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Abstract

We analyze the spectrum of the Laplace operator in a complex geometry,
representing a small Helmholtz resonator. The domain is obtained from a
bounded set Ω ⊂ Rn by removing a small obstacle Σε ⊂ Ω of size ε > 0. The
set Σε essentially separates an interior domain Ωinn

ε (the resonator volume)
from an exterior domain Ωout

ε , but the two domains are connected by a
thin channel. For an appropriate choice of the geometry we identify the
spectrum of the Laplace operator: It coincides with the spectrum of the
Laplace operator on Ω, but contains an additional eigenvalue µ−1

ε . We prove
that this eigenvalue has the behavior µε ≈ VεLε/Aε, where Vε is the volume
of the resonator, Lε is the length of the channel, and Aε is the (area of the)
cross-section of the channel. This justifies the well-known frequency formula
ωHR = c0

√
A/(LV ) for Helmholtz resonators, where c0 is the speed of sound.

Keywords: Helmholtz resonator, spectral properties of the Laplace operator,
complex geometry, sound attenuator
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1 Introduction

The Helmholtz resonator is an acoustic device which is important e.g. in the con-
struction of sound attenuators. It consists of a resonator volume (the cavity), which
is connected by a thin channel to the outer domain. The Helmholtz resonator has
a resonance frequency ωHR that depends only on elementary geometrical quantities
of the resonator: the resonator volume Vε, the channel length Lε, and the channel
cross-section Aε. The well-known approximate formula for the resonance frequency
states ωHR ≈ c0

√
Aε/(LεVε), where c0 is the speed of sound. The formula indicates

that it is possible to construct resonant devices that are much smaller than the
wave length of the corresponding acoustic wave. Loosely speaking, a small volume
Vε corresponds to a large frequency, but this can be compensated by making the
channel very thin.

In this contribution, we present a mathematical analysis of the spectral prop-
erties of small Helmholtz resonators, which are constructed as follows: Let Ω ⊂ Rn
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be an underlying bounded domain and let Σε ⊂ Ω be a sequence of obstacles with
diameter diam(Σε) = O(ε) with 0 < ε → 0. We are interested in the spectral
properties of the domain Ωε := Ω \ Σε, which essentially consists of an outer do-
main Ωout

ε and an inner domain ωε = Ωinn
ε , separated by Σε. Outer and inner

domain are connected by a thin channel Γε such that the domain of interest is
Ωε = Ω \Σε = ωε ∪ Γε ∪Ωout

ε , where the latter is a disjoint union (compare Fig. 1).
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Figure 1: The geometry of the Helmholtz resonator (two-dimensional case). The res-
onator volume ωε has a diameter of order ε and a volume of order Vε ∼ εn. The channel
Γε has a length Lε ∼ ε and a opening diameter of order ε3 in dimension n = 2 and of
order ε2 in dimension n = 3.

Our main result is the characterization of the spectrum of the Laplace opera-
tor on the domain Ωε (with homogenous Neumann boundary conditions on ∂Σε).
Essentially, the spectrum of the Laplace operator on Ωε coincides with the spec-
trum on Ω, but there is an additional eigenvalue µ−1

ε , which corresponds to the
characteristic Helmholtz resonator frequency. We prove that this additional eigen-
value occurs, that no further (bounded) eigenvalues occur, and that the resonant
frequency is characterized by the well-known formula µε ≈ LεVε/Aε, where Lε is
the length of Γε, Vε is the volume of Ωinn

ε , and Aε is the (n − 1-dimensional) area
of the cross-section of Γε. A by-product of our analysis is a characterization of
the corresponding eigenfunction: It is essentially constant in the cavity Ωinn

ε and it
essentially vanishes in the outer domain Ωout

ε .

To our knowledge, our result provides the first analytical derivation of the
resonator frequency formula. We choose a setting of the problem that simplifies
the analysis considerably — without being in conflict with physical experiments.
We assume that the underlying domain Ω ⊂ Rn is bounded; this implies that the
spectrum of the Laplace operator consists of eigenvalues, we do neither have to
deal with a continuous spectrum nor with the outgoing wave condition at |x| =∞.
Furthermore, we assume that the domain Ω is sufficiently small in order to have the
smallest eigenvalue of −∆ on Ω larger than the resonator frequency. This second
assumption again simplifies the analysis, since the two parts of the spectrum are
separated. It is also physically legitimate: In an experiment with a Helmholtz
resonator of diameter 1 cm and a resonant frequency of 300 Hz (such that the
wave-length is of the order 1 m), it is sufficient to restrict experiments to a domain
Ω of less than 50 cm in diameter.



Low frequency spectrum of small Helmholtz resonators 3

1.1 Literature

One of the first analytical approaches to the problem was presented in 1973 by
Beale in the influential article [2]. The choice of the geometry is similar to ours:
a cavity is (essentially) separated from an outer region, and there is only a thin
channel that connects the two domains. Methods and results of [2] are very different
from ours, mainly because [2] treats the more intricate problem of an unbounded
exterior domain. Furthermore, the resonator keeps a finite size in [2], and only
the thickness of the channel converges to zero, Aε → 0. For this reason, the
results are quite different: The value LεVε/Aε tends to infinity and the Helmholtz
resonator frequency cannot be identified in [2]. Instead, classical resonances of Ωinn

ε

(eigenvalues of the Laplace operator in the cavity) are identified as contributions
to the spectrum of the Laplace operator in the complex geometry.

In the spirit of Beale’s contribution, much literature to the problem is available.
Concerning the background in scattering theory we mention the older works by
Lax and Phillips [22, 23] and refer to [9] for more modern approaches and further
references. From different perspectives, the problem of [2] was also investigated in
[11] and [7, 15]. It was furthermore treated with asymptotic expansions in [12, 13].
For the corresponding problem in an elasticity system see [10]. We mention [1]
for a modern discussion of spectra in the presence of small obstacles; due to the
geometrically simple perturbation, no additional eigenvalues appear.

Concerning a discussion of the Helmholtz resonator in more physical terms and
a description of applications we mention [19, 24], connections with fluid mechanics
are made in [25, 29]. Some more recent treatments concern the numerical analysis,
see [8, 17, 18]. We are not aware of a discussion of the problem in our scaling,
i.e. the case of small resonators that are in resonance with the underlying wave.

Periodic structures in the acoustic setting are analyzed in [27, 28], where the
acoustic properties of a large number of small inclusions are investigated (but not
in the sense that the single structure is in resonance with the wave). Periodic
structures are also studied for related flow equations, see [26, 29], and they appear
in the analysis of electromagnetic waves (which are, in many applications, also
described by a Helmholtz equation). In this context, one is interested in wave-
guides and trapped modes (see e.g. [30]) and in meta-materials with surprising
effective properties, see [3, 4, 5, 6, 20, 21].

Methods related to this contribution. We use tools that are borrowed from
homogenization theory. In spirit, a strong relation can be seen to L. Tartar’s
energy method of homogenization (even though we do not exploit compensated
compactness here). We use Sobolev and Poincaré estimates in complex geome-
tries containing small structures. The only spectral theorem that we use is the
characterization of the spectrum of a compact self-adjoint operator.

Abstract spectral convergence theorems are derived in [16]; once more, the
applications come from homogenization theory. We refer, in particular, to Theorem
11.4 of [16], where the spectrum of an operator B0 on a Hilbert space H0 is related
to the spectra of a family of operators Bε on Hilbert spaces Hε. The topology
in which the operators Bε must be close to B0 is expressed in terms of restriction
operators Rε : H0 → Hε.

It seems that most of the assumptions of Theorem 11.4 of [16] could be verified
for Bε = Tε and B0 = T0 for our operators Tε and T0 below (using an appropriately
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constructed restriction operator Rε and choosing appropriate scalar products in
the Hilbert spaces H0 and Hε). Unfortunately, in this abstract description, the
operators are no longer self-adjoint, hence Theorem 11.4 of [16] cannot be used.
Here, we will therefore perform explicit constructions to characterize the spectrum
of Tε.

1.2 Geometry

We start our construction from a bounded Lipschitz domain Ω ⊂ Rn with 0 ∈ Ω.
Our aim is to analyze the spectrum of the Laplace operator in a domain Ωε =
Ω \ Σε. We will later use homogeneous Neumann conditions on ∂Σε ⊂ ∂Ωε and
homogeneous Dirichlet conditions on ∂Ω ⊂ ∂Ωε.

Our aim now is to describe the geometry in detail. Let ω1 ⊂ Rn be a bounded
Lipschitz domain that represents the shape of the cavity. For notational con-
venience we make the assumption that ω1 lies in the left hyperplane {x1 < 0}
and that it has a flat part of the boundary: for some δ > 0, we assume that
the (n − 1)-dimensional disc {0} × Bn−1

δ (0) ⊂ Rn is contained in the boundary,
{0} × Bn−1

δ (0) ⊂ ∂ω1. The cavity of the small (ε-size) Helmholtz resonator is
defined as Ωinn

ε := ωε := εω1.
To describe the outer shape of the resonator, let Σout

1 ⊂ Rn be the closure of
a bounded Lipschitz domain with ω̄1 ⊂ (Σout

1 )◦. We assume that, for some length
parameter L > 0 and δ > 0, the disc {L} × Bn−1

δ (0) is contained in the boundary
∂Σout

1 . The outer shape of the resonator is given by Σout
ε := εΣout

1 , and we write
Ωout
ε := Ω \ Σout

ε for the outer domain.
We finally define the channel Γε that connects the cavity Ωinn

ε = ωε with the
outer domain Ωout

ε . For notational convenience we restrict ourselfs to straight
channels with a uniform cross-section γε, where 0 ∈ γε ⊂ Bn−1

δ (0) ⊂ Rn−1 is a
family of bounded Lipschitz domains,

Γε := [0, εL]× γε , diam(γε) =

{
O(ε3) for n = 2 ,

O(ε2) for n = 3 ,
(1.1)

where the typical diameters are given here only for illustration, they are not used as
a mathematical assumption on Γε. We assume that Γε ⊂ Σout

ε holds for every ε > 0
under consideration. Putting together the pieces, we define the (open) acoustic
domain as Ωε := ωε ∪ Γε ∪ Ωout

ε , and define accordingly the (closed) obstacle as
Σε := Σout

ε \ (ωε ∪ Γε). For later use, we denote the interfaces as γ−ε := ω̄ε ∩ Γ̄ε =
{0} × γε and γ+

ε = Ω̄out
ε ∩ Γ̄ε = {εL} × γε.

The resonator frequency will not depend on the details of the geometry, but
will only depend on three characteristic quantities: The (Lebesgue) measure Vε of
the resonator volume ωε, the channel length Lε, and the area Aε of the channel
cross-section γε. With numbers V, L,A we assume that

Vε = |ωε|Ln = V εn + o(εn) , (1.2)

Lε = length(Γε) = Lε+ o(ε) , (1.3)

Aε = |γε|Ln−1 = Aεn+1 + o(εn+1) =

{
Aε3 + o(ε3) for n = 2 ,

Aε4 + o(ε4) for n = 3 .
(1.4)

We note that our choice of the geometry guarantees (1.2) with V = |ω1|Ln and
(1.3) with Lε = εL (both without error terms). The only new assumption is (1.4),
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which is in accordance with (1.1) (later on, we will only use (1.4)). The scaling of
the channel cross-section is chosen such that

Lε Vε
Aε
→ LV

A
=: µ0 (1.5)

has a non-trivial limit as ε → 0. Our main result shows that µ0 occurs as a limit
of eigenvalues in the ε-problems.

1.3 Main result

We analyze the spectral properties of the family of compact self-adjoint operators
Tε : Hε → Hε,

Hε := L2(Ωε) , Tε := (−∆)−1 on Ωε , (1.6)

where the Laplace operator is understood with a homogeneous Dirichlet boundary
condition on ∂Ω and a homogeneous Neumann condition on ∂Σε.

A related problem is given by the Laplace operator on Ω. We set

H∗ := L2(Ω) , T∗ := (−∆)−1 on Ω , (1.7)

with homogeneous Dirichlet boundary condition on ∂Ω. The operator T∗ neglects
the resonator and, as a consequence, misses the eigenvalues of Tε that correspond
to resonant frequencies. Our result is that, in the sense of spectral convergence,
the limiting problem is better described by the Hilbert space H0 and the operator
T0 : H0 → H0,

H0 := R× L2(Ω) , T0 := Mµ0 ⊗ T∗ : (f0, f1) 7→ (µ0f0, T∗f1) . (1.8)

Theorem 1.1. Let Ω ⊂ Rn be a bounded Lipschitz domain and let λ1 ≥ λ2 ≥ ...
be the ordered Dirichlet eigenvalues of T∗ = (−∆)−1 on Ω, repeated according to
multiplicity. Let µ0 > λ1 and δ ∈ (λN+1, λN) be two real numbers for some N ∈ N.
Let the shape Σε ⊂ Ω of the small resonator be as described in Section 1.2 such
that, in particular, (1.2)–(1.5) hold with µ0 = LV/A.

Then there exists ε0 > 0 such that, for every ε < ε0, the spectra of Tε and T0

are in a one-to-one correspondence on C \Bδ(0):

Λε := σ(Tε) \Bδ(0) = {µε, λε1, λε2, ..., λεN} , (1.9)

Λ0 := σ(T0) \Bδ(0) = {µ0, λ1, λ2, ..., λN} , (1.10)

and there holds µε → µ0 and λεj → λj as ε→ 0 for every index 1 ≤ j ≤ N .

Our proof provides additionally the convergence of eigenfunctions for the eigen-
values λεj . Moreover, we show that the sequence of eigenfunctions to µε is concen-
trating in the cavity ωε, compare also Section 1.4 below.

Easy parts of the Theorem. The operator T0 is compact and self-adjoint on
H0, its spectrum consists of the eigenvalue µ0 with eigenvector (1, 0) and the eigen-
values λj of T∗ with eigenvectors (0, uj), where uj is the j-th eigenvector of T∗. By
the choice of δ > 0, this yields (1.10).
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The compact and self-adjoint operator Tε has a countable number of eigenvalues,
and only a finite number of eigenvalues in C \Bδ(0). Labeling them in decreasing
order and repeating eigenvalues according to their multiplicity we may write

Λε = {µε, λε1, λε2, ..., λεNε
} . (1.11)

We have chosen here to denote the largest eigenvalue with a different letter. In
order to prove the theorem, we have to show Nε = N for sufficiently small ε and
the convergence of the eigenvalues.

We essentially proceed as follows.

1. There holds lim infε→0 µε ≥ µ0 (Proposition 2.1).

2. The assumption µ0 > λ1 implies that no eigenvalue λj is a cluster point of
µε. We conclude that µε is a “sequence with concentration” (Lemma 3.2).

3. All sequences λεj are “sequences without concentration”, hence every cluster
point of a sequence λεj is an eigenvalue of T∗ (Proposition 3.5).

4. The only cluster point of µε is µ0 (Proposition 3.7).

5. We count the eigenvalues with multiplicity (Proposition 4.2).

We treat item 1 in Section 2, items 2–3 in Section 3.1, item 4 in Section 3.2,
and item 5 in Section 4.

More general geometries. 1.) Demanding that the boundaries of ∂ω1 and
∂Σout

1 contain (adjacent) flat parts is not essential; this assumption just simplifies
the description of the geometry. It guarantees that Ωε is a Lipschitz domain and
that the interfaces γ±ε are copies of γε. 2.) The channel Γε need not be straight;
it may even have a variable cross-section. In this case a (harmonic) average of the
cross-sectional areas must be calculated to obtain the effective area A. Similarly,
multiple channels to the cavity could be considered. 3.) There could be multiple
cavities. In this case, every cavity can generate its own eigenvalue.

1.4 Description of the localized resonant eigenfunction

The aim of this contribution is the spectral analysis of the Laplace operator in the
domain Ωε. Before we turn to the rigorous analysis (i.e. the proof of Theorem 1.1),
we present a loose description of the result, including an argument why µ0 = LV/A
is the resonant eigenvalue.

Since the inclusion Σε is small, we can expect that most of the eigenvalues of
−∆ on Ωε coincide (approximately) with eigenvalues of −∆ on Ω. This is indeed
part of our main theorem.

Additionally, there can appear one eigenvalue that corresponds to a concen-
trated eigenfunction. Let us assume that fε with Tεfε = µεfε is such a concentrated
eigenfunction. We assume fε ≈ 0 outside the resonator (i.e. in Ωout

ε ) and fε ≈ 1
inside the resonator Ωinn

ε = ωε (we note that we have not normalized fε in the space
Hε = L2(Ωε)).

The geometrical constraints let us expect that fε has the typical gradient
∇fε(x) ≈ −L−1

ε e1 inside the channel, the direction of descent is the first unit
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coordinate e1. The slope is determined by the fact that the function fε decreases
on the length Lε from 1 to 0.

On the other hand, we may integrate the equation −∆fε = µ−1
ε fε over the

interior ωε. The normal derivative of fε vanishes on ∂ωε, except for the interface
γ−ε with the channel. Since γ−ε has the area Aε and since the normal derivative of
fε on γ−ε is approximately e1 · ∇fε ≈ −L−1

ε , we can expect (with the outer normal
ν on ∂ωε)

µ−1
ε Vε ≈ µ−1

ε

∫
ωε

fε =

∫
ωε

(−∆fε) = −
∫
∂ωε

ν · (∇fε) ≈
∫
γ−ε

L−1
ε = AεL

−1
ε .

This argument suggests µε = LεVε/Aε → LV/A.

Physical parameters. Denoting the speed of sound by c0, sound waves are
described by the wave equation ∂2

t u = c2
0∆u, where the field u : Ωε → R describes

pressure variations. The time harmonic ansatz u(x, t) = u(x)eiω0t with a frequency
ω0 > 0 leads to the Helmholtz equation −∆u = (ω0/c0)2u. Our theorem identifies
µ0 = LV/A as a limiting eigenvalue of Tε, related to a nontrivial solution of −∆u ≈
µ−1

0 u. Therefore, in physical terms, an approximation for the resonant frequency
is

ωHR = c0

√
µ−1

0 = c0

√
A

LV
. (1.12)

This is the well-known formula for the frequency of a Helmholtz resonator.

2 The norm of the operator Tε

We now start the proof of Theorem 1.1. Since the norm of Tε coincides with its
largest eigenvalue, a lower bound for norm of Tε is also a lower bound for the largest
eigenvalue. For this reason, the subsequent Proposition settles item 1 of the above
list.

Proposition 2.1 (The norm of Tε). We consider the operator Tε = (−∆)−1 on
Hε = L2(Ωε) and its norm ‖Tε‖ = ‖Tε‖L(Hε,Hε). Boundary conditions and geometry
are as in Theorem 1.1. Then there holds, for arbitrary ε > 0,

‖Tε‖ ≥
LεVε
Aε

. (2.1)

Proof. We consider the special right hand side fε : Ωε → R defined as

fε(x) :=

{
1 for x ∈ ωε
0 else.

(2.2)

Our aim is to analyze the solution uε = Tεfε of −∆uε = fε. The lemma will follow
from the fact that uε has (at least) the averaged value LεVε/Aε in the cavity ωε.

Step 1: The averaged gradient in the channel. We construct a special test-
function χε : Ωε → R which is constant in the cavity ωε, vanishes in the outer
domain Ωout

ε , and is affine in the channel Γε. More precisely, we set

χε(x) :=


1 for x ∈ ωε ,
1− x1/Lε for x ∈ Γε ,

0 for x ∈ Ωout
ε .

(2.3)
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This function is of class H1(Ωε) and satisfies a homogeneous Dirichlet condition on
∂Ω. Its gradient in the channel Γε is ∇χε = −L−1

ε e1.
We use χε as a test-function in the relation −∆uε = fε and find

Vε =

∫
ωε

1 · 1 =

∫
Ωε

fε · χε =

∫
Ωε

(−∆uε) · χε =

∫
Ωε

∇uε∇χε = − 1

Lε

∫
Γε

∂x1uε .

(2.4)

This provides an information about the averaged slope of uε in Γε. Loosely speak-
ing, it provides the desired information: Because of |Γε| = AεLε, the average slope
of uε in Γε is Vε/Aε. Therefore, with a channel of length Lε, the values of uε on ωε
can be expected to be at least LεVε/Aε.

In the sequel, we will obtain this result in a very convenient way, using uε as a
test function.

Step 2: The values of uε in ωε. We use uε as a test function in the equation
−∆uε = fε. With the Cauchy-Schwarz inequality we obtain∫

ωε

uε =

∫
Ωε

fε · uε =

∫
Ωε

(−∆uε) · uε =

∫
Ωε

|∇uε|2 ≥
∫

Γε

|∂x1uε|2

(CS)

≥ |Γε|−1

(∫
Γε

(−∂x1uε)
)2

(2.4)
= (AεLε)

−1(LεVε)
2 = Vε (LεVε/Aε) . (2.5)

The inequality implies that the average of uε over ωε is at least LεVε/Aε.

Step 3: The norm of Tε. We use the Cauchy-Schwarz inequality to conclude

‖uε‖2
L2(Ωε)

‖fε‖2
L2(Ωε)

≥
(∫

ωε

|uε|2
)/∫

ωε

1
(CS)

≥
(∫

ωε

uε

)2

/|ωε|2
(2.5)

≥ (LεVε/Aε)
2 .

Because of ‖Tε‖ ≥ ‖uε‖Hε/‖fε‖Hε , this provides the desired lower bound for the
norm as claimed in (2.1).

Proposition 2.1 yields a crucial information on the spectrum of Tε. Since Tε is
a self-adjoint compact and non-negative operator, the norm of Tε coincides with
its largest eigenvalue. Denoting the largest eigenvalue of Tε by µε as in (1.11), we
find

µε = ‖Tε‖ , and hence µε = ‖Tε‖ ≥
LεVε
Aε
→ LV

A
= µ0 . (2.6)

We emphasize that we do not obtain (yet) the convergence µε → µ0, but we do
obtain the inequality lim infε→0 µε ≥ µ0.

3 Sequences with and without concentration

We fix a sequence ε→ 0. Let (λε)ε be any sequence of eigenvalues of Tε. It is useful
to distinguish two classes of such sequences. We call the sequence a sequence with
concentration if and only if the following property is satisfied:

for every subsequence (εj)j∈N and

every sequence of normed eigenfunctions (f j)j ,

Tεjf
j = λεjf

j , ‖f j‖Hεj
= 1 , and every radius r > 0 holds:

lim sup
j→∞

∫
Ω\Br(0)

|f j|2 = 0 .

(3.1)
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Every other sequence of eigenvalues (λε)ε is called a sequence without concentration.
A sequence without concentration is characterized by the property

∃ subsequence (εj)j∈N and (f j)j ,

Tεjf
j = λεjf

j , ‖f j‖Hεj
= 1 , and a radius r > 0 :

lim inf
j→∞

∫
Ω\Br(0)

|f j|2 > 0 .

(3.2)

Lemma 3.1. Let 0 < δ ≤ λε → λ ∈ R̄ for ε → 0 be a convergent sequence of
eigenvalues of Tε without concentration. Then λ is finite and an eigenvalue of T∗.

Proof. Since λε is a sequence without concentration, we can choose a subsequence
(εj)j∈N, a sequence (f j)j of eigenfunctions, and a radius r > 0 as in (3.2). We write
λj instead of λεj . We extend each function f j trivially to Ω to define a bounded

sequence f̃ j ∈ L2(Ω). By weak compactness we can choose a further subsequence
(we do not relabel) and a limit function f such that f̃ j ⇀ f ∈ L2(Ω), weakly in
L2(Ω) as j →∞.

Multiplication of the eigenvalue equation −∆f j = λ−1
j f j with f j and an inte-

gration over Ωεj provides∫
Ωεj

|∇f j|2 = λ−1
j

∫
Ωεj

|f j|2 ≤ C , (3.3)

with a constant C that does not depend on j. We find that the functions gj := ∇f j
and their trivial extension g̃j ∈ L2(Ω) are uniformly bounded. Upon choice of a
further subsequence we obtain a limit g such that g̃j ⇀ g weakly in L2(Ω). Test
functions with support in Ω \ {0} provide g = ∇f almost everywhere in Ω.

The sequence f j is uniformly bounded in H1(Ω \ Br(0)). Compactness of the
Rellich embedding ensures the strong convergence f j → f in L2(Ω \ Br(0)), the
trace theorem ensures f |∂Ω = 0. In particular, we obtain from (3.2) the property
f 6= 0.

It remains to verify −∆f = λ−1f on all of Ω. With this aim, let ϕ ∈ C∞c (Ω) be
arbitrary. In the limit j →∞ there holds

λ−1

∫
Ω

fϕ← λ−1
j

∫
Ω

f̃ jϕ = λ−1
j

∫
Ωεj

f jϕ

=

∫
Ωεj

∇f j · ∇ϕ =

∫
Ω

g̃j · ∇ϕ→
∫

Ω

g · ∇ϕ =

∫
Ω

∇f · ∇ϕ .

This verifies−∆f = λ−1f in Ω (for unbounded sequences λj the relation−∆f = 0).
Because of f 6= 0 and because of the homogeneous Dirichlet boundary values, we
obtain that λ is finite and an eigenvalue of T∗.

Lemma 3.2. The sequence (µε)ε is a sequence with concentration.

Proof. We recall that Proposition 2.1 provides lim infε µε ≥ µ0 > λ1.
For a contradiction argument, let us assume that (µε)ε is a sequence without

concentration. We first choose a subsequence as in (3.2). We now choose a further
subsequence and a limit µ ∈ R̄ such the eigenvalues are convergent, µε → µ ∈ R̄.
This subsequence is still a sequence without concentration. By Lemma 3.1, the
limit µ is finite and an eigenvalue of T∗. This is the desired contradiction because
of µ = limε→0 µε > λ1.
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3.1 Characterization of sequences with concentration

In the following we will exploit various Poincaré estimates that involve averages of
functions. We will make use of the following fact, based on the Cauchy-Schwarz
inequality: For an arbitrary domain U ⊂ Rn, an L2(U)-function u : U → R and a
number m ∈ R holds∣∣∣∣∣

(∫
U

|u|2
)1/2

− |U |1/2m

∣∣∣∣∣
2

=

∫
U

|u|2 − 2

(∫
U

|u|2
)1/2

|U |1/2m+ |U |m2

(CS)

≤
∫
U

|u|2 − 2

∫
U

mu+ |U |m2 =

∫
U

|u−m|2 .

(3.4)

The inequality implies that, having control of
∫
U
|u−m|2, the L2(U)-norm of u is

comparable to the L2(U)-norm of the constant function m.

Lemma 3.3 (Concentrating eigenfunctions). Let ε = εj → 0 be fixed and let f ε

be a sequence of normed eigenfunctions of Tε. We assume that the corresponding
eigenvalues satisfy λε ≥ δ. We furthermore assume that f ε is concentrating in the
sense that

∀r > 0 : lim sup
j→∞

∫
Ω\Br(0)

|f ε|2 = 0 . (3.5)

Then f ε satisfies ∫
ωε

∣∣∣∣f ε −−∫
ωε

f ε
∣∣∣∣2 → 0 , (3.6)∫

Ωout
ε ∪Γε

|f ε|2 → 0 . (3.7)

We note that the H1-boundedness (3.8) of f ε is sufficient for (3.6). The H1-
boundedness together with the concentration property (3.5) implies (3.7).

Proof. The eigenvalue equation is −∆f ε = λ−1
ε f ε. As in (3.3) we can use f ε as a

test function and obtain from boundedness of λ−1
ε and of ‖f ε‖L2(Ωε) = 1 an estimate∫

Ωε

{
|f ε|2 + |∇f ε|2

}
≤ C . (3.8)

Step 1: Estimate in ωε. We apply a Poincaré inequality in ωε; smallness of the
diameter of ωε provides the smallness of the corresponding constant. Technically,
we define f̂ ε : ω1 → R by setting f̂ ε(y) := f ε(εy). We apply the Poincaré inequality
in ω1 with constant C1 (using averages) and calculate

1

εn

∫
ωε

∣∣∣∣f ε −−∫
ωε

f ε
∣∣∣∣2 =

∫
ω1

∣∣∣∣f̂ ε −−∫
ω1

f̂ ε
∣∣∣∣2 ≤ C1

∫
ω1

∣∣∣∇f̂ ε∣∣∣2 = C1
1

εn
ε2

∫
ωε

|∇f ε|2 .

The boundedness of the integral on the right hand side implies the claim of (3.6).

Step 2: Estimate in Ωout
ε . Since the outer shape Σout

1 is bounded, we find a
radius R > 0 with Σout

1 ⊂ BR(0). We can use a Poincaré inequality with constant
C1 in the domain B2R(0) \ Σout

1 and emphasize that we use here an average that
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is taken only over a part of the domain, namely B2R(0) \ BR(0). Rescaling the
domain and using f̂ ε(.) := f ε(ε . ) as above, we obtain

1

εn

∫
ε(B2R(0)\Σout

1 )

∣∣∣∣f ε −−∫
ε(B2R(0)\BR(0))

f ε
∣∣∣∣2 ≤ C1

1

εn
ε2

∫
ε(B2R(0)\Σout

1 )

|∇f ε|2 . (3.9)

We next use a Poincaré inequality with a constant C2(r) satisfying C2(r) → 0
as r → 0. There holds∫

Br(0)\BεR(0)

|f ε|2 ≤
∫
B2r(0)\Br(0)

|f ε|2 + C2(r)

∫
B2r(0)\BεR(0)

|∇f ε|2 . (3.10)

This Poincaré inequality is obtained in the classical way by integrating the gradient
of f ε over rays {(x1, x̃)|x1 ∈ R} in the two regions (B2r(0) \ BεR(0)) ∩ {x1 > 0}
and (B2r(0) \BεR(0))∩ {x1 < 0}. We exploit that each ray intersects each domain
as a (connected) segment.

Combining the estimates, using m := −
∫
ε(B2R(0)\BR(0))

f ε in the second line, we

find ∫
Br(0)\Σout

ε

|f ε|2 =

∫
ε(BR(0)\Σout

1 )

|f ε|2 +

∫
Br(0)\BεR(0)

|f ε|2

(3.4),(3.9)
= |ε(BR(0) \ Σout

1 )|m2 + o(1) +

∫
Br(0)\BεR(0)

|f ε|2

(CS)

≤ C

∫
Br(0)\BεR(0)

|f ε|2 + o(1)

(3.10)

≤ C

∫
B2r(0)\Br(0)

|f ε|2 + CC2(r)

∫
B2r(0)\BεR(0)

|∇f ε|2 + o(1) . (3.11)

Choosing first r > 0 small, we obtain that the second term is small (independent of
ε = εj). Choosing then ε small, we obtain that the last term is small and, from the
concentration property (3.5), that the first term is small. Using once more (3.5),
we obtain the claim of (3.7) concerning Ωout

ε .

Step 3: Estimate in Γε. The estimate in Γε is again obtained with a
Poincaré inequality. We define a continuation of the channel to the outside as
Γ̃ε := (Lε, 2Lε)× γε. A Poincaré inequality yields∫

Γε

|f ε|2 ≤
∫

Γ̃ε

|f ε|2 + C3(ε)

∫
Γε∪Γ̃ε

|∇f ε|2 ,

where C3(ε) → 0 as ε → 0 since the diameter of the domain is of order ε. The
extended channel lies in the outside, Γ̃ε ⊂ Ωout

ε , hence both terms on the right hand
side vanish as ε = εj → 0 by Step 2. We obtain the full estimate (3.7).

Lemma 3.4 (There is only one sequence with concentration). For a sequence
ε = εj → 0 let f ε1 and f ε2 be two sequences of eigenfunctions that are orthogonal
and normalized, 〈f εk , f εl 〉L2(Ωε) = δk,l for k, l ∈ {1, 2}, and let the corresponding
eigenvalues be bounded from below by a number δ > 0. Let f ε1 be a sequence with
concentration in the sense of (3.5). Then f ε2 is not a sequence with concentration.
Furthermore, there holds

lim
0<r→0

lim inf
j→∞

∫
Ωε\Br(0)

|f ε2 |2 = 1 . (3.12)
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Proof. Let f ε1 and f ε2 be orthonormal sequences as in the lemma. We can use
Lemma 3.3, which characterizes the concentrating sequence f ε1 . We note that the
result (3.6) is valid also for the (not necessarily concentrating) sequence f ε2 . We
choose a subsequence such that weighted ωε-averages converge (in the generalized
sense in R̄) with limits in R̄,

|ωε|1/2−
∫
ωε

f εk → Ak ∈ R̄ (3.13)

as j →∞. Orthogonality allows to calculate (we use (3.7) only for f ε1 )

0 =

∫
Ωε

f ε1 · f ε2
(3.7)
=

∫
ωε

f ε1 · f ε2 + o(1)

(3.6)
= |ωε|

(
−
∫
ωε

f ε1

)(
−
∫
ωε

f ε2

)
+ o(1)→ A1 · A2 .

This provides that A1 = 0 or A2 = 0. The normalization provides for f ε1

1 =

∫
Ωε

|f ε1 |2
(3.7)
=

∫
ωε

|f ε1 |2 + o(1)
(3.6)
= |ωε|

(
−
∫
ωε

f ε1

)2

+ o(1)→ (A1)2

as j →∞ by (3.13). Hence A1 = 1 and therefore A2 = 0.
Let us assume, for a contradiction argument, that f ε2 is also concentrating.

Then the last calculation can be performed also for f ε2 and provides A2 = 1, a
contradiction.

We now turn to the proof of (3.12). The orthonormality calculation above
yields A1 = 1 and A2 = 0. For the sequence f ε2 we use the Poincaré estimate (3.11)
of the proof of Lemma 3.3, namely∫

Br(0)\Σout
ε

|f ε2 |2 ≤ C

∫
B2r(0)\Br(0)

|f ε2 |2 + CC2(r)

∫
B2r(0)\BεR(0)

|∇f ε2 |2 + o(1) . (3.14)

We consider a maximal radius r0 > 0 withBr0(0) ⊂ Ω and a minimal radius 0 < ρ <
r0, and the disjoint family of rings B2ρ(0)\Bρ(0), B4ρ(0)\B2ρ(0), B8ρ(0)\B4ρ(0), ...,
B2m+1ρ(0) \B2mρ(0) with 2m+1ρ ≤ r0. For small ρ > 0, the number m = m(ρ) ∈ N
of such rings is large.

Let η > 0 be an arbitrary number. We choose first r0 sufficiently small such
that C2(r0) is small compared to η. We can thus acchieve that the second integral
on the right hand side of (3.14) (for r = r0) is less than η/3 for every j. Restricting
ourselfs to j ≥ J0 with J0 ∈ N sufficiently large, also the third term is less than
η/3.

We choose ρ > 0 sufficiently small so that C/m(ρ) < η/3 holds with C of the
first integral on the right hand side of (3.14). For arbitrary j ≥ J0 we obtain that
the left hand side of (3.14) is less than η (for some r ≥ ρ). The L2(ωε)-norm of f ε2
is small because of A2 = 0. The L2(Γε)-norm of f ε2 is small by the same argument
as in Lemma 3.3 (Poincaré inequality using that the norm outside Σout

ε is small).
The fact that f ε2 is normalized in L2(Ωε) implies (3.12).

Proposition 3.5. Sequences of eigenvalues have the following properties.

1. For some ε0 > 0 holds: The eigenvalue µε is simple for every ε < ε0.
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2. For every sequence εj → 0 and every sequence of indices (k(j))j∈N, 1 ≤
k(j) ≤ Nεj for every j ∈ N, the sequence

(
λ
εj
k(j)

)
j∈N

is a sequence without

concentration. Moreover, every corresponding sequence f j of eigenfunctions
is not concentrating (i.e. (3.5) does not hold).

3. Let λ
εj
k(j) → λ with 1 ≤ k(j) ≤ Nεj for every j ∈ N be a convergent sequence

of eigenvalues. Then the limit point λ is of the form λ = λK for some index
K ∈ {1, 2, ..., N}.

4. Let P ∈ N be a multiplicity and let λ
εj
k1(j), ..., λ

εj
kP (j) be sequences of eigenval-

ues, distinct in the sense that kp(j) < kp+1(j) for every p < P (the eigenvalues
may coincide). We assume that all sequences are convergent with the same
limit, λ

εj
kp(j) → λ as j →∞ for every 1 ≤ p ≤ P . Then the multiplicity of λ

(as an eigenvalue of T∗) is at least P .

Proof. 1. For a contradiction argument we assume that, along a sequence ε =
εj → 0, every µε is not simple. We can then choose two orthonormal sequences
of eigenfunctions (f j1 )j and (f j2 )j, 〈f jk , f

j
l 〉L2(Ωεj ) = δk,l for every j. Both sequences

must be concentrating by Lemma 3.2. This is in contradiction with Lemma 3.4.
2. By the simplicity result of item 1 there holds λ

εj
k(j) 6= µεj . We note that

the lower bound λ
εj
k(j) ≥ δ is satisfied by construction of Λε. The sequence (µε)ε

is a sequence with concentration by Lemma 3.2. Accordingly, we can choose a
concentrating sequence (f j1 )j of eigenfunctions to µεj . Let (f j2 )j be a normalized

sequence of eigenfunctions to λ
εj
k(j). Since the eigenvalues are different, (f j1 )j and

(f j2 )j are orthogonal. Lemma 3.4 implies that (f j2 )j is not concentrating. We
therefore obtain that λ

εj
k(j) is a sequence without concentration (and that arbitrary

sequences of eigenfunctions are not concentrating).
3. By item 2, the sequence λ

εj
k(j) is a sequence without concentration. By Lemma

3.1, the limit λ is an eigenvalue of T∗. Because of λ ≥ lim infj λ
εj
k(j) ≥ δ, we find

λ = λK for some index K ∈ {1, 2, ..., N}.
4. We consider P corresponding families f jp ∈ L2(Ωεj) of normalized eigenfunc-

tions, p = 1, ..., P . Two eigenvalues λ
εj
kp(j) and λ

εj
kq(j) may coincide, but after an

orthogonalization process we may assume the orthogonality f jp ⊥ f jq for p 6= q.
For every p ≤ P , and every subsequence j → ∞, the family (f jp )j∈N is a

sequence without concentration by item 2. We can select a subsequence and P
limit functions fp with the weak convergence of the trivial extensions, f̃ jp ⇀ fp
weakly in L2(Ω). Since no subsequence is concentrating, the limit functions are all
non-trivial, fp 6= 0 for every p ≤ P . As in the proof of Lemma 3.1 we furthermore
obtain that every function fp is an eigenfunction of T∗.

The families (f jp )j∈N are orthogonal and they are all orthogonal to the family
of eigenfunctions of the eigenvalue µεj (with concentration). All sequences (f jp )j∈N
therefore satisfy (3.12); loosely speaking, they do neither concentrate in ωε nor in
any neighborhood of Σε. This implies that also the weak limits fp are orthogonal
and the function space spanned by the weak limits fp has dimension at least P .
This shows the multiplicity claim.

At this point we know: µε is a simple eigenvalue for every ε < ε0. The other
eigenvalues λε can converge only to eigenvalues of T∗. There are at least as many
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eigenvalues of T∗ as for Tε (minus one for the eigenvalue µε). Hence (1.11) holds
with Nε ≤ N for every ε < ε0.

3.2 The limit of µε

The main result of this section is obtained in Proposition 3.7 below: The only
cluster point of µε is µ0 = LV/A. As a preparation, we show two estimates that
are related to traces.

Lemma 3.6. Let Ωε be as in Theorem 1.1 and let f ε : Ωε → R be a sequence of
functions such that ‖∇f ε‖L2(Ωε) is bounded. Then, with the volume Vε = |ωε| of the
cavity ωε and the channel boundary portion γ−ε ⊂ ∂ωε, averages satisfy√

Vε

∣∣∣∣−∫
γ−ε

f ε −−
∫
ωε

f ε
∣∣∣∣→ 0 . (3.15)

Furthermore, if the concentration property
∫

Ωout
ε
|f ε|2 → 0 is satisfied, there holds√

Vε−
∫
γ+ε

f ε → 0 . (3.16)

Proof. In order to verify (3.15), we have to study the solution ψε : ωε → R of the
following auxiliary problem (ν denotes the outer normal to ωε):

−∆ψε = AεV
−1
ε in ωε ,

∫
ωε

ψε = 0 ,

∂νψε =

{
0 on ∂ωε \ γ−ε ,
−1 on γ−ε .

(3.17)

We note that the integrability condition is satisfied, hence there exists a unique
solution ψε ∈ H1(ωε) to problem (3.17). We multiply the equation −∆ψε = AεV

−1
ε

with f ε and integrate over ωε,

Aε−
∫
ωε

f ε =

∫
ωε

AεV
−1
ε f ε =

∫
ωε

(−∆ψε)f
ε =

∫
ωε

∇ψε · ∇f ε −
∫
∂ωε

∂νψε f
ε .

Inserting the Neumann boundary condition of ψε, we obtain√
Vε

∣∣∣∣−∫
ωε

f ε −−
∫
γ−ε

f ε
∣∣∣∣ =

√
Vε
Aε

∣∣∣∣∫
ωε

∇ψε · ∇f ε
∣∣∣∣ ≤ √VεAε

‖∇ψε‖L2(ωε)‖∇f ε‖L2(Ωε) .

(3.18)
Relation (3.15) is shown once that we verify, for arbitrary η > 0, that the right hand
side of (3.18) is smaller than Cη for every ε < ε0 = ε0(η), where C is independent
of η and ε.

In order to estimate ‖∇ψε‖2
L2(Ωε), we multiply (3.17) with ψε and integrate over

ωε. We find ∫
ωε

|∇ψε|2 =

∫
ωε

AεV
−1
ε ψε +

∫
γ−ε

∂νψε ψε = −
∫
γ−ε

ψε . (3.19)

In order to exploit this equality, we need a trace estimate. On the ε-independent
domain ω1, let ψ : ω1 → R be a function of class H1(ω1) with vanishing aver-
age. Then there exists an exponent p > 2 such that ‖ψ‖Lp(∂ω1) ≤ C‖∇ψ‖L2(ω1).
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Restricting ourselfs to a small portion γ1 ⊂ ∂ω1 of the boundary provides
‖ψ‖L2(γ1) ≤ C|γ1|α‖∇ψ‖L2(ω1) for some exponent α > 0.

Rescaling, we find for functions ψε : ωε → R with vanishing average on ωε (we
apply the above to ψ̂ε(y) = ψε(εy) on ω1 and with γε = γ−ε = εγ1 ⊂ ∂ωε)

‖ψε|γε‖L2(γε) ≤ C

(
|γε|
|∂ωε|

)α√
ε‖∇ψε‖L2(ωε) . (3.20)

The Cauchy-Schwarz inequality yields∫
ωε

|∇ψε|2
(3.19)
= −

∫
γ−ε

ψε
(CS)

≤
(∫

γ−ε

1

)1/2(∫
γ−ε

|ψε|2
)1/2

= |γε|1/2‖ψε|γε‖L2(γε)

(3.20)

≤ CA1/2
ε ε1/2

(
|γε|
|∂ωε|

)α
‖∇ψε‖L2(ωε) .

Dividing by the norm we obtain ‖∇ψε‖L2(ωε) ≤ CA
1/2
ε ε1/2(|γε|/|∂ωε|)α. For arbi-

trary η > 0 we can choose ε0 > 0 such that the relative volume of the interface is
small, (|γε|/|∂ωε|)α ≤ η ∀ε < ε0. In particular, we have verified for the right hand
side of (3.18)

V 1/2
ε A−1

ε ‖∇ψε‖L2(ωε)‖∇f ε‖L2(Ωε) ≤ Cη V 1/2
ε A−1/2

ε ε1/2 ≤ Cη εn/2ε−(n+1)/2ε1/2 = Cη ,

as we had to show.
The proof of relation (3.16) is similar: We can define a family of auxiliary

domains ω̃ε ⊂ Ωout
ε that have γ+

ε as a part of the boundary. The L2(ω̃ε)-norm of f ε

vanishes in the limit ε→ 0 by assumption. The relation (3.15) holds also on these
domains and provides (3.16).

Proposition 3.7. The only cluster point of µε is µ0 = LV/A.

Proof. We consider an L2(Ωε)-normalized sequence of corresponding eigenfunctions
f ε. We recall that f ε is a sequence with concentration by Lemma 3.2.

Multiplication of the eigenvalue relation −∆f ε = µ−1
ε f ε with χε of (2.3) yields

µ−1
ε

∫
ωε

f ε +O(|Γε|1/2) =

∫
Ωε

µ−1
ε f ε χε =

∫
Ωε

∇f ε · ∇χε = − 1

Lε

∫
Γε

∂x1f
ε . (3.21)

This relates the ωε-average of f ε to the Γε-average of the slope of f ε. We can
transform this information on the slope of f ε into an information on the values of
f ε at the interfaces. We calculate, using (3.21) in the last equality,∫

γ+ε

f ε −
∫
γ−ε

f ε =

∫
Γε

∂x1f
ε = −Lεµ−1

ε

∫
ωε

f ε +O(Lε|Γε|1/2) . (3.22)

We multiply (3.22) with
√
VεA

−1
ε and re-order terms to find√

Vε

{
−
∫
γ−ε

f ε − LεVεA−1
ε µ−1

ε −
∫
ωε

f ε
}

=
√
VεA

−1
ε O(Lε|Γε|1/2) +

√
Vε−
∫
γ+ε

f ε . (3.23)

The first term on the right hand side is of the order
√
VεA

−1
ε O(Lε|Γε|1/2) =

O(V
1/2
ε A

−1/2
ε L

3/2
ε ) = O(εn/2ε−(n+1)/2ε3/2) = O(ε), independent of the dimension

n. We conclude that this error term is small for ε→ 0.
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In order to proceed, we will use (3.15)–(3.16) of Lemma 3.6. These estimates
can be used since, by normalization, f ε satisfies ‖∇f ε‖2

L2(Ωε) = 〈−∆f ε, f ε〉L2 =

µ−1
ε ‖f ε‖2

L2(Ωε) = µ−1
ε , which is bounded by Proposition 2.1. The concentration

property (3.7) assures that (3.16) holds.
Relation (3.16) implies that also the second term on the right hand side of

(3.23) is small, hence the right hand side of (3.23) is o(1) for ε→ 0.
On the left hand side of (3.23) we replace, using (3.15), the mean value over

γ−ε by the mean value over ωε. We obtain{
1− LεVεA−1

ε µ−1
ε

}√
Vε−
∫
ωε

f ε = o(1) . (3.24)

We claim that the average of f ε satisfies√
Vε−
∫
ωε

f ε → 1 . (3.25)

Once this is shown, we conclude {1− LεVεA−1
ε µ−1

ε } → 0 for ε → 0. This implies
the result, limε µε = limε LεVεA

−1
ε = µ0.

Verification of (3.25). The sequence µε is a sequence with concentration by
Lemma 3.2. We can therefore apply Lemma 3.3, which characterizes sequences
with concentration. Normalization of f ε and (3.7) yield∫

ωε

|f ε|2 = 1−
∫

Ωout
ε ∪Γε

|f ε|2 → 1 . (3.26)

Since relation (3.6) provides∫
ωε

|f ε|2 − Vε
(
−
∫
ωε

f ε
)2

=

∫
ωε

∣∣∣∣f ε −−∫
ωε

f ε
∣∣∣∣2 → 0 ,

we find the claim of (3.25).

4 Counting eigenvalues and proof of Theorem 1.1

For compact self-adjoint operators, the existence of approximate eigenfunctions
implies the existence of nearby eigenvalues. This result is used e.g. as Lemma 11.2
in [16] for multiplicity P = 1. The case of general multiplicity is shown e.g. in [14],
Theorem 9(bis). For convenience of the reader, we sketch the elementary proof
below.

Lemma 4.1 (Approximate eigenfunctions imply the existence of eigenvalues). Let
H be a Hilbert space and let T be a compact self-adjoint linear operator T : H → H,
let P ∈ N be a number. Then, for some constant σ0(P ) > 0, the following holds.

Let f1, ..., fP ∈ H be approximately orthonormal in the sense that |〈fp, fq〉H −
δp,q| ≤ σ0(P ) for all 1 ≤ p, q ≤ P . Let them furthermore be approximate eigenvec-
tors of T for the same eigenvalue 0 6= λ ∈ R in the sense that

‖Tfp − λfp‖H ≤ α ‖fp‖H ∀1 ≤ p ≤ P , (4.1)

for some number α > 0. Then T posesses P eigenvalues λ1, ..., λP (repeated ac-
cording to multiplicity) with

|λp − λ| ≤ α ∀1 ≤ p ≤ P . (4.2)
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Proposition 4.2 (Nε ≥ N for every ε < ε0). Let the situation be as in Theorem
1.1, let 0 6= λ ∈ R be an eigenvalue of T∗ = (−∆)−1 with multiplicity P ∈ N and let
α > 0 be an arbitrary radius. Then there exists ε0 > 0 such that, for every ε ≤ ε0,
the operator Tε has P eigenvalues (counted with multiplicity) in Bα(λ) ⊂ C.

Proof. We want to use Lemma 4.1 with T = Tε, H = Hε, and with λ as in this
proposition. We will construct P approximate eigenfunctions of Tε. The natural
choice is to use P orthonormal eigenfunctions f1, ..., fP of T∗, corresponding to the
eigenvalue λ. We cannot use these functions directly, since fp ∈ H∗ = L2(Ω) is not
an element of Hε = L2(Ωε), but it suffices to restrict fp to the domain Ωε and to
use f εp := fp|Ωε ∈ Hε.

We have to show for the family (f εp )p≤P two properties: The family is approxi-
mately orthonormal and it consists of approximate eigenfunctions.

The first property is immediate. We calculate

〈f εp , f εq 〉Hε =

∫
Ωε

f εpf
ε
q =

∫
Ωε

fpfq = δp,q −
∫

Σε

fpfq = δp,q +O(εn) ,

since normed eigenfunctions of the Laplace operator in Ω are bounded.
In order to estimate ‖Tεf εp − λf εp‖Hε we consider uε := Tεf

ε
p − λf εp . We note

that ‖uε‖L2(Ωε) ≤ C0 holds with C0 independent of ε by boundedness of Tε. By
definition of the solution operator Tε we can deduce from Tεf

ε
p = uε + λf εp and

−λ∆f εp = f εp on Ωε the equation

−∆uε = −∆(uε + λf εp ) + λ∆f εp = f εp − f εp = 0 ,

hence uε : Ωε → R is harmonic. The boundary condition for uε can be deduced
from the fact that the solution uε+λf

ε
p satisfies a homogeneous Neumann condition,

ν · ∇uε|∂Σε = ν · ∇(uε + λf εp )|∂Σε − λν · ∇f εp |∂Σε = −λν · ∇fp|∂Σε .

An a priori estimate for uε is obtained by testing the equation −∆uε = 0 with uε,∫
Ωε

|∇uε|2 =

∫
∂Σε

(−λν · ∇fp)uε ≤ ‖uε|∂Σε‖L2(∂Σε)‖λν · ∇fp‖L2(∂Σε)

≤ Cλ
(
‖uε‖L2(Ωε) + ‖∇uε‖L2(Ωε)

)√
|∂Σε| ,

where we used a trace estimate and the fact that fp is a smooth function.
We can now exploit the boundedness ‖uε‖L2(Ωε) ≤ C0, the elementary inequal-

ity ‖∇uε‖L2(Ωε) ≤ 1 + ‖∇uε‖2
L2(Ωε), and the smallness of

√
|∂Σε| to conclude

‖∇uε‖L2(Ωε) → 0. The Poincaré inequality is valid on the domain Ωout
ε ∪Γε = Ωε\ωε

(outer domain plus channel) and we find ‖uε‖L2(Ωout
ε ∪Γε) → 0. We note already here

that this fact allows to apply (3.16) of Lemma 3.6, which provides an estimate for
the average of uε on γ+

ε .
It remains to derive the L2-smallness of uε on ωε. Since the smallness is clear

for the smooth function −λf εp , we concentrate on the part vε := uε + λf εp = Tεf
ε
p .

The corresponding estimate for uε carries over and we find, as in (3.16),√
Vε−
∫
γ+ε

vε → 0 . (4.3)
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The comparison of inside and outside traces is obtained as in previous proofs by
testing the equation for vε with χε of (2.3),∣∣∣∣∫

γ+ε

vε −
∫
γ−ε

vε

∣∣∣∣ =

∣∣∣∣∫
Γε

∂x1vε

∣∣∣∣ =

∣∣∣∣Lε ∫
Ωε

∇vε∇χε
∣∣∣∣ =

∣∣∣∣Lε ∫
Ωε

f εpχε

∣∣∣∣ ≤ Cεn+1 .

This calculation implies that the estimate (4.3) for averages of vε remains valid also
on γ−ε . Finally, we use (3.15) of Lemma 3.6 to conclude√

Vε−
∫
ωε

vε → 0 . (4.4)

With the estimate (3.6) (which uses only the boundedness of the gradient and no
further properties of the integrand) we find∫

ωε

|vε|2 = Vε

(
−
∫
ωε

vε

)2

+

∫
ωε

∣∣∣∣vε −−∫
ωε

vε

∣∣∣∣2 → 0 .

In particular, we find ‖Tεf εp − λf εp‖Hε = ‖uε‖L2(Ωε) ≤ α for ε > 0 sufficiently
small. Lemma 4.1 implies |λεp − λ| ≤ α for P eigenvalues λεp of Tε.

Proof of Theorem 1.1. Proposition 3.5 provides Nε ≤ N and Proposition 4.2 pro-
vides Nε ≥ N for every ε < ε0 sufficiently small. We therefore obtain Nε = N for
every ε < ε0 and thus (1.9).

The sequence µε converges to µ0 by Proposition 3.7. By Proposition 3.5, item
3, the other eigenvalues λjk(j) can have limits only in the set Λ0 \ {µ0} in the
spectrum. Since all eigenvalues are ordered, the one-to-one correspondence as
claimed in Theorem 1.1 holds.

Approximate eigenvectors imply the existence of eigenvalues.

Proof of Lemma 4.1. We consider the linear subspace F := span{f1, ..., fP} ⊂ H.
We choose σ0(P ) > 0 sufficiently small in order to assure that the almost orthonor-
mality of fp implies dim(F ) = P . Since every basis vector of F has this property,
there holds

‖Tv − λv‖2
H ≤ α2‖v‖2 ∀v ∈ F . (4.5)

We now consider the set of eigenvalues {λ1, ..., λQ} with the property |λq−λ| ≤
α for every 1 ≤ q ≤ Q. We can assume that the set is finite since otherwise the
statement of the lemma is shown. Let ϕq be corresponding orthonormal eigenfunc-
tions and set G := span{ϕ1, ..., ϕQ} ⊂ H. Expanding the basis of G, we can assume
that (ϕj)j is a basis of H, consisting of normalized and orthonormal eigenfunctions
of T . An arbitrary vector v ∈ G⊥ ⊂ H in the orthogonal complement of G can be
expanded as v =

∑∞
j=Q+1 cjϕj and we can calculate

‖Tv − λv‖2
H =

∞∑
j=Q+1

|cj|2 |λj − λ|2 ‖ϕj‖2
H >

∞∑
j=Q+1

|cj|2 α2 = α2‖v‖2 . (4.6)

For a contradiction argument, we assume Q < P , i.e. dim(G) < dim(F ). In this
case, there exists a vector 0 6= v ∈ F ∩G⊥. For v, both properties (4.5) and (4.6)
must hold, which results in a contradiction.
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[28] E. Rohan and V. Lukeš. Homogenization of the acoustic transmission through
a perforated layer. J. Comput. Appl. Math., 234(6):1876–1885, 2010.

[29] J. Sanchez-Hubert and E. Sánchez-Palencia. Acoustic fluid flow through holes
and permeability of perforated walls. J. Math. Anal. Appl., 87(2):427–453,
1982.

[30] S. P. Shipman and S. Venakides. Resonance and bound states in photonic
crystal slabs. SIAM J. Appl. Math., 64(1):322–342 (electronic), 2003.


	Preprint 2014-02 001
	helmholtz-preprint

