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Abstract

Classical spectral methods are subject to two fundamental limitations: they only can ac-
count for covariance-related serial dependencies, and they require second-order stationarity.
Much attention has been devoted recently to quantile-based spectral methods that go beyond
covariance-based serial dependence features. At the same time, methods relaxing stationarity
into much weaker local stationarity conditions have been developed for a variety of time-series
models. Here, we are combining those two approaches by proposing quantile-based spectral
methods for locally stationary processes. We therefore introduce time-varying versions of the
copula spectra and periodograms that have been recently proposed in the literature, along with
a new definition of strict local stationarity that allows us to handle completely general non-linear
processes without any moment assumptions, thus accommodating our quantile-based concepts
and methods. We establish the consistency of our methods, and illustrate their power by means
of simulations and an empirical study of the Standard & Poor’s 500 series. This empirical
study brings evidence of important variations in serial dependence structures both across time
(crises and quiet periods exhibit quite different dependence structures) and across quantiles
(dependencies between extreme quantiles are not the same as in the “median” range of the se-
ries). Such variations remain completely undetected, and are actually undetectable, via classical
covariance-based spectral methods.

AMS 1980 subject classification : 62M15, 62G35.
Key words and phrases : Time series, Spectral analysis, Periodogram, Quantile regression,

Copulas, Ranks, Local stationarity.

1 Introduction

For more than a century, spectral methods have been among the favorite tools of time-series anal-
ysis. The concept of periodogram was proposed and discussed as early as 1898 by Schuster, who
coined the term in a study (Schuster (1898)) of meteorological series. The modern mathematical
foundations of the approach were laid between 1930 and 1950 by such big names as Wiener, Cramér,
Kolmogorov, Bartlett, and Tukey. The main reason for the unwavering success of spectral methods

∗Supported by the Sonderforschungsbereich “Statistical modelling of nonlinear dynamic processes” (SFB 823,
Teilprojekt A1, C1) of the Deutsche Forschungsgemeinschaft.
†Académie Royale de Belgique, CentER (Tilburg University), and ECORE. Supported by the IAP research network

grant P7/06 of the Belgian government (Belgian Science Policy) and a Humboldt Research Award of the Alexander
von Humboldt Foundation.

1



is that they are entirely model-free, hence fully nonparametric; as such, they can be considered
a precursor to the subsequent development of nonparametric techniques in the area and, despite
their age, they still are part of the leading group of methods in the field.

The classical spectral approach to time series analysis, however, remains deeply marked by two
major restrictions:

(i) as a second-order theory, it is essentially limited to modeling first- and second-order dynamics:
being entirely covariance-based, it cannot accommodate heavy tails and infinite variances, and
cannot account for any dynamics in conditional skewness, kurtosis, or tail behavior;

(ii) the assumption of second-order stationarity is pervasive: except for processes that, after some
adequate transformation such as differencing or cointegration, are second-order stationary,
observations exhibiting time-varying distributional features are ruled out.

The first of these two limitations recently has attracted much attention, and new quantile-related
spectral analysis tools have been proposed, which do not require second-order moments, and are
able to capture serial features that cannot be accounted for by the classical second-order approach.
Pioneering contributions in that direction are Hong (1999) and Li (2008), who coined the names of
Laplace spectrum and Laplace periodogram. The Laplace spectrum concept was further studied by
Hagemann (2011), and extended into cross-spectrum and spectral kernel concepts by Dette et al.
(2014), who also introduced copula-based versions of the same. Those cross-spectral quantities are
indexed by couples (τ1, τ2) of quantile levels, and their collections (for (τ1, τ2) ∈ [0, 1]2) account
for any features of the joint distributions of pairs (Xt, Xt−k) in a strictly stationary process {Xt}
without requiring any distributional assumptions such as the existence of finite moments.

That thread of literature also includes Li (2012, 2014), Kley et al. (2014), and Lee and Subba Rao
(2012). Somewhat different approaches were taken by Hong (2000), Davis et al. (2013), and several
others; in the time domain, Linton and Whang (2007), Davis and Mikosch (2009), and Han et al.
(2014) introduced the related concepts of quantilograms and extremograms. Strict stationarity,
however, is essential in all those contributions.

The pictures in Figure 1 show that the copula-based spectral methods developed in Dette et al.
(2014) (where we refer to for details) indeed successfully account for serial features that remain out
of reach in the traditional approach. The series considered in Figure 1 is the classical S&P500 index
series, with T = 13092 observations from 1962 through 2014; more precisely, that series contains
the differences of logarithms of daily opening and closing prices for about 52 years. That series is
generally accepted to be white noise, yielding perfectly flat periodograms. Three rank-based copula
periodograms are provided, for the quantile levels 0.1, 0.5 and 0.9, respectively. The central one,
corresponding to the central part of the marginal distribution, is compatible with the assumption
of white noise. But the more extreme ones (associated with quantile levels 0.1 and 0.9) yield a peak
at the origin, pointing at a long-memory-like behavior in the tails which is definitely not present
in the median part of the (marginal) distribution.

Now, the periodograms in Figure 1 were computed from the whole series (1 ≤ t ≤ 13092),
under the presumption of stationarity (more precisely, stationarity in distribution, for all k, of the
couples (Xt, Xt−k)). Is that assumption likely to hold true? Traditional periodograms computed
from the four disjoint subseries corresponding to the periods 1962-1974, 1974-1987, 1987-2000,
and 2000-2014 are shown in Figure 2, and suggest an evolution in time, by which the descending
spectral density of the 1962-1974 period evolves into the ascending one of the more recent 2000-2014
years.

This brings us to questioning the second limitation of traditional spectral methods, second-
order stationarity, and motivated the development of a rich strand of literature, mainly along four
(largely overlapping) lines:

(a) models with time-dependent parameters: inherently parametric, those models are mimicking
the traditional ones, but with parameters varying over time—see Subba Rao (1970) for a
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Figure 1: S&P500, 1962-2014: the smoothed rank-based copula periodograms for τ1 = τ2 = τ = 0.1,
0.5 and 0.9, respectively. All curves are plotted against ω/2π.
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Figure 2: S&P500, 1962-2014: the traditional smoothed periodograms for the periods 1962-1974,
1974-1987, 1987-2000, and 2000-2014, respectively. All curves are plotted against ω/2π.
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prototypical contribution, Azrak and Mélard (2006) for an in-depth study of the time-varying
ARMA case;

(b) the evolutionary spectral methods, initiated by Priestley (1965), where the process under
study admits a spectral representation with time-varying transfer function—a second-order
characterization, thus, but wavelet-based versions also have been considered, as in Nason
et al. (2000);

(c) piecewise stationary processes, in relation with change-point analysis: see, e.g., Davis et al.
(2005);

(d) the locally stationary process approach initiated by Dahlhaus (1997, 2000) based on the as-
sumption that, over a short period of time (that is, locally in time), the process under study
behaves approximately as a stationary one. We refer to Dahlhaus (2012) for a survey of this
approach and mention that related concepts have been recently developed by Zhou and Wu
(2009); Zhao and Wu (2009) and Vogt (2012).

Those four approaches, as already mentioned, are not without overlaps: Dahlhaus (1996) actually
is about varying-parameter autoregressive models; so is Dahlhaus et al. (1999); Dahlhaus (1997)
is based on time-varying (second-order) spectral representations, turned into time-domain linear
MA(∞) ones by Dahlhaus and Polonik (2009); Dahlhaus and Subba Rao (2006) and Fryzlewicz
et al. (2008) deal with locally stationary ARCH models, hence also resort to (a); most references
require moment assumptions, either by nature (because they are based on a spectral representation),
or by the nature of the stationary approximation they are considering.

In this paper, we are trying to address the two limitations (i) and (ii) of traditional spectral
analysis simultaneously by developing a local stationary version of the quantile-related spectral
analysis proposed in Dette et al. (2014). While adopting the local stationary ideas of (d), how-
ever, we turn them into a fully non-parametric and moment-free approach, adapted to the nature
of quantile- and copula-based spectral concepts (see Harvey (2010) for a related, time-domain,
attempt). The definitions of local stationarity existing in the literature indeed are not general
enough to accommodate quantile spectra, and we therefore formulate a new concept of strict lo-
cal stationarity. Contrary to Dahlhaus (1996), which deals with time-varying autoregressions, to
Dahlhaus (1997), which is based on time-varying second-order spectra, or to Vogt (2012) where the
approximation is in terms of stochastic variables and requires finite moments of order ρ > 0, our
approximation is directly based on joint distribution functions and does not involve any moments.
This very general concept of local stationarity allows us to handle completely general non-linear
processes without moment assumptions, and to extend to the quantile context the definitions of
a local spectrum and a local periodogram. The time-varying copula spectrum and its estimators
are introduced in Section 2 and Section 3, respectively. In Section 4 we illustrate the applica-
tion of the new methodology by means of a small simulation study and a data example, while the
theoretical properties of time-varying copula spectra are investigated in Section 5. In particular,
consistency of the corresponding smoothed local periodograms is established. The main ideas and
arguments of the proofs are collected in an appendix in Section 6, while additional technical results
and explanations are deferred to an online supplement.

When applied to the S&P500 series of Figures 1 and 2, our local periodograms yield the esti-
mated copula-based spectra shown in Figure 3 (to be compared with those in Figure 2). Time-
varying periodogram values in those figures, are represented by a color, ranging from cyan and
light blue (“small” values) to orange and red (“large values”), in such a way that dark blue regions
correspond to those where the periodogram does not significantly differ from that of a white noise
process; see Section 4.1 for details. Whereas the central periodograms (τ1 = τ2 = 0.5) are pretty
flat (dark blue) with the exception of some long-memory-like behavior limited to the early seven-
ties, the more extreme ones (τ1 = τ2 = 0.1 and 0.9) suggest an alternance of high low-frequency
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Figure 3: Levelplots of the time-varying smoothed rank-based copula periodograms for τ1 = τ2 = τ =
0.1, 0.5, and 0.9, respectively. The horizontal axis represents the frequencies ω/2π from 0 to 0.5,
the vertical axis is time (1963-2014; 1 ≤ t ≤ 13092); for each value of t, a periodogram is plotted
against frequencies via the color code provided along the right-hand side of each figure.

spectral densities (yellow and red) and perfectly “flat” (dark blue) periods. A closer analysis of
this S&P500 series is provided in Section 4.3, and reveals that those periods of “long memory
regime” correspond to well identified crises and booms. Another interesting observation is the
asymmetry between the time-varying spectra associated with the left (τ = 0.1) and right (τ = 0.9)
tails. That asymmetry is amply confirmed by comparing the periodograms associated with τ = 0.2
and τ = 0.8 shown in Figure 4. Inspection of local stationary periodograms thus suggests that the
S&P500 series, perhaps, is not as close to white noise as claimed. However, it takes a combination
of quantile-related and local stationarity tools to bring some evidence for that fact.

Figure 4: Levelplot of the time-varying periodograms for τ1 = τ2 and τ1 ∈ {0.2, 0.8}. The horizontal
axis represents the frequencies ω/2π from 0 to 0.5, the vertical axis is time (1963-2014; 1 ≤ t ≤
13092); for each value of t, a periodogram is plotted against frequencies via the color code provided
along the right-hand side of each figure.
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2 Strict local stationarity and local copula spectra

2.1 Strictly locally stationary processes

Consider an observed series (X1, . . . , XT ) of length T as being part of a triangular array (Xt,T , 1 ≤
t ≤ T ), T ∈ N, of finite-length realizations of nonstationary processes {Xt,T , t ∈ Z}, T ∈ N.
The intuitive idea behind the definitions of local stationarity by Dahlhaus (1996, 2000), Zhou and
Wu (2009) and Vogt (2012) (to quote only a few) is the assumption that those processes have an
approximately stationary behavior over a short period of time. More formally, all those authors
assume the existence of a collection, indexed by ϑ ∈ (0, 1), of stationary processes {Xϑ

t , t ∈ Z}
such that the nonstationary process {Xt,T , t ∈ Z} can be approximated (in a suitable way), in the
vicinity of time t, by the stationary process {Xϑ

t , t ∈ Z} associated with ϑ = t/T .

The exact nature of this approximation has to be adapted to the specific problem under study. If
the objective is an extension of classical spectral analysis, only the autocovariances Cov(Xt,T , Xs,T )
have to be approximated. In the quantile-related context considered here, the joint distributions
of Xt,T and Xs,T is the feature of interest, and traditional autocovariances are to be replaced with
autocovariances of indicators, of the form Cov(I{Xt,T≤qt,T (τ1)}, I{Xs,T≤qs,T (τ2)}), where qt,T (τ1) stands
for Xt,T ’s quantile of order τ1 and qs,T (τ2) for Xs,T ’s quantile of order τ2, with τ1, τ2 ∈ (0, 1) (see
Li (2008, 2012), Hagemann (2011), or Dette et al. (2014)). Such covariances only depend on the
bivariate copulas of Xt,T and Xs,T .

In the strictly stationary context, this leads to the so-called Laplace spectrum, first considered
by Li (2008) for a strictly stationary process {Yt, t ∈ Z} with marginal median zero. The Laplace
spectrum is defined as

C0,0(ω) :=
1

2π

∑
k∈Z

e−iωkCov(I{Y0≤0}, I{Y−k≤0}), ω ∈ (−π, π].

That concept was extended by Hagemann (2011), Dette et al. (2014), and Li (2012) to general
quantile levels. The most general version, which also takes into account cross-covariances of indica-
tors, was introduced by Dette et al. (2014). Denoting by q(τ) the marginal quantile function of Yt,
they define the copula spectral density kernel as

Cτ1,τ2(ω) :=
1

2π

∑
k∈Z

e−iωkCov(I{Y0≤q(τ1)}, I{Y−k≤q(τ2)}), τ1, τ2 ∈ (0, 1), ω ∈ (−π, π].

Those definitions heavily rely on the strict stationarity of the underlying time series; without
strict stationarity, actually, they do not make much sense. It seems natural, thus, to ask whether
some adequate notion of local stationarity can be employed to characterize the notion of a local
copula-based spectrum. However, the definitions of local stationarity previously considered in
the literature are placing unnecessarily strong restrictions on the classes of processes that can be
considered. In particular, Dahlhaus (1996) ) and Vogt (2012) rely on moment assumptions that
are not natural in a quantile context, and are not required for the definition of copula spectra.
We therefore introduce a new concept of strict local stationarity which completely avoids moment
assumptions while allowing us to define and estimate local versions of the copula spectral density
kernel. Our concept, however, is not totally unrelated to the existing ones, and we also show that,
under adequate conditions, processes that are locally stationary in the sense of Dahlhaus (1996)
are strictly locally stationary in the new sense, see Section 5.1 for details.

The Laplace and Copula spectral density kernels of a stationary process {Yt} are defined in
terms of its bivariate marginal distribution functions. Therefore, it is natural to use bivariate
marginal distribution functions when evaluating, in the definition of local stationarity, the distance
between the non-stationary process {Xt,T } under study and its stationary approximation {Xϑ

t }.
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Definition 2.1. A triangular array {(Xt,T )t∈Z}T∈N of processes is called locally strictly stationary
(of order two) if there exists a constant L > 0 and, for every ϑ ∈ (0, 1), a strictly stationary process
{Xϑ

t , t ∈ Z} such that for every 1 ≤ r, s ≤ T∥∥Fr,s;T (·, ·)−Gϑr−s(·, ·)
∥∥
∞ ≤ L

(
max(|r/T − ϑ|, |s/T − ϑ|) + 1/T

)
(2.1)

where ‖·‖∞ stands for the supremum norm, while Fr,s;T (·, ·) and Gϑk(·, ·) denote the joint distribution
functions of (Xr,T , Xs,T ) and (Xϑ

0 , X
ϑ
−k), respectively.

Here, “of order two” refers to the fact that (2.1) is based on bivariate distributions only. Let-
ting y tend to infinity in Fr,s;T (x, y) and Gϑk(x, y), we get an analogous condition for the marginal
distributions Ft;T and Gϑ of Xt,T and Xϑ

0 , namely∥∥Ft;T (·)−Gϑ(·)
∥∥
∞ ≤ L

∣∣t/T − ϑ∣∣+ L/T. (2.2)

Intuitively, (2.1) and (2.2) imply that the univariate and bivariate distribution functions Ft;T
and Fr,s;T of the process {Xt,T } are allowed to change smoothly over time. One advantage of this
definition is its nonparametric character, as it does not depend on any specific data-generating
mechanism.

2.2 Local copula spectral density kernels

Turning to the definition of a localized version of copula spectral density kernels, first consider the
copula cross-covariance kernels associated with the strictly stationary {Xϑ

t , t ∈ Z}, ϑ ∈ (0, 1). The
lag-h-copula cross-covariance kernel of {Xϑ

t }, as defined in Dette et al. (2014), is

γϑh(τ1, τ2) := Cov(I{Xϑ
t ≤qϑ(τ1)}, I{Xϑ

t−h≤qϑ(τ2)}), τ1, τ2 ∈ (0, 1),

where qϑ(τ) denotes Xϑ
t ’s marginal quantile of order τ .

These cross-covariances always exist; their collection (for τ1, τ2 ∈ (0, 1)) provides a canonical
characterization of the joint copula of (Xϑ

t , X
ϑ
t−h), hence, an approximate (in the sense of (2.1)) de-

scription of the joint copula of (Xt,T , Xt−h,T ). Therefore we also call γϑh(τ1, τ2) the time-varying lag h
copula cross-covariance kernel of {Xt,T }. If we assume that the lag-h-covariance kernels γϑh(τ1, τ2)
are absolutely summable for all τ1, τ2 ∈ (0, 1), we moreover can define the local or time-varying
Laplace spectral density kernel of {Xt,T } as

fϑ(ω, τ1, τ2) :=
1

2π

∞∑
h=−∞

γϑh(τ1, τ2)e−ihω, τ1, τ2 ∈ (0, 1), ω ∈ (−π, π]. (2.3)

The time-varying covariance kernel then admits the representation

γϑh(τ1, τ2) =

∫ π

−π
eihωfϑ(ω, τ1, τ2)dω, ω ∈ (−π, π], τ1, τ2 ∈ (0, 1).

In Section 5.3, we provide an additional theoretical justification for considering time-varying Laplace
spectral density kernels demonstrating that these kernels can be considered as approximations of
indicator versions

Wt0,T (ω, τ1, τ2) :=

∞∑
s=−∞

Cov
(
I{Xbt0+s/2c,T≤F−1

bt0+s/2c,T
(τ1)}, I{Xbt0−s/2c,T≤F−1

bt0−s/2c,T
(τ2)}

)e−iωs
2π

(2.4)

of the so-called Wigner-Ville spectrum of {Xt,T } (see Martin and Flandrin (1985)). Additional
evidence for the usefulness of the concepts discussed here for data analysis is provided in Section 4,
where we discuss both simulation evidence and a data analysis of the S&P 500 time series.
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3 Estimation of local copula spectra

Given observations X1,T , . . . , XT,T , the classical approach to the estimation of the time-varying
spectral density of a locally stationary time series consists in considering a subset of n data points
centered around a time point t0. To formalize ideas, let mT be a sequence of positive integers that
converges to infinity as T →∞. Define the discrete neighborhood

Nt0,T :=
{
t ∈ Z : |t0 − t| < mT

}
,

denote by n = n(mT , T ) the cardinality of the set Nt0,T , and let tmin := min{t ∈ Nt0,T }. Define the
local rank of Xt,T as its rank Rt0,T (Xt,T ) within the n-tuple {Xt,T | t ∈ Nt0,T }. Denote by ωj,n =
2πj/n, 1 ≤ j ≤ bn+1

2 c the positive Fourier frequencies, by x 7→ ρτ (x) := x(τ − I{x≤0}) the so-called
check function (see Koenker (2005)), let c′t(ω) := (1, cos(ω(t− tmin + 1)), sin(ω(t− tmin + 1))), and
introduce the piecewise constant function ϕn defined on the interval (0, π) by

ϕn(ω) := ωj,n, (3.1)

where ωj,n is the Fourier frequency closest to ω—more precisely, ωj,n is such that ω belongs to the
interval (ωj,n− 2π

n , ωj,n+ 2π
n ]. Following Dette et al. (2014), the local rank-based Laplace periodogram

is defined as

L̂t0,T (ω, τ1, τ2) :=
n

4
b̂bbt0,T (ϕn(ω), τ1)′

(
1 i
−i 1

)
b̂bbt0,T (ϕn(ω), τ2), ω ∈ (0, π), τ1, τ2 ∈ (0, 1), (3.2)

with

(ât0,T (ωj,n, τ), b̂bbt0,T (ωj,n, τ)) := argmin
(a,b)∈R3

∑
t∈Nt0,T

ρτ (n−1Rt0,T (Xt,T ;ϑ)− (a,bbb)ct(ωj,n)). (3.3)

In Theorem 5.1, we show that the local estimators L̂t0,T defined in (3.2)-(3.3) converge in
distribution to non-degenerate complex random variables with expected values fϑ(ω, τ1, τ2). Thus,
local periodograms, just as the traditional ones, yield inconsistent estimators of the corresponding
spectral densities—here, the local Laplace spectra. In the stationary case, a smoothed version of
the estimator is used to circumvent this problem. We will show that this technique also works in
a local stationary context. For this purpose, we introduce a smoothed version

f̂t0,T (ωj,n, τ1, τ2) :=
∑
|k|≤Kn

Wt0,T (k)L̂t0,T (ωj+k,n, τ1, τ2), (3.4)

of time-varying periodograms at the Fourier frequencies ωj,n = 2πj/n, where Kn → ∞ as n → ∞
and {Wt0,T (k) : |k| ≤ Kn} is a sequence of positive weights satisfying

Wt0,T (k) = Wt0,T (−k) and
∑
|k|≤Kn

Wt0,T (k) = 1.

The function f̂t0,T (·, τ1, τ2) is extended to the interval (0, π) by letting

f̂t0,T (ω, τ1, τ2) := f̂t0,T (ϕn(ω), τ1, τ2).

In Section 5.2, we prove that, under mild conditions on the weights and bandwidth parameters, the
smoothed time-varying periodograms defined in (3.4) provide consistent estimates of the copula
spectral density fϑ(ω, τ1, τ2). In Section 4, we illustrate the properties of the proposed estimators
by means of simulated and real data.
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4 Simulations and an empirical study

4.1 Calibrating the color scale

As in Section 1, plots of time-varying spectral densities and their estimations are provided in the
form of heat diagrams: the horizontal axis represents frequencies (0 ≤ ω/2π ≤ 0.5), the vertical
axis a subset of the span of time 1, . . . , T over which the time-varying spectral quantities are
estimated. The spectral values themselves (for τ1 = τ2 = τ), or their real and imaginary parts
(for τ1 6= τ2) are represented via a continuous color code, ranging from cyan and light blue (for
small values) to dark blue, yellow, orange, and red (for large values). As we shall explain below,
this color code also has an interpretation in terms of significance of certain p-values. This requires
a preliminary calibration step, though. Indeed, being “small”, for a (τ1 = τ2 = τ)−periodogram
value (which by nature is nonnegative real) cannot have the same meaning as being “small” for
the imaginary or the real part of some (τ ′1, τ

′
2)−cross-periodogram (for which negative values are

possible): a meaningful color code therefore should be (τ1, τ2)-specific. We therefore introduce
a distribution-free simulation-based calibration that fully exploits the properties of copula-based
quantities.

To explain the idea behind this calibration step, consider plotting, for some T0 ⊂ {1, ..., T}
and Ω ⊂ (0, π), a collection

(
<f̂t0,T (ω, τ1, τ2)

)
t0∈T0,ω∈Ω

of the real parts (the imaginary parts are

dealt with in exactly the same way) of estimators computed from the realization X1, ...., XT of
some time series of interest. A color is then attributed to each value of <f̂t0,T (ω, τ1, τ2) along the
following steps:

(i) simulate M = 1000 independent realizations (U1,m, . . . , UT,m), m = 1, ...,M of an i.i.d. se-
quence of random variables of length T (one can assume them to be uniform over [0, 1], but,
in view of the distribution-freeness of our rank-based method, this is not required);

(ii) for each of those M realizations, compute the estimator f̂U,mt0,T
(ω, τ1, τ2) of the local spectral

density;

(iii) define, for each m = 1, ..., 1000, the quantities

Qmmax := max
ω,t0
<f̂U,mt0,T

(ω, τ1, τ2) and Qmmin := min
ω,t0
<f̂t0,T (ω, τ1, τ2),

and obtain the empirical 99.5% quantiles qmax of (QU,mmax)m=1,...,M and the 0.5% quantile qmin

of (Qmmin)m=1,...,M , respectively.

The color palette then is set as follows: all points (t0, ω) ∈ T0 × Ω with <f̂t0,T (ω, τ1, τ2) value
in [qmin, qmax] receive dark blue color. Next, letting

vmin := min(min
t0,ω
<f̂t0,T (ω, τ1, τ2), qmin − (qmax − qmin)),

vmax := max(max
t0,ω
<f̂t0,T (ω, τ1, τ2), qmax + (qmax − qmin)),

all points (t0, ω) for which <f̂t0,T (ω, τ1, τ2) lies in the interval [vmin, qmin] receive a color rang-
ing, according to a linear scale, from cyan to light and dark blue, while the colors for the inter-
val [qmax, vmax] similarly range from dark blue to yellow and red. The correspondence between the
actual size of the estimate and the colors used is provided by the numerical scale on the right-hand
side of each diagram.

All our heat diagrams thus have the following interpretation. For each given choice of (τ1, τ2),
the probability, under the hypothesis of white noise, that the real (resp., the imaginary) part of the
smoothed (τ1, τ2)-time-varying periodogram lies entirely in the dark blue area is approximately 0.01.
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Hence, the presence of light blue, cyan or orange-red zones in a diagram indicates a significant (at
probability level 1%) deviation from white noise behavior. The location of those zones moreover
tells us where in the spectrum, and when in the period of observation, those significant deviations
take place, along with an evaluation of their magnitude.

This calibration method yields a universal distribution-free and model-free color scaling which at
the same time provides (as far as dark blue regions are concerned) a hypothesis testing interpretation
of the results. The same color code was used for the SP500 data in Sections 1, and 4.3, as well as
for the simulations in Section 4.2. Currently, an R-package containing the programs which were
used in the simulations and data analysis is in preparation. A preliminary version is available from
the authors upon request.

4.2 Simulations

This section provides a numerical illustration of the performances of our estimator of the time-
varying quantile spectral density in several time-varying models that have been considered elsewhere
in the literature. For each of those models, two arrays of time-varying copula cross-spectral densities
are provided, side by side, under the form of heat diagrams, for each combination of the quantile
levels 0.1, 0.5, and 0.9, using the color code described in Section 4.1:

(a) the smoothed rank-based periodogram estimators of the copula-based spectral densities, and

(b) the “actual” time-varying copula-based spectral densities (of which (a) provides an estimator).

The estimators in (a) are computed from one realization, of length T = 213, of the (nonstationary)
process under consideration. For the smoothing weights, we use

Wt0,T (k) :=
W̃t0,T (k)∑

|m|≤nbn W̃t0,T (m)
and W̃t0,T (k) := b−1

n

∞∑
j=−∞

W (b−1
n [2πk/n+ 2πj]), (4.1)

where

W (u) :=
15

32π

(
7(u/π)4 − 10(u/π)2 + 3

)
I{|u| ≤ π}

is a kernel (chosen in accordance with the recommendations in Gasser et al. (1985)), bn a bandwidth
given in Table 1, and Kn := dnbne (see Kley et al. (2014) for a similar approach). In each case, T0

was given by {64k + n/2|k = 0, . . . , b(T − n)/64c}, and we used Ω := {2πj/n|j = 1, ..., (n− 2)/2}.
Table 1 provides the bandwidths bn and window lengths n which were used for each specific model.

The actual (cross-)spectral densities in (b) were obtained by simulating, for each t0 ∈ T0,
R = 1000 independent replications, all of length 211, of the strictly stationary approximation

(X
t0/T
t )t=1,...,211 , computing the corresponding rank-based Laplace periodograms L̂rt0,T (ω, τ1, τ2),

say, r = 1, ..., R, and averaging them, for each fixed (t0, ω) ∈ T0 × Ω, over r = 1, ..., R.
The following models were considered.

(1) In Figure 5, we display the results for a classical Gaussian time-varying AR(2) process, taken
from Dahlhaus (2012), with equation

Xt,T = 1.8 cos(1.5− cos(2πt/T ))Xt−1 − 0.81Xt−2 + Zt (4.2)

and Zt ∼ N (0, 1). Its strictly stationary approximation at t0 = ϑT , 0 ≤ ϑ ≤ 1, is given by

Xϑ
t = 1.8 cos(1.5− cos(2πϑ))Xϑ

t−1 − 0.81Xϑ
t−2 + Zt. (4.3)

This process exhibits a time-varying periodicity which is clearly visible in the heat diagram for
the real parts of its time-varying copula-based spectral (cross-)densities, which are displayed
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Model Bandwidth bn window length n

(1) time-varying Gaussian AR(2) 0.075 512
(2) time-varying Cauchy AR(2) 0.075 512
(3) time-varying Gaussian ARCH(1) 0.1 2048
(4) time-varying QAR(1) 0.125 2048

Table 1: The weights, bandwidths, and window lengths used in the estimation of the copula-based
spectral densities in parts (a) of Figures 5-8.

in the lower triangular part of Figure 5(b). The uniformly dark blue imaginary parts in the
upper triangular part are a consequence of the fact that those imaginary parts actually are
zero, since Gaussian processes are time-reversible [see Proposition 2.1 in Dette et al. (2014)].
Those spectral densities are quite well recovered by our estimator (Figure 5(a)). As expected,
no additional information can be gained from observing different quantiles, since conditional
distributions, hence all conditional quantiles, in Gaussian processes, get shifted by the same
quantity.

(2) In Figure 6, we show heat diagrams for the same time-varying AR(2) process, now driven by
independent Cauchy innovations. This model violates the moment assumptions of classical
spectral analysis. The imaginary parts of the spectra are shown in the upper triangular part
of Figure 6(b); note that, due to time-irreversibility, the actual spectral density (b) exhibits
significant yellow parts which, however, are too narrow to be picked up by our estimator (a).
Also note the significant peak around zero appearing in the diagrams associated with extreme
quantiles (τ1, τ2 = 0.1 and 0.9); they indicate long-memory-like persistence in tail events—a
phenomenon that totally escapes traditional analyses.

(3) In Figure 7, results for a time-varying ARCH(1) model of the form

Xt,T =
√

1/2 + (0.9t/T )X2
t−1Zt

with Zt ∼ N (0, 1) are displayed. Here, the strictly stationary approximation at t0 = ϑT ,
0 ≤ ϑ ≤ 1, takes the form

Xϑ
t =

√
1/2 + 0.9ϑ(Xϑ

t−1)2Zt.

In these stationary approximations, the influence of Xϑ
t−1 on the variance of Xϑ

t gradually
increases over time. This is reflected in the diagrams associated with extreme quantiles, but
is not visible in the median ones.

(4) Finally, we show in Figure 8 the heat diagram for the QAR(1) (Quantile Autoregression)
model of order one

Xt,T = [(1.9Ut − 0.95)(t/T ) + (−1.9Ut + 0.95)(1− (t/T ))]Xt−1 + (Ut − 1/2),

where the Ut’s are are i.i.d. uniform over [0, 1] (see Koenker and Xiao (2006)). The corre-
sponding strictly stationary approximation at t0 = ϑT , 0 ≤ ϑ ≤ 1, is of the form

Xϑ
t = [(1.9Ut − 0.95)ϑ+ (−1.9Ut + 0.95)(1− ϑ)]Xϑ

t−1 + (Ut − 1/2).
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The gradient of the coefficient function changes slowly from 1.9Ut − 0.95 to −1.9Ut + 0.95,
so that the spectral density of the lower quantiles for small values of t0/T is the same as as
the spectral density for the upper quantiles for 1− t0/T and vice versa.

(a) Estimated cross-spectral densities (b) Actual cross-spectral densities (simulated)

Figure 5: The Gaussian locally stationary AR(2) process described in (1).

(a) Estimated cross-spectral densities (b) Actual cross-spectral densities (simulated)

Figure 6: The Cauchy-driven locally stationary AR(2) process described in (2).

4.3 Standard & Poor’s 500

We now turn back to the S&P500 index series already considered in the introduction, with T =
13092 daily observations from 1962 through 2014 (differences of the logarithms of daily opening and
closing prices for about 52 years). We applied the same estimation method as above: smoothing

12



(a) Estimated cross-spectral densities (b) Actual cross-spectral densities (simulated)

Figure 7: The locally stationary ARCH(1) process described in (3).

(a) Estimated cross-spectral densities (b) Actual cross-spectral densities (simulated)

Figure 8: The locally stationary QAR(1) process described in (4).
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was performed by using the same weights as described in Section 4.2 (see equation (4.1)), with
bandwidth bn = 0.075, a window length n = 1024 and we considered the sets

T0 = {256 + 64j|0 ≤ j ≤ 200} and Ω = {2πj/n|j = 1, ..., (n− 2)/2}.

The calibration for the heat plots was performed as described in Section 4.1.
The presence of yellow and red areas in more than 1% of of the t0 values seriously challenges the

general opinion that this series is white noise, yielding perfectly flat periodograms. Deviations from
white noise behavior are particularly visible in the diagrams associated with tail quantile levels.
Concentrating on the τ1 = τ2 = 0.1 case, closer inspection of the diagram reveals a relation between
low-frequency spectral peaks and financial crisis events: in Figure 10, horizontal white lines are
identifying the Oil Crisis of 1973, the Black Monday (19.10.1987) which took place during the
Savings and Loan Crisis in the USA, bursting of the dot-com bubble in 2001 (followed by the early
2000s recession) and the financial crisis from 2007-2012. Those episodes seem to match the low-
frequency peaks quite well, indicating an association between crises and a local, long-memory-like,
persistence of low returns.

This apparent relation of low-frequency peaks to crises is confirmed when focusing on the periods
of crises. In Figures 11-12, we provide plots of the τ1 = τ2 = 0.1 periodograms before and after
two of those four crises, the 2001 bursting of the dot-com bubble and the 2007 financial crisis.
More precisely, for each of them, we calculated periodograms using only observations before the
critical date, and compared them to periodograms using only observations taken after it. None
of the pre-crisis periodograms indicates a significant deviation from white noise, whereas both of
the post-crisis ones do. The interpretation is that crises, locally but quite suddenly, produce long-
memory-like persistence in low returns. As shown by Figure 10, that persistence eventually fades
away—more slowly, though, than it has appeared. The atypical spectra in the late sixties are
probably an indication that the market, at that time, was much smaller, and less efficient, than
nowadays.

5 Theoretical properties of time-varying copula spectra and local
rank-based Laplace periodograms

5.1 A brief comparative discussion of some concepts of local stationarity

In this section, we provide a brief comparison of our concept of local stationarity with some other
notions that have been previously discussed in the literature. Lemma 5.1 below shows that, under
relatively mild assumptions (which are required for the comparison to make sense), processes that
are locally stationary in the sense of Dahlhaus (1996) are also locally strictly stationary in the sense
of our definition. More precisely, consider a process with time-varying MA(∞) representation of
the form

Xt,T = µ(t/T ) +
∞∑
j=0

at,T (j)ξt−j , (5.1)

where {ξt} is i.i.d. white noise. Under assumptions similar to those used by Dahlhaus and Polonik
(2006), that process is locally strictly stationary in the sense of Definition 2.1. The following is
proved in the online appendix (see Section 7.5).

Lemma 5.1. If the processes {Xt,T , t ∈ Z}, T ∈ N, admit MA(∞) representations of the form
(5.1) such that conditions (7.24)-(7.27) (see Appendix 7.5) are satisfied, then the triangular array
{Xt,T }T∈N is locally strictly stationary in the sense of Definition 2.1.
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Figure 9: The S&P500 index series from 1962 through 2014. Estimated cross-spectral densities.

15



Figure 10: The τ1 = τ2 = 0.1 periodogram of Figure 9; horizontal lines indicate historical financial
crises, namely the Oil Crisis of 1973, the Black Monday (19.10.1987) which took place during the
Savings and Loan Crisis in the USA, the bursting of the dot-com bubble in 2001 (followed by the
early 2000s recession), and the 2007-2012 financial crisis.
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Figure 11: Single periodograms calculated before (blue) and after (red) the bursting of the dot-
com bubble in 2001; the dashed horizontal lines represent the values of qmin and qmax from Sec-
tion 4.1(iii); smoothing and bandwidth choices as in Figure 9.

Figure 12: Single periodograms calculated before (blue) and during (red) the Financial Crisis
(2007-2012); the dashed horizontal lines represent the values of qmin and qmax from Section 4.1(iii);
smoothing and bandwidth choices as in Figure 9.
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The definition proposed by Vogt (2012) avoids the parametric flavor of Dahlhaus (1996). Rather
than bounding a distance between distribution functions (which are nonrandom objects), it places
a bound on the difference between Xt,T and its stationary approximation. Whether this approach is
suitable for defining a sensible local notion of copula spectral density is unclear. Another approach,
which can be considered as a generalization of the ideas of Dahlhaus (1996) to nonlinear processes,
is developed by Zhou and Wu (2009) and Zhao and Wu (2009), who consider processes of the
form Xt,T = G(t/T ; ξt, ξt−1, . . .) where {ξt} is i.i.d. white noise and G some measurable function.
This is considerably more general than Dahlhaus (1996); whether it can be used in the context of
a local notion of copula spectral density again is unclear.

5.2 Asymptotic theory

Before we proceed with the derivation of the asymptotic properties of the rank-based estimators of
Laplace spectral density kernels, we collect here some necessary technical assumptions. First, let
us recall the definition of a β−mixing array. Let (Ω,A ,P) be a probability space and let B and C
be subfields of A . Define

β(B,C ) = E sup
C∈C
|P(C)− P(C|B)|

and, for an array {Zt,T : 1 ≤ t ∈ Z}, T ∈ N,

β(k) = sup
T

sup
t∈Z

β(σ({Zs,T , s ≤ t}), σ({Zs,T , t+ k ≤ s})),

where σ({Z}) is the σ−field generated by the set {Z} of random variables. An array is called β−mix-
ing or uniformly mixing if β(k) → 0 as k → ∞. The following assumptions will be considered in
the sequel.

(A1) The triangular array {Xt,T : 1 ≤ t ≤ T}T∈N is β−mixing with β(k) = o(k−δ) where δ > 1
and locally strictly stationary with approximating processes {Xϑ

t }t∈Z.

(A2) For all T , the distribution functions Ft;T of Xt,T and, for any 1 ≤ t1, t2 ≤ T , the joint
distribution functions Ft1,t2;T (·, ·) of (Xt1,T , Xt2,T ) are twice continuously differentiable, with
uniformly bounded derivatives (with respect to t1, t2, T and all their arguments). Moreover,
there exist constants dτ > 0, fmin > 0 and T0 <∞ such that for all T ≥ T0

inf
t

inf
|x−qt,T (τ)|≤dτ

ft,T (x) ≥ fmin > 0,

where ft,T and qt,T (τ) := F−1
t;T (τ) denote the density and τ -quantile corresponding to the

distribution function Ft;T .

(A3) For all ϑ the process {Xϑ
t }t∈Z, with marginal distribution function Gϑ(·), joint distribution

functions Gϑh(·, ·), τ -quantiles qϑ(τ), and marginal density gϑ(·), satisfies (A2) (with gmin

instead of fmin).

We now are ready to state our first result which concerns the joint asymptotic distribution of a
finite collection of local rank-based Laplace periodograms. Denote by Fn := {2πj/n|1 ≤ j ≤ bn−1

2 c}
a set of Fourier frequencies.

Theorem 5.1. Let Ω := {ω1, . . . , ων} ⊂ (0, π) denote a ν−tuple of distinct frequencies and let
Assumptions (A1)-(A3) be satisfied. Assume that n→∞, nT−1/2 → 0 and |t0/T − ϑ| = o(T−1/2)
as T →∞. Then

(L̂t0,T (ω1, τ1, τ2), . . . , L̂t0,T (ων , τ1, τ2))
L−−−−→

T→∞
(Lϑ(ω1, τ1, τ2), . . . , Lϑ(ων , τ1, τ2)), (5.2)
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where the random variables Lϑ(ω, τ1, τ2) associated with distinct frequencies are mutually indepen-
dent and

Lϑ(ω, τ1, τ2)
D
=


πfϑ(ω, τ1, τ2)χ2

2 if τ1 = τ2

1
4(Z11, Z12)

(
1 i

−i 1

)(
Z21

Z22

)
if τ1 6= τ2,

where (Z11, Z12, Z21, Z22) is multivariate normal, with mean (0, . . . , 0) and covariance matrix

ΣΣΣϑ(ω) := 4π


fϑ(ω, τ1, τ1) 0 <(fϑ(ω, τ1, τ2)) =(fϑ(ω, τ1, τ2))

0 fϑ(ω, τ1, τ1) −=(fϑ(ω, τ1, τ2)) <(fϑ(ω, τ1, τ2))
<(fϑ(ω, τ1, τ2)) −=(fϑ(ω, τ1, τ2)) fϑ(ω, τ2, τ2) 0
=(fϑ(ω, τ1, τ2)) <(fϑ(ω, τ1, τ2)) 0 fϑ(ω, τ2, τ2)

 .

To prove consistency for the smoothed versions of the local rank-based Laplace periodograms
defined in (3.4), we additionally need the following assumptions.

(A4) As n→∞, Kn/n→ 0 and
∑
|k|≤Kn(Wt0,T )2(k) = o(1).

(A5) The functions ω → fϑ(ω, τ1, τ2) are continuously differentiable for all τ1, τ2, ϑ ∈ (0, 1).

(A6) The arrays {Xt,T |0 < t ≤ T}, T ∈ N are beta-mixing with rate β(k) = o(k−δ) for some δ ≥ 2.

Proposition 5.1. Let (A1)-(A6) hold and assume that n → ∞, nT−1/2 → 0 and |t0/T − ϑ| =
o(T−1/2) as T →∞. Then the estimator f̂ϑt0,T (ω, τ1, τ2) defined in (3.4) is consistent for the Laplace

spectral density fϑ(ω, τ1, τ2). More precisely, we have

f̂t0,T (ω, τ1, τ2) = 2πfϑ(ω, τ1, τ2) + oP(1).

Remark 5.1. A direct generalization to the locally stationary context of the ideas from Li (2008)
and Li (2012) would be a periodogram of the form

L̊t0,T (ω, τ1, τ2) :=
n

4
b̊bbt0,T (ϕn(ω), τ1)′

(
1 i
−i 1

)
b̊bbt0,T (ϕn(ω), τ2), ω ∈ (0, π), τ1, τ2 ∈ (0, 1), (5.3)

where
(̊at0,T (ωj,n, τ), b̊bbt0,T (ωj,n, τ)) := argmin

(a,b)∈R3

∑
t∈Nt0,T

ρτ (Xt,T − (a,bbb)ct(ωj,n)).

The crucial difference between (5.3) and (3.2) is that the ranks appearing in (3.2) have been
replaced, in (5.3), by the original time series values. For this version of the periodograms, results
similar to Theorem 5.1 and Proposition 5.1 are established in the online appendix. Informally, the
statements of Theorem 5.1 and Proposition 5.1 remain true if all occurrences of fϑ(ω, τ1, τ2) are
replaced by the weighted versions

f̊ϑ(ω, τ1, τ2) :=
fϑ(ω, τ1, τ2)

gϑ(qϑ(τ1))gϑ(qϑ(τ2))
.

In a locally stationary setting, the scaling with the marginal densities gϑ has the significant disad-
vantage that a change in the marginal distribution cannot be distinguished from a change in the
dependence structure.
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5.3 Relation to the Wigner-Ville spectra

In this section, we provide a theoretical justification for considering the time-varying Laplace
spectral density kernel by establishing a connection to a classical concept from the analysis of
locally stationary time series. In particular, we show that the time-varying Laplace spectral den-
sity fϑ(ω, τ1, τ2), as defined in (2.3), is unique and provides a local spectral description of the
non-stationary process under study, which justifies the terminology time-varying Laplace spectral
density of {Xt,T }.

Lemma 5.2. Let {Xt,T } be locally strictly stationary with approximating processes {Xϑ
t }, and

assume that conditions (A1) - (A3) hold. If moreover γϑh(τ1, τ2) are absolutely summable for
any ϑ, τ1, τ2 ∈ (0, 1), then, for any fixed ϑ, τ1, τ2 ∈ (0, 1) and any sequence t0 = t0(T ) such
that t0/T → ϑ,

sup
ω∈(−π,π]

∣∣∣fϑ(ω, τ1, τ2)−Wt0,T (ω, τ1, τ2)
∣∣∣ = o(1).

where Wt0,T denotes the Wigner-Ville spectrum (defined in (2.4)) of the indicators.

6 Appendix: proofs and technical details

6.1 Proof of Lemma 5.2

It follows from the absolute summability of γϑh(τ1, τ2) that

fϑ(ω, τ1, τ2) =
1

2π

T 1/4∑
h=−T 1/4

γϑh(τ1, τ2)e−iωh + o(1),

while assumption (A3) yields

Wt0,T (ω, τ1, τ2) =
1

2π

T 1/4∑
h=−T 1/4

(
Fbt0−h/2c,bt0+h/2c;T (F−1

bt0−h/2c;T (τ1), F−1
bt0+h/2c;T (τ2))−τ1τ2

)
e−iωh+o(1).

Hence, up to o(1) quantities, the difference |Wt0,T (ω, τ1, τ2)− fϑ(ω, τ1, τ2)| is bounded by

1

2π

T 1/4∑
h=−T 1/4

∣∣Fbt0−h/2c,bt0+h/2c;T (F−1
bt0−h/2c;T (τ1), F−1

bt0+h/2c;T (τ2))−Gϑh(qϑ(τ1), qϑ(τ2))
∣∣

≤ 1

π

T 1/4∑
h=−T 1/4

L

gmin

∣∣∣ h
T

+
1

T

∣∣∣,
a quantity which, in view of Equation (7.4) in the online supplement, is o(1) as T →∞.

6.2 Proof of Theorem 5.1 and Proposition 5.1

The proofs of both results are based on a uniform linearization of b̂bbt0,T (ω, τ) which takes the
following form

sup
ω∈Fn,τ∈T

∥∥∥√nb̂bbt0,T (ω, τ)− 2n−1/2
∑

t∈Nt0,T

(
cos(ω(t− tmin + 1))
sin(ω(t− tmin + 1))

)
(τ − I{Ut,T≤τ})

∥∥∥ = oP(1), (6.1)
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where tmin := min{t ∈ Nt0,T } and Ut,T := Ft;T (Xt,T ). In what follows, we briefly sketch the main
arguments which are needed to establish (6.1), while most technical details are deferred to the
online supplement. The proofs of Theorem 5.1 and Proposition 5.1 are provided in Sections 6.2.1
and 6.2.2, respectively.

Let F̂t0,T (x) denote the empirical distribution function of {Xt,T |t ∈ Nt0,T }, namely,

F̂t0,T (x) = n−1
∑

t∈Nt0,T

I{Xt,T≤x},

and introduce the functions

ẐRt0,T (δδδ) :=
∑

t∈Nt0,T

ρτ (F̂t0,T (Xt,T )− τ − n−1/2c′t(ω)δδδ)− ρτ (F̂t0,T (Xt,T )− τ),

ẐUt0,T (δδδ, ω, τ) :=
∑

t∈Nt0,T

ρτ (Ut,T − τ − n−1/2c′t(ω)δδδ)− ρτ (Ut,T − τ)− δ1

√
n
(
n−1

∑
t∈Nt0,T

Ft,T (F̂−1
t0,T

(τ))− τ
)
,

and

Ẑϑ,Ut0,T (δδδ, ω, τ) := −δδδ′(ζζζUt0,T (ω, τ) + eee1

√
n(Gϑ(F̂−1

t0,T
(τ))− τ)) +

1

2
δδδ′QQQU (ω)δδδ,

where eee1 := (1, 0, 0)′, δδδ = (δ1, δ2, δ3),

QQQU (ω) :=
1

n

n∑
t=1

ct(ω)c′t(ω) =

1 0 0
0 1

2 0
0 0 1

2

 , and ζζζUt0,T (ω, τ) := n−1/2
∑

t∈Nt0,T

ct(ω)(τ − I{Ut,T≤τ}).

Furthermore, set

δδδt0,T (ω, τ) := argmin
δδδ∈R3

ẐRt0,T (δδδ) and δδδϑt0,T (ω, τ) := argmin
δδδ∈R3

Ẑϑ,Ut0,T (δδδ, ω, τ).

Observe that the last two components of δδδt0,T (ω, τ) coincide with the components of b̂bbt0,T (ω, τ),
admitting the representation

δδδϑt0,T (ω, τ) = (QQQU (ω))−1(ζζζUt0,T (ω, τ) + eee1

√
n(Gϑ(F̂−1

t0,T
(τ))− τ)).

Therefore, it suffices to show that ‖δδδt0,T (ω, τ)− δδδϑt0,T (ω, τ)‖∞ is uniformly small in probability. To
prove this, we need a couple of intermediate results which are established in the online supplement.
More precisely, we show (Section 7.3.1) that there exists a constant A > 0 with

lim
n→∞

P
(

sup
ω∈Fn

‖δδδϑt0,T (ω, τ)‖∞ >
A

2
log n

)
= 0 (6.2)

and that for this constant A we have (Section 7.3.2)

sup
ω∈Fn

sup
‖δδδ‖∞<A logn

|ẐRt0,T (δδδ)− ẐUt0,T (δδδ, ω, τ)| = OP(n−
1
4
δ−1
δ+1 (log n)3) (6.3)

and (Section 7.3.3)

sup
ω∈Fn

sup
‖δδδ‖∞<A logn

|ẐUt0,T (δδδ, ω, τ)− Ẑϑ,Ut0,T (δδδ, ω, τ)| = OP(n−
1
4
δ−1
δ+1 (log n)3), (6.4)

where δ > 1 is the constant from assumption (A1). Combining (6.2)-(6.4), we find that

sup
ω∈Fn

sup
‖δδδ−δδδϑt0,T (ω,τ)‖∞<ε

|ẐRt0,T (δδδ)− Ẑϑ,Ut0,T (δδδ, ω, τ)| = OP(n−
1
4
δ−1
δ+1 (log n)3). (6.5)

Finally, similar arguments as those in the proof of Lemma 6.1 in Dette et al. (2014) yield

sup
ω∈Fn

‖δδδt0,T (ω, τ)− δδδϑt0,T (ω, τ)‖∞ = OP(n−
1
8
δ−1
δ+1 (log n)3/2) = oP(1),

which establishes the desired result (6.1).
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6.2.1 Proof of Theorem 5.1

The result clearly follows if we can show that

√
n
(
b̂bbt0,T (ϕn(ω), τ)

)
τ∈T , ω∈Ω

L−−−−→
T→∞

(Nϑ(ω, τ))τ∈T , ω∈Ω,

where the Nϑ(ω, τ)’s are Gaussian random vectors with mean 0 and covariances

Cov(Nϑ(ω1, τk1),Nϑ(ω2, τk2)) = Mϑ(τk1 , τk2 , ω1, ω2),

where

Mϑ(τk1 , τk2 , ω1, ω2) :=


4π

(
<(fϑ(ω, τk1 , τk2)) =(fϑ(ω, τk1 , τk2))

−=(fϑ(ω, τk1 , τk2)) <(fϑ(ω, τk1 , τk2))

)
if ω1 = ω2 =: ω(

0 0

0 0

)
if ω1 6= ω2.

(6.6)

By (6.1), it is sufficient to prove the weak convergence(
2n−1/2

∑
t∈Nt0,T

(
cos(ϕn(ω)(t− tmin + 1))
sin(ϕn(ω)(t− tmin + 1))

)
(τ − I{Ut,T≤τ})

)
τ∈T , ω∈Ω

L−−−−→
T→∞

(Nϑ(ω, τ))τ∈T , ω∈Ω.

(6.7)
The latter follows from a routine application of the application of the Cramér-Wold device. Define
arbitrary coefficients λλλik ∈ R2, i = 1, . . . , v, k = 1, . . . , p, and let

c̃t(ω) := (cos(ϕn(ω)(t− tmin + 1)), sin(ϕn(ω)(t− tmin + 1)))′ with tmin := min{t ∈ Nt0,T }.

We need to show that

2

p∑
k=1

ν∑
i=1

∑
u∈Nt0,T

λλλ′ik
c̃u(ωi)√

n

(
τk − I{Xu,T≤qu,T (τk)}

) L−→ N(0,Var
[ p∑
k=1

ν∑
i=1

λλλ′ikN
ϑ(ωi, τk)

])
(6.8)

where the Nϑ(ωi, τk)’s are centered normal random variables with covariances Cov(Nϑ(ωi, τk),N
ϑ(ωj , τl))

of the form (6.6). To prove this claim, consider the covariances

Cov
( ∑
u∈Nt0,T

c̃u(ωi)√
n

(τk − I{Xu,T≤qu,T (τk)}),
∑

u∈Nt0,T

c̃u(ωj)√
n

(τl − I{Xu,T≤qu,T (τl)})
)

=
1

n

∑
u∈Nt0,T

∑
v∈Nt0,T

c̃u(ωi)c̃
′
v(ωj)Cov

(
I{Xu,T≤qu,T (τk)}, I{Xv,n≤qv,T (τl)}

)
=

1

n

∑
u∈Nt0,T

∑
v∈Nt0,T

c̃u(ωi)c̃
′
v(ωj)Cov

(
I{Xϑ

u≤qϑ(τk)}, I{Xϑ
v≤qϑ(τl)}

)
+ o(1),

where the last equality follows from the fact that

sup
u∈Nt0,T

∣∣∣ ∑
v∈Nt0,T

Cov
(
I{Xu,T≤qu,T (τk)}, I{Xv,n≤qv,T (τl)}

)
− Cov

(
I{Xϑ

u≤qϑ(τk)}, I{Xϑ
v≤qϑ(τl)}

)∣∣∣
≤ sup

u∈Nt0,T

∑
v∈Nt0,T

|Fu,v;T (qu,T (τk), qv,T (τl))−Gϑu−v(qϑu(τk), q
ϑ
v (τl))| −−−−→

T→∞
0,
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itself a consequence of equation (7.4). Along the same lines as in the proof of Theorem 2 in Li
(2008), we obtain

lim
T→∞

4

n

∑
u∈Nt0,T

∑
v∈Nt0,T

c̃u(ωi)c̃
′
v(ωj)Cov

(
I{Xϑ

u≤qϑ(τk)}, I{Xϑ
v≤qϑ(τl)}

)
= Mϑ(τk, τl, ωi, ωj).

Hence, we have

Var
(

2

p∑
k=1

ν∑
i=1

∑
u∈Nt0,T

λλλ′ik
c̃u(ω)√

n
(τk − I{Xu,T≤qu,T (τk)})

)
−−−−→
T→∞

Var
( p∑
k=1

ν∑
i=1

λλλ′ikN
ϑ(ωi, τk)

)
.

To conclude, we apply a central limit theorem from Francq and Zaköıan (2005) with κ = 0, Tn = 0,
r∗ = (δ − 1)/(2 + 4δ) and v∗ = 3/(δ − 1), and obtain (6.8). The claim follows. �

6.2.2 Proof of Proposition 5.1

First define

Lt0,T (ωj,n, τ1, τ2) :=
1

n
dϑt0,T (−ωj,n, τ1)dϑt0,T (−ωj,n, τ2) (6.9)

with dϑt0,T (ωj,n, τ) := n
2 (1, i)bbbϑt0,T (ωj,n, τ) and

bbbϑt0,T (ωj,n, τ) := 2n−1/2
∑

t∈Nt0,T

(
cos(ωj,nt̃)
sin(ωj,nt̃)

)
(τ − I{Xt,T≤qt,T (τ)}),

where t̃ = t− tmin + 1, tmin = min{t ∈ Nt0,T }. In Section 7.3.4, we show that, uniformly in ω,

L̂t0,T (ϕn(ω), τ1, τ2) = Lt0,T (ϕn(ω), τ1, τ2) + oP(1). (6.10)

Together with
∑
|k|≤KnWt0,T (k) = 1 and Wt0,T (k) ≥ 0, this implies that we can write the estima-

tor (3.4) as (assuming that ϕn(ω) = ωjn,n)

f̂t0,T (ω, τ1, τ2) =
∑
|k|≤Kn

Wt0,T (k)Lt0,T (ωjn+k,n, τ1, τ2) + oP(1). (6.11)

In Section 7.3.5 we show that, for any deterministic sequence jn in {1, ..., n− 1},∑
|k|≤Kn

Wt0,T (k)
[
Lt0,T (ωj+k,n, τ1, τ2)− 2πfϑ(ωj+k,n, τ1, τ2)

]
= oP(1). (6.12)

Now, for any ω ∈ (0, π), observe that the point ωjn,n := ϕn(ω) is such that |ωjn,n−ω| = O(Kn/n),

and that, for f = Re(̊fϑ) and f = Im(̊fϑ),∣∣∣ ∑
|k|≤Kn

Wt0,T (k)(f(ωjn+k,n)− f(ω))
∣∣∣ ≤ ∑

|k|≤Kn

Wt0,T (k)|f′(ξjn+k,n)||ωjn+k,n − ω|

≤ Cn
∑
|k|≤Kn

Wt0,T (k)|2πk/n+ ωjn,n − ω|

≤ Cn
∑
|k|≤Kn

Wt0,T (k)|2πk/n|+ Cn
∑
|k|≤Kn

Wt0,T (k)|ωjn,n − ω|

≤ Cn(2πKn/n+ |ωjn,n − ω|)
∑
|k|≤Kn

Wt0,T (k) = O(Kn/n),
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where |ξjn+k,n − ω| ≤ |ωjn+k,n − ω| and Cn := supξ∈Ξ |f(ξ)| is the supremum of the first derivative
of f in the interval Ξ :=

[
ω − |ω − ωjn+k,n| − ωKn,n, ω + |ω − ωjn+k,n|+ ωKn,n

]
. Note that Cn is a

bounded sequence since |ω − ωjn+k,n| ± ωKn,n → 0 and, by assumption (A5), Cn → |f′(ω)|.
This implies that∣∣∣ ∑

|k|≤Kn

Wt0,T (k)(fϑ(ωjn+k,n, τ1, τ2)− fϑ(ω, τ1, τ2))
∣∣∣ = O(Kn/n)

which, together with (6.11) and (6.12), completes the proof. �
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7 Online Appendix

This online appendix collects the technical results for the main body of the paper. Sections 7.1
and 7.2 contain basic probabilistic and technical details that are used throughout the proofs. Sec-
tions 7.3 and 7.4 provide the missing steps in the proofs of Theorem 5.1, Proposition 5.1, and
additional statements for Remark 5.1, respectively. Section 7.5 contains a proof of Lemma 5.1.

7.1 Probabilistic details

7.1.1 A lemma on cumulants

Let (Xt)t∈Z be an arbitrary real-valued stochastic process; for all p ∈ N, (t1, . . . , tp) ∈ Zp, and all
p-tuple A1, . . . , Ap of Borel sets, consider the cumulant

|cum(I{Xt1 ∈ A1}, . . . , I{Xtp ∈ Ap})|

:=
∣∣∣ ∑
{ν1,...,νR}

(−1)R−1(R− 1)!P
( ⋂
i∈ν1

{Xti ∈ Ai}
)
· · ·P

( ⋂
i∈νR

{Xti ∈ Ai}
)∣∣∣, (7.1)

where the sum
∑
{ν1,...,νR} runs over all partitions {ν1, . . . , νR} of the set {1, . . . , p} (see Brillinger (1975)

p.19). Define

α(n) := sup
t∈Z

sup
A∈σ(...,Xt−1,Xt), B∈σ(Xt+n,Xt+n+1,...)

|P(A ∩B)− P(A)P(B)|.

Lemma 7.1. There exists a constant Kp depending on p only such that, for any (t1, ..., tp) ∈ Zp
and any p-tuple A1, . . . , Ap of Borel sets,∣∣∣cum(I{Xt1 ∈ A1}, . . . , I{Xtp ∈ Ap})

∣∣∣ ≤ Kpα
(⌊
p−1 max

i,j
|ti − tj |

⌋)
.

Proof The lemma trivially holds for t1 = ... = tp. If at least two ti’s in (t1, . . . , tp) are distinct,
choose j such that maxi=1,...,p−1(ti+1−ti) = tj+1−tj > 0 and let (Ytj+1 , . . . , Ytp) be a random vector
that is independent of (Xt1 , . . . , Xtj ) and possesses the same joint distribution as (Xtj+1 , . . . , Xtp).
By an elementary property of the cumulants (cf. Theorem 2.3.1 (iii) in Brillinger (1975)), we have

cum(I{Xt1 ∈ A1}, . . . , I{Xtj ∈ Aj}, I{Ytj+1 ∈ Aj+1}, . . . , I{Ytp ∈ Ap}) = 0.

Therefore, ∣∣∣cum(I{Xt1 ∈ A1}, . . . , I{Xtp ∈ Ap})

− cum(I{Xt1 ∈ A1}, . . . , I{Xtj ∈ Aj}, I{Ytj+1 ∈ Aj+1}, . . . , I{Ytp ∈ Ap})
∣∣∣

=
∣∣∣ ∑
{ν1,...,νR}

(−1)R−1(R− 1)![Pν1 · · ·PνR −Qν1 · · ·QνR ]
∣∣∣,

where

Pνr := P
( ⋂
i∈νr

{Xti ∈ Ai}
)

and Qνr := P
( ⋂
i∈νr
i≤j

{Xti ∈ Ai}
)
P
( ⋂
i∈νr
i>j

{Xti ∈ Ai}
)
,

r = 1, . . . , R, with P(
⋂
i∈∅{Xti ∈ Ai}) := 1 by convention. By the definition of α(n), it follows

that, for any partition {ν1, ..., νR} and any r = 1, ..., R, we have |Pνr −Qνr | ≤ α(tj+1 − tj). Thus,
for every partition {ν1, ..., νR},

|Pν1 · · ·PνR −Qν1 · · ·QνR | ≤
R∑
r=1

|Pνr −Qνr | ≤ Rα(tj+1 − tj).
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All together, this yields∣∣cum(I{Xt1 ∈ A1}, . . . , I{Xtp ∈ Ap})
∣∣ ≤ α(tj+1 − tj)

∑
{ν1,...,νR}

R! .

Noting that p(tj+1 − tj) ≥ maxi1,i2 |ti1 − ti2 | and observing that α(n) is monotone in n, we obtain∣∣cum(I{Xt1 ∈ A1}, . . . , I{Xtp ∈ Ap})
∣∣ ≤ Kpα(max |ti − tj |).

7.1.2 A blocking technique for nonstationary β−mixing processes

In her paper, Yu (1994) constructs an independent block sequence to transfer classical tools used
in the analysis of i.i.d. data to the case of β−mixing stationary time series. We are applying her
technique here to derive an exponential inequality for sums of β−mixing local stationary variables,
which will be used on multiple occasions in the sequel. For this purpose, let {Xt,n} be a β−mixing
triangular array with mixing coefficient βn. For each fixed n, divide the process Xt,n into 2µn
blocks of length an = bn/2µnc, with a remainder block of length n− 2µnan. Define

Γj = {i : 2(j − 1)an + 1 ≤ i ≤ (2j − 1)an},
∆j = {i : (2j − 1)an + 1 ≤ i ≤ (2j)an},
R = {i : 2µnan + 1 ≤ i ≤ n},

and introduce the notation

X(Γj) = {Xi,n, i ∈ Γj}, X(∆j) = {Xi,n, i ∈ ∆j}, X(R) = {Xi,n, i ∈ R},

where the dependence on n is omitted for the sake of brevity. We now have a sequence of alternat-
ing Γ and ∆ blocks

X = X(Γ1), X(∆1), X(Γ2), . . . , X(Γµn), X(∆µn), X(R).

To use the concept of coupling we take a one-dependent block sequence

Y = Y (Γ1), Y (∆1), Y (Γ2), . . . , Y (Γµn), Y (∆µn),

where Y (Γj) = {ξi : i ∈ Γj} and Y (∆j) = {Yi : i ∈ ∆j} such that the sequence is independent of X
and each block of Y has the same distribution as a block in X. That is,

Y (Γi)
D
= X(Γi) and Y (∆i)

D
= X(∆i).

The existence of such a sequence and the measurability issues that arise are addressed in Yu (1994).
The block sequences that belong to the Γ blocks are denoted by XΓ and YΓ and those belonging
to the ∆ blocks are denoted by X∆ and Y∆, e.g

XΓ = X(Γ1), X(Γ2), . . . , X(Γµn).

We obtain XΓ by leaving out every other block in the original sequence, which is β−mixing, so
that the dependence between the blocks in XΓ becomes weaker as block sizes increase. Denote
by Q and Q̃ the distributions of XΓ and YΓ, respectively. The following Lemma from Yu (1994)
establishes an upper bound for the difference between expectations computed from the Γ block
sequences from the original and the independent block sequences, respectively.
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Lemma 7.2. For any measurable function h on Rµnan with ‖h‖∞ ≤M ,∣∣EQ[h(XΓ)]− EQ̃[h(YΓ)]
∣∣ ≤M(µn − 1)βan .

The same bound is valid for X∆ and Y∆. We can now consider a sum of β−mixing random
variables, namely

∑n
t=1 f(Xt,n), and link its probabilistic behavior to that of the sum of independent

blocks
∑µn

j=1

∑
i∈Γj

f(Yi,n) where f is a function contained in some appropriate class Fn of functions

from R to R, which will be specified later on. For simplicity, we assume that E(f(Xi,n)) = 0 for
all f ∈ Fn. The following Lemma is a slight adjustment of Lemma 4.2 from Yu (1994).

Lemma 7.3. Let Fn be a sequence of permissible classes of functions bounded by a constant Mn.
Let (rn)n∈N be such that, for n large enough, 2rnµn ≥ nMn. Then

P
(

sup
f∈Fn

∣∣∣ n∑
t=1

f(Xt,n)
∣∣∣ > 4rn

)
≤ P

(
sup
f∈Fn

∣∣∣ µn∑
j=1

∑
i∈Γj

f(Yi,n)
∣∣∣ > rn

)
+P
(

sup
f∈Fn

∣∣∣ µn∑
j=1

∑
i∈∆j

f(Yi,n)
∣∣∣ > rn

)
+2µnβan .

Proof We can split the sum
∑n

t=1 f(Xt,n) into three parts, yielding

P
(

sup
f∈Fn

∣∣∣ n∑
t=1

f(Xt,n)
∣∣∣ > 4rn

)
≤P
(

sup
f∈Fn

∣∣∣ µn∑
j=1

∑
i∈Γj

f(Xi,n)
∣∣∣ > rn

)

+ P
(

sup
f∈Fn

∣∣∣ µn∑
j=1

∑
i∈∆j

f(Xi,n)
∣∣∣ > rn

)
+ P

(
sup
f∈Fn

∣∣∣∑
i∈R

f(Xi,n)
∣∣∣ > 2rn

)
.

The last part, which deals with the remainder term, is bounded by Mn(2an) ≤ Mnn/µn. Since
2rnµn ≥ nMn, the probability associated with that remainder term is zero. The second term can
be treated by the same arguments. Therefore, we just have to deal with the first term. Applying
Lemma 7.2 with

h = I
{

sup
f∈Fn

∣∣∣ µn∑
j=1

∑
i∈Γj

f(Xi,n)
∣∣∣ > rn

}
,

we get that

P
(

sup
f∈Fn

∣∣∣ µn∑
j=1

∑
i∈Γj

f(Xi,n)
∣∣∣ > rn

)
≤ P

(
sup
f∈Fn

∣∣∣ µn∑
j=1

∑
i∈Γj

f(Yi,n)
∣∣∣ > rn

)
+ µnβan ,

which concludes the proof.

The upper bound in Lemma 7.3 only involves i.i.d. blocks, which allows us to use classical
techniques. In particular, we will apply the Benett inequality to obtain further bounds. For this
purpose, assume that Fn contains at most a finite number mf (n) of functions, so that

P
(

sup
f∈Fn

∣∣∣ µn∑
j=1

∑
i∈Γj

f(Yi,n)
∣∣∣ > rn

)
≤ mf (n) sup

f∈Fn
P
(∣∣∣ µn∑

j=1

∑
i∈Γj

f(Yi,n)
∣∣∣ > rn

)
.

If we furthermore assume that the variance Var(
∑µn

j=1

∑
i∈Γj

f(Yi,n)) of the blocks is bounded by Vn,
the Benett inequality yields

P
(∣∣∣ µn∑

j=1

∑
i∈Γj

f(Yi,n)
∣∣∣ > rn

)
≤ exp

(
− µnVn
a2
nM

2
n

h
(rnanMn

2µnVn

))
, (7.2)

29



where h(x) = (1+x)log(1+x)−x. Straightforward calculations finally provide, for (7.2), the bound

exp
(
− log 2

2

( r2
n

4µnVn
∧ rn

2anMn

))
.

Summing up, we just have proven the following lemma.

Lemma 7.4. Let {Xt,n} be a β−mixing triangular array, and denote by Fn a sequence of classes
of functions from R to R, with cardinality #Fn, satisfying

(i) #Fn ≤ mf (n); (ii) supf∈Fn |f(Xt,n)| ≤Mn; (iii) E(f(X)) = 0.

Consider a blocking structure induced by the sequence (µn, an) of pairs of integers, where
n/2− an ≤ µnan ≤ n/2, an →∞, and µn →∞, satisfying

(a) µnβan
n→∞−−−→ 0; (b) 2rnµn ≥ nMn;

(c) Var
(∑

i∈Γj
f(Xi,n)

)
∨Var

(∑
i∈∆j

f(Xi,n)
)
≤ Vn for all 1 ≤ j ≤ µn.

Then,

P
(

sup
f∈Fn

∣∣∣ n∑
t=1

f(Xt,n)
∣∣∣ > 4rn

)
≤ 2mf (n) exp

(
− log 2

2

( r2
n

4µnVn
∧ rn

2anMn

))
+ o(1).

7.2 Auxiliary technical results

Throughout this section, let {Xt,T } denote a triangular array of locally strictly stationary (in the
sense of Definition 2.1) time series satisfying Assumptions (A1)-(A3). The notation introduced in
Sections 2 and 3 is used throughout. We start with a simple auxiliary result.

Lemma 7.5. Let F and G denote functions from R to R, with |G(x) − G(y)| > c|x − y| for
x, y ∈ [a, b] where c is some positive constant. Let x1, x2 ∈ (a, b) be such that F (x1) = G(x2):
if ‖F (·)−G(·)‖∞ ≤ ε, then |x1 − x2| ≤ ε/c.

Proof The claim readily follows from c|x1− x2| < |G(x1)−G(x2)| = |G(x1)− F (x2)| ≤ ε.

Lemma 7.5 can be used to bound distances between the quantiles of two distribution functions:
in view of Assumption (A3), it applies to F = Fu;T and G = Gϑϑ(·), yielding

|qu,T (τ)− qϑτ | ≤
L

gmin

∣∣∣u− ϑT
T

+
1

T

∣∣∣. (7.3)

Furthermore if n/T = o(n−1) and |t0T−1 − ϑ| = o(T−1/2), a Taylor expansion yields

sup
s,t∈Nt0,T

‖Fs,t;T (qs,T (τ1), qt,T (τ2))−Gϑs−t(qϑ(τ1), qϑ(τ2);ϑ)‖∞ = o(n−1). (7.4)

Next, define

Hu,T (δδδ, ω, τ) :=

∫ b(ω)

0

(
I{Xu,T ≤ s+ qu,T (τ)} − I{Xu,T ≤ qu,T (τ)}

)
ds

where b(ω) = n−1/2c′u(ω)δδδ, and

Wu,T (δδδ, ω, τ) := Hu,T (δδδ, ω, τ)− gϑ(qϑτ )(c′u(ω)δδδ)2/2n. (7.5)

Denote by Fn the set of Fourier frequencies ωj,n.
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Lemma 7.6. There exists a finite constant C such that, for any τ , δδδ, u1, u2, n, and T large
enough,

sup
ω∈Fn

sup
u∈Nt0,T

∣∣E[(Wu,T (δδδ, ω, τ))]
∣∣ ≤ C‖δδδ‖3n−3/2, (7.6)

sup
ω∈Fn

sup
u∈Nt0,T

∣∣(Wu,T (δδδ, ω, τ))
∣∣ ≤ C(‖δδδ‖2 ∨ 1)n−1/2 a.s.

and

sup
ω∈Fn

∣∣E[Wu1,T (δδδ, ω, τ)Wu2,T (δδδ, ω, τ)]
∣∣ ≤ C(‖δδδ‖4 ∨ 1)(n−3/2I{u1=u2} + n−2I{u1 6=u2}). (7.7)

Proof Let h denote a function from R to R: then,∣∣∣ ∫ b(ω)

0
Fu;T (h(s))−Gϑ(h(s))ds

∣∣∣ ≤ Cn−1/2‖δδδ‖‖Fu;T (x)−Gϑ(x)‖∞

≤ Cn−1/2‖δδδ‖|u− ϑT |
T

≤ Cn1/2T−1‖δδδ‖ ≤ C‖δδδ‖n−3/2;

similarly, and using the same arguments, for a function (h1, h2) from R2 to R2,∣∣∣ ∫ b(ω)

0

∫ b(ω)

0
Fu;T (h1(s, t))−Gϑ(h1(s, t))dsdt

∣∣∣ ≤ C‖δδδ‖2n−2

and ∣∣∣ ∫ b(ω)

0

∫ b(ω)

0
Fu,v;T (h1(s, t), h2(s, t))−Gϑu−v(h1(s, t), h2(s, t);ϑ)dsdt

∣∣∣ ≤ C‖δδδ‖2n−2.

Along with a Taylor expansion, these inequalities yield, for ω ∈ Fn,

E[Hu,T (δδδ, ω, τ)] =

∫ b(ω)

0
Fu;T (s+ qu,T (τ))− Fu;T (qu,T (τ))ds

=

∫ b(ω)

0
Gϑ(s+ qu,T (τ))−Gϑ(qu,T (τ))ds+O(‖δδδ‖n−3/2)

=

∫ b(ω)

0
sgϑ(qu,T (τ)) + r1(s, τ)ds+O(‖δδδ‖n−3/2)

=
1

2n
gϑ(qu,T (τ))(c′u(ω)δδδ)2 + r2(τ, ω),

where |r1(s, τ)| ≤ Cs2, hence |r2(τ, ωj,n)| ≤ C(‖δδδ‖3 ∨ ‖δδδ‖)n−3/2. With equation (7.3), Assump-
tion (A2) and a Taylor expansion, we obtain

gϑ(qu,T (τ))− gϑ(qϑ(τ))| = |qu,T (τ)− qϑ(τ)||(gϑ)′(ξ)| ≤ C |u− ϑT |
T

= o(n−1). (7.8)

The first part of (7.6) follows. The second part is obtained by bounding each term of the difference
in the definition (7.5) of Wu,T . To prove (7.7) we consider the cases u1 = u2 and u1 6= u2 separately.
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First, observe that in case u1 = u2 = u, we have

E
[
H2
u,T (δδδ, ω, τ)

]
= E

[ ∫ b(ω)

0

∫ b(ω)

0
(I{Xu,T≤s+qu,T (τ)} − I{Xu,T≤qu,T (τ)})(I{Xu,T≤t+qu,T (τ)} − I{Xu,T≤qu,T (τ)})dsdt

]
= E

[ ∫ b(ω)

0

∫ b(ω)

0
(I{Xu,T≤(s∧t)+qu,T (τ)} − I{Xu,T≤(s∧0)+qu,T (τ)} − I{Xu,T≤(0∧t)+qu,T (τ)} − I{Xu,T≤qu,T (τ)}dsdt

]
= E

[ ∫ b(ω)

0

∫ b(ω)

0
(I{Xϑ

u≤(s∧t)+qu,T (τ)} − I{Xϑ
uϑ≤(s∧0)+qu,T (τ)}

− I{Xϑ
uϑ≤(0∧t)+qu,T (τ)} − I{Xϑ

u≤qu,T (τ)}dsdt
]

+O(‖δδδ‖2n−2)

=

∫ b(ω)

0

∫ b(ω)

0
(s ∧ t− s ∧ 0− 0 ∧ t)gϑ(qu,T (τ)) + r3(s, t, τ)dsdt+O(‖δδδ‖2n−2),

where |r3(s, t, τ)| ≤ C(s2 +t2), which can be calculated from the remainder of the Taylor expansion.
Now,

∫ x
0

∫ x
0 (s ∧ t− s ∧ 0− 0 ∧ t)dsdt = |x|3/3, and b = n−1/2c′u(ω)δδδ implies

E
[
(Hu,T (δδδ, ω, τ))2

]
=

1

3
n−3/2fu,T |c′u(ω)δδδ|3 + r4(ωj,n, τ), (7.9)

where r4(ωj,n, τ) ≤ C‖δδδ‖4n−2. Similarly, if u1 6= u2 we obtain

gϑ(qϑ(τ))(2n)−1(c′u(ω)δδδ)2E
[
Hu1,T (δδδ, ω, τ)Hu2,T (δδδ, ω, τ)

]
= E

[ ∫ b(ω)

0

∫ b(ω)

0
(I{Xu1,T≤s+qu1,T (τ)} − I{Xu1,T≤qu1,T (τ)})(I{Xu2,T≤t+qu2,T (τ)} − I{Xu2,T≤qu2,T (τ)})dsdt

]
=

∫ b(ω)

0

∫ b(ω)

0
Fu1,u2;T (s+ qu1,T (τ) + qu2,T (τ))− Fu1,u2;T (qu1,T (τ), t+ qu2,T (τ))

− Fu1,u2(qu1,T (τ), t+ qu2,T (τ)) + Fu1,u2;T (qu1,T (τ), qu2,T (τ))dsdt

=

∫ b(ω)

0

∫ b(ω)

0
r5(s, t, τ)dsdt+O(‖δδδ‖2n−2),

where the last equality follows from a two-dimensional Taylor expansion that leads to |r5(s, t, τ)| ≤
C(s2 + t2). Hence, ∣∣E[Hu1,T (δδδ, ω, τ)Hu2,T (δδδ, ω, τ)

]∣∣ ≤ C(‖δδδ‖4 ∨ 1)n−2,

which completes the proof of (7.7).

Lemma 7.7. For any bounded set S ⊂ R and positive sequence bn = o(1),

(i) supx∈S |F̂t0,T (x)−Gϑ(x)| = OP(n−1/2
√

log(n)) and

(ii) supx∈S sup|y|≤bn |F̂t0,T (x+ y)− F̂t0,T (x)−Gϑ(x+ y) +Gϑ(x)| = OP(ρn(bn, δ))

where

ρn(bn, δ) :=
(bn + n1/(1+δ)b2n log n

n
log n

)1/2
∨ (n−δ/(1+δ) log n) (7.10)

and δ is the exponent in the β−mixing rate of Assumption (A1).

Proof To prove (i), let us show that

sup
x∈S

∣∣∣F̂t0,T (x)− n−1
∑

t∈Nt0,T

Ft;T (x)
∣∣∣ = OP(n−1/2

√
log(n)). (7.11)
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The claim then follows from Definition 2.1 and the triangle inequality, that is,

sup
x∈S

∣∣F̂t0,T (x)−Gϑ(x)
∣∣ ≤ sup

x∈S

∣∣∣F̂t0,T (x)− n−1
∑

t∈Nt0,T

Ft;T (x)
∣∣∣+
∣∣∣n−1

∑
t∈Nt0,T

Ft;T (x)−Gϑ(x)
∣∣∣

= OP(n−1/2
√

log(n)) +O(n−1).

Set

F̂t0,T (x)− n−1
∑

t∈Nt0,T

Ft;T (x) = n−1
∑

t∈Nt0,T

(I{Xt,T≤x} − Ft;T (x)) =: n−1
∑

t∈Nt0,T

Wt,T (x).

It is possible to cover the set S with N = O(n) spheres of radius n−1 and centers zj , j = 1, . . . , N.
If we restrict the function Wt,T to this finite subset, we get

sup
|zj−x|<n−1

|Wt,T (x)−Wt,T (zj)| = sup
|zj−x|<n−1

|I{Xt,T≤x} − I{Xt,T≤zj} + Ft;T (x)− Ft;T (zj)|

≤ I{|Xt,T−zj |≤n−1} + Cn−1 =: Vt,T (j)

and therefore, for some CD to be chosen later on,

P
(

sup
x∈S

∣∣∣n−1
∑

t∈Nt0,T

Wt,T (x)
∣∣∣ ≥ CDn−1/2

√
log(n)

)
(7.12)

≤ P
(

max
1≤j≤N

∣∣∣ ∑
t∈Nt0,T

Wt,T (zj)
∣∣∣ ≥ CD

2
n1/2

√
log(n)

)
+ P

(
max

1≤j≤N

∣∣∣ ∑
t∈Nt0,T

Vt,T (j)
∣∣∣ ≥ CD

2
n1/2

√
log(n)

)
= P 1

T + P 2
T , say.

We will now use the blocking technique from Lemma 7.4 to show that both probabilities in the
right-hand side of (7.12) tend to zero. Observe that Wt,T (zj) and V̊t,T (j) := Vt,T (j) − E(Vt,T (j))
are centered β−mixing random variables with

sup
1≤j≤N

sup
t,T

∣∣Wt,T (zj)
∣∣ ≤M and sup

1≤j≤N
sup
t,T

∣∣V̊t,T (j)
∣∣ ≤M

for some constant M independent of j, t and T , so that conditions (i)-(iii) in Lemma 7.4 are
satisfied. Also set

an = dn
1
δ+1 e, µn = b n

2an
c and rn = n1/2

√
log(n),

so that conditions (a) and (b) are satisfied as well for n large enough. To bound the variances,
observe that, for |t1 − t2| ≤ an,

Var
( t2∑
t=t1

Wt,T (x)
)

=

t2∑
u=t1

t2∑
v=t1

E
(
Wu,T (x)Wv,T (x)

)
≤

t2∑
u=t1

(
Fu;T (x)− F 2

u;T (x)
)

+

t2∑
u=t1

t2∑
v=t1

(
Fu,v;T (x, x)− Fu;T (x)Fv;T (x)

)
≤ 1

4
an + Can = O(an),
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where the inequality for the second sum follows from the β−mixing properties in Assumption (A1).
Therefore, the inequality E(Vt,T (x)) ≤ n−1 yields

Var
( t2∑
t=t1

Vt,T (x)
)

=

t2∑
u=t1

t2∑
v=t1

E
(
Vu,T (x)Vv,T (x)

)
=

t2∑
u=t1

(
P(|Xu,T − zj | < n−1) +O(n−1)

)
+

t2∑
u=t1

t2∑
v=t1

(
P(|Xu,T − zj | < n−1, |Xv,T − zj | < n)−1

)
≤ O

(an
n

)
+O

(a2
n

n

)
= O(an).

It thus follows from Lemma 7.4 lthat P 1
T ≤ Nn−D + o(1), since

C2
Dn log(n)

4n
∧
CD
√
n log(n)

2Mn1/(1+δ)
≥ D log(n)

for an appropriate constant CD and sufficiently large n. The same conclusion holds for P 2
T , which

deals with Vt,T (j); (7.11) follows. Part (ii) of he lemma follows along the same lines; see Lemma 6.9
in Dette et al. (2014) for a proof in the stationary case.

Lemma 7.8. Let F−1 denotes the generalized inverse of a non-decreasing function F .

(i) Fix ϑ ∈ (0, 1) and assume that, for some γ > 0 such that [a− γ, b+ γ] ⊂ (0, 1),

lim inf
T→∞

inf
u∈[a−γ,b+γ]

min
t∈Nt0,T

ft,T ((Gϑ)−1(u)) > 0.

Then,
sup
u∈[a,b]

|Gϑ(F̂−1
t0,T

(u))− u| = OP(n−1/2
√

log n).

(ii) If, moreover, ρn(bn, δ) = o(bn) with 0 < bn = o(1), where ρn(bn, δ) is defined in (7.10), then

sup
u,v∈[a,b]
|u−v|≤bn

∣∣∣Gϑ(F̂−1
t0,T

(u))−Gϑ(F̂−1
t0,T

(v))− (u− v)
∣∣∣ = OP(ρn(2bn, δ)).

Proof Let h : R 7→ R be a nondecreasing function. Then supw∈[u,v] |h(w) − w| ≤ γn im-

plies supw∈[u+2γn,v−2γn] |h−1(w) − w| ≤ γn. Setting h(w) = F̂t0,T ((Gϑ)−1(w)) yields, in view of
Lemma 7.7,

sup
(Gϑ)−1(w)∈S

∣∣F̂t0,T ((Gϑ)−1(w))−Gϑ((Gϑ)−1(w))| = sup
(Gϑ)−1(w)∈S

|F̂t0,T ((Gϑ)−1(w))− w
∣∣

= OP(n−1/2
√

log(n)).

The first assertion of the lemma then follows from choosing

S = [(Gϑ)−1(a)− Cn−1/2
√

log(n), (Gϑ)−1(b) + Cn−1/2
√

log(n)]

with an appropriate constant C. Turning to (ii), part (ii) of Lemma 7.7 entails, for any bounded
set S,

sup
x∈S

sup
|y|≤bn

|F̂t0,T (x+ y)− F̂t0,T (x)−Gϑ(x+ y) +Gϑ(x)| = OP(ρn(bn, δδδ)).
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Since Gϑ is differentiable, with strictly positive density, inf [a−γ,b+γ] g
ϑ(x) > 0. Hence, for any

subset A of [a− γ, b+ γ] and appropriate constant CA,

sup
u,v∈A

|(Gϑ)−1(u)− (Gϑ)−1(v)| ≤ CA|u− v|,

and therefore, with y = (Gϑ)−1(u)− (Gϑ)−1(v) and x = (Gϑ)−1(v),

sup
u,v∈[a−γ,b+γ]
|u−v|≤bn

|F̂t0,T ((Gϑ)−1(u))− F̂t0,T ((Gϑ)−1(v))− u+ v| = OP(ρn(bn, δδδ)) (7.13)

We now apply Lemma 3.5 from Wendler (2011) with F (w) = F̂t0,T ((Gϑ)−1(w)). Using the fact
that, for any strictly increasing function G (F ◦G−1)−1 = G ◦ F−1 (see Exercise 3 in Chapter 1 of
Shorak and Wellner (1986)), we get that the condition

sup
u,v∈[F̂t0,T ((Gϑ)−1(C1+2c+l)),F̂t0,T ((Gϑ)−1(C2−2c+l))]

|u−v|≤l

∣∣∣Gϑ(F̂−1
t0,T

(u))−Gϑ(F̂−1
t0,T

(v))− (u− v)
∣∣∣ > c (7.14)

implies
sup

u,v∈[a−γ,b+γ]
|u−v|≤l+2c

|F̂t0,T ((Gϑ)−1(u))− F̂t0,T ((Gϑ)−1(v))− (u− v)| > c, (7.15)

where γ is chosen such that [a− γ, b+ γ] ⊃ [C1, C2]. Now, setting

C1 = Gϑ(F̂−1
t0,T

(a))− 2c− l, C2 = Gϑ(F̂−1
t0,T

(b)) + 2c+ l, l = bn and c = Dρn(bn, δ),

inequality (7.15) for D large enough is in contradiction with inequality (7.13). Therefore, inequal-
ity (7.14) cannot be correct, which proves the claim.

7.3 Details for the proof of Theorem 5.1 and Proposition 5.1

7.3.1 Proof of (6.2)

Observe that, by Lemma 7.8 in Section 7.2, we have, uniformly in τ and ω,

δδδϑt0,T (ω, τ) = diag(1, 2, 2)ζζζϑt0,T (ω, τ) +OP (
√

log n).

In order to establish (6.2), it is therefore sufficient to find a constant A = Aϑ(τ) such that

P
(

sup
ω∈Fn

‖ζζζϑt0,T (ω, τ)‖∞ > Aϑ(τ)
√

log n
)

= P
(

sup
ω∈Fn

∥∥ ∑
u∈Nt0,T

Hϑ
u,T (ω, τ)

∥∥
∞ ≥ A

ϑ(τ)
√
n log n

)
= o(1)

(7.16)
where Hϑ

u,T (ω, τ) := cu(ω)(τ − I{Xu,T≤qu,T (τ)}). To bound the probability on the right-hand side
of (7.16), we apply the independent blocking technique from Lemma 7.4. Let us show that each
component Hϑ

u,T,j(ω, τ), j = 1, 2, 3, of Hϑ
u,T (ω, τ) satisfies the assumptions of Lemma 7.4.. Indeed,

the Hϑ
u,T,j(ω, τ)’s form a β− mixing triangular array of centered variables, and it follows from (7.21)

and (A2) that supω∈Fn |H
ϑ
u,T,j(ω, τ)| ≤ 1. Therefore, conditions (i) − (iii) are satisfied. To apply

the blocking technique, set

an = dn
1
δ+1 e, µn = b n

2an
c , and rn = Aϑ(τ)

√
n log n,
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so that (a) µnβan
n→∞−−−→ 0 and (b) n

2µn
Mn ≤ Can � rn hold. To bound the variance of each block,

observe that, with |t1 − t2| < an,

Var

(
t2∑

u=t1

Hϑ
u,T (ω, τ)

)
=

t2∑
u=t1

t2∑
v=t1

E
(
Hϑ
u,T (ω, τ)(Hϑ

v,T (ω, τ))′
)

≤
∑
|h|<an

∣∣Cov(I{Xu,T≤qu,T (τ)}, I{Xu+h,T≤qu+h,T (τ)})
∣∣ t2−(0∨h)∑
u=t1+(0∧h)

|cu(ω)c′u+h(ω)| = O(an)

since ‖cu(ω)‖∞ ≤ 1 and (A1) implies that
∣∣∣Cov(

(
Xu,T ≤ qu,T (τ), I{Xu+h,T |≤qu+h,T (τ)}

)∣∣∣ ≤ |h|−δ.
Lemma 7.4 then yields

P
(

sup
ω∈Fn

max
j=1,2,3

∣∣∣ ∑
u∈Nt0,T

Hϑ
u,T,j(ω, τ)

∣∣∣ > A
√
n log n

)
≤ 6n exp

(
− log 2

2

(A2n log n

Canµn
∧ A
√
n log n

an

))
,

which tends to zero for A large enough.

7.3.2 Proof of (6.3)

First, note that, due to local strict stationarity, Lemma 7.7 and 7.8 still hold for t ∈ Nt0,T if we
exchange Gϑ and Ft;T ,. We have to show that

sup
ω∈Fn

sup
‖δδδ‖∞<A logn

∣∣ẐRt0,T (δδδ)− ẐUt0,T (δδδ, ω, τ)
∣∣ = OP(n−

1
4
δ−1
δ+1 (log n)3).

Knight’s identity (see p. 121 of Koenker (2005)) yields ẐRt0,T (δδδ) = ẐRt0,T,1(δδδ) + ẐRt0,T,2(δδδ), where

ẐRt0,T,1(δδδ) = −δδδ′n−1/2
∑

t∈Nt0,T

ct(ω)
(
τ − I{Ut,T≤Ft;T (F̂−1

t0,T
(τ))}

)
and

ẐRt0,T,2(δδδ) =
∑

t∈Nt0,T

∫ n−1/2c′t(ω)δδδ

0

(
I{Ut,T≤Ft;T (F̂−1

t0,T
(τ+s))} − I{Ut,T≤Ft,T (F̂−1

t0,T
(τ))}

)
ds.

A similar representation, namely

ẐUt0,T (δδδ, ω, τ) = ẐUt0,T,1(δδδ, ω, τ) + ẐUt0,T,2(δδδ, ω, τ),

holds for ẐUt0,T (δδδ, ω, τ), where

ẐUt0,T,1(δδδ, ω, τ) = −δδδ′n−1/2
∑

t∈Nt0,T

ct(ω)
(
τ − I{Ut,T≤τ}

)
−
√
neee′1
(
Ft;T (F̂−1

t0,T
(τ))− τ

)
and

ẐUt0,T,2(δδδ, ω, τ) =
∑

t∈Nt0,T

∫ n−1/2c′t(ω)δδδ

0

(
I{Ut,T≤τ+s} − I{Ut,T≤τ}

)
ds.

First consider
∣∣ẐRt0,T,1(δδδ)− ẐUt0,T,1(δδδ, ω, τ)

∣∣. It is sufficient to show that

B1 := max
k=2,3

sup
ω∈Fn

n−1/2
∣∣∣ ∑
t∈Nt0,T

ct,k(ω)
(
I{Ut,T≤Ft;T (F̂−1

t0,T
(τ))} − I{Ut,T≤τ}

)∣∣∣ = OP(n−
1
2

δ
1+δ log n)

(7.17)
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and

B2 := n−1/2 sup
ω∈Fn

∣∣∣ ∑
t∈Nt0,T

(
I{Ut,T≤Ft;T (F̂−1

t0,T
(τ))} − I{Ut,T≤τ} − (Ft;T (F̂−1

t0,T
(τ))− τ)

)∣∣∣
= OP(n−

1
2

δ
1+δ log n). (7.18)

It follows from Lemma 7.8(i) that Ft;T (F̂−1
t0,T

(τ))− τ = OP(n−1/2
√

log n); hence,

B1 ≤ n−1/2 sup
ω∈Fn

sup
|x−τ |≤n−1/2

√
logn

∣∣∣ ∑
t∈Nt0,T

ct,k(ω)(I{Ut,T≤x} − I{Ut,T≤τ} − (x− τ))
∣∣∣

+n−1 sup
ω∈Fn

√
log n

∣∣∣ n∑
t=1

ct,k(ω)
∣∣∣

which coincides with equation (6.19) in Dette et al. (2014), so that (7.17) can be proven along the
same lines by an application of the independent blocking technique from Lemma 7.4. To bound
(7.18) we again apply Lemma 7.8(i)

B2 ≤ n−1/2 sup
|x−τ |≤n−1/2

√
logn

∣∣∣ ∑
t∈Nt0,T

(I{Ut,T≤x} − I{Ut,T≤τ} − (x− τ))
∣∣∣

so that the bound holds by an application of Lemma 7.7(ii).
The treatment of |ẐRt0,T,2(δδδ) − ẐUt0,T,2(δδδ, ω, τ)|, is more technical. Setting b = n−1/2c′t(ω)δδδ,

observe that

ẐRt0,T,2(δδδ)− ẐUt0,T,2(δδδ, ω, τ)

=
∑

t∈Nt0,T

∫ b

0

(
I{Ut,T≤Ft;T (F̂−1

t0,T
(τ+s))} − I{Ut,T≤Ft;T (F̂−1

t0,T
(τ))} − I{Ut,T≤τ+s} + I{Ut,T≤τ}

)
ds

= n−1/2
∑

t∈Nt0,T

∫ n1/2b

0

(
I{Ut,T≤Ft;T (F̂−1

t0,T
(τ+n−1/2s))} − I{Ut,T≤Ft;T (F̂−1

t0,T
(τ))} − I{Ut,T≤τ+n−1/2s} + I{Ut,T≤τ}

)
ds

=:

∫ n1/2b

0
A(s)ds =

∫
R
A(s)[I{0≤s≤c′t(ω)δδδ} − I{0≥s≥c′t(ω)δδδ}]ds.

Letting

S+
δδδ (u, v; s) := n−1/2

∑
t∈Nt0,T

[I{Ut,T≤u} − I{Ut,T≤v} − (u− v)][I{0≤s≤c′t(ω)δδδ}] and

S−δδδ (u, v; s) := n−1/2
∑

t∈Nt0,T

[I{Ut,T≤u} − I{Ut,T≤v} − (u− v)][I{0≥s≥c′t(ω)δδδ}],

we obtain the decomposition∫
R
A(s)[I{0≤s≤c′t(ω)δδδ} − I{0≥s≥c′t(ω)δδδ}]ds =: A1+ +A1− +A2+ +A2−, say,

where

A1+ :=

∫
R

(
S+
δδδ (Ft;T (F̂−1

t0,T
(τ + n−1/2s)), n−1/2s+ τ ; s)− S+

δδδ (Ft;T (F̂−1
t0,T

(τ)), τ, s)
)
ds,

A2+ := n−1/2

∫
R

∑
t∈Nt0,T

(
Ft;T (F̂−1

t0,T
(τ + n−1/2s))− (n−1/2s+ τ)− (Ft;T (F̂−1

t0,T
(τ))− τ

)
I{0≤s≤c′t(ω)δδδ}ds
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and A1−, A2− are defined by replacing S+
δδδ by S−δδδ and I{0≤s≤c′t(ω)δδδ} by I{0≥s≥c′t(ω)δδδ}. In what follows,

we derive upper bounds for A1+ and A2+ only, as A1− and A2− can be treated similarly. In view
of Lemma 7.8(ii) and local stationarity,

|A2+| ≤ 4‖δδδ‖
√
n max
t∈Nt0,T

sup
|u−τ |≤2‖δδδ‖n−1/2

|Ft;T (F̂−1
t0,T

(u))− u− Ft;T (F̂−1
t0,T

(τ)) + τ |

= OP(ρn(A(log n)n−1/2, δ)
√
n log n) = OP((n−1/4(log n)3/2) ∨ (n(1−δ)/(2+2δ)(log n)2))

= OP(n−
1
4
δ−1
δ+1 (log n)2),

where δ is the exponent from the β−mixing rate. As for A1+, still in view of Lemma 7.8,∣∣∣ ∫ S+
δδδ (Ft;T (F̂−1

t0,T
(τ + n−1/2s)), n−1/2s+ τ ; s)ds

∣∣∣
≤ 2

∫
sup

v:|v−τ |≤2‖δδδ‖n−1/2

|S+
δδδ (Ft;T (F̂−1

t0,T
(v)), v; s)|ds

≤ 2

∫ 2‖δδδ‖

−2‖δδδ‖
sup

{v:|v−τ |≤2‖δδδ‖n−1/2}
sup

{u:|u−v|≤n−1/2 logn}
|S+
δδδ (u, v; s)|ds

≤ 8‖δδδ‖ sup
{s:|s|≤2‖δδδ‖}

sup
{v:|v−τ |≤2‖δδδ‖n−1/2}

sup
{u:|u−v|≤n−1/2 logn}

|S+
δδδ (u, v; s)|.

An analogue inequality holds for
∫ ∣∣S+

δδδ (Ft;T (F̂−1
t0,T

(τ)), τ ; s)
∣∣ds.

We now can proceed with (6.3). Note that the dependence of
∣∣ẐRt0,T (δδδ)− ẐUt0,T (δδδ, ω, τ)

∣∣ on s,δδδ

and ω only has an impact on which part of the sum in S+
δδδ is taken into account. For any C > 0,

we have I{0≤s≤c′t(ω)δδδ} = I{0≤Cs≤Cc′t(ω)δδδ}, which means that we can restrict ourselves to ‖δδδ‖2 = 1

and s ∈ [0,
√

2], as ‖ct(ω)‖2 =
√

2. Furthermore, if I{0≤s≤c′t(ω)δδδ1} = I{0≤s2≤c′t(ω)δδδ2} for all t =

1, . . . , n, then also S+
δδδ1

(u, v; s1) = S+
δδδ2

(u, v; s2). Thus, we need to prove that

∆n := sup
S∈Mn

sup
{v:|v−τ |≤2‖δδδ‖n−1/2}
{u:|u−v|≤n−1/2 logn}

|S̄+
δδδ | = OP(n−

1
4
δ−1
δ+1 (log n)2), (7.19)

where
Mn = {S = {s ∈ Nt0,T : 0 ≤ s ≤ c′t(ω)δδδ}|ω ∈ Fn, s ∈ (0,

√
2], ‖δδδ‖2 = 1},

and
S̄+
δδδ (u, v;S) := n−1/2

∑
t∈S

[I{Ut,T≤u} − u− (I{Ut,T≤v} − v)] =: n−1/2
∑

t∈Nt0,T

Vt,S(u, v).

Now (7.19) coincides with equation (6.22) in Dette et al. (2014) and follows along the same lines
by an application of the independent blocking technique from Lemma 7.4.

7.3.3 Proof of (6.4)

In order to establish (6.4), we use Knight’s identity again, which yields

ẐUt0,T (δδδ, ωj,n, τ)− ZU,ϑt0,T
(δδδ, ωj,n, τ)

=
∑

u∈Nt0,T

Wu,T (δδδ, ωj,n, τ) + δ1

√
n
(
n−1

∑
t∈Nt0,T

Ft;T (F̂−1
t0,T

(τ))−Gϑ(F̂−1
t0,T

(τ))
)

where
Wu,T (δδδ, ωj,n, τ) := Hu,T (δδδ, ωj,n, τ)− (c′u(ωj,n)δδδ)2/2n
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with

Hu,T (δδδ, ωj,n, τ) :=

∫ n−1/2c′u(ωj,n)δδδ

0
(I{Uu,T≤s+τ} − I{Uu,T≤τ})ds.

Observe that
n−1/2

∑
t∈Nt0,T

(
Ft;T (F̂−1

t0,T
(τ))−Gϑ(F̂−1

t0,T
(τ))

)
= OP(n−1/2).

Thus, it is sufficient to bound the sum
∑

u∈Nt0,T
Wu,T (δδδ, ωj,n, τ). To this end, we apply the blocking

technique from Lemma 7.4 again, to the probability

P
(

sup
ω∈Fn

sup
‖δδδ‖∞≤A log(n)

∑
u∈Nt0,T

(Wu,T (δδδ, ωj,n, τ)) > rn

)
with a suitable rn (to be chosen below).

First let us show that the supremum in (6.4) can be taken over a finite number of cases.
As #Fn < n, we only have to deal with the supremum over {δδδ : ‖δδδ‖∞ ≤ A log(n)}. One can
construct n∗ = o(n5) points d1, . . . , dn∗ such that, for every δδδ, there exists j(δδδ) with the property
that ‖δδδ − dj(δδδ)‖∞ ≤ n−3/2. For aaa,bbb ∈ R3, consider

∣∣Wu,T (aaa, ωj,n, τ)−Wu,T (bbb, ωj,n, τ)
∣∣ ≤2

∣∣∣ ∫ n−1/2c′u(ωj,n)bbb

n−1/2c′u(ωj,n)aaa
ds
∣∣∣+ |2

(
n)−1(c′u(ω)(a− b))2

∣∣
≤Cn−1

(
‖aaa− bbb‖n1/2 + ‖aaa− bbb‖2

)
and ∣∣∣ ∑

u∈Nt0,T

Wu,T (δδδ, ωj,n, τ)−
∑

u∈Nt0,T

Wu,T (dj(δδδ), ωj,n, τ)
∣∣∣ = OP(n−1). (7.20)

In order to apply Lemma 7.4, define the centered random variables

W̄u,T := Wu,T (dj(δδδ), ωj,n, τ)− E(Wu,T (dj(δδδ), ωj,n, τ))

and obtain, from Lemma 7.6,

Mn = max
ω∈Fn

max
1≤j≤n∗

|W̄u,T | ≤ max
ω∈Fn

max
1≤j≤n∗

(
|Wu,T (dj(δδδ), ω, τ)|+ |E(Wu,T (dj(δδδ), ω, τ))|

)
≤ C

( log(n)2

√
n

+
log(n)3

n3/2

)
= O

( log(n)2

√
n

)
a.s..

Set
an = dn

1
δ+1 e, µn = b n

2an
c and rn = D log(n)3(n−

1
4 ∨ n−

1
2

( δ−1
δ+1

))

so that conditions (a) µnβan
n→∞−−−→ 0 and (b) n

2µn
Mn ≤ Can

log(n)2√
n
� rn from Lemma 7.4 are

satisfied. As for (c), in order to bound the variance of each block, we again refer to Lemma 7.6 and
obtain, for |t1 − t2| < an,

Vn = Var(

t2∑
k=t1

W̄u,T ) ≤
t2∑

k=t1

t2∑
l=t1

E(W̄k,T W̄l,T )

≤ C log(n)4(ann
−3/2 + (a2

n − an)n−2) = O(ann
−3/2 log(n)4).

Since (i)− (iii) and (a)− (c) in Lemma 7.4 hold, we conclude that

P
(

max
ω∈Fn

max
1≤j≤n∗

∣∣∣ ∑
u∈Nt0,T

W̄u,T

∣∣∣ > rn

)
≤ nn∗ exp

(
− log 2

2

( r2
n

4µnVn
∧ rn

2anMn

))
+ o(1).
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Because r2n
4µnVn

∧ rn
2anMn

> CD log(n) for n sufficiently large, we obtain from (7.20) that

P
(

sup
ω∈Fn

sup
‖δδδ‖∞≤Aϑ(τ)

√
log(n)

∑
u∈Nt0,T

Wu,T (δδδ, ω, τ) > rn

)
≤ P

(
max
ω∈Fn

max
1≤j≤n∗

∑
u∈Nt0,T

W̄u,T > rn − nE(Wu,T (dj(δδδ, ω, τ))
)

+ o(1) ≤ n−D+6 + o(1),

which converges to zero for sufficiently large D.

7.3.4 Proof of (6.10)

Setting

4

n
rn := (b̂bbt0,T (ωj,n, τ1))′

(
1 i
−i 1

)
b̂bbt0,T (ωj,n, τ2)− (bbbϑt0,T (ωj,n, τ1))′

(
1 i
−i 1

)
bbbϑt0,T (ωj,n, τ2)

= (b̂bbt0,T (ωj,n, τ1)− bbbϑt0,T (ωj,n, τ1))′
(

1 i
−i 1

)
bbbϑt0,T (ωj,n, τ2)

+ (b̂bbt0,T (ωj,n, τ1))′
(

1 i
−i 1

)
(b̂bbt0,T (ωj,n, τ2)− bbbϑt0,T (ωj,n, τ2))

+ (b̂bbt0,T (ϕn(ωj,n), τ1)− bbbϑt0,T (ωj,n, τ1))′
(

1 i
−i 1

)
(b̂bbt0,T (ωj,n, τ2)− bbbϑt0,T (ωj,n, τ2)),

we obtain from the definition of the local Laplace periodogram that

L̂t0,T
(
ϕn(ωj,n), τ1, τ2

)
=
n

4
(b̂bbt0,T (ωj,n, τ))′

(
1 i
−i 1

)
b̂bbt0,T (ωj,n, τ)

=
n

4
(bbbϑt0,T (ωj,n, τ))′

(
1 i
−i 1

)
bbbϑt0,T (ωj,n, τ) + rn

=
1

n
dϑt0,T (−ωj,n, τ1)dϑt0,T (−ωj,n, τ2) + rn.

To complete the proof note, that by (6.1) and (6.2), we have

√
n sup
ω∈Fn

‖b̂bbt0,T (ωj,n, τ)− bbbϑt0,T (ωj,n, τ)‖ = OP(n−
1
8
δ−1
δ+1 (log n)3/2)

and

√
n sup
ω∈Fn

‖bbbϑt0,T (ωj,n, τ)‖ = OP(log n),

which yields ‖rn‖∞ = OP(n−
1
8
δ−1
δ+1 (log n)5/2).

7.3.5 Proof of (6.12)

In order to establish (6.12), we show that, uniformly in j, k ∈ {1, ..., bn−1
2 c},

(i) E
(
Lt0,T (ωj,n, τ1, τ2)

)
= 2πfϑ(ωj,n, τ1, τ2) + o(1)

(ii) Cov
(
Lt0,T (ωj,n, τ1, τ2),Lt0,T (ωk,n, τ1, τ2)

)
=

{
fϑ(ωj,n, τ1, τ1)fϑ(ωj,n, τ2, τ2) + o(1) j = k

o(1) j 6= k.
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Defining ∆n(ωj,n, τ1, τ2) :=
∑
|k|≤KnWt0,T (k)

[
Lt0,T (ωj+k,n, τ1, τ2)−2πfϑ(ωj+k,n, τ1, τ2)

]
: (i) and (ii)

indeed imply that

Var(∆n(ωjn,n, τ1, τ2)) =
∑
|k|≤Kn

(Wt0,T )2(k)Var(Lt0,T (ωjn+k,n, τ1, τ2))

+
∑

|k1|≤Kn,|k2|≤Kn
k1 6=k2

Wt0,T (k1)Wt0,T (k2)Cov(Lt0,T (ωjn+k1,nτ1, τ2),Lt0,T (ωjn+k2,n, τ1, τ2)) = o(1)

and E(∆n(ωjn,n, τ1, τ2)) = o(1); (6.12) follows.
We start with (i). Recalling that tmin := min{t ∈ Nt0,T }, consider the representation

dϑt0,T (ω, τ) =
∑

t∈Nt0,T

e−iωt̄(τ − I{Xt,T≤qt,T (τ)}),

where t̄ = t− tmin + 1, and its stationary approximation

dϑt0,T (ω, τ) :=
∑

t∈Nt0,T

e−iωt̄(τ − I{Xϑ
t ≤qϑ(τ)}).

From equation (7.4) we obtain

E(Lt0,T (ωjn,n, τ1, τ2)) = E
(
n−1dϑt0,T (ωjn,n, τ1)dϑt0,T (−ωjn,n, τ2)

)
= n−1

∑
s∈Nt0,T

∑
t∈Nt0,T

Fs,t;T (qs,T (τ1), qt,T (τ2))ei(t−s)ωjn,n

= n−1
∑

s∈Nt0,T

∑
t∈Nt0,T

Gϑs−t(q
ϑ(τ1), qϑ(τ2);ϑ)ei(t−s)ωjn,n + o(1)

= E
(
n−1dϑt0,T (−ωj,n, τ1)dϑt0,T (−ωjn,n, τ2

)
+ o(1),

and Theorem 4.3.2 from Brillinger (1975) yields

E
(
n−1dϑt0,T (−ωjn,n, τ1)dϑt0,T (−ωjn,n, τ2)

)
= 2πfϑ(ωjn,n, τ1, τ2) +O(n−1),

which establishes (i).
Turning to (ii), set Yt,T (τ) = τ − I{Xt,T≤qt,T (τ)}; we have

Cov
(
Lt0,T (ωj,n, τ1, τ2),Lt0,T (ωk,n, τ1, τ2)

)
= n−2E

[
dϑt0,T (−ωj,n, τ1)dϑt0,T (ωj,n, τ2)dϑt0,T (−ωk,n, τ1)dϑt0,T (ωk,n, τ2)

]
− E

[
dϑt0,T (−ωj,n, τ1)dϑt0,T (ωj,n, τ2)]E[dϑt0,T (−ωk,n, τ1)dϑt0,T (ωk,n, τ2)

]
= n−2

∑
t1,t2,t3,t4∈Nt0,T

(
E[Yt1,T (τ1)Yt2,T (τ2)Yt3,T (τ1)Yt4,T (τ2)]− E[Yt1,T (τ1)Yt2,T (τ2))E(Yt3,T (τ1)Yt4,T (τ2)]

)
× exp(iωj,n(t2 − t1) + iωk,n(t3 − t4))

= n−2
∑

t1,t2,t3,t4∈Nt0,T

cum(Yt1,T (τ1)Yt2,T (τ2)Yt3,T (τ1)Yt4,T (τ2))eiωj,n(t2−t1)+iωk,n(t3−t4)

+ n−2
∑

t1,t2,t3,t4∈Nt0,T

E(Yt2,T (τ2)Yt3,T (τ1))E(Yt1,T (τ1)Yt4,T (τ2))eiωj,n(t2−t1)+iωk,n(t3−t4)

+ n−2
∑

t1,t2,t3,t4∈Nt0,T

E(Yt2,T (τ2)Yt4,T (τ2))E(Yt1,T (τ1)Yt3,T (τ1))eiωj,n(t2−t1)+iωk,n(t3−t4)

=: C1 + C2 + C3, say.
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An application of Lemma 7.1 (note that, by Assumption (A6), the triangular array (Yt,T (τ)) is
β-mixing and satisfies α(T ) ≤ β(T ) = o(T−δ)) yields

n−2
∑

t1,t2,t3,t4∈Nt0,T

|cum(Yt1,T (τ1)Yt2,T (τ2)Yt3,T (τ1)Yt4,T (τ2))|

≤ n−2
∑

t1,t2,t3,t4∈Nt0,T

Cα(
⌊
max(ti − tj)/4

⌋
) = n−2

n−1∑
m=0

∑
max(ti−tj)=m

Cα(m/4)

where he right-hand side converges to zero because, in view of (A6), δ ≥ 2 and

#{t ∈ N 4
t0,T |max(ti − tj) = m} ≤ 3nm2.

Therefore, C1 is o(1), uniformly in j. For C2 and C3, consider their stationary approximations.
Straightforward calculations and (7.4) yield

n−1
∑

s∈Nt0,T

∑
t∈Nt0,T

E(Ys,T (τj)Yt,T (τk))e
i(ωt̄+µs̄) = n−1

∑
s∈Nt0,T

∑
t∈Nt0,T

[Fs,t;T (qs,T (τj), qt,T (τk))− τjτk]ei(ωt̄+µs̄)

= n−1
∑

s∈Nt0,T

∑
t∈Nt0,T

[Gϑs,t(q
ϑ(τj), q

ϑ(τk))− τjτk]ei(ωt̄+µs̄) + o(1)

= n−1cum(dϑt0,T (ω, τj)), d
ϑ
t0,T (µ, τk)) + o(1),

where the second equality follows from equation (7.4). Applying Theorem 4.3.2 from Brillinger
(1975) again, we obtain, uniformly in ω, µ ∈ Fn,

n−1cum(dϑt0,T (ω, τj)), d
ϑ
t0,T (µ, τk)) =

{
O(1/n) ω 6= −µ
2πfϑ(ω, τj , τk) +O(n−1) ω = −µ

so that (ii) is established.

7.4 Details for Remark 5.1

Denote by

f̊ϑ(ω, τ1, τ2) :=
fϑ(ω, τ1, τ2)

gϑ(qϑ(τ1))gϑ(qϑ(τ2))

the rescaled time-varying spectral density. The following two results give the asymptotic distribution
of L̊ and show the consistency of a corresponding smoothed version.

Theorem 7.1. Let Ω := {ω1, . . . , ων} ⊂ (0, π) and T := {τ1, . . . , τp} ⊂ (0, 1) denote a ν-tuple of
distinct frequencies and a p-tuple of distinct quantile orders, respectively. Let Assumptions (A1)-
(A4) be satisfied with (A2) and (A3) holding for every τ ∈ T . If, for T tending to infinity, n→∞,
nT−1/2 → 0 and |t0/T−ϑ| = o(T−1/2), then (L̊t0,T (ω1, τ1, τ2), . . . , L̊t0,T (ων , τ1, τ2)) converges in dis-

tribution, as T →∞, to (L̊ϑ(ω1, τ1, τ2), . . . , L̊ϑ(ων , τ1, τ2)), where the random variables L̊ϑ(ω, τ1, τ2)
associated with distinct frequencies are mutually independent and

L̊ϑ(ω, τ1, τ2)
D
=


π̊fϑ(ω, τ1, τ2)χ2

2 if τ1 = τ2

1
4(Z11, Z12)

(
1 i

−i 1

)(
Z21

Z22

)
if τ1 6= τ2,

42



where (Z11, Z12, Z21, Z22)′ ∼ N (0,ΣΣΣϑ(ω)) with covariance matrix

ΣΣΣϑ(ω, τ1, τ2) := 4π


f̊ϑ(ω, τ1, τ1) 0 <(̊fϑ(ω, τ1, τ2)) =(̊fϑ(ω, τ1, τ2))

0 f̊ϑ(ω, τ1, τ1) −=(̊fϑ(ω, τ1, τ2)) <(̊fϑ(ω, τ1, τ2))

<(̊fϑ(ω, τ1, τ2)) −=(̊fϑ(ω, τ1, τ2)) f̊ϑ(ω, τ2, τ2) 0

=(̊fϑ(ω, τ1, τ2)) <(̊fϑ(ω, τ1, τ2)) 0 f̊ϑ(ω, τ2, τ2).

 .

Proposition 7.1. Under the assumptions of Theorem 7.1 and if (A4)−(A6) hold, then the smoothed
periodogram

f̂St0,T (ω, τ1, τ2) :=
∑
|k|≤Kn

Wt0,T (k)L̊t0,T

(
φn(ω) +

2πk

n
, τ1, τ2

)
is consistent. More precisely, for any fixed τ1, τ2 ∈ (0, 1), ω ∈ (0, π)

f̂St0,T (ω, τ1, τ2) = 2π̊fϑ(ω, τ1, τ2) + oP(1) as T →∞.

Proof of Theorem 7.1 and Proposition 7.1

The proofs are similar to those of Theorem 5.1 and Proposition 5.1, but somewhat simpler. For
this reason we only provide an outline of the main arguments. The key idea is a linearization of
b̊bbt0,T (ωj,n, τ). For any τ ∈ (0, 1), ω ∈ (0, π), δδδ ∈ R3 and ϑ ∈ (0, 1), define the functions

Ẑt0,T (δδδ, ω, τ) :=
∑

u∈Nt0,T

ρτ

[
Xu,T − qu,T (τ)− n−1/2c′u(ω)δδδ

]
− ρτ [Xu,T − qu,T (τ)] .

Zϑt0,T (δδδ, ω, τ) := −δδδ′ζζζt0,T (ω, τ) +
1

2
δδδ′QQQϑt0,T (ω, τ)δδδ,

where

ζζζt0,T (ω, τ) :=
1√
n

∑
u∈Nt0,T

cu(ω)(τ − I{Xu,T≤qu,T (τ)})

QQQϑt0,T (ω, τ) := n−1gϑ(qϑ(τ))
∑

u∈Nt0,T

cu(ω)c′u(ω),

and gϑ(x) is the density of the strictly stationary approximating process {Xϑ
k }k∈Z from Defini-

tion 2.1. For ω ∈ Fn and T large enough, the matrix QQQϑt0,T (ω, τ) equals

QQQϑt0,T (ω, τ) = gϑ(qϑ(τ))

1 0 0
0 1

2 0
0 0 1

2

 . (7.21)

It follows from Definition (5.4) that the components of n1/2̊bbbt0,T (ωj,n, τ) coincide with the last two

components of δ̊δδt0,T (ω, τ) := argmin
δδδ∈R3

Ẑt0,T (δδδ, ω, τ). Next, show that δ̊δδt0,T (ω, τ) is in probability

close to
δ̊δδ
ϑ

t0,T (ω, τ) := argmin
δδδ∈R3

Zϑt0,T (δδδ, ω, τ) = (QQQϑt0,T (ω, τ))−1ζζζt0,T (ω, τ);

more precisely,

sup
ω∈Fn

‖̊δδδt0,T (ω, τ)− δ̊δδ
ϑ

t0,T (ω, τ)‖ = OP

(
log(n)(n−

1
8 ∨ n−

1
4

( δ−1
δ+1

))
)
. (7.22)
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To see this, note that, for fixed ϑ, Lemma 6.1 from Dette et al. (2014) applies, and therefore (7.22)
holds if

sup
ω∈Fn

sup
‖δδδ−̊δδδϑt0,T (ω,τ)‖≤ε

|Ẑt0,T (δδδ, ω, τ)− Zϑt0,T (δδδ, ω, τ)| = OP

(
log(n)2(n−

1
4 ∨ n−

1
2

( δ−1
δ+1

))
)
. (7.23)

Now, (7.23) follows by the same arguments as in the proof of (6.4), and thus (7.22) is established.
Theorem 7.1 results from the linearization (7.22) by arguments similar to those considered in the
proof of Theorem 5.1.

For Proposition 7.1, we proceed as in the proof of Proposition 5.1. Define Lt0,T (ωj,n, τ1, τ2) as
in (6.9) and, instead of equation (6.10), we show that

L̊t0,T (ωj,n, τ1, τ2) =
Lt0,T (ωj,n, τ1, τ2)

gϑ(qϑ(τ1))gϑ(qϑ(τ2))
+OP

(
n−

1
8
δ−1
δ+1 (log n)3/2

)
,

which follows along the same lines as in Section 7.3.4, by substituting b̊bbt0,T (ωj,n, τ) for b̂bbt0,T (ωj,n, τ)
and using equation (7.22) instead of (6.1). The rest of the proof goes as in Proposition 5.1. �

7.5 Assumptions and proof of Lemma 5.1

Assume that there exist functions a(·, j) : (0, 1)→ R with

sup
t,T
|at,T (j)− a(

t

T
, j)| ≤ K

Tl(j)
, sup

ϑ∈(0,1)

∣∣∣∣∂a(ϑ, j)

∂ϑ

∣∣∣∣ ≤ K

l(j)
, and sup

ϑ∈(0,1)

∣∣∣∣∂µ(ϑ)

∂ϑ

∣∣∣∣ ≤ K (7.24)

where K is a finite constant not depending on j and

l(j) =

{
1 if |j| ≤ 1

|j| log1+κ |j| if |j| > 1
(7.25)

for some κ > 0. Then we can construct approximating processes by

Xϑ
t = µ(ϑ) +

∞∑
j=0

a(ϑ, j)ξt−j .

Let the random variables ξt have bounded density function fξ and finite expectation: E(|ξt|) <∞.
Additionally we need the following technical assumptions: for some y0 < ∞ there exists K < ∞
such that

fξ(y) ≤ K|y|−1 ∀|y| ≥ y0, (7.26)

sup
ϑ∈(0,1)

∞∑
j=0

|a(ϑ, j)| <∞ and inf
ϑ∈(0,1)

|a(ϑ, 0)| > δ > 0. (7.27)

Without loss of generality, we can assume that µ(ϑ) = 0. Writing the distribution functions in
terms of expectations, we obtain

Fs,t;T (x, y)−Gϑs−t(x, y)

= E
[
I{Xs,T≤x}I{Xt,T≤y}

]
− E

[
I{Xϑ

s ≤x}I{Xϑ
t ≤y}

]
= E

[
I{Xs,T≤x}(I{Xt,T≤y} − I{Xϑ

t ≤y}
)
]

+ E
[
I{Xϑ

t ≤y}
(I{Xs,T≤x} − I{Xϑ

s ≤x})
]
.
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To bound the first part of the sum, denote by σt the σ−field generated by the random variables
{ξi|i ≤ t}. Additionally, denote by Fξ and fξ the distribution function of ξ and its density,
respectively. We have∣∣∣E[I{Xs,T≤x}(I{Xt,T≤y} − I{Xϑ

t ≤y}
)
]∣∣∣

≤ E
[
E(|I{Xt,T≤y} − I{Xϑ

t ≤y}
|
∣∣σt−1)

]
≤ E

[
E(|I{ξt≤ 1

at,T (0)
{y−

∑∞
j=1 at,T (j)ξt−j}} − I{ξt≤ 1

a(ϑ,0)
{y−

∑∞
j=1 a(ϑ,j)ξt−j}}|

∣∣σt−1)
]

= E[|Fξ(
1

av,T (0)
{y −

∞∑
j=1

at,T (j)ξt−j})− Fξ(
1

a(ϑ, 0)
{y −

∞∑
j=1

a(ϑ, j)ξt−j})|]

≤ E[fξ(η)|y|]
∣∣∣ 1

at,T (0)
− 1

a(ϑ, 0)

∣∣∣+ CfE[|St,T − Sϑt |],

where Cf is an upper bound for the density fξ,

St,T :=
1

at,T (0)

∞∑
j=1

at,T (j)ξt−j , Sϑt :=
1

a(ϑ, 0)

∞∑
j=1

a(ϑ, j)ξt−j ,

and ηy denotes some intermediate point between y/at,T (0)+St,T and y/a(ϑ, j)+Sϑt . Straightforward
calculations, under the assumptions made, lead to

E[|St,T − Sϑt |] = O(|t− ϑT−1|+ T−1)

and ∣∣∣ 1

at,T (0)
− 1

a(ϑ, 0)

∣∣∣ = O(T−1).

It thus remains to establish that
sup
y∈R

E[fξ(ηy)]|y| <∞. (7.28)

For this purpose, define W := max(|Sv,T |, |Sϑv |) and note that the inequality

(y/av,T (0) + St,T )(y/a(ϑ, 0) + Sϑv ) < 0

implies W > |y/max(at,T (0), a(ϑ, j)|. As the density fξ is bounded by a constant Cf , (7.28) follows
via an application of the Markov inequality. On the other hand, assuming that

(y/at,T (0) + St,T )(y/a(ϑ, 0) + Sϑt ) > 0

and choosing T sufficiently large that 1
2 |at,T (0)| ≤ |a(ϑ, 0)| ≤ 2|at,T (0)|, we can bound |ηy| through

|y/2at,T (0)| −W ≤ |ηy| ≤ |2y/at,T (0)|+W.

In this case we write E[fξ(η)]|y| = E[|y|fξ(η)I{|η|≥y0}] +E[|y|fξ(η)I{|η|<y0}] =: E1 +E2, say. For E2,
since |y| ≤ 2|av,T (0)|(y0 +W ) whenever |η| ≤ y0, we obtain

E2 ≤ CfE[2|av,T (0)|(y0 +W )] <∞.

As for E1, let us split it further into

E1 ≤ E[|y|fξ(η)I{|η|≥y0}I{|y|≤4|at,T (0)|W}] + E[|y|fξ(η)I{|η|≥y0}I{|y|>4|at,T (0)|W}] =: E11 + E12.
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The first term E11 is easily bounded by CfE[4|at,T (0)|W ] < ∞. We now apply assumption (7.26)
and get

E12 ≤ |y|E
[ K
|ηy|

I{|y|>4|at,T (0)|W}

]
≤

2|at,T |(0)K|y|
|y|

E
[ 1

1− 2|at,T (0)|W
|y|

I{|y|>4|at,T (0)|W}

]
≤ 4|at,T (0)|K|y|/|y| <∞.

Therefore, supy∈R E[fξ(ηy)]|y| <∞, which leads to∣∣∣E [I{Xs,T≤x}(I{Xt,T≤y} − I{Xϑ
t ≤y}

)
] ∣∣∣ ≤ O(|t/T − ϑ|+ T−1).

With the same arguments, we obtain∣∣∣E [I{Xϑ
t ≤y}

(I{Xs,T≤x} − I{Xϑ
s ≤x})

]∣∣∣ = O(|s/T − ϑ|+ T−1).

Combining these two inequalities yields

‖Fs,t;T −Gϑs−t‖∞ = O

(
|max(s/T − ϑ|, |t/T − ϑ|) +

1

T

)
,

which completes the proof.
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