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Abstract

This thesis is concerned with the analysis of the internal structure of sensitivities
of engineering structures with respect to modifications in shape. The term internal
structure of sensitivity is introduced as an abbreviation for the eigenvalues and sin-
gular values, the corresponding eigenvalue spectrum and singular value spectrum as
well as for the associated eigenvectors and singular vectors of the sensitivity matrix,
the pseudo load matrix and the mesh velocity matrix, which build up the central
parts of the sensitivity analysis. These matrices are analysed both qualitatively and
quantitatively utilising the singular value decomposition (SVD) and techniques which
are based on the principle component analysis (PCA).

The impact of the chosen models on the computed optimal designs, especially the in-
fluence of the chosen shape parametrisation, is analysed. This knowledge enables the
design engineer to understand and improve the models systematically whereas they
are usually set up entirely by engineering experience and intuition. The weaknesses of
the models are detected and improved design descriptions are proposed. This human
controlled process is called design exploration. The aim of this thesis is to contribute
new substantial capabilities to the corresponding methods.

Moreover, an algorithmic and automatic treatment of SVD based sensitivity infor-
mation is presented within this thesis for different kinds of application. In context
of model reduction, the complete design space is reduced to the most valuable sub-
space of design modifications in order to demonstrate the information content of the
decomposed sensitivities. Illustrative examples show that reasonable optimal designs
can be obtained with a small percentage of properly defined design variables. In ad-
dition, the area of application for SVD based sensitivity information is extended to
the nonlinear buckling analysis. Here, decomposition of the pseudo load matrix is
utilised to generate the ‘worst case’ imperfections.

The generic concept is applied to shape optimisation of shell structures. The design of
such structures is extremely important for their stability, robustness and load-bearing
capacity. The variational design sensitivity analysis for a nonlinear solid shell is per-
formed and especially the pseudo load matrix and the sensitivity matrix are derived.
Within the scope of this thesis, only static nonlinear structural analysis and hyper-
elastic material behaviour are considered.





Kurzfassung

Die vorliegende Arbeit befasst sich mit der inneren Struktur der Empfindlichkeiten
von mechanischen Strukturen bezüglich geometrischer Veränderungen. Der Begriff
innere Struktur der Empfindlichkeiten wird als abkürzende Bezeichnung für die Eigen-
werte und Singulärwerte, die entsprechenden Eigenwert- und Singulärwertspektren,
sowie die zugehörigen Eigenvektoren und singulären Vektoren der Pseudolast-, Sen-
sitivitäts- und Designgeschwindigkeitsmatrizen eingeführt. Zusammen bilden diese
Größen den Kern der Sensitivitätsanalyse und werden sowohl qualitativ als auch quan-
titativ mit Hilfe der Singulärwertzerlegung (SVD) und Techniken, die aus dem Bereich
der Hauptkomponentenanalyse (PCA) bekannt sind, analysiert.

Beschrieben wird der Einfluss der Modellbildung, insbesondere die Wahl der Form-
parametrisierung auf die Lösung der Optimierungsaufgabe. Dieses Wissen ermöglicht
es dem entwerfenden Ingenieur das Modell zu verstehen und es systematisch zu
verbessern, was gewöhnlich nur auf seiner Erfahrung und Intuition basiert. Die
Schwächen der Modellbildung werden identifiziert und verbesserte Parametrisierun-
gen des Designraumes vorgeschlagen. Ein solches Vorgehen, das unter anderem die
Interaktion zwischen Mensch und Maschine erfordert, wird auch als Designexploration
bezeichnet und stellt den Schwerpunkt der vorliegenden Arbeit dar.

Des Weiteren wird eine algorithmische und automatische Behandlung der auf SVD
basierten Sensitivitätsinformationen für verschiedene Anwendungen vorgestellt. Im
Zusammenhang mit der Modellreduktion wird der vollständige Designraum auf einen
Unterraum mit der größtmöglichen Varianz projeziert, um den Informationsgehalt
der Sensitivitätszerlegungen zu demonstrieren. Beispiele werden zeigen, dass nur ein
Bruchteil der neu definierten Designvariablen benötigt wird, um brauchbare Opti-
mierungsergebnisse zu erzielen. Das Anwendungsgebiet der SVD basierten Sensi-
tivitätsinformationen wird auf die nichtlineare Beulanalyse ausgeweitet. Hierbei wer-
den die singulären Vektoren der Pseudolastmatrix mit den ‘worst case’ Imperfektionen
in Verbindung gebracht.

Die entwickelten Konzepte werden auf die Formoptimierung von Schalentragwerken
angewandt. Das Design solcher Strukturen hat einen großen Einfluss auf ihre Sta-
bilität, Robustheit und ihre Versagenslast. Die variationelle Sensitivitätsanalyse einer
nichtlinearen Schale wird durchgeführt. Insbesondere werden die Sensitivitäts- und
Pseudolastmatrizen hergeleitet. Es werden nur statische Probleme mit hyperelasti-
schem, auch nichtlinearem, Materialverhalten betrachtet.
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1 Introduction

This introductory chapter presents the motivation and thematic priori-
ties concerning the research objectives of the work in hand. The state
of the art is discussed and the structure of this thesis is outlined.

1.1 Motivation and research objectives

Nowadays structural optimisation is a key discipline within the design process of new
products. This is mainly due to the everlasting increase of computer power and the
enormous research efforts in the scope of numerical methods such as the finite element
method. Considering practical applications, the objectives and constraints are usually
nonlinear with respect to design variables. Despite of the employment of highly effi-
cient gradient based optimisation strategies, solving structural optimisation problems
is expensive concerning the iterative nature of most algorithms. In case of nonlinear
structural behaviour, additional iterations are performed within structural analysis.

Solving a given structural optimisation problem is almost an automatic process, where
the sensitivities are only computed to serve the mathematical optimiser. However,
the definition process of a structural optimisation problem is human controlled and
is based on experience and knowledge. Decisions within this process have an extraor-
dinary impact on the quality of optimisation results, on the solubility of the problem
and on the corresponding computational effort. Design exploration, which is rather
known in context of robustness or uncertainty analysis than in context of optimisa-
tion, can facilitate the definition of the problem. Such exploration is usually based
on parameter studies, which are evaluated using standard statistical methods. Hence,
problems with only a small number of design variables can be considered as several
computations of structural response are required for each design variable to create so
called response surfaces.

This thesis outlines an enhanced analysis of the design sensitivities beyond the stan-
dard computation of the gradient values. It is based on the analytical derivation and
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1 Introduction

efficient computation of the Fréchet derivatives of objectives and constraints with
respect to the full space of all possible design variables. This overhead of sensitiv-
ity information is examined by a singular value decomposition (SVD) and principal
component analysis (PCA) in order to detect major and minor influence of model pa-
rameters on the structural response, objectives and constraints. Thus, this method-
ology leads to valuable qualitative and quantitative insight, which is so far unused in
standard approaches to structural optimisation. This knowledge enables the design
engineer to understand and improve the models systematically. Design of structures
with large number of variables can be explored utilising only few visualisations with
enormous information content.

In addition to the mentioned exploration techniques, different applications are pre-
sented where the discovered SVD based sensitivity information is treated automati-
cally within optimisation algorithms. A model reduction technique for structural op-
timisation problems is proposed. Here, the singular value decomposition of sensitivity
and of pseudo load matrices is utilised to formulate reduced quadratic sub-problems
within the sequential quadratic programming (SQP) approach. A technique for cre-
ation of ‘worst case’ imperfections for nonlinear buckling analysis is outlined. In this
context, right singular vectors, which correspond to the largest singular values, are
used as imperfection modes.

Shell elements are most commonly used to model thin structures because of their ef-
ficiency and accuracy. The design of such structures is extremely important for their
stability, robustness and for their load-bearing capacity. The proposed enhanced de-
sign sensitivity analysis is applied to shell structures. It provides information which
allows the engineer to find the appropriate shape of a shell and to understand the in-
fluence of geometry and layout variants on its behaviour. For this reason, variational
and discretised sensitivity relations and the corresponding sensitivity and pseudo load
matrices for a nonlinear solid shell element are derived. The considered element can
be used either in shell or in solid mode within both structural analysis and optimisa-
tion. The utilised shape parametrisation is based on morphing concepts and is valid
for shell and solid structures.

Within this thesis, techniques from various scientific disciplines are utilised and very
different topics are tackled. The overviews and references on these topics are pre-
sented in the introductions of the corresponding chapters. At this point, only the
applications of singular value decomposition to structural analysis and especially op-
timisation are reviewed. The power of SVD in conjunction with a special subspace
method can be observed in system identification and dynamical behaviour, see [94].
An improved computational approach for linear differential equations, such as Laplace
and Helmholtz equations, motivated by SVD analysis is proposed in [115]. In con-
text of model reduction, the number of degrees of freedom for the analysis model is
reduced by means of projections into a lower dimensional space to speed up struc-

2



1.2 Outline of the thesis

tural analysis. Here, the SVD-based, the Krylov-based and the SVD-Krylov-based
approximation methods are known, see [16]. These methods are often used to anal-
yse large-scale dynamical systems or time dependent models. Overall, SVD analysis
enhances the eigenvalue analysis in structural dynamics and structural stability and
is both quantitatively and qualitatively well understood. The review article [72] hints
to early works on the application of SVD to optimisation of dynamic response and
stability behaviour. The optimal design of beam structures is elaborated controlling
singular values of static and dynamic stiffness matrices in [56]. Both, the optimisation
model and the computational behaviour are improved by incorporating the insight
gained by SVD analysis. Optimum laminate design is detected utilising SVD in a re-
cent work [55]. Here, the worst possible load case is formulated as a minimax problem
whose solution is shown to be equivalent to a singular value minimisation problem.
The advantages of SVD for the optimal design of piezoelectric actuators are discussed
in [95] on simple beam structures. A SVD based sub-problem technique for the restric-
tion of the best individuals to a suitable subspace is proposed in [97] and applied to a
genetic optimisation approach. A compact proper orthogonal decomposition basis for
optimisation-oriented reduced-order models is proposed in [38]. Here, SVD is utilised
to decompose the weighted snapshot matrix of state vector sensitivities. Structural
and sensitivity reanalysis based on SVD is presented in [139]. For perturbations in
design which lead to low rank changes of system matrices the numerical effort of a
reanalysis is reduced. The application of SVD to shape sensitivity analysis in context
of FE node based shape optimisation was reported by the author and others in [66].
The author has outlined an equivalent enhanced sensitivity analysis for topology op-
timisation in [63]. In both contributions, linear structural analysis for the 2D case
is considered and pure displacement formulations are utilised. In contrast, nonlinear
behaviour of 3D structures employing mixed formulations is investigated within the
scope of this thesis.

1.2 Outline of the thesis

The present thesis consists of twelve chapters. Utilised notation and frequently used
mathematical operations are explained in Chapter 2. In Chapter 3 structural opti-
misation is introduced and topics which are relevant for this thesis are commented
on with references to literature. Morphing based shape parametrisation is outlined
in Chapter 4. Mapping functions which are based on tensor products of B-splines
are considered. The corresponding design velocity fields are derived. All necessary
relations to perform finite element analysis of the nonlinear solid shell are set up in
Chapter 5. Variational and discretised sensitivity relations as well as the correspond-
ing pseudo load and sensitivity matrices are derived in Chapter 6. An introduction
to singular value decomposition is given in Chapter 7. The power of SVD is demon-
strated on its several applications in science. Chapter 8 tackles the SVD based gener-
ation of ‘worst case’ imperfections for nonlinear buckling analysis. Here, SVD of the
pseudo load matrix is utilised to create imperfections. A model reduction technique

3



1 Introduction

for structural optimisation problems is presented in Chapter 9. Reduced quadratic
sub-problems within the SQP approach are formulated to demonstrate the informa-
tion content of SVD based sensitivity information. The corresponding optimisation
algorithm is outlined. Chapter 10 is concerned with the exploration of the FE model
and the corresponding design description. Based on singular value decomposition of
sensitivity information, interactive tools are derived which facilitate the definition of
a structural optimisation problem. The features and capabilities as well as the short-
comings of the proposed techniques are demonstrated on more practical numerical
examples in Chapter 11. Finally, Chapter 12 summarises and discusses the present
work, and possible future research objectives are outlined.
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2 Preliminaries

Within this chapter the utilised notation is explained. Frequently used
mathematical operations and different kinds of derivatives are stated.
The software environment, in which the proposed analysis tools have
been implemented and tested, is introduced.

2.1 Notation

The notation, presented in Table 2.1, is utilised within this thesis to distinguish
between scalars, vectors, matrices and tensors of different order. Some examples are
given in this table. Similar notation was introduced in [98]. The meaning of the
individual symbols is explained at the places where they appear. Some symbols are
used for different purposes in several places, for example, to denote loop parameters.

Table 2.1: Utilised notation

quantities typographic style examples

scalars nonbold A, a, Λ, λ

vectors bold A, a, Λ, λ
matrices
second-order tensors

third-order tensors blackboard bold A, T
fourth-order tensors

Standard notation is used to denote products between matrices and vectors. All
relevant products between physical tensors are specified in Table 2.2.

5



2 Preliminaries

Table 2.2: Products between physical tensors

description symbolic notation

scalar product of two vectors c = a · b
cross product of two vectors c = a× b
dyadic product of two vectors C = a⊗ b
contraction of a second-order tensor and a vector c = Ab
contraction of two second-order tensors C = AB
scalar product of two second-order tensors c = A : B
scalar product of a fourth-order tensor d = A : C : B
and two second-order tensors
contraction of a fourth-order tensor C = A : B
and a second-order tensor

2.2 Derivatives and variations

Different kinds of derivatives and variations are explained and the corresponding
notation is introduced. The utilised notation is similar to that in [98].

Directional derivative

Let J(v) be a possible functional which is nonlinear with respect to the variable v ∈ V.
It is defined on a Hilbert space V, i.e. J : V → R. If J(·) is a differentiable functional
on V, the following notation is used for the Gâteaux derivatives (i.e. directional
derivatives)

J
′

v (v;η) := lim
ε→0

J(v + εη)− J(v)

ε
=

d

dε
J(v + εη)

∣∣∣∣
ε=0

,

J
′′

vv(v;η,µ) := lim
ε→0

J
′

v (v + εµ,η)− J ′

v (v;η)

ε
=

d

dε
J

′

v (v + εµ;η)

∣∣∣∣
ε=0

.

(2.1)

The quantity J
′

v (v;η) is linear with respect to η and the term J
′′

vv(v;η,µ) is linear
with respect to η and µ. Both quantities are nonlinear with respect to v.

Variation

A variation of a functional J(·) is equal to the directional derivative. Usually, the δ
symbol is used to denote a variation. For example, the first variation of J(·) with
respect to v is written as δvJ(v; δv) or δvJ(v)(δv) with δv ∈ V. The relation

δvJ(v; δv) = J
′

v (v; δv) (2.2)

holds true and both notations are used within this work.

6



2.3 Software environment

Partial and total variations

The functional J(·) can also depend on a second nonlinear function s ∈ S and is
written as J(v, s). Also S is a Hilbert space. The partial variations with respect to
v and s are

J
′

v (v, s;η) =
d

dε
J(v + εη, s)

∣∣∣∣
ε=0

and J
′

s (v, s;ψ) =
d

dε
J(v, s+ εψ)

∣∣∣∣
ε=0

. (2.3)

The total variation is written as

J
′

= J
′

v (v, s;η) + J
′

s (v, s;ψ) or δJ = δvJ(v, s;η) + δsJ(v, s;ψ). (2.4)

Total partial variation

Within the scope of structural optimisation for the most objective functions and
constraints the function v depends directly on s, i.e. v = v(s). The total partial
variation with respect to s is defined as

DsJ(v(s), s) · δs =
∂J

∂s
· δs+

∂J

∂v

dv

ds
· δs. (2.5)

2.3 Software environment

The proposed analysis tools and algorithms are implemented and tested in MATLAB
R2012b [9]. The corresponding code is called structural optimisation program (SOP).
MATLAB is platform independent, hence the developed program is tested on LINUX
and WINDOWS operating systems. The following toolboxes are employed

• optimisation toolbox,

• parallel computing toolbox,

• symbolic math toolbox,

• MATLAB coder,

• MATLAB compiler,

• MATLAB report generator.

Within this thesis sequential quadratic programming (SQP) is utilised to solve non-
linear optimisation problems. The function QUADPROG, which is part of the op-
timisation toolbox, is called to solve quadratic subproblems within SQP procedure.
System matrices and vectors are assembled using parallel computing toolbox to speed
up the computational time. By means of MATLAB coder and compiler the developed
code is exported to C++ files and is compiled to obtain so called mex-files, which can
be called by MATLAB instead of original functions. In this manner, the computa-
tional time of some functions is reduced to a fraction of its initial value. Analytical
derivatives of some functions are verified by symbolic math toolbox. The developed
code is documented utilising the MATLAB report generator.
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Features of SOP

The structural optimisation program (SOP) can be utilised to analyse nonlinear struc-
tural behaviour, which include buckling. Arbitrary elastic 3D materials can be consid-
ered. The implemented solid shell element can be used either in solid or in shell mode.
Hence, 3D structures can be modelled as curved surfaces or as volumes. Analytical
sensitivity analysis and structural optimisation are the major purposes of SOP. Here,
geometry and morphing based shape parametrisation techniques are available. SOP
is also used for teaching purposes at TU Dortmund within introductory seminars on
numerical methods in engineering and on structural optimisation.

Efficient singular value decomposition with MATLAB

Singular value decomposition (SVD), generalised singular value decomposition (GSVD)
and eigenvalue decomposition (EVD) are frequently used linear algebra tools within
this work, see chapter 7 for more details on this topic. The corresponding MATLAB
functions are SVD, GSVD and EIG. Functions mentioned above are only valid for
full populated matrices and allow the computation of singular values and eigenvalues
without the construction of the corresponding vectors.

Within finite element method sparse populated matrices are utilised to save the stor-
age space. MATLAB provides the functions SVDS and EIGS to deal with such
matrices. ARPACK [3] and LAPACK [8] libraries are called by these functions to
compute sparse decompositions. In addition, sparse decompositions make it possible
to compute only some first or last vectors and values, which is advantageous for the
corresponding numerical effort. There is no possibility to compute sparse generalised
singular value decomposition in MATLAB, but such an algorithm is already developed
and is presented in [80].

Fast visualisation with ParaView

ParaView [11] is an open-source, multi-platform data analysis and visualisation ap-
plication. ParaView can quickly build visualisations to analyse large datasets using
qualitative and quantitative techniques. Data can be explored interactively or in
batch mode. Within this thesis, MATLAB data is exported in VTK format and is
post processed with ParaView. Optimisation history including the structural shape
can be tracked rapidly considering the complete model or only parts of it. The pro-
vided graphical user interface is very intuitive to use.
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3 Elements of structural optimisation

Within this chapter, an introduction to structural optimisation is given.
Its main aspects are highlighted and a general optimisation procedure
is outlined. Topics which are relevant for this thesis are commented on
with references to literature.

3.1 Introduction

Structural optimisation is a field of research which deals with fundamentals, methods
and applications of mathematical optimisation for computer aided optimal design of
structural components, constructions and general mechanical systems. In this context,
mathematical optimisation means the detection of the best choice of all possible alter-
natives within a decision process employing mathematical and numerical algorithms.
Structural optimisation delivers solutions, which are optimal in the proper sense. That
means, that determined design parameters minimise or maximise the objective func-
tion and satisfy the constraints. Typical objectives in structural optimisation are, for
example, the stiffness of structures, natural frequencies, used mass or quantity of ma-
terial, maximum Von Mises stress and costs of constructions. Typical constraints are
stress constraints, manufacturing constraints, volume or mass constraints and damage
criteria. Quantities, which have influence on the mentioned objectives and constraints
are called design parameters or variables. Such quantities are, for example, thickness
or cross-section of structural parts, material distribution and shape parameters like
coordinates of control points or radii of circles. In this context, optimisation means
an automatic process of design generation in contrast to improvement or even trying
out of different designs. There is a lot of literature, books and papers dealing with
basic topics of structural optimisation or discussing details on numerical algorithms
and their implementation, for example [45, 75, 43, 44, 27, 123, 21, 88, 40].

Within this thesis only shape optimisation is considered, but all developed techniques
are also valid for other types of structural optimisation, see for example [63]. These
types are briefly introduced and summarised in the next section.
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3.1.1 Branches of structural optimisation

Talking about mechanics or mechanical problems four types of structural optimisation
can be distinguished

• sizing optimisation,

• shape optimisation,

• topology optimisation,

• material optimisation.

Each of them has its own right to exist. Depending on the task, also mixed applica-
tions are possible. Therefore, an individual introduction to each type is necessary.

Sizing optimisation. The most obvious and one of the simplest kinds of structural
optimisation is to make use of some simple size parameters like cross-section values
or thickness of structural members as design variables. These parameters have no
influence on topology and shape of the structure, so they can not be changed. An
example for sizing optimisation is the detection of optimal cross-sectional areas of
truss members to minimise the volume of the structure under stress constraints. The
reader is referred to [45, 75] to be introduced in sizing. Recent articles on this topic
are, for example [58, 144, 133].

Shape optimisation. Minimising or maximising an objective function by modifying
the geometrical boundary of the structure is called shape optimisation. This type
of optimisation is not able to change the topological properties of a structure. That
means, that no holes or inclusions can be removed or created. To set up the initial
model, the design engineer is demanded to have a lot of experience. As the structural
analysis is usually performed by finite element method (FEM), changes in shape cause
distortions of finite element mesh, which must be taken into account within the opti-
misation process. The advantages of shape optimisation are the smooth shapes with
relatively coarse meshes, simple definition of manufacturing constraints and uncom-
plicated or automatic generation of computer aided geometric design (CAGD) model
of optimised structure. In addition to standard literature on structural optimisation,
see [27, 123, 75], the reader is referred to [77] to be introduced in shape optimisation.

Topology optimisation. Distribution of material in a prescribed space minimising or
maximising of a given objective function is called topology optimisation. The shape
of the structure and its topological properties can be optimised simultaneously. That
means that optimal connectivity of material regions and the optimal number, shape
and positions of holes and inclusions can be detected. Topology optimisation allows to
generate mechanical structures fully automatically. Standard literature on topology
optimisation is [29, 27, 28]. Unfortunately, numerical instabilities appear in most
formulations. These are, for example, checkerboard patterns, mesh-dependencies and
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local minima. A number of techniques were developed to overcome such problems,
see [126, 34, 127]. Producibility of optimised structures, automatic extraction of
geometrical description (CAGD-model) and the need of fine meshes for smooth details
mark the limits of the application area of this type of structural optimisation.

Material optimisation. As already explained, topology optimisation deals with spa-
tial distribution of material. A local optimisation of material properties is called
material optimisation, see [27]. Here, the local optimal choice of micro structure,
which can be different from point to point, is detected. An example for this type
of structural optimisation is maximising the stiffness of a structure, which consists
of composite material computing optimal layer orientations on discrete points. Such
applications have gained an ever increasing popularity especially in aircraft industry,
because the corresponding structures exhibit superior mechanical properties and lead
to low weight. Recent articles concerned with this topic are [76, 149, 62].

3.1.2 General procedure of structural optimisation

All introduced types of structural optimisation follow the same flowchart, which is
pictured in Figure 3.1 and will be explained in this section. Within this thesis, only
gradient based methods are considered.

no

yes

Initial design

Design parametrisation

Objectives and constraints

Structural analysis

Sensitivity analysis

Mathematical optimisation

Improved design

Convergence?

Optimised design

Figure 3.1: General procedure of structural optimisation

Before starting the optimisation process, the mathematical problem is described ex-
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actly. Objective function and constraints are defined and the model is parametrised.
This includes the definition of design variables. The mechanical problem with the
corresponding boundary conditions and material properties is formulated.

Within the optimisation loop, the first task is to perform structural analysis. That
means, that the equilibrium state is determined and all necessary quantities like
stresses, natural frequencies, buckling loads, energy, etc. are calculated.

Based on this information sensitivity analysis is carried out. The total derivatives of
all objectives and constraints with respect to design variables are computed at this
stage. The task is to answer the question: ‘How do the objective function and con-
straints react, if design variables are changed?’.

Values of objective functions and constraints and also their derivatives are passed to
the so called mathematical optimiser. This is a toolbox, which uses mathematical-
numerical algorithms to minimise or maximise the value of objective function taking
into account the constraints and delivers an update of design variables.

Then, the mechanical model is updated and quantities of interest are compared with
some predefined truncation criteria. All mentioned steps are repeated until conver-
gence is reached. The converged solution is delivered to design engineer as a possible
draft and must be interpreted and judged. We note, that optimised structures usually
represent local minima of objective functions and are especially not unique. Different
initial parameters usually lead to different results.

All steps of the flowchart pictured in Figure 3.1 represent their own scientific dis-
ciplines. This is the reason for highly complex stand alone software solutions for
structural optimisation. The mentioned disciplines are commented on with references
to literature within the next sections of this chapter. Details which are relevant for
this thesis are highlighted.

3.2 Parametrisation of shape

To optimise the shape of a given structure a number of parameters, which control the
boundary geometry must be chosen as design variables. The three different existing
strategies are

• CAGD based shape optimisation,

• parameter-free or FE-node based shape optimisation,

• morphing based shape optimisation.

These parametrisation techniques are explained within this section. We note that
only morphing based shape parametrisation is utilised within this work.
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CAGD based shape optimisation. Computer-Aided Geometric Design (CAGD) is
the mathematical description of geometrical objects like lines, areas and volumes, see
for example [57], which is suitable for visualisation on computers. Based on CAGD-
model, FE-mesh is created to perform structural analysis. Changes in CAGD param-
eters lead to modified positions of FE-nodes, which define the approximated shape
of the structure. Such parameters are, for example, coordinates of control points,
radii of circles and lengths of lines. Some of them are chosen as design variables
for shape optimisation, see [45, 43, 44, 123]. Gradients of objectives and constraints
are then computed with respect to these parameters. Here, the chain rule is applied
and firstly, the derivatives with respect to coordinates of FE-nodes are computed
and secondly, the derivatives of FE-node coordinates with respect to CAGD param-
eters are determined. Last mentioned derivatives are called design velocity fields.
The main advantages of the method are: optimised structures are automatically de-
scribed by corresponding CAGD-model and can be manufactured immediately; the
number of design variables is low. Unfortunately, the effort to be done to define
the optimisation model and the corresponding geometrical constraints is enormous
for practical applications. To have advantage of analytically derived sensitivities,
CAGD software must be extended with sensitivity routines and a bidirectional inter-
face for Computer-Aided-Engineering (CAE) software must be implemented. These
facts make the parametrisation strategies below more attractive.

Parameter-free shape optimisation. A special approach to shape optimisation is
choosing the coordinates of FE-nodes as design variables. No CAGD model is needed,
standard CAE preprocessing tools can be used to formulate an optimisation problem
and maximal degree of freedom for shape changes is reached. For a long time FE-
node based shape optimisation was not considered to be effective as quoted in [73, 35].
The reasons are the large number of FE mesh resolution dependent design variables
and the problems with jagged boundaries and disturbed FE-meshes, which causes
non-physical optimisation results. The latter drawbacks of parameter-free approach
seem to be a matter of the past. The recent works in this area, see [32, 119, 93, 66]
and the references therein, report about successful applications of nodal based shape
optimisation to real world problems. The jagged boundaries and convergence prob-
lems are eliminated either by using a fictitious energy approach [119] or by applying
filter techniques [32, 93, 66]. Despite all deficiencies, the absence of CAGD based
geometry model and its high modelling effort makes nodal based shape optimisation
exceedingly attractive but optimised structures must be post processed manually to
obtain CAGD description for manufacturing.

Morphing based shape optimisation. A smooth transformation of an object into
another one is called morphing. This technique comes from image processing and is
widespread in film industry to create video and audio special effects. In context of
shape optimisation, morphing is used to parametrise the shape of some parts of a
structure. Here, a simple map, which is valid for a part of structural domain (mor-
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phing box) is defined and controls positions of FE-nodes located in this part. Such
a map requires the inverse computation of local coordinates of FE-nodes before opti-
misation. Mapping function parameters are then used as design variables. Morphing
based shape optimisation combines the advantages of parameter-free and CAGD based
approaches. The number of design variables does not depend on the finite element
mesh and corresponding problems with jagged boundaries are not present. The mod-
elling and implementation effort is low compared with CAGD based approach but is
higher compared with parameter-free techniques. As only finite element nodes are
involved in mapping process, arbitrary finite elements can be used once morphing is
implemented. Further details on morphing and the corresponding literature overview
are provided in chapter 4.

3.3 Structural analysis

Mathematical description of mechanical problems usually leads to a system of par-
tial differential equations (PDE), which are to be solved to predict the behaviour of
structures. Analytical solutions for such PDEs are only available for some special
cases. In general, they are solved numerically and solutions are only approximated,
but the quality of such approximations is adjustable. It is beyond the scope of this
work to give an overview on this topic. A first-class up-to-date representations of all
major computer-oriented numerical methods for solving PDEs in mechanical context
is presented in [14]. The most common discretisation methods are

• finite element method (FEM),

• boundary element method (BEM),

• finite differences method (FDM),

• finite volumes method (FVM).

Within this thesis, the finite element method is utilised to perform structural and
sensitivity analysis. Standard literature on this topic is, for example, [152, 25].

3.4 Sensitivity analysis

An overview of structural sensitivity analysis is given in standard literature, see for
example [43, 44]. Recommended review articles are [142, 136] and [72]. Four different
approaches to sensitivity analysis can be distinguished

• global finite differentiation,

• discrete sensitivity analysis,

• semi-analytical sensitivity analysis,

• variational sensitivity analysis.

The variational approach to sensitivity analysis is utilised within this thesis.
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Global finite differentiation. This approach consists of repeated evaluation of quan-
tities of interest for perturbed design variables and the use of finite differentiation for-
mulae. Forward, backward and central differences are the most popular techniques.
Implementation of global finite differentiation is simple, but the required number of
structural analyses directly depends on the number of design variables. This method
is too expensive for most practical applications, but it is usually used to verify analyt-
ically derived sensitivity relations on academical examples. The quality of derivatives
provided by finite differentiation strongly depends on magnitude of perturbation.
Truncation errors appear with large step sizes, but computational errors appear when
the step size is too small. More details on this topic can be found in [111, 142, 136].

Discrete sensitivity analysis. The governing continuum equations are discretised
and subsequently differentiated with respect to the design variables, see [142, 136].
This approach provides analytical derivatives of quantities of interest, but the cor-
responding implementation of derived formulas leads to convoluted and slow source
code. We note that structural analysis is performed only once for each iteration
within this approach. Compared with global finite differentiation, the numerical ef-
fort is drastically reduced.

Semi-analytical sensitivity analysis. The most popular approach to sensitivity anal-
ysis is the semi-analytical one. It is computationally efficient and easy to implement.
Within semi-analytical sensitivity analysis, global quantities are derived analytically
and local finite differentiation is applied to finite element matrices. Such an approx-
imation causes errors in some cases. But this drawback seems to be a matter of
the past as different methods were developed to eliminate the mentioned errors, see
[81, 31, 48, 96] for more details.

Variational sensitivity analysis. The variational approach to sensitivity analysis is
the most challenging but advantageous one, see [23, 24, 78]. Here, the sensitivity
information is first derived on the continuous level and then discretised to yield the
analytical expressions on the computational level. The notation of sensitivity matrix
and pseudo load matrix was introduced in [24, 98, 99] and is especially suitable for
shape design problems.

3.5 Mathematical optimisation

Within this thesis, general nonlinear constrained optimisation problems are considered
and solved. A great number of methods for solving such problems was developed in the
last decades. A possible classification of optimisation methods is given in this chapter,
but only the sequential quadratic programming (SQP) method, see the review articles
[71, 33], is described with more details, because it is used within this thesis. Standard
literature on this topic is, for example [105].
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3.5.1 Classification of optimisation methods

Three groups of optimisation methods can be distinguished

• zero order optimisation methods,

• first order optimisation methods,

• second order optimisation methods.

They are briefly described in this section.

Zero order optimisation methods. These methods are based only on evaluation
of objective functions and constraints. Typical strategies are, for example, the grid
search, Powell’s method, simplex method and evolutionary algorithms. Unfortunately,
a large number of iterations is needed and efficiency suffers. Review articles on this
topic are [19, 104, 151] and [67].

First order optimisation methods. In addition to function evaluations their gradi-
ents are computed and used within first order strategies. Typical methods of this
kind are the steepest descent method, conjugate gradients method and quasi-Newton
methods, see [105]. The combination of SQP method and BFGS [68, 36, 124, 59]
approximation of the second derivative also belongs to this category. Additional in-
formation evaluating gradients of functions leads to a speed up of optimisation process
and to higher convergence rates. These methods require continuously differentiable
objectives and constraints. Gradients cause higher implementation effort, but the
numerical effort is moderate.

Second order optimisation methods. Functions evaluations, their gradients and
especially Hessian matrices are involved in optimisation process within second order
techniques. Most famous method of this group is Newton’s method [105]. These
methods lead to the highest convergence rates, but demand functions to be twice
continuously differentiable. The implementation effort and storage space requirements
are also the highest ones. Only a few iterations are needed to obtain convergence if
the starting point is close enough to the solution.

3.5.2 Sequential quadratic programming

Within this thesis, the sequential quadratic programming method (SQP) is used to
solve optimisation problems. This method is derived from Newton’s method taking
constraints into account. It generates steps by solving quadratic sub problems. It is
appropriate for small or large problems and is one of the most effective methods for
nonlinear constrained optimisation. In this section the most important components
of the SQP method are summarised. More details on this topic can be found in
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standard literature, see for example [105]. Recommended review articles are [71, 33].
We consider a general nonlinear constrained optimisation problem

J(s) −→ min
s∈Rn

subject to

hj(s) = 0 with j ∈ {1, ...,mh},
gp(s) ≤ 0 with p ∈ {1, ...,mg},
sli ≤ si ≤ sui with i ∈ {1, ..., n}.

(3.1)

The appearing quantities are

J : Rn −→ R objective function,

s = [s1, ..., sn]T design variables,

hj : Rn −→ R, j ∈ {1, ...,mh} equality constraints,

gp : Rn −→ R, p ∈ {1, ...,mg} inequality constraints,

sli, sui , i ∈ {1, ..., n} lower and upper bounds of design variables.

Introducing the following notation

h(s) =

 h1(s)
...

hmh
(s)

 , g(s) =

 g1(s)
...

gmg
(s)

 , sl =

s
l
1
...
sln

 and su =

s
u
1
...
sun

 (3.2)

the problem (3.1) can also be described by

J(s) −→ min
s∈Rn

subject to

h(s) = 0,

g(s) ≤ 0,

sl ≤ s ≤ su.

(3.3)

The problem is quadratically approximated in every iteration k for current design sk.
We receive the following sub problem

∇s J(sk)T∆s+
1

2
∆sT∇2

ss L(sk,λk,µk, ck)∆s→ min
∆s∈Rn

subject to

Ds h(sk)∆s+ h(sk) = 0,

Ds g(sk)∆s+ g(sk) ≤ 0,

sl − sk ≤ ∆s ≤ su − sk.

(3.4)

The first relation is quadratic in ∆s. The constraints are approximated linearly. The
term ∇2

ss L(skλk,µk, ck) is the second derivative of the Lagrangian function

L(sk,λk,µk, ck) = J(sk) +

mh∑
j=1

λk,jhj(sk) +

mg∑
p=1

µk,p(hp(sk) + c2k,p),
(3.5)
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with Lagrange multipliers λk, µk and sloop variables ck. The approximated optimi-
sation problem (3.4) can be solved efficiently with one of the standard methods from
quadratic programming, see [105] for more details. Within this thesis, the quadratic
subproblems are solved utilising the QUADPROG function of the MATLAB optimi-
sation toolbox. Thus, we obtain increments of the design variables ∆sk, Lagrangian
multipliers λk+1, µk+1 and sloop variables ck+1 for the next iteration. Herewith, the
design variables set can be ameliorated with the following update formula

sk+1 = sk + ∆sk (3.6)

in the sense of the optimisation problem. The truncation criterion is fulfilled if

‖∆sk‖ ≤ tol (3.7)

applies. The norm of the difference vector of variables is denoted ‖∆sk‖ and the
tolerance tol is predefined by the user.

The computation of the second derivative of Lagrangian function∇2
ss L(sk,λk,µk, ck)

causes high numerical effort and enormous memory requirements. This matrix is usu-
ally approximated utilising the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update
formula, see [68, 36, 124, 59], which is based on the first derivative of Lagrangian
function and some iteration history. BFGS is also utilised in this thesis.

3.6 Summary and concluding remarks

The main aspects and possible settings of structural optimisation environment are
discussed in this chapter. Theoretical approaches and numerical techniques which
are utilised within this thesis are highlighted. In following, they are summarised.
Shape optimisation problems with morphing based parametrisation are considered.
Nonlinear finite element analysis is employed for structural analysis. Variational
approach to sensitivity analysis is utilised. Sequential quadratic programming method
which is based on gradients of objectives and constraints is used to solve general
nonlinear constrained optimisation problems. QUADPROG function of the MATLAB
optimisation toolbox is utilised to solve the corresponding quadratic subproblems.
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Within this chapter, morphing based shape parametrisation is intro-
duced. Mapping functions, which are based on tensor products of B-
splines with arbitrary number of control points and of arbitrary degree,
are considered. Especially, analytical design velocity fields are derived.

4.1 Introduction

The term morphing is used in computer graphics for a technique which produces a
smooth and continuous transition from a source object into a target object. It is
derived from metamorphosis which means the change of shape in biology or geology.

4.1.1 State of the art

The idea of morphing was first applied to 2D images. A review of different approaches
is given in [146]. The techniques were extended to 3D geometry models, see [130] and
[147] for an overview. Image morphing has been developed to a powerful tool for
visual effects in entertainment industry, medical imaging or scientific visualization.

Many iterations with multiple changes of the geometry are often involved in shape
optimisation. For rapid updating the FE-mesh to the modified geometry the morphing
techniques have been adopted to avoid costly remeshing, see [110]. Different researches
advance the functionality of these methods, some approaches are compared in [108]
and [131]. Based on [108] and [131] further studies improve the quality of mesh-
morphing, [125]. Morphing based optimisation is used in commercial software like
ANSA [1], HYPERMORPH [7] and OPTISLANG [10].

4.1.2 Special features of the presented research

Within this thesis, morphing boxes are described by general B-spline tensor prod-
ucts with arbitrary number of control points and arbitrary degree of basis splines.
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Hence, the most possible freedom is given to the design engineer during the prob-
lem definition. The corresponding implementation in MATLAB leads to a toolbox
where requirements on the smoothness and differentiability of shape functions can be
taken into account. A technique is proposed, which allows the reverse computation of
local coordinates of finite element nodes, considering morphing boxes with complex
initial shape. In addition, the geometry based shape parametrisation is considered
as a special case of morphing of FE-mesh. Advantages of morphing like the usage of
arbitrary finite element types, simple parametrisation of the optimisation model and
its uncomplicated implementation are discussed.

Furthermore, sensitivity of FE-node positions with respect to changes of control point
positions is derived analytically and implemented in the above mentioned toolbox.
Hence, analytically derived design velocity fields matrices are available, which com-
plement variational design sensitivity analysis of shell structures, see chapter 6, and
are hardly to find in literature.

4.2 An introduction to B-splines

The expression B-spline is a short form for basis spline, see [49, 57] and [112]. Here
a basis to a given degree, smoothness and domain partition is calculated and linear
combination of its components is used to create curves. The parameters (scale factors)
of such linear combination are called control points. Utilising tensor products of B-
splines areas and volumes can be created. Local changes of control points cause
only local shape changes of such geometrical objects. This is the main advantage in
contrast to Bézier based geometries, for example.

4.2.1 B-spline basis

Basis for a B-spline curve Lnk (r) or short L(r) of order k through n+ 1 control points
consists of n + 1 blending functions Ni,k with i = 0, ..., n. These functions are of
degree k − 1 and can be calculated recursively

Ni,1 =

{
1 for ri ≤ r ≤ ri+1

0 otherwise
,

Ni,m =
(r − ri)Ni,m−1(r)

ri+m−1 − ri
+

(ri+m − r)Ni+1,m−1(r)

ri+m − ri+1
with m = 2, 3, ..., k.

(4.1)

The node vector r = [r0, ..., rn+k]T consists of components rj with j = 0, ..., n + k
and can be created utilising the following scheme

rj =


0 for j < k

j − k + 1 for k ≤ j ≤ n
n− k + 2 for j > n

. (4.2)
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4.2 An introduction to B-splines

The first k node vector values and the last k ones are each equal. Inner nodes are
different but are ordered equidistant. Basis functions defined in equation (4.1) are
set to zero in cases where their numerator and denominator are equal zero. Basis
functions for m = 1 are piecewise constant and jump at interval bounds. They are
equal to one within the interval and to zero outside. For m = 2 these functions are
first degree polynomials and so on. Main properties of basis functions are

• Ni,m 6= 0 only within the interval [ri, ri+m],

• Ni,m is a polynomial of degree m− 1,

• transitions of Ni,m are continuous till the m− 2th derivative.

Utilising the scheme in equation (4.2), the curve parameter r is in interval [0,n-k+2].
It is more convenient to work with normalised curve parameter r̂ which is in interval
[0,1]. In this case the value of r̂ can be mapped to r as follows

r = r̂(n− k + 2). (4.3)

4.2.2 B-spline curves

A B-spline curve is defined as

L : R −→ R3 with L(r) =

n∑
i=0

CiNi,k(r), (4.4)

where coordinates of control point i are stored in vector Ci ∈ R3. The 3D case is
considered within this thesis. B-spline curves which are defined by eight control points
are pictured in Figure 4.1 for different values of k.

0
2

4
6

8 0

2

4

−1

0

1

 

 

k = 2

k = 3

k = 4

k = 5

Figure 4.1: B-spline curves for different values of k
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4 Morphing based shape parametrisation

For k = 2 the curve corresponds to the control polygon. For values k > 2 all curves
interpolate the first and the last control points. Tangents at these points are defined
by the second and penultimate nodes. For curve order k = 3 quadratic splines are
used as basis functions. In this case the middle points of internal lines of the control
polygon are also interpolated. B-spline curves of order k = 3 are used within this
thesis because the last mentioned property is convenient for defining bounds of design
variables. B-spline curves of order 4 are based on cubic basis functions and are most
widespread in CAGD and CAE because of their smoothness.

4.2.3 B-spline tensor products

Applying tensor products to bases of different B-splines areas and volumes can be
created, see [57]. B-spline area is defined as

A : R2 −→ R3 with A(r, s) =

n∑
i=0

p∑
j=0

Ci,jNi,k(r)Nj,l(s). (4.5)

Control points Ci,j ∈ R3 define a two dimensional grid. Number of control points
and degree of basis functions can be different in each direction. Only control points in
the corners are interpolated. All these properties are also valid for B-spline volumes
which are defined as follows

V : R3 −→ R3 with V (r, s, t) =

n∑
i=0

p∑
j=0

u∑
h=0

Ci,j,hNi,k(r)Nj,l(s)Nh,v(t), (4.6)

and where Ci,j,h represent a three dimensional grid. In context of morphing, the
mapping function V (r, s, t) is used within this thesis. Normalising its parameters we
obtain a more convenient map for shape optimisation which reads

V̂ : [0, 1]× [0, 1]× [0, 1] −→ R3 with

V̂ (r̂, ŝ, t̂) =

n∑
i=0

p∑
j=0

u∑
h=0

Ci,j,hNi,k(r(r̂))Nj,l(s(ŝ))Nh,v(t(t̂)) and

r(r̂) = r̂(n− k + 2),

s(ŝ) = ŝ(p− l + 2),

t(t̂) = t̂(u− v + 2).

(4.7)

4.3 CAGD controlled FE-mesh

In CAGD based shape optimisation the geometry of the structure is completely de-
scribed by CAGD objects. Such objects are then processed successively and are
subdivided into simple geometric forms, see [57, 51, 60]. The finite element mesh is
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4.3 CAGD controlled FE-mesh

generated which is an approximation of the physical geometry. CAGD parameters are
changed and FE-node positions are recalculated to modify the approximated shape of
the structure. In this thesis, only B-spline volumes are considered as CAGD objects.

4.3.1 Generation of FE-mesh

Creation of finite element mesh based on CAGD model is briefly described in this
section as it exhibits several commonalities with morphing procedure. This process
is based on the following three steps:

• construction of FE-mesh in local coordinates,

• mapping of FE-nodes to global coordinates,

• controlling the quality of FE-elements in global coordinates.

For each B-spline volume a grid is constructed in local coordinates r̂, ŝ, t̂ ∈ [0, 1], see
for example Figure 4.2a. The topology and density of this grid, i.e. number of nodes
in each direction and element connectivity, correspond to desired FE-mesh but the
coordinates of nodes must be mapped to global coordinate system (CS). This step is
done utilising the map in equation (4.7). The final FE-mesh and the corresponding
control polygon of considered example are pictured in Figure 4.2b. The approximated
shape of the structure is mainly described by control points which are defined in
CAGD model.

(a) FE-Mesh in local CS (b) FE-Mesh in global CS

Figure 4.2: FE-mesh generation for a part of a wing

Changes in positions of control points cause changes in coordinates of FE-nodes.
Therefore, coordinates of control points are used as design variables to control the
shape of the structure. During optimisation process coordinates of control points are
modified by mathematical optimiser. Then, global positions of all nodes are recal-
culated. Local coordinates of FE-nodes are considered to be fixed. To demonstrate
this process, the upper control point in Figure 4.2b is moved upward. The updated
CAGD model and the corresponding FE-mesh are pictured in Figure 4.3.
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4 Morphing based shape parametrisation

Figure 4.3: CAGD based geometry modification for a part of a wing

The disadvantage of this type of shape parametrisation consist in the usage of param-
eters provided by CAGD model as design variables. Course CAGD models restrict
the design space. The definition of bounds and constraints for design variables cause
a high modelling effort for realistic models.

Considering multiple B-spline volumes it is sometimes important to ensure continuity
and smoothness of body transitions during shape optimisation. For continuity control
points of different bodies at interfaces must be either at the same places or they must
be commonly used by these bodies. To ensure smoothness of lines interface control
points must be on a straight with next interior control points on the lines. This
transitional condition can be simply extended to surfaces.

4.3.2 Design velocity field

To perform sensitivity analysis of objectives and constraints with respect to design
variables, total derivatives of coordinates of FE-nodes with respect to coordinates of
control points are required. These derivatives are called design velocity fields and are
derived in this section. We consider equation (4.7) and suggest global coordinates to
be x, y and z. Therefore, components of vectors are denoted as V̂ = [V̂ x V̂ y V̂ z]T

and C = [Cx Cy Cz]T . With indices α, β ∈ {x, y, z} we obtain the first derivative of
a 3D point in global coordinates with respect to coordinates of control points

dV̂ α(r̂, ŝ, t̂)

dCβi,j,h
= δαβNi,k(r(r̂))Nj,l(s(ŝ))Nh,v(t(t̂)) with

δαβ =

{
1 for α = β

0 for α 6= β
.

(4.8)

This equation must be evaluated for each FE-node X̂m(r̂m, ŝm, t̂m) for all possible
values of α and β. The calculated derivatives are stored in the so called design velocity
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4.4 Morphing controlled FE-mesh

fields matrix Ψ . The column j of this matrix is the variation of FE-node coordinates
with respect to a variation of the design variable j. The row i represents gradient of
FE-node coordinate i. All components of all FE-nodes are summarised in the vector
X̂ and that of control points in the vector Ĉ. The desired sensitivity relation reads

dX̂ = Ψ dĈ. (4.9)

We note, that this sensitivity relation is also true in context of morphing as it is
explained in the next section.

4.4 Morphing controlled FE-mesh

In context of morphing the geometry of the structure is given in form of FE-mesh.
Only global coordinates of nodes and connectivity of elements are provided. Regions
of structure whose shape is to be changed during optimisation process are marked
by the so called morphing boxes. These boxes are simple CAGD objects and they
do not have to describe the geometric boundary of the structure. They may cross
structural surfaces and can lie within or outside the structure. Within this thesis,
general B-spline volumes are utilised as morphing boxes.

4.4.1 The procedure of morphing

Steps of the flow chart pictured in Figure 4.4 are performed to morph a given mesh.

Update design variables and boxes

Control the quality of FE-elements

Find FE-nodes which are inside the boxes

Define design variables

Calculate local coordinates of these nodes

Calculate new global position of FE-nodes

Define morphing boxes

Figure 4.4: Flow chart of morphing
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4 Morphing based shape parametrisation

After the definition of morphing boxes, design variables are chosen. In case of B-spline
volumes as morphing boxes, these are the positions of some control points. FE-nodes
are scanned to find out which of them must be considered during morphing. The
corresponding nodes are called active nodes. At the same time local coordinates of
nodes which are in the boxes are calculated. Details on this topic are explained in
the section 4.4.3. These steps are performed before the optimisation process starts.
During the optimisation procedure positions of control points are updated and global
coordinates of active nodes are calculated similar to CAGD based shape optimisation,
utilising the mapping function (4.7). The computation of design velocity fields ma-
trix is in accordance with section 4.3.2 as it is done for CAGD based FE-mesh control.

To demonstrate this technique, FE-mesh pictured in Figure 4.2b is considered. A
morphing box is defined to modify the right part of the wing, see Figure 4.5a. This box
crosses the wing in about its middle. Active nodes are marked by a star. Positions of
some control points are changed. The corresponding control polygon and the modified
FE-mesh are pictured in Figure 4.5b.

(a) Initial FE-Mesh (b) Morphed FE-Mesh

Figure 4.5: FE-mesh morphing for a part of a wing

The transition continuity of the left and the right parts of the wing is ensured since
the control points which define the interface are not moved. The smoothness of the
transition is maintained because control points near the interface surface are not
moved. As one can recognise, experience of CAGD-based shape optimisation is also
advantageous within morphing techniques.

4.4.2 CAGD as special case of morphing

In the special case where morphing boxes describe the geometric boundary of the
structure, the shape parametrisation is in accordance with CAGD-based model. That
means, that exactly the same shape changes as pictured in Figure 4.3 can be reached
by morphing of FE-mesh introduced in Figure 4.2b. For this reason the initial mesh
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4.4 Morphing controlled FE-mesh

is marked utilising the morphing box pictured in Figure 4.6a. The positions of control
points are updated, as shown in Figure 4.6b and FE-nodes are recalculated.

(a) Initial box (b) Morphed box

Figure 4.6: Morphing box based on CAGD description

The mentioned property is also valid if only some surfaces of the structure and of
the morphing boxes are considered. This fact makes it possible to obtain directly a
CAGD-based geometry description of optimised parts of a structure. Faces and edges
of the considered morphing boxes are, for example, B-spline areas and lines which
control points are directly delivered by the boxes.

4.4.3 Inverse computation of FE-node positions

Usually, global coordinates of FE-nodes are given. Local coordinates of these nodes
are required to perform morphing based on the mapping function V̂ (r̂, ŝ, t̂) which is
given in equation (4.7). Therefore, for a given three dimensional point X̄ = [x̄ ȳ z̄]T

its local coordinates r̄, s̄ and t̄ must be calculated. Derivation of the corresponding
inverse function is complicated and its implementation is expensive. To avoid this
circumstance, the following system of nonlinear equations is considered

X̄ − V̂ (r̂, ŝ, t̂) = 0. (4.10)

The desired local coordinates are obtained by solving this system of equations. For
this reason, Newton’s method is utilised. The first derivative of the map V̂ (r̂, ŝ, t̂)
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4 Morphing based shape parametrisation

with respect to parameters r̂, ŝ and t̂ must be calculated in each iteration and reads

∂V̂ (r̂, ŝ, t̂)

∂r̂
=

n∑
i=0

p∑
j=0

u∑
h=0

Ci,j,h
∂

∂r
Ni,k(r(r̂))(n− k + 2)Nj,l(s(ŝ))Nh,v(t(t̂)),

∂V̂ (r̂, ŝ, t̂)

∂ŝ
=

n∑
i=0

p∑
j=0

u∑
h=0

Ci,j,hNi,k(r(r̂))
∂

∂s
Nj,l(s(ŝ))(p− l + 2)Nh,v(t(t̂)),

∂V̂ (r̂, ŝ, t̂)

∂t̂
=

n∑
i=0

p∑
j=0

u∑
h=0

Ci,j,hNi,k(r(r̂))Nj,l(s(ŝ))
∂

∂t
Nh,v(t(t̂))(u− v + 2).

(4.11)

To evaluate these equations, derivatives of B-spline bases given in equation (4.1) with
respect to their parameter are necessary and are given in general form

∂

∂r
Ni,m =

(m− 1)Ni,m−1(r)

ri+m−1 − ri
+

(m− 1)Ni+1,m−1(r)

ri+m − ri+1
with m = 3, ..., k. (4.12)

The mentioned Newton’s method is applied to every FE-node. Usually less than ten
iterations are needed to obtain convergence. In case of convergence the corresponding
node is marked as active (node is in the box) and its local coordinates are stored.
Otherwise, this node is excluded from morphing. The numerical effort for the de-
scribed operation is relatively low as the considered system of equations consists of
only three unknowns. For large scale problems calculation of local coordinates can
be done in parallel. The nodes can also be preprocessed or presorted comparing their
locations with coarse box positions to save computational time.

4.5 Remarks on NURBS

B-spline curves, surfaces and volumes are now introduced. All these objects are based
on the B-spline bases where each component has an equal influence on the resulting
geometric properties. It is also possible to weight components of the B-spline base with
some scale factors. The corresponding curves, surfaces and volumes are then called
NURBS (non-uniform rational B-spline). NURBS control points, which correspond to
larger scale factors exhibit more impact on the resulting curve or surface. Such scale
factors could also be used as design variables. Unfortunately, such variables introduce
additional non uniqueness to the optimisation problem. It is, for example, possible
to describe a given curve with different NURBS representations. As an alternative,
either coordinates of control points or their scale factors should be used as design
variables. Because of the mentioned NURBS properties, B-splines are used in context
of morphing within this thesis.
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4.6 Summary and concluding remarks

Morphing based shape parametrisation is introduced. B-spline tensor products are
utilised to describe morphing boxes. Number of control points in each direction and
the degree of B-splines can be chosen by the user. Hence, requests with respect to
smoothness and differentiability of design changes can be considered.

For morphing purposes local positions of finite element nodes, which are usually given
in global coordinates, must be computed. Commonly, morphing boxes are defined as
ashlars to simplify this task. In contrast, a reverse computation of local coordinates
of FE-nodes is presented within this chapter. Hence, morphing boxes which have
complex initial shape, can be treated utilising the presented techniques.

The sensitivity of finite element node positions is derived analytically considering the
coordinates of control points as design variables. The corresponding design velocity
fields matrices can be utilised to transform variationally derived gradients of objec-
tives and constraints. The implementation of the analytical derivatives allows a fast
computation of sensitivity relations.

Next, advantages of morphing based shape parametrisation are highlighted:

• Computation is based on FE-mesh. Geometry model is not required.

• FE-meshes with arbitrary element types and shapes can be morphed.

• Only relevant parts of the structure are captured by morphing boxes.

• Boundary of boxes do not need to match geometry boundary.

• The number of design variables does not depend on FE or CAGD models.

• CAGD controlled mesh can be considered as a special case of morphing.

• Experience in the scope of CAGD is also applicable in context of morphing.

• The corresponding implementation consists of only few functions.

Usually, an automatic CAGD description of the optimised shape is not possible and
human controlled postprocessing is necessary. This is the only drawback of the method
which also exists in context of the FE-node based shape optimisation and does not
appear in CAGD based shape parametrisation.

The most time consuming operations within the described morphing concept are the
inverse computation of local node coordinates and the mapping of local to global coor-
dinates. The corresponding functions are precompiled in SOP utilising the MATLAB
coder toolbox, and mex-routines are called instead of the original ones.
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5 Structural analysis for solid shells

The present chapter deals with the finite element analysis of a nonlinear
solid shell. All variational relations are summarised and discretised to
provide the physical residual and the consistent tangent stiffness matrix
for Newton’s method. In particular, a notation which suits variational
sensitivity analysis is introduced.

5.1 Introduction

Shell elements are most commonly used to model thin structures because of their
efficiency and accuracy. Wide range of possible applications increases the popularity
of shell elements in science and industry.

5.1.1 State of the art

In past years a number of shell elements have been developed, an overview is given
in [30]. Classical shell formulations model a reference surface, solid shell formulations
differ by modelling top and bottom surface of the shell structure. Shell elements in-
cluding 3D material laws avoid the necessity to condensate the constitutive relations
corresponding to the special plane stress state. This is advantageous to take complex
nonlinear constitutive relations into account, because solid shell elements can use the
same material libraries as brick elements. Also classical shell formulations, based on
rotational degrees of freedom, using 3D constitutive relations exist, see [90].

A robust nonlinear solid shell element based on a mixed variational formulation was
proposed in [89]. Here, the Hu-Washizu functional, which includes a displacement
field, an assumed strain field and an assumed stress field, is employed. In this context
robust means that larger load steps are possible without losing convergence. In con-
trast to [89], the independent stress and the enhanced assumed strain interpolations
are assumed to be orthogonal in the approach proposed in [91]. The element in the
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latter work is utilised in this thesis. At this point, I would like to thank Prof. Dr.-
Ing. Werner Wagner from Karlsruhe Institute of Technology (KIT) and Prof. Dr.-Ing.
Sven Klinkel from RWTH Aachen University for providing me with FORTRAN code
of the mentioned element and for their support.

5.1.2 Special features of the presented research

An important feature of this chapter is, that the notation of the original publications
is advanced in order to suit sensitivity analysis which is performed in the next chapter.
This notation was introduced in [65]. In addition, true stresses, which are given by
the Cauchy stress tensor, are considered.

5.2 Kinematics

The present section represents a brief summary of fundamental relations of the un-
derlying geometrically exact kinematic framework.

e2e1

e3

G1

G2
G3

X

u

ξ1

ξ2

ξ3
F

ϕ(X)

ΩR

x

g1

g2

g3

ξ1

ξ2

ξ3
Ωt

Figure 5.1: Deformation, reference and current configuration

Convective curvilinear coordinates are used in this work. For the considered shell
formulation, the thickness coordinate ξ3 and the in-plane coordinates ξ1, ξ2 are used,
see Figure 5.1. The position vectors of the reference configuration ΩR and the current
configuration Ωt are denoted by X and x = X+u, respectively. Here, u denotes the
displacement vector of a point in the shell domain. The covariant tangent vectors are

Gi =
∂X

∂ξi
, gi =

∂x

∂ξi
, i = 1, 2, 3. (5.1)
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5.3 Variational relations

The standard definition of the contravariant basis is used Gi ·Gj = δji and gi ·gj = δji .
The metric coefficients of the reference configuration are Gij = Gi · Gj and of the
current configuration gij = gi ·gj . As only time independent problems are considered,
the deformation of the material body from ΩR into a deformed configuration Ωt is
given by the nonlinear mapping

ϕ :

{
ΩR −→ Ωt

X −→ x = ϕ(X)
. (5.2)

The deformation gradient F , i.e. the tangent map of ϕ as well as the displacement
gradient H are given by

F := Gradϕ = ∇Xϕ = gi ⊗G
i = I +H, H := Gradu = ∇Xu. (5.3)

The Green-Lagrangean strain tensor is defined as

E := EijG
i ⊗Gj with Eij =

1

2
(gij −Gij). (5.4)

Alternatively, this tensor can be expressed in terms of the deformation gradient F or
by means of the displacement gradient H as follows

E =
1

2

(
F TF − I

)
, E =

1

2

(
H +HT +HTH

)
. (5.5)

5.3 Variational relations

A generalized state function v = (u, Ŝ, Ē) is introduced in an abstract sense to
simplify the following expressions. The assumed stress Ŝ and the assumed strain Ē
are work conjugate quantities. The true stress, which is given by the Cauchy stress
tensor σ can be determined by the following transformation

σ =
1

|F |
F ŜF T . (5.6)

5.3.1 The variational functional

The variational Hu-Washizu three-field functional reads

Π(v,X) = Π(u, Ŝ, Ē,X) =

∫
ΩR

(
WR(Ē) + Ŝ :

(
E − Ē

)
− u · b

)
dΩ−

∫
ΓN

u · t dΓ.

(5.7)

It depends on the state v and on the design X. Here, ΩR and ΓN denote the reference
configuration and the Neumann boundary, respectively.
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5.3.2 The weak form of equilibrium

The first variation with respect to the state v provides the physical residual

R(v,X; δv) = δvΠ(v,X)(δv) =

∫
ΩR

(
δuE : Ŝ − δu · b

)
dΩ−

∫
ΓN

δu · t dΓ

+

∫
ΩR

δŜ :
(
E − Ē

)
dΩ +

∫
ΩR

δĒ :

(
∂WR

∂Ē
− Ŝ

)
dΩ = 0,

(5.8)

which is also known as the weak form of equilibrium. Here, the variation of the state
δv = (δu, δŜ, δĒ) is introduced to shorten the corresponding terms. The relation in
equation (5.8) can also be expressed as a system of equations

Ru(v,X; δu) = δuΠ(v,X)(δu) =

∫
ΩR

(
δuE : Ŝ − δu · b

)
dΩ−

∫
ΓN

δu · t dΓ = 0,

RŜ(v,X; δŜ) = δŜΠ(v,X)(δŜ) =

∫
ΩR

δŜ :
(
E − Ē

)
dΩ = 0,

RĒ(v,X; δĒ) = δĒΠ(v,X)(δĒ) =

∫
ΩR

δĒ :

(
∂WR

∂Ē
− Ŝ

)
dΩ = 0.

(5.9)

This notation is more convenient for sensitivity analysis, which is presented in the
next chapter, because partial variations with respect to different fields are consid-
ered separately. The variation of the Green-Lagrangean strains can be expressed in
convective curvilinear coordinates as δuE = 1

2 (δugi · gj + gj · δugi)G
i ⊗Gj .

5.3.3 Linearisation of the weak form of equilibrium

The linearisation of the weak form of equilibrium results in

L (R(v,X; δv)) (∆v) =

∫
ΩR

(
∆uδuE : Ŝ + δE : ∆Ŝ

)
dΩ

+

∫
ΩR

(
δŜ : ∆E − δŜ : ∆Ē

)
dΩ

+

∫
ΩR

(
δĒ :

∂∂WR

∂Ē∂Ē
: ∆Ē − δĒ : ∆Ŝ

)
dΩ.

(5.10)

The linearised virtual Green-Lagrangean strain tensor reads
∆uδuE = 1

2 (δugi ·∆ugj + ∆ugj · δugi)G
i ⊗Gj .
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5.4 Discretised relations

An eight node solid shell element is considered. Isoparametric concept is used. The
superscript h indicates the finite element approximation and the index e denotes
quantities on element level.

5.4.1 Approximation of kinematic quantities

The geometry and the displacements are given by

Xh = NX̂e and uh = Nûe. (5.11)

The vectors X̂e ∈ R24×1 and ûe ∈ R24×1 contain the nodal coordinates and the nodal
displacements, respectively. The shape functions per node I = 1, 2, ..., 8

NI =
1

8
(1 + ξ1

I ξ
1)(1 + ξ2

I ξ
2)(1 + ξ3

I ξ
3) with − 1 ≤ ξi ≤ +1 (5.12)

are arranged in the matrix N = [N1, ...,N8] with N I = diag[NI , NI , NI ]. The
interpolation of the virtual displacement vector δuh is the same as for the displacement
vector. The Cartesian coefficients of the Green-Lagrangean strains E are ordered in
a vector E = [E11, E22, E33, 2E12, 2E13, 2E23]T . Corresponding to the convective
description the approximations of the covariant basis vectors are given as

Gh
i = N ,iX̂e, ghi = N ,i(X̂e + ûe), (5.13)

where N is differentiated with respect to ξi. Approximations of the displacement
and of the deformation gradients are denoted with Hh and F h. Their computation
requires first derivatives of shape functions with respect to global coordinates. These
derivatives are given by the following relation

∂NI
∂X

= [G1G2G3]−T
∂NI
∂ξ

. (5.14)

Further details are omitted here.

Transformation to Cartesian coordinates. The Green-Lagrangean strain compo-
nents in equation (5.4) are transformed to Cartesian coordinates by the matrix T−TS .
Utilising the matrix

T =


(J11)

2 (J12)
2 (J13)

2 aJ11J12 aJ11J13 aJ12J13

(J21)
2 (J22)

2 (J23)
2 aJ21J22 aJ21J23 aJ22J23

(J31)
2 (J32)

2 (J33)
2 aJ31J32 aJ31J33 aJ32J33

bJ11J21 bJ12J22 bJ13J23 J11J22 + J12J21 J11J23 + J13J21 J12J23 + J13J22

bJ11J31 bJ12J32 bJ13J33 J11J32 + J12J31 J11J33 + J13J31 J12J33 + J13J32

bJ21J31 bJ22J32 bJ23J33 J21J32 + J22J31 J21J33 + J23J31 J22J33 + J23J32


(5.15)

the matrix T S = T (a = 2, b = 1) is obtained. With orthonormal basis vectors ei in
Cartesian coordinate space the quantities Jik = ei ·Gh

k are computed.
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5 Structural analysis for solid shells

Collocation points for assumed natural strain (ANS) interpolation. Values eval-
uated at the collocation points i = (−1,−1, 0), ii = (1,−1, 0), iii = (1, 1, 0) and
iv = (−1, 1, 0) are denoted with superscript L = i, ii, iii, iv. The collocation points
are defined in convective coordinates ξi. Values evaluated at the collocation points
A = (−1, 0, 0), B = (0,−1, 0), C = (1, 0, 0) and D = (0, 1, 0) are denoted with
superscript A, B, C and D.

Approximation of strains and their variations. The approximation of the Cartesian
strain components is given by

Eh = T−TS Eh
L with Eh

L =



1
2 (gh11 −Gh11)
1
2 (gh22 −Gh22)

iv∑
L=i

1
4 (1 + ξ1

Lξ
1)(1 + ξ2

Lξ
2) 1

2 (gL33 −GL33)

(gh12 −Gh12)
1
2 ((1− ξ2)(gB13 −GB13) + (1 + ξ2)(gD13 −GD13))
1
2 ((1− ξ1)(gA23 −GA23) + (1 + ξ1)(gC23 −GC23))


.

(5.16)

The approximation of the virtual Green-Lagrangean strains on element level reads

δEh = Bδûe with B = T−TS BL and BL = [BL1, ...,BL8]. (5.17)

The matrix BLI at node I is specified by

BLI =

NI,1(gh1 )T

NI,2(gh2 )T

iv∑
L=i

1
4 (1 + ξ1

Lξ
1)(1 + ξ2

Lξ
2)NL

I,3(gL3 )T

NI,1(gh2 )T +NI,2(gh1 )T

1
2 ((1− ξ2)(NB

I,1(gB3 )T +NB
I,3(gB1 )T ) + (1 + ξ2)(ND

I,1(gD3 )T +ND
I,3(gD1 )T ))

1
2 ((1− ξ1)(NA

I,2(gA3 )T +NA
I,3(gA2 )T ) + (1 + ξ1)(NC

I,2(gC3 )T +NC
I,3(gC2 )T ))


.

(5.18)

The incremental Green-Lagrangean strains are approximated by ∆Eh = B∆ûe. In
the linearised weak form of equilibrium in equation (5.10) the quantity ∆δE : Ŝ
appears. Its approximation is

(∆δE : Ŝ)h = δûTeG∆ûe with G =

G11 · · · G18

...
. . .

...
G81 · · · G88

 , (5.19)
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5.4 Discretised relations

where GIJ is defined for a node combination I and J as GIJ = diag[GIJ , GIJ , GIJ ].
The scalar GIJ is obtained as

GIJ =

(
Ŝ
h
)T
T−TS



NI,1NJ,1

NI,2NJ,2
iv∑
L=i

1
4 (1 + ξ1

Lξ
1)(1 + ξ2

Lξ
2)NL

I,3N
L
J,3

NI,1NJ,2 +NI,2NJ,1
1
2 ((1− ξ2)(NB

I,1N
B
J,3 +NB

I,3N
B
J,1) + (1 + ξ2)(ND

I,1N
D
J,3 +ND

I,3N
C
J,1))

1
2 ((1− ξ1)(NA

I,2N
A
J,3 +NA

I,3N
A
J,2) + (1 + ξ1)(NC

I,2N
C
J,3 +NC

I,3N
C
J,2))


(5.20)

where Ŝ
h

is the approximation of the stress field Ŝ, which components are organized

in vector notation as Ŝ
h

= [Ŝ11, Ŝ22, Ŝ33, Ŝ12, Ŝ13, Ŝ23]T .

5.4.2 Approximation of the assumed strain and stress fields

The strain tensor Ē is additively decomposed in ÊijGi ⊗Gj and ẼijG
i ⊗Gj with

Ē = Ê + Ẽ. (5.21)

Considering vector notation the contravariant components of the strain field Ê are
interpolated and transformed to Cartesian space. Cartesian components are obtained
with the transformation matrix TE . According to equation (5.15) TE is defined as
TE = T (a = 1, b = 2). The approximation of the strain field is defined as

Ê
h

= NEα
1
e, α1

e ∈ R18, NE = T 0
ENL with NL = [I N̂ ˆ̂N ].

(5.22)

The superscript 0 indicates, that the quantity is evaluated at the center of the element

and I ∈ R6×6 denotes the identity matrix. The interpolation matrices N̂ and ˆ̂N are

N̂ =


ξ3 ξ2ξ3 0 0 0
0 0 ξ3 ξ1ξ3 0
0 0 0 0 0
0 0 0 0 ξ3

0 0 0 0 0
0 0 0 0 0

 ,
ˆ̂N =


ξ2 0 0 0 0 0 0
0 ξ1 0 0 0 0 0
0 0 ξ1 ξ2 ξ1ξ2 0 0
0 0 0 0 0 0 0
0 0 0 0 0 ξ2 0
0 0 0 0 0 0 ξ1

 .
(5.23)
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5 Structural analysis for solid shells

For the enhanced assumed strain field Ẽ the covariant components are interpolated
and transformed to Cartesian space. These operations lead to

Ẽ
h

= ME α
2
e, α2

e ∈ R7 with ME = TMM and TM =
detJ0

detJ
(T 0

S)−T .

(5.24)

Here, J = [Gh
1 ,G

h
2 ,G

h
3 ]T is the Jacobian matrix. The interpolation matrix M reads

M =


ξ1 ξ1ξ2 0 0 0 0 0
0 0 ξ2 ξ1ξ2 0 0 0
0 0 0 0 ξ3 ξ1ξ3 ξ2ξ3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 . (5.25)

The interpolation of the total strain is summarised as

Ē
h

= NEα
1
e +MEα

2
e. (5.26)

This interpolation is also applied for the virtual strains δĒ
h

and the incremental

strains ∆Ē
h
. The approximation of the stress field reads

Ŝ
h

= NSβe, βe ∈ R18 with NS = T 0
SNL. (5.27)

For the approximation of the virtual stress δŜ
h

and the incremental stress ∆Ŝ
h

the
same interpolation is applied. The true stress, which is given by the Cauchy stress
tensor σ is approximated as follows

σh =
1∣∣∣F h∣∣∣F hŜhm(F h)T with Ŝ

h

m =

Ŝh1 Ŝh4 Ŝh5
Ŝh4 Ŝh2 Ŝh6
Ŝh5 Ŝh6 Ŝh3

 . (5.28)

5.4.3 Energy approximation

The approximation of the energy given in equation (5.7) reads

Πe = Πint
e −Πext

e with

Πint
e =

∫
ΩRe

(
WRe + (Ŝ

h
)TEh − (Ŝ

h
)T Ê

h
)
dΩe and

Πext
e =

∫
ΩRe

(Nûe)
T b dΩe +

∫
ΓNe

(Nûe)
T t dΓe.

(5.29)
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5.4 Discretised relations

The method of finite differentiation is utilised within this theses to verify the derived
analytical relations. Discretised structural energy is perturbed with respect to the
state to check the weak form of equilibrium and its linearisation. Perturbations with
respect to design are performed to verify the material residual vector and the pseudo
load. Structural energy is also used to define the compliance of the structure C = −Π
which is an important objective function in structural optimisation.

5.4.4 Approximation of the weak form and of its linearisation

The quantities S̄
h

and C̄
h

are introduced with

S̄
h

=
∂WRe

∂Ē
h
, C̄

h
=

∂2WRe

∂Ē
h
∂Ē

h
(5.30)

to reduce the amount of writing. Considering the above introduced interpolations in
equation (5.8) and (5.10) the element matrices

Ke =

∫
ΩRe

G dΩe, Le =

∫
ΩRe

NT
SB dΩe, Ce =

∫
ΩRe

NT
SNE dΩe,

A11
e =

∫
ΩRe

NT
EC̄

h
NE dΩe, A12

e =

∫
ΩRe

NT
EC̄

h
ME dΩe,

A21
e =

∫
ΩRe

MT
EC̄

h
NE dΩe, A22

e =

∫
ΩRe

MT
EC̄

h
ME dΩe

(5.31)

and the element vectors

f int
e =

∫
ΩRe

BT Ŝ
h
dΩe, f ext

e =

∫
ΩRe

NT b dΩe +

∫
Γe
N

NT t dΓe,

a1
e =

∫
ΩRe

NT
E

(
S̄
h − Ŝ

h
)
dΩe, a2

e =

∫
ΩRe

MT
ES̄

h
dΩe,

be =

∫
ΩRe

NT
S

(
Eh − Ê

h
)
dΩe,

(5.32)

are defined. Here, the integrals are calculated by employing Gaussian integration
scheme with eight integration points. To solve equation (5.8) iteratively with Newton’s
method, the following approximation, after assembly over all elements is necessary

Anelme=1


Ke 0 0 LTe

0 A11
e A12

e −Ce

0 A21
e A22

e 0

Le −Ce 0 0

Anelme=1


∆ûe

∆α1
e

∆α2
e

∆βe

 = −Anelme=1


f int
e − f

ext
e

a1
e

a2
e

be

 . (5.33)
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5 Structural analysis for solid shells

Taking into account, that the finite element interpolations for the strain field Ē and
the stress field Ŝ are discontinuous across the element boundaries, a static condensa-
tion on element level yields the element stiffness matrix and the right hand side

KTe = Ke +LTe C
−T
e AeC

−1
e Le,

fe = −f ext
e + f int

e +LTe C
−T
e AeC

−1
e be +LTe C

−1
e ae

(5.34)

with Ae = A11
e −A

12
e (A22

e )−1A21
e and ae = a1

e−A
12
e (A22

e )−1a2
e. After assembly over

all elements KT = Anelm
e=1 KTe, ∆Û = Anelm

e=1 ∆ûe and R = Anelm
e=1 fe one obtains a

pure displacement problem

KT∆Û = −R (5.35)

with the unknown incremental nodal displacements. The stresses and strains are
updated with the increments

∆α1
e = C−1

e (Le∆ûe + be),

∆α2
e = −(A22

e )−1(a2
e +A21

e ∆α1
e),

∆βe = C−Te (Ae∆α
1
e + ae).

(5.36)

5.5 Summary and concluding remarks

Structural analysis of a solid shell element is presented. All necessary variational and
discretised relations are summarised using notation, which suits subsequent sensitiv-
ity analysis. Furthermore, the true stress, which is given by the Cauchy stress tensor
is considered. This is an important quantity in structural optimisation and many
practical optimisation problems are restricted by stress constraints.

Solid shell elements can be combined easily with 1D, 2D and 3D continuum elements.
The definition of boundary conditions and structural optimisation problems is sim-
plified through the absence of rotational degrees of freedom. The nodal coordinates
of solid shell elements define its shape as well as its thickness. They can be used
excellently as design variables. Using solid shell elements optimisation problems can
be modelled intuitively with low effort. In comparison to classical shell formulations
sensitivity analysis of solid shells benefits from extensive researches in sensitivity anal-
ysis of continuum problems.

All element routines are precompiled in SOP utilising the MATLAB coder toolbox to
speed up the computation of element contributions. System matrices and vectors are
assembled using parallel computing toolbox to exhaust computer resources. Concepts
of sparse matrix computation are used to save up computer memory.
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6 Sensitivity analysis for solid shells

This chapter is concerned with the variational design sensitivity analysis
for a nonlinear solid shell element. Fundamental sensitivity relations are
stated and especially the pseudo load and the sensitivity matrices are
derived. Sensitivities of energy and stresses are considered.

6.1 Introduction

To model thin-walled structures most commonly shell elements are used because of
their efficiency and accuracy. For such structures the design is extremely important
regarding their stability, robustness and load-bearing capacity. Design sensitivity
analysis provides information, which gives the engineer the possibility to find a suit-
able shape of a shell and to understand the influence of geometry and layout changes
on its behaviour. Furthermore, sensitivity information is an essential prerequisite for
gradient based optimisation procedures.

6.1.1 State of the art

Recent publications deal with analytical derivation of sensitivity information of shell
structures. In [39] design sensitivity analysis, which is based on the continuous prob-
lem of a linear elastic non-shallow shell is introduced. Shape and topology design
sensitivity analysis of a double curved (Hughes-Liu) shell is shown in [42]. The ma-
terial derivative concept of continuum mechanics together with the adjoint variable
method are used to derive the shape and topology design sensitivity expressions in
the domain integral form. For laminated plate and shell structures design sensitiv-
ity analysis considering nonlinear response is presented in [102]. Therein, the design
variables are fiber orientation angles and distances from middle surface to upper sur-
face of each layer. Design sensitivity analysis regarding size, shape and configuration
design variables is presented in [87] for a mesh-free shell structure.
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6 Sensitivity analysis for solid shells

6.1.2 Special features of the presented research

The notation of sensitivity matrix and pseudo load matrix was introduced in [24,
98, 99] and is especially suitable for shape design problems. So far these matrices
were derived mainly for continuum elements using the displacement formulation. A
few more sophisticated formulations exist, see e.g. [145] for the sensitivity analysis
of mixed finite elements. The challenge of this contribution is to derive sensitivity
and pseudo load matrices for a shell element considering a mixed formulation. The
content of this chapter is also presented in [65]. In addition, sensitivity relations of
stresses are derived in this chapter. The capabilities of the presented analysis are
demonstrated on an example with stress constraints.

6.2 Variational relations

Variational sensitivity relations are derived in this section. The starting point of the
consideration is the Hu-Washizu three-field functional.

6.2.1 First total and partial variations of energy

The first total variation of the Hu-Washizu three-field functional (5.7) reads

Π
′
(v,X; δv, δX) = Π

′

v(v,X; δv) + Π
′

X(v,X; δX) with

Π
′

v(v,X; δv) = R(v,X; δv) and

Π
′

X(v,X; δX) = V (v,X; δX).

(6.1)

Here, R and V denote the physical and material residuals, respectively. The quantity
Rv is given in equation (5.8) and the term V reads

V (v,X; δX) =

∫
ΩR

(
WR(Ē) + Ŝ :

(
E − Ē

)
− u · b

)
DivδX dΩ

+

∫
ΩR

(
WR(Ē) + Ŝ :

(
E − Ē

)
− u · b

) ′

X
dΩ

(6.2)

with Div(•) = ∇X · (•) and the assumption, that the term
∫

ΓN

u · t dΓ is design

independent. The integrand of the last term in equation (6.2) reads(
WR(Ē) + Ŝ :

(
E − Ē

)
− u · b

) ′

X
=
∂WR(Ē)

∂Ē
: δXĒ + δXŜ :

(
E − Ē

)
+Ŝ : δXE − Ŝ : δXĒ.

(6.3)
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6.2 Variational relations

For a given solution v ∈ V the equilibrium condition R(v,X; δv) = 0 holds true.
With this, the first part of the first variation of the Hu-Washizu functional vanishes
and remains only the material residual, which is

Π
′
(v,X; δv, δX) = Π

′

X(v,X; δX) = V (v,X; δX). (6.4)

6.2.2 Total and total partial variations of any objective functional

An arbitrary objective functional J(v(X),X) is considered. Its total partial variation
with respect to X reads

DXJ(v(X),X) · δX =
∂J

∂X
· δX +

∂J

∂v

dv

dX
· δX (6.5)

and its total variation is given by

J
′
(v,X; δv, δX) = J

′

v (v,X; δv) + J
′

X(v,X; δX). (6.6)

In both cases the variation of the state δv = dv
dX · δX is unknown. This quantity is

derived in the next section.

6.2.3 Total and partial variations of the physical residual

For a given solution v and X the weak form R(v,X; δv) = 0 must be invariant with
respect to variations δv̄ and δX. Its total variation reads

R
′
(v,X; δv, δv̄, δX) = R

′

v(v,X; δv, δv̄) +R
′

X(v,X; δv, δX) = 0. (6.7)

For the variations of the physical residual R the following operators are introduced

k(v,X; δv, δv̄) := R
′

v(v,X; δv, δv̄),

p(v,X; δv, δX) := R
′

X(v,X; δv, δX),
(6.8)

where k(v,X; ·, ·) is the well-known tangent physical stiffness operator and the quan-
tity p(v,X; ·, ·) is called the tangent pseudo load operator for the physical problem.
Considering the equation (6.7) and the above definitions, one obtains a variational
equation for the sensitivity of the state due to changes in the design as follows

k(v,X; δv, δv̄) = −p(v,X; δv, δX̄) (6.9)

with a fixed design variation δX̄. For a given variation in the design δX̄, the variation
in the state δv̄ can be calculated. Considering equation (5.10) the following relation

k(v,X; ·, ·) = L (R(v,X; ·) (·) (6.10)
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6 Sensitivity analysis for solid shells

holds true. The tangent pseudo load operator p is derived as follows

p = R
′

X = (Ru)
′

X + (RŜ)
′

X + (RĒ)
′

X = pu + pŜ + pĒ (6.11)

with the partial derivatives

pu(v,X; δu, δX) =

∫
ΩR

(
δuE : Ŝ − δu · b

)
DivδX dΩ

+

∫
ΩR

(
δX(δuE) : Ŝ + δuE : δXŜ

)
dΩ,

pŜ(v,X; δŜ, δX) =

∫
ΩR

δŜ :
(
E − Ē

)
DivδX dΩ

+

∫
ΩR

δX

(
δŜ :

(
E − Ē

))
dΩ,

pĒ(v,X; δĒ, δX) =

∫
ΩR

δĒ :

(
∂WR

∂Ē
− Ŝ

)
DivδX dΩ

+

∫
ΩR

δX

(
δĒ :

(
∂WR

∂Ē
− Ŝ

))
dΩ.

(6.12)

6.2.4 Variations of Cauchy stress tensor

Stresses are often used to constrain the optimisation problem or are utilised as objec-
tives. In such cases, total partial variation of the Cauchy stress tensor is required to
perform sensitivity analysis. We consider the total variation of the Cauchy stress

δσ = δXσ + δuσ + δŜσ. (6.13)

We note that Cauchy stress does not depend on the assumed strain. In terms of
assumed stress, see equation (5.6), the total variation reads

δσ =− 1

|F |2
δX |F |F ŜF T +

1

|F |
δXF ŜF

T +
1

|F |
F ŜδXF

T +
1

|F |
F δXŜF

T

− 1

|F |2
δu |F |F ŜF T +

1

|F |
δuF ŜF

T +
1

|F |
F ŜδuF

T

+
1

|F |
F δŜŜF

T .

(6.14)

The deformation gradient does not depend on the assumed stress. Its variations with
respect to design and displacement fields, see [98], are given by

δXF = F
′

X = −HGrad δX, δuF = F
′

u = Grad δu. (6.15)
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6.3 Discretised relations

Variations of the deformation gradient determinant are given by

δX |F | =
∂ |F |
∂F

: δXF = |F |F−T : δXF ,

δu |F | =
∂ |F |
∂F

: δuF = |F |F−T : δuF .

(6.16)

The total partial variation of Cauchy stress tensor with respect to design is obtained
replacing partial variations with respect to displacement and assumed stress in equa-
tion (6.14) with

δu(·) =
∂(·)
∂u

δXu, δŜ(·) =
∂(·)
∂Ŝ

δXŜ. (6.17)

6.3 Discretised relations

Material residual and pseudo load are discretised in this section. Computation of the
sensitivity matrix is explored. Discretisation of Cauchy stress is presented.

6.3.1 Preliminaries

Derivatives of transformation matrices, approximation of a divergence and definition
of a special product are necessary to discretise pseudo load and material residual.

Approximation of a divergence. The term DivδX is approximated as follows

(DivδX)h = DδX̂e with D = [d1, ...,d8] and dI = [NI,1 NI,2 NI,3].

(6.18)

Derivatives of T . The first derivative of the transformation matrix T , see equation
(5.15), with respect to X̂e is denoted with T ∈ R6×6×24 and its coefficients are

Tijk1(I) := H1
ij(I), Tijk2(I) := H2

ij(I), Tijk3(I) := H3
ij(I) (6.19)
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6 Sensitivity analysis for solid shells

with k1(I) = 3I − 2, k2(I) = 3I − 1, k3(I) = 3I, I = 1, ..., 8 and

H1(I) =
[
H11 H12

]
with H11 =


2J11NI,1 2J12NI,2 2J13NI,3

0 0 0
0 0 0

J21NI,1b J22NI,2b J23NI,3b
J31NI,1b J32NI,2b J33NI,3b

0 0 0

 and

H12 =


J11NI,2a+ J12NI,1a J11NI,3a+ J13NI,1a J12NI,3a+ J13NI,2a

0 0 0
0 0 0

J21NI,2 + J22NI,1 J21NI,3 + J23NI,1 J22NI,3 + J23NI,2
J31NI,2 + J32NI,1 J31NI,3 + J33NI,1 J32NI,3 + J33NI,2

0 0 0

 ,

H2(I) =
[
H21 H22

]
with H21 =


0 0 0

2J21NI,1 2J22NI,2 2J23NI,3
0 0 0

J11NI,1b J12NI,2b J13NI,3b
0 0 0

J31NI,1b J32NI,2b J33NI,3b

 and

H22 =


0 0 0

J21NI,2a+ J22NI,1a J21NI,3a+ J23NI,1a J22NI,3a+ J23NI,2a
0 0 0

J11NI,2 + J12NI,1 J11NI,3 + J13NI,1 J12NI,3 + J13NI,2
0 0 0

J31NI,2 + J32NI,1 J31NI,3 + J33NI,1 J32NI,3 + J33NI,2

 ,

H3(I) =
[
H31 H32

]
with H31 =


0 0 0
0 0 0

2J31NI,1 2J32NI,2 2J33NI,3
0 0 0

J11NI,1b J12NI,2b J13NI,3b
J21NI,1b J22NI,2b J23NI,3b

 and

H32 =


0 0 0
0 0 0

J31NI,2a+ J32NI,1a J31NI,3a+ J33NI,1a J32NI,3a+ J33NI,2a
0 0 0

J11NI,2 + J12NI,1 J11NI,3 + J13NI,1 J12NI,3 + J13NI,2
J21NI,2 + J22NI,1 J21NI,3 + J23NI,1 J22NI,3 + J23NI,2

 .

Here, TT means that TTijk = Tjik is considered. The quantities TS = T(a = 2, b = 1)
and TE = T(a = 1, b = 2) are also available now. We note that Tij,X̂k

= Tijk.
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6.3 Discretised relations

Derivatives of TM . The first derivative of the transformation matrix TM , see equa-
tion (5.24), with respect to X̂e is TM ∈ R6×6×24. With (TM )ij,X̂k

= (TM )ijk the

quantity (TM ),X̂k
is defined. With J = [G1G2G3] and J0 = [G0

1G
0
2G

0
3] one obtains

(TM ),X̂k
=

∣∣J0
∣∣

|J |

((
(J0)−T : J0

,X̂k
− J−T : J ,X̂k

)
(T 0

S)−T

−(T 0
S)−T (T 0

S)T
,X̂k

(T 0
S)−T

)
.

(6.20)

Scalar product (· : ·) is here applied to matrices in the same manner, as it is defined
for tensors. Additionally, the following relations are used

|A|
′

= |A|A−T : A
′
, (A−1)

′
= −A−1A

′
A−1. (6.21)

The computation of J0
,X̂k

and J ,X̂k
is straightforward and details are omitted.

A special product. To reduce the amount of writing and to avoid the index notation,
a special product is introduced. For any z ∈ N+,M ∈ Rz×6, T ∈ R6×6×24 and V ∈ R6

the mapping P is defined as follows

P : Rz×6 × R6×6×24 × R6 −→ Rz×24

(M ,T,V ) −→ Q with
(6.22)

Qkn =

6∑
l=1

6∑
m=1

MklTlmnVm, k = 1, ..., z and n = 1, ..., 24. (6.23)

Derivatives of local strains. The first derivative of Eh
L with respect to X̂e reads

(Eh
L),X̂ = Q = [Q1, ...,Q8] with

QI =

NI,1(uh,1)T

NI,2(uh,2)T

iv∑
L=i

1
4 (1 + ξ1

Lξ
1)(1 + ξ2

Lξ
2)NL

I,3(uL,3)T

NI,1(uh,2)T +NI,2(uh,1)T

1
2 ((1− ξ2)(NB

I,1(uB,3)T +NB
I,3(uB,1)T ) + (1 + ξ2)(ND

I,1(uD,3)T +ND
I,3(uD,1)T ))

1
2 ((1− ξ1)(NA

I,2(uA,3)T +NA
I,3(uA,2)T ) + (1 + ξ1)(NC

I,2(uC,3)T +NC
I,3(uC,2)T ))


.

(6.24)
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6 Sensitivity analysis for solid shells

6.3.2 Approximation of material residual

Considering the above introduced interpolations, the approximation of the material
residual V , see equation (6.2), reads V h(v,X; δX) = V eδX̂e with

V e =

∫
ΩRe

(
WRe

+ (Ŝ
h
)TEh − (Ŝ

h
)T Ê

h
− ûTeN

T b
)
DT dΩe

+

∫
ΩRe

(
P
(

(S̄
h
)T , T0

E , NLα
1
e

)T
+ P

(
(S̄

h
)T , TM ,Mα2

e

)T)
dΩe

+

∫
ΩRe

P
(
βTeN

T
L, (T0

S)T , Eh
)T

dΩe

+

∫
ΩRe

(
−P

(
(Ŝ

h
)TT−TS , TTS , T

−T
S Eh

L

)T
+ (Ŝ

h
)TT−TS Q

)
dΩe

−
∫

ΩRe

(
P
(
βTeN

T
L, (T0

S)T , Ê
h
)T

+ P
(

(Ŝ
h
)T ,T0

ENLα
1
e

)T)
dΩe.

(6.25)

6.3.3 Sensitivity and pseudo load matrices

The parts of the pseudo load are approximated as phu = δûeP
e
uδX̂e, p

h
Ŝ

= δŜ
h
P e

Ŝ
δX̂e

and phĒ = δÊ
h
P e

Ê
δX̂e + δẼ

h
P e

Ẽ
δX̂e with

P e
u =

∫
ΩRe

(
BT Ŝ

h
−NT b

)
D dΩe

+

∫
ΩRe

(
G+ P

(
BT , T0

S , NLβe

)
− P

(
BT
LT
−1
S , TS , T−1

S Ŝ
h
))

dΩe,

(6.26)

P e
Ŝ

=

∫
ΩRe

(
NT

S (Eh − Ê
h
)
)
D dΩe

+

∫
ΩRe

(
P
(
NT

L, (T0
S)T , (Eh − Ê

h
)
)
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(
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E , NLα

1
e
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+

∫
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(
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−T
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L
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dΩe,

(6.27)
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P e
Ê

=

∫
ΩRe

(
NT

E(S̄
h − Ŝ

h
)
)
D dΩe

+

∫
ΩRe

(
P
(
NT

L, (T0
E)T , (S̄

h − Ŝ
h
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)
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NT
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dΩe

+
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(6.28)

P e
Ẽ

=

∫
ΩRe

(
MT

ES̄
h
)
D dΩe +

∫
ΩRe

(
P
(
MT , TTM , S̄

h
))

dΩe

+

∫
ΩRe
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P
(
MT

EC̄, T0
E , NLα

1
e

)
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(
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EC̄, TM ,Mα2
e
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(6.29)

The element pseudo load and sensitivity matrices P e and Se are defined as

P e :=


P e

u

P e
Ê

P e
Ẽ

P e
Ŝ

 , Se :=


Se
u

Se
Ê

Se
Ẽ

Se
Ŝ

 . (6.30)

These matrices are connected corresponding to the following relation

Anelme=1


Ke 0 0 LTe

0 A11
e A12

e −Ce

0 A21
e A22

e 0

Le −Ce 0 0

Anelme=1


Se
u

Se
Ê

Se
Ẽ

Se
Ŝ

 = −Anelme=1


P e

u

P e
Ê

P e
Ẽ

P e
Ŝ

 . (6.31)

Static condensation on element level, see equation (5.34), can be applied to the above
relation and yields KTe and P Te with

P Te = P e
u +LTe C

−T
e AeC

−1
e P

e
Ŝ

+LTe C
−1
e P

e
E

(6.32)

with P e
E

= P e
Ê
−A12

e (A22
e )−1P e

Ẽ
. After assembly over all elements KT = Anelm

e=1 KTe,

Su = Anelm
e=1 S

e
u and P T = Anelm

e=1 P Te one obtains the following system of equations

KTSu = −P T (6.33)

with the unknown displacement sensitivities. After solving this system, the sensitivi-
ties of stresses and strains can be calculated as follows

Se
Ê

= C−1
e (LeS

e
u + P e

Ŝ
),

Se
Ẽ

= −(A22
e )−1(P e

Ẽ
+A21

e S
e
Ê

),

Se
Ŝ

= C−Te (AeS
e
Ê

+ P e
E

).

(6.34)
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6 Sensitivity analysis for solid shells

6.3.4 Sensitivity of Cauchy stress

The total derivative of Cauchy stress with respect to node coordinate i is

dσh

dX̂i

=
∂σh

∂X̂i

+

nu∑
j=1

∂σh

∂ûj

dûj

dX̂i

+

ns∑
j=1

∂σh

∂Ŝj

dŜj

dX̂i

with
dûj

dX̂i

= (Su)ji,
dŜj

dX̂i

= (Sŝ)ji.

(6.35)

Quantities nu and ns denote the number of displacement degrees of freedom and
the number of assumed stress degrees of freedom. Derivatives of Cauchy stress with
respect to the assumed strain components are equal to zero. The total derivative of
Cauchy stress consists of its partial derivatives, which reads

∂σh
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=− 1∣∣∣F h∣∣∣2
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m(F h)T +
1∣∣∣F h∣∣∣ F
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∂ûi
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h

m(F h)T
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1∣∣∣F h∣∣∣F hŜhm ∂(F h)T
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∂σh

∂Ŝi
= +

1∣∣∣F h∣∣∣F h ∂Ŝ
h

m

∂Ŝi
(F h)T .

(6.36)

Further discretisation is straight forward and details are omitted here.

6.4 Example: clamp

The following numerical example is based on the geometry which is pictured in Figure
6.1. The dimensions of the structure (height, width and depth) are h = 3, w = 10
and d = 3. The material properties are Young’s modulus E = 21000 and Poisson’s
ratio ν = 0.3. The load q̄ = 1/30 is a line load. The applied boundary conditions are
pictured in Figure 6.1a. We note that the considered model is not doubly symmetric.
In contrast to the right side, support on the left side allows rotation of the clamp.
The FE-mesh consists of 1200 elements and 2562 nodes with 7686 degrees of freedom.
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6.4 Example: clamp

(a) Mechanical system (b) Optimisation model

Figure 6.1: Clamp: initial structure

The thickness t = 0.1 remains constant during the optimisation. This behaviour is
reached computing the middle surface of the shell structure and performing shape
optimisation based on its nodes. The modified middle surface mesh is then expanded
to 3D finite element mesh. The derivation of corresponding extended velocity fields
for sensitivity analysis is straightforward and details are omitted here.

A morphing box is defined by 84 control points and is pictured in Figure 6.1b. Finite
element nodes, which are controlled by this box are marked with a star. Vertical
positions (z coordinates) of control points, which are marked red are used as design
variables. Minimum values of this coordinates ensure a tunnel height of ht = 2.

6.4.1 Compliance minimisation under volume constraint
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(a) Compliance history (b) Optimised design

Figure 6.2: Clamp: optimisation results for compliance minimisation
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6 Sensitivity analysis for solid shells

The compliance J := C := −Π of the structure, which is pictured in Figure 6.1 is
minimised, taking into account a volume constraint V = V0. Here, the quantities V
and V0 denote the current and initial volumes. The algorithm converges after ten
iterations. The corresponding iteration history for the objective function is pictured
in Figure 6.2a. The compliance is decreased to a quarter of its initial value. The
optimised design is presented in Figure 6.2b. The upper half of the structure is stiff-
ened with respect to bending stress. The higher stiffness can be verified considering
structural deformation before and after optimisation in Figure 6.3.

(a) Initial deformation (b) Deformation of optimised structure

Figure 6.3: Clamp: deformation before and after optimisation

The left and right parts of the structure are not modified by this optimisation because
the corresponding finite element nodes are not influenced by the morphing box defined
in Figure 6.1b. The transition of optimised part to fixed one is smooth as the left and
right two layers of control points are fixed for optimisation.

6.4.2 Volume minimisation under stress constraints

Minimisation of compliance under volume constraint is easy to deal with and leads
to structures with heigh global stiffness. But real world problems necessitate the sat-
isfaction of several local constraints, e.g. stress constraints. Therefore, we consider
another model problem of volume minimisation under stress constraints. Stress min-
imisation at a certain point or at an area can be treated by analogy.

The volume V is chosen as objective function. Stress constraints with limit σ̄ are
necessary from mechanical point of view. The Von Mises stress σv is a function of
Cauchy stress tensor components σij with

σv =
√
σ2

11 + σ2
22 + σ2

33 − σ11σ22 − σ11σ33 − σ22σ33 + 3(σ2
12 + σ2

13 + σ2
23). (6.37)

We control the Von Mises stress σv at all Gaussian points i, that is σiv ≤ σ̄. For the
considered example the stress limit is σ̄ = 65. Optimisation history for volume and
maximum Von Mises stress are pictured in Figure 6.4.
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(b) Maximum Von Mises stress σv

Figure 6.4: Clamp: optimisation results for volume minimisation

The algorithm converges after eight iterations. The volume decrease is about five
percent. The stress constraints are satisfied. The maximum Von Mises stress is
decreased from value max(σiv) = 94 to max(σiv) = 65. Von Mises Stress is pictured in
Figure 6.5 for the initial and optimised design. We note that the optimisation started
with an inadmissible initial design because some stress constraints were violated. It
is an important aspect, which must be taken into account choosing the mathematical
optimisation algorithm. Not all of them can deal with such situation. The optimised
design is not doubly symmetric. This is caused by not symmetric boundary conditions,
as mentioned above. Observation of Von Mises stresses in all Gaussian points leads
to a large number of constraints and is very expensive. Stresses of only some parts of
the structure are usually considered in practical applications.

(a) Initial design (b) Optimised design

Figure 6.5: Clamp: Von Mises Stress σv
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6 Sensitivity analysis for solid shells

6.5 Summary and concluding remarks

Variational sensitivity analysis of the considered solid shell element is performed and
all derived relations are discretised. The pseudo load matrix, the sensitivity matrix
and the material residual vector (i.e. vector of configurational forces) are derived.
In addition, the sensitivity of stress is considered. Features and capabilities of the
presented sensitivity analysis are demonstrated on a numerical example from the field
of morphing based shape optimisation.

Sensitivity relations derived in this chapter and all involved quantities must be consid-
ered as tools for the nonlinear solid shell element. These tools extend the application
range of the solid shell element. An implementation of such tools in existing and
future element routines will simplify the exchange of software components for various
scientific disciplines.

Possible fields of application. There is a great number of fields where the pre-
sented sensitivity relations can be applied. All quantities are derived with respect
to coordinates of FE-nodes. Parameter free shape optimisation can be performed
based on these derivatives utilising some additional tools like filters and mesh control
techniques. Recent works on this topic are [32, 93, 119, 18] and [66]. Gradients for
geometry based shape optimisation can be calculated extending the presented sensi-
tivities by the corresponding design velocity fields. R-adaptivity is concerned with
improvement of finite element solution on the same mesh. Here, the number of de-
grees of freedom and mesh topology are fixed. Only the mesh form is changed. A
review, much more details and examples on this topic can be found in [100]. Fracture
mechanics deals with the propagation of cracks in materials. Here, the strain energy
release and the direction of crack growth can be directly derived from the material
residuum, which is derived in this chapter. Details and examples on this topic can be
found in [99].

Some remarks on the computational effort. In SOP the element pseudo load ma-
trices are computed together with element stiffness matrices in the element routine
and assembled parallel to each other. These matrices cause approximately the same
numerical effort. The pseudo load matrix is a sparse matrix and its population is
comparable with that of the stiffness matrix. In contrast, the sensitivity matrix is
a full populated matrix and its computation requires the solution of a linear system
of equations with large number of right sides or the inversion of the tangent stiffness
matrix. The computation of this matrix is usually avoided employing the adjoint ap-
proach to sensitivity analysis. The computation of the material residual vector causes
approximately the same numerical effort as the computation of the physical residual.
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7 Singular value decomposition (SVD)

The definitions of SVD and generalised singular value decomposition
(GSVD) are introduced in this chapter. Several applications are demon-
strated and features of SVD are explained.

7.1 Introduction

SVD is a mathematical powerful tool which is used in different scientific fields.

7.1.1 State of the art

The basics of singular value decomposition are given in the literature on numerical
linear algebra, for example [70]. A summary of the numerical treatment concerning
large eigenvalue problems can be found in [69, 141]. SVD algorithms are included in
most numerical linear algebra tools. The most important ones are LAPACK [15], the
GSL [6], the library SVDPACK [13] and other comparable algorithms in scientific
software packages like MATLAB [9] or SCILAB [12]. Some hints to implementation
are given in [20].

SVD is used in image processing to reduce the storage space (e.g. [114] and references
therein). Hereby, only the most important parts of an image are stored. The rest is
quashed. Thus, SVD provides an efficient representation of facial images calculating
the so-called eigenfaces, see [103]. Essential influence factors in statistics can be
determined and interpreted by means of SVD, see e.g. [74]. The most prevailed
method in this area is the principal component analysis (PCA, see [82]) used for
dimension reduction. The power of SVD in conjunction with a special subspace
method can be observed in system identification and dynamical behaviour, see [94].
An improved computational approach for linear differential equations such as Laplace
and Helmholtz equations motivated by SVD analysis is proposed in [115]. Overall,
SVD analysis enhances the eigenvalue analysis in structural dynamics and structural
stability and is both, quantitatively and qualitatively well understood.
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7 Singular value decomposition (SVD)

7.1.2 Special features of the presented research

Within this thesis sensitivity information is analysed by singular value decomposition
(SVD). Appropriate notation is introduced and different data interpretation tech-
niques are explained on examples in this chapter. SVD of a matrix is interpreted,
which is necessary to perceive the concepts presented in subsequent chapters. In addi-
tion, an inexpensive SVD of sensitivity matrix is discussed, which is based on GSVD
of the stiffness and pseudo load matrices.

7.2 Singular value decomposition

The definition of SVD is presented and some of its applications are briefly described.

7.2.1 Definition and numerical effort of SVD

Let A be a m× n real matrix. Then, there exists a factorisation of the form

A = Y ΣZT =

min(m,n)∑
i=1

σiiyiz
T
i , (7.1)

where Y is a m×m matrix, Σ is a m×n diagonal matrix with non negative numbers
σii (singular values sorted in decreasing order) on the diagonal and Z a n×n matrix.
The matrices Y and Z contain a set of orthonormal left and right singular vectors
of A with Y −1 = Y T and Z−1 = ZT . The factorisation in equation (7.1) is the
singular value decomposition of matrix A. Singular values are uniquely determined.
In contrast, singular vectors can change their signs.

The O−notation is used to describe the numerical effort for SVD. The full singular
value decomposition of a square matrix A ∈ Rm×m requires O(m3) floating-point
operations (flops). For rectangular matricesA ∈ Rm×n withm ≥ n onlyO(mn2) flops
are necessary to compute SVD. The computation of only the first k singular vectors
reduces the numerical effort. A number of SVD algorithms exists, for example, in
MATLAB, which makes it possible to work with sparse matrices and to compute only
some first k singular values and the corresponding singular vectors. The numerical
effort is then approximately of O(nmk).

7.2.2 Applications of SVD

Matrix approximation. The last term in equation (7.1) shows that any matrix A
can be decomposed in matrices wi of rank one weighted with singular values with

A =

min(m,n)∑
i=1

σiiyiz
T
i =

min(m,n)∑
i=1

σiiwi. (7.2)
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As far as the singular values are sorted in decreasing order and the values of all
matrices wi have the same ballpark, because the vectors y and z are normalised, the
main parts of the given matrix, which are the first k parts, can be determined and
used for a matrix approximation

Ã =

k∑
i=1

σiiyiz
T
i =

k∑
i=1

σiiwi, (7.3)

with k ≤ r ≤ min(m,n). Here, r denotes the rank of the matrix A. This technique
is applied in image compression to reduce storage space. An image is a matrix which
contains colour values. As an example, we perform a matrix approximation of an
image B ∈ R331×484 for different values k. The results are pictured in Figure 7.1.
It is very interesting to observe that with k = 50 (equal to 16% of all information)
one can hardly detect significant differences between the images, and with k = 15
(equal to 5% of all information) one can still recognise the most important parts of
the image (i.e. house, door, fences, etc.).

(a) k = r = 331 (b) k = 50 (c) k = 15

Figure 7.1: Image compression depending on k (photo: c© 2009, W. Kijanski)

Pseudo inverse of a matrix. As already mentioned before, any matrix A ∈ Rm×n
can be decomposed corresponding to equation (7.1). With Y −1 = Y T and Z−1 = ZT

we obtain

Ã
−1

=
[
Y Σ̃ZT

]−1

=
(
ZT
)−1 (

Y Σ̃
)−1

= ZΣ̃
−1
Y T =

k≤r∑
i=1

1

σi
ziy

T
i (7.4)

the pseudo inverse (for k = r = m = n the inverse) of the matrix A. Here, r denotes

the rank of the matrix A and matrix Σ̃
−1
∈ Rn×m is a diagonal one and consists

of reciprocal first k singular values σi. The pseudo inverse is defined for singular,
quasi-singular and rectangular matrices. Under and over estimated linear systems of
equations can be solved utilising the pseudo inverse of a matrix.

Principal component analysis (PCA). Visualisation, interpretation and reduction
of large data sets can be performed by principal component analysis. PCA is defined
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7 Singular value decomposition (SVD)

as an orthogonal linear transformation that transforms the data to a new coordinate
system. This transformation is usually delivered by SVD of the data matrix. Here,
the greatest variance by projecting of the data comes to lie on the first coordinate
(called the first principal component), the second greatest variance on the second
coordinate, and so on. This method is explained on the example of a cluster of
points. We consider the data matrix which consists of cluster points coordinates

B =

[
s1

1 s2
1 · · · sn1

s1
2 s2

2 · · · sn2

]T
. (7.5)

These points are pictured in Figure 7.2a. We assume that the perimeter of the cluster
is approximated using the function P (s1, s2) = 2(∆s1 + ∆s2).

s1

∆s2

∆s1

s2

(a) Initial coordinate system

ŝ1
ŝ2

∆ŝ2
∆ŝ1

(b) Transformed coordinate system

Figure 7.2: Cluster of points

In case that the coordinate system in Figure 7.2a is turned according to Figure 7.2b,
the approximation of the perimeter function reads P̂ (ŝ1, ŝ2) = 2(∆ŝ1 + ∆ŝ2). The
new function approximates the perimeter in a better way and can be obtained using
SVD. Therefore, the data matrix B is decomposed as

B =

[
s1

1 s2
1 · · · sn1

s1
2 s2

2 · · · sn2

]T
= Y ΣZT = Y


σ11 0
0 σ22

0 0
...

...
0 0

ZT . (7.6)

With this decomposition one can perform the following transformation

B̂ = BZ =

[
ŝ1

1 ŝ2
1 · · · ŝn1

ŝ1
2 ŝ2

2 · · · ŝn2

]T
(7.7)

and obtain the data matrix B̂ in a new coordinate system Z. Here the columns of Z
are unit vectors of this system and the corresponding coordinates are called principal

58



7.3 Generalised singular value decomposition

components. Singular values σ11 and σ22 describe the variance of new coordinates.
In order to carry out a model reduction, the following implication is used

σ22 � σ11 −→ ∆ŝ2 � ∆ŝ1 −→ P̂ (ŝ1, ŝ2) ≈ P̄ (ŝ1) = 2∆ŝ1. (7.8)

Moreover, the transformation ŝ = ZTs provides new variables, which are sorted at
the extent of their variance. Components of column vectors of Z define the influence
of the old variables on the new ones and are called loading factors.

7.2.3 Analysis of input-output systems

Any real matrix A ∈ Rm×n defines an input-output system as follows

c = Ab with b ∈ Rn and c ∈ Rm. (7.9)

Here, the inputs and the corresponding outputs are denoted with b and c. In this
situation it is important to know which input vectors lead to outputs with the largest
or with the smallest norm. Singular value decomposition of matrix A, see equation
(7.1), is utilised to analyse this input-output system. If the input corresponds to the
k-th right singular vector which is scaled by a factor d with b = d zk, we obtain the
corresponding output as follows

c =

min(m,n)∑
i=1

σi yi z
T
i

 dzk = d σk yk with ‖c‖2 = ‖d σk yk‖2 = d σk.

(7.10)

These relations are valid due to the orthonormal bases zi and yi. We note that
inputs which correspond to the largest singular values have an extraordinary impact
on outputs. Inputs which correspond to σ = 0, produce zero valued vectors as output.

7.3 Generalised singular value decomposition

The definition of GSVD is presented. An inexpensive SVD of sensitivity matrix is
outlined which is based on GSVD of the pseudo load matrix and the stiffness matrix.

7.3.1 Definition of GSVD

Let A ∈ Rl×m and B ∈ Rn×m be real matrices. The factorisation

A = ZMXT , B = Y QXT , MTM +QTQ = I (7.11)

is the generalised singular value decomposition (GSVD) of A and B. Here, Z ∈ Rl×l
and Y ∈ Rn×n are orthonormal matrices. The matrices M ∈ Rl×m and Q ∈ Rn×m
are diagonal matrices and contain singular values which are sorted in decreasing or
increasing order. The matrix X ∈ Rm×m is a real matrix.
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7.3.2 Inexpensive SVD of sensitivity matrix

Sensitivity analysis in structural optimisation sometimes requires the computation of,
the so called, sensitivity matrix S ∈ Rn×m with

S = K−1P ⇔ ST = P TK−T . (7.12)

Here, the matrices K ∈ Rn×n and P ∈ Rn×m denote the so called stiffness matrix
and pseudo load matrix. Both matrices are sparsely populated and can be assembled
with relatively low numerical effort. In contrast, the computation of sensitivity matrix
S is expensive and requires either the solution of m linear systems of equations or the
inversion of the stiffness matrix K. Furthermore, sensitivity matrix is fully populated
and a lot of storage space is necessary for practical applications. Within this thesis
SVD of sensitivity matrix is required to perform model reduction and adaptation.
Generalised singular value decomposition of stiffness and pseudo load matrices is able
to provide SVD of S without its computation. GSVD of P T and KT reads

GSVD(PT ,KT ) −→ [Z Y X M Q] . (7.13)

Following relations hold true for decomposed matrices

P T = ZMXT , KT = Y QXT ⇔ XT = Q−1Y TKT . (7.14)

The last expression is inserted in the first one and we obtain

P T = ZMQ−1Y TKT ,

⇔ P TK−T = ZMQ−1Y T ,

⇔ ST = ZΣTY T with ΣT = MQ−1,

⇔ S = Y ΣZT .

(7.15)

The last expression is the SVD of the sensitivity matrix. The full generalised singular
value decomposition of square matrices A ∈ Rm×m and B ∈ Rm×m requires O(2m3)
floating-point operations and no advantage is reached so far. Enhanced sensitivity
analysis which is presented in this thesis requires only the computation of some largest
singular values and the corresponding vectors of sensitivity matrix. For such situa-
tions, an algorithm was presented in [80] which can deal with sparse matrices and
saves a lot of numerical effort considering practical applications. We note that this
algorithm is not yet implemented in MATLAB, where only full GSVD is available.

7.4 Summary and concluding remarks

SVD is used to sort out the valuable part of information which is packed in matrices.
Techniques like the analysis of input-output systems, model reduction and coordinate
transformation are explained, which are the prerequisites of the subsequent chap-
ters. Numerical effort of SVD and the treatment of sparse matrices are discussed.
Inexpensive computation of SVD of the sensitivity matrix is outlined.
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8 Sensitivity based imperfections for nonlinear
buckling analysis

This chapter outlines a technique to generate ‘worst case’ imperfections
for nonlinear buckling analysis. It is based on the analytical derivation
and efficient computation of the Fréchet derivatives of the physical resid-
ual with respect to the full space of all possible design parameters. This
overhead of sensitivity information is examined by a singular value de-
composition (SVD) in order to detect design changes with major and
minor influences on equilibrium. This knowledge enables the engineer
to understand and improve structural behaviour and to detect relevant
geometrical conditions for buckling analysis.

8.1 Introduction

The pseudo load matrix (Fréchet derivative) is a well known quantity in sensitiv-
ity analysis of shape optimisation problems, see chapter 6. This matrix is analysed
by a singular value decomposition (SVD) to demonstrate that it contains additional
valuable information, which can be used to create imperfection modes for nonlinear
buckling analysis. Right singular vectors which correspond to the largest singular
values are used as imperfection modes. Local and global imperfections can be dis-
tinguished. Geometrical constraints like prescribed denting shapes and thickness im-
perfections can be considered to study the corresponding effects on buckling. The
most unfavourable imperfection can also be found in situations, where the mentioned
properties are combined. The generic concept is applied to structures modelled using
nonlinear solid shell element, which is presented in chapter 5. This approach is also
proposed by the author in [64]. Nonlinear elastic problems, which are time indepen-
dent are considered in this chapter. The central aspects of the presented approach
are commented on with references to literature.
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8 Sensitivity based imperfections for nonlinear buckling analysis

8.1.1 State of the art

Buckling is a process whereby a loaded structure suddenly changes its shape. The
structure is often destroyed after this process if stability was lost.

Classical buckling analysis.

Beginning with the pioneer work of Koiter [92] in 1945, a lot of research was done
to understand the buckling and post-buckling behaviour of structures (also called
structural stability analysis). Overview articles on this topic are, for example [52]
and [117]. Branch switching, direct calculation of critical points and path-following
are widespread strategies in this field. A simple load control technique and supervision
of the smallest eigenvalue of the tangent matrix are satisfactory to solve the problems
in this contribution.

Imperfections.

Small deviations from the ideal shape are called geometrical imperfections or short
imperfections. Only those (geometrical) imperfections are considered here. Imperfec-
tions may cause a dramatic reduction of the buckling load and lead to a catastrophic
failure. Modern structural analysis software allows to study nonlinear buckling be-
haviour in the presence of imperfections. Here, the question arises what shape should
have the applied imperfection (for a given amplitude) to lead to the smallest load-
carrying capacity. In other words, what is the ‘worst’ imperfection? As noted in [117],
Koiter expected the most important influence on the behaviour of imperfect struc-
ture from mode shapes that correspond to the buckling mode of the perfect structure.
This is the most often used assumption analysing the structural stability up today, see
for example international standards [53, 54]. The corresponding approach ‘is neither
robust nor reliably accurate’ as discussed for shells in [132]. Therefore, understanding
the nature and effects of imperfections considering thin walled structures remains to
be an area of interest today. A survey of this research field is given in [17] and [52].

Imperfections in context of structural optimisation.

Structural optimisation is often used to increase the load-carrying capacity and the
efficiency of thin walled structures. Unfortunately, such optimised structures are
highly sensitive with respect to imperfections as demonstrated in [134]. More details
and examples on this topic are presented in [135]. In order to treat this problem,
authors in [116, 26] insert the imperfection sensitivity into the optimisation model.
Stable designs are obtained maximising the buckling load. In conclusion of that
work a possible computation of the ‘worst’ imperfection shape is outlined. For this
purpose, the failure load must be minimised for a given structural design and varying
imperfection shape. A similar strategy was, for example, followed in [50]. Several
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8.2 Stability of equilibrium

approaches are proposed, where unfavourable imperfections are computed as solutions
of inverse problems, see for example [132].

8.1.2 Special features of the presented research

In contrast to the concept presented in [132], no optimisation problem is solved by the
approach proposed in this chapter. However, only a quantity which usually appears
in gradient based structural optimisation is used to create imperfections. Thus, this
approach does not cause extra iterations. It is well known, that the ‘worst case’
imperfection in its true sense does not exist, see [120]. Nevertheless, the term ‘worst’
is used in the specified sense described below. From the optimisation point of view,
imperfections are variations of design. We consider a perfect structure, which is in
equilibrium with applied loads and hold the state functions fixed. In this situation,
shape changes, which would disturb equilibrium most of all are considered to be
the best candidates for imperfections. The pseudo load matrix describes how the
equilibrium reacts (output) on an imposed design modification (input). We analyse
this input-output system by a singular value decomposition (SVD), see chapter 7. This
way the ‘worst’ imperfection or the one with the biggest influence on equilibrium can
be found. The corresponding imperfect structure is analysed and the critical load
is computed. In this contribution design velocity fields, see chapter 4, are used to
transform the pseudo load matrix into different design descriptions and to create
‘worst’ imperfections of only some parts of a structure.

8.2 Stability of equilibrium

Stability conditions for equilibrium are presented for variational and discretised cases.

8.2.1 Variational relations

In context of structural optimisation Π(v,X) is the energy (Hu-Washizu) functional,
which is nonlinear with respect to variables v ∈ V and X ∈ X , see chapter 5. It is
defined on Hilbert spaces V and X , i.e. J : V × X → R. Generalised functions for
the state v and for the design X are introduced here in an abstract sense. If Π(·) is
a differentiable functional on V, the following notation, see also [98], is used for the
first and second partial variations (i.e. directional derivatives or Gâteaux derivatives)
with respect to the state

Π
′

v(v,X;η) :=
d

dε
Π(v + εη,X)

∣∣∣∣
ε=0

, (8.1)

Π
′′

vv(v,X;η,µ) :=
d

dε
Π

′

v(v + εµ,X;η)

∣∣∣∣
ε=0

. (8.2)
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8 Sensitivity based imperfections for nonlinear buckling analysis

The quantity R := Π
′

v(v,X;η) is linear with respect to η and is called physical
residual. The tangent physical stiffness operator is defined as k := Π

′′

vv(v,X;η,µ)
and is linear with respect to η and µ. A stable solution of a nonlinear structural
analysis problem is reached if the energy functional obtains a strong local minimum
with respect to v. This state is characterised by the following conditions

R = 0 and k > 0. (8.3)

Here, the first condition forces the equilibrium of the structure. The second one,
means that small perturbations of v should not lead to an energy decrease.

8.2.2 Discretised relations

Systems of nonlinear, partial differential equations are usually solved by using the
finite element method, see for example [152]. The corresponding discretisation and
the subsequent assembly of all element contributions lead to the physical residual
vector R ∈ Rn and to the symmetric, tangent physical stiffness matrix K ∈ Rn×n
with the number of degrees of freedom n. Taking displacement boundary conditions
into account, one obtains a reduced stiffness matrix Kr ∈ Rr×r with r < n. In the
following, the smallest eigenvalue of Kr is noted by γ. Stability conditions given in
equation (8.3) can be formulated considering discrete quantities

R = 0 and γ > 0. (8.4)

Hereby, the equilibrium is expressed by n equations and stability is forced by positive
definiteness of Kr. The loads are usually scaled by a parameter λ > 0 to compute
load deflection curves considering nonlinear behaviour. Therefore, the eigenvalue γ(λ)
depends on the load parameter. Unstable states are indicated by γ(λ) ≤ 0. In this
thesis only the computation of the first instability point is considered. In this case,
the load parameter is gradually increased in an interval 0 < λ ≤ λc. The value λc
with γ(λc) = 0 indicates the first instability point and is called the critical load (only
in this context). The bisection method is well known in context of line search in
optimisation, see for example [105]. This method is used to compute an accurate
value λc and to reduce the numerical effort. An eigenvector of the reduced stiffness
matrix Kr which corresponds to γ(λc) = 0 is called buckling mode.

8.3 Sensitivity based imperfections

One has to violate the conditions (8.4) to create ‘worst’ imperfections. Most of the
proposed techniques on this topic try to affect the smallest eigenvalue γ of the tangent
physical stiffness operator, see for example [79, 26, 137, 116, 50, 148, 132]. The
strategy followed in this contribution is to disturb the equilibrium condition R = 0.

64



8.3 Sensitivity based imperfections

8.3.1 Global imperfections

Variational design sensitivity analysis is a branch of structural optimisation. Here,
variations of the material configuration δX are considered and the changes of an
arbitrary objective functional J(v(X),X) are observed. Its total partial variation

with respect to X contains the variation of the state δv =
dv

dX
· δX with respect to

design. The variational equation for the sensitivity of the state due to changes in the
design, see chapter 6, is given as follows

k(v,X; δv, δv̄) = −p(v,X; δv, δX̄). (8.5)

For a given variation in the design δX̄, the variation in the state δv̄ is obtained. This
is the main purpose of the pseudo load p. Discretisation of operator p leads to the
pseudo load matrix P ∈ Rn×m with the number of design variables m and with the
number of degrees of freedom n. This matrix defines an input-output system

dX̂R = P dX̂. (8.6)

A given perturbation in design dX̂ (input) yields perturbation in equilibrium dX̂R
(output). As only the partial derivative is considered, the notation dX̂ is utilised.
Singular value decomposition is utilised to analyse this input-output system. If the
perturbation in design is equal to the k-th right singular vector dX̂ = zk, we obtain
the corresponding perturbation in equilibrium as follows

dX̂R =

min(n,m)∑
i=1

σi yi z
T
i

 zk = σk yk with
∥∥dX̂R∥∥2

= ‖σk yk‖2 = σk. (8.7)

These relations are valid because of the orthonormal bases zi and yi. We note that
inputs (shapes) which correspond to the largest singular values have an extraordinary
impact on equilibrium. Taking these observations into account, SVD based procedure,
which is pictured in Figure 8.1 can be utilised to generate imperfections. Here, the
first instability point of the perfect structure is determined. The corresponding load
parameter λc and the state function v are considered to be fixed. What shape changes
would disturb equilibrium most of all in this situation? The pseudo load matrix
P is computed for load level λc to answer this question. The most unfavourable
values of the chosen design variables are obtained by using SVD and computing right
singular vectors which corresponds to the largest singular values of the pseudo load
matrix. The amplitude of such an imperfection must be chosen by the engineer. The
corresponding imperfect model is analysed again to detect the first instability point
or to evaluate some failure criteria.
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8 Sensitivity based imperfections for nonlinear buckling analysis

first k right singular vectors zi

Perform reduced SVD of P and detect

Determine imperfect structures X̃i = X̂ + a · zi

Analyse imperfect structures

(amplitude a chosen by engineer)

Compute first instability point λc

of perfect structure

Compute pseudo load matrix P for load level λc

Figure 8.1: Generation of SVD based imperfections

8.3.2 Local imperfections

The pseudo load matrix is usually calculated with respect to coordinates of all finite
element nodes X̂ as design variables. In this case, the highest degree of freedom for
design changes is considered. Such design space is used, for example, in [50] to create
imperfections. In different situations one is interested in local design changes like
imperfections of certain parts of a structure or in thickness imperfections only. In
other cases one wants to study certain shapes of imperfections like waves or denting,
see for example [132]. These cases delineate the main application area of the presented
method. Hence, the concept of so called design velocity fields, which are well-known in
shape optimisation, see chapter 3 and 4, is utilised to modify the pseudo load matrix,
which was computed with respect to node coordinates. Following this concept, a map
is defined

X̂ = Φ(w) with Φ : Rs −→ Rm, (8.8)

where the coordinates of FE nodes are functions of s new design variables w. Utilising
the chain rule we obtain the pseudo load matrix with respect to new design variables

P̄ = P
dX̂

dw
= PΨ with P̄ ∈ Rn×s. (8.9)

Here, the quantity Ψ ∈ Rm×s is called design velocity fields matrix, where the i-th
column is the velocity field for the new design variable wi. The procedure presented
in Figure 8.1 is also valid for using P̄ instead of P . In cases, where only imperfections
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8.4 Example: compressed cylinder

of some parts of a structure are considered, design velocity fields matrix is a simple
Boolean matrix and can be created using standard selection tools. We note that
design velocity fields usually reduce the number of variables which is beneficial for
the numerical effort of the utilised SVD.

8.4 Example: compressed cylinder

The proposed strategy is clarified by considering the structure in Figure 8.2.

Figure 8.2: Compressed cylinder

Here, only 3/4 of the model is visualised. The example is unit less, but the dimensions
and material properties are chosen in a way that the structure corresponds to a part
of a PET bottle. The height is h = 12, the radius is r = 4 and the thickness is
t = 0.015. The free edge of the structure is stiffened with a ring (hr = 1.2, tr = 0.15)
to enforce buckling within the surface. All bottom nodes are fixed in all directions.
A St. Venant material with Young’s modulus E = 350 and Poisson’s ratio ν = 0.4 is
assumed. The critical load λc is the load resultant and is to be calculated for perfect
and imperfect designs.

8.4.1 Analysis of the perfect structure

The critical load parameter λc of the perfect structure is determined for different
mesh sizes, see Figure 8.3a. A good approximation is reached using a mesh with 6050
elements. The eigenvalue decomposition of the reduced tangent stiffness matrix at
load level λc provides eigenvectors which are the buckling modes. For meshes with 800
and 6050 elements the corresponding buckling modes are pictured in Figure 8.3b-c.
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(a) Convergence study for buckling load (b) Mode B1, 800 el. (c) Mode B1, 6050 el.

Figure 8.3: Buckling loads and modes of the perfect structure

8.4.2 SVD of pseudo load matrix

The pseudo load matrix is also computed at the load level λc and is decomposed by
singular value decomposition. The corresponding singular value distribution is pic-
tured in Figure 8.4a for a mesh with 6050 elements. The first and last data points are
marked with a star. As one can recognize, some first right singular vectors as inputs
have an extraordinary impact on outputs. The first singular vectors are pictured for
different meshes in Figure 8.4b-c. These modes show the same mesh dependency as
the buckling modes in Figure 8.3b-c.
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(a) Singular value distribution, 6050 el. (b) Mode P1, 800 el. (c) Mode P1, 6050 el.

Figure 8.4: Singular value decomposition of the pseudo load matrix

68



8.5 Summary and concluding remarks

8.4.3 Analysis of the imperfect structure

The buckling mode B1 pictured in Figure 8.3c, the first singular vector P1 pictured in
Figure 8.4c and the second vector P2 are scaled to a certain amplitude and applied as
imperfections to the cylinder. The corresponding imperfect structures are analysed
again and the critical load parameters are computed. For amplitudes 0 ≤ a ≤ h

200 the
corresponding critical loads λc are pictured in Figure 8.5a.
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(a) Critical loads as functions of a, 6050 el. (b) Area of interest, 800 el. (c) Mode P1, 800 el.

Figure 8.5: Properties of SVD based imperfections

These curves result from parameter studies and should not be confused with conver-
gence plots. As one can see, buckling mode B1 provides ‘worst case’ imperfection for
amplitudes 0 ≤ a ≤ h

600 . If the amplitude is a ≥ h
600 , vectors P1 and P2 are the

better choice to create imperfections.

The main result of this study is that right singular vectors of the pseudo load matrix
are suitable to create imperfections. Following this idea, it is possible to generate the
‘worst’ imperfections of only some parts of a structure.

For example, we consider the area of the cylinder between the planes in Figure 8.5b.
The ‘worst case’ imperfection of this area is pictured in Figure 8.5c and is determined
as the first right singular vector of the modified pseudo load matrix P̄ corresponding
to equation (8.9).

8.5 Summary and concluding remarks

The pseudo load matrix evaluated at the critical load level contains full sensitivity
information which can be analysed and interpreted using its singular value decompo-
sition. This matrix defines an input-output system with changes in design as input
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8 Sensitivity based imperfections for nonlinear buckling analysis

and distortions in equilibrium as output quantities. The most significant modes can
be identified and used as imperfections for nonlinear buckling analysis. In contrast to
buckling modes, it is possible to analyse the ‘worst’ imperfections of only some parts
of a structure and of design parameters like thickness. For this reason the pseudo
load matrix is transformed employing design velocity fields known in shape optimi-
sation. Despite of using SVD the numerical effort for such modes is comparable with
the computation of buckling modes since only some first singular values and vectors
are computed. Furthermore, pseudo load matrix is sparsely populated and the corre-
sponding algorithms can be utilised.

The proposed techniques are implemented in MATLAB based structural optimisation
program (SOP). Here, different kinds of design velocity fields are available for struc-
tural optimisation purposes and can be utilised to transform the pseudo load matrix
for structural stability analysis.
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9 Model reduction based on SVD of
sensitivity information

A model reduction technique for structural optimisation problems is pre-
sented in this chapter. It is based on the singular value decomposition
(SVD) of the pseudo load and sensitivity matrices. The corresponding
optimisation algorithm is outlined.

9.1 Introduction

The simulation and optimisation of real-world problems induce a high demand on
computer power. Hence, the need for model reduction (also called approximate mod-
els, surrogate models, meta models or response surface models) arises. Numerous
approaches to reduce the dimension of the problem have been developed.

9.1.1 State of the art

The analysis approximation methods reduce the number of degrees of freedom of the
analysis model by means of transformations (projections) into a lower dimensional
space to speed up structural analysis. These methods are often used to analyse
large-scale dynamical systems or time dependent models. Here, the SVD-based, the
Krylov-based and the SVD-Krylov-based approximation methods are known, see [16].

The optimisation approximation methods tackle the optimisation problem and replace
the original one by an approximation, which is easier to solve. In general, the number
of design variables is reduced. Here, two categories of approximations can be high-
lighted. Local approximations are significant in the neighbourhood of the considered
point and global approximations are valid for the whole space or large areas of it, see
[22] for an overview. The disadvantage of all mentioned approximation methods is
the lack of sufficient training data. This central matrix of snapshots requires multi-
ple evaluations of the original problem and is computationally very expensive. This
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9 Model reduction based on SVD of sensitivity information

problem is increased with the number of design variables, e.g. especially in topology
optimisation and nodal based shape optimisation. A great number of training vectors
is necessary to achieve a model with sufficient approximation accuracy. The method
proposed in this chapter requires neither the matrix of snapshots nor training vectors.

9.1.2 Special features of the presented research

The pseudo load matrix and the sensitivity matrix dominate design sensitivity analysis
of shape optimisation problems. They describe how a structure reacts on an imposed
design modification. These matrices are commonly used to derive and to calculate
the gradients of objective functions and of constraints. Pseudo load and sensitivity
matrices are analysed for the model problem of morphing based shape optimisation
by a singular value decomposition (SVD). It is demonstrated that these matrices
contain additional valuable information, which is not yet used either in theory or
algorithms for shape optimisation. To formulate reduced quadratic sub-problems
within the sequential quadratic programming (SQP) approach, the information on
the inner structure of the sensitivities is used. Similar techniques are proposed by the
author in [66] for nodal based shape optimisation and in [63] for topology optimisation.

9.2 Inner structure of shape sensitivities

To derive sensitivity relations for arbitrary objective functions and constraints, the
pseudo load matrix P T and the sensitivity matrix Su must be calculated, see chapter
6. These matrices are usually calculated with respect to coordinates of all FE-nodes
X̂ as design variables. In this case, the highest degree of freedom for design changes
is considered. Such design space is, for example, considered in FE-node based or also
called parameter-free shape optimisation, see [32, 119, 93, 66]. In context of morphing
based shape parametrisation, the concept of, so called, design velocity fields well-
known in shape optimisation, see chapter 3 and 4, is utilised to calculate the pseudo
load matrix P̄ T and the sensitivity matrix S̄u with respect to free coordinates of
control points w as design variables. Following this concept, a map is defined

X̂ = Φ(w) with Φ : Rs −→ Rm, (9.1)

where the coordinates of FE nodes are functions of s free coordinates of control points
w. Utilising the chain rule we obtain the desired matrices

P̄ T = P T
dX̂

dw
= P TΨ with P̄ T ∈ Rn×s,

S̄u = Su
dX̂

dw
= SuΨ with S̄u ∈ Rn×s.

(9.2)

Here, the quantity Ψ ∈ Rm×s is called design velocity fields matrix, where the i-th
column is the velocity field for the variable wi. We note that design velocity fields
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9.2 Inner structure of shape sensitivities

usually reduce the number of variables, which is beneficial for the numerical effort
of the utilised SVD. In contrast to the concept presented by the author in [63], the
number of design variables does not depend on the chosen discretisation. Hence, the
optimised shapes are FE-mesh independent. Numerical defects like mesh distortions
and jagged boundaries do not appear due to morphing based design parametrisation.
Next up, a simple example of shape optimisation is introduced, which is used for the
SVD based exploration of sensitivity information in this section.

9.2.1 Example: uniaxial strained shell

The compliance of the structure pictured in Figure 9.1 is to be minimised considering
a constant volume constraint. The dimensions of the structure (width and depth)
are a = 200 and b = 100. The thickness t = 0.3 must remain constant during
the optimisation. The material properties are Young’s modulus E = 21000 and
Poisson’s ratio ν = 0.3. The load q̄ = 1/20000 is a surface load. The applied
boundary conditions are pictured in Figure 9.1a. The finite element mesh consists of
800 elements and 1722 nodes with 5166 degrees of freedom. A morphing box is defined
by 400 control points and is pictured in Figure 9.1b. Vertical positions (z coordinates)
of 144 control points, which are marked red, are used as design variables.

(a) Mechanical system (b) Optimisation model

Figure 9.1: Uniaxial strained shell: initial structure

The large number of control points ensures a high degree of freedom for design changes.
A reasonable model reduction technique should preserve this property and can not
be based on a model with less control points.

9.2.2 SVD of the sensitivity matrix

The sensitivity matrix S̄u is computed for the initial design of the structure pictured
in Figure 9.1. The columns j are the variations of the displacement field with respect
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9 Model reduction based on SVD of sensitivity information

to a variation of the design variable wj . They are local changes in the displacement
field and are ordered according to the node numbers. Singular value decomposition
provides an enhanced interpretation of the sensitivity matrix

S̄u = Y ΣZT with Y ∈ R5166×5166, Σ ∈ R5166×144, Z ∈ R144×144. (9.3)

The right singular vectors (inputs) can be interpreted as design modes (shape modes)
and the left singular vectors as the corresponding displacement responses (outputs).
The singular values of S̄u are pictured in Figure 9.2. These values can be used to
identify such design modes, which effect global changes in displacement field. One
can recognize, that about five first design modes have an extraordinary impact on the
displacement field. To give an example, the first design mode and the corresponding
perturbation in displacements are pictured in Figure 9.3a and b.
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Figure 9.2: Uniaxial strained shell: singular value distribution of S̄u

From mechanical point of view, design changes pictured in Figure 9.3a stiffen the
structure and the displacements are decreased as shown in 9.3b. Singular values with
numbers in the range about 5 − 50 are much smaller than the first five, but they
distinctly differ from zero.

(a) Perturbation in design (b) Reaction in displacement

Figure 9.3: Uniaxial strained shell: the first left and right singular vectors of S̄u
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(a) Perturbation in design (b) Reaction in displacement

Figure 9.4: Uniaxial strained shell: the 14th left and right singular vectors of S̄u

The corresponding design modes are also smooth ones, but they can not be interpreted
from mechanical point of view. One representative of this group is pictured in Figure
9.4a with its displacement response in 9.4b. The rest of the design modes represent
high oscillating changes in design which are meaningless. For example, the design
mode 100 and the corresponding displacement mode are pictured in Figure 9.5.

(a) Perturbation in design (b) Reaction in displacement

Figure 9.5: Uniaxial strained shell: the 100th left and right singular vectors of S̄u

These modes can be neglected in an optimisation process. Hence, the valuable parts
of the sensitivity matrix S̄u are extracted using the singular value decomposition.

9.2.3 SVD of the pseudo load matrix

The interpretation of the pseudo load matrix P̄ T and its SVD is very similar to that
of S̄u, see [66]. Hence, only some remarks are given in this section and details are
omitted. The column vectors j of matrix P̄ T describe the changes of the physical
residual R as a response to the perturbation in design variable wj . SVD of the pseudo
load matrix can be utilised to identify shape modes, which have an extraordinary
impact on physical residual. Compared with the distribution of the singular values
of the sensitivity matrix, the singular value distribution of the pseudo load matrix
can not be separated in regions with high and small values. The curve is usually
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9 Model reduction based on SVD of sensitivity information

monotonically decreasing. The corresponding shape modes look very similar to those
pictured in figures 9.3, 9.4 and 9.5, but they are arbitrary distributed over the whole
spectrum. They are sorted according to their impact on the physical residual.

9.3 Shape optimisation based on SVD

Model reduction presented in this chapter is based on the idea of using right singular
vectors from SVD of the sensitivity matrix or of the pseudo load matrix as shape
modes within the shape optimisation procedure. For this reason a subset of these
modes is chosen and changes in design of the structure are described as linear combi-
nation of them. The corresponding scaling factors are used as design variables in the
modified optimisation procedure.

9.3.1 Selection of shape (design) modes

The singular value decomposition of pseudo load matrix or of the sensitivity matrix
provides a set Z of shape modes, which can be used to minimise any objective func-
tion J . Singular values of this decomposition indicate modes that influence either the
physical residual or the displacement field most of all.

In case of compliance minimisation the objective function is directly related to the dis-
pacement field because minimising the compliance is equal to maximising the stiffness
of the structure, which is similar to reducing the global deformation (displacements)
of the structure. Here, SVD of the sensitivity matrix is beneficial. The corresponding
singular values can be used to identify some shape modes, which have an extraordinary
impact on the compliance.

Arbitrary objective functions. Considering an arbitrary objective function J(w)
with w ∈ Rs and an arbitrary set of shape modes Z ∈ Rs×s some kind of indicators
c̄i with i = 1, ..., s are needed to select a suitable subset of shape modes. Such
indicators are derived as total derivatives of the objective function with respect to
the scale factors αi of shape modes, i.e.

c̄ =
dJ

dα
=

(
∂J

∂w

)
dw

dα
=

(
∂J

∂w

)
Z, with w = Zα. (9.4)

Only absolute values ci = |c̄i| should be used as indicators because the sign of singular
vectors is not unique. The desired subset Z̃ of shape modes is obtained by means of
the Boolean reduction matrix B ∈ Rs×l with Z̃ = ZB. The number of shape modes l
to be selected is prescribed by the user. Note, the matrix B picks those modes which
correspond to indicators with the largest values.
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9.3 Shape optimisation based on SVD

Consideration of constraints. Pseudo load matrix and sensitivity matrix do not
contain information about constraints. The corresponding shape modes are not nec-
essarily suitable to take into account constraints. General constraints hj(w) ≤ 0 with
j = 1, ...,m are isolines and isosurfaces of the function, which are controlled and they
describe the boundary of the design space. These boundaries are exceeded if the
constraints are injured. The mathematical optimiser must be able to find the feasible
design space. The gradients of constraints ∇hj with respect to the design variables
are orthogonal to the isolines and isosurfaces of the corresponding constraints repre-
senting the shortest way to the feasible design space. Hence, it must be possible to
express the gradients of constraints as linear combination of the selected shape modes.
In the other case, the new basis vectors must be supplemented with the gradients of
constraints as follows

Z̄ =
[
∇h1 · · · ∇hm Z̃

]
. (9.5)

Here, the gradients of constraints should be normalised as the singular vectors are
orthonormal ones. Equality constraints are considered in the same way.

9.3.2 Modified optimisation procedure

We perform a coordinate transformation introducing new design variables κ ∈ Rl+m,
which are scaling factors of the design modes. This transformation reads

w = Z̄κ with Z̄ ∈ Rs×(l+m). (9.6)

The first derivative of this equation with respect to the new variables is the matrix
Z̄. Utilising the chain-rule all derivatives which are needed for the mathematical
optimiser can be calculated with respect to the new variables, i.e.

d(•)
dκ

=
d(•)
dw

Z̄. (9.7)

Several strategies for applying a model reduction are useful. SVD can be applied in
each and every iteration or only at one or few specially chosen situations. An optimi-
sation procedure based on SVD is pictured in Figure 9.6. Here, SVD is performed in
each n-th iteration.
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Figure 9.6: Optimisation procedure based on SVD

Variable i denotes an integer value with i ≥ 0. We notice that it is possible to use
SVD of the pseudo load matrix or of the sensitivity matrix to generate shape modes.
Furthermore, new initialisation of the BFGS approximation of the Hessian matrix
must be performed after each computation of new basis vectors.

9.4 Example: uniaxial strained shell - continued

The compliance of the structure pictured in Figure 9.1 is to be minimised considering
a volume constraint. A volume increase of only 5% is allowed. SVD based algorithm
presented in Figure 9.6 is utilised. SVD of the sensitivity matrix is performed in
each 5th iteration to generate shape modes. Modes, which correspond to largest
singular values are selected. Volume gradient is added to the basis vectors to take the
constraint into account. Utilising all right singular vectors of sensitivity matrix as
shape modes only coordinate transformation takes place and the optimisation results
are the same as using the standard optimisation procedure, see Figure 9.7a.
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9.5 Summary and concluding remarks

(a) 144/144 shape modes (b) 5/144 shape modes

Figure 9.7: Uniaxial strained shell: optimised structure

Model reduction is performed selecting only 5 modes out of 144 ones. The correspond-
ing optimised structure is pictured in Figure 9.7b. It is very interesting to observe that
using only about 4% of all possible modes, reasonable results are achieved. Compli-
ance values and compliance decreases with the corresponding errors are summerised
in Table 9.1 for different model reduction grades.

Table 9.1: Uniaxial strained shell: compliance after the 40th iteration

number of modes compliance compliance decrease relative error
(·)/144 C Cdiff %

5 0.01288 6.6376 0.0286
11 0.01255 6.6380 0.0236
50 0.01233 6.6382 0.0203
144 0.01098 6.6395 0

9.5 Summary and concluding remarks

Singular value decomposition is a tool to sort out great amount of information, which
is packed in matrices. It gives the possibility to separate important and unimportant
parts of information and provides statements about the influence of model variables
on the content of information. For some problem definitions model reduction can be
carried out in this way.

The presented SVD based structural optimisation algorithm is developed to demon-
strate the information content of quantities which appear in sensitivity analysis and
to explore these quantities by means of SVD. Of course, the numerical performance
of the algorithm is not optimal for general cases. But in contrast to the approach
presented by the author in [66], the second dimension of the pseudo load matrix and
of the sensitivity matrix does not depend on the considered finite element mesh. This
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9 Model reduction based on SVD of sensitivity information

dimension corresponds to the number of design variables and can be set up by design
engineer. Hence, the effort for SVD depends only on the utilised design description,
morphing boxes, for example. For some objectives only the computation of some first
singular vectors and values of the sensitivity matrix is necessary, see for example the
example in section 9.4. In such cases the generalised singular value decomposition
can be utilised to save the storage space and the computational time. See chapter 7,
section 7.3 for more details on this topic.

It depends on the considered objective function which matrix should be decomposed
by SVD to generate shape modes. The objective function must be interpreted from
mechanical point of view and the choice must be made if pseudo load matrix or the
sensitivity matrix is to be used. An example where shape modes of both matrices are
compared is presented by the author in [66]. The handling of stress constraints is also
demonstrated by an example in the mentioned contribution.

The proposed model reduction techniques are implemented in MATLAB based struc-
tural optimisation program (SOP). Shape modes based on SVD of pseudo load matrix
and of sensitivity matrix can be selected utilising different kinds of indicators.
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10 SVD based design exploration

This chapter is concerned with the exploration of the FE model and of
the corresponding design description. Based on singular value decom-
position of sensitivity information, interactive tools are derived which
facilitate the definition of a structural optimisation problem.

10.1 Introduction

For different kinds of application algorithmic treatment of SVD based sensitivity in-
formation is presented in chapter 8 and chapter 9. The corresponding implementation
provides black box like programs, which require the input of only some parameter
values by the user. The optimisation model is considered to be given and all necessary
conditions are prescribed and predefined. Techniques which deal with the solution of
a given structural optimisation problem only can be improved with respect to their
numerical effort, required storage space, convergence speed and computational time.

However, the process of definition of a structural optimisation problem is human
controlled and is based on his/her experience and knowledge. Within this process
decisions which tackle the kind of design parametrisation, the type and number of
design variables and relations between these variables have an extraordinary impact
on the quality of optimisation results, on the solubility of the problem and on the
corresponding computational effort. The exploration of structural design is utilised
to facilitate and substantiate these decisions.

10.1.1 State of the art

In the field of architecture, the exploration of design is outlined in [86] and [61].
Within computational differential geometry, design exploration is utilised to navigate
in subspaces of the shape space of constrained meshes, see [150]. In context of software
development, an approach for design space exploration was proposed in [84]. Concept
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10 SVD based design exploration

exploration and selection are presented in [101] under a multiobjective optimisation
framework in context of product development.

Exploration of the structural design is directly related with topics like robustness, un-
certainty and reliability analysis, where sensitivity of structural response with respect
to some model parameters is analysed. The aim of uncertainty analysis, see [47, 85], is
to show that the considered structure is not sensitive with respect to tolerances of load
positions, values and directions, support positions and types, material properties and
geometrical quantities. Within robustness analysis, which is reviewed in [109, 46, 138],
different load cases are considered. Reliability, as outlined in [113, 140, 37], describes
structural safety in the presence of design changes. Techniques presented in this chap-
ter could also be useful within robustness, uncertainty and reliability analysis.

Structural design exploration tools are available in ANSYS [2], AVL [4] and BOE-
ING [5] software environments. They are based on response surfaces [128, 83], meta
models [143, 129], and techniques from the field of design of experiments [118]. A
recent work on the exploration of the structural design in an aircraft conceptual per-
spective is [106]. The definition of the optimisation problem is tackled and adaptive
formulation of functional and design variable constraints is proposed. This allows the
exploration of further promising solutions initially not contained in the feasible design
set. Multi objective design exploration for aerodynamic configurations is proposed
in [107]. Investigations presented in this chapter highlight the information which has
not been used so far in all mentioned algorithms and approaches.

10.1.2 Special features of the presented research

Within this chapter techniques, which facilitate the definition of a structural optimi-
sation problem are presented. These techniques are derived from methods, which are
well known in the scope of statistics as well as of applied sciences and are especially
based on principal component analysis, factor analysis and the computation of vari-
ance and correlation, see [41] for more details on this topic.

The above mentioned concepts like response surfaces, meta models and design of
experiments require repeated evaluations of objectives, constraints and structural re-
sponse. The numerical effort increases with the number of design variables as for each
variable structural analysis is performed several times. Within this chapter the explo-
ration of design is based on sensitivity information. Structural and the corresponding
sensitivity analysis are performed only once at the beginning of exploration.

Usually, exploration of design only tackles the definition of design variables, com-
parison of different design variants and the numerical effort. In addition, sensitivity
based exploration of design space, which is outlined in this chapter, is also able to
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10.2 A structural optimisation assistant

detect numerical defects like the appearance of jagged boundaries, mesh distortions
and physically meaningless changes in thickness.

Further, not only predefined design descriptive variables are considered, but also the
full space of all possible design variants is explored, which is possible considering the
coordinates of FE-nodes as design variables.

10.2 A structural optimisation assistant

A software assistant or expert system is a graphical user interface with the objective
of supporting a user with a sequence of dialogue boxes leading the user through a
series of well-defined steps. During this process the user is provided with carefully
condensed information to facilitate his/her decisions. Complex tasks might be easier
performed using an assistant. In this section a structural optimisation assistant is
presented to support the design engineer during the definition of the optimisation
problem. The flow chart of the proposed assistant is pictured in Figure 10.1.

Exploration of FE model based on SVD

Design description defined by design engineer

SVD based exploration of the design model

Definition of the optimisation problem

(coordinates of FE nodes as design variables)

(design variables from design description)

Definition of the mechanical problem

Figure 10.1: Flowchart of SVD based design exploration

In following, the items of this flowchart are explained in detail.

Mechanical problem definition. The definition of a structural optimisation problem
requires the formulation of mechanical model. In context of finite element method the
kind of boundary value problem, the type of analysis and some technology parameters
must be chosen. For example, it has to be decided if elasticity or plasticity theory
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10 SVD based design exploration

should be used, whether the mechanical behaviour does depend on time or not, if the
influence of temperature must be considered. Finite element mesh is created, mate-
rial parameters and boundary conditions are prescribed. The formulated mechanical
problem is analysed with respect to plausibility, accuracy and discretisation errors. If
necessary, the finite element mesh is refined.

SVD based FE model exploration. Structural response is usually observed con-
sidering the displacements, stresses and strains of the deformed model. The design
engineer requires information about the sensitivity of these response fields with re-
spect to changes in shape and other parameters of the structure to explore the model.
It is well known from FE node based shape optimisation, see for example [32], that
maximum design freedom is obtained if coordinates of FE nodes are used as design
variables. Utilising such design variables, sensitivity matrices and pseudo load matri-
ces are computed for the initial structure. These matrices contain the desired sensitiv-
ity information. Techniques like principal component analysis (PCA), factor analysis
(FA) and singular value decomposition (SVD), which are widespread in statistics, are
used to analyse this great amount of information. Perturbations of model parameters
like thickness, structural shape, support and loading positions with high potential
to change the mechanical behaviour of the model, can be detected and explored. In
section 10.3 this topic is discussed in detail.

Design description. Parametrisation of design is performed based on observations,
which are done exploring the FE model. Parts of the structure, which potentially have
high influence on objectives and constraints are considered. The kind of parametri-
sation is chosen. For this reason techniques from CAD, morphing or FE node based
parametrisation are utilised. Details on this topic are presented in chapter 3 and 4.

SVD based design exploration. A large number of parameters, which describe the
design of the structure can appear for real world applications. Such parameters can
be radii of circles, lengths, widths, heights and thicknesses of structural parts, coordi-
nates and weights of control points, which define NURBS. Within the morphing based
parametrisation, the coordinates of control points, which define the morphing boxes
are used as design variables. Their number has an extraordinary influence on possible
design variations. Also in this situation, the design engineer needs some information
about the sensitivity of structural response with respect to design describing parame-
ters. In this case, the sensitivity matrices and the pseudo load matrices are calculated
with respect to design parameters. Utilising SVD and other statistical methods, these
matrices are analysed and the design model is explored. In addition, the SVD of ve-
locity fields matrices can be helpful to explore the design space. If necessary, the
design description can be refined or coarsened. A detailed discussion on this topic is
presented in section 10.4.
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Optimisation problem definition. Based on observations exploring the design, the
definition of optimisation problem can now be finalised. Therefore, some design de-
scriptive parameters are chosen as design variables. Bounds for these variables are
defined. If necessary, some relations between design variables are formulated in ad-
dition to the original objectives and constraints to enforce symmetry or producibility
and to avoid mesh distortions. Such optimisation problem is then solved by a general
structural optimisation procedure which is, for example, introduced in chapter 3.

10.3 FE model exploration

FE model exploration is motivated in the previous section. The design engineer is
supported by a structural optimisation assistant, which evaluates the great amount
of sensitivity information for the initial structure and extracts the significant factors
and effects. Based on the observations exploring the FE model, the design engineer
can choose the kind of design parametrisation.

Within this section only shape changes are considered as design modifications. Only
the displacements sensitivity matrix is analysed. Application of the proposed tech-
niques to pseudo load matrix and to stress sensitivity matrix is straight forward and
details are omitted. Using the example of a cantilever shell, which is pictured in
Figure 10.2a, FE model exploration is explained.

10.3.1 Cantilever shell: FE model

The compliance J := C := −Π of the structure, which is pictured in Figure 10.2a
has to be minimised taking a volume constraint V = 1.05V0 into account. Here, the
quantities V and V0 denote the current and initial volumes.

(a) Mechanical system (b) Initial deformation

Figure 10.2: Cantilever shell: initial structure

The dimensions of the structure (length and width) are l = 200 and w = 100. The
shell thickness is t = 0.5. The material properties are Young’s modulus E = 21000
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and Poisson’s ratio ν = 0.3. The load q̄ = 0.002 is a line load. All finite element
nodes on the right side of the structure are fixed in all three directions. The applied
boundary conditions are pictured in Figure 10.2a. The finite element mesh consists of
800 elements and 1722 nodes with 5166 degrees of freedom. The initial deformation
of the structure is pictured in Figure 10.2b. Due to the low stiffness, the structure is
very sensitive with respect to changes in shape. Another advantage of this example
is the simple geometry, which allows to present pictorial material using as little as
possible images.

10.3.2 Inner structure of the sensitivity matrix

To begin with the exploration of the FE model, the coordinates x, y and z of all
finite element nodes are considered as design variables. Only the loaded nodes, x
and y coordinates of fixed nodes are excluded from the set of design variables. Such
variables enable maximum possible design freedom, as it is known from FE node
based shape optimisation, see [32]. The displacements sensitivity matrix is calculated
with respect to the mentioned variables. Singular value decomposition of this matrix
is performed. Right singular vectors are interpreted as perturbations in design and
the corresponding left singular vectors represent reactions in displacements. The first
right singular vector (mode) for the considered example corresponds to the largest
singular value and is pictured in Figure 10.3a. This mode represents thickness changes,
which correlate with the moment curve of the structure. Such changes would stiffen
the structure and can be interpreted from mechanical point of view.

(a) Changes in shape: mode 1 (b) Changes in shape: mode 4956

Figure 10.3: Cantilever shell: SVD of sensitivity matrix, where all coordinates of top
and bottom finite element nodes are considered as design variables.

The last shape mode corresponds to singular value, which is zero and is pictured
in Figure 10.3b. Zero value means that this mode does not have any influence on
displacements. As one can recognize, mesh distortions are represented by this mode.
These mesh distortions are mainly in the plane of the shell. It is also a well known
fact in context of FE node based shape parametrisation. To avoid such problems a so
called in-plane regularisation is utilised in [32]. The singular value distribution of the
considered sensitivity matrix is pictured in Figure 10.4a. From about five thousand
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singular values only few ones are significantly greater than zero. That means that the
huge design space is described by variables with very slow variance and that a great
number of shape changes exists not influencing on the structural response.
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(a) x, y and z coordinates of top and bottom
FE nodes are used as design variables.
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(b) Only the z coordinates of mid surface nodes
are used as design variables.

Figure 10.4: Cantilever shell: singular value distribution of sensitivity matrix for dif-
ferent choices of design variables.

Based on the above observations and due to some producibility criteria, the design
engineer decides to enforce a constant shell thickness during the optimisation. For
this reason a mid surface of the shell is created and coordinates of the corresponding
mesh nodes are used as design variables. To exclude in-plane mesh distortions, the
design engineer decides to use only the z coordinates of mid surface nodes as design
variables. For this new set of design variables the sensitivity matrix is computed.
We note that only a transformation of the previous sensitivity matrix is necessary.
The modified sensitivity matrix is decomposed utilising SVD and steps described
before are repeated. The corresponding singular value distribution is pictured in
Figure 10.4b. This distribution is very similar to the previous one, but the design
space is now described by six times less variables. Some first shape modes have an
extraordinary impact on structural response as indicated by the first few singular
values. Nevertheless, the chosen variables also have very slow variance, which can
be observed considering the rest singular values near zero. The first shape mode
is pictured in Figure 10.5a and represents changes in design, which would increase
structural stiffness concurrently keeping the thickness constant. The last shape mode
is pictured in Figure 10.5b and represents jagged boundaries. Such effect is also
well known in FE node based shape optimisation and is usually prevented utilising,
so called, out-of-plane regularisation techniques like filters, see [32, 66]. Another
way to avoid problems mentioned above is to use CAGD or morphing based shape
parametrisation techniques, see chapter 3.
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(a) Changes in shape: mode 1 (b) Changes in shape: mode 840

Figure 10.5: Cantilever shell: SVD of sensitivity matrix where z coordinates of mid
surface nodes are considered as design variables.

10.4 Design exploration

Based on the above observations the design engineer decides to utilise morphing based
shape parametrisation, see chapter 4, to restrict the design space, to obtain smooth
solutions and to reduce the number of design variables.

10.4.1 Cantilever shell: design model

To parametrise the shape of the structure, the design engineer creates two similar
morphing boxes with different numbers of control points (CPs). These boxes are
pictured in Figure 10.6. Only vertical positions of red marked control points are
utilised as design variables to avoid mesh distortions.

(a) Morphing box with 128 control points (b) Morphing box with 50 control points

Figure 10.6: Cantilever shell: morphing based design description.
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Again, coordinates of mid surface nodes are introduced and are controled by the
morphing box to enforce a constant thickness. Positions of finite element nodes are
then defined as functions of mid surface node coordinates.

10.4.2 Inner structure of the transformed sensitivity matrix

Both models in Figure 10.6 are compared by means of SVD based design exploration.
The model in Figure 10.6a consists of 128 CPs but only z coordinates of 56 CPs
are used as design variables. The corresponding sensitivity matrix is obtained trans-
forming the previous one with respect to the new design description. Right singular
vectors represent now perturbations in design (in control point positions) and can
be transformed to shape changes (changes in coordinates of finite elements). Shape
changes which correspond to the first and the last modes are pictured in Figure 10.7.

(a) Changes in shape: mode 1 (b) Changes in shape: mode 56

Figure 10.7: Cantilever shell: SVD of sensitivity matrix where z coordinates of control
points are considered as design variables. Model with 128 CPs.

Here, the first mode represents a smooth modification of the shape, which preserve
the constant thickness and which increases the global structural stiffness. The mode
number 56, pictured in Figure 10.7b is also a smooth one and mesh distortions with
jagged boundaries do not appear here. The presented shape changes consist of high
oscillating shell parts. The last SVD modes usually represent the smallest possible
wavelengths of design perturbation and indicate how fine the details of the optimised
structure can be. The corresponding singular value distribution is pictured in Figure
10.8a. We notice that much more singular values are now significantly greater than
zero compared to the case of using coordinates of finite element nodes as design
variables. Nevertheless, a great number of design modifications exist without influence
on structural response, as it is indicated by the rest of singular values. Next up, the
sensitivity matrix for the model, which is pictured in Figure 10.6b is computed. It
consists of only 20 design variables, which are the vertical positions of the red marked
CPs. The corresponding singular value distribution is presented in Figure 10.8b.
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(a) Model with 128 control points
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(b) Model with 50 control points

Figure 10.8: Cantilever shell: singular value distribution of sensitivity matrix where
z coordinates of control points are used as design variables.

As one can recognize, only about a quarter of singular values are near zero. That
means that the chosen variables have great variance on the structural response. We
notice that there are only 20 variables. The first shape mode is pictured in Figure
10.9a. This mode shows high correlation with the mode presented in Figure 10.7a
but it is not so detailed.

(a) Changes in shape: mode 1 (b) Changes in shape: mode 20

Figure 10.9: Cantilever shell: SVD of sensitivity matrix where z coordinates of control
points are considered as design variables. Model with 50 CPs.

This behaviour also appears in FE node based shape optimisation if a filter is used.
The greater the filter radius is, the less details the optimised structure consists. In
both cases (FE node based shape optimisation using filter and morphing based shape
optimisation) the design space is restricted and the nonlinear optimisation problem
is regularized, which is beneficial for the convergence of mathematical optimiser. The
shape mode number 20 is pictured in Figure 10.9b. As one can recognize, much less
oscillations appear here and very smooth shape changes can be obtained. Design
engineers often choose models with less design variables to reduce the numerical ef-
fort of mathematical optimiser and of sensitivity analysis. In contrast to models in
section 10.3, only a fraction of design variables is utilised in morphing based shape
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parametrisation. Which of the models presented in Figure 10.6 should be used for
the considered example is eventually a design decision. Similar situation appears in
FE node based shape optimisation if the size of the filter radius is chosen.

10.4.3 Cantilever shell: optimisation results

In Figure 10.10 for both models the optimised structures are pictured and the corre-
sponding compliance values are given. For both cases thirty iterations are performed
to obtain comparable and converged results. We notice that very similar results are
obtained and the values of objective function do not differ very much.

(a) 128 control points: C = 0.00328 (b) 50 control points: C = 0.00332

Figure 10.10: Cantilever shell: optimised structure.

In both cases one obtains a smooth solution and mesh distortions with jagged bound-
aries do not appear. If x and y coordinates of control points are added to the design
variables set, SVD based design exploration indicates mesh distortions very similar
to the previous section. To avoid great amount of pictorial material, the details on
this topic are omitted. Nevertheless, this fact confirms that design exploration step
is required despite of foregoing FE model exploration.

10.5 Correlation between design and FE model

In section 10.3 z coordinates of mid surface nodes are considered as design variables
to enable maximum design freedom. The corresponding sensitivity information is ex-
plored by SVD. In section 10.4 morphing based design parametrisation is performed.
The number of control points, their positions and free degrees of freedom are de-
fined based on the design engineers experience and on the observations done within
exploration of the model. It is well known, that each kind of design parametrisa-
tion, which is not based on FE node coordinates, restricts the design space. Due to
these parametrisations, the number of design variables is decreased and some design
changes are excluded from the design space. Sometimes, it is very difficult to rec-
ognize whether the parametrised model is flexible enough to be able to reach useful
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optimised structures and whether unwanted shape changes are really excluded.

Design velocity fields matrix Ψ ∈ Rn×m is usually calculated within sensitivity anal-
ysis as the last member of the sensitivity chain. The m columns of Ψ represent first
derivatives of n FE nodes coordinates with respect to the m design variables. For
given small changes in design dĈ, changes in FE nodes coordinates dX̂ can be com-
puted by dX̂ = ΨdĈ.

The chosen design description is flexible enough if quantities like gradients of objec-
tives and constraints or first modes of SVD of sensitivity matrix can be represented in
a basis, which is defined by the design velocity fields matrix Ψ. Therefore, for a given
gradient or mode dX̂ the best possible approximation by the chosen design variables
is computed utilising the pseudo inverse, see chapter 7, of the design velocity fields
matrix with dC̄ = pinv(Ψ)dX̂. This corresponds to the solution of an overestimated
system of linear equations. In this case, best approximation means that a minimum
of a least squares problem is determined. The corresponding approximation of the
input quantity dX̄ is computed evaluating the modified morphing boxes.

The quality of such an approximation depends directly on the basis Ψ and can be
measured by means of the absolute value of the so called correlation coefficient ρ,
which in case of two vectors is defined as follows

ρ+ = |ρ| = |cosα| =

∣∣∣∣∣ X̂
T
X̄

‖X̂‖‖X̄‖

∣∣∣∣∣ with 0 ≤ ρ+ ≤ 1. (10.1)

The absolute value of ρ is utilised because the signs of the modes are not uniquely
determined. In case of shape optimisation one can say that the value ρ+ ≥ 0.9 indi-
cates a very high correlation between two modes.

In case that some shape modes dX̂ are to be excluded from the design space, one has
to show, that the vectors dX̂ and dX̄ are not correlated. For shape optimisation one
can say that almost no correlation exists if ρ+ ≤ 0.1.

To give an example on this topic, we compute correlation coefficients between the
first shape mode from SVD of sensitivity matrix, which is computed with respect
to z coordinates of mid surface nodes as design variables, see section 10.3, and the
corresponding approximation based on the design velocity fields matrix of different
morphing boxes. In Table 10.1 these coefficients are summarised.
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Table 10.1: Cantilever shell example: model correlation

number of 10× 10× 2 8× 8× 2 5× 5× 2 3× 3× 2 2× 2× 2
control points = 200 = 128 = 50 = 18 = 8

correlation 0.964 0.960 0.900 0.650 0.0015
coefficient ρ+

In section 10.4 in Figure 10.6 morphing boxes with 128 and with 50 control points are
introduced. In Figure 10.11 morphing based design description with 8 control points
is presented.

Figure 10.11: Cantilever shell: design description with 8 control points.

In this case it is impossible to change the design in such a way that the structure at
least approximately would become similar to shape pictured in Figure 10.5a. This
fact is indicated by near zero correlation in Table 10.1. Utilising 18 control points,
it is possible to create a curved boundary on the right side of the shell and the
corresponding correlation coefficient is drastically increased to a value of ρ+ = 0.650.
Models with 128 and 50 control points show a very high correlation with ρ+ ≥ 0.9.
In case of the model with 200 control points, the number of design variables is greatly
increased but the corresponding correlation coefficient is slightly improved. Based on
this study, the design engineer decides to use morphing box with 50 control points to
hold the number of design variables as few as possible but to have the design space as
suitable as possible. In order to check whether unwanted modes are excluded from the
model, the correlation coefficient between the mode pictured in Figure 10.5b and the
approximated design changes dX̄ for the model with 50 control points is calculated.
The corresponding value of ρ+ = 0.00018 indicates that it is impossible to create such
a jagged boundary utilising the chosen morphing box.

93



10 SVD based design exploration

10.6 Summary and concluding remarks

A structural optimisation assistant is presented, which is implemented in MATLAB
based structural optimisation program (SOP). It is used as a preprocessor tool during
the definition of a structural optimisation problem. By means of this tool regions of
the structure with high sensitivity with respect to changes in design are highlighted
and shape modes with extraordinary impact on structural response are detected.
Redundant shape changes and numerical defects like jagged boundaries and mesh
distortions are tracked and excluded from the design descriptive model. The design
variables set is reduced to the most effective variables, which is advantageous for the
numerical effort and for the solubility of the problem. Such an assistant facilitates
and substantiates the definition of an optimisation problem.

Due to the linear approximation nature of first derivatives, all decisions based on ini-
tial structure derivatives are only valid for moderate changes in design. FE model and
design exploration can also be performed at several optimisations stages to improve
the quality of predictions. We note that for the presented exploration only first and
last modes are utilised within this chapter to reduce the amount of pictorial mate-
rial. Nevertheless, it could be helpful to observe the intermediate modes to discover
further phenomena. Within this thesis only shape changes are considered as design
changes. However, the proposed techniques are also valid for other types of variables
like material properties or load positions.

Utilising pure displacement formulations, only the sensitivity matrix for displace-
ments and the pseudo load matrix for partial derivative of the energy with respect to
displacements are available. In context of mixed finite element formulation the sensi-
tivity matrices of stresses and strains can also be computed. In this case, additional
valuable information can be gained for certain objectives and constraints. This topic
could be a part of the future work.

As only first and last SVD modes of sensitivity matrix are computed within this
approach, a sparse generalised singular value decomposition can be utilised to reduce
the computational effort, to save the storage space and to avoid the computation of
this matrix. See chapter 7, section 7.3.2 for more details on this topic.
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11 Numerical examples

The features and capabilities but also the shortcomings of the proposed
techniques are demonstrated on more practical numerical examples in
this chapter. Either compliance or volume of the structure is minimised,
taking stress and volume constraints into account. All computations are
performed utilising the structural optimisation program (SOP) where all
algorithms outlined in this thesis have been implemented.

11.1 Introduction

Algorithms and techniques proposed in this thesis are demonstrated on practical 3D
applications. Structural analysis and optimisation are performed using SOP. Addi-
tional 2D examples are presented in [66] and [63].

11.1.1 Considered objectives and constraints

Two types of structural optimisation problems are considered.

Compliance minimisation under volume constraint. Minimising the compliance
C = −Π of the structure the global structural stiffness, which is expressed by the
potential energy is maximised. In chapter 6 the vector of configurational forces,
which is also called the discretised material residual is derived. This vector represents
the total derivative of the potential energy with respect to coordinats of FE-nodes.
Hence, its negative values represent the total derivative of compliance. Objectives
like compliance and energy of the structure represent a special case where partial
and total derivatives with respect to design are equal. The computation of pseudo
load and sensitivity matrices is not necessary. Compliance minimisation problem is
restricted introducing a volume constraint to get reasonable optimised structures.
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11 Numerical examples

Volume minimisation under stress constraints. Stress is often used as failure crite-
rion within structural analysis. Optimising the shape of a structure, stress constraints
must be taken into account. In chapter 6 stress sensitivity is derived. The pseudo
load and sensitivity matrices must be computed to obtain stress gradients. Within
this chapter structural volume is minimised and Von Mises stress at each Gaussian
point is controlled.

In both cases additional geometric constraints can be utilised to enforce symmetry
or producibility and to restrict the design space. Furthermore, bounds for the design
variables can be taken into account.

11.1.2 Special features of the presented examples

The gradients of objectives and constraints are computed with respect to FE-node
coordinates and transformed by means of design velocity fields matrices, see chapter
4, to obtain sensitivity with respect to changes in control point positions.

The utilised solid shell element is used either in solid or in shell mode to optimise
the shape of 3D structures, which are modelled either by volumes or by surfaces.
Examples with cuboidal and freeform morphing boxes are considered to demonstrate
the inverse computation of the local coordinates of FE-nodes.

11.2 Compliance and volume minimisation

In chapter 6, section 6.4 the first example for compliance and volume minimisation
was introduced. More practical applications are presented in this section.

11.2.1 Reservoir bracket

The compliance J := C := −Π of the structure, which is pictured in Figure 11.1 is
minimised, taking into account a volume constraint V = 1.05V0. Here, the quantities
V and V0 denote the current and initial volumes. The inner radius and the outer one
are ri = 35 and ro = 55. The height is h = 2. The material properties are Young’s
modulus E = 21000 and Poisson’s ratio ν = 0.3. The load resultant is Q̄ = 1. The
applied boundary conditions are pictured in Figure 11.1a. The finite element mesh
consists of 984 elements and 2110 nodes with 6330 degrees of freedom. The thickness
t = 0.1 remains constant during the optimisation.
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11.2 Compliance and volume minimisation

(a) Mechanical system (b) Optimisation model

Figure 11.1: Reservoir bracket: model problem

A morphing box is defined by 84 control points and is pictured in Figure 11.1b. Finite
element nodes, which are controlled by this box are marked with a star. Vertical
positions of control points, which are marked red are used as design variables.
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(a) Compliance history (b) Optimised design

Figure 11.2: Reservoir bracket: optimisation results

The algorithm converges after 21 iterations. The corresponding iteration history for
the objective is pictured in Figure 11.2a. The compliance is decreased to a third of
its initial value. The optimised design is presented in Figure 11.2b. The shape of
inner and outer flanges is not changed, because these parts are not influenced by the
defined morphing box. The higher stiffness of the optimised structure can be verified
considering structural deformation before and after optimisation in Figure 11.3.

97



11 Numerical examples

(a) Initial deformation (b) Deformation of optimised structure

Figure 11.3: Reservoir bracket: deformation before and after optimisation

The highlight of the presented example is the morphing box, which is not a square
block. In this case, the reverse computation of local finite element nodes positions
corresponding to chapter 4, section 4.4.3 is slightly more time-consuming. Providently,
this step is done once before optimisation starts.

11.2.2 3D hook

(a) Mechanical system (b) Optimisation model

Figure 11.4: 3D hook: model problem
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11.2 Compliance and volume minimisation

The considered solid shell elements can be used as pure solid elements. For this reason
the ANS and the EAS enrichments must be deactivated. To give an example the 3D
hook in Figure 11.4 is considered. The dimensions of the structure (height, width and
depth) are h = 38, w = 26 and d = 6. The material properties are Young’s modulus
E = 21000 and Poisson’s ratio ν = 0.3. The load resultant is Q = 0.024. The applied
boundary conditions are pictured in Figure 11.4a. The finite element mesh consists
of 3510 elements and 4424 nodes with 13272 degrees of freedom. A morphing box
is defined by 36 control points and is pictured in Figure 11.4b. All finite element
nodes are controlled by this box. Positions of control points which are marked red
are used as design variables. Some bounds for these positions are introduced to avoid
self penetration of the FE-mesh.

Compliance minimisation. The compliance of the structure is minimised preserving
a constant volume of the structure. The algorithm converges after 34 iterations. The
corresponding iteration history for the objective is pictured in Figure 11.5a. The
compliance is decreased to 60 % of its initial value. The optimised design is presented
in Figure 11.5b.
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Figure 11.5: 3D hook: optimisation results for compliance minimisation

The depth of the structure is not changed as the control points were not allowed
to be moved in the corresponding direction. A more detailed design can be reached
employing morphing boxes with more control points. It is interesting to observe that
also complex geometries can be easily parametrised by morphing boxes.
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11 Numerical examples

Volume minimisation. The volume of the 3D hook is minimised under stress con-
straints. The von Mises stress σv in all Gaussian points i is controlled with σiv ≤ σ̄.
For the considered example the stress limit is σ̄ = 110. Optimisation history for
volume and maximum Von Mises stress are pictured in Figure 11.6.
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Figure 11.6: 3D hook: optimisation results for volume minimisation

(a) Initial design (b) Optimised structure

Figure 11.7: 3D hook: Von Mises stress

We note, that the optimisation started with an inadmissible initial design because
some stress constraints were violated. This fact causes the small volume increase in
the first two iterations as the algorithm attempted to decrease the maximum Von
Mises stress. The Von Mises stress is pictured in Figure 11.7a for the initial design
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11.3 Generation of worst imperfections

and in Figure 11.7b for the optimised structure. A volume reduction of about 20% is
reached. Smooth boundaries are obtained. Mesh distortions do not occure.

11.3 Generation of worst imperfections

In chapter 8 sensitivity based imperfections for buckling analysis are proposed. They
are based on singular value decomposition of the pseudo load matrix, which is com-
puted at the first critical point of the perfect structure. To give an example on this
topic, a PET tube is considered.

11.3.1 PET tube: model problem

We consider the mechanical model, which is pictured in Figure 11.8. The structure
is a PET tube under compression. The finite element mesh consists of 1600 elements
and 3280 nodes with 6560 degrees of freedom. The finite element nodes on the right
side of the tube are fixed in all three directions. The finite element nodes on the left
side of the tube are fixed in directions normal to the tube axis to enforce buckling of
surfaces and to exclude buckling of edges.

Figure 11.8: PET tube: mechanical model

The edges on the left side of the tube are loaded with a line load. The critical load
λc is the load resultant and is to be detected for perfect and imperfect designs. The
dimensions of the structure (height, width and length) are h = 45, w = 100 and
l = 200. The shell thickness is t = 0.3. The bottom shell is an extruded parabola.
The material properties are Young’s modulus E = 3500 and Poisson’s ratio ν = 0.4.

11.3.2 PET tube: buckling analysis

Considering the perfect structure, which is pictured in Figure 11.8 the load parameter
λ is gradually increased and the first instability point λpc = 15 is calculated. The
eigenvalue decomposition of the reduced tangent stiffness matrix at load level λpc
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11 Numerical examples

provides a zero eigenvalue and the corresponding eigenvector, which is the buckling
mode. This first buckling mode of the perfect structure is pictured in Figure 11.9a.

(a) Buckling mode of the perfect structure (b) SVD mode of the pseudo load matrix

Figure 11.9: PET tube: different shapes of imperfection

This buckling mode mainly describes the buckling of the plane top shell. Following the
classical buckling analysis procedure the perfect structure is disturbed corresponding
to this mode. For this reason the buckling mode is scaled by an amplitude a =
l/200 = 1 and is added to the finite element nodes coordinates. Such imperfect
structure is analysed again and the first instability point is computed with λBc = 50.
Here, the index B denotes buckling mode based imperfection. The corresponding
buckled structure is pictured in Figure 11.10a. We note, that the first instability
point of the imperfect structure is at higher load level than that of the perfect one.
Nevertheless, the structure could fail before the first instability point is reached if,
for example, the maximum stress is exceeded. This fact is not considered within this
example.

(a) Imperfection: buckling mode (b) Imperfection: SVD mode of P

Figure 11.10: PET tube: buckling modes of imperfect structure

Next, the pseudo load matrix of the perfect structure is computed at the load level
λpc and is decomposed by the singular value decomposition. The first right singular
vector, which is pictured in Figure 11.9b is utilised to create an alternative imperfec-
tion of the structure pictured in Figure 11.8. The amplitude of imperfection is again
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11.4 SVD based model reduction

a = 1. The computation of the first instability point of the now imperfect structure
delivers the critical load λPc = 12.5. Here, the index P denotes the imperfection,
which is based on SVD of pseudo load matrix. The corresponding buckled structure
is pictured in Figure 11.10b. We note that the imperfect structure buckles at a lower
load level than the perfect one. The results of the performed buckling analysis are
summarised in Table 11.1.

Table 11.1: PET tube: results of buckling analysis

type of imperfection imperfection amplitude buckling load
a λc

Perfect structure 15
Buckling mode 1 50

SVD of P mode 1 12.5

11.4 SVD based model reduction

In chapter 9 a modified shape optimisation procedure is presented. Singular value
decomposition is utilised to generate shape modes. A subset of these shape modes is
selected to perform model reduction. Singular values or weighting factors presented
in section 9.3.1 can be used to identify shape modes, which have an extraordinary
impact on mechanical behaviour of the structure. Within this section both selection
criteria are compared.

11.4.1 Ceiling surface

The compliance of the structure, which is pictured in Figure 11.11 is minimised taking
into account a constant volume constraint.

Model problem. The dimensions of the structure (height, width and length) are
h = 0.1, w = 3 and d = 4. The material properties are Young’s modulus E = 30000
and Poisson’s ratio ν = 0.3. The load q̄ = 0.2 is a surface load. The applied boundary
conditions are pictured in Figure 11.11a. The finite element mesh consists of 3600
elements and 5084 nodes with 15252 degrees of freedom. A morphing box is defined by
384 control points and is pictured in Figure 11.11b. Vertical positions of 140 control
points, which are marked red are used as design variables. Only the shape of the
upper surface is optimised. The ANS and the EAS enrichments are deactivated to
use pure solid element properties.
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11 Numerical examples

(a) Mechanical system (b) Optimisation model

Figure 11.11: Ceiling surface: model problem

Optimisation results. The SVD based optimisation procedure presented in 9.6 is
utilised to minimise the compliance of the structure pictured in Figure 11.11.

(a) Optimised geometry
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(b) Compliance history

Figure 11.12: Ceiling surface: optimisation results

SVD of the sensitivity matrix is performed in every 5th iteration to generate shape
modes. Shape optimisation based on all 140 available shape modes leads to the
optimised geometry pictured in Figure 11.12a. In this case, only a coordinate trans-
formation takes place and the results are the same as utilising the standard optimi-
sation procedure. The compliance is minimised from its initial value C0 = 0.2643 to
C = 0.1637. The solid line in Figure 11.12b represents the corresponding compliance
history. About 30 iterations are necessary to obtain convergence.
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11.4 SVD based model reduction

(a) Singular values as indicators (b) Weights as indicators

Figure 11.13: Ceiling surface: optimised geometries

Model reduction is performed utilising only shape modes, which correspond to the 30
largest singular values of sensitivity matrix. The optimised geometry for this case is
pictured in Figure 11.13a and the dashed line in Figure 11.12b represent the corre-
sponding compliance history. Only 30 iterations are performed to obtain comparable
results. We note that the proposed model reduction is not very efficient for the con-
sidered example. Nevertheless, useful design is obtained based on only about 20 % of
all possible shape modes.

Next up, the influence of indicators for shape modes selection on optimisation re-
sults is investigated. For this reason, the weighting factors presented in section 9.3.1
are utilised to select 30 shape modes. The optimised geometry is pictured in Figure
11.13b, and the dashed dotted line in Figure 11.12b represent the corresponding com-
pliance history. We note that in this case the optimisation results are not significant
better than using singular values as indicators. One should use singular values as in-
dicators to reduce the numerical effort of the proposed algorithm, as only the first 30
shape modes should be computed. This is only true in case of compliance as objective
function. The criteria presented in section 9.3.1 are mainly heuristics but seem to be
useful for the proposed model reduction.

11.4.2 Spanner

Structures considered before are subjected to bending stress. In this section an ex-
ample on membrane stiffness optimisation is presented. Solid shell elements are used
to model a 2D structure. In context of volume minimisation under stress constraints,
SVD based model reduction is demonstrated.

Model problem. The spanner pictured in Figure 11.14 is considered. The dimen-
sions of the structure (hight, length and thickness) are h = 59, l = 130 and t = 1.
The material properties are Young’s modulus E = 210000 and Poisson’s ratio ν = 0.3.
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11 Numerical examples

Two opposite surface loads are applied to model momentum claim. Each load resul-
tant is Q = 250. The applied boundary conditions are pictured in Figure 11.14a. The
finite element mesh consists of 792 elements and 1744 nodes with 5232 degrees of free-
dom. Two symmetrical morphing boxes are defined and are pictured in Figure 11.14b.
Each box consists of 60 control points . Finite element nodes, which are marked by
a star are controlled by this boxes. Positions of control points which are marked red
are used as design variables. Some bounds for these positions are introduced to avoid
self penetration of the FE-mesh.

(a) Mechanical system

(b) Optimisation model

Figure 11.14: Spanner: model problem

Volume minimisation under stress constraints. The volume of the structure pic-
tured in Figure 11.14 is minimised tacking stress constraints into account. The Von
Mises stress σv in all Gaussian points i is controlled with σiv ≤ σ̄. For the considered
example the stress limit is σ̄ = 170. Non symmetrical mechanical model is consid-
ered. Nevertheless, the optimised structure has to be symmetric due to the purpose
of a spanner. Additional symmetry constraints are applied to the positions of control
points, which are used as design variables. The optimisation model consists of 26
design variables and 13 symmetry constraints. The Von Mises stress is pictured in
Figure 11.15a for the initial design and in Figure 11.15b for the optimised structure.
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11.4 SVD based model reduction

About 40 iterations are needed to obtain convergence. A volume reduction of about
25% is reached. Smooth boundaries are obtained. Mesh distortions do not occure.

(a) Initial Structure

(b) Optimised Geometry

Figure 11.15: Spanner: Von Mises Stress

SVD based model reduction. Model reduction based on SVD of the sensitivity
matrix is performed. Singular values are used as indicators to select shape modes.
The optimised structures are presented in Figure 11.16. Optimisation with 6 and 13
modes of 26 is performed. Only 40 iterations are carried out to obtain comparable
results. Reasonable shapes are obtained and all optimisation results are summarised
in Table 11.2.

Table 11.2: Spanner: volume after the 40th iteration

number of modes volume volume decrease relative error
(·)/26 V Vdiff %

6 2094 660 0.03
13 2084 670 0.02
26 2071 683 0
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(a) 13 of 26 modes are used

(b) 6 of 26 modes are used

Figure 11.16: Spanner: SVD based model reduction; Von Mises Stress

11.5 Summary and concluding remarks

Morphing based shape optimisation of solid and shell structures is demonstrated.
Some examples are based on morphing boxes, which have complex initial shape. In
this case, the inverse computation of local coordinates of FE-nodes is performed util-
ising the proposed Newton’s method based algorithm.

Several compliance minimisation problems are solved and structures with high global
stiffness are obtained. Treatment of stress constraints is demonstrated minimising the
volume of the structure and controlling the Von Mises Stress at Gaussian points.

Furthermore, the computation of SVD based imperfections for nonlinear buckling
analysis is illustrated. This example demonstrates the applicability of sensitivity in-
formation to structural analysis.

In addition, model reduction is carried out utilising SVD of sensitivity matrix. These
examples exhibit the information content of SVD based sensitivities.

To sum up, the properties and capabilities of the presented sensitivity analysis are
demonstrated and applications of SVD based sensitivity information to structural
analysis and optimisation are presented. All computations are performed using SOP.
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12 Conclusion

This chapter gives a concluding summary of the presented research. The
main aspects and results of the work are highlighted once more and an
outlook on possible further investigations is given.

12.1 Summary

In the present work sensitivity analysis of a nonlinear solid shell was presented. The
corresponding variational relations were derived and discretised to be used in context
of structural optimisation, utilising the finite element method. Especially, material
residual vector, the pseudo load matrix and the sensitivity matrix were derived. Ob-
jectives and constraints in structural optimisation usually depend on the structural
response. The computation of their gradients requires the calculation of pseudo load
and sensitivity matrices. Sensitivity relations for structural stresses were derived to
give an example on this topic.

The main intention of this work was to analyse the inner structure of sensitivities con-
sidering their singular value decompositions and to show that they contain additional
valuable information which is not used either in theory or in practical applications
of structural optimisation yet. These expectations have been confirmed during the
presented research. Special techniques have been utilised within this thesis to qual-
itatively and quantitatively analyse the pseudo load and sensitivity matrices. They
are well known in the scope of statistics as well as of applied sciences and are espe-
cially based on principal component analysis, factor analysis and the computation of
variance and correlation. To sum up, overall three applications of the discovered SVD
based sensitivity information have been developed in context of structural analysis
and optimisation:

• computation of sensitivity based imperfections for nonlinear buckling analysis,

• model reduction based on SVD of sensitivity information,

• SVD based design exploration.
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12 Conclusion

These applications demonstrate the informational content of pseudo load and sensitiv-
ity matrices and provide new insights in the exploration of structural design. Overall,
an enhanced analysis of sensitivities has been emphasised and unused substantial ca-
pabilities have been pointed to. The impact of the chosen models on the computed
optimal designs, especially the influence of the chosen shape parametrisation, was
analysed. This knowledge enables the design engineer to understand and improve the
models systematically, which are usually set up entirely by engineering experience and
intuition. The features and capabilities of the presented algorithms and techniques
were demonstrated on several numerical examples of morphing based shape optimisa-
tion. Here, the corresponding design velocity fields matrices were derived analytically
to suit variational design sensitivity analysis.

All derived relations and proposed algorithms have been implemented and tested in
the MATLAB based structural optimisation program (SOP).

12.2 Future work

Within this thesis only shape modifications are considered as design changes. How-
ever, the proposed techniques are also valid for other types of variables like topological
quantities, material properties or support and load positions. Hence, investigations
in context of material optimisation, robustness, uncertainty and reliability analysis,
where sensitivity of structural response with respect to some model parameters is
analysed, are desirable.

Due to the linear approximation nature of first derivatives, all decisions and predic-
tions based on observations of an optimisation time point are only valid for moderate
changes in design. The iteration history of gradients, pseudo load and sensitivity
matrices could provide additional valuable information which could be used within
structural optimisation procedures. Within this thesis, techniques from linear prin-
cipal component analysis (LPCA or short PCA) are utilised. Only rotation of a
Cartesian coordinate system is performed in context of PCA. Linear and linearised
relations are recognised by PCA. In further investigations, nonlinear PCA (NLPCA),
see [122] and [121], could be used to take iteration history into account. Curvilinear
coordinate systems and nonlinear relations within given data can be identified by
NLPCA.

Future work might also address the application of the proposed techniques to large
systems and real structural optimisation problems. More complex elastic and inelastic
material laws might be considered. In this context it would be interesting to study
the numerical effort for the proposed SVD based applications and possibilities of its
reduction. Some hints on this topic were already given in this thesis but rigorous
investigations are desired.
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