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Abstract

We focus on the construction of confidence corridors for multivariate nonparametric
generalized quantile regression functions. This construction is based on asymptotic
results for the maximal deviation between a suitable nonparametric estimator and the
true function of interest which follow after a series of approximation steps including
a Bahadur representation, a new strong approximation theorem and exponential tail
inequalities for Gaussian random fields.

As a byproduct we also obtain confidence corridors for the regression function in the
classical mean regression. In order to deal with the problem of slowly decreasing error
in coverage probability of the asymptotic confidence corridors, which results in meager
coverage for small sample sizes, a simple bootstrap procedure is designed based on
the leading term of the Bahadur representation. The finite sample properties of both
procedures are investigated by means of a simulation study and it is demonstrated that
the bootstrap procedure considerably outperforms the asymptotic bands in terms of
coverage accuracy. Finally, the bootstrap confidence corridors are used to study the
efficacy of the National Supported Work Demonstration, which is a randomized em-
ployment enhancement program launched in the 1970s. This article has supplementary
materials online.

Keywords : Bootstrap; Expectile regression; Goodness-of-fit tests; Quantile treatment effect;
Smoothing and nonparametric regression.
JEL: C2, C12, C14

∗Financial support from the Deutsche Forschungsgemeinschaft (DFG) via SFB 649 ”Economic Risk”
(Teilprojekt B1), SFB 823 ”Statistical modeling of nonlinear dynamic processes” (Teilprojekt C1, C4) and
Einstein Foundation Berlin via the Berlin Doctoral Program in Economics and Management Science (BD-
PEMS) are gratefully acknowledged.

†Ladislaus von Bortkiewicz Chair of Statistics, C.A.S.E. - Center for applied Statistics and Eco-
nomics, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany. email: shih-
kang.chao@cms.hu-berlin.de; haerdle@wiwi.hu-berlin.de.

‡Ruhr-Universität Bochum, Fakultät für Mathematik, 44780 Bochum, Germany. email: katha-
rina.proksch@rub.de; holger.dette@rub.de.

§Lee Kong Chian School of Business, Singapore Management University, 50 Stamford Road, Singapore
178899, Singapore.

1



1. Introduction

Mean regression analysis is a widely used tool in statistical inference for curves. It focuses

on the center of the conditional distribution, given d-dimensional covariates with d ≥ 1. In a

variety of applications though the interest is more in tail events, or even tail event curves such

as the conditional quantile function. Applications with a specific demand in tail event curve

analysis include finance, climate analysis, labor economics and systemic risk management.

Tail event curves have one thing in common: they describe the likeliness of extreme

events conditional on the covariate X . A traditional way of defining such a tail event

curve is by translating ”likeliness” with ”probability” leading to conditional quantile curves.

Extreme events may alternatively be defined through conditional moment behaviour leading

to more general tail descriptions as studied by Newey and Powell (1987) and Jones (1994).

We employ this more general definition of generalized quantile regression (GQR), which

includes, for instance, expectile curves and study statistical inference of GQR curves through

confidence corridors.

In applications parametric forms are frequently used because of practical numerical rea-

sons. Efficient algorithms are available for estimating the corresponding curves. However,

the ”monocular view” of parametric inference has turned out to be too restrictive. This ob-

servation prompts the necessity of checking the functional form of GQR curves. Such a check

may be based on testing different kinds of variation between a hypothesized (parametric)

model and a smooth alternative GQR. Such an approach though involves either an explicit

estimate of the bias or a pre-smoothing of the ”null model”. In this paper we pursue the

Kolmogorov-Smirnov type of approach, that is, employing the maximal deviation between

the null and the smooth GQR curve as a test statistic. Such a model check has the advantage

that it may be displayed graphically as a confidence corridor (CC; also called ”simultaneous

confidence band” or ”uniform confidence band/region”) but has been considered so far only

for univariate covariates. The basic technique for constructing CC of this type is extreme

value theory for the sup-norm of an appropriately centered nonparametric estimate of the

quantile curve.

For a one-dimensional predictor confidence corridors were developed under various set-
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tings. Classical one-dimensional results are confidence bands constructed for histogram es-

timators by Smirnov (1950) or more general one-dimensional kernel density estimators by

Bickel and Rosenblatt (1973). The results were extended to a univariate nonparametric

mean regression setting by Johnston (1982), followed by Härdle (1989) who derived CCs for

one-dimensional kernel M-estimators. Claeskens and Van Keilegom (2003) proposed uni-

form confidence bands and a bootstrap procedure for regression curves and their derivatives.

In recent years, the growth of the literature body shows no sign of decelerating. In

the same spirit of Härdle (1989), Härdle and Song (2010) and Guo and Härdle (2012) con-

structed uniform confidence bands for local constant quantile and expectile curves. Fan and Liu

(2013) proposed an integrated approach for building simultaneous confidence band that cov-

ers semiparametric models. Giné and Nickl (2010) investigated adaptive density estimation

based on linear wavelet and kernel density estimators and Lounici and Nickl (2011) extended

the framework of Bissantz et al. (2007) to adaptive deconvolution density estimation. Boot-

strap procedures are proposed as a remedy for the poor coverage performance of asymptotic

confidence corridors. For example, the bootstrap for the density estimator is proposed in Hall

(1991) and Mojirsheibani (2012), and for local constant quantile estimators in Song et al.

(2012).

However, only recently progress has been achieved in the construction of confidence bands

for regression estimates with a multivariate predictor. Hall and Horowitz (2013) derived an

expansion for the bootstrap bias and established a somewhat different way to construct con-

fidence bands without the use of extreme value theory. Their bands are uniform with respect

to a fixed but unspecified portion (smaller than one) of points in a possibly multidimensional

set in contrast to the classical approach where uniformity is achieved on the complete set

considered. Proksch et al. (2014) proposed multivariate confidence bands for convolution

type inverse regression models with fixed design.

To the best of our knowledge results of the classical Smirnov-Bickel-Rosenblatt type are

not available for multivariate GQR or even mean regression with random design.

In this work we go beyond the earlier studies in three aspects. First, we extend the

applicability of the CC to d-dimensional covariates with d > 1. Second, we present a more
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general approach covering not only quantile or mean curves but also GQR curves that are

defined via a minimum contrast principle. Third, we propose a bootstrap procedure and we

show numerically its improvement in the coverage accuracy as compared to the asymptotic

approach.

Our asymptotic results, which describe the maximal absolute deviation of generalized

quantile estimators, can not only be used to derive a goodness-of-fit test in quantile and

expectile regression, but they are also applicable in testing the quantile treatment effect and

stochastic dominance. We apply the new method to test the quantile treatment effect of

the National Supported Work Demonstration program, which is a randomized employment

enhancement program launched in the 1970s. The data associated with the participants of

the program have been widely applied for treatment effect research since the pioneering study

of LaLonde (1986). More recently, Delgado and Escanciano (2013) found that the program

is beneficial for individuals of over 21 years of age. In our study, we find that the treatment

tends to do better at raising the upper bounds of the earnings growth than raising the lower

bounds. In other words, the program tends to increase the potential for high earnings growth

but does not reduce the risk of negative earnings growth. The finding is particularly evident

for those individuals who are older and spent more years at school. We should note that the

tests based on the unconditional distribution cannot unveil the heterogeneity in the earnings

growth quantiles in treatment effects.

The remaining part of this paper is organized as follows. In Section 2 we present our

model, describe the estimators and state our asymptotic results. Section 3 is devoted to the

bootstrap and we discuss its theoretical and practical aspects. The finite sample properties

of both methods are investigated by means of a simulation study in Section 4 and the

application of the new method is illustrated in a data example in Section 5. The assumptions

for our asymptotic theory are listed and discussed after the references. All detailed proofs

are available in the supplement material.

4



2. Asymptotic confidence corridors

In Section 2.1 we present the prerequisites such as the precise definition of the model

and a suitable estimate. The result on constructing confidence corridors (CCs) based on

the distribution of the maximal absolute deviation are given in Section 2.2. In Section 2.3

we describe how to estimate the scaling factors, which appear in the limit theorems, using

residual based estimators. Section 3.1 introduce a new bootstrap method for constructing

CCs, while Section 3.2 is devoted to specific issues related to bootstrap CCs for quantile

regression. Assumptions are listed and discussed after the references.

2.1. Prerequisites

Let (X1, Y1), ..., (Xn, Yn) be a sequence of independent identically distributed random

vectors in R
d+1 and consider the nonparametric regression model

Yi = θ(X i) + εi, i = 1, ..., n, (1)

where θ is an aspect of Y conditional on X such as the τ -quantile, the τ -expectile or the

mean regression curve. The function θ(x) can be estimated by:

θ̂(x) = argmin
θ∈R

1

n

n
∑

i=1

Kh(x−X i)ρ(Yi − θ), (2)

where Kh(u) = h−dK (u/h) for some kernel function K : R
d → R, and a loss-function

ρτ : R → R. In this paper we are concerned with the construction of uniform confidence

corridors for quantile as well as expectile regression curves when the predictor is multivariate,

that is, we focus on the loss functions

ρτ (u) =
∣

∣1(u < 0)− τ
∣

∣|u|k,

for k = 1 and 2 associated with quantile and expectile regression. We derive the asymptotic

distribution of the properly scaled maximal deviation supx∈D |θ̂n(x)− θ(x)| for both cases,

5



where D ⊂ R
d is a compact subset. We use strong approximations of the empirical process,

concentration inequalities for general Gaussian random fields and results from extreme value

theory. To be precise, we show that

P

[

(2δ logn)1/2
{

sup
x∈D

∣

∣rn(x)
[

θ̂n(x)− θ0(x)
]∣

∣/‖K‖2 − dn

}

< a

]

→ exp
{

− 2 exp(−a)
}

, (3)

as n→ ∞, where r(x) is a scaling factor which depends on x, n and the loss function under

consideration.

2.2. Asymptotic results

In this section we present our main theoretical results on the distribution of the uniform

maximal deviation of the quantile and expectile estimator. The proofs of the theorems at

their full lengths are deferred the appendix. Here we only give a brief sketch of proof of

Theorem 2.1 which is the limit theorem for the case of quantile regression.

THEOREM 2.1. Let θ̂n(x) and θ0(x) be the local constant quantile estimator and the true

quantile function, respectively and suppose that assumptions (A1)-(A6) in Section 5 hold.

Let further vol(D) = 1 and

dn = (2dκ logn)1/2 +
{

2dκ(logn)
}−1/2

[

1

2
(d− 1) log log nκ + log

{

(2π)−1/2H2(2d)
(d−1)/2

}

]

,

where H2 =
(

2π‖K‖22
)−d/2

det(Σ)1/2, Σ =
(

Σij

)d

i,j=1
=
(

∫ ∂K(u)
∂ui

∂K(u)
∂uj

du
)d

i,j=1
,

r(x) =

√

nhdfX(x)

τ(1 − τ)
fY |X

{

θ0(x)|x
}

,

Then the limit theorem (3) holds.

Sketch of proof. Amajor technical difficulty is imposed by the fact that the loss-function ρτ

is not smooth which means that standard arguments such as those based on Taylor’s theorem

do not apply. As a consequence the use of a different, extended methodology becomes

necessary. In this context Kong et al. (2010) derived a uniform Bahadur representation for
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an M-regression function in a multivariate setting (see appendix). It holds uniformly for

x ∈ D, where D is a compact subset of Rd:

θ̂n(x)− θ0(x) =
1

nSn,0,0(x)

n
∑

i=1

Kh(x−X i)ψτ

{

Yi − θ0(x)
}

+O
{

( logn

nhd

)
3

4

}

, a.s. (4)

Here Sn,0,0(x) =
∫

K(u)g(x + hu)fX(x + hu)du, ψτ (u) = 1(u < 0) − τ is the piecewise

derivative of the loss-function ρτ and

g(x) =
∂

∂t
E[ψτ (Y − t)|X = x]

∣

∣

∣

∣

t=θ0(x)

.

Notice that the error term of the Bahadur expansion does not depend on the design X

and it converges to 0 with rate
(

logn/nhd
)

3

4 which is much faster than the convergence rate

(nhd)−
1

2 of the stochastic term.

Rearranging (4), we obtain

Sn,0,0(x){θ̂n(x)− θ0(x)} =
1

n

n
∑

i=1

Kh(x−X i)ψτ

{

Yi − θ0(x)
}

+O
{

( log n

nhd

)
3

4

}

. (5)

Now we express the leading term on the right hand side of (5) by means of the centered

empirical process

Zn(y,u) = n1/2{Fn(y,u)− F (y,u)}, (6)

where Fn(y,x) = n−1
∑n

i=1 1(Yi ≤ y,Xi1 ≤ x1, ..., Xid ≤ xd). This yields, by Fubini’s

theorem,

Sn,0,0(x){θ̂n(x)− θ0(x)} − b(x) = n−1/2

∫ ∫

Kh(x− u)ψτ

{

y − θ0(x)
}

dZn(y,u) +O
{

( logn

nhd

)
3

4

}

,

(7)

where

b(x) = −Ex

[

1

n

n
∑

i=1

Kh(x−X i)ψ
{

Yi − θ0(x)
}

]
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denotes the bias which is of order O(hs) by Assumption (A3) in the Appendix. The variance

of the first term of the right hand side of (7) can be estimated via a change of variables and

Assumption (A5), which gives

(nhd)−2nE
[

K2
{

(x−X i)/h
}

ψ2
{

Yi − θ0(x)
}]

= (nhd)−2nhd
∫ ∫

K2(v)ψ2
{

y − θ0(x)
}

fY |X(y|x− hv)fX(x− hv)dydv

= (nhd)−1

∫ ∫

K2(v)ψ2
{

y − θ0(x)
}

fY |X(y|x)fX(x)dydv +O
(

(nhd−1)−1
)

= (nhd)−1fX(x)σ2(x)‖K‖22 +O
{

(nhd)−1h
}

,

where σ2(x) = E[ψ2
{

Y − θ0(x)
}

|X = x]. The standardized version of (5) can therefore be

approximated by

√
nhd

√

fX(x)σ(x)‖K‖2
Sn,0,0(x){θ̂n(x)− θ0(x)}

=
1

√

hdfX(x)σ(x)‖K‖2

∫ ∫

K

(

x− u

h

)

ψ
{

Yi − θ0(x)
}

dZn(y,u) +O
(
√
nhdhs

)

+O
{

( logn

nhd

)
3

4

}

.

(8)

The dominating term is defined by

Yn(x)
def
=

1
√

hdfX(x)σ(x)

∫ ∫

K

(

x− u

h

)

ψ
{

y − θ0(x)
}

dZn(y,u). (9)

Involving strong Gaussian approximation and Bernstein-type concentration inequalities, this

process can be approximated by a stationary Gaussian field:

Y5,n(x) =
1√
hd

∫

K

(

x− u

h

)

dW
(

u
)

, (10)

whereW denotes a Brownian sheet. The supremum of this process is asymptotically Gumbel

distributed, which follows, e.g., by Theorem 2 of Rosenblatt (1976). Since the kernel is

symmetric and of order s, we can estimate the term

Sn,0,0 = fY |X(θ0(x)|x)fX(x) +O(hs).
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if (A5) holds. On the other hand, σ2(x) = τ(1 − τ) in quantile regression. Therefore, the

statements of the theorem hold.

�

Corollary 2.2 (CC for multivariate quantile regression). Under the assumptions of Theorem

2.1, an approximate (1− α)× 100% confidence corridor is given by

θ̂n(t)± (nhd)−1/2
{

τ(1− τ)‖K‖2/f̂X(t)
}1/2

f̂ε|X
{

0|t
}−1
{

dn + c(α)(2κd logn)−1/2
}

,

where α ∈ (0, 1) and c(α) = log 2 − log
∣

∣ log(1 − α)
∣

∣ and f̂X(t), f̂ε|X
{

0|t
}

are consistent

estimates for fX(t), fε|X
{

0|t
}

with convergence rate faster than Op

(

(logn)−1/2
)

.

The expectile confidence corridor can be constructed in an analogous manner as the

quantile confidence corridor. The two cases differ in the form and hence the properties of

the loss function. Therefore we find for expectile regression:

Sn,0,0(x) = −2
[

FY |X

(

θ0(x
)

|x)(2τ − 1)− τ
]

fX(x) +O(hs).

Through similar approximation steps as the quantile regression, we derive the following

theorem.

THEOREM 2.3. Let θ̂n(x) be the the local constant expectile estimator and θ0(x) the true

expectile function. If Assumptions (A1), (A3)-(A6) and (EA2) of Section 5 hold with a

constant b1 satisfying

n−1/6h−d/2−3d/(b1−2) = O(n−ν), ν > 0.

Then the limit theorem (3) holds with a scaling factor

r(x) =
√

nhdfX(x)σ−1(x)
{

2
[

τ − FY |X(θ0(x)|x)(2τ − 1)
]}

,

the same constantsH2 and dn as defined in Theorem 2.1, where σ2(x) = E[ψ2
τ (Y−θ0(x))|X =

x] and ψτ (u) = 2(1(u ≤ 0) − τ)|u| is the derivative of the expectile loss-function ρτ (u) =
∣

∣τ − 1(u < 0)
∣

∣|u|2.
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The proof of this result is deferred to the appendix. The next corollary shows the CC

for expectiles.

Corollary 2.4 (CC for multivariate expectile regression). Under the same assumptions of

Theorem 2.3, an approximate (1− α)× 100% confidence corridor is given by

θ̂n(t)± (nhd)−1/2
{

σ̂2(t)‖K‖2/f̂X(t)
}1/2

{

− 2
[

F̂ε|X

{

0|t
}

(2τ − 1)− τ
]

}−1{

dn + c(α)(2κd logn)−1/2
}

,

where α ∈ (0, 1) c(α) = log 2− log
∣

∣ log(1−α)
∣

∣ and f̂X(t), σ̂2(t) and F̂ε|X(0|x) are consistent

estimates for fX(t), σ2(t) and Fε|X(0|x) with convergence rate faster than Op

(

(logn)−1/2
)

.

A further immediate consequence of Theorem 2.3 is a similar limit theorem in the context

of local least squares estimation of the regression curve in classical mean regression.

Corollary 2.5 (CC for multivariate mean regression). Consider the loss function ρ(u) = u2

corresponding to ψ(u) = 2u. Under the assumptions of Theorem 2.3, with the same constants

H2 and dn, (3) holds for the local constant estimator θ̂ and the regression function θ(x) =

E[Y |X = x] with scaling factor r(x) =
√

nhdfX(x)σ−1(x) and σ2(x) =Var[Y |X = x].

For the appropriate bandwidth choice, it is enough to take h = O(n−1/(2s+d)−δ), given

s > d and δ > 0 to make our asymptotic theories hold, where s is the order of Hölder conti-

nuity of the function θ0. In the simulation study we use the rule-of-thumb bandwidth with

adjustments proposed by Yu and Jones (1998) for nonparametric quantile regression, and

for expectile regression we use the rule-of-thumb bandwidth for the conditional distribution

smoother of Y given X, chosen with the np package in R. In the application, we use the

cross-validated bandwidth for conditional distribution smoother of Y given X, chosen with

the np package in R. This package is based on the paper of Li et al. (2013).

2.3. Estimating the scaling factors

The performance of the confidence bands is greatly influenced by the scaling factors

f̂ε|X(v|x), Fε|X(v|x) and σ̂(x)2. The purpose of this subsection is thus to propose a way to

estimate these factors and investigate their asymptotic properties.
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Since we consider the additive error model (1), the conditional distribution function

FY |X(θ0(x)|x) and the conditional density fY |X(θ0(x)|x) can be replaced by Fε|X(0|x) and

fε|X(0|x), respectively, where Fε|X and fε|X are the conditional distribution and density

functions of ε. Similarly, we have

σ2(x) = E
[

ψτ

(

Y − θ0(x)
)2∣
∣X = x

]

= E
[

ψτ (ε)
2
∣

∣X = x
]

where ε may depend on X due to heterogeneity. It should be noted that the kernel estima-

tors for fε|X(0|x) and fY |X(θ0(x)|x) are asymptotically equivalent, but show different finite

sample behavior. We explore this issue further in the following section.

Introducing the residuals ε̂i = Yi − θ̂n(X i) we propose to estimate Fε|X , fε|X and σ2(x)

by

F̂ε|X(v|x) = n−1

n
∑

i=1

G

(

v − ε̂i
h0

)

Lh̄(x−X i)/f̂X(x), (11)

f̂ε|X(v|x) = n−1
n
∑

i=1

gh0
(v − ε̂i)Lh̄(x−X i)/f̂X(x), (12)

σ̂2(x) = n−1

n
∑

i=1

ψ2(ε̂i)Lh̄(x−X i)/f̂X(x), (13)

where f̂X(x) = n−1
∑n

i=1 Lh̄(x − X i), G is a continuously differentiable cumulative dis-

tribution function and g is its derivative. The same bandwidth h̄ is applied to the three

estimators, but the choice of h̄ will make the convergence rate of (13) sub-optimal. More

details on the choice of h̄ will be given later. Nevertheless, the rate of convergence of (13) is

of polynomial order in n. The theory developed in this subsection can be generalized to the

case of different bandwidth for different direction without much difficulty.

The estimators (11) and (12) belong to the family of residual-based estimators. The

consistency of residual-based density estimators for errors in a regression model are explored

in the literature in various settings. It is possible to obtain an expression for the residual

based kernel density estimator as the sum of the estimator with the true residuals, the partial

sum of the true residuals and a term for the bias of the nonparametrically estimated function,

as shown in Muhsal and Neumeyer (2010), among others. The residual based conditional

11



kernel density case is less considered in the literature. Kiwitt and Neumeyer (2012) consider

the residual based kernel estimator for conditional distribution function conditioning on a

one-dimensional variable.

Below we give consistency results for the estimators defined in (11), (12) and (13). The

proof can be found in the appendix.

Lemma 2.6. Under conditions (A1), (A3)-(A5), (B1)-(B3) in Section 5, we have

1) supv∈I supx∈D

∣

∣F̂ε|X(v|x)− Fε|X(v|x)
∣

∣ = Op

(

an
)

,

2) supv∈I supx∈D

∣

∣f̂ε|X(v|x)− fε|X(v|x)
∣

∣ = Op

(

an
)

,

3) sup
x∈D

∣

∣σ̂2(x)− σ2(x)
∣

∣ = Op

(

bn
)

,

where an = O
{

hs
′

0 + hs + h̄s
′

+ (nh̄d)−1/2 log n + (nhd)−1/2 log n
}

= O(n−λ), and bn =

O
{

hs + h̄s
′

+ (nh̄d)−1/2 log n+ (nhd)−1/2 log n
}

= O(n−λ1) for some constants λ, λ1 > 0.

The factor of logn shown in the convergence rate is the price which we pay for the

supnorm deviation. Since these estimators uniformly converge in a polynomial rate in n, the

asymptotic distributions in Theorem 2.1 and 2.3 do not change if we plug these estimators

into the formulae.

The choice of h0 and h̄ should minimize the convergence rate of the residual based esti-

mators. Hence, observing that the terms related to h0 and h̄ are similar to those in usual

(d + 1)-dimensional density estimators, it is reasonable to choose h0 ∼ h̄ ∼ n−1/(5+d), given

that L, g are second order kernels. We choose the rule-of-thumb bandwidths for conditional

densities with the R package np in our simulation and application studies.

3. Bootstrap confidence corridors

3.1. Asymptotic theory

In the case of the suitably normed maximum of independent standard normal variables,

it is shown in Hall (1979) that the speed of convergence in limit theorems of the form (3) is of

order 1/ logn, that is, the coverage error of the asymptotic CC decays only logarithmically.
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This leads to unsatisfactory finite sample performance of the asymptotic methods, especially

for small sample sizes. However, Hall (1991) suggests that the use of a bootstrap method,

based on a proper way of resampling, can increase the speed of shrinking of coverage error

to a polynomial rate of n. In this section we therefore propose a specific bootstrap technique

and construct a confidence corridor for the objects to analyse.

Given the residuals ε̂i = Yi − θ̂n(X i), the bootstrap observations (X∗
i , ε

∗
i ) are sampled

from

f̂ε,X(v,x) =
1

n

n
∑

i=1

L̃h0
(ε̂i − v)Lh(x−X i), (14)

where L and L̃ are kernel functions with bandwidths h and h0. In particular, in our simulation

study, we choose L to be a product Gaussian kernel. In the following discussion P∗ and E
∗

stand for the probability and expectation conditional on the data (X i, Yi), i = 1, ..., n.

We introduce the notation

A∗
n(x) =

1

n

n
∑

i=1

Kh(x−X
∗
i )ψτ (ε

∗
i ),

and define the so-called ”one-step estimator” θ∗(x) from the bootstrap sample by

θ̂∗(x)− θ̂n(x) = Ŝ−1
n,0,0(x) {A∗

n(x)− E
∗[A∗

n(x)]} , (15)

where

Ŝn,0,0(x) =











f̂ε|X
(

0|x
)

f̂X(x), quantile case;

2
{

τ − F̂ε|X

(

0|x
)

(2τ − 1)
}

f̂X(x), expectile case.
(16)

note that E
∗[θ̂∗(x) − θ̂n(x)] = 0, so θ̂∗(x) is unbiased for θ̂n(x) under E

∗. As a remark,

we note that undersmoothing is applied in our procedure for two reasons: first, the theory

we developed so far is based on undersmoothing; secondly, it is suggested in Hall (1992)

that undersmoothing is more effective than oversmoothing given that the goal is to achieve

coverage accuracy.

13



Note that the bootstrap estimate (15) is motivated by the smoothed bootstrap procedure

proposed in Claeskens and Van Keilegom (2003). In constrast to these authors we make

use of the leading term of the Bahadur representation. Mammen et al. (2013) also use

the leading term of a Bahadur representation proposed in Guerre and Sabbah (2012) to

construct bootstrap samples. Song et al. (2012) propose a bootstrap for quantile regression

based on oversmoothing, which has the drawback that it requires iterative estimation, and

oversmoothing is in general less effective in terms of coverage accuracy.

For the following discussion define

Y ∗
n (x) =

1
√

hdf̂X(x)σ∗(x)

∫ ∫

K

(

x− u

h

)

ψτ

(

v
)

dZ∗
n(v,u) (17)

as the bootstrap analogue of the process (9), where

Z∗
n(y,u) = n1/2

{

F ∗
n(v,u)− F̂ (v,u)

}

, σ∗(x) =
√

E
∗
[

ψτ (ε∗i )
2|x
]

(18)

and

F ∗
n(v,u) =

1

n

n
∑

i=1

1 {ε∗i ≤ v,X∗
1 ≤ u1, ..., X

∗
d ≤ ud} .

The process Y ∗
n serves as an approximation of a standardized version of θ̂∗n − θ̂n, and similar

to the previous sections the process Y ∗
n is approximated by a stationary Gaussian field Y ∗

n,5

under P∗ with probability one, that is,

Y ∗
5,n(x) =

1√
hd

∫

K

(

x− u

h

)

dW ∗(u).

Finally, sup
x∈D

∣

∣Y ∗
5,n(x)

∣

∣ is asymptotically Gumbel distributed conditional on samples.

THEOREM 3.1. Suppose that assumptions (A1)-(A6), (C1) in Section 5 hold, and vol(D) =

1, let

r∗(x) =

√

nhd

f̂X(x)σ2
∗(x)

Ŝn,0,0(x),
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where Ŝn,0,0(x) is defined in (16) and σ2
∗(x) is defined in (18). Then

P∗

{

(2dκ logn)1/2
(

sup
x∈D

[

r∗(x)|θ̂∗(x)− θ̂n(x)|
]

/‖K‖2 − dn

)

< a

}

→ exp
{

− 2 exp(−a)
}

, a.s.

(19)

as n → ∞ for the local constant quantile regression estimate. If (A1)-(A6) and (EC1) hold

with a constant b ≥ 4 satisfying

n− 1

6
+ 4

b2
− 1

bh−
d
2
− 6d

b = O(n−ν), ν > 0,

then (19) also holds for expectile regression with corresponding σ2
∗(x).

The proof can be found in the appendix. The following lemma suggests that we can

replace σ∗(x) in the limiting theorem by σ̂(x).

Lemma 3.2. If assumptions (B1)-(B3), and (EC1) in Section 5 are satisfied with b >

2(2s′ + d+ 1)/(2s′ + 3), then

‖σ2
∗(x)− σ̂2(x)‖ = O

∗
p

(

(logn)−1/2
)

, a.s.

The following corollary is a consequence of Theorem 3.1.

Corollary 3.3. Under the same conditions as stated in Theorem 3.1, the (asymptotic)

bootstrap confidence set of level 1− α is given by







θ : sup
x∈D

∣

∣

∣

∣

∣

∣

Ŝn,0,0(x)
√

f̂X(x)σ̂2(x)

[

θ̂n(x)− θ(x)
]

∣

∣

∣

∣

∣

∣

≤ ξ∗α







, (20)

where ξ∗α satisfies

lim
n→∞

P∗



sup
x∈D

∣

∣

∣

∣

∣

∣

Ŝn,0,0(x)
√

f̂X(x)σ̂2(x)

[

θ̂∗(x)− θ̂n(x)
]

∣

∣

∣

∣

∣

∣

≤ ξ∗α



 = 1− α, a.s. (21)

where Ŝn,0,0 is defined in (16).
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Note that it does not create much difference to standardize the θ̂n(x) − θ0(x) in (19)

with f̂X and σ̂2(x) constructed from original samples or f̂X and σ̂2(x) from the bootstrap

samples. The simulation results of Claeskens and Van Keilegom (2003) show that the two

ways of standardization give similar coverage probabilities for confidence corridors of kernel

ML estimators.

3.2. Implementation

In this section, we discuss issues related to the implementation of the bootstrap for

quantile regression.

The one-step estimator for quantile regression defined in (15) depends sensitively on

the estimator of Ŝn,0,0(x). Unlike the expectile case, the function ψ(·) in quantile case is

bounded, and as the result the bootstrapped density based on (20) is very easily influenced

by the factor Ŝn,0,0(x); in particular, f̂ε|X(0|x). As pointed out by Feng et al. (2011), the

residual of quantile regression tends to be less dispersed than the model error; thus f̂ε|X(0|x)

tends to over-estimate the true fε|X(0|x) for each x.

The way of getting around this problem is based on the following observation: An additive

error model implies the equality fY |X

{

v + θ0(x)|x
}

= fε|X
(

v|x
)

but this property does not

hold for the kernel estimators

f̂ε|X(0|x) = n−1
n
∑

i=1

gh0
(ε̂i)Lh̄(x−X i)/f̂X(x) (22)

f̂Y |X(θ̂n(x)|x) = n−1

n
∑

i=1

gh1

(

Yi − θ̂n(x)
)

Lh̃(x−X i)/f̂X(x), (23)

of the conditional density functions. In generalf̂ε|X(0|x) 6= f̂Y |X(θ̂n(x)|x) in x although

both estimates are asymptotically equivalent. In applications the two estimators can differ

substantially due to the bandwidth selection because for data-driven bandwidths we usually

have h0 6= h1. For example, if acommon method for bandwidth selection such as a rule-of-

thumb is used, h1 will tend to be larger than h0 since the sample variance of Yi tends to

be larger than that of ε̂i. Given that the same kernels are applied, it happens often that

f̂Y |X(θ̂n(x)|x) > fY |X(θ0(x)|x), even if θ̂n(x) is usually very close to θ0(x). To correct
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such abnormality, we are motivated to set h1 = h0 which is the rule-of-thumb bandwidth of

f̂ε|x(v|x) in (23). As the result, it leads to a more rough estimate for f̂Y |X(θ̂n(x)|x).

In order to exploit the roughness of f̂Y |X(θ̂n(x)|x) while making the CC as narrow as

possible, we develop a trick depending on

f̂Y |X

{

θ̂n(x)|x
}

f̂ε|X(0|x)
=
h0
h1

∑n
i=1 gh1

(

{

Yi − θ̂n(x)
}

/h1

)

Lh̃(x−X i)
∑n

i=1 gh0
(ε̂i/h0)Lh̄(x−X i)

. (24)

As n → ∞, (24) converges to 1. If we impose h0 = h1, as the multiple h0/h1 vanishes, (24)

captures the deviation of the two estimators without the difference of the bandwidth in the

way. In particular, the bandwidth h0 = h1 is selected with the rule-of-thumb bandwidth for

f̂ε|X(y|x). This makes f̂ε|X(y|x) larger and thus leads to a narrower CC, as will be more

clear below.

We propose the alternative bootstrap confidence corridor for quantile estimator:

{

θ : sup
x∈D

∣

∣

√

f̂X(x)f̂Y |X

{

θ̂n(x)|x
}[

θ̂n(x)− θ(x)
]∣

∣ ≤ ξ†α

}

,

where ξ†α satisfies

P∗

(

sup
x∈D

∣

∣

∣

∣

∣

f̂X(x)−1/2 f̂Y |X

{

θ̂n(x)|x
}

f̂ε|X(0|x)
[

A∗
n(x)− E

∗A∗
n(x)

]

∣

∣

∣

∣

∣

≤ ξ†α

)

= 1− α. (25)

Note that the probability on the left-hand side of (25) can again be approximated by a

Gumbel distribution function asymptotically, which follows by Theorem 3.1.

4. A simulation study

In this section we investigate the methods described in the previous sections by means of a

simulation study. We construct confidence corridors for quantiles and expectiles for different

levels τ and use the quartic (product) kernel. For the confidence based on asymptotic

distribution theory, we use the rule of thumb bandwidth chosen from the R package np,

and then rescale it as described in Yu and Jones (1998), finally multiply it by n−0.05 for
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undersmoothing. The sample sizes are given by n = 100, 300 and 500, so the undersmoothing

multiples are 0.794, 0.752 and 0.733 respectively. In the quantile regression bootstrap CC,

the bandwidth h1 used for estimating f̂Y |X(y|x) is chosen to be the rule-of-thumb bandwidth

of f̂ε|X(0|x) and multiplied by a multiple 1.5. This would give slightly wider CCs.

Homogeneous Heterogeneous
Method n τ = 0.5 τ = 0.2 τ = 0.8 τ = 0.5 τ = 0.2 τ = 0.8

σ0 = 0.2

100 .000(0.366) .109(0.720) .104(0.718) .000(0.403) .120(0.739) .122(0.744)
300 .000(0.304) .130(0.518) .133(0.519) .002(0.349) .136(0.535) .153(0.537)
500 .000(0.262) .117(0.437) .142(0.437) .008(0.296) .156(0.450) .138(0.450)

σ0 = 0.5

100 .070(0.890) .269(1.155) .281(1.155) .078(0.932) .300(1.193) .302(1.192)
Asympt. 300 .276(0.735) .369(0.837) .361(0.835) .325(0.782) .380(0.876) .394(0.877)

500 .364(0.636) .392(0.711) .412(0.712) .381(0.669) .418(0.743) .417(0.742)
σ0 = 0.7

100 .160(1.260) .381(1.522) .373(1.519) .155(1.295) .364(1.561) .373(1.566)
300 .438(1.026) .450(1.109) .448(1.110) .481(1.073) .457(1.155) .472(1.152)
500 .533(0.888) .470(0.950) .480(0.949) .564(0.924) .490(0.984) .502(0.986)

σ0 = 0.2

100 .325(0.676) .784(0.954) .783(0.954) .409(0.717) .779(0.983) .778(0.985)
300 .442(0.457) .896(0.609) .894(0.610) .580(0.504) .929(0.650) .922(0.649)
500 .743(0.411) .922(0.502) .921(0.502) .839(0.451) .950(0.535) .952(0.536)

σ0 = 0.5

100 .929(1.341) .804(1.591) .818(1.589) .938(1.387) .799(1.645) .773(1.640)
Bootst. 300 .950(0.920) .918(1.093) .923(1.091) .958(0.973) .919(1.155) .923(1.153)

500 .988(0.861) .968(0.943) .962(0.942) .990(0.902) .962(0.986) .969(0.987)
σ0 = 0.7

100 .976(1.811) .817(2.112) .808(2.116) .981(1.866) .826(2.178) .809(2.176)
300 .986(1.253) .919(1.478) .934(1.474) .983(1.308) .930(1.537) .920(1.535)
500 .996(1.181) .973(1.280) .968(1.278) .997(1.225) .969(1.325) .962(1.325)

Table 1: Nonparametric quantile model coverage probabilities. The nominal coverage is 95%.
The number in the parentheses is the volume of the confidence corridor. The asymptotic
method corresponds to the asymptotic quantile regression CC and bootstrap method corre-
sponds to quantile regression bootstrap CC.

The data are generated from the normal regression model

Yi = f(X1,i, X2,i) + σ(X1,i, X2,i)εi, i = 1, . . . , n

where the independent variables (X1, X2) follow a joint uniform distribution taking values on

[0, 1]2, Cov(X1, X2) = 0.2876, f(X1, X2) = sin(2πX1)+X2, and εi are independent standard

Gaussian random variables. For both quantile and expectile, we look at three quantiles of

18



Homogeneous Heterogeneous
Method n τ = 0.5 τ = 0.2 τ = 0.8 τ = 0.5 τ = 0.2 τ = 0.8

σ0 = 0.2

100 .000(0.428) .000(0.333) .000(0.333) .000(0.463) .000(0.362) .000(0.361)
300 .049(0.341) .000(0.273) .000(0.273) .079(0.389) .001(0.316) .002(0.316)
500 .168(0.297) .000(0.243) .000(0.243) .238(0.336) .003(0.278) .002(0.278)

σ0 = 0.5

100 .007(0.953) .000(0.776) .000(0.781) .007(0.997) .000(0.818) .000(0.818)
Asympt. 300 .341(0.814) .019(0.708) .017(0.709) .355(0.862) .017(0.755) .018(0.754)

500 .647(0.721) .067(0.645) .065(0.647) .654(0.759) .061(0.684) .068(0.684)
σ0 = 0.7

100 .012(1.324) .000(1.107) .000(1.107) .010(1.367) .000(1.145) .000(1.145)
300 .445(1.134) .021(1.013) .013(1.016) .445(1.182) .017(1.062) .016(1.060)
500 .730(1.006) .062(0.928) .078(0.929) .728(1.045) .068(0.966) .066(0.968)

σ0 = 0.2

100 .686(2.191) .781(2.608) .787(2.546) .706(2.513) .810(2.986) .801(2.943)
300 .762(0.584) .860(0.716) .876(0.722) .788(0.654) .877(0.807) .887(0.805)
500 .771(0.430) .870(0.533) .875(0.531) .825(0.516) .907(0.609) .904(0.615)

σ0 = 0.2

100 .886(5.666) .906(6.425) .915(6.722) .899(5.882) .927(6.667) .913(6.571)
Bootst. 300 .956(1.508) .958(1.847) .967(1.913) .965(1.512) .962(1.866) .969(1.877)

500 .968(1.063) .972(1.322) .972(1.332) .972(1.115) .971(1.397) .974(1.391)
σ0 = 0.2

100 .913(7.629) .922(8.846) .935(8.643) .929(8.039) .935(9.057) .932(9.152)
300 .969(2.095) .969(2.589) .971(2.612) .974(2.061) .972(2.566) .979(2.604)
500 .978(1.525) .976(1.881) .967(1.937) .981(1.654) .978(1.979) .974(2.089)

Table 2: Nonparametric expectile model coverage probability. The nominal coverage is 95%.
The number in the parentheses is the volume of the confidence corridor. The asymptotic
method corresponds to the asymptotic expectile regression CC and bootstrap method corre-
sponds to expectile regression bootstrap CC.

the distribution, namely τ = 0.2, 0.5, 0.8.

In the homogeneous model, we take σ(X1, X2) = σ0, for σ0 = 0.2, 0.5, 0.7. In the hetero-

geneous model, we take σ(X1, X2) = σ0 + 0.8X1(1 −X1)X2(1 −X2). 2000 simulation runs

are carried out to estimate the coverage probability.

The upper part of Table 1 shows the coverage probability of the asymptotic CC for non-

parametric quantile regression functions. It can be immediately seen that the asymptotic

CC performs very poorly, especially when n is small. A comparison of the results with those of

one-dimensional asymptotic simultaneous confidence bands derived in Claeskens and Van Keilegom

(2003) or Fan and Liu (2013), shows that the accuracy in the two-dimensional case is much

worse. Much to our surprise, the asymptotic CC performs better in the case of τ = 0.2, 0.8

than in the case of τ = 0.5. On the other hand, it is perhaps not so amazing to see that
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asymptotic CCs behave similarly under both homogeneous and heterogeneous models. As a

final remark about the asymptotic CC we mention that it is highly sensitive with respect to

σ0. Increasing values of σ0 yields larger CC, and this may lead to greater coverage probability.

The lower part of Table 1 shows that the bootstrap CCs for nonparametric quantile

regression functions yield a remarkable improvement in comparison to the asymptotic CC.

For the bootstrap CC the coverage probabilities are in general close to the nominal coverage

of 95%. The bootstrap CCs are usually wider, and getting narrower when n increases.

Such phenomenon can also be found in the simulation study of Claeskens and Van Keilegom

(2003). Bootstrap CCs are less sensitive than asymptotic CCs with respect to the choice σ0,

which is also considered as an advantage. Finally, we note that the performance of bootstrap

CCs does not depend on which variance specification is used too.

The upper part of Table 2 shows the coverage probabiltiy of the CC for nonparametric

expectile regression functions. The results are similar to the case of quantile regression. The

asymptotic CCs do not give accurate coverage probabilities, and in some cases like τ = 0.2

and σ0 = 0.2, not a single simulation in the 2000 iterations yields a case where surface is

completely covered by the asymptotic CC.

The lower part of Table 2 shows that bootstrap CCs for expectile regression give more

accurate approximates to the nominal coverage than the asymptotic CCs. One can see in

the parenthesis that the volumes of the bootstrap CCs are significantly larger than those of

the asymptotic CCs, especially for small n.

5. Application: a treatment effect study

The classical application of the proposed method consists in testing the hypothetical

functional form of the regression function. Nevertheless, the proposed method can also be

applied to test for a quantile treatment effect (see Koenker; 2005) or to test for conditional

stochastic dominance (CSD) as investigated in Delgado and Escanciano (2013). In this sec-

tion we shall apply the new method to test these hypotheses for data collected from a real

government intervention.

The estimation of the quantile treatment effect (QTE) recovers the heterogeneous im-
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pact of intervention on various points of the response distribution. To define QTE, given

vector-valued exogenous variables X ∈ X where X ⊂ R
d, suppose Y0 and Y1 are response

variables associated with the control group and treatment group, and let F0|X and F1|X be

the conditional distribution for Y0 and Y1, the QTE at level τ is defined by

∆τ (x)
def
= Q1|X(τ |x)−Q0|X(τ |x), x ∈ X , (26)

where Q0|X(y|x) and Q1|X(y|x) are the conditional quantile of Y0 given X and Y1 given

X respectively. This definition corresponds to the idea of horizontal distance between the

treatment and control distribution functions appearing in Doksum (1974) and Lehmann

(1975).

A related concept in measuring the efficiency of a treatment is the so called ”conditional

stochastic dominance”. Y1 conditionally stochastically dominates Y0 if

F1|X(y|x) ≤ F0|X(y|x) a.s. for all (y,x) ∈ (Y ,X ), (27)

where Y , X are domains of Y and X. For example, if Y0 and Y1 stand for the income of

two groups of people G0 and G1, (27) means that the distribution of Y1 lies on the right of

that of Y0, which is equivalent to saying that at a given 0 < τ < 1, the τ -quantile of Y1 is

greater than that of Y0. Hence, we could replace the testing problem (27) by

Q1|X(τ |x) ≥ Q0|X(τ |x) for all 0 < τ < 1 and x ∈ X . (28)

Comparing (28) and (26), one would find that (28) is just a uniform version of the test

∆τ (x) ≥ 0 over 0 < τ < 1.

The method that we introduced in this paper is suitable for testing a hypothesis like

∆τ (x) = 0 where ∆τ (x) is defined in (26). One can construct CCs for Q1|X(τ |x) and

Q0|X(τ |x) respectively, and then check if there is overlap between the two confidence regions.

One can also extend this idea to test (28) by building CCs for several selected levels τ .

We use our method to test the effectiveness of the National Supported Work (NSW)
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demonstration program, which was a randomized, temporary employment program initiated

in 1975 with the goal to provide work experience for individuals who face economic and social

problems prior to entering the program. The data have been widely applied to examine

techniques which estimate the treatment effect in a nonexperimental setting. In a pioneer

study, LaLonde (1986) compares the treatment effect estimated from the experimental NSW

data with that implied by nonexperimental techniques. Dehejia and Wahba (1999) analyse

a subset of Lalonde’s data and propose a new estimation procedure for nonexperimental

treatment effect giving more accurate estimates than Lalonde’s estimates. The paper that is

most related to our study is Delgado and Escanciano (2013). These authors propose a test

for hypothesis (27) and apply it to Lalonde’s data, in which they choose ”age” as the only

conditional covariate and the response variable being the increment of earnings from 1975 to

1978. They cannot reject the null hypothesis of nonnegative treatment effect on the earnings

growth.

Earnings growth
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Figure 1: The illustrations for the two possible types of stochastic dominance.

The previous literature, however, has not addressed an important question. We shall de-

pict this question by two pictures. In Figure 1, it is obvious that Y1 stochastically dominates

Y0 in both pictures, but significant differences can be seen between them. For the left one,

the 0.1 quantile improves more dramatically than the 0.9 quantile, as the distance between

A and A′ is greater than that between B and B′. In usual words, the gain of the 90% lower

bound of the earnings growth is more than that of the 90% upper bound of the earnings
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growth after the treatment. ”90% lower bound of the earnings growth” means the probabil-

ity that the earnings growth is above the bound is 90%. This suggests that the treatment

induces greater reduction in downside risk but less increase in the upside potential in the

earnings growth. For the right picture the interpretation is just the opposite.

To see which type of stochastic dominance the NSW demonstration program belongs

to, we apply the same data as Delgado and Escanciano (2013) for testing the hypothesis

of positive quantile treatment effect for several quantile levels τ . The data consist of 297

treatment group observations and 423 control group observations. The response variable Y0

(Y1) denotes the difference in earnings of control (treatment) group between 1978 (year of

postintervention) and 1975 (year of preintervention). We first apply common statistical pro-

cedures to describe the distribution of these two variables. Figure 2 shows the unconditional

densities and distribution function. The cross-validated bandwidth for f̂0(y) is 2.273 and

2.935 for f̂1(y). The left figure of Figure 2 shows the unconditional densities of the income

difference for treatment group and control group. The density of the treatment group has

heavier tails while the density of the control group is more concentrated around zero. The

right figure shows that the two unconditional distribution functions are very close on the left

of the 50% percentile, and slight deviation appears when the two distributions are getting

closer to 1. Table 3 shows that, though the differences are small, but the quantiles of the

unconditional cdf of treatment group are mildly greater than that of the control group for

each chosen τ . The two-sample Kolmogorov-Smirnov and Cramér-von Mises tests, however,

yield results shown in the Table 4 which cannot reject the null hypothesis that the empirical

cdfs for the two groups are the same with confidence levels 1% or 5%.

τ(%) 10 20 30 50 70 80 90
Treatment -4.38 -1.55 0.00 1.40 5.48 8.50 11.15
Control -4.91 -1.73 -0.17 0.74 4.44 7.16 10.56

Table 3: The unconditional sample quantiles of treatment and control groups.

Next we apply our test on quantile regression to evaluate the treatment effect. In order to

compare with Delgado and Escanciano (2013), we first focus on the case of a one-dimensional

covariate. The first covariate X1i is the age. The second covariate X2i is the number of years
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Figure 2: Unconditional empirical density function (left) and distribution function (right) of
the difference of earnings from 1975 to 1978. The dashed line is associated with the control
group and the solid line is associated with the treatment group.

Type of test Statistics p-value
Kolmogorov-Smirnov 0.0686 0.3835
Cramér-von Mises 0.2236 0.7739

Table 4: The two sample empirical cdf tests results for treatment and control groups.

of schooling. The sample values of schooling years lie in the range of [3, 16] and age lies

between [17, 55]. In order to avoid boundary effect and sparsity of the samples, we look

at the ranges [7,13] for schooling years and [19,31] for age. We apply the bootstrap CC

method for quantiles τ = 0.1, 0.2, 0.3, 0.5, 0.7, 0.8 and 0.9. We apply the quartic kernel. The

cross-validated bandwidths are chosen in the same way as for conditional densities with the

R package np. The resulting bandwidths are (2.2691,2.5016) for the treatment group and

(2.7204, 5.9408) for the control group. In particular, for smoothing the data of the treatment

group, for τ = 0.1 and 0.9, we enlarge the cross-validated bandwidths by a constant of 1.7;

for τ = 0.2, 0.3, 0.7, 0.8, the cross-validated bandwidths are enlarged by constant factor 1.3.

These inflated bandwidths are used to handle violent roughness in extreme quantile levels.

The bootstrap CCs are computed with 10,000 repetitions. The level of the test is α = 5%.

The results of the two quantile regressions with one-dimensional covariate, and their CCs

for various quantile levels are presented in Figure 3 and 4. We observe that for all chosen

quantile levels the quantile estimates associated to the treatment group lie above that of
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the control group when age is over certain levels, and particularly for τ = 10%, 50%, 80%

and 90%, the quantile estimates for treatment group exceeds the upper CCs for the quantile

estimates of the control group. On the other hand, at τ = 10%, the quantile estimates for

the control group drop below the CC for treatment group for age greater than 27. Hence,

the results here show a tendency that both the downside risk reduction and the upside

potential enhancement of earnings growth are achieved, as the older individuals benefit the

most from the treatment. Note that we observe a heterogeneous treatment effect in age

and the weakly dominance of the conditional quantiles of the treatment group to that of

the control group, i.e., (28) holds for the chosen quantile levels, which are in line with the

findings of Delgado and Escanciano (2013). We now turn to Figure 4, where the covariate

is the years of schooling. The treatment effect is not significant for conditional quantiles

at levels τ = 10%, 20% and 30%. This suggests that the treatment does little to reduce

the downside risk of the earnings growth for individuals with various degree of education.

Nonetheless, we constantly observe that the regression curves of the treatment group rise

above that of the control group after a certain level of the years of schooling for quantiles

level τ = 50%, 70%, 80% and 90%. Notice that for τ = 50% and 80% the regression curves

associated to the treatment group reach the upper boundary of the CC of the control group.

This suggests that the treatment effect tends to raise the upside potential of the earnings

growth, in particular for those individuals who spent more years in the school. It is worth

noting that we also see a heterogeneous treatment effect in schooling years, although the

heterogeneity in education is less strong than the heterogeneity in age.

The previous regression analyses separately conditioning on covariates age and schooling

years only give a limited view on the performance of the program, we now proceed to the

analysis conditioning on the two covariates jointly (X1i, X2i). The estimation settings are

similar to the case of univariate covariate. Figure 5 shows the quantile regression CCs. From

a first glance of the pictures, the τ -quantile CC of the treatment group and that of the

control group overlap extensively for all τ . We could not find sufficient evidence to reject

the null hypothesis that the conditional distribution of treatment group and control group

are equivalent. The second observation obtained from comparing subfigures in Figure 6, we
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Figure 3: Nonparametric quantile regression estimates and CCs for the changes in earnings
between 1975-1978 as a function of age. The solid dark lines correspond to the conditional
quantile of the treatment group and the solid light lines sandwich its CC, and the dashed
dark lines correspond to the conditional quantiles of the control group and the solid light
lines sandwich its CC.

find that the treatment has larger impact in raising the upper bound of the earnings growth

than improving the lower bound. For lower quantile levels τ = 10%, 20% and 30% the

solid surfaces uniformly lie inside the CC of the control group, while for τ = 50%, 70%, 80%

and 90%, we see several positive exceedances over the upper boundary of the CC of the

control group. Hence, the program tends to do better at raising the upper bound of the

earnings growth but does worse at improving the lower bound of the earnings growth. In

other words, the program tends to increase the potential for high earnings growth but does
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Figure 4: Nonparametric quantile regression estimates and CCs for the changes in earnings
between 1975-1978 as a function of years of schooling. The solid dark lines correspond to
the conditional quantile of the treatment group and the solid light lines sandwich its CC,
and the dashed dark lines correspond to the conditional quantiles of the control group and
the solid light lines sandwich its CC.

little in reducing the risk of negative earnings growth. Our last conclusion comes from

inspecting the shape of the surfaces: conditioning on different levels of years of schooling

(age), the treatment effect is heterogeneous in age (years of schooling). The most interesting

cases happens when conditioning on high age and high years of schooling. Indeed, when

considering the cases of τ = 80% and 90%, when conditioning on the years of schooling

at 12 (corresponding to finishing the high school), the earnings increment of the treatment

group rises above the upper boundary of the CC of the control group. This suggests that
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Figure 5: The CCs for the treatment group and the control group. The net surface corre-
sponds to the control group quantile CC and the solid surface corresponds to the treatment
group quantile CC.

the individuals who are older and have more years of schooling tend to benefit more from

the treatment.
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Figure 6: The conditional quantiles (solid surfaces) for the treatment group and the CCs
(net surfaces) for the control group.

Supplementary Materials

Section A contains the detailed proofs of Theorems 2.1, 2.3, 3.1 and Lemmas 2.6 and

3.2, as well as other intermediate results. Section B contains some results obtained by other

authors, which we use in our study. We incorporate them here for completeness.
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Assumptions

(A1) K is of order s − 1 (see (A3)) has bounded support [−A,A]d, is continuously differ-

entiable up to order d with bounded derivatives, i.e. ∂αK ∈ L1(Rd) exists and is

continuous for all multi-indices α ∈ {0, 1}d

(A2) Let an be an increasing sequence, an → ∞ as n→ ∞, and the marginal density fY be

such that

(log n)h−3d

∫

|y|>an

fY (y)dy = O(1) (29)

and

(logn)h−d

∫

|y|>an

fY |X(y|x)dy = O(1), for all x ∈ D

as n→ ∞ hold.

(A3) The function θ0(x) is continuously differentiable and is in Hölder class with order s > d.

(A4) fX(x) is bounded, continuously differentiable and its gradient is uniformly bounded.

Moreover, infx∈D fX(x) > 0.

(A5) The joint probability density function f(y,u) is bounded, positive and continuously

differentiable up to sth order (needed for Rosenblatt transform). The conditional
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density fY |X(y|x) exists and is boudned and continuouly differentiable with respect to

x. Moreover, infx∈D fY |X

(

θ0(x)|x
)

> 0.

(A6) h satisfies
√
nhdhs

√
logn→ 0 (undersmoothing), and nh3d(log n)−2 → ∞.

(EA2) sup
x∈D

∣

∣

∫

vb1fε|X(v|x)dv
∣

∣ <∞, for some b1 > 0.

(B1) L is a Lipschitz, bounded, symmetric kernel. G is Lipschitz continuous cdf, and g

is the derivative of G and is also a density, which is Lipschitz continuous, bounded,

symmetric and five times continuously differentiable kernel.

(B2) Fε|X(v|x) is in s′ + 1 order Hölder class with respect to v and continuous in x, s′ >

max{2, d}. fX(x) is in second order Hölder class with respect to x and v. E[ψ2(εi)|x]

is second order continuously differentiable with respect to x ∈ D.

(B3) nh0h̄
d → ∞, h0, h̄ = O(n−ν), where ν > 0.

(C1) There exist an increasing sequence cn, cn → ∞ as n→ ∞ such that

(log n)3(nh6d)−1

∫

|v|>cn/2

fε(v)dv = O(1), (30)

as n→ ∞.

(EC1) supx∈D

∣

∣

∫

vbfε|X(v|x)dv
∣

∣ <∞, for some b > 0.

The assumptions (A1)-(A5) are assumptions frequently seen in the papers of confidence

corridors, such as Härdle (1989), Härdle and Song (2010) and Guo and Härdle (2012). (EA2)

and (EC1) essentially give the uniform bound on the 2nd order tail variation, which is

crucial in the sequence of approximations for expectile regression. (B1)-(B3) are similar

to the assumptions listed in chapter 6.1 of Li and Racine (2007). (A6) characterizes the

two conflicting conditions: the undersmoothing of our estimator and the convergence of the

strong approximation. To make the condition hold, sometimes we need large s for high

dimension, the smoothness of the true function. (C1) and (EC1) are relevant to the theory

of bootstrap, where we need bounds on the tail probability and 2nd order variation.
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Supplement materials to ”Confidence Corridors for Multivariate

Generalized Quantile Regression”

A. Proof of Theorems

We list the assumptions here for the easy of reference.

(A1) K is of order s − 1 (see (A3)) has bounded support [−A,A]d, is continuously differentiable

up to order d with bounded derivatives, i.e. ∂αK ∈ L
1(Rd) exists and is continuous for all

multi-indices α ∈ {0, 1}d

(A2) Let an be an increasing sequence, an → ∞ as n → ∞, and the marginal density fY be such

that

(log n)h−3d

∫

|y|>an

fY (y)dy = O(1) (1)

and

(log n)h−d
∫

|y|>an

fY |X(y|x)dy = O(1), for all x ∈ D

as n→ ∞ hold.

(A3) The function θ0(x) is continuously differentiable and is in Hölder class with order s > d.

(A4) fX(x) is bounded, continuously differentiable and its gradient is uniformly bounded. More-

over, infx∈D fX(x) > 0.

(A5) The joint probability density function f(y,u) is bounded, positive and continuously dif-

ferentiable up to sth order (needed for Rosenblatt transform). The conditional density

fY |X(y|x) exists and is boudned and continuouly differentiable with respect to x. More-

over, infx∈D fY |X

(

θ0(x)|x
)

> 0.

(A6) h satisfies
√
nh

d
h
s
√
log n→ 0 (undersmoothing), and nh3d(log n)−2 → ∞.

(EA2) supx∈D
∣

∣

∫

v
b1
fε|X(v|x)dv

∣

∣

<∞, for some b1 > 0.

(B1) L ∈ L
1(Rd) is a Lipschitz, bounded, symmetric kernel. G is Lipschitz continuous cdf with

G(x), 1−G(x) ≤ Ce
−x for C > 0, and g ∈ L

1(R) is the derivative of G and is also a density,

which is Lipschitz continuous, bounded, symmetric and five times continuously differentiable

kernel.

(B2) Fε|X(v|x) is in s′+1 order Hölder class with respect to v and continuous in x, s′ > max{2, d}.
fX(x) is in second order Hölder class with respect to x and v. E[ψ2(εi)|x] is second order

continuously differentiable with respect to x ∈ D.
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(B3) nh0h̄
d → ∞, h0, h̄ = O(n−ν), where ν > 0.

(C1) There exist an increasing sequence cn, cn → ∞ as n→ ∞ such that

(log n)3(nh6d)−1

∫

|v|>cn/2
fε(v)dv = O(1), (2)

as n→ ∞.

(EC1) supx∈D
∣

∣

∫

|v|bfε|X(v|x)dv
∣

∣

<∞, for some b > 0.

Define the approximating processes

Yn(x)
def
=

1
√

h
d
fX(x)σ(x)

∫ ∫

K

(

x− u

h

)

ψτ (y − θ0(x))dZn(y,u). (3)

Y0,n(x) =
1

√

h
d
fX(x)σ2n(x)

∫ ∫

Γn

K

(

x− u

h

)

ψτ (y − θ0(x))dZn(y,u), (4)

where Γn = {y : |y| ≤ an} and σ2n(x) = E[ψ2(Y − θ0(x))1(Yi ≤ an)|X = x].

Y1,n(x) =
1

√

h
d
fX(x)σ2n(x)

∫ ∫

Γn

K

(

x− u

h

)

ψτ (y − θ0(x))dBn
(

T (y,u)
)

(5)

where Bn
{

T (y,u)
}

= Wn

{

T (y,u)
}

− F (y,u)Wn(1, ..., 1) and T (y,u) is the Rosenblatt transfor-

mation

T (y,u) =
{

FX1|Y (u1|y), FX2|Y (u2|u1, y), ..., FXd |Xd−1,...,X1,Y (ud|ud−1, ..., u1, y), FY (y)
}

.

Y2,n(x) =
1

√

h
d
fX(x)σ2n(x)

∫ ∫

Γn

K

(

x− u

h

)

ψτ (y − θ0(x))dWn

(

T (y,u)
)

(6)

Y3,n(x) =
1

√

h
d
fX(x)σ2n(x)

∫ ∫

Γn

K

(

x− u

h

)

ψτ (y − θ0(u))dWn

(

T (y,u)
)

(7)

Y4,n(x) =
1

√

h
d
fX(x)σ2n(x)

∫

√

σ
2
n(u)fX(u)K

(

x− u

h

)

dW

(

u
)

. (8)

Y5,n(x) =
1√
h
d

∫

K

(

x− u

h

)

dW

(

u
)

. (9)

In these approximating processes, the function

ψτ (u) =

{

1(u ≤ 0)− τ, Quantile;

2(1(u ≤ 0)− τ)|u|, Expectile.

In the proofs, we suppress the subscript ”τ”.
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Next we introduce some notations which are used repeatedly in the following proofs.

Definition 1 (Neighboring Block in D ⊂ R
d, Bickel and Wichura (1971) p.1658). A block B ⊂ D

is a subset of D of the form B = Πi(si, ti] with s and t in D; the pth-face of B is Πi 6=p(si, ti]. Disjoint

blocks B and C are p-neigbbors if they abut and have the same pth face; they are neighbors if they

are p-neighbors for some p ≥ 1.

To illustrate the idea of neighboring block, take d = 3 for example, the blocks (s, t]×(a, b]×(c, d]

and (t, u]× (a, b]× (c, d] are 1-neighbors for s ≤ t ≤ u.

Definition 2 (Bickel and Wichura (1971) p.1658). Let X : Rd → R. The increment of X on the

block B, denoted X(B), is defined by

X(B) =
∑

α∈{0,1}d

(−1)d−|α|
X

{

s+α⊙ (t− s)
}

, (10)

where ”⊙” denotes the componentwise product ; that is, for any vectors u,v ∈ R
d, u ⊙ v =

(u1v1, u2v2, ..., udvd).

Below we give some examples of the increment of a multivariate function X on a block:

• d = 1: B = (s, t], X(B) = X(t)−X(s);

• d = 2: B = (s1, t1]× (s2, t2]. X(B) = X(t1, t2)−X(t1, s2) +X(s1, s2)−X(s1, t2).

A.1. Proof of Theorem 2.1

LEMMA A.1.

‖Yn(x)− Y0,n(x)‖ = Op

{

(log n)−1/2
}

,

where ‖ · ‖ denotes the sup norm with respect to x ∈ D.

PROOF. By the triangle inequality we have

‖Yn − Yn,0‖ ≤ ‖Yn − Ŷn,0‖+ ‖Ŷn,0 − Yn,0‖ def
= E1 + E2,

where Ŷn,0 = σ
2(x)/σn(x)Yn,0(x) and the terms E1 and E2 are defined in an obvious manner. We

now show that Ej = Op

{

(log n)−1/2
}

, j = 1, 2. Note that

|Ŷn,0(x)− Yn,0(x)| =
∣

∣

∣

(

σ(x)/σn(x)− 1
)

Yn,0(x)
∣

∣

∣.

It is shown later that ‖Yn,0‖ = Op

(√
log n

)

, hence it remains to prove that

sup
x∈D

∣

∣

σ(x)/σn(x)− 1
∣

∣ = O
{

(log n)−1
}

. (11)

To this end let σ̃2n = E[ψ2{Yi− θ0(x)}1(|Yi| > an)|X = x]. Since σ2n(x) → τ(1− τ) > 0 for n→ ∞,

by (1), and ψ2(·) ≤ max{τ2, (1 − τ)2},
∣

∣(log n)2σ̃2n(x)/σ
2
n(x)

∣

∣ ≤
∣

∣(log n)hdO(1)
∣

∣→ 0. Therefore,

(log n) sup
x∈D

∣

∣

∣

∣

∣

√

σ
2(x)

σ
2
n(x)

− 1

∣

∣

∣

∣

∣

= (log n) sup
x∈D

∣

∣

∣

∣

∣

√

σ̃
2
n(x) + σ

2
n(x)

σ
2
n(x)

− 1

∣

∣

∣

∣

∣

≤ sup
x∈D

∣

∣

∣

∣

∣

√

(log n)2σ̃2n(x)

σ
2
n(x)

∣

∣

∣

∣

∣

→ 0,

3



as n → ∞, hence E2 = Op

(

(log n)−1/2
)

. We now use Lemma B.2 in order to show that E1 too is

negligible.

(log n)1/2E1 = (log n)1/2 sup
x∈D

|Yn(x)− Ŷn,0(x)|

= (log n)1/2 sup
x∈D

∣

∣

∣

∣

∣

1
√

h
d
fX(x)σ2(x)

∫ ∫

{|y|>an}
K

(

x− u

h

)

ψ{y − θ0(x)}dZn(y,u)
∣

∣

∣

∣

∣

= sup
x∈D

∣

∣

∣

∣

∣

1
√

fX(x)σ2(x)
Vn(x)

∣

∣

∣

∣

∣

,

where

Vn(x) =

n
∑

i=1

Wn,i(x),

and

Wn,i(x) = (log n)1/2(nhd)−1/2

{

ψ(Yi − θ0(x))1(|Yi| > an)K
(

x−Xi

h

)

−E

[

ψ(Yi − θ0(x))1(|Yi| > an)K
(

x−X i

h

)]

}

.

Note that fX(x)σ2(x) = fX(x)τ(1 − τ) > 0 for x ∈ D by Assumption (A4).

E[Wn,i(x)
2] ≤ (log n)(nhd)−1

E

[

ψ
2(Yi − θ0(x))1(|Yi| > an)K

2
(

x−Xi

h

)

]

≤ (log n)(nhd)−1
Cψ,K

∫

{|y|>an}
fY (y)dy.

Thus, from (1),

E

[

(

n
∑

i=1

Wn,i(x)
)2
]

≤ (log n)h−dCψ,K

∫

{|y|>an}
fY (y)dy = h

2dOp(1) → 0,

as n→ ∞. From Markov’s inequality, |Vn(x)|
p→ 0 for each fixed x ∈ D.

We now show the tightness of Vn(x) for x ∈ D in order to obtain the uniform convergence. To

simplify the expression, define

g(x)
def
= ψ{y − θ0(x)}K

(

x− u

h

)

.

Take arbitrary neighboring blocks B,C ⊂ D (see Definition 1) and suppose B = Πdi=1(si, ti],

E[Vn(B)2]1/2 ≤ (log n)1/2h−d/2
{

E

[

1(Yi > an)
(

∑

α∈{0,1}d

(−1)d−|α|
g

(

s+α⊙ (t− s)
)

)2]

+ E

[

1(Yi < −an)
(

∑

α∈{0,1}d

(−1)d−|α|
g

(

s+α⊙ (t− s)
)

)2]}1/2

def
= (log n)1/2h−d/2(I1 + I2)

1/2
,
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where I1 and I2 are defined in an obvious manner. When n is large, an is large as well and the

integral is restricted to the set {Yi > an}. Taking into account that θ is uniformly bounded on the

compact set D by Assumption (A4) we deduce that ψ(Yi − θ0(x)) = τ for sufficiently large n on

the event {Yi > an : i = 1, ..., n}. Hence, I1 can be estimated as

I1 ≤ τ
2

∫ ∫

1(y > an)
(

∑

α∈{0,1}d

(−1)d−|α|
K

[

(

s+α⊙ (t− s)− u
)

/h

])2
f(y,u)dydu.

Note that

∑

α∈{0,1}d

(−1)d−|α|
K

[

(

s+α⊙ (t− s)− u
)

/h

]

=

∫

B
∂
(1,...,1)

K

(

v − u

h

)

dv ≤ h
−d
CK ′µ(B),

where the constant CK ′ satisfies supu∈D |∂αK(u)| ≤ CK ′ and µ(·) is the Lebesgue measure. As

consequence it follows that

I1 ≤ τ
2

∫ ∫

1(y > an)
(

CK ′µ(B)
)2
f(y,u)dydu = τ

2
(

h
−d
CK ′µ(B)

)2
∫

{y>an}
fY (y)dy.

Similarly, I2 ≤ (1− τ)2
(

CK ′h
−d
µ(B)

)2 ∫

{y<−an}
fY (y)dy. Hence,

E[Vn(B)2]1/2 ≤ (log n)1/2h−3d/2
CK ′µ(B)

(

τ
2

∫

{y>an}
fY (y)dy + (1− τ)2

∫

{y<−an}
fY (y)dy

)1/2

≤ (log n)1/2h−3d/2
CK ′ max(τ, 1− τ)

(

∫

{|y|>an}
fY (y)dy

)1/2

µ(B).

Analogously we obtain the estimate

E[Vn(C)2]1/2 ≤ (log n)1/2h−3d/2
CK ′ max(τ, 1− τ)

(

∫

{|y|>an}
fY (y)dy

)1/2

µ(C),

which finally yields

E[|Vn(B)||Vn(C)|] ≤ E[|Vn(B)|2]1/2E[|Vn(C)|2]1/2

≤ (log n)h−3d
C

2
K ′ max(τ, 1− τ)2

(

∫

{|y|>an}
fY (y)dy

)

µ(C)µ(B).

By Assumption (A2) it follows (log n)h−3d
∫

{|y|>an}
fY (y)dy is bounded. Thus, applying Lemma

B.2 with γ1 = γ2 = λ1 = λ2 = 1 yields the desired result.

LEMMA A.2. ‖Y0,n − Y1,n‖ = Op

(

n
−1/6

h
−d/2(log n)ǫ+(2d+4)/3

)

, a.s. for any ǫ > 0.

PROOF. We adopt the notation that if α ∈ {0, 1}d+1, then we writeα = (α1,α2) where α1 ∈ {0, 1}
and α2 ∈ {0, 1}d. In the computation below, we focus on Bx = Πdj=1

[

xj −Ah, xj +Ah

]

instead of

R
d since K has compact support. Recall definition 1 of an increment of a function X over a block
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B. Integration by parts yields

Y0,n(x) =
1

√

h
d
fX(x)σ2n(x)

[ ∫

Bx

∫

Γn

Zn(y,u) d
(

ψ(y − θ0(x))K((x− u)/h)
)

+

{

Zn

(

·1, ·2
)

ψ

(

·1 −θ0(x)
)

K

(

x− ·2
h

)

}

(

Γn ×Bx

)

(12)

+
{

∑

α∈{0,1}d+1−{0,1}

∫ ∫

(Γn×Bx)α

Zn(·1, ·2) dα1
ψ

(

·1 −θ0(x)
)

∂
α2
K

(

(x− ·2)/h
)

}

(

Γn ×Bx

)

1−α

]

where 1 = (1, ..., 1) ∈ {0, 1}d+1 and 0 = (0, ..., 0) ∈ {0, 1}d+1.
(

Γn × Bx

)

is a d + 1 dimensional

cube. ·1 corresponds to the one-dimensional variable y and ·2 corresponds to the two-dimensional

variable u. The second term in (12) can be evaluated with the formula (10).
(

Γn × Bx

)

1−α
can

be viewed as the projection of Γn × Bx on to the space spanned by those axes whose numbers

correspond to positions of ones of the multi-index 1−α. This leaves us with an |α|-fold integral.

Moreover, d
{

ψ(y − θ0(x))K((x − u)/h)
}

= dψ(y − θ0(x))∂
12
K

(

(x − u)/h
)

, where 12 =

(1, ..., 1) ∈ {0, 1}d and dψ(y − θ0(x)) = δθ0(x)(y) denotes the Dirac measure at θ0(x).

By integration by parts applied to Y1,n and an application of Theorem 3.2 in Dedecker et al.

(2014) we obtain for every ǫ > 0,

h
d/2
n
1/6(log n)−ǫ−(2d+4)/3|Y0,n − Y1,n|

≤ O(1)

∣

∣

∣

∣

1
√

fX(x)σ2n(x)

∣

∣

∣

∣

{

∣

∣

∣

∫

Bx

dK((x− u)/h)
∣

∣

∣

+

∣

∣

∣

∣

{

ψ

(

·1 −θ0(x)
)

K

(

x− ·2
h

)

}

(

Γn ×Bx

)

∣

∣

∣

∣

+
∣

∣

∣

∑

α1=1,α2∈{0,1}d−{1}

∫

(Bx)α2

∂
α2
K

(

(x− ·2)/h
)

∣

∣

∣
(Bx)12−α2

+
∣

∣

∣

∑

α1=0,α2∈{0,1}d−{0}

∫

(Bx)α2

∂
α2
K

(

(x− ·2)/h
)

∣

∣

∣|ψ
(

·1 −θ0(x)
)

|
(

Γn × (Bx)12−α2

)

}

a.s. (13)

By (A1), K is of bounded variation in the sense of Hardy and Krause (Owen (2005) definition 2),

and this leads to the desired result that (13) is bounded.

LEMMA A.3. ‖Y1,n − Y2,n‖ = Op

(

h
d/2
)

.

PROOF. Since Bn
(

T (y,u)
)

= Wn

(

T (y,u)
)

− F (y,u)W (1, ..., 1), where T (y,u) is the Rosenblatt

transformation and the Jacobian of T (y,u) is f(y,u),by a change of variables and the first order
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approximation to f(y,x− hv):

|Y1,n(x)− Y2,n(x)|

≤
∣

∣

∣

∣

1
√

h
d
fX(x)σ2n(x)

∫ ∫

Γn

K

(

x− u

h

)

ψ(y − θ0(x))f(y,u)dydu

∣

∣

∣

∣

|W (1, ..., 1)|

≤
∣

∣

∣

∣

1
√

h
d
fX(x)σ2n(x)

∫ ∫

Γn

K (v)ψ(y − θ0(x))f(y,x− hv)hddydv

∣

∣

∣

∣

|W (1, ..., 1)|

≤ h
d/2
∣

∣

∣

∫

K (v) dv
∣

∣

∣

∣

∣

∣

∣

1
√

fX(x)σ2n(x)

∫

Γn

|ψ(y − θ0(x))|f(y,x)dy +O(h)

∣

∣

∣

∣

|W (1, ..., 1)|

≤ h
d/2
∣

∣

∣

∫

K (v) dv
∣

∣

∣

∣

∣

∣

∣

1
√

fX(x)σ2n(x)
max{τ, 1 − τ}+O(h)

∣

∣

∣

∣

|W (1, ..., 1)|,

note that |W (1, ..., 1)| = Op(1).

LEMMA A.4. ‖Y2,n − Y3,n‖ = Op

(

h
1/2−δ

)

for an arbitrarily small 0 < δ < 1/2.

REMARK A.1. We note that the rate of h1/2−δ is not sharp rate but sufficiently fast for our

purpose.

PROOF. Define

Vn(x)
def
= Y2,n(x)− Y3,n(x)

=
1

√

h
d
fX(x)σ2n(x)

∫ ∫

Γn

{ψ(y − θ0(x))− ψ(y − θ0(u))}K
(

x− u

h

)

dW

(

T (y,u)
)

. (14)

‖Vn‖ = Op

(

h
1/2−δ

)

if

lim
η→∞

P

{

sup
x∈D

∣

∣

∣

∣

V (x)√
h

∣

∣

∣

∣

> ηh
−δ

}

= 0, for all n ∈ N.

Since ψ(y − θ0(x))− ψ(y − θ0(u)) = sign(θ0(u)− θ0(x))1
{

[θ0(x) ∧ θ0(u), θ0(x) ∨ θ0(u)]
}

, thus

{

ψ(y − θ0(x))− ψ(y − θ0(u))
}2

= 1
{

[θ0(x) ∧ θ0(u), θ0(x) ∨ θ0(u)]
}

.

By assumption the conditional distribution function FY |X and the function θ0 are both con-

tinuously differentiable and change of variables and an application of the multivariate mean value

theorem gives

E

[

{

Vn(x)√
h

}2
]

=
1

h
d+1

fX(x)σ2n(x)

∫ ∫

Γn

{ψ(y − θ0(x))− ψ(y − θ0(u))}2K2

(

x− u

h

)

f(y,u)dydu

≤ 1

h
d+1

fX(x)σ2n(x)

∫

∣

∣

FY |X(θ0(x)|u)− FY |X(θ0(u)|u)
∣

∣

K
2

(

x− u

h

)

fX(u)du

=
1

hfX(x)σ2n(x)

∫

K
2(z)

∣

∣

∣

∣

∑

|α|=1

∂
α

(

FY |X ◦ θ0
)

(

ξ
)

∣

∣

∣

∣

|hz|fX(x)dz +O(h)

≤ 1

σ
2
n(x)

∥

∥

∥

∥

∑

|α|=1

∂
α

(

FY |X ◦ θ0
)

∥

∥

∥

∥

(∫

|z|K2(z)dz

)

+O(h),
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where ξ lies on the line connecting x and u. Note that σ2n(x) ≥ min{τ2, (1− τ)2}. It follows from
the continuous differentiability of FY |X and θ0 that

∥

∥

∂
α(FY |X ◦ θ0)

∥

∥ is bounded.

σ
2 def
= sup

x

E

[

(

Vn(x)√
h

)2
]

≤ C +O(h), (15)

Now we compute d(s, t) defined in Lemma B.3. Again from σ
2
n(x) ≥ min{τ2, (1− τ)2} and (A4),

E

[

(

Vn(t)− Vn(s)√
h

)2
]

≤ C

1

h
d+1

∫ ∫

Γn

{

[

ψ(y − θ0(t))− ψ(y − θ0(u))
]

K

(

t− u

h

)

−
[

ψ(y − θ0(s))− ψ(y − θ0(u))
]

K

(

s− u

h

)}2

f(y,u)dydu

= C

1

h
d+1

∫ ∫

Γn

{

[

ψ(y − θ0(t))− ψ(y − θ0(u))
]

[

K

(

t− u

h

)

−K

(

s− u

h

)]

−
[

(ψ(y − θ0(s))− ψ(y − θ0(u))) − (ψ(y − θ0(t))− ψ(y − θ0(u)))
]

K

(

s− u

h

)}2

f(y,u)dydu,

which implies

E

[

(

Vn(t)− Vn(s)√
h

)2
]

≤ 2C

h
d+1

∫ ∫

Γn

[

ψ(y − θ0(t))− ψ(y − θ0(s))
]2
K

2

(

s− u

h

)

f(y,u)dydu

+
2C

h
d+1

∫ ∫

Γn

[

ψ(y − θ0(t))− ψ(y − θ0(u))
]2
[

K

(

t− u

h

)

−K

(

s− u

h

)]2

f(y,u)dydu
def
= I1 + I2.

Furthermore,

I1 ≤
2C

h
d+1

∫

∣

∣

FY |X(θ0(t)|u)− FY |X(θ0(s)|u)
∣

∣

K
2

(

s− u

h

)

fX(u)du

≤ 2CD

h
d+1

‖s− t‖∞
∫

K
2

(

s− u

h

)

fX(u)du ≤ 2C ′
D

h

‖s− t‖∞,

where ‖s− t‖∞ = supj |sj − tj|. A change of variables and the fact that K is bounded yield

I2 ≤
2C

h
d+1

∫

∣

∣

FY |X(θ0(t)|u)− FY |X(θ0(u)|u)
∣

∣

[

K

(

t− u

h

)

−K

(

s− u

h

)]2

fX(u)du

≤ 4C

h

‖s− t‖∞
h

∫
∣

∣

∣

∣

K (z)−K

(

z +
s− t

h

)∣

∣

∣

∣

dz

≤ 4C
‖s− t‖∞

h
2

[

∫

[−A,A]d
|K (z)| dz +

∫

[−A,A]d−s−t
h

∣

∣

∣

∣

K

(

z +
s− t

h

)∣

∣

∣

∣

dz

]

= 4C ′ ‖s− t‖∞
h
2

8



Thus, for the function γ defined in Lemma B.3 we obtain the estimate γ(ǫ) ≤ C(
√
ǫ/h) and thus

Q(m) ≤ (2 +
√
2)
C

h

∫ ∞

1

√

m2−y2dy ≤ C
′

√
m

h

,

where C ′
> 0. Observe that the graph of the inverse of a univariate, injective function Q(m) is its

reflection about the line y = x, so the inverse of an upper bound for Q would be a lower bound for

Q
−1. Given the upper bound above, we can therefore bound Q−1 from below by

Q
−1(a) ≥ (C ′)−2

h
2
a
2
.

We have Q−1
(

1/(ηh−δ)
)

≥ (C ′)−2
η
−1
h
2+2δ. Applying Lemma B.3 yields

P

{

sup
x∈D

∣

∣

∣

∣

Vn(x)√
hn

∣

∣

∣

∣

> ηh
−δ
n

}

≤ C
′′
η
d
h
−2d(1+δ)
n exp

{

−C ′′′
η
2
h
−2δ
n

}

→ 0,

as η → ∞ for all n ∈ N.

LEMMA A.5. Y3,n
L
= Y4,n.

PROOF. Since both processes are Gaussian with mean zero, we only need to check the equality

of the covariance functions of the two processes at any given time points s, t ∈ D. Ignoring the

normalizing factors in the front, the covariance of Y3,n function is:

r3(s, t) =

∫ ∫

Γn

ψ
2
(

y − θ0(u)
)

K

(

s− u

h

)

K

(

t− u

h

)

f(y,u)dydu

=

∫

E

[

ψ
2
(

Yi − θ0(u)
)

1(|Yi| ≤ an)|u
]

K

(

s− u

h

)

K

(

t− u

h

)

fX(u)du

=

∫

σ
2
n(u)fX(u)K

(

s− u

h

)

K

(

t− u

h

)

du = r4(s, t)

which is, up to a factor, the covariance function of Y4,n.

LEMMA A.6. ‖Y4,n − Y5,n‖ = Op(h
1−δ), for 0 < δ < 1.

PROOF. We will proceed as in Lemma A.4 and apply Lemma B.3. Set

Ỹ (x)
def
= Y4,n − Y5,n =

1
√

h
d
fX(x)σ2n(x)

∫

(

√

σ
2
n(u)fX(u)−

√

σ
2
n(x)fX(x)

)

K

(

x− u

h

)

dW (u).

Notice that

σ
2
n(u) = τ(1− τ)−

∫

{|y|>an}
ψ
2
(

y − θ0(u)
)

fY |X(y|u)dy,

where
∫

{|y|>an}
ψ
2
(

y − θ0(u)
)

fY |X(y|u)dy ≤
∫

{|y|>an}
fY |X(y|u)dy.

(1) suggests that
∫

{|y|>an}
fY |X(y|u)dy = O(hd(log n)−1).
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Hence, we have σ2n(u) ≤ Cτ + En, where En = O(hd(log n)−1), and Cτ = τ(1− τ).

E

[

(

Ỹ (t)

h

)2
]

=
1

h
d+2

fX(t)σ2n(t)

∫

(

√

σ
2
n(u)fX(u)−

√

σ
2
n(t)fX(t)

)2
K

2

(

t− u

h

)

du

=
1

h
d+2

fX(t)σ2n(t)

∫

{

√

σ
2
n(u)

[

√

fX(u)−
√

fX(t)
]

+
√

fX(x)
[

√

σ
2
n(u)−

√

σ
2
n(t)

]}2
K

2

(

t− u

h

)

du

≤ 2Ch−d−2

{

max{τ2, (1 − τ)2}
∫

[

√

fX(u)−
√

fX(t)
]2
K

2

(

t− u

h

)

du

+ C

∫

[

√

σ
2
n(u)−

√

σ
2
n(t)

]2
K

2

(

t− u

h

)

du

}

,

Since

[

√

σ
2
n(u)−

√

σ
2
n(t)

]2
=

[

σ
2
n(u)− σ

2
n(t)

√

σ
2
n(u) +

√

σ
2
n(t)

]2

≤ CE
2
n = O(h2d(log n)−2);

moreover,
√

fX(x) is continuously differentiable onD by assumption (A4). Along with
∫

|z|2K(z) <

∞, we may bound

sup
t∈D

E

[

(

Ỹ (t)

h

)2
]

≤ C +O(h2d−2(log n)−2).

On the other hand,

E

[

(

Ỹ (t)− Ỹ (s)

h

)2
]

≤ Ch
−d−2

∫ {

[

√

σ
2
n(u)fX(u)−

√

σ
2
n(t)fX(t)

]

K

(

t− u

h

)

−
[

√

σ
2
n(u)fX(u)−

√

σ
2
n(s)fX(s)

]

K

(

s− u

h

)}2

du

= Ch
−d−2

∫ {

[

√

σ
2
n(u)fX(u)−

√

σ
2
n(t)fX(t)

][

K

(

t− u

h

)

−K

(

s− u

h

)

]

+
[

√

σ
2
n(t)fX(t)−

√

σ
2
n(s)fX(s)

]

K

(

s− u

h

)}2

du

≤ 2Ch−d−2

∫

[

√

σ
2
n(u)fX(u)−

√

σ
2
n(t)fX(t)

]2[

K

(

t− u

h

)

−K

(

s− u

h

)

]2
du

+ 2Ch−d−2

∫

[

√

σ
2
n(t)fX(t)−

√

σ
2
n(s)fX(s)

]2
K

2

(

s− u

h

)

du
def
= I1 + I2.

From

[

√

σ
2
n(t)fX(t)−

√

σ
2
n(s)fX(s)

]2
=

[

σ
2
n(t)fX(t)− σ

2
n(s)fX(s)

√

σ
2
n(t)fX(t) +

√

σ
2
n(s)fX(s)

]2

≤ C‖t− s‖2∞,

we obtain

I2 = C

‖t− s‖2∞
h
2

.
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By change of variables and a similar argument as to bound I2 in the proof of Lemma A.4, it follows

I1 ≤ C

‖s− t‖∞
h
3

.

Hence, under the condition that ‖s− t‖∞ < 1 and h→ 0, we conclude that

E

[

(

Ỹ (t)− Ỹ (s)

h

)2
]

≤ C

‖s− t‖∞
h
3

. (16)

With the same notations as in Lemma B.3, (16) implies γ(ǫ) ≤ Ch
−3/2√

ǫ, which gives Q(m) ≤
Ch

−3/2√
m. Therefore,

Q
−1(a) ≥ Ch

3
a
2
, (17)

and

Q
−1
(

(ηh−δ)−1
)

≥ Ch
3
η
−2
h
2δ
. (18)

Lemma B.3 asserts that

P

{

sup
x∈D

∣

∣

∣

Ỹ (x)

h

∣

∣

∣ > ηh
−δ

}

≤ Ch
−(3+2δ)d

η
2d exp

{

−h−2δ
η
2
}

→ 0,

as η → ∞ and h→ 0.

Finally, an application of Theorem 2 of Rosenblatt (1976) to Y5,n(x) concludes the proof of

Theorem 2.1.

A.2. Proof of Theorem 2.3

Now let ρτ (u) = |τ − 1(u < 0)|u2, be the loss function associated to quantile regression. Then

ψτ (u) = −2
{

τ − 1(u < 0)
}

|u| and

g(x) =
∂

∂t

E[ϕ(Y − t)|X = x]

∣

∣

∣

∣

t=θ0(x)

= −2
[

FY |X

(

θ0(x)|x
)

(2τ − 1)− τ

]

.

It is obvious that g(x) > 0 for 0 < τ < 1, and consequently

Sn,0,0(x) = −2
[

FY |X

(

θ0(x
)

|x)(2τ − 1)− τ

]

fX(x) +O(hs).

LEMMA A.7. ‖Yn − Y0,n‖ = Op

(

(log n)−1/2
)

.

PROOF. We have ‖Yn − Y0,n‖ ≤ ‖Yn − Ŷn,0‖ + ‖Ŷn,0 − Y0,n‖, where Ŷn,0 is defined as in Lemma

A.1, with an ≍ (h−3d log n)1/(b1−2). With such a choice we have

h
−3d log n sup

x∈D

∣

∣

∣

∣

∣

∫

|y|>an

y
2
fY |X(y|x)dy

∣

∣

∣

∣

∣

= O(1) (19)
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which implies h−3d log n
∫

|y|>an
y
2
fY (y)dy = O(1). It follows that ‖Yn − Ŷn,0‖ = O

(

(log n)−1/2
)

via

similar arguments as in Lemma A.1.

Since

E
[

W
2
n,i(x)

]

≤ (log n)(nhd)−1
C

∫

|y|>an

y
2
fY (y)dy,

we conclude by Markov’s inequality that |Vn(x)| → 0 for each x ∈ D.

As to the tightness, we have

I1 ≤ 4τ2
∫ ∫

1(y > an)

[

∑

α∈{0,1}d

(−1)d−|α|
(

y − θ0(s+α⊙ (t− s))
)

K

(

s+α⊙ (t− s)− u

h

)]

f(y,u)dydu

≤ 8τ2
{

(

h
−d
Cµ(B)

)2
∫

y>an

y
2
fY (y)dy +

(

h
−d
Cµ(B)

)2
∫

y>an

fY (y)dy

}

≤ 8τ2
(

h
−d
Cµ(B)

)2
∫

y>an

y
2
fY (y)dy.

Hence,

E
[

V (B)2
]1/2 ≤ (log n)1/2h−3d/2

C

(∫

y>an

y
2
fY (y)dy

)1/2

µ(B).

The desired result follows by similar arguments as those used to prove Lemma A.1.

LEMMA A.8. If n−1/6
h
−d/2−3d/(b1−2) = O(n−ν), ν > 0, ‖Y0,n−Y1,n‖ = Op

(

n
−1/6

h
−d/2(log n)ǫ+(2d+4)/3

an

)

for any ǫ > 0.

PROOF. With similar arguments as in Lemma A.2,

h
d/2
n
1/6(log n)−ǫ−(2d+4)/3

a
−1
n |Y0,n − Y1,n|

≤ O(1)

∣

∣

∣

∣

a
−1
n

√

fX(x)σ2n(x)

∣

∣

∣

∣

{

∣

∣(τ − 1)(θ0(x) + an) + τ(an − θ0(x))
∣

∣

∣

∣

∣

∣

∫

Bx

dK((x− u)/h)

∣

∣

∣

∣

+
∣

∣

τ(an − θ0(x)) + (τ − 1)(an − θ0(x))
∣

∣

∣

∣

∣
K

(

x− ·2
h

)∣

∣

∣

(

Bx

)

+
∣

∣(τ − 1)(θ0(x) + an) + τ(an − θ0(x))
∣

∣

∣

∣

∣

∑

α1=1,α2∈{0,1}d−{12}

∫

(Bx)α2

∂
α2
K

(

(x− ·2)/h
)

∣

∣

∣
(Bx)12−α2

+
∣

∣

τ(an − θ0(x)) + (τ − 1)(an − θ0(x))
∣

∣

∣

∣

∣

∣

∑

α1=0,α2∈{0,1}d−{02}

∫

(Bx)α2

∂
α2
K

(

(x− ·2)/h
)

∣

∣

∣

∣

(Bx)12−α2

}

, a.s.

(20)

by the assumption on the kernelK, (20) is almost surely bounded bounded. hd/2n1/6(log n)−ǫ−(2d+4)/3 =

O(1) by the choice of an given in Lemma A.7.

LEMMA A.9. ‖Y1,n − Y2,n‖ = Op

(

h
d/2
)

.

PROOF. Since Bn
(

T (y,u)
)

= Wn

(

T (y,u)
)

− F (y,u)Wn(1, ..., 1), we obtain by a change of vari-
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ables and a first order approximation to f(y,x− hv):

‖Y1,n − Y2,n‖

≤ 2hd/2
∣

∣

∣

∫

K (v) dv
∣

∣

∣

∥

∥

∥

∥

∥

1
√

fX(x)σ2n(x)

∫

Γn

∣

∣

ϕ(y − θ0(x))
∣

∣

f(y,x)dy +O(h)

∥

∥

∥

∥

∥

|W (1, ..., 1)|

≤ 2hd/2
∣

∣

∣

∫

K (v) dv
∣

∣

∣

∥

∥

∥

∥

∥

1
√

fX(x)σ2n(x)
max{τ, 1 − τ}

∣

∣E
[

|Yi|
∣

∣x
]

+ θ0(x)
∣

∣+O(h)

∥

∥

∥

∥

∥

|W (1, ..., 1)|.

Note that |W (1, ..., 1)| = Op(1), Yi has a finite second moment by assumption and θ0 is uniformly

bounded on D.

LEMMA A.10. ‖Y2,n − Y3,n‖ = Op

(

h
1−δ
)

, where 0 < δ < 1.

PROOF. Note that the derivative of expectile loss function is 2
[

1(u ≤ 0)−τ
]∣

∣

u

∣

∣, which is Lipschitz

continuous with Lipschitz constant 2max{τ, 1− τ}. Define V (x) as in Lemma A.4.

E

[

(

V (x)

h

)2
]

=
1

h
d+2

fX(x)σ2n(x)

∫ ∫

Γn

{ϕ(y − θ0(x))− ϕ(y − θ0(u))}2K2

(

x− u

h

)

f(y,u)dydu

≤ Cθ0 max{τ, 1 − τ}2
h
d+2

fX(x)σ2n(x)

∫

(

FY |X(an|u)− FY |X(−an|u)
)

|x− u|2K2

(

x− u

h

)

fX(u)du

≤ C
2

h
2
fX(x)σ2n(x)

∫

K
2(z)|hz|2fX(x)dz +O(h) ≤ 2C2

σ
2
n(x)

‖K‖22 +O(h),

E

[

(

V (t)− V (s)

h

)2
]

≤ 2C

h
d+2

∫ ∫

Γn

[

ϕ(y − θ0(t))− ϕ(y − θ0(s))
]2
K

2

(

s− u

h

)

f(y,u)dydu+

2C

h
d+2

∫ ∫

Γn

[

ϕ(y − θ0(t))− ϕ(y − θ0(u))
]2
[

K

(

t− u

h

)

−K

(

s− u

h

)]2

f(y,u)dydu
def
= I1 + I2,

where

I1 ≤
C

h
d+2

∫

‖t − s‖2∞K2

(

s− u

h

)

fX(u)du

≤ C

h
d+2

‖s− t‖2∞
∫

K
2

(

s− u

h

)

fX(u)du ≤ C

‖s− t‖2∞
h
2

+O(1).

By a change of variables and a similar argument as used to bound I2 in Lemma A.4, we obtain

I2 ≤ C

‖s− t‖∞
h
3

.

for ‖s − t‖ < 1. Following the lines of proof of Lemma A.4 or Lemma A.6 completes the proof of

the lemma.

LEMMA A.11. Y3,n
d
= Y4,n

PROOF. The proof resembles the proof for Lemma A.5 and is omitted for brevity.

LEMMA A.12. ‖Y4,n − Y5,n‖ = Op

(

h
1−δ
)

, where 0 < δ < 1.
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PROOF. The proof resembles the proof for Lemma A.6 by using (19). The details are omitted for

brevity.

A.3. Proof of Lemma 2.6

We first show assertion 1.). Let F̃ε|X(v|x) be defined as

F̃ε|X(v|x) = n
−1

n
∑

i=1

G

(

v − εi

h0

)

Lh̄(x−Xi)/f̂X(x). (21)

Since supx∈D |f̂X(x)− fX(x)| = Op(h̄
s + (nh̄d)−1/2 log n), linearisation yields

F̃ε|X(v|x) = M̃(v,x)

fX(x)
+Rn,

where Rn = Op(h̄
2 + (nh̄d)−1/2 log n) uniformly over x ∈ D by assumption (B2), where M̃(v,x) =

F̃ε|X(v|x)f̂X(x) = n
−1
∑n

i=1G

(

v−εi
h0

)

Lh̄(x−Xi). By Theorem 6.2. (i) of Li and Racine (2007),

E
[

M̃(v,x)− Fε,X(v,x)
]

is of order O(h20 + dh̄
2). It remains to show that

sup
v∈I

sup
x∈D

∣

∣

∣
M̃(v,x)− E

[

M̃(v,x)
]

∣

∣

∣
= Op

(

(nh̄d)−1/2 log n
)

. (22)

By Theorem 6.2. (ii) of Li and Racine (2007), Var
(

M̃(v,x)
)

= O
{

(nh̄d)−1
}

. By virtue of a

standard δn-net discretization argument and the Bernstein inequality we obtain (22).

Next we show that
∣

∣

F̂ε|X(v|x)− F̃ε|X(v|x)
∣

∣ = Op(h
2 + (nhd)−1/2 log n). We have

F̂ε|X(v|x)− F̃ε|X(v|x) = 1

nf̂X(x)

n
∑

i=1

{

G

(

v − εi

h0

)

−G

(

v − ε̂i

h0

)}

Lh̄(x−Xi)

=
1

nf̂X(x)

n
∑

i=1

{

h
−1
0 g

(

v − εi

h0

)

(εi − ε̂i)

}

Lh̄(x−Xi) +R1,n,

where R1,n is of negligible order by (B1) under the claim in Section 3.3 of Muhsal and Neumeyer

(2010). εi − ε̂i = θ̂n(X i) − θ0(Xi), which is stochastically bounded with hs + (nhd)−1/2 log n, for

arbitrary δ > 0. Moreover, observe that

1

n

n
∑

i=1

h
−1
0 g

(

v − εi

h0

)

Lh̄(x−X i)

is a kernel density estimator which has standard bias and variance and which is is stochastically

bounded. Hence, in order to shrink P
{

∣

∣

F̂ε|X(v|x)− F̃ε|X(v|x)
∣

∣

> ηn
−λ
}

, splitting the probability

of under the event
{∣

∣

∣θ̂n(Xi)− θ0(X i)
∣

∣

∣ > h
s + (nhd)−1/2 log n

}

and its complement, where n−λ =

h
2
0 + h

s + h̄
2 + (nh0h̄

d)−1/2 log n+ (nhd)−1/2 log n, we get the desired result.

Next we show assertion 2.). Let f̃ε|X(v|x) be defined as

f̃ε|X(v|x) = n
−1

n
∑

i=1

gh0 (v − εi)Lh̄(x−X i)/f̂X(x). (23)
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By standard theory for kernel density estimation, we have

f̃ε|X(v|x) = m̃(v,x)

fX(x)
+Rn,

where Rn = Op(h̄
s + (nh̄d)−1/2 log n) uniformly over x ∈ D by assumption (B2), where m̃(v,x) =

f̃ε|X(v|x)f̂X(x) = n
−1
∑n

i=1 gh0 (εi − v)Lh̄(x−X i). It follows from the standard theory of density

estimation that

‖m̃(v,x)− fε,X(v,x)‖ = Op(h
2
0 + h̄

2 + (nh0h̄
d)−1/2 log n). (24)

A Taylor expansion yields

f̃ε|X(v|x)− f̂ε|X(v|x) = 1

nf̂X(x)

n
∑

i=1

{gh0 (v − εi)− gh0 (v − ε̂i)}Lh̄(x−Xi)

=
1

nf̂X(x)

n
∑

i=1

{

h
−2
0 g

′

(

v − εi

h0

)

(

θ̂n(Xi)− θ0(X i)
)

}

Lh̄(x−Xi) +R2,n

it follows from Muhsal and Neumeyer (2010) that R2,n is negligible under condition (B1). Again

1

n

n
∑

i=1

h
−2
0 g

′

(

v − εi

h0

)

Lh̄(x−Xi)

is a kernel estimator for the derivative of the conditional density function and is thus stochastically

bounded. Applying the stochastic bound for θ̂n(Xi) − θ0(Xi) and similar probability separating

argument for proving 1.), assertion 2.) follows.

For the third estimator 3.), define

σ̃
2(x) = n

−1
n
∑

i=1

ψ
2(εi)Lh̄(x−Xi)/f̂X(x).

Using a weak uniform consistency result for kernel regression, see, for instance, Hansen (2008),
∥

∥

σ̃
2(x)−σ2(x)

∥

∥ = Op

(

h̄
2+(nh̄d)−1/2 log n

)

. Below we separately discuss the quantile and expectile

case.

In the quantile case, ψ(u) = 1(u < 0)− τ , then

σ̂
2(x)− σ̃

2(x) = n
−1

n
∑

i=1

[

ψ
2(ε̂i)− ψ

2(εi)
]

Lh̄(x−X i)

= (1− 2τ)n−1
n
∑

i=1

[

1(ε̂i < 0)− 1(εi < 0)
]

Lh̄(x−Xi).

Note that 1(ε̂i < 0)− 1(εi < 0) = 1(θ0(Xi) < Yi < θ̂n(Xi))− 1(θ̂n(X i) < Yi < θ0(Xi)). Applying

the fact that supx∈D |θ̂n(x)− θ0(x)| stochastically bounded, we first restrict our focus on the event

θ̂n(Xi) − θ0(X i) < h
s + (nhd)−1/2 log n. If τ = 1/2, then ψ

2(ε̂i) − ψ
2(εi) = 0 and we are done.
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Given τ 6= 1/2,

(1− 2τ)−1
E
[

σ̂
2(x)− σ̃

2(x)
]

= E
[(

1(ε̂i < 0)− 1(εi < 0)
)

Lh̄(x−Xi)
]

= 2

∫

{

F (θ̂n(u)|u)− F (θ0(u)|u)
}

Lh̄(x− u)fX(u)du

= 2

∫

f(θ†(u)|u)(θ̂n(u)− θ0(u))Lh̄(x− u)fX(u)du,

where θ†(u) lies between θ̂n(u) and θ0(u). By condition (B2), f(v|x) is uniformly bounded, we

deduce that E
[

σ̂
2(x)− σ̃

2(x)
]

= O(hs + (nhd)−1/2 log n). Observe that (1(ε̂i < 0) − 1(εi < 0))2 =

1
{

[θ̂n(X i) ∧ θ0(X i), θ̂n(Xi) ∨ θ0(Xi)]
}

. It follows from similar computations

E
[{

σ̂
2(x)− σ̃

2(x)
}2]

= O
(

h
s + (nhd)−1/2 log n

)

.

Again observe that 1
{

[θ̂n(Xi) ∧ θ0(X i), θ̂n(Xi) ∨ θ0(X i)]
}

is independent of the variable x, a

discretization argument and the Bernstein inequality yield the result that nλ1 · ‖σ̂2(x)− σ̃
2(x)‖ is

stochastically bounded.

For the expectile case, ψ(u) = 2
[

1(u < 0)− τ

]

|u|. Since

ψ
2(εi)− ψ

2(ε̂i) = 4
{

1(εi < 0)− τ

}2|εi|2 − 4
{

1(ε̂i < 0)− τ

}2|ε̂i|2

= 4
{

1(ε̂i < 0)− τ

}2(|εi|2 − |ε̂i|2
)

+ 4
{

1(εi < 0)− 1(ε̂i < 0)
}2|εi|2,

Thus,

σ̂
2(x)− σ̃

2(x) = 4n−1
n
∑

i=1

{

1(ε̂i < 0)− τ

}(

|εi|2 − |ε̂i|2
)

Lh̄(x−Xi)

+ 4(1 − 2τ)n−1
n
∑

i=1

{

1(εi < 0)− 1(ε̂i < 0)
}

|εi|2Lh̄(x−Xi)

def
= 4R3,n(x) + 4(1− 2τ)R4,n(x).

Again, it is sufficient to focus on the set {|θ̂n(Xi) − θ0(Xi)| < n
−λ0}, where n

−λ0 ∼ h
s +

(nhd)−1/2 log n. For R3,n(x), notice that

|εi|2 − |ε̂i|2 =
(

θ0(Xi)− θ̂n(X i)
)(

θ0(Xi) + θ̂n(Xi)− 2Yi
)

= R5,n(u)
(

2θ0(u) +R5,n(u)− 2Yi
)

,

where supx∈D |R5,n(x)| = O(n−λ0), so

ER3,n(x) = E

[

{

1(ε̂i < 0)− τ

}(

θ0(X i)− θ̂n(Xi)
)(

θ0(X i) + θ̂n(X i)− 2Yi
)

Lh̄(x−Xi)
]

= (1− τ)2
∫ ∫

y<θ̂n(u)
R5,n(u)(2θ0(u) +R5,n(u)− 2y)Lh̄(x− u)fY |X(y|u)fX(u)dydu

− τ
2

∫ ∫

y>θ̂n(u)
R5,n(u)(2θ0(u) +R5,n(u)− 2y)Lh̄(x− u)fY |X(y|u)fX(u)dydu.
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Hence, |ER3,n(x)| < Cn
−λ0 for some constant C.

Var
{

R3,n(x)
}

≤ n
−1max{(1− τ)2, τ2}2

∫ ∫

R
2
5,n(u)(2θ0(u) +R5,n(u)− 2y)2L2

h̄(x− u)fY |X(y|u)fX(u)dydu

≤ C(nh̄d)−1
n
−2λ0

.

One can apply discretization and the Bernstein inequality to show that supx∈D
∣

∣

R3,n(x)
∣

∣ = Op(n
−λ0 log n).

For R4,n(x), again suppose without loss of generality that {|θ̂n(Xi)− θ0(Xi)| < n
−λ0}, where

n
−λ0 ∼ h

s + (nhd)−1/2 log n,

|E[R4,n(x)]| ≤ 2

∫

[

∫

|y−θ0(u)|<R6,n(u)
|y − θ0(u)|2fY |X(y|u)dy

]

|Lh̄(x− u)|fX(u)du = O(n−2λ0).

An application of Markov’s inequality yields the desired result.

A.4. Proof of Theorem 3.1

Proof of Lemma 3.2. We will discuss the case of quantile and expectile regression separately.

Consider first ψ(u) = 1(u < 0)− τ .

σ
2
∗(x)− σ̂

2(x) = n
−1

n
∑

i=1

{
∫

ψ
2(v)gh0(v − ε̂i)− ψ

2(ε̂i)

}

Lh̄(x−Xi)/f̂X(x). (25)

By a change of variables,

∣

∣

∣

∣

∫

ψ
2(v)gh0(v − ε̂i)dv − ψ

2(ε̂i)

∣

∣

∣

∣

≤
∫

∣

∣

ψ
2(ε̂i + wh0)− ψ

2(ε̂i)
∣

∣

g(w)dw

≤ 2max{τ, 1− τ}
∫

|ψ(ε̂i + wh0)− ψ(ε̂i)| g(w)dw

= Cτ

{

1(ε̂i > log(n) · h0)
∫ −ε̂i/h0

−∞
g(w)dw + 1(ε̂i < − log(n) · h0)

∫ ∞

−ε̂i/h0

g(w)dw

+ 1(|ε̂i| ≤ log(n) · h0)
∫

R

g(w)dw

}

≤ Cτ

{

1(ε̂i > log(n) · h0)
∫ − log(n)

−∞
g(w)dw + 1(ε̂i < − log(n) · h0)

∫ ∞

log(n)
g(w)dw

+ 1(|ε̂i| ≤ log(n) · h0)
}

≤ Cτ

{∫ − log(n)

−∞
g(w)dw +

∫ ∞

log(n)
g(w)dw + 1(|ε̂i| ≤ log(n) · h0)

}

.

Hence, the sup norm of (25) is bounded by I1 + I2 + supx |I3(x)|, where I1
def
= CτG(− log n),

I2
def
= Cτ

(

1−G(log n)
)

and

I3(x)
def
= n

−1
n
∑

i=1

1(|ε̂i| ≤ h0 log n)
∣

∣

Lh̄(x−Xi)
∣

∣

/|f̂X(x)|,

since f̂X(x) = n
−1
∑n

i=1 Lh̄(x−Xi). I1 and I2 decay polynomially in n by assumption (A1). Note
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that for any κ > 0,

P

{

sup
x

∣

∣

∣

∣

∣

(1− E)
n
∑

i=1

1(|ε̂i| ≤ h0 log n)|Lh̄(x−Xi)|
∣

∣

∣

∣

∣

> n(log n)−1
κ

}

≤

P

{

sup
x

∣

∣

∣

∣

∣

(1− E)

n
∑

i=1

1(|ε̂i| ≤ h0 log n)|Lh̄(x−Xi)|
∣

∣

∣

∣

∣

> n(log n)−1
κ,

∥

∥

θ̂n(x)− θ0(x)
∥

∥ ≤ En log n

}

+ P
{

∥

∥

θ̂n(x)− θ0(x)
∥

∥

> En log n
}

, (26)

where En = h
s + (nhd)−1/2 log n. The uniform convergence of θ̂n(x) to θ0(x) yields that

∞
∑

n=1

P
{

∥

∥

θ̂n(x)− θ0(x)
∥

∥

> En log n
}

<∞. (27)

For the first probability, it is easy to see that it is bounded by the sum

An +Bn
def
= P

{

sup
x

∣

∣

∣

∣

∣

(1− E)
n
∑

i=1

1(|εi| ≤ h0 log n+ En log n)|Lh̄(x−Xi)

∣

∣

∣

∣

∣

>

1

2
n(log n)−1

κ

}

+ 1

(

sup
x

∣

∣

∣

∣

∣

E

[

n
∑

i=1

1(h0 log n− En log n < |εi| ≤ h0 log n+ En log n)|Lh̄(x−Xi)

]∣

∣

∣

∣

∣

>

1

2
n(log n)−1

κ

)

.

After an explicit computation of the expectation, one concludes that Bn is equal to zero for any

κ > 0 if n is sufficiently large. Now we need to bound An. Note that for any fixed x, we can

estimate the variance by

Var

(

n
∑

i=1

1(|εi| ≤ h0 log n+ En log n)|Lh̄(x−Xi)|
)

≤ CLnh0h̄
−d log n,

applying a concentration inequality, one gets for any κ > 0,

P

{

(1− E)
n
∑

i=1

1(|εi| ≤ h0 log n+En log n)|Lh̄(x−Xi)| > n(log n)−1
κ

}

≤ 2 exp

{

−1

4

n
2(log n)−4

κ
2

CLnh0h̄
−d log n+ CLnh̄

−d(log n)−2
κ

}

,

which decreases exponentially in n since nh̄d → ∞ polynomially in n by assumption (B3). By a

discretization argument, one can show that An is also summable (the grid size grows polynomially

in n). Hence, we conclude that the probability (26) is summable. The stochastic part of the

numerator of I3(x) is therefore of Op((log n)
−1) a.s. by an application of the Borel-Cantelli lemma.

The mean of the numerator of I3(x) can be estimated by the law of iterative expectation:

E

[

E

[

n
−1

n
∑

i=1

1(|ε̂i| ≤ h0 log n)
∣

∣

Lh̄(x−Xi)
∣

∣

∣

∣

∣

∣

∣

X, θ̂n(x)− θ0(x)

]]

= E

[

∫ θ̂n(x)−θ0(x)+h0 logn

θ̂n(x)−θ0(x)−h0 logn
f

{

e|X, θ̂n(x)− θ0(x)
}

de|Lh̄(x−Xi)|
]

≤ 2h0 log nC = O((log n)−1),
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since the density f
{

e|X, θ̂n(x)−θ0(x)
}

is bounded and L ∈ L
1(Rd). Finally, applying a linearization

argument we obtain that ‖I3(x)‖ = Op((log n)
−1) = O((log n)−1/2) a.s.

In the case of expectile regression, we need to consider ψ(u) = 2(1(u < 0)−τ)|u|, which is Lips-

chitz continuous (see Lemma A.10). Note that |ε̂i| ≤ |εi|+En, where En = O(hs+(nhd)−1/2 log n)

a.s. by the Bahadur representation of θn, a discretization argument and an application of the

Bernstein inequality. Hence,

∣

∣

∣

∣

∣

n
−1

n
∑

i=1

{
∫

ψ
2(v)gh0(v − ε̂i)− ψ

2(ε̂i)dv

}

Lh̄(x−Xi)

∣

∣

∣

∣

∣

≤ n
−1
Cτ

n
∑

i=1

∫

h0(2|ε̂i|+ h0|w|)|w|g(w)dw|Lh̄(x−Xi)|

= Cτh
2
0

∫

|w|2g(w)dw + Cτ,g2h0n
−1

n
∑

i=1

|ε̂i||Lh̄(x−Xi)|

≤ Cτh
2
0

∫

|w|2g(w)dw + 2Cτ,gh0Enn
−1

n
∑

i=1

|Lh̄(x−Xi)|+ 2Cτ,gh0n
−1

n
∑

i=1

|εi||Lh̄(x−Xi)|.

The first term converges almost surely to 0, faster than (log n)−1
, based on assumption (B3). The

second term and the third term can be handled by similar argument for showing the uniform almost

sure convergence of the Nadaraya-Watson estimator, see Hansen (2008) for more details.

Our strategy is to follow the sequence of approximation steps that are similar to Section A.1

and A.2. Define

Y
∗
0,n(x) =

1
√

h
d
f̂X(x)σ2n,∗(x)

∫ ∫

Γ∗

n

K

(

x− u

h

)

ψτ (v)dZ
∗
n(v,u), (28)

where σ2n,∗(x) = E
∗
[

ψτ (ε
∗
i )

2
1(|ε∗i | < bn)|x

]

, and Γ∗
n = {v : |v| ≤ bn}.

Y
∗
1,n(x) =

1
√

h
d
f̂X(x)σ2n,∗(x)

∫ ∫

Γ∗

n

K

(

x− u

h

)

ψτ (v)dB
∗
n

{

T̂ (v,u)
}

, (29)

where B∗
n

{

T̂ (v,u)
}

= W
∗
n

{

T̂ (v,u)
}

− F̂ (v,u)W ∗
n(1, ..., 1), W

∗ is a Brownian motion defined con-

ditional on the sample, and T̂ (v,u) is the Rosenblatt transformation:

T̂ (v,u) =
{

F̂X1|ε(u1|v), F̂X2 |ε(u2|u1, v), ..., F̂Xd |Xd−1,...,X1,ε(ud|ud−1, ..., u1, v), F̂ε(v)
}

,

given F̂X1|ε(u1|v), F̂X2|ε(u2|u1, v), ..., F̂Xd |Xd−1,...,X1,ε(ud|ud−1, ..., u1, v), F̂ε(v) are associated cdfs ob-

tained from integrating f̂ε,X(v,u).

Y
∗
2,n(x) =

1
√

h
d
f̂X(x)σ2n,∗(x)

∫ ∫

Γ∗

n

K

(

x− u

h

)

ψτ (v)dW
∗
n

{

T̂ (v,u)
}

, (30)
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Y
∗
4,n(x) =

1
√

h
d
f̂X(x)σ2n,∗(x)

∫
√

f̂X(u)σ2n,∗(u)K

(

x− u

h

)

dW
∗
n

(

u
)

, (31)

Y
∗
5,n(x) =

1√
h
d

∫

K

(

x− u

h

)

dW
∗
n

(

u
)

. (32)

From (28) to (29) the proof resembles Lemma A.1 for quantile regression and A.7 for expectile

regression. For the bootstrap version of these proofs to hold, it is sufficient to verify the conditions

(log n)h−3d

∫

|v|>cn

f̂ε(v)dv = O(1), a.s. (33)

for quantile regression and

(log n)h−3d

∫

|v|>cn

v
2
f̂ε(v)dv = O(1), a.s. (34)

for expectile regression, where f̂ε(v) = (nh0)
−1
∑n

i=1 g((v − ε̂i)/h0). The rest follows from similar

arguments in Lemma A.1 and A.7.

We will only consider the kernel g with compact support; in particular, with support [−1, 1].

Via standard arguments one could generalize the result here immediately to, e.g., the Gaussian

kernel.

Let δn = (log n)−1
h
3d. Let En = h

s + (nhd)−1/2 log n.

∫

|v|>cn

f̂ε(v)dv =
1

nh0

n
∑

i=1

∫

|v|>cn

g

(

ε̂i − v

h0

)

dv ≤ 1

nh0
Cg

n
∑

i=1

∫

|v|>cn

1(|ε̂i − v| ≤ h0)dv

≤ 1

nh0
Cg

n
∑

i=1

∫

|v|>cn

1(|v| − |ε̂i| ≤ h0)1(ε̂i − h0 ≤ v ≤ ε̂i + h0)dv

≤ 1

nh0
Cg

n
∑

i=1

1(cn − h0 ≤ |ε̂i|)
∫

|v|>cn

1(ε̂i − h0 ≤ v ≤ ε̂i + h0)dv

≤ 2

n

Cg

n
∑

i=1

1(cn − h0 ≤ |ε̂i|) (35)

where Cg is a constant depending on g. For any κ > 0 and a constant λ > 0 small such that

Enn
λ → 0 as n→ ∞, consider

P

{∣

∣

∣

∣

∣

(1− E)n−1
n
∑

i=1

1(cn − h0 ≤ |ε̂i|)
∣

∣

∣

∣

∣

> 2δnκ

}

≤

P

{∣

∣

∣

∣

∣

(1− E)n−1
n
∑

i=1

1(cn − h0 ≤ |ε̂i|)
∣

∣

∣

∣

∣

> 2δnκ,
∥

∥

θ̂n(x)− θ0(x)
∥

∥ ≤ Enn
λ

}

+ P
{

∥

∥

θ̂n(x)− θ0(x)
∥

∥

> Enn
λ
}

def
= P1,n + P2,n.

P2,n is summable by similar argument in the proof of Lemma 3.2. Without loss of generality, we
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assume cn is large enough so that h0 + Enn
λ
< cn/2 since h0, Enn

λ → 0. Thus,

P1,n ≤ P

{∣

∣

∣

∣

∣

(1− E)n−1
n
∑

i=1

1(cn/2 ≤ |εi|)
∣

∣

∣

∣

∣

> 2δnκ

}

.

Let Sn =
∑n

i=1 1(cn/2 ≤ |εi|). From (2) in assumption (C2),

Var(Sn) = n

∫

|v|>cn/2
fε(v)dv = O(n2(log n)−3

h
6d) = O(n2(log n)−1

δ
2
n).

This yields

∞
∑

n=1

P (|Sn| > 2κnδn) ≤ 2
∞
∑

n=1

exp

{

− 4n2κ2δ2n
4Var(Sn) + 8nκδn

}

= 2
∞
∑

n=1

exp

{

− κ
2 log n

1 + 2κ log2 n/(nh3d)

}

<∞,

(36)

given that κ > 1, since nh3d(log n)−2 → ∞ by assumption (A7). It follows by the Borel-Cantelli

lemma that the stochastic part of (35) is of Op(δn). For the expectation, we note that

1(cn − h0 ≤ |ε̂i|) ≤ 1(cn − h0 ≤ |εi|+ ‖θ̂n(x)− θ0(x)‖)
≤ 1(cn − h0 − Enn

λ ≤ |εi|)1(‖θ̂n(x)− θ0(x)‖ ≤ Enn
λ)

+ 1(cn − h0 ≤ |εi|+ ‖θ̂n(x)− θ0(x)‖)1(‖θ̂n(x)− θ0(x)‖ > Enn
λ)

≤ 1(cn/2 ≤ |εi|) + 1(‖θ̂n(x)− θ0(x)‖ > Enn
λ). (37)

Therefore,

E

[

n
−1

n
∑

i=1

1(cn − h0 ≤ |ε̂i|)
]

≤ E [1(cn/2 ≤ |εi|)] + P
{

‖θ̂n(x)− θ0(x)‖ > Enn
λ
}

=

∫

|v|>cn/2
fε(v)dv +O(e−n

µ1
) = O((log n)−3

nh
6d),

for some µ1 > 0.
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Next we show (34). The sequence cn will be chosen appropriately later,

∫

v>cn

v
2
f̂ε(v)dv ≤ 1

nh0
Cg

n
∑

i=1

1(cn − h0 ≤ |ε̂i|)
∫

|v|>cn

v
2
1(|v| ≤ h0 + |ε̂i|)dv

≤ 1

nh0
Cg

n
∑

i=1

1(cn − h0 ≤ |ε̂i|)(2h0ε̂2i + 2h30)

≤ 2

n

Cg

n
∑

i=1

ε̂
2
i 1(cn − h0 ≤ |ε̂i|) +

2h20
n

Cg

n
∑

i=1

1(cn − h0 ≤ |ε̂i|)
︸ ︷︷ ︸

T1,n

≤ 4

n

Cg

n
∑

i=1

ε
2
i 1(cn − h0 ≤ |ε̂i|) +

4

n

Cg

n
∑

i=1

[

θ̂n(X i)− θ0(X i)
]2
1(cn − h0 ≤ ε̂i)

︸ ︷︷ ︸

T2,n

+T1,n

= T3,n + T2,n + T1,n. (38)

Choosing cn ≍ (n4/b−1(log n)1+8/b
δ
−2
n )1/(b−2). Note cn > ((log n)3(nh6d)−1)1/b, and therefore (2)

holds naturally in this case, by assumption (EC1),

∫

|v|>cn

fε(v)dv ≤
∫

|v|>cn

|v|b
|cn|b

fε(v)dv = O(cbn) = O(n4/b−1(log n)1+8/b
δ
−2
n ).

It can be shown via similar arguments for showing (33) that Ti,n = O∗
p((log n)

−1
h
3d) a.s. for

i = 1, 2.

To bound T3,n, given b from (EC1), we choose Mn = n
1/b(log n)2/b and obtain

P {|(1 − E)T3,n| > 2δnκ}

≤ P(|(1 − E)S′
n| > 2nκδn, εi < Mn,∀i) + nP(|εi| ≥Mn) + P

{

‖θ̂n(x)− θ0(x)‖ > Enn
λ
}

def
= U1,n + U2,n + U3,n,

where S′
n = Cg

∑n
i=1 ε

2
i 1(cn/2 ≤ |εi|), the term U2,n is of order O(M−b

n ) by (EC1) and hence

summable. U3,n is summable by a similar argument as used in the proof of (33). Restricting S′
n to

the set ∩ni=1{|εi| < Mn}, we find

Var(S′
n) ≤M

4
nnC

2
g

∫ ∞

cn/2
fε(v)dv ≤ Cg,bM

4
nnc

−b
n = O(n2(log n)−1

δ
2
n).

This yields

∞
∑

n=1

U1,n ≤ 2

∞
∑

n=1

exp

{

− 4n2κ2δ2n
4Var(S′

n) + 8nκδn

}

= 2

∞
∑

n=1

exp

{

− κ
2 log n

1 + 2κ log2 n/(nh3d)

}

<∞, (39)

given that κ > 1 and assumption (EA2). It follows by the Borel-Cantelli lemma that (1−E)T3,n =

O(δn) a.s. It left to control the expectation. By computation in (37),

1(cn − h0 ≤ |ε̂i|) ≤ 1(cn − h0 ≤ 1(cn/2 ≤ |εi|) + 1(‖θ̂n(x)− θ0(x)‖ > Enn
λ).
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Thus, by law of iterative expectation,

E[T3,n] ≤ E
[

εi1(cn/2 ≤ |εi|)
]

+ E

[

n
−1

n
∑

i=1

εiP
{

‖θ̂n(x)− θ0(x)‖ > Enn
λ
}

]

= O(c2−bn ) +O(e−n
µ2
).

It follows immediately by the order of cn that E[T3,n] = O(δn).

In order to show the almost sure uniform convergence of Y ∗
4,n(x) to Y ∗

5,n(x) we need to verify

that for quantile regression

h
−d log n sup

x∈D

∣

∣

∣

∣

∣

∫

|v|>cn

f̂ε|X(v|x)dv
∣

∣

∣

∣

∣

= O(1), a.s. (40)

and for expectile regression

h
−d log n sup

x∈D

∣

∣

∣

∣

∣

∫

|v|>cn

v
2
f̂ε|X(v|x)dv

∣

∣

∣

∣

∣

= O(1). a.s. (41)

The first condition can be shown in the same way as showing (33), and the second one is similar to

(34) given b ≥ 4. A discretization argument is needed in both cases, but the grid size only grows

in polynomial rate in n. The proofs are omitted for brevity.

Using analogous arguments as in Lemma A.1 for quantile regression and A.7 for expectile

regression with (33) and (34), it can be shown that Y ∗
n (x) converges uniformly in probability to

Y
∗
0,n(x). The almost sure uniform convergence in probability of Y ∗

0,n(x) to Y
∗
5,n(x) follows by similar

arguments in Lemma A.2, A.3, A.5 and A.6 for quantile regression and Lemma A.8, A.9, A.11 and

A.12 for expectile regression, except that fX(x), σ2n(x), F (y,x) are replaced by f̂X(x), σ2∗,n(x),

F̂ (v,x) respectively, and that the approximation shown in Lemma A.4 and A.10 is not needed here.

Finally, the proof of Theorem 3.1 is completed by an application of the extreme value theorem of

Rosenblatt (1976) to Y ∗
5,n(x).

B. Supporting Lemmas

LEMMA B.1 (Kong et al. (2010)). Under (A1),(A3)-(A5), for some s ≥ 0, and D is an compact

subset of Rd. Then

sup
x∈D

∣

∣

∣Hn

{

β̂(x)− β(x)
}

− β
∗
n(x)

∣

∣

∣ = O
(

{

log n

nh
d

}λ(s)
)

. (42)

where

β
∗
n(x) = − 1

nh
d
S
−1
K,g,fH

−1
n

(

n
∑

i=1

Kh(Xi − xi)ϕ(εi)

)

(1,Xi − x)⊤; (43)

(44)
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ϕ is the piecewise derivative of ρ, and

λ(s) = min

{

2

2 + s

,

6 + 2s

8 + 4s

}

. (45)

Note that under the i.i.d. case, the constant s, which controls the weak dependence, is 0.

LEMMA B.2 (Bickel and Wichura (1971): Tightness of processes on a multidimensional cube).

If {Xn}∞n=1 is a sequence in D[0, 1]d, P(X ∈ [0, 1]d) = 1. For neighboring blocks B,C in [0, 1]d (see

Definition 1) constants λ1 + λ2 > 1, γ1 + γ2 > 0, {Xn}∞n=1 is tight if

E[|Xn(B)|γ1 |Xn(C)|γ2 ] ≤ µ(B)λ1µ(C)λ2 , (46)

where µ(·) is a finite nonnegative measure on [0, 1]d (for example, Lebesgue measure), where the

increment of Xn on the block B is defined by

Xn(B) =
∑

α∈{0,1}d

(−1)d−|α|
Xn

(

s+α⊙ (t− s)
)

.

LEMMA B.3 (Meerschaert, M. M., Wang, W. and Xiao, Y. (2013)). Suppose that Y = {Y (t), t ∈
R
d} is a centered Gaussian random field with values in R, and denote

d(s, t)
def
= dY (s, t) =

(

E|Y (t)− Y (s)|2
)1/2

, s, t ∈ R
d
.

Let D be a compact set contained in a cube with length r in R
d and let σ2 = supt∈D E[Y (t)2]. For

any m > 0, ǫ > 0, define

γ(ǫ) = sup
s,t∈D,‖s−t‖≤ǫ

d(s, t)

and

Q(m) = (2 +
√
2)

∫ ∞

1
γ(m2−y

2

)dy.

Then for all a > 0 which satisfy a ≥ (1 + 4d log 2)1/2(σ + a
−1),

P

{

sup
t∈S

|Y (t)| > a

}

≤ 22d+2

(

r

Q
−1(1/a)

+ 1

)d
σ + a

−1

a

exp

{

− a
2

2(σ + a
−1)2

}

, (47)

where Q−1(a) = sup{m : Q(m) ≤ a}.
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