s ρ (abbr.: PA-Spearman), Kendall’s τ (abbr.: PA-Kendall) and quadrant-
correlation (abbr.: PA-Quadrant)), as described in the previous subsection. Generally,
every robust bivariate correlation estimator can be applied.

3.4. Estimation based on multivariate correlation
Approaches based on univariate transformations ignore the serial dependence of the data,

possibly downweight good observations and overlook outliers. The left panel of Figure 1
depicts a realization of an AR process with φ0 = 0 and φ1 = 0.9. Prediction bounds based
on the univariate marginal distribution simply identify the most extreme observations as
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Figure 1: Time series with 95% prediction bounds based on the univariate (left) and the bivariate (right)
marginal distribution corresponding to subsequent observations. Univariate margins identify the most
extreme observations as outliers, while multivariate inspection takes the dependencies between subsequent
observations into account and identifies the true outliers.

possible outliers, although these observations might be due to the dynamics of the underlying
process. A bivariate or even multivariate analysis based on the marginal distribution
of subsequent observations (Gather et al., 2002) allows to take the dependencies among
subsequent observations into account, and can achieve better downweighting of spurious
observations in the subsequent analysis than a simple univariate consideration. Estimation
of the acf from a robust estimate of the multivariate covariance matrix is thus promising.
Such estimators can be based e.g. on multivariate trimming or weighting. Moreover, some
multivariate robust correlation estimators even gain efficiency with increasing dimension
(Taskinen et al., 2006).

Multivariate methods can be formulated in terms of the data matrix Zk in (5). Note
that centering is unnecessary, since the described approaches estimate a robust center. The
computing time of most robust procedures increases exponentially in the dimension (Vakili
and Schmitt, 2014), so one should choose k rather small. To simplify notation, we denote the
i-th row of Zk as M′

i, so that we are in the usual multivariate case. The estimation result
will always be a valid covariance matrix and called Γ̂(k). There is a large literature on robust
multivariate correlation estimation. We will concentrate on the most common proposals, but
of course others could be employed as well.

An M-estimator of scatter (abbr.: Multi-M), which can be represented as a weighted
least squares estimate, was introduced in Maronna (1976), see also Maronna et al. (2006).
Given an initial estimator (µ̂, Σ̂) for expectation and covariance, robust weights are obtained
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from the outlyingness of the observations as measured by the Mahalanobis distance

d2i = (Mi − µ̂)′Σ̂−1 (Mi − µ̂), i = 1 , . . . , n + k . (25)

After that, the estimation is sequentially updated by

Σ̂ =
1

n

n+k∑
i=1

v(di)(Mi − µ̂)(Mi − µ̂)′ and µ̂ =

∑n+k
i=1 w(di)Mi∑n+k

i=1 w(di)
, (26)

where w(di) and v(di) are suitable weights. Using the weight function v(d) = (k + 1)/d2

results in Tyler’s M-estimator (abbr.: Multi-TylerM), which is a kind of minimax estimator
within the elliptical model (Tyler, 1987).

The breakdown point (Hubert and Debruyne, 2009) of M-estimators cannot exceed an
upper bound which decreases with increasing dimension (Maronna et al., 2006). Since the
effective amount of outlying pairs in the estimation of the acf can be twice the number of
outlying observations, other estimators might be preferred if one is interested in larger time
lags.

The disadvantage of the decreasing breakdown point does not apply to multivariate
S-estimators (Davies, 1987; Van Aelst and Rousseeuw, 2009) (abbr.: Multi-S). They are
defined as

Σ̂ = arg min
µ, Σ

{
det(Σ) :

1

n
w
(
(Mi − µ)′Σ−1(Mi − µ)

)
= b0

}
,

where w is a bounded smooth and not increasing weight function, e.g.

w(y) = min

(
y2

2
− y4

2c2
+

y6

6c4
,
c2

6

)
,

which corresponds up to a constant to Tukey’s biweight ψ−function (22). The constant c
determines the breakdown point, whereas b0 depends on the probability model; see Lopuhaa
(1989) for more details. An algorithm for computing this implicitly defined estimator can be
found in Ruppert (1992). Although the breakdown point does not decrease with the number
of dimensions, single outliers can cause a larger bias in higher dimensions (Maronna et al.,
2006).

A popular robust covariance estimator is the minimum covariance determinant (abbr.:
Multi-MCD) (Rousseeuw, 1985; Hubert and Debruyne, 2010). For a given constant α
between 0 and 0.5 the usual product moment covariance is calculated for the subset of
proportion 1− α which leads to the matrix with the smallest determinant. An approximate
procedure was proposed by Rousseeuw and Driessen (1999), since finding this subset is very
time consuming for large n. Larger trimming constants α lead to more robust but less efficient
estimators, with the efficiency for large α being rather low (Croux and Haesbroeck, 1999).
For combining high robustness and large efficiency, often an additional reweighting step is
added (abbr.: Multi-wMCD): Robust Mahalanobis distances are obtained based on an
initial MCD fit, and then the ordinary covariance matrix is calculated from all observations
with Mahalanobis distances not exceeding a certain quantile of the χ2-distribution. The
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0.975-quantile has been recommended for this cut-off (Rousseeuw and Driessen, 1999). An
asymptotically fully efficient reweighting step (abbr.: Multi-effMCD) with a data-adaptive
choice of the quantile was suggested in Gervini (2003).

Multivariate outliers can be inconspicuous if one only looks at individual dimensions,
but there there is always a one-dimensional projection in which the observation is outlying
(Hadi et al., 2009). Based on this idea, Stahel (1981) and Donoho (1982) proposed to use the
maximal distance to the median for every possible projection to measure outlyingness, i.e.

ri = max
a:‖a‖=1

a′Mi −med(Zka)

MAD(Zka)
,

with ‖·‖ being the Euclidean norm. Practical algorithms only consider a finite set of randomly
chosen vectors for a. The number of such directions needs to increase strongly for higher
dimensions to ensure reliable outlier detection. The resulting Stahel-Donoho estimator (abbr.:
Multi-SD) is defined as the weighted covariance

Σ̂ =
1∑n
i=1wi

n∑
i=1

wi(Mi − µ̂)(Mi − µ̂)′ and µ̂ =
1∑n
i=1wi

n∑
i=1

wiMi.

A common choice of the weight function is wi = min

(
1,
(
c
ri

)2)
, and c is often chosen as the

0.975-quantile of the χ2-distribution with k + 1 degrees of freedom (Croux and Haesbroeck,
1999).

3.5. Estimation based on variances
An estimation principle for covariances and correlations based on estimators of variances

has been proposed by Gnanadesikan and Kettenring (1972). In the context of autocorrelation
estimation for stationary time series, the underlying formula reads

ρ(h) = Cor(Xt+h, Xt) =
Var(Xt+h +Xt)− Var(Xt+h −Xt)

Var(Xt+h +Xt) + Var(Xt+h −Xt)
, (27)

see Ma and Genton (2000). The usual correction factors necessary for making robust scale
estimators consistent at a certain distribution are not needed when applying them for
correlation estimation, since they cancel out if Xt+h + Xt and Xt+h −Xt are in the same
location-scale family. This is fulfilled, e.g., if Xt+h and Xt are jointly normal or, more
generally, elliptically-symmetric distributed. Note that this approach does not necessarily
yield a positive-semidefinite estimation of the acf.

For estimation of the variances on the right hand side of (27), Gnanadesikan and
Kettenring (1972) suggested trimmed and winsorized variances. Since any reasonable
estimator of variability can be applied, Ma and Genton (2000) proposed Qn (Rousseeuw and
Croux, 1993) (abbr.: GK-Qn), because of its high asymptotical breakdown point of 0.5 and
its good asymptotical efficiency of 0.82 for i.i.d. Gaussian samples. The Qn corresponds
roughly to the first quartile of all absolute pairwise distances between all pairs of observations.
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In the context of ordinary correlation Maronna and Zamar (2002) recommended the so
called τ -scale estimator (abbr.: GK-tau)

σ̂2(X1, . . . , Xn) =
σ̂2
0

n

n∑
i=1

dc2

(
Xi − µ̂
σ̂0

)
, (28)

where µ̂ is a weighted mean of the observations, σ̂0 their MAD and dc(x) = min(x2, c2).
In Maronna and Zamar (2002) tuning constants c1 = 4.5 (for µ̂) and c2 = 3 for a good
trade-off between efficiency and robustness are suggested, resulting in an asymptotic Gaussian
efficiency of 0.8 in case of independent observations. The good properties of this estimator in
the bivariate i.i.d. case are promising for the estimation of autocorrelations.

3.6. Estimation based on robust filtering
As mentioned above, clean observations can be outlying with respect to the marginal

distribution and thus be unnecessarily downweighted by estimators based on univariate
transformations, if the autocorrelations ρ(h) are large positive and slowly decaying. The
robust filtering approach overcomes this problem by taking the time series structure into
account. The idea is to measure the outlyingness of the prediction residuals Up,t instead of
Xt itself. After replacing outliers by reasonable values, one can either calculate the sample
acf (abbr.: Filter-acf) or use the fitted AR process and translate this into the acf via
the Yule-Walker equations (abbr.: Filter-ar). Robust filtering was already introduced by
Masreliez (1975), but we will stick to the filter described in Maronna et al. (2006), which is a
slight modification proposed by Martin and Thomson (1982). Note that this algorithm is
quite extensive so we will summarize only the main ideas and refer to Maronna et al. (2006,
pp. 272–277 and 320–321) for details.

Let X̃t be centered for example by the median and approximate the process by an AR
model of order p ∈ N. A kind of robust AIC criterion to determine p was proposed by
Maronna et al. (2006). Let Yt = (Yt, . . . , Yt−p)

′ denote the vector of robustly filtered values
and

Φ =

(
φ1, . . . φp−1 φp

Ip−1 0p−1

)
(29)

the so called transition matrix. From this one calculates the one step ahead predictions

X̂t =

p∑
i=1

φiYt−i

and its residuals
Ũt = Xt − X̂t.

Note that this is similar to usual prediction residuals defined in (15), just replacing Xj by Yj
for j = t− 1, . . . , t− p to make it more robust. Eventually one sets

Yt = ΦYt−1 +
mt

st
ψ

(
Ũt
st

)
, (30)
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where ψ can be for example Tukey’s bisquare function (22), and st ∈ R and mt ∈ Rp are
defined recursively. Looking only at the first row of the equations in (30) we get

Yt = X̂t + stψ

(
Ũt
st

)
, (31)

indicating that Yt will be close to Xt if |Ũt| is small, and close to X̂t if it is large. Using the
vector recursion instead of a simpler one dimensional equation (31) offers the advantage that
if Xt is an outlier, the algorithm will also use future information on Xs, s > t, to determine
X̂t.
Finally, we want to emphasize the importance of st, which is a scale estimator for the residuals
Ũt. The reason for using a time-dependent instead of a simpler global estimation is that in
case of outliers there is a chance that the algorithm loses the datatrack afterwards. In this
case st will increase and thus provide the filtered values more variation to get back to the
data more quickly. See Martin and Thomson (1982) for more details.

The parameters φ1, . . . , φp can be estimated by minimizing the variance of the prediction
residuals

σ̂(Ũp+1(φ1, . . . , φp), . . . , Ũn(φ1, . . . , φp)). (32)

For σ̂ Maronna et al. (2006) proposed the τ -scale (28) because of its quick computation and
good robustness. Since a non-convex function needs to be optimized over p parameters, they
suggested sequential minimization based on the Durbin-Levinson algorithm. This converts
the problem into p one-dimensional optimizations, which can easily be done by a grid search.

3.7. Implementation
To the best of our knowledge implementations of robust autocorrelation estimators are

scarce in statistical software packages. The robust filtering approach and the GK approach
(see Ma and Genton, 2000) have been implemented in S-Plus. Implementation of the
estimation procedures is straightforward at least for the approaches which are based on two-
or multidimensional correlation estimators, since these estimators are readily available in R
(R Core Team, 2012).

The multivariate S, Stahel-Donoho and MCD correlation estimators are available in the
rrcov package (Todorov and Filzmoser, 2009). For Tyler’s multivariate M-estimator the
ICSNP package (Nordhausen et al., 2012) can be used, whereas a multivariate M-estimator
is available in the SpatialNP package (Sirkia et al., 2012). Both use the sample mean
and covariance as initial estimators. The M-estimator uses the Huber weights w(di) =
min(1, co/|di|) = v(di)r, which correspond to (21) with co =

√
F−1(0.9) being the square

root of the 90% percentile of the χ2-distribution with k+1 degrees of freedom. The parameter
r depends on co and ensures consistency under normality. For the S-estimator c is chosen
such that the optimal breakdown point of 0.5 is achieved.

For the data-adaptively reweighted MCD we use the conventionally weighted MCD as a
start estimator, resulting therefore in a two step reweigthing procedure for the raw MCD.
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For Masarotto’s approach we choose the median and Qn as initial estimators for location
and spread of the time series. Robust scale estimators like the τ -scale and Qn can be found
in the package robustbase (Rousseeuw et al., 2014).

We use an own implementation of the robust filtering approach. For translating the
estimated φ̂i into the acf we apply (18) instead of (11), fitting AR models of increasing order,
since it produces more stable results. For optimization of (32) we use the function optimize,
which is based on the ALGOL localmin procedure (for details see Brent, 1973, pp. 72–80).
We noticed in our simulations that this algorithm yields comparable results but needs only a
fraction of the computation time of the proposed grid search.

We have already mentioned the importance of bias reducing transformations for estimators
based on univariate transformations. We approximate these under the assumption of bivariate
i.i.d. normal data, see Chakhchoukh (2010). Note that this transformation is independent of
the time series model. Based on 10 000 runs with n = 100 observations each we calculate the
average estimated correlation for correlation coefficients ρ varying on a fine grid between -1
and 1. The transformation is approximated by the inverse of the linear interpolation of these
averages. Like for the transformations of Kendall’s τ and Spearman’s ρ the result is biased
for small sample sizes n, but for increasing n and normally distributed innovations this bias
will vanish.

3.8. Positive-semidefiniteness
From the above approaches the usual sample acf, the procedures using partial autocorre-

lations, the acf of the robustly filtered values as well as the Gaussian rank autocorrelation
are guaranteed to be positive-semidefinite.

Bivariate correlation estimators do not necessarily yield positive-definite correlation
matrices unless they calculate the usual correlation based on transformed data. A further
problem arises for multivariate correlation estimators, resulting in positive-semidefinite
matrices which do not possess a Toeplitz structure, meaning that there will be different
values on the off-diagonals. Enforcing this by averaging the off-diagonals, for instance,
can destroy the positive-semidefiniteness. Construction of the empirical counterpart of the
correlation matrix Ξ(k) defined in formula (7) allows to apply transformations which achieve
positive-semidefiniteness, but this destroys the Toeplitz structure.

A more appealing approach is finding the best positive-semidefinite Toeplitz approximation,
minimizing e.g. the Frobenius norm (Al-Homidan, 2006). In our simulations we use the
simple projection method proposed there, which can be described as follows. Let A be any
real symmetric matrix, in our case Ξ̂(k), and A = UDU ′ denote an eigenvalue decomposition,
where D is a diagonal matrix containing all eigenvalues. If A is not positive-semidefinite
there will be some eigenvalues smaller than zero. Setting these to zero yields the matrix D̃
and results in a projection Pp(A) = UD̃U ′, which is positive-semidefinite but not Toeplitz.
Furthermore, denote by Pt(A) the matrix which results from setting all off-diagonal elements
of order j to its average for j = 1, . . . k − 1. These projections can be iterated until the
change in the Frobenius norm becomes negligible.
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Abbr. AR[0] AR[0.4] AR[0.8] AR[-0.4] MA[0.4] ARMA[0.4,0.4] ARMA[0.8,-0.4]

φ1 0 0.4 0.8 -0.4 0 0.4 0.8
θ1 0 0 0 0 0.4 0.4 -0.4

Table 1: Considered processes and their abbreviations.
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Figure 2: Autocorrelation functions of the processes considered in the simulations.

4. Simulation

There are not many theoretical results available for comparing the different autocorrelation
estimators. We thus perform a simulation study using the statistical software R (R Core
Team, 2012) with the functions and tuning constants mentioned when introducing the
different estimators. The simulation code is available from the authors upon request. We
restrict ourselves to first order autoregressive moving average (ARMA) processes because of
their simplicity and popularity, considering the seven parameter settings shown in Table 1
along with their abbreviations. Figure 2 indicates that this selection covers rather different
autocorrelation functions. If not explicitly stated otherwise, the innovations are standard
normal.

We calculate the acf only for the first seven lags for different reasons. Multivariate
correlation estimators are time consuming for large lags and the acf of most of the processes
is nearly zero for lags larger than six. So we do not expect qualitatively different behavior for
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higher time lags. However, simulations indicate a slight loss of efficiency of robust estimators
for higher time lags.

To simplify the comparison we consider maximal bias and minimal efficiency across all
lags instead of looking at all seven time lags separately. Simulations reveal that the maximal
(absolute) bias

max
h=1,...,7

|Bias(ρ̂(h))|

is usually realized for h = 1, whereas the minimal efficiency compared to the sample acf ρ̃

min
h=1,...,7

(MSE(ρ̃(h))/MSE(ρ̂(h)))

occurs often for h = 1 or the largest lag considered here, h = 7. In the case of contaminated
data, we calculate the efficiency relative to the sample acf for clean data. This measures the
amount of information lost due to outliers when using a robust estimator.

4.1. Efficiency for uncontaminated data
First we investigate the properties in case of clean data without outliers, starting with the

AR[0.4] model. The results are based on 10 000 runs each. As mentioned before the empirical
acf is biased for small n. As can be seen in Figure 3, the small sample bias is comparable to
the robust alternatives. The bias is usually negative, except for the robust filtering approach
and the PA-Quadrant. Tyler’s M-estimator and RA-estimators are less biased than the other
methods for small n, resulting in a good finite sample efficiency. Generally, multivariate S-
and M-estimators achieve high efficiencies. GK, rank and sign based approaches and also the
reweighted MCD versions need larger samples to get a small MSE.

The findings for other models are similar. For processes with strong positive autocorrela-
tions the maximal bias increases for all estimators just as the minimal efficiency. Nevertheless,
the order of the estimators with respect to efficiency nearly stays the same.

In time series we often face distributions with tails heavier than the Gaussian (Davis
and Resnick, 1986; Loretan and Phillips, 1994; Politis, 2009; Rojo, 2013). Estimators should
remain reliable in case of such departures from normality. Therefore we considered maximal
absolute bias and minimal efficiency for AR models with t-distributed innovations of different
degrees of freedom. Already for three degrees of freedom the results were similar to those
under normality. Only estimators based on partial autocorrelation considerably lose efficiency.
Note that three degrees of freedom corresponds to the heaviest tails possible, for which the
acf is defined under t-distributions. Simulations agree with the theoretical result that the
sample acf of a linear process is still

√
n-consistent without the need of fourth moments, see

Davis and Mikosch (1998).

4.2. Robustness under contamination
Additive outliers are known to be particularly harmful for the estimation of dependence

parameters. Such outliers describe e.g. measurement errors, where a certain value ω is added
to the observation at time t, t = 1, . . . , n, see Fox (1972). While for the empirical acf the
effect of an outlier increases in ω due to monotonicity, for robust estimators this influence is
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Figure 3: Efficiency (left) and bias (right) for n = 50, 100, 500 (from top to bottom in each panel) for
AR[0.4] with normal innovations.
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Figure 4: Simulated bias of a contaminated AR[0] model with n = 100 and a patch of 5 (left) or 20 outliers
(right).

generally bounded. However, while the influence is still monotone in ω for rank-based or other
monotone estimators, it can even decrease for very large values of ω for other estimators, e.g.
for so called redescenders like S-estimators, see Figure 4. This means that different outlier
sizes are worst-case for different estimators, so that it is not fair to consider only a single
value of ω, which is identical for all estimators. Therefore we simulate maximal absolute bias
and minimal efficiency for different outlier sizes ω ∈ {ω0

√
γ(0) : ω0 = 2, 2.5, . . . , 5, 6, . . . , 10},

which are proportional to the marginal standard deviation, and choose the worst results for
each estimator.

Furthermore, we contaminate an increasing number n0 ∈ {5, 10, 15, 20, 25} of values of
the original time series of length n = 100 to see how many outliers an estimator can deal with.
As mentioned before, robust estimators cannot be expected to cope with more than 25%
contaminated observations in our context, so it is not reasonable to choose n0 larger than
25. Moreover, we consider both isolated and patchy outliers, since these will have different
effects. All results are based on 1000 simulation runs.

We first treat the situation of isolated outliers, which drive the sample acf towards zero.
The positions of the outliers are sampled randomly for each time series. We show the results
for the AR[0.8] model first. As one can see in Figure 5, the empirical acf becomes useless
already for n0 = 5 outliers. In the same situation, some robust alternatives lose more than
half of their efficiency, even though they are rarely more biased. Estimators which cope with
additive outliers well are the ones based on robust filtering and to some extent also the GK
approaches and the multivariate SD.

The estimators generally behave better for the other models. This is not surprising, since
the bias effect is more limited there. Recall that the AR[0.8] model is the one with the largest
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Figure 5: Efficiency (left) and bias (right) for a contaminated AR[0.8] model with n = 100 and n0 =
0, 5, 10, 15, 20, 25 (from top to bottom in each panel) isolated outliers.
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absolute correlations considered here. In models with rather small autocorrelations other
robust estimators like RA and GK approaches outperform the Filter-acf, which seems to
behave especially well if the autocorrelations are strongly positive.

Patchy (consecutive) outliers increase the sample acf at small time lags towards one. The
position of the contaminated values was set to {51, . . . , 50 + n0} in a time series of length
100. We first look at the AR[0]-model. Again the estimation by the empirical acf is already
useless for n0 = 5 outliers, see Figure 6. Robust estimators can cope with this situation
much better and rarely lose more than the half of their efficiency. Estimators based on SD
and MCD and to some extent also the multivariate S-estimator perform quite well. Even for
large amounts of outliers they are little biased and lose only little efficiency. Different kinds
of reweighting which boost efficiency under the clean model do not significantly increase the
bias or vulnerability to outliers and should be preferred.

The estimators generally behave better for the other models, except for the AR[-0.4].
Recall that the AR[0] and AR[-0.4] are the processes with the smallest autocorrelations,
hence patchy outliers cause the largest bias there. For models with large autocorrelations a
small number of consecutive outliers even improves the estimation by canceling the small
sample bias. Rank and RA-estimators perform very well for these models.

4.3. Positive-semidefiniteness
We have mentioned the problem of positive-semidefiniteness repeatedly. Our simulations

reveal that this is mainly a problem of little efficient estimators like quadrant correlation and
the 50% trimming (median) approach. We never noticed problems for multivariate approaches
except for the raw MCD, which occasionally produces indefinite estimations if the model is
close to being non-stationary. It turns out that consistency corrections for the approaches
based on univariate transformations often destroy definiteness. Whereas the difference
between the original estimation and the enforced positive-semidefinite one is negligible for the
RA-estimators, we observed changes up to 0.08 for trimmed and median based correlation.
There can be even greater discrepancies for the Filter-AR estimator, which might be caused
by some instability of our implementation of this procedure. We rarely noticed indefinite
estimations by the variance based approaches. Enforcing positive-semidefiniteness increases
the efficiency of trimmed estimators slightly.

5. Conclusion

Some of the proposals for robust autocorrelation estimation are borrowed from the usual
correlation estimation applied to all pairs of observations (Xt, Xt+h) at a certain time lag h,
with the intention that good robustness properties and high efficiency under normality carry
over to the time series context. A problem arising in this context is that every outlier can
enter two pairs of observations, so that the number of contaminated pairs can be up to twice
the number of outliers.

Our simulation study confirms that even a small fraction of contamination can make
the empirical acf useless. The robust filter algorithm yields good results even in case of
many isolated outliers. Estimation based on a reweighted MCD is favorable, if there are
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panel) under the AR[0] model with n = 100.
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patchy outliers. A good compromise represents the approach based on the Stahel-Donoho
estimator, but it is computationally demanding. If one looks for a relatively quick estimator
the approach based on robust variances seems to be a good choice, since they also generally
yield good results. A possible lack of positive-semidefiniteness can easily be fixed by a
projection algorithm.

It needs to be kept in mind that in the simulations reported here we focus on the case of
innovations from a contaminated Gaussian or at least continuous-symmetric distribution.
Results look different e.g. for count time series as reported in Fried et al. (2014), where rank
based estimators performed rather well.
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