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Abstract

The Fictitious Boundary Method (FBM) and the Penalty Method (PM) for solving
the incompressible Navier-Stokes equations modeling steady or unsteady incompress-
ible flow around solid and rigid, non-deformable objects are presented and numerically
analyzed and compared in this thesis. The proposed methods are finite element meth-
ods to simulate incompressible flows with small-scale time-(in)dependent geometrical
details. The FBM , described and already validated in [1,43,48], is based on a finite
element method background grid which covers the whole computational domain and
is independent of the shape, number and size of any solid obstacle contained inside.
The fluid part is computed by a multigrid finite element solver, while the behavior
of the solid part is governed by the mechanics principles regarding motion and in-
teractions of type fluid-solid, solid-solid or solid-wall collisions. A new treatment of
imposing the Dirichlet boundary conditions for the case of immersed rigid boundary
objects is proposed by using the penalization method as a more general framework
then the FBM , but containing it as a special case. The new PM approach has a
stronger mathematical background. In contrast to FBM , the PM does not imply a
direct modification or artificial techniques over the matrix of the system of equations
like the fictitious boundary method. A pairing of the penalty method with multigrid
solvers is used, while the computational domain is fixed and needs no re-meshing
during the simulations. However, the degree of geometrical details that the coarse
mesh contains has an impact onto numerical results, a fact which will be investi-
gated/clarified in this thesis. The presented method is a finite element method, easy
to be incorporated into standard CFD codes, for simulating particulate flow or, in
general, flows with immersed time-(in)dependent and complicated shaped objects.
The aim is to analyze and validate the penalty method and compare, qualitatively
and quantitatively, with the already validated FBM regarding the aspects of ac-
curacy of the solution, efficiency, robustness and behavior of the solvers. Different
techniques to avoid the numerical difficulties that arise by using penalty method will
be particularly described and analyzed.



ii

keywords: FEM, Immersed Boundary Objects, Fictitious Boundary Method, In-
compressible Flows, Monolithic Newton-Multigrid, Penalty Method



Acknowledgements

I am very grateful to my supervisor Prof. Dr. Stefan Turek, who accepted me
years ago to be part of the Institute of Applied Mathematics, LSiii, Univeristy of
Dortmund. I will never end to thank him for giving me this opportunity and for
everything he taught to me into numerics, for his constant guidance and continuous
support on my Ph.D study. I am deeply thankful for all the constructive discussions
he had with me regarding my work, for helping me with good advices in critical
moments when I thought there is no way out. I also thank him for the opportunity
he gave me to be active in the student-teaching program, which made me a lot of
joy and helped me understand much better the numerics. It was a great experience
working here, learning and improving new skills, which will be always helping me in
my future life.

I also acknowledge all the professors and tutors of the lectures I participated in.
Particularly, I am very grateful to prof. Dr. Heribert Blum for enlighten me on the
Finite Element Methods, for his professionalism and for his kindness of being there
whenever I was needing him. I thank in the same manner to Prof. Dr. Dmitri Kuzmin
for his wonderful teaching in Computational Fluid Dynamics, which helped me in my
beginnings understanding this part of applied mathematics and inspired me during
my study.

Acknowledgements have to be brought to all my colleagues for developing an
harmonious environment for the research, making all to be easier. Special thanks
I address to Dr. Michael Köster for spending precious time with me helping to
understand and develop the software part. I will also not forget and I am deeply
grateful for the important and direct impact of Dipl-Inform. (soon Dr.) Raphael
Münster over my work, for all the discussions he had with me regarding the purpose
of my study on both theoretical and programming level. I am also grateful to Dr.



ii

Abderrahim Ouazzi for his important advices, especially on the final part of my study,
who were very precious for validating the results.

A particular thank to all my friends, which I do not cite not to forget someone.
I am very grateful for their incredible support of all kinds during all these years, for
encouraging me all the time to follow this course. They were valuable help and I am
very glad to have their friendship.

Last but not least, I would like to thank to all my family and especially to my
beloved wife Paula Anca who always put positive pressure on me and gave me all her
support to do my work. Her own motivation on this matter was inspiring and gave
me in all the moments enough resources to continue and finish my work. She is a
model for me on how should one fight for fulfilling his aims. I thank to my parents for
letting me choose my own way in studying mathematics and physics and for always
being there for me. I thanks to my two brothers for supporting and understanding
me.

Dan Anca, on 23 September 2013



Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and contribution . . . . . . . . . . . . . . . . . . . . . . . 5

2 Modeling and governing equations 8
2.1 General aspects of Newtonian flows . . . . . . . . . . . . . . . . . . . 8
2.2 Navier-Stokes equation for incompressible flow . . . . . . . . . . . . . 10
2.3 Initial and boundary conditions . . . . . . . . . . . . . . . . . . . . . 15

3 Finite element discretisation 19
3.1 Sobolev spaces and variational formulation of the Navier-Stokes equations 21
3.2 Finite element spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Time-space discretization of the incompressible Navier-Stokes equations 31

3.3.1 Nonconforming Q̃1/Q0 element . . . . . . . . . . . . . . . . . 31
3.3.2 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Space discretization . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Numerical solver 41

5 Fictitious Boundary and Penalty Methods 51
5.1 Fictitious boundary method . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Penalty method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Test case of flow around cylinder . . . . . . . . . . . . . . . . . . . . 59

5.3.1 Fictious Boundary Method values . . . . . . . . . . . . . . . . 61
5.3.2 Penalty method generalization of FBM . . . . . . . . . . . . . 64

iii



CONTENTS iv

5.3.3 Volume approximation with Penalty Method . . . . . . . . . . 67
5.3.4 Penalty Method values . . . . . . . . . . . . . . . . . . . . . . 68
5.3.5 Efficiency, robustness, solver aspects and solution . . . . . . . 80
5.3.6 Drag and lift coefficients . . . . . . . . . . . . . . . . . . . . . 86

6 Applications 95
6.1 Oscillating cylinder benchmark . . . . . . . . . . . . . . . . . . . . . 95
6.2 Rigid object with complex shape geometry . . . . . . . . . . . . . . . 99

7 Conclusion 105

Bibliography 108



Chapter 1

Introduction

1.1 Overview

Any living being has/had contact with the main constitutive of this planet: water.
Thus, most of them remain with a low level status of knowledge about water, or fluids
in general, and only few go with the involvement beyond this common label, show-
ing eagerness about researching and understanding the natural phenomena in which
flows are part. However, over the past century, many studies were dedicated to flow
processes, having the same main goals of modeling, describing and proving/showing
theoretically and/or practically the behavior of different kinds of fluid structures that
surround us. Fluid mechanics is the study on fluids and forces that act on them.
Fluid dynamics studies the interactions between fluid and other kind of structures
(i.e solids) and also the effects of the forces that determine fluid motions. Physically,
fluids might be categorized into 2 major groups: Newtonian and non-Newtonian. All
fluids with a linear dependent stress tensor to the strain rate are called Newtonian
after Isaac Newton. On the other hand, fluids whose viscosity (the dimension of re-
sistance to deformation to other forces) is dependent on the shear rate, are known as
non-Newtonian. As an exception, there can still be fluids with a shear-independent
viscosity, but nonetheless behave themselves in a non-Newtonian way. Further on, by
changing the criterion of classification and based on the non-dimensional Reynolds
number (Re), fluids can be laminar (low Re values), transient (medium Re values)
and turbulent (high Re values). This thesis focuses on studying the case of laminar
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and transient incompressible Newtonian fluids, proposing a new approach to solve,
compute and simulate flows around obstacle configurations. Having a theoretical
support in understanding fluids, problems can be probably easy to solve. Thus, fluid
problems are in general very complex, having lots of factors which can increase the
degree of complexity and therefore it is almost impossible to find analytical solutions.
In this direction, over past decades, a new branch has been developed for solving
complex-configuration fluid problems. Computational Fluid Dynamics, shortly CFD,
uses the power of computers to perform calculations and analyze problems that in-
volve fluids. By using numerical methods and algorithms, CFD proved its importance
in this domain helping in validating theoretical existence and uniqueness assumptions
over solutions.

There are many configurations that include a fluid part: Flows around obstacles,
fluid-structure interaction, multiphase flows with chemical reactions, bubble dynam-
ics, melting and solidifications, etc. Particulate flow is also one example and presumes
interaction between two different phase state components: fluid and rigid solid. More
precisely, flow configurations with complex geometrical details and/or moving rigid
solid interfaces and boundaries are considered as particulate flow. They gained big
importance due to the variety of applications in physics, chemistry, engineering, etc.

How to study such problems? Which techniques will be easier, accurate or effi-
cient with respect to the problem? Researchers studied different methods presenting
advantages and disadvantages. Generally, most methods can be divided into two ma-
jor families: the Arbitrary Lagrange-Euler (ALE ) and the fictitious domain methods.
Hu, Joseph and Crochet [22], [21], Maury and Glowinski [32] are pioneers of the La-
grangian approach which is based on a mesh that follows very faithfully the motion of
the boundaries. A kind of fictitious domain method is the Eulerian approach of Dis-
tributed Lagrange Multipliers (DLM ). One fixed finite element particle-independent
mesh to compute velocity and pressure and Lagrange multipliers to enforce boundary
conditions and/or solid movements are the components of this method. Proposed by
Glowinski, Joseph, Pan, Hesla and Perieux [11], [12], [10], the method is very powerful
and not restricted to simulate only particulate flow.
Assume, we want to solve the following boundary value problem:



CHAPTER 1. INTRODUCTION 3

{
A(u) = f, u ∈ ω
B(u) = g, u ∈ γ

(1.1)

where ω ∈ Rd is a bounded domain and γ = ∂ω is its boundary. The differential
operators A,B are acting on ω and γ, while f, g are given functions that act on the
same domains. Taking into account the complexity of ω, one can use immediately a
finite difference method, but it will encounter numerous difficulties for a more complex
geometry. Therefore, an alternative can be the finite element method. In order to
combine the simplicity and advantages which finite difference methods provide and
use a finite element approach to solve such problems, one can use fictitious domain
methods, also denoted as embedding method. The avatar of fictitious domain was
firstly introduced by Saul’ev [1962, 1963], but it was used years before by Hyman
[1952]. The principle of such methods is a very simple one. Instead of solving the
problem on the given domain ω, who’s shape might be very complex, one can extend
it to a larger domain with a simple standard shape Ω. Obviously, the mathematical
model has to be changed accordingly such that the solution of the fictitious domain is
also a solution of the initial boundary problem. Exactly, the problem will be described
as in (1.2) {

Ã(ũ) = f̃ , ũ ∈ Ω

B̃(ũ) = g̃, ũ ∈ Γ
(1.2)

Figure 1.1: Embedding of ω in Ω

where Ω is a larger, simpler domain that includes ω, with the frontier Γ like in
figure Fig. (1.1). As mentioned, the new differential operators Ã, B̃ and the given
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functions f̃ , g̃ are chosen such that the solution ũ of problem 1.2 is easy to compute
and nevertheless it satisfies the condition of being also a solution in ω or, at least,
the error in Ω is very small: ||ũ − u)||Ω � ε, ε small. By doing this extension
to the bigger domain, at least two advantages arise. One will be the possibility of
using large domains with corresponding simple and regular meshes which will allow
at the same time the usage of fast solution methods. The second one is in the case of
time-dependent problems, Ω can still be chosen time-independent even if the original
domain ω is a time-dependent and no re-meshing or projection methods as in ALE
are required. Such a fixed mesh technique is also the nominated DLM method which
enforces on the boundary a constraint by using Lagrange multipliers. The method
was applied also for nonlinear time dependent problems such as the Navier Stokes
equations. On the other hand, avoiding the usage of the multipliers, Peskin proposed
a non-Lagrangian technique known as immersed boundary method. This method has
many application for incompressible viscous flows with elastic moving boundaries.

Many investigations were finding solutions and analyzing them from different
points of view. Although, the first question for such problems should be the exis-
tence of a solution. Penalty based fictitious boundary methods were used in general
to prove the existence of solutions for PDE. Many kind of penalization approaches of
PDE systems are possible. For instance, to solve the incompressible Navier-Stokes
equations, a L2 penalization, inducing a Darcy equation, or a H1 penalization, in-
ducing a Brinkman equation in the body, are two of the options. Also in the case
of penalization methods, the aim was to avoid body-fitted unstructured meshes such
that fast and efficient methods on Cartesian meshes may be used. Peskin [34], [35]
proposed penalization of the velocity in the momentum equation of the incompressible
Navier-Stokes equations. Arquis and Caltagirone [3] proposed a penalization of veloc-
ity on the volume of the body. Goldstein, Handler, Sirovich [14] or Saiki, Biringen [38]
promoted other kinds of penalization. The presence of a penalty parameter, which is
rather very small (ε � 1), will obviously lead to numerical difficulties and accuracy
problems. Direct question will be if the penalization methods can reproduce equiva-
lent results as fictitious domain methods. This thesis is dedicated to analyze a velocity
penalization technique with the aim of setting it as a generalization method for the
fictitious boundary method. A general method on solving incompressible (un)steady
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Navier-Stokes, with a strong mathematical support is investigated. The computa-
tional support is provided by the CFD software FEATFLOW (www.featflow.de). As-
pects like capturing the interface, accuracy of solution, efficiency of solvers will be
discussed inside this thesis.

1.2 Motivation and contribution

The purpose of this study is to implement a velocity penalty method for solving flow
around objects problems in a finite element framework for two dimensional cases.
Turek and Wan proposed an, already validated, fictitious boundary method FBM
to simulate and solve such problems. The proposed method clearly possesses many
advantages with the benefit of good and accurate results. The idea of this study is
to try a generalization, with a much better mathematical support, of the FBM. We
start with the assumption that FBM is actually a special case of the proposed velocity
penalty method and, therefore, the new method should be more general and should
reproduce the results of FBM in specific situations and for particularly selected pa-
rameters. Further we try to validate the penalty method for benchmark simulations
and to overcome the numerical difficulties that arise with it, such that it remains ef-
ficient, accurate and robust. Based on a better mathematical support and benefit of
the finite element framework, this approach should also allow the use of fast solvers
in order to solve the fluid-solid object interactions problems. Fictitious boundary
methods are based on direct manipulations of the matrix system, filtering techniques,
in order to impose the boundary presence into the fluid domain. The penalty method
uses another approach, which performs modifications of the matrix system mathe-
matically and does not hard-way interfere with local values of it. Introducing a new
penalty term in the governing equations, a new matrix will be assembled and added
into the system matrix. The presence of the solid object in the fluid domain will
be notified by the penalty parameter which is in general very small (ε � 1). Using
finite element methods, a Dirac representation of the penalty characteristic function
χ(x), also called mask function, will realize the selection of all elements and degrees
of freedom DOFs inside the computational domain being the solid part. The penalty
term is of the following type:
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1

ε
· χ(x) · (u− u) (1.3)

where λ = 1
ε

= 1
10−n

, n >> 1, with ε the penalty parameter, u is the fluid part
velocity, u the solid part velocity and χ(x) is the penalty characteristic function with
the definition (1.4). This is a discontinuous representation, but based on distance
function, also a smooth representation of the mask function can be used, such that
the χ(·) function takes the value of one for the point inside the object and will be set
to equal null otherwise. An example of a smooth representation based on the distance
function is given in (1.5), where η is a free parameter which determines how steep
should be the function and d(x) is the signed distance function to the interface of the
object:

χ(x) =

1, if x ∈ Ωs

0, if x 6∈ Ωs

(1.4)

χ(x) =
1

2
tanh(η ∗ d(x))− 1

2
, x ∈ Ω (1.5)

Ωs denotes here the domain of the penalized object and Ω the entire domain.
Using fast solvers to get the solution is another point of interest. The employment

of such solvers depends directly on the selected grid for the finite elements. If a
structured mesh is used, then fast solvers can be applied without arising problems to
solve the system. For a moving penalty object, to set up a structured mesh is almost
impossible. An investigation of this matter is also presented in this thesis, pointing
out that in the case of the penalty method, Cartesian meshes are not optimal and
therefore, one needs to start with a body-fitted mesh. For the case of a moving object
grid, deformation techniques [15] may be considered.

Is well-known that penalty methods are not very accurate in the vicinity of the
boundary object. Different ways of implementing penalty methods are presented to
illustrate how problems due to the caption of the interface may be treated and see
the effects regarding the accuracy of the solutions. Another issue are the very small
values of the ε-penalty parameter which lead to numerical problems. Thus, treatment
of this aspect is required such that the solver will converge to accurate solutions.
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Beside the complete investigations and analysis of the penalty method, the val-
idated fictitious boundary method proposed by Turek and Wan [47, 48], [1, 43] will
be also presented inside this thesis, which is actually a special case of the penalty
method as it will be outpointed inside this study. Technical implementation details
and benchmark/application results will be shown in order to underline the similitudes
and differences between penalty method approaches and compare efficiency, accuracy
and the practicality for appliance for the proposed methods. The novelty consists in
a new treatment of the assembling process of the penalty matrix by special handling
of the quadrature formula or by the special technique of HRZ lumping which fits very
well together with our finite element approach.

This thesis has the following structure. After the introduction, Chapter 2 is ded-
icated to the governing equations of a Newtonian fluid and modeling the problem.
General theory for fluid dynamics, Newtonian fluids, Navier-Stokes model and bound-
ary conditions are some of the topics mentioned in this chapter. Chapter 3 is more a
general survey over finite element methods, time and space discretization techniques
and the derivation of the discretized problems to be solved. Iterative numerical solvers
have to be used for solving these problems and therefore they will be shortly intro-
duced and presented in Chapter 4. Chapter 5 focuses on the proposed methods,
namely fictitious boundary method FBM and penalty method PM. A relevant com-
parison between these methods as well as the behavior of the penalty method PM
for specific selections of parameters will be contained in this chapter. The study fo-
cuses more on the implementation and investigation of the penalty method, therefore
different ways of implementing penalty methods will be presented with the aim of
validation and to give to the penalty method an attribute of a general method to
solve fluid-(rigid)solid objects problems. The flow around cylinder benchmark is used
to show that the method provides an accurate solution for a medium value of Reynold
number. Later on, for dynamical reasons and possibility of application in particulate
flow, drag and lift forces calculations are presented. To prove the capabilities of the
proposed PM for simulating flow with complex moving objects, we show a simple
benchmark simulation of an oscillating cylinder in a channel in Chapter 6. Finally,
the conclusions are resumed in Chapter 7.



Chapter 2

Modeling and governing equations

2.1 General aspects of Newtonian flows

Newtonian fluids are characterized by a linear stress relation to the strain rate. For
example, air and water are considered to be Newtonian flows. Like for any fluid, the
main general laws of mechanics are valid also for these flows, namely conservation
of mass and momentum. Starting with these 2 physical principles, a mathematical
model to analyze and study the mechanics and behavior of fluids was developed. This
model is known in the literature as Navier-Stokes equations and comes with different
forms depending on the kind of fluid, respectively on the stress tensor representation.

A measure to classify flows is the so called Reynolds number, denoted by Re and
defined as

Re =
U · L
ν

, (2.1)

where U and L are the characteristic length and velocity of the flow and ν is the
kinematic viscosity. The way of choosing L and U depends on the fluid problem
and fluid domain. Usually, the characteristic length is the diameter of the fluid
domain, but it can be dependent to any other length related to the domain. For
the characteristic velocity, the forces that act on the flow determine its selection.
In most of the cases, this referential value for the velocity is set to be the velocity
which is applied at the boundary of the fluid domain, often at the inflow. Having as

8
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criteria the Reynolds number, the Newtonian flows are classified into 3 major groups,
depending on the values of Re. We talk about highly viscous flows, described by a
small velocity with respect to the length scale if Re � 1. Convection dominated or
even turbulent flows are all flows for which Re� 1. Finally, the flow is called transient
if Re is represented by a medium value. From the numerical point of view, the
Reynolds number has also an importance in describing the Navier-Stokes equations
in a dimensionless way, which we will see within this chapter.

In order to derive the Navier-Stokes equations model, one needs to master math-
ematical notions like integration by parts, Ostrogradsky’s divergence theorem (2.2),
Helmholtz decomposition of vector fields, gradient, divergence, curl, etc. Starting
with the laws that govern fluid mechanics, i.e. conservation of mass and momentum,
the Navier-Stokes equations can be derived in conservative, non-conservative as also in
a variational or weak formulation. In literature there are many derivations of Navier-
Stokes equations like for example Prager [36], Batchelor [4], Landau and Lifschitz [27]
and many others presented. According to Marion and Temam [31], the Navier-Stokes
model for incompressible fluids was described for the first time by Leray [28], [30], [29]
as a velocity evolution equations, omitting the presence of the pressure. The vector
field of velocity, through its evolution, determines in a unique way the pressure and
therefore there is no need of an extra condition for the pressure. The Navier-Stokes
equations is the most used model to study the behavior and motion of fluids and it
was, indeed, validated by numerous analytical, numerical and experimental studies.

In the following chapters, several common notations are used in the process of
derivation of the Navier-Stokes equations. A three dimensional domain Ω ∈ R2,
occupied by the fluid at time t ≥ 0, whose points are generically located in the
bidimensional case by x = (x1, x2), is considered. The boundary of Ω is denoted by
Γ and the elementary volume has the representation dx = dx1dx2. The developing
approach to build up the Navier-Stokes model is based on Marion and Temam [31]
and Glowinski [10].

In the following part, there are some of the mathematical notions often used to
build up the (non)-conservative and variational Navier-Stokes equations.

• Gauß - Ostrogradsky’s Divergence Theorem
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∫
V

∇ · F dV =

∫
S

F · n dS (2.2)

V - an arbitrary volume bounded by the surface S;
n - the unit normal vector that points outward from S := ∂V ;
∇· - divergence operator ∇ · F := ∂F1

∂x1
+ ∂F2

∂x2
;

• Total time derivative (material derivative) in flow direction

dF

dt
=
∂F

∂t
+∇Fdx

dt
=
∂F

∂t
+ u · ∇F (2.3)

dx
dt

= u - the path x(t) follows the fluid described by its velocity u

• Divergence operator of a vector

∇ · u =
2∑
i=1

∂ui
∂xi

(2.4)

• Laplacian operator of velocity vector

∆u = ∇(∇ · u)−∇× (∇× u) = ∇ · (∇u) (2.5)

• Green’s formula

∫
Ω

u ∂iv dx = −
∫

Ω

∂iu v dx+

∫
Γ

u v n dγ (2.6)

2.2 Navier-Stokes equation for incompressible flow

Continuity equation

Conservation of mass is one of the physical principles that applies to any fluid. Con-
sider that we have an arbitrary fluid domain ω0 ∈ Ω with the boundary γ0 := ∂ω0

with a space and time dependent mass density ρ = ρ(x, t). The mass of such a domain
writes:
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M =

∫
ω0

ρ dx (2.7)

The formulation of the mass conservation, or mass balance equation, sustains that
the decrease of the mass per unit time is equal to the total outflowed mass through
the boundary γ0 of the considered fluid domain. Thus, we can write mathematically

− d

dt

∫
ω0

ρdx =

∫
γ0

ρ u · n dγ0, (2.8)

where u = (u1, u2, u3), with the Eulerian representation u = u(x, t), is the velocity
of the fluid, n is the outward pointing unit normal vector of the boundary γ0 and dγ0

is the elementary surface measure. Applying (2.2) in the right hand side of (2.8) and
taking into account that the total time derivative of the mass density is equal with
the partial time derivative, it results in the new global formulated equation:∫

ω0

∂ρ

∂t
+∇ · ρu dx = 0 (2.9)

Equation (2.9) can be written also in a local form due to the arbitrary selection of
the domain ω0. The local representation (2.10) makes no use of integration, being a
simple differential equation:

∂ρ

∂t
+∇ · ρu = 0 (2.10)

Thus, (2.10) represents the first equation of Navier-Stokes model for a Newtonian
fluid.

Momentum equation

The momentum equations is a consequence of the second principle of mechanics, also
known as Newton’s second law. It is represented in (2.11) in terms of the Cauchy
tensor σ := (σij), i, j = 1, 2:

ρ a = ∇σ + F, (2.11)

with a = (a1, a2) the acceleration of the fluid element, F = (f1, f2) volume forces that
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are applied or act on it and σ = σ(x, t) the symmetric Cauchy stress tensor at point
x at time t. The velocity of the fluid element is defined as the material derivative
of the space u = dx

dt
, while the acceleration is the material derivative of the velocity

a = du
dt
. According to (2.3), then the acceleration writes:

a =
∂u

∂t
+ u · ∇u (2.12)

and in consequence the nonlinear term u·∇u comes into the equation from pure math-
ematical reasons, not physical, by writing the acceleration in kinematic arguments.
This term is also called inertial term.

The stress tensor possesses different representations, depending on the kind of
fluid. It is a symmetric tensor, generally written as in (2.13), with the following
notations: σx, σy, σz the normal stresses and σxy = σyx the shear stresses.

σij =

[
σ11 σ12

σ21 σ22

]
=

[
σx σxy

σyx σy

]
(2.13)

For example, in the case of a Newtonian fluid, the stress tensor is represented in
terms of velocity vector and pressure p = p(x, t), which is a new physical variable.
One common representation is the kinematical one (2.14):

σij = 2µD(u) + (λ∇ · u− p)δij (2.14)

µ and λ coefficients are the dynamic shear viscosity (µ) and dilatation viscosity (3λ),
while D(u) is the deformation rate tensor, also symmetric and defined as in (2.15):

D(u) =
1

2
(∇u + (∇u)T ) (2.15)

Putting all together, (2.11),(2.12), (2.14) and (2.15), one obtains the momentum
equation for compressible fluids in Eulerian representation as Landau and Lifschitz
[26] presented, in local form:

ρ
∂u

∂t
+ ρu · ∇u = µ∆u + (µ+ λ)∇∇ · u−∇p+ F (2.16)

Thus, the set of PDE equations (2.10) and (2.16) builds up the well known Navier-
Stokes equations model in a general representation for the case of compressible flows:
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
∂ρ

∂t
+∇ · ρu = 0

ρ
∂u

∂t
+ ρu · ∇u = µ∆u + (µ+ λ)∇∇ · u−∇p+ F

(2.17)

Incompressibility condition

Suppose we have an incompressible fluid. Physically, it is characterized by a much
smaller velocity then the velocity of sound in the water. Any element of fluid moving
with the flow has the same volume in time, meaning that the mass density of the
fluid is invariant in time. Also, incompressible flow has a constant dynamic viscosity
µ = const. One can proof by a Lagrangian technique that for any incompressible
fluid the following equation holds:

dM

dt
=

d

dt

∫
ω0

dx =

∫
ω0

∇ · u dx = 0, (2.18)

which leads to the incompressibility condition for a fluid. Since ω0 is an arbitrary
fluid domain, the incompressibility condition mathematically reads:

∇ · u = 0 (2.19)

Navier-Stokes equations for incompressible fluids

Simply bringing together the equations (2.10) and (2.16) and applying the incom-
pressibility condition, the Navier-Stokes equations for incompressible inhomogeneous
fluids are described by one of the following systems:

∂ρ

∂t
+∇ · ρu = 0

ρ
∂u

∂t
+ ρu · ∇u = µ∆u−∇p+ F

(2.20)

or
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 ∇ · u = 0

ρ
∂u

∂t
+ ρu · ∇u = µ∆u−∇p+ F,

(2.21)

keeping in mind that the continuity equation implies the incompressibility condition
(not reciprocal). The second system of equations leads to the Navier-Stokes model
for incompressible and homogeneous fluids described by Batchelor [5]. A homoge-
neous fluid has a constant mass density ρ, which does not change in space and time.
Therefore, the following equations are true:

∂ρ

∂t
= 0

∇ · (ρu) = (u · ∇)ρ = 0
(2.22)

Dividing (2.21) by the value of density and introducing the kinematic viscosity ν := µ
ρ
,

the kinematic pressure p := p
ρ
and the mass density of the body forces f = F

ρ
, then a

new system of equations derives for incompressible homogeneous fluids, presented in
a nonconservative for the first time by Batchelor [5]: ∇ · u = 0

∂u

∂t
+ u · ∇u− ν∆u +∇p = f

(2.23)

It is now possible to formulate a dimensionless model for incompressible homogeneous
fluids which is convenient for physical discussions. To do this, one considers Ω a
domain filled by the fluid and t the time variable which is usually positive. Choose a
referential length L and time T for the flow, redefine all variables from Navier-Stokes
equations with respect to L and T :

x = Lx′, t =
L

U
t′, p = Pp′, u = Uu′ and f =

U2

L2
f ′

where U = L
T
and P = ρU2 are the referential velocity and pressure. Now using the

Reynolds number definition (2.1), the resulting system:
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
∇ · u = 0, in Ω× (0, T )

∂u

∂t
+ u · ∇u− 1

Re
∆u +∇p = f , in Ω× (0, T )

(2.24)

represents the non-dimensional Navier-Stokes model for incompressible homogeneous
fluids in nonconservative manner. By considering mass density as constant in time
and space, the number of unknowns reduces from 3 to only 2: velocity and pressure.
However, even if the Navier-Stokes equations is a 2x2 equation system, it is not
sufficient to obtain an unique solution since it has infinity of integral solutions. Thus,
the need of boundary conditions is mandatory to restrict to a solution and to define
the flow.

2.3 Initial and boundary conditions

There are many possible ways to impose boundary conditions and most of them are
for the velocity component. The fluid fills a domain Ω bounded by the surface Γ.
One direct condition for the flow is an initial distribution for velocity like (2.25):

u(x, 0) = u0(x), on Ω. (2.25)

This is equivalent with an incompressibility condition ∇ · u0 = 0 at time t = 0. If
we assume that the boundary of the fluid domain moves and its motion is described
by a function g, then we may consider the nonslip boundary condition (2.26) for the
fluid, which is a Dirichlet type boundary condition:

u = g, on Γ× (0, T ), Γ = ∂Ω. (2.26)

If the fluid is at rest, then g = 0. Nevertheless, if Ω is a bounded domain, then the
Dirichlet boundary condition can be rewritten as∫

Γ

g(t) · n ds =

∫
Ω

∇ · u(t) dx = 0. (2.27)
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Furthermore, one can impose a Neumann type boundary condition which is a restric-
tion of the stress tensor. Usually, such a condition is imposed only on a part of the
boundary of the domain. One example is the no stress boundary condition know as
do-nothing boundary:

σ · n = 0, on Γp ⊂ Γ. (2.28)

But the fluid problem can be formulated with complicated boundary conditions like
for example mixed boundary conditions. An example is (2.29):{

u = g0, on Γ0 × (0, T )

σ · n = g1, on Γ1 × (0, T )
(2.29)

and illustrated in figure (2.1). It is to be specified that in the case of mixed boundary
conditions (2.29), the component parts of the boundary have no common points and
together they reconstruct the entire boundary: Γ1 ∩ Γ2 = ∅ and Γ1 ∪ Γ2 = Γ. No
point of the boundary can have simultaneously Dirichlet and Neumann boundary
conditions and, also, no point is conditioned free as the corresponding figure shows.

Figure 2.1: Dirichlet and Neumann mixed boundary conditions

Another setting can be a separation of the boundary into three component boundaries,
suggestive named: inlet, wall and outlet. Each is defined by the normal component
of the velocity like for instance:
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
Γi = {x ∈ Γ/ u · n < 0}
Γw = {x ∈ Γ/ u · n = 0}
Γo = {x ∈ Γ/ u · n > 0}

(2.30)

An immediate example of mixed boundary conditions is also:{
u = v, on ΓD × (0, T )

σ · n = 0, on ΓN × (0, T )
(2.31)

with Γ = ΓD∪ΓN = Γi∪Γw∪Γo. For such conditions, one has to take into account two
other consequences. On the wall boundaries, the following compatibility condition
has to be fulfilled n ·v = n ·u. Nevertheless, there is a solvability condition also to be
accomplished. In the case that the Dirichlet boundary is identical with the boundary
itself ΓD = Γ, then the inflow has to be equal with the outflow

∫
Γ
n · v ds = 0. On

the other hand, if the Neumann condition is set along the complete boundary Γ then
a pressure condition is necessary for the uniqueness of the solution. But, since there
is no general boundary condition for the pressure, to overcome this, one can fix the
pressure point-wise or can set the mean value of pressure to zero:

p(x0) = p0 or
∫

Ω

p dx = 0. (2.32)

Figure 2.2: Inlet, Wall and Outlet boundary conditions

The fluid problem can become very complicated when it comes to set different
complicated boundary conditions. This thesis reviewed only few classical cases of
boundary conditions and more over boundary conditions can be read in [18]. A com-
mon technique to solve the Navier-Stokes problem endowed with any type of boundary
conditions is to make use of a weak or variational formulation of the problem. This
supposes the introduction to Sobolev spaces. Such a formulation is very useful for a
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finite element treatment of the problem. This aspect will be presented in the following
chapter.



Chapter 3

Finite element discretisation

Solving analytically mathematical models for fluids to get exact solutions is almost
impossible in the general case. Therefore, they need to be treated in a numerical
approach. There are different numerical methods to obtain approximation solutions
for model problems that describe the behavior of the fluids. A common approach
is to make use of the variational formulation of the problem, discretize it and use
the finite element method for obtaining local solutions, respectively global solutions.
This chapter is dedicated to the presentation of such a process, pointing out the
construction of the weak formulation of incompressible Navier-Stokes equations, the
vectorial spaces where the solution should be defined, examples of such spaces in finite
element method theory and, finally, the corresponding discrete problem which has to
be solved. The finite element method FEM knew a large and vast development
at the beginning of 1970, when it became a new area in the numerical analysis of
applied mathematics. A false idea over FEM occurred when it was considered to be
a consequence of the growing need to solve PDE s, weak equations of boundary value
problems and defining Sobolev spaces, but it was not the case. However, FEM has
proved to be a powerful tool in solving these problems, too.

We consider in the following part a PDE system of equations to be solved by using
the FEM. For such a given PDE one can construct the minimization problem with
the property that it is simpler to be numerically solved. The foundation principle of
constructing minimization problems is the energy principle. By definition, the energy
is of type (3.1):

19
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J(v) =
1

2
a(v,v)− l(v), (3.1)

where a(·, ·) and l(·) represent bilinear, respectively linear, forms. An abstract mini-
mization problems is formulated as follows:

Find u ∈ U , U ⊂ V , V a Hilbert space endowed with a corresponding
norm, such that the energy is minimal:

J (u) = inf
v∈U

J (v). (3.2)

It is necessary to define suitable vectorial spaces and bilinear and/or linear forms with
proper attributes such that the existence and uniqueness of a solution is ensured. The
candidates for such spaces are only complete spaces in which the energy is well defined
everywhere, like for example the Sobolev spaces. Nevertheless, the bilinear and/or
linear forms have to be continuous on the selected spaces. The minimization problems
are very useful tools to solve fluid problems due to the strong theory regarding the
existence and uniqueness of the solution. Lax-Milgram Lemma is the main tool
in this sense and before it is stated, some additional theoretical results regarding
minimization problems have to be mentioned. They are formulated beneath the
following theorems without any proof. The reader is forwarded to consult Ciarlet [7]
for the detailed corresponding theory.

Theorem 1. 1 Let the following assumption be true:

i) V - a complete space

ii) U ⊂ V - closed and convex

iii) a(·, ·) - symmetric

iv) a(·, ·) - V -elliptic ( ∃ α > 0, α||v||2 ≤ a(v, v), ∀ v ∈ V )

Then the minimization problem (3.2) has one and only one solution.
1Ciarlet, P.G. and Lions, J.L., Editors: “Handbook of numerical analysis”, vol. IX, 2003, page

24-25
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Theorem 2. 2 A vector u is solution of the problem (3.2) if and only if it satisfies
the relations:

• u ∈ U , a(u, v− u) ≥ l(v− u), ∀ v ∈ U ,

in the general case, or

• u ∈ U , a(u, v) ≥ l(v), ∀ v ∈ U, a(u,u) = l(u),

if U is a closed convex cone with vertex 0, or

• u ∈ U , a(u, v) = l(v), ∀ v ∈ U ,

if U is a closed subspace.

As mentioned, the fundamental results is the Lax-Milgram Lemma (Theorem 3) which
assures the existence and uniqueness of a solution for abstract variational problems.

Theorem 3. 3 Let V be a Hilbert space, let a(·, ·) : V × V → R be a continuous
V-elliptic bilinear form, and let l : V → R be a continuous linear form. Then the
abstract variational problem: Find u ∈ U such that

a(u, v) = l(v), ∀ v ∈ V ,

has one and only one solution.

The above theorems are taken without modification from Ciarlet [7] and skipping in
here the prove. The theory allows a variational treatment of fluid problems with the
clear advantage that, for specific vectorial spaces and specific bilinear and/or linear
forms, such problems as 3.2 will possess a solution and it will be unique.

3.1 Sobolev spaces and variational formulation of

the Navier-Stokes equations

Sobolev spaces are functional vector spaces which are very often used in the Numerical
Theory. They are fundamental in the process of solving incompressible Navier-Stokes

2Ciarlet, P.G. and Lions, J.L., Editors: “Handbook of numerical analysis”, vol. IX, 2003, page
25-26

3Ciarlet, P.G. and Lions, J.L., Editors: “Handbook of numerical analysis”, vol. IX, 2003, page 29
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equations by using a variational formulation, also known in the literature as weak for-
mulation. Therefore, a short introduction to Sobolev spaces is necessary such that,
at a later point, based on these spaces, the variational treatment of fluid problems
like (2.24) or (2.23) can be presented. We consider to have a domain Ω ∈ Rd, de-
limited by the boundary Γ. The boundary should be sufficiently smooth, Lipschitz
continuous for example, Ω locally on one side of Γ. We recall two important Sobolev
spaces which will serve later to the construction of the variational formulation, namely
H1(Ω) and H1

0 (Ω). Short specifications over the used notations are helpful to under-
stand and recognize the function spaces. The space of all square integrable functions
over Ω is denoted by L2(Ω), while the set of C∞-functions with compact support in
Ω is denoted by D(Ω). Mathematical definition are presented below:

L2(Ω) = {ϕ Lebesque mesurable,
∫

Ω
|ϕ(x)|2 dx <∞}

D(Ω) = {ϕ | ϕ ∈ C∞(Ω), ϕ has relatively compact support in Ω}.
(3.3)

The Sobolev space H1(Ω) is defined as follows:

H1(Ω) = {v | v ∈ L2(Ω),
∂v

∂xi
∈ L2(Ω), ∀ i = 1, d}, (3.4)

where the derivatives are considered in the distribution sense, forwarding the reader
to Schwartz [39] for details. Shortly, it is meant by derivatives in the distribution
sense the following equality:∫

Ω

∂v

∂xi
ϕ dx = −

∫
Ω

v
∂ϕ

∂xi
dx, ∀ ϕ ∈ D(Ω). (3.5)

H1(Ω) is also called in the field of fluid mechanics the space of velocity vector functions
with finite kinetic energy. The elements of (H1(Ω))d form an inner product space with
the scalar product:

< v,w >H1(Ω):=

∫
Ω

(∇v · ∇w + vw) dx =

∫
Ω

(
d∑
i=1

∂v

∂xi

∂w

∂xi
+ vw

)
dx. (3.6)

Correspondingly, the space possesses a norm defined by (3.7), hence it is in conse-
quence a Hilbert space.
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||v||H1(Ω) :=

(∫
Ω

(|∇v|2 + |v|2) dx

) 1
2

=

(∫
Ω

(
d∑
i=1

∣∣∣∣ ∂v∂xi
∣∣∣∣2 + |v|2

)
dx

) 1
2

. (3.7)

An important property of the H1(Ω) space is that all its elements have a trace on Γ.
The trace operator is the linear mapping defined by :

γ0v = v|Γ, ∀ v ∈ C∞(Ω) (3.8)

with

D(Ω) = {ϕ | ϕ ∈ C∞(Ω), v has a compact support in Ω}. (3.9)

A corollary result of the trace theorem claims the existence of a continuous linear
operator from H1(Ω) to L2(Γ) which fulfills the following inequality

||γ0v||L2(Γ) ≤ c(Ω)||v||H1(Ω), ∀ v ∈ H1(Ω), (3.10)

where c(Ω) is a constant function. A closed subspace of H1(Ω) is the space H1
0 (Ω).

It can be equipped with the semi norm (3.11) and therefrom is a Hilbert space.

|v|1,Ω =

(∫
Ω

|∇v|2 dx
) 1

2

(3.11)

By making use of the variational formulation of the differentiable equation, the re-
strictions over the velocity function will be reduced by avoiding the second derivatives
implied by the Laplace operator from (2.23). Suppose that one has to solve the fol-
lowing problem by constructing firstly the weak formulation:

Find the velocity u ∈ H1
0 (Ω) and the pressure p ∈ L2

0(Ω) with the following prop-
erties ∇ · u0 = 0 and n · u0 = 0, on Γ such that:

∂u

∂t
+ (u · ∇)u− ν∆u +

1

ρ
∇p = f , in Ω× (0, T ),

∇ · u = 0, in Ω× (0, T ),

u(x, 0) = u0(x), ∀ x ∈ Ω,

(3.12)

This is the nonlinear problem of Navier-Stokes equations with initial condition and
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boundary conditions. The natural way to treat the nonlinearity is to use the Newton
method or other iterative methods into which we will come later. Previously, the
variational formulation of the problem has to be constructed with the advantage
of reducing the space regularity. If a two dimensional case is considered, then the
velocity vector has the components u = (ux, uy) = (uα), α = x, y. One may rewrite
the momentum equation and incompressibility constraint of (3.12) as scalar equations
for the velocity component like:

∂uα
∂t

+ (u · ∇)uα − ν∆uα +
1

ρ

∂p

∂α
= f

∑
α

∂uα
∂α

= 0.

(3.13)

The standard technique to formulate the weak problem of a differential equation is a
quite simple one. For the selected example, the first two equations are multiplied by a
R3-dot product with an arbitrary function ϕ ∈ H1

0 (Ω), followed up by an integration
over the whole domain Ω. In the case of the momentum equation, it results in∫

Ω

ϕ ·
[
∂uα
∂t

+ (u · ∇)uα − ν∆uα +
1

ρ

∂p

∂α

]
dx =

∫
Ω

ϕ · f dx , (3.14)

∀ ϕ ∈ H1
0 (Ω). The left integral is divided into 3 smaller integrals and each will be

treated individually. The time derivative and nonlinear terms of the velocity compo-
nent consist one integral, which needs no modification. On the other hand, the two
other integrals containing the Laplace operator, respectively the space derivative of
the pressure, will be integrated by parts, which will decrease the order of derivatives of
velocity and pressure components. Green’s formula will lighten the resulting integral
equation:∫

Ω

ϕ ·
[
∂uα
∂t

+ (u · ∇)uα

]
dx+ν

∫
Ω

∇ϕ ·∇uα dx−
1

ρ

∫
Ω

∂ϕ

∂α
·p dx =

∫
Ω

ϕ ·f dx (3.15)

Here the following equality was used:

− ν
∫

Ω

∆u · ϕ dx = ν

∫
Ω

∇u · ∇ϕ dx +

∫
Γ

∂u

∂n
· ϕ ds, (3.16)

with the observation that the surface integral disappears due to the imposed boundary
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conditions. The same procedure have to be applied for the incompressibility equation
with the immediate result:∫

Ω

q ·
∑
α

∂uα
∂α

dx = 0,∀ q ∈ L2
0(Ω) (3.17)

The system of two equations (3.15) and (3.17) represents the variational formulation
of the Navier-Stokes equations, endowed with the boundary conditions from (3.12).
Having such a formulation, one can define bilinear and trilinear forms which will
be helpful in reformulating the problem in a continuous way. The following scalar
products are useful in defining these forms:{

(w, v) :=
∫

Ω
w v dx,

(f ,g) :=
∫

Ω
f g dx.

(3.18)

The bilinear forms are represented by the following definitions:{
a(w, v) := ν(∇w,∇v),

bα(w, q) := (∂w
∂α
, q),

(3.19)

while the trilinear form is represented by the relation:

n(v, w, u) := a(w, u) + C(v, w, u), (3.20)

where C is also a trilinear form which reads:

C(v, w, u) := (w,v · ∇u).

Having these forms defined, one can formulate the continuous problem of the consid-
ered Navier-Stokes system:

Find the velocity u ∈ H1
0 (Ω) and the pressure p ∈ L2

0(Ω) such that: (ϕ, ∂uα
∂t

) + n(u, ϕ, uα) + bα(ϕ, p) = (f , ϕ),∀ ϕ ∈ H1
0 (Ω),∑

α

bα(uα, q) = 0,∀ q ∈ L2
0(Ω).

(3.21)

The following part of this thesis focuses on the matter of time-space discretization
techniques for solving (non)-stationary Navier-Stokes problem with initial condition
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and boundary conditions.

3.2 Finite element spaces

Solving a PDE system of equations that describes the motion and behavior of fluids is
in the general case impossible to solve analytically and therefore is rather a numerical
task. In general, such problems have no analytical solution available, therefore they
need to be transformed into an algebraic system of equations and solved numerically.
This process of obtaining an algebraic system of equations is called discretization of
the problem. There are two kinds of discretization: spatial and temporal. By the
technique described in the previous sub-chapter, any differential equation may be
transformed into a variational/weak formulation and, with the specification that the
same differential equation may posses different formulations. One of the advantages
of the variational formulation is the possibility of considering weak solutions from
spaces like H1 (Ω). Nonetheless, the natural boundary conditions can be easily and
readily imposed in the formulation.
Let us consider the following abstract variational problem:

Find u ∈ V, such that a(u, v) = l(v), ∀ v ∈ V, (3.22)

with the assumptions that a(·, ·), l(·) and V are bilinear, linear forms, respectively
vectorial spaces, that satisfy the properties of the Lax-Milgram lemma (Theorem 3).
It is assured by this lemma that the problem has one and only one solution. Such
problems may be treated by a finite element formulation like the Galerkin or Ritz
method. For some finite dimensional subspaces of V , the problem can be reformulated
as follows:

Let Vh ⊂ V. Find uh ∈ Vh such that a(uh , vh) = l(vh), ∀ vh ∈ Vh . (3.23)

The solution of this problem uh is called discrete solution. The finite element theory
represents the process of constructing finite element subspaces and therefore is one of
the methods to obtain such finite dimensional spaces like Vh . If one uses FEM, one
has to take care of three major aspects for a proper usage.



CHAPTER 3. FINITE ELEMENT DISCRETISATION 27

The decomposition of a given domain with its boundary ∂Ω is called subdivision,
no matter what kind of decomposition is used (triangles, squares, rectangles, etc),
and it is noted by Th . The given domain Ω is triangulated if it is subdivided into a
finite number of subsets T . The subsets T ∈ Th have to possess a bunch of properties:
they have to be closed, with a nonempty interior and connected. Simultaneously, the
boundary of any subset T needs to be Lipschitz-continuous. The union of all subsets
T is the entire domain Ω, with the specification that the intersection of two arbitrary
subsets can have just a exactly a closed edge. The above properties of a triangulation
can be observed in the figure 3.1.

Figure 3.1: Triangulation of a simple shape domain

As long as a triangulation of an arbitrary domain is realized, the finite element space
Vh may be defined. The freedom of choosing the space Vh is directly related to how
the decomposition is performed. With a finite element space Vh selected, one can
define a finite dimensional space by restricting all functions vh ∈ Vh to the sets of
the triangulation T ∈ Th . In other words, one defines the following finite dimensional
space PT = {vh |T ; vh ∈ Vh}. The aim is to get solutions in the described Sobolev
spaces H1 (Ω) or H1

0 (Ω), therefore certain conditions must be fulfilled such that the
selected finite element space Vh is included in them. The following theorem will assure
the inclusion:

Theorem 4. 4 Assume that PT ⊂ H1 (T ) for all T ∈ Th and Vh ⊂ C0(Ω) hold. Then,
the following inclusions hold:

4 [7]: Handbook of Numerical Analysis, Vol II, Chapter II, page 62
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• Vh ⊂ H1 (Ω);

• V0h = {vh ∈ Vh ; vh = 0 on Γ} ⊂ H1
0 (Ω).

The theorem gives good space candidates for solving fluid problems. If the problem
is a second-order homogeneous Dirichlet one, then the space to select is V0h . On the
other hand, for second-order homogeneous or non-homogeneous Neumann problems,
Vh is the the proper one. Further one, there are other results in the theory which
suggest different spaces for higher order differential fluid problems, but they are left
away since they are not subjects of this thesis.

The sets PT have an important role as the Theorem 4 indicates. Even more, they
play significant role when it comes on the second basic aspect of finite element. Thusly,
PT can mainly be sets of polynomials or functions which behave like polynomials. The
benefit of this property will be revealed at a latter point. In practice, if a discrete
problem is solved into the space Vh , then the solution has to be a linear combination of
the basis vectors of the space. Considering that the space has an arbitrary dimension
m and taking the system {wi}mi=1 as basis of Vh , then one might consider the solution

to be represented by uh =
m∑
i=1

ξiwi , where the vector {ξi}mi=1 satisfies the equality:

m∑
i=1

a(wi , wk)ξi = l(wk), 1 ≤ k ≤ m. (3.24)

On the left hand side, the bilinear form a(·, ·) builds the so called stiffness matrix,
while in the right hand side the linear form determines the load vector. The properties
of the stiffness matrix are determined by the properties of the bilinear form a(·, ·). For
the case of an V-elliptic bilinear form as Lax-Milgram Lemma requires, the stiffness
matrix possesses an inverse, therefore the system is solvable. Moreover, if the bilinear
form is symmetric, then the stiffness matrix is positive definite, a very important
aspect for the numerical solution. Also, it is numerically important that the stiffness
matrix contains as many zeros as possible, thus the choice of the basis system of the
space Vh is decisive. The following classic example is given to exemplify how the
stiffness matrix and load vector are constructed. The model problem is:{

−∆u = f , in Ω,

u = 0, on Γ,
(3.25)
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where Γ = ∂Ω. Using the energy principle, the variational formulation of the model
problem is: ∫

Ω

∇u∇ϕdx =

∫
Ω

fϕ. (3.26)

for any ϕ ∈ V , V being the set of all functions with a square integrable gradient and
with the restriction to the boundary Γ equal to zero. In a finite element approach, to
solve this problem, the solution is investigated in much smaller spaces Vh ⊂ V such
that: ∫

Ω

∇uh∇ϕhdx =

∫
Ω

fϕh , ∀ϕh ∈ Vh . (3.27)

For such a space as V = {v| ∇v ∈ L2(Ω), v|Γ = 0}, the standard norm is:

‖v‖1,2 =

(∫
|u|2dx+

∫
|∇u|2dx

) 1
2

(3.28)

The resulting discrete problem reads:

a(uh , ϕh) = (f, ϕh), ∀ ϕh ∈ Vh ⊂ V (3.29)

with the definitions of the bilinear and linear forms written below:

a(u, ϕ) =

∫
Ω

∇u∇ϕdx (3.30)

l(f, ϕ) =

∫
Ω

fϕdx (3.31)

Depending on the triangulation of the domain Th = {T} and on the selection of
the set PT , one defines a basis of PT like {ϕi}mi=1 and approximates the velocity by

uh(x, t) =
Nu∑
i=1

ui(t)ϕi(x), where Nu are the number of the degrees of freedom for the

velocity. Introducing this solution into (3.29) and using the properties of the bilinear
form, the following results arise:
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a

(
Nu∑
j=1

uj(t)ϕi(x), ϕi(x)

)
= (f, ϕi(x)), ∀ i = 1,m,

Nu∑
j=1

uj(t)a(ϕj(x), ϕi(x)) = (f, ϕi(x)), ∀ i = 1,m.

(3.32)

The algebraic system of equations can be reduced to the generic one:

Au = b, (3.33)

by using of the following definitions of the stiffness matrix and load vector:

A = aij = a(ϕj, ϕi) =

∫
Ω

∇ϕi∇ϕjdx, ∀ i, j = 1,m, (3.34)

b = l(ϕi) = (f, ϕi) =

∫
Ω

fϕidx, ∀ i = 1,m. (3.35)

The solution of the system is the solution of the discrete problem, thus there is an
resultant error. It is the purpose of the finite element analysis to investigate how big
is the error and how accurate is the process of getting the solution.

Finally, the last basic aspect of a “good“ finite element is that in the space Vh
exists at least one canonical basis whose corresponding basis functions are easy to be
described. If all aspects are together fulfilled, then the corresponding methods are
called conforming finite element methods. Indeed, it might be possible to describe
different finite element methods which do not fulfill entirely guide themselves over
the 3 basic aspects. For instance, the discrete space Vh may not be a subspace
of V if we have a curved boundary of the domain, being impossible to realize an
exact triangulation in the vicinity of the boundary. The same happens when the
domain has inner holes of arbitrary shapes. Also, the bilinear and linear forms can
be approximated by numerical integration in order to solve the discrete system. To
summarize, the conforming finite element methods require the following steps:

• The finite element space Vh is associated with a triangulation Th of the domain
together with its boundary. For each element of the triangulation, the space
PT = {vh |T ; vh ∈ Vh} should contain polynomials or functions that behave like
polynomials;
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• The space Vh should be a subset of the space of the continuous functions over
the domain Ω, as stated into Theorem 4;

• The space Vh must posses at least one canonical basis which is easy to describe.

The selection of the finite element and associated finite element spaces have a
direct impact over the solution. Another important role is played by the triangulation
itself. There are many simple examples of triangulation based on simple geometrical
shapes. For the finite element treatment of the methods presented in this thesis:
FEM and PM, the rectangular finite elements were used. The following chapters are
an overview over the selected finite element and discretization techniques.

3.3 Time-space discretization of the incompressible

Navier-Stokes equations

A non-stationary Navier-Stokes problems can not be discretized by only using finite
element method. FEM is a specific method to annihilate the spatial derivatives and
obtain a simpler algebraic system of equations for the velocity and pressure variables,
but is in general not treating the time. Therefore, if the temporal variable is attached
to the fluid problem, it is necessary a discretization procedure that involves it also.
There are different techniques to realize both time-space discretization of a differential
problem, but the most common one is to separate standard discretization in time and
space. Firstly, proceed with standard time stepping techniques to discretize in time,
followed up by finite element method (or another method) for spatial discretization.
The result is a sequence of generalized stationary problems for each time step. In this
chapter the whole process of discretization based on this approach will be presented.

3.3.1 Nonconforming Q̃1/Q0 element

As a preamble to the time-space discretization process of the incompressible Navier-
Stokes equation, a short introduction to the nonconforming finite element Q̃1/Q0

element is presented, which are in fact the finite element spaces we have used in our
investigations. As described in the previous section, the use of the conforming finite
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element methods is not always possible or/and sometimes not even recommended or
satisfactory. The reasons were presented before, hence they will be omitted for this
moment. Thus, nonconforming finite element methods were developed with several
critical advantages. For instance, such finite elements posses favorable stability and
divergence free nodal bases. In the same time, the pressure variables are permitted to
be eliminated. However, the reduction of the unknowns is not the biggest gain, but
the possibility to obtain a system of equation for velocity variables alone which may
be efficiently solved by multigrid method represent a major strength for this family
of finite element methods.

According to Rannacher and Turek [37], the first low order rectangular element
with 5 nodal degrees of freedom was introduced by Han, but only theoretically de-
scribed, not numerically tested. In the same work, Rannacher and Turek introduced
the so called Q̃1/Q0 element with both theoretical and numerical support, showing
that this element possesses a satisfactory stability and approximations properties.
Nevertheless, it satisfies without any additional stabilization the Babuška-Brezzi con-
dition. The Q̃1/Q0 element uses piecewise rotated bilinear shape functions for the ve-
locity component and piecewise constant pressure approximation. Figure 3.2 indicates
how the local degrees of freedom are distributed for the actual selected discretization
element.

Figure 3.2: Location of the for the Q̃1/Q0 element
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As the figure shows, there are 5 nodal values consisting the degrees of freedom for
this element: 4 for the velocity vector u = (u, v) and only 1 for the pressure p.
The pressure is a constant value equal to the mean value over the element itself.
Therefore, the notation Q0 consisting of piecewise constant pressure approximation.
In the case of the velocity, the 4 values are nothing else than the mean value of
velocity over an edge of the local element. The set of functions Q̃1 for the velocity
uses piecewise rotated bilinear shape functions. The entire description on how the
parametric element is obtained for the element Q̃1/Q0, can be found in Turek’s work
[42]. Considering the reference element T̂ = [−1, 1] × [−1, 1] and the one-to-one
transformation ΨT : T̂ → T from unit reference square to any element T from the
triangulation, then the Q̃1(T ) element may be defined as follows:

Q̃1(T ) := {q ◦Ψ−1
T |q ∈ span < x2 − y2, x, y, 1 >} (3.36)

The following nodal functionals, FΓ,a/b, with Γ ⊂ ∂T being a closed part of an edge of
an arbitrary element from the triangulation, determine the degrees of freedom. They
are described by (3.37) and lead both to different finite element spaces:

FΓ,a(v) := |Γ|−1
∮

Γ
v dγ,

FΓ,b(v) := v(mΓ).
(3.37)

FΓ,a represents the mean value of the velocity along Γ and FΓ,b is just the velocity
value in the midpoint of the edge Γ. Finally, one can set the parametric pair Hh, Lh,
Hh ≈ H1

0 (Ω) and Lh ≈ L2
0(Ω), of finite element spaces corresponding to Q̃1/Q0. They

are:

Lh := {qh ∈ L2
0(Ω)|qh|T = const.,∀T ∈ Th}, (3.38)

Hh,a/b := Sh,a/b × Sh,a/b, (3.39)

where

Sh,a/b :=

{
vh ∈ L2

0(Ω)|vh|T ∈ Q̃1,∀T ∈ Th, vh continuous w.r.t all
nodal functionals FΓi,j ,a/b(·),∀Γi,j and FΓi,0,a/b(vh) = 0,∀Γi,0.

}
(3.40)
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Additionally, one can use also the non-parametric version of Q̃1/Q0 where the refer-
ence space Q̃1(T ) := {q ∈ span < χ2 − η2, χ, η, 1 >} is different and proper for each
element T of the triangulation, and defined with respect to a new system of coordi-
nates χ, η which connect the directions of the midpoints of the edges of T . For both
parametric and non-parametric versions, the reader is forwarded for more detailed
description to the work of Turek [42]. We only recall in this thesis the asymptotic
error estimates (3.41) for both pair of finite element spaces (Hh,a, Lh), (Hh,b, Lh) in
the parametric and non-parametric utilization:{

||u− uh||h + ||p− ph|| ≤ c(h+ σh){||u||2 + ||p||1},
||u− uh||0 + ||p− ph||−1 ≤ c(h+ σh)

2{||u||2 + ||p||1};{
||u− uh||h + ||p− ph|| ≤ ch{||u||2 + ||p||1},
||u− uh||0 + ||p− ph||−1 ≤ ch2{||u||2 + ||p||1}.

(3.41)

σh (3.42) is a new measure to describe the degeneration of the mesh Th

σh := max{|π − αT |, ∀T ∈ Th}, (3.42)

where αT ∈ (0, π] denotes the maximum angle enclosed between the normal unit
vectors corresponding to any opposite edges of T. The estimates (3.41) conclude
that the convergence of the parametric rotated bilinear elements requires that the
mesh is asymptotically uniform, while the non-parametric elements have satisfactory
approximation properties on general regular meshes. The approximations (3.41) are
corollary results of the necessary and sufficient conditions for existence of a solution
{Uh, ph} written below:

inf
vh∈Hh

||v − vh||h ≤ chm−1||v||Hm ,∀v ∈ H ∩Hm(Ω),

inf
qh∈Lh

||q − qh||h ≤ chm−1||q||Hm−1 ,∀q ∈ L ∩Hm−1(Ω)
(3.43)

for some integer values of m greater or equal 2, and

min
qh∈Lh/R

max
vh∈Hh

bh(qh, vh)

||vh||h||qh||0
≥ β̃ (3.44)

for some constant β̃ which does not depend on the aspect ratio of the grid. This set of
inequalities are known in the literature as approximation property and, respectively,
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stability condition. This pair of element is already implemented in the computational
software FEATFLOW and are the discretization elements for velocity and pressure
components employed during all simulations regarding FBM and PM investigation
and presented into this thesis. The Q̃1/Q0 element is indexed inside the software as
EM30 or EM31, depending on the choice of nodal functionals FΓ,a/b, and referred as
non-parametric, non-conformal Rannacher-Turek’s element.

3.3.2 Time discretization

The non-stationary Navier-Stokes equations for incompressible fluids requires a “dou-
ble“ discretization approach for time and space. One method which requires less
resources is to separate the discretization into time discretization and space discretiza-
tion. Firstly we proceed with the time discretization and after that, in each created
time-step, the spatial discretization is performed. Through the initial time discretiza-
tion, the temporal derivatives are vanishing and a sequence of time milestones will be
determined by an equidistant or adaptive time step size. Simultaneously the problem
reduces itself to a stationary Navier-Stokes problem which needs to be discretized in
space and solved by using, for example, FEM discretization in every time step. It
is possible to use simple finite difference method FDM for discretization of the time
derivatives. For instance usual methods for treating ordinary differential equation
ODE such as Euler schemes, Crank-Nicolson or Runge-Kutta schemes. However, the
main method implemented and used into the FEATFLOW software is a Fractional-
step-θ-scheme and we will focus on it. The chosen time step scheme has to be accurate
in time, easy to realize and efficient/robust from the computational point of view.

Let us consider the simple initial value problem IVP (3.45) to be numerically
treated: 

du

dt
+ f(t,u(t)) = 0, ∀t > 0

u(0) = u0.
(3.45)

with the u(t) = ((un(t))dn=1)T and f(t, x) = ((f(t, x)dn=1)T vector functions for ar-
bitrary dimension d. There is a very elaborate theory regarding the existence and
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uniqueness of solutions, as local/global stability/convergence theory for a large num-
ber of categories of different time step schemes. All time-step schemes can be di-
vided into 2 families: explicit and implicit schemes. They are further classified into
One-Step-Schemes and Linear-Multistep-Methods LMM. The explicit schemes were
commonly used to solve non-stationary flow problems even if they have critical dis-
advantages. In return, there are also clear advantages. They can be easily real-
ized, implemented into a CFD code and inexpensive. However, low time step sizes
are required for stability reasons, making them inefficient into handling long time-
dependent problems. One of the most common explicit schemes is the Explicit Euler
EEM (3.46), but yet only of first order accurate:

un = un−1 + hnf(tn−1, un−1), n ≥ 1 (3.46)

To obtain higher order accuracy, one can use explicit Runge-Kutta methods like
Heun’s schemes of 2nd or 3rd order for example. However, for high stiffness reasons,
one should choose an implicit scheme for time-stepping methods. The most frequently
used are the Backward Euler-scheme BE (3.48) or second order Crank-Nicolson-
scheme CN (3.49). They belong to the family of one-step-θ-schemes and are also FD
methods. The basic theta schemes reads:

un+1 + θhf(tn+1, un+1) = un − (1− θ)hf(tn, un) (3.47)

with a constant time step h and θ parameter chosen in the sub-unitary positive
interval [0, 1]. For θ = 1 the BE method is obtained, while for θ = 1

2
the CN method

arise.

un = un+1 + hf(tn+1, un+1), (3.48)

un+1 +
h

2
f(tn+1, un+1) = un −

h

2
f(tn, un). (3.49)

BE method is very useful for steady state calculations due to the strong A-stability,
assuring a bounded solution, but it is still only of first order accurate. CN is on
the other hand of second order accurate, but it seems to suffer occasionally from
instability because of not being strong A-stable. Glowinski [13] proposed another
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θ scheme, the Fractional-step-θ-scheme FS (3.51), performing a separation into two
problems of nonlinearity and incompressibility. The method uses 3 different values
for θ parameter in each time step, so that the (macro)-step H = tn+1 − tn contains
3 sub-steps of variable/equidistant size h. FS scheme itself is based on the following
settings:

θ = 1−
√

2

2
≈ 0.293, θ′ = 1−2θ ≈ 0.414, α =

θ′

1− θ
≈ 0.585, and β = 1−α ≈ 0.414.

(3.50)
Choosing θ̃ := αθh = βθ′h, the following equations define the time-step scheme FS

un+θ + θ̃f(tn+θ, un+θ) = un − βθhf(tn, un),

un+1−θ + θ̃f(tn+1−θ, un+1−θ) = un+θ − αθ′hf(tn+θ, un+θ),

un+1 + θ̃f(tn+1, un+1) = un+1−θ − βθ′hf(tn+1−θ, un+1−θ).

(3.51)

The proposed FS method is strong A-stable and, moreover, it possesses second order
accuracy.
The problem to be solved is the non-stationary incompressible Navier-Stokes equa-
tions (2.24). As mentioned, the primary step is to discretize the system of equations
in time. The following problem results:

Given un and the time step H = tn+1 − tn, then solve for u = un+1 and
p = pn+1 the following system of equations{

u−un

H
+ θ [−ν∆u + u · ∇u] +∇p = gn+1

∇ · u = 0, in Ω
(3.52)

with the rhs

gn+1 := θfn+1 + (1− θ)fn − (1− θ) [−ν∆un + un · ∇un] . (3.53)
For making easier to write the equations, the diffusive and advective parts are denoted
as N(v)u. The following definition for N(u)u follows:

N(v)u := −ν∆u + v · ∇u. (3.54)

The fractional-θ-scheme (3.51), applied to the problem (3.52), decomposes it into 3
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consecutive sub-steps for a macro-step of size H.

{
[I + θ̃N(un+θ)]un+θ + θH∇pn+θ = [I − βθHN(un)]un,

∇ · un+θ = 0,{
[I + θ̃N(un+1−θ)]un+1−θ + θ′H∇pn+1−θ = [I − αθ′HN(un+θ)]un+θ,

∇ · un+1−θ = 0,{
[I + θ̃N(un+1)]un+1 + θH∇pn+1 = [I − βθHN(un+1−θ)]un+1−θ,

∇ · un+1 = 0.

(3.55)

With this time discretization technique, the problem to be solved in each macro-step
H is:

Given un, parameters h = H(tn+1), θ = θ(tn+1) and θi = θi(tn+1), i = 1, ..., 3,
then then solve for u = un+1 and p = pn+1{

[I + θhN(u)]u + h∇p = [I − θ1hN(un)]un + θ2hf
n+1 + θ3hf

n

∇ · u = 0, in Ω
(3.56)

FS method has the property that it combines both advantages of BE and CN meth-
ods, being easy to realize, A-stable, second order accurate and with no extra numerical
effort. In the works [44, 46], Turek at. all presented a modified fractional-θ-scheme
starting with a BE sub-step, continuing with extrapolation of the last two approx-
imated solutions to obtain an accurate one and applying another BE sub-step to
get the solution for the new macro-step. The method is fully implicit one and is
part of Runge-Kutta family methods. The numerical simulations offered in [44, 46]
prove that the modified method is strong A-stable and second order accurate, in
fact, almost third order accurate. All these schemes are already implemented into
our FEATFLOW code and may be used in combination with the FBM and PM. In
Chapter 7, we present a simple problem of an oscillating cylinder, which is a non-
stationary simulation, discretized by using BE since we only intended to prove the
capabilities of the PM. However, the FS was successfully implemented together with
FBM in [47].
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3.3.3 Space discretization

Second and last step in the discretization process is the space discretization by fi-
nite element method. As presented in the previous chapters, to proceed, one needs
to formulate a variational or weak corresponding problem, to realize a triangulation
of triangles or quadrilaterals (in 2D) that covers the entire fluid domain and define
polynomial trial functions/spaces for both unknown variables: velocity and pressure.
Nevertheless, the selected approximate spaces Hh and Lh should provide the possibil-
ity of receiving stable approximations if the mesh size h becomes smaller and smaller
during the refinement process. This last aspect is fulfilled if the pair of elements
satisfies the Babǔska-Brezzi condition (3.57) with a mesh independent constant β:

min
p∈Lh

max
vh∈Hh

(ph,∇ · vh)
||ph||0||∇vh||0

≥ β ≥ 0 (3.57)

One candidate that satisfies (3.57) is the pair of elements Q̃1/Q0 with both para-
metric and non-parametric versions. Theoretical and numerical results regarding this
element were presented by Turek and Rannacher [37], proving that Q̃1/Q0 behaves
comparable with the standard conforming finite elements of first order in energy norm
from the point of view of accuracy, but unconditionally stable, even on anisotropic
meshes. Consider the pair of variables {u, p} ∈ H(Ω)×L(Ω), with H and L being the
special Sobolev space H1

0 (Ω) and the space L2
0(Ω). Further, the two bilinear forms

a(u,v) and b(p,v) defined in (3.19) and rewritten as (3.58) will help to formulate
a variational problem for each nonlinear problem (3.56) of each time step for the
non-stationary case: {

a(u,v) := ν(∇u,∇v),

b(p,v) := −(p,∇ · v).
(3.58)

Eventually, one weak formulation of the equation (3.56) is:{
(u,v) + θ1H[a(u,v) + n(u,u,v)] + θ2Hb(p,v) = (f ,v), ∀ v ∈ H,
b(q,u) = 0,∀q ∈ L.

(3.59)

Note that the term n(u,u,v) is the trilinear form defined by (3.20). To discretize
(3.59), one has to perform a triangulation Th, i.e. based on quadrilaterals, for the
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whole computational domain ΩT , with h symbolizing the maximum width of the
elements T ∈ Th. To refine the mesh, starting with a coarse one Th and obtaining
a finer one T2h, one can just simply connect the opposing midpoints of all elements
T ∈ Th, such that they become in the new element T ∈ Th vertices. By choosing the
finite element pair Q̃1/Q0 and so the finite element spaces Hh and Lh defined as in
(3.39) and (3.38), then the discrete solution {uh, ph} ∈ Hh × Lh has to satisfy the
system:{

(uh,vh) + θ1H[a(uh,vh) + nh(uh,uh,vh)] + θ2Hbh(ph,vh) = (f ,vh),∀ vh ∈ Hh,

bh(qh,uh) = 0,∀qh ∈ Lh
(3.60)

where 
ah(uh,vh) :=

∑
T∈Th

ah(uh,vh)|T ,

bh(ph,vh) :=
∑
T∈Th

b(ph,vh)|T ,

nh(uh,uh,vh) :=
∑
T∈Th

n(uh,uh,vh)|T ,

(3.61)

It has to be remarked that for the selected finite element spaces there is no need of
extra stabilization techniques regarding the LBB condition. However, any kind of
stabilization methods like upwind stabilization, streamline-diffusive stabilization or
edge-oriented stabilization, can be applied in certain configurations or for different
purposes (i.e. high Re numbers). If such stabilization methods are used, then they
will be implemented inside the trilinear form which contains the non-linearity. The
problem is now discretized in both temporal and spatial dimensions and has to be
solved by applying linear and nonlinear Navier-Stokes solvers, subject of the following
chapter.



Chapter 4

Numerical solver

After the discretization of the incompressible Navier Stokes problem in time and
space, it results a discrete nonlinear system of equations to be numerically solved.
The nonlinearity and the incompressibility are just two of the points to be taken
into account. Suppose that the non-stationary Navier Stokes problem (2.23) with
some boundary conditions and implemented with penalty term has to be solved. It is
firstly discretized in time by one of the proposed time-step schemes, like BE, CN or
FS presented in the previous chapter, followed by a spatial discretization by using one
of the following methods FEM. It results discrete a system of equations like (3.60),
which is in every time step a stationary system of equations and can be rewritten in
a matrix form as follows:{ [

M + θH(λχ(x)M̃ + N(unh)
)

]unh +HBph = gnh,

BTuh = 0.
(4.1)

with
gnh = un−1

h + (1− θH)(λχ(x)M̃ + N(un−1
h )un−1

h +

+θ(fn + λχ(x)un) + (1− θ)(fn−1 + λχ(x)un−1).
(4.2)

M, M̃,N,B and −BT stand for the mass matrix, penalty matrix, the nonlinear
(convection-diffusion) operator, the gradient matrix containing the discrete deriva-
tives and the transposed divergence matrix. Here, the right hand side term un rep-
resents the velocity of the solid object, which is time-dependent for a moving object.
The consistent mass matrixMc is not a diagonal matrix, is symmetric and it is defined

41
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in the case of FEM by the equality:

Mc = {mij} =

∫
Ω

ϕiϕjdx ∈ RNu×Nu , (4.3)

with Nu the number of degrees of freedom for the velocity components and ϕi, ϕj the
test, respectively trial, functions of the selected finite element spaces. Usually, the
consistent matrix, which is a full-matrix, is substituted by the lumped mass matrix
ML defined below:

ML = diag {mi} =
∑

j=1,Nu

mij (4.4)

M̃ represents the penalty matrix, which is nothing else than a modified mass matrix.
For the construction of M̃, the same integrals (4.3) are computed to obtain the
entries, but only those are activated by the mask function χ(·) which correspond to
the degrees of freedom (DOF s) inside the penalized object. We usually decide for
a full penalty matrix and do not apply lumping techniques. However, if the mass
matrix is lumped, penalty matrix has to be in general also lumped and therefore we
have chosen a HRZ-lumping method [20], which will be presented later. The mass
matrix is linear, is not depending on the solution and, hence needs to be assembled
only once and recalled in every time step for non-stationary simulations. On the other
hand, the penalty matrix has to be reassembled every time step for the non-stationary
case, since the position and velocity of the solid object may change in time and so
the penalty matrix has to be updated. The nonlinear convention-diffusion operator
N, also known as Burgers operator, consists of two terms: convective and diffusive.
The relations of definition are the following:

Nα = {nij} ∈ RNu×Nu , nij = cij + dij,

cij = (ϕi,uh · 5ϕj) =
∫

Ω
ϕiuh · 5ϕjdx,

dij = ν (5ϕi,5ϕj) = ν
∫

Ω
5ϕi · 5ϕjdx.

(4.5)

with α ∈ {x, y} for the bi-dimensional case. The convection-diffusion operator is non-
symmetric and nonlinear. It depends on the solution and needs to be reassembled in
every time step. For the particular case of a laminar fluid, with very small value of
Reynolds number, the convective part can be neglected and so the operator becomes
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linear and rectangular. The discrete gradient B and its divergence BT are given
through the equalities:

Bα = {bαik} =

(
∂ϕi
∂α

, ψk

)
∈ RNu×Np (4.6)

with Np the degrees of freedom for the pressure component.
One can reduce the matrix system of equations (4.1) to a simpler one:{

S(uh)uh +HBph = gh,

BTuh = 0,
(4.7)

with the velocity matrix S given by the relation:

S(u) =
[
M + θH(λχ(x) + M̃N(u))

]
(4.8)

and the right hand side (rhs) defined by (4.2). The matrix S has the structure:

S(u) := αM + θ1HλχM̃ + θ1νHL+ θ2HK(u), (4.9)

with the parameters θi, α,H given by the discretization method in time and space, ν
the viscosity, λ the penalty parameter which is rather very high, M the mass matrix,
L the discretized Laplacian and K the corresponding convective term.
After discretization in time by applying one of the presented θ-schemes, the resulting
stationary problem can be treated in general in two ways in order to solve the problem.
One possibility is to treat firstly the nonlinearity by a fixed point defect correction
type method, resulting linear subproblems of Oseen type in each nonlinear step and
further solved by a direct coupled or a splitting approach separately for velocity and
pressure. This method, denoted into FEATFLOW under the names of cc2d/cc3d
or cp2d/cp3d is belonging to the Galerkin type of schemes. The second possibility
supposes a splitting into definite problems in velocity, Burgers equations, as well as
in pressure, Pressure-Poisson problems and the treatment of the nonlinearity through
an appropriate linearisation technique. This method is a Projection scheme and is
denoted into FEATFLOW software with pp2d/pp3d. Both methods deliver similar
solutions if they converge at all and if the time steps k are sufficiently small, or the
values of the nonlinear N or linear L iterations are sufficiently large selected.
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For the present study, we used the direct coupled velocity-pressure software cc2d,
meaning that for both FM and PM a Galerkin type of method to solve the resulting
algebraic system is applied. Firstly, we treat the nonlinearity by a fix-point defect-
correction method, an iterative scheme which provides a solution un+1 by starting with
the known solution un, followed by a linear solver to solved the linearized system. Also
a Newton iteration scheme can be applied, but since the PM does not affect at all the
nonlinear term, the defect-correction loop scheme will provide a better behavior of
the solver. Besides, the defect-correction loop can accelerate the rate of convergence
by choosing an optimal damping parameter. In the following part the actual solving
process of the penalized Navier-Stokes problem will be shortly described. Suppose we
have the generic problem governed by the algebraic equation:

A(u)u = b (4.10)

where b = f − Bp. One can apply iterative methods in order to treat the nonlin-
earity for both stationary or non-stationary situations. Abstractly, such methods are
actually successive approximations of the solution. One possibility is the iterative
defect-correction scheme, in which for each iteration a solution un is known and is
updated to un+1 by performing one (nonlinear) relaxation step. This is described
trough the equation:

un+1 = un + ωm
[
Ã(ũn)

]−1

[b− A(un)un] , n = 0, 1, 2, . . . . (4.11)

ωn is the relaxation parameter and should be chosen appropriately, while Ã(ũn) is a
preconditioner of the operator A(·). The iterations stops if the nonlinear residual is
sufficiently small. The convergence rate depends on the properties of Ã and, in the
case of non-stationary problems, on the time step size and control. Also, the relaxation
parameter may be fixed or chosen adaptively. We prefer actually the adaptive fixed
point defect correction approach. In the practical implementation, firstly we evaluate
the residual:

rm = b− A(un)un (4.12)

of the algebraic system (4.10). In a second step, we solve the linear subproblem:
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Ã(um)δun = rm (4.13)

for δun. The obtained solution is multiplied by the relaxation parameter and added
to the previous solution, such that the result after an iteration is:

un+1 = un + ωn · δun. (4.14)

Applying this defect correction technique to the corresponding continuous problem
(4.7) it follows: [

S(u) B

BT 0

][
u

p

]
=

[
g

0

]
(4.15)

1. Residual evaluation[
rnu

rnp

]
=

[
g

0

]
−

[
S(un) B

BT 0

][
un

pn

]
(4.16)

2. Linear subproblems [
S(un) B

BT 0

][
δun

δpn

]
=

[
rnu

rnp

]
(4.17)

3. Relaxation and update[
un+1

pn+1

]
=

[
un

pn

]
+ ωn

[
δun

δpn

]
(4.18)

where g contains the rhs and the penalty term generated by the moving object. The
standard Newton’s method is obtained if the Ã(·) is the exact Frechét derivative.
As mentioned before, the method provides a quadratic convergence if it converges
at all, but often destroys the diagonal dominance of the matrix Ã(·) because of the
convective part, causing instabilities of the solution. On the other hand, if Ã(·) is
the operator A(·) itself, then a fixed point scheme is used. The convergence rate
in this case is not anymore quadratic as in Newton’s scheme, but the method may
be more efficient in solving the linear subproblems. The combination of adaptive
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damping and Newton iteration will provide the best method. By applying strategies
of adaptive relaxation parameter, then the corresponding adaptive fixed point defect
correction method may have even better convergence behavior then Newton’s method.
There are many possibilities of applying an adaptive fixed point method, depending
on the preconditioning operator and on the damping parameter. In general, for the
continuous incompressible Navier Stokes problem:{

αu + λχ(x)u− ν∆u + u · 5u +5p = f + λχ(x)ut,

5 · u = g
(4.19)

and introducing the following approximate Frechét operator

T̃ (v) :=

[
S̃(v) 5
5· 0

]
, (4.20)

then in a nonlinear iteration, knowing un and pn, a relaxation step is performed as
follows:[

resun

respn

]
=

[
αunλχ(x)− ν∆un + un · 5un +5pn − f − λχ(x)ut

5 · un − g

]
, (4.21)

such that the iterate solutions un+1, pn+1 are obtained:[
un+1

pn+1

]
=

[
un

pn

]
− ωn

[
S̃(un) 5
5· 0

]−1 [
resun

respn

]
. (4.22)

For further schemes regarding the choice of the preconditioner, the relaxation pa-
rameter and the time step, or treatment of the nonlinearity by an iterative method,
the reader is forwarded to [42], Chapter 3.3. We summarize the above described
methods into a typical example of Galerkin scheme. It is the scheme which, from our
background, solves exactly on a high level the discrete nonlinear problems of type{

Su + kBp = g + λχut,

BTu = 0,
(4.23)

with the nonlinear operator:
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Su :=
[
αM + θ1kλχM̃ + θ1kνHL+ θ2kK(u)

]
u. (4.24)

One knowns the iterates (ul−1, pl−1) and performs a defect correction step to obtain
(ul, pl):[

ul

pl

]
=

[
ul−1

pl−1

]
−ωn

[
S̃(ul−1) kB

BT 0

]−1

×

([
S HB

BT 0

][
ul−1

pl−1

]
−

[
g + λχut

0

])
.

(4.25)
The upcoming task is to solve the linearized Oseen equations, resulting in each non-
linear iterations. One family of methods are the general Pressure Schur Complement
PSC which firstly calculate the pressure component and then determines the velocity
field. Several schemes belong to the class of PSC methods like: projection methods,
pressure correction schemes, SIMPLE, Uzawa iteration or Vanka smoother. We do
not describe all these methods, but more details can be found in [42]. Due to the
form of the matrix S, which represents the velocity matrix and contains the mass,
penalty matrix and also the laplacian and convective terms, we have chosen a bank-
able smoother [49] for multigrid approach. It is actually a local multilevel Pressure
Schur Complement MPSC and has the advantage of assembling the whole velocity
block in a single full matrix. Generically, the method is very similar to a domain
decomposition approach, based on the idea of solving small problems in contrast with
the global MPSC and use direct solvers like Gauß-Seidel or Jacobi iteration to solve
the linearized system. Therefore, the actual computational domain is decomposed
in patches Ωi with the property that the union of all patches give the entire domain
Ω. The number of patches NP is selected in the range [1, NEL], where NEL are the
number of the finite element. A local coupled stiffness matrix Ai (4.26) is assem-
bled and the corresponding subproblem is solved applying a direct solver, i.e. Gauss
elimination, meaning that an inverse matrix A−1

i is directly applied to the rhs vec-
tor. Therefore, the local stiffness matrix should not be singular, in order to obtain a
solution.

Ai =

(
S̃Ωi kBΩi

BT
Ωi

0

)
. (4.26)
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The entries of the matrix and the boundary conditions are taken from the global
matrix A. During the solving process, the compact matrix

Pi = BT
Ωi
S̃−1

Ωi
BΩi (4.27)

is used to solve an equivalent local pressure Schur complement problem. This matrix
is usually a full-matrix, containing all velocity matrix components, i.e. mass, penalty,
convective and diffusive terms, but possesses smaller number of unknowns. After
the local pressure is obtained, the velocity field can be determined as solution of the
momentum equation. The basic iteration of the local MPSC is finally summarized
by (4.25), where ul−1 and pl−1 are given. In practice we have several sub-steps:
calculate the defect for the given solutions, solve the local problem and update the
new solutions via the relaxation parameter. All these steps are described by the
following mathematical model:
1. Residual evaluation[

deful−1
i

defpl−1
i

]
=

([
g + λχut

0

]
−

[
S kB

BT 0

][
ul−1

pl−1

])
Ωi

(4.28)

2. Solve linear subproblem[
S̃Ωi

kB

BT 0

][
vli

qli

]
=

[
deful−1

i

defpl−1
i

]
(4.29)

3. Relaxation and update of solution[
ulΩi
plΩi

]
=

[
ul−1

Ωi

pl−1
Ωi

]
− ωl

[
vli

pli

]
(4.30)

We can use direct solvers like UMFPACK, which is set of routines to solve linearized
problems. However we prefer the so called Multigrid (MG) approach, hence a local
MPSC is applied. The framework of MG is based on cycles of type V-, W- or F-
(full) as illustrated in the figure (4.1). A cycle is consisting on 3 major steps: pre-
smoothing, local MPSC and post-smoothing step. The pre-smoothing step gives a
better approximation of the initial solution starting from the given one:
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umk = Sm(u0
k). (4.31)

The number of pre-smoothing steps m is free of choice, but a big number will directly
have effect on the computational time. Trough the smoothing process, the high
frequency error are eliminated. This step is followed by a complete local MPSC step,
with the correction step:

fk−1 = Ik−1
k (fk − Akumk ) (4.32)

recursively repeated trough restriction until the coarser grid is reached. After each
iteration results a solution of the kind:

uk−1 = MPSC(k − 1, ui−1
k−1, fk−1), 1 ≤ i ≤ p, u0

k−1 = 0. (4.33)

The solution obtained on the coarse level is prolongated to the higher grids, such that
the final solution on the finer grid is:

um+1
k = umk + αkI

k
k−1u

p
k−1, (4.34)

It is further smoothed to get the final solution um+1
k . Here, αk controls the error

between the solution of two neighbor levels m and m + 1. A proper selection of αk
will minimize these errors.

Figure 4.1: Multigrid Cycles

Multigrid method and its applications can be found in the work of Hackbusch [16].
To summarize the behavior of the MG technique, notions like smoothing operator,
restriction/prolongation or grid transfer operator, coarse grid operators, step-length
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control and matrix-vector multiplication are the typical components. Each aspect has
direct impact on the behavior of theMG approach. Schemes like Classical Richardson,
Jacobi iteration, Gauss-Seidel/SOR iteration, ILU schemes and its variants are some
of the linear basic iterations to solve the linear problem

Ax = b. (4.35)

In general, these schemes behave as solvers with unsatisfactory results regarding ac-
curacy and efficiency, therefore, they need to be improved by smoothing processes
like in the case of MG. The smoothing techniques are responsible for damping the
high frequencies. In this study, the MG is coupled with a VANKA like smoother,
more details over this smoothing technique can be found in the work of Vanka [49].
It is to be said that usually, the smoothing steps are not many, but in the case of PM
with high values of the ε-penalty parameter a larger number of smoothing steps may
be imposed to obtain or ensure convergence and satisfactory accuracy.



Chapter 5

Fictitious Boundary and Penalty
Methods

This chapter is fully dedicated to the actual FBM and PM approaches, presenting the
methods, the implementation details and also the numerical results for the stationary
simulation of flow around cylinder for validation. Firstly we proceed with a short
survey over the class of methods in which the investigated methods are included.

Already from the middle of the last century solving Navier Stokes equations for
steady or unsteady incompressible flows was one of the main topics in the field of
numerical simulation. Several methods were developed over the years, classified into
two major classes: Arbitrary Lagrangian-Eulerian ALE or standard Galerkin finite
element methods, and the so called fictitious domain methods, also known over the
time as distributed Lagrange multiplier DLM or immersed boundary methods. The
purpose of all these methods in solving Navier Stokes equations is to develop an easy
to implement accurate, efficient and robust method, with the advantage of using fast
solvers.

R. Glowinski, D. D Joseph and coauthors have developed a method which uses
the principle of embedded or fictitious domains known as the distributed Lagrange
multiplier DLM method. This method is also considered to be an implicit fictitious
boundary approach. Based on this method, Turek et. all [50] proposed a multigrid
FEM explicit fictitious boundary method FBM. The flow is computed by a multigrid
finite element solver and the solid objects are allowed to move freely trough the fluid

51
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domain. The behavior of the objects is described by the physical laws of movement,
while the fluid behavior is described by the Navier Stokes equations. This particu-
larly allows the use of cartesian grids which do not need to be re-meshed during the
simulation.

Starting from the already validated FBM method proposed by Turek et. all the
focus of this study is to investigate a penalization method PM as a generalization
method of the FBM. The method is a penalization type method for computing incom-
pressible Navier Stokes equations around complex geometrical shapes. The proposed
penalty method penalizes only the velocity part of the Navier-Stokes problem. We
compare FBM and PM w.r.t. aspects of accuracy, efficiency of nonlinear and linear
solvers and calculation of quantitative measurements such as velocity and pressure
point values, but also drag and lift forces calculations. We set as reference values
the results obtained with the FEATFLOWcc2d software tool in simulating fluid
problems. The investigated methods are clearly both easy to implement as their de-
scriptions suggest. However, it is known that penalization methods prevent the use
of standard fast solvers but they are at the same time good techniques for describ-
ing the embedded object with a better mathematical background and usually used
to prove the existence of a solution. Therefore, we realized the implementation of
the velocity penalization method into our FEATFLOW code and compared it with
the already validated FBM method, analyzing the difficulties that arise with it and
searching/finding solutions to overcome them. Like for FBM, the concept of being
“inside“ or “outside“ the solid object plays the main role in developing and implement-
ing the PM. We do not realize an explicit surface or interface tracking for the solid
object. An immediate consequence is that quantities like hydrodynamical drag and
lift forces are not straightforward to compute by using a line integration, but can be
obtained by a volume integration technique over the solid object.

5.1 Fictitious boundary method

We focus in this sub-chapter to present the fictitious boundary method FBM, already
validated by the group of S. Turek [1, 43, 50]. It is an Eulerian approach for simulat-
ing and solving Navier-Stokes equations. As all other fictitious methods, the FBM
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is very suitable for non-stationary flows with moving or fixed solid objects, such as
particulate flows, but can be applied also in the case of stationary flows with sig-
nificant results. The method presents important advantages with direct impact on
the total time-cost of the simulations. First of all, fluid and solid parts are treated
separately, using the Navier-Stokes model for the flow part and the Newton-Euler
equations for the solid part. At the same time, the boundary conditions are seen as a
new constraint to the Navier-Stokes equations. The main idea is to avoid the use of
unstructured grids/meshes which may be hard to obtain for different configurations
and influence the entire numerical process. By extending the fluid domain over the
whole domain, covering both fluid and solid parts, the use of simple, even cartesian,
meshes is possible. The mesh should contain already sufficiently fine-scale geomet-
rical details, while the large-scaled structures are described by imposing boundary
parametrization. Another direct gain is the unnecessary re-meshing process in time
or iterative steps. The fine-scale structures are considered as interior objects and
the corresponding components are unknown DOF s implicitly incorporated into all
iterative solution steps. For such an approach, the calculation of quantities like the
hydrodynamical forces, drag and lift forces, can not be done through the known way,
using a line integration, since the wall surface of the objects on whom the forces
are acting is not accurately captured. A solution was presented by V. John [25], C.
Duchanoy and T.R.G. Jongen [9] by using a volume integration instead the standard
one. This approach will treat the disadvantage of the unpleasant implicit representa-
tion of boundaries of the solids because it does not need the reconstruction of them.
Clearly some of the advantages of the FBM refers to the efficiency of the solver, less
computational time and good accuracy. It also allows the use of fast solvers and grid
deformation techniques with the aim of better approximation of the interior inter-
faces, or collision models to describe fairly the behavior of the objects which may
move freely inside the fluid. Such techniques were already successfully implemented
in the test software FEATFLOW.

In the following part, we describe roughly the procedure of solving fluid problems
with the help of FBM. Consider the following system of equations with a given matrix
A and right hand side f as external forces:
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Au = f. (5.1)

By using methods described in the previous chapters, one can obtain a weak formula-
tion of the problem, to discretize it and finally to solve it. The finite element method
requires as starting point the assembling of the weak/variational formulation of the
problem. We consider a Hilbert space V embedded with a proper inner product (·, ·)
and corresponding norm || · || and also a(·, ·) as bilinear form. Then one variational
formulation of the problem can be described as follows:

Find u ∈ V such that: a(u, φ) = (f, φ), ∀φ ∈ V . (5.2)

Next step is to discretize the obtained matrix vector equation such that a discrete
linear system is obtained:

AhUh = Fh. (5.3)

At this point, the boundary conditions can be implemented with the following repre-
sentation:

B(u) = g. (5.4)

This is one of the advantage of this method: it allows the implementation of boundary
conditions after the problem is discretized. The matrix and vectors Ah,Uh and Fh

do not contain any boundary conditions after discretization as we solve the problem
on whole computational domain which consists as a reunion of fluid and solid parts.
There are different possibilities to implement the boundary conditions. We refer to the
fully-explicit, semi-implicit and fully-implicit treatments presented in [48] by Turek,
Wan and Rivkind. In any approach the matrix Ah and vector Fh are modified in a
hard-way, meaning that the matrices and vector entries/values are modified based
on the boundary conditions during the iterative solving process, having as leading
concept the “in or out“ question. This supposes a L2 projection loop through out all
DOF s from the computational domain, checking which are inside or outside the solid
area/volume. For the inside DOF s, the FBM will modify the entries of the matrix
and the right hand side vector accordingly to the chosen filtering technique. The
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validation of the FBM was already done by the group of S. Turek using the software
tool FEATFLOW. We will show in the following chapters that FBM is a special case
of the proposed L2 penalty method.

5.2 Penalty method

Before presenting the work and conclusions for the PM, some theoretical aspects
regarding this family of methods will be remembered in this sub-chapter. Penalty
methods represent another class of methods to solve and simulate numerical problems
of fluids with immersed boundaries. It was introduced by Courant [8] for variational
calculus and applied in the context of Navier-Stokes by Temam [41]. Like in the case
of fictitious methods, the idea is to solve the Navier-Stokes problem on the whole
domain, penalizing the possible obstacles like, for instance, solid objects. There are
lots of different penalty methods described and used during the last decades. For
example the L2 penalization method restricts itself only to the solid obstacle area
and imposes a very small velocity for that region. New velocity ũs and pressure
p̃s penalty components are introduced into the Navier-Stokes equations, with the
remark that the velocity ũs satisfies a Darcy type of law associated with a Neumann
boundary condition on the pressure, hence the obstacles are considered more like a
porous media. By extending the penalization to the whole linear part of Navier-Stokes
equations, a H1 penalization method is obtained. In this case, the new velocity ũ

component satisfies a Brinkman type of equation associated with a Neumann type
condition for the stress tensor. The theoretical and numerical validation of these two
methods are presented into [2]. Other examples of penalty methods were presented
by Shen [40], Bruneau [6], Hansbo [17] and others.

Maury [33] presented a simpler velocity penalization method for solving a Pois-
son problem. We opted for such a method in this study, penalizing only the obstacle
domain into the velocity component and denote it as PM. As a consequence, the pres-
ence of the solid objects is not anymore realized through a filtering technique applied
on the matrix system A and will be determined trough a mathematical approach.
A new constant parameter is introduced, the penalty parameter λ = 1

ε
, having the

characteristic of being very high (ε = 10−n, n ≥ 3) in the inner part of the solid
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object/s. The penalty term is described by the relation (1.3) and hereby recalled:

λ(u− u) =
1

ε
χ(x)(u− u) =

1

10−n
χ(x)(u− u). (5.5)

A L2 projection selects the group of DOF s which are inside the solid area. The
characteristic function χ(x) is responsible for the activation of the penalty term. The
velocity for the DOF s inside the solid object is denoted as u and is set to 0 if the
object is in relaxation state and not 0 if it is moving. u denotes the velocity of
the fluid part in this region, tending to be very small, in fact 0, due to the penalty
parameter λ. We formulate now the vectorial Navier-Stokes problem implemented
with the penalty term:

Find the velocity u ∈ H1
0 (Ω) and the pressure p ∈ L2

0(Ω) such that:

{
∂u
∂t

+ u · ∇u− ν∆u +∇p+ λ(u− u) = 0,

∇ · u0 = 0.
(5.6)

The problem may be paired with any kind of boundary conditions: initial, Dirichlet,
Neumann, mixed, and so on. We follow the same path presented in the previous
chapters of solving such a problem, obtaining a variational formulation and discretize
it. For the easiness of the situation, we consider just a 2D dimensional case and a
fixed solid object, therefore u = 0. The scalar equation for the velocity component
uα ∈ H1

0 (Ω), α = {x, y} is the following:
∂uα
∂t

+ (u · ∇)uα − ν∆uα +
∂p

∂α
+

1

ε
χ(x)uα = 0,

∑
α

∂uα
∂α

= 0.

(5.7)

The definition (3.19) and (3.20) are useful for the linear, bilinear and trilinear forms,
helping to develop a continuous variational formulation of the problem as it follows:

Find u ∈ H1
0 (Ω) and p ∈ L2

0(Ω) such that:
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
(
ω,
∂uα
∂t

)
+ 1

ε
χ(x) (ω, uα) + n (u, ω, uα) + bα (ω, p) = 0, ∀ω ∈ H1

0 (Ω),∑
α

bα(uα, q) = 0, ∀q ∈ L2
0(Ω).

(5.8)

In the spirit of the finite element method, one defines the polynomial finite element
spaces Vn ⊂ H1

0 (Ω) and Qn ⊂ L2
0(Ω) such that both velocity and pressure can be

approximated by the N piece-wise polynomial basis functions {ϕ1, ϕ2, . . . , ϕNu}, re-
spectively {ψ1, ψ2, . . . , ψNp}.

uα,n(x, t) =
Nu∑
j=1

uαj(t)ϕj(x) ∈ Vn,

pn(bx, t) =
Np∑
k=1

pk(t)ψk(x) ∈ Qn,

(5.9)

where Nu and Np are the degrees of freedom for velocity and pressure. The discrete
problem can be written:

Find un ∈ Vn and pn ∈ Qn such that:

 (ωh,
∂uα,h
∂t

) + 1
ε
χ(x)(ωh, uα,h) + n(un, ωh, uα,h) + bα(ωh, pn) = 0, ∀ωh ∈ Vh,∑

α

bα(uα,h, qh) = 0, ∀qn ∈ Qn.

(5.10)
The corresponding matrix form of the discrete equations after applying also a time-
step technique for time discretization, is then given by:{

Mu + M̃u + N(u) · u + Bp = 0,

BTu = 0.
(5.11)

For an moving solid object, the right hand side will not be anymore 0, but of the form
M̃u. Comparing with the standard matrix representation of a Navier-Stoke problem,
a new matrix appears: M̃. We call it penalty matrix and is nothing else than a
modified mass matrix. All its entries are multiplied by the characteristic function
χ, such that nonzero values are obtained only in the case of the DOF s which are
inside the solid object or penalized volume. The size of these entries depends on the
varepsilon-penalty parameter ε, but also on the size of local finite element h to the
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square, which can be rewritten as O
(

1
ε
h2
)
.

We propose different implementations of the PM, which are consequences of the
observations regarding the behavior of the method and the difficulties that have arised
during the numerical test cases. We denote the main implementation technique as
full-lambda PM , characterized by a constant value of penalty parameter λ and acti-
vated only for the quadrature points inside the solid object. It might happen in a finite
element approach that the solid object has only a common intersection with the finite
element cell and does not fully include it. For this reason, depending on the quadra-
ture formula used to assemble the mass matrix, only some of the cubature points will
have activated the penalty parameter, while the others will have a corresponding 0
value. Therefore, a discontinuity arises in the process of computing the integral. We
proposed as a solution against the discontinuity a fractional-lambda PM, character-
ized by an average value of penalty parameter λ for all cubature points which are
inside one finite element that has contact with the solid object. The technique leads
to a diffusive capturing of the interface, but for finer levels of the mesh this problem is
neglectable. The gain is that the integration will not be discontinuous anymore, hence
the assembling process of the penalty matrix is mathematically correct. We were able
to show that despite the discontinuity, the full-lambda method gives anyway better
results. Another aspect is the use of different kind of meshes: cartesian versus body-
fitted. We were able to show that a body-fitted mesh will provide better results since
the capturing of the interfaces is more accurate. Further on we implemented also an
adaptive-lambda method to investigate if the solution improves by getting the bound-
aries of the solid object much better. The immediate disadvantage are the longer time
of computations, so the lost in efficiency of the solver, without a clear improvement
of the results comparing with the main PM. Also, due to Q̃1/Q0 element used in our
finite element approach, in the mass matrix might happen that off-diagonal entries
are negative and the standard lumping techniques can not be efficiently used. This is
due to the combination of the density jump and non-positiveness of parts of the basis
functions which may create dominating off-diagonal entries according to Hysing [23].
Instead of standard lumping, an HRZ-lumping method can be assembled, presented
by Hinton, Rock and Zienkienwicz in [19]. The method supposes a diagonal lumping
of the local matrices by eliminating the non-positive entries and followed by a scaling
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such that the total mass of the elements is preserved. We successfully implemented
this method with our PM, with improvements regarding the linear solver efficiency,
but on the other hand no accuracy changes. All configurations of the penalty method
and its variants will be detailed presented later in this chapter together with numerical
results for the benchmark test of flow around cylinder.

5.3 Test case of flow around cylinder

We consider the stationary benchmark case of a 2D flow around cylinder in a chan-
nel. For the referential values we choose the finite element cc2d source code from
FEATFLOW software, solving the problem in a fully coupled way. We use in the
performed simulations two kind of meshes: a cartesian type and a body-fitted type.
The statistical data of the benchmark test are the following: a channel of height
H = 0.41 and length L = 2.2 contains a disk of diameter D = 0.1, centered at
position O(x0, y0) = (0.2, 0.2); the inflow profile is parabolic and described by the
equation:

U(0, y, t) = 6.0 · U · y · (H − y)

H2
. (5.12)

U represents the mean velocity, is a given parameter and makes the differentiation
between laminar and transient flows, classified by the values of Reynold number.
The relation Re = U ·D

ν
defines the Reynold number. In the case of steady flow, the

mean velocity is set to U = 0.2 which is an equivalent of Reynold number equal 20,
transient flow. We recall that ν is the viscosity of the fluid given by ν =

µf
ρf
, while ρf

is the density of the fluid and consider to be 1 in our simulations. The simple cc2d
code requires the use of an unstructured mesh, denoted as BENCH1 and presented
in figure 5.1.
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Figure 5.1: Unstructured mesh (Level 1) for cc2d

The statistical informations of BENCH1 grid are given in the next table:

LEVEL NVT NMT NEL NEQ

1 156 286 130 702
2 572 1092 520 2704
3 2184 4264 2080 10608
4 8528 16848 8320 42016
5 33696 66976 33280 167232

9 8526336 17046016 8519680 42611712

Table 5.1: Statistical data for the unstructured grid BENCH1

The notation correspond to the numbers of vertices (NVT), the number of midpoints
(NMT), the number of elements (NEL) and the number of unknowns (NEQ). The
level denotes the degree of refinement of the grid, a higher level being obtained by
connecting the midpoints of opposite edges of one element and constructing in this
way other smaller 4 elements from one bigger.

We focused in our investigation firstly on point values solutions. Quantitative
measurements for velocity and pressure were calculated in selected points of the
computational domain, given by the following cartezian coordinates: P1(0.15; 0.2),
P2(0.25; 0.2), P3(0.1375; 0.2) and P4(0.2625; 0.2) for the pressure evaluation, respec-
tively P5(0.4; 0.2) and P6(0.65; 0.2) for the velocity. In other words, we test the
solutions of different methods in the selected points, which are situated as follows: 2
on the interface of the cylinder, 2 in the near vicinity (for pressure) and 2 in the rear
region of the cylinder (for the velocity). Since there are no reference values regarding
point values of the solution for flow around cylinder in the enumerated points, we
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have chosen as reference value the results given by cc2d with BENCH1 on level 9 of
refinement. The cc2d is already validated and the accuracy increases as the number
of the degrees of freedom are bigger, this being similar with the increase of the mesh
level.

P1 P2 P3 P4

Level ×10−1 ×10−2 ×10−1 ×10−2

9 1.32220 1.47560 1.21158 1.38843

Table 5.2: Referential point values for the pressure component

P5 P6

ux uy ux uy

Level ×10−2 ×10−3 ×10−1 ×10−4

9 5.05319 2.01330 2.01724 8.42345

Table 5.3: Referential point values for the velocity components

The reference values for the Drag and Lift forces will be presented in a following
chapter.

5.3.1 Fictious Boundary Method values

For the case of FBM and PM we do not need to use unstructured meshes as the one in
the figure 5.1 and we had the free choice of selecting a coarser mesh, with less number
of vertices, midpoints, elements and unknowns. Although, the matter of accuracy
of the solution should be still compared between the different methods for meshes
who have approximative similar settings as the reference one, namely same order of
number of unknowns. In our numerical simulations we used two kind of meshes: a
cartesian BENCH2M55 presented in figure 5.2 and a body-fitted BENCH1_FBM
presented in figure 5.3. The second grid contains more geometrical details around the
region of the cylinder and it is derived from the reference BENCH1 grid. All meshes
were created and validated with the DEVISOR GRID 3D program.
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Figure 5.2: Cartesian mesh BENCH2M55 (Level 2)

Figure 5.3: Body-fitted mesh BENCH1_FBM (Level 1)

We have performed simulations on different levels of refinement, keeping the number
of unknowns on the same order. In this thesis we present results for only 2 levels: 8
and 9 for BENCH2M55 and 6 and 7 for BENCH1_FBM. The simulations were run
on the same machine, such that the methods could be compared also from the point
of CPU-times. Firstly, the statistical data of the used meshes are below:

Level NVT NMT NEL NEQ

9 131841 262912 131072 656896
10 525825 1050112 524288 2624512

12 8394753 16783360 8388608 41955328

Table 5.4: Statistical data for the cartesian grid BENCH2M55

In the following tables are the point values for pressure and velocity obtained by using
the FBM, compared to the referential values of steady cc2d.
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Level NVT NMT NEL NEQ

6 142977 285312 142336 712960
7 570625 1139968 569344 2849280

9 9114625 18224128 9109504 45557760

Table 5.5: Statistical data for the body-fitted grid BENCH1_FBM

P1 P2 P3 P4 P5ux P5uy P6ux P6uy

Lvl ×10−1 ×10−2 ×10−1 ×10−2 ×10−2 ×10−2 ×10−1 ×10−4

ref. 1.32220 1.47560 1.21158 1.38843 5.05319 2.01330 2.01724 8.42345

6 1.31968 1.47101 1.20771 1.38489 5.07732 2.01914 2.01815 8.40870
7 1.32086 1.47410 1.20997 1.38737 5.06596 2.01264 2.01772 8.41199

Table 5.7: Point values with FBM on BENCH1_FBM

P1 P2 P3 P4 P5ux P5uy P6ux P6uy

Lvl ×10−1 ×10−2 ×10−1 ×10−2 ×10−2 ×10−2 ×10−1 ×10−4

ref. 1.32220 1.47560 1.21158 1.38843 5.05319 2.01330 2.01724 8.42345

9 1.28833 1.44534 1.19404 1.39721 5.13692 1.98582 2.01974 8.48419
10 1.30274 1.45759 1.20206 1.39419 5.13447 1.98222 2.02011 8.31398

Table 5.6: Point values with FBM on BENCH2M55

We use the relative error (5.13) with respect to the reference values such that we get
a qualitative and quantitative comparison for the solution provided by the fictitious
method:

εrel =
|Vref − Vfbm|

Vref
(5.13)

where Vref is the reference value and Vfbm is the corresponding point value provided
by FBM.
As table 5.8 is showing, the absolute errors are under 3% for the coarser levels and
decrease for the finer ones. We acknowledge that the body-fitted mesh is giving much
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Lvl P1 P2 P3 P4 P5ux P5uy P6ux P6uy

bench2m55

9 2.56 2.05 1.45 0.63 1.66 1.36 0.12 0.72
10 1.47 1.22 0.79 0.41 1.61 1.54 0.14 1.30

bench1_fbm

6 0.19 0.31 0.32 0.25 0.48 0.29 0.05 0.18
7 0.10 0.10 0.13 0.08 0.25 0.03 0.02 0.14

Table 5.8: Relative error for FBM with respect to cc2d

better point solutions due to better approximation of the interface of the solid object.
As a matter of fact, one can use a cartesian mesh which is only body-fitted in the
region where the object is located to obtain improved results as the ones generated
by only using a simple cartesian mesh. In the case of relaxed objects, not moving,
with simple geometry, it is easy to create such grids, but when the objects freely
move inside the domain, then moving or deformation grid strategies are required. It
also possible, for fast results, to use a cartesian mesh which is finer and has more
elements just in the region where the object/s is/are moving, if its/their movement
can be predicted or is prescribed.

5.3.2 Penalty method generalization of FBM

Starting point of this this study was the motivation of finding a method which can
be considered as generalization of the validated FBM. We claim that the proposed
PM encounters this attribute, with a better mathematical background. We will
show in this sub-chapter that, indeed, PM will reproduce the solution of FBM under
certain configurations. The candidate method for this purpose is the main full-lambda
implementation of the PM, with the completion that a Gauss 3-by-3 quadrature
formula is used in the process of assembling the modified penalty mass matrix. The
results will show the importance of the penalty parameter λ, which leads to small
values for velocity in all nodal points which are inside the penalty area. We use the
the nonparametric and non-conforming Q̃1/Q0 Rannacher-Turek element with the
two variations EM30 and EM31 for the Q̃1 discretization. In the definition (3.40) of
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the nodal functionals of this element, the mean value of the velocity along the edge
is assigned to the EM30 element and the value of the velocity in the midpoint of the
edge is assigned to the EM31. The fictitious boundary approach consists of a filtering
technique over the already discretized system matrix to determine the set of Dofs for
which the wanted boundary conditions should be imposed. There is the possibility
of an explicit, semi-implicit and implicit treatment of the boundary conditions. If
we denote by Sh the set of such Dofs, then all rows and columns of the discretized
matrix Ah belonging to the set of Dofs Sh are eliminated and the right hand side Fh
is accordingly modified in an explicit approach. On the other hand, a semi-implicit
treatment supposes a substitution of those rows in Ah which correspond to Sh by rows
of the identity matrix, while all other rows and columns remain unmodified. However,
the given Dirichlet for all components of the velocity vector Uh and right hand side Fh
which belong to Sh have to be prescribed. The implicit technique is performing before
and after each iteration step this prescription of the given Dirichlet values. In any
situation, the EM30 element is used for assembling the component matrices. In order
to reproduce the results of FBM by using PM technique, we perform the following
settings: assemble the penalty matrix with EM31 element and all other components
matrices with EM30. Choosing as quadrature rule for assembling the penalty matrix
the midpoint rule MID2D, then the final system matrix will be similar like in the case
of FBM. Hence, we could show in this manner that PM can reproduce the solution
of FBM. Moreover, if the penalty parameter is very high and the penalty matrix is
row-wise scaled with respect with the diagonal entry, then the system matrices are
identical for both methods. The tables 5.9 and 5.10 state the possibility to reproduce
the solution of FBM by only using special settings in the discretization process of PM.
Therefore, we consider justified the idea that the proposed PM is a generalization of
the fictitious boundary method.
In tables 5.9 and 5.10 we illustrate the identity for both meshes used during the
simulations and for different level of refinement. However, we only present here results
for few levels and for several ε-penalty parameter (10−3, 10−6, 10−9). For coarser
levels, the size of the ε-penalty parameter has to be very small in order to reach
identical results like FBM, but for finer levels same results are obtained for even
smaller ε-penalty parameter. Regarding the free choice of the ε-penalty parameter,
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P1 P2 P3 P4 U1 V1 U2 V2

×10−1 ×10−2 ×10−1 ×10−2 ×10−2 ×10−3 ×10−1 ×10−4

FBM 1.3512 1.4386 1.1862 1.4128 5.2310 1.9370 2.01950 8.3415
PM103 1.2628 1.4165 1.1666 1.3879 5.1898 1.9434 2.0161 8.4371
PM106 1.3516 1.4385 1.1861 1.4127 5.2307 1.9370 2.0194 8.3418
PM109 1.3512 1.4386 1.1862 1.4128 5.2310 1.9370 2.0195 8.3415

Table 5.9: Results of FBM and PM on BENCH2M55 Level 8

P1 P2 P3 P4 U1 V1 U2 V2

×10−1 ×10−2 ×10−1 ×10−2 ×10−2 ×10−3 ×10−1 ×10−4

FBM 1.3164 1.4620 1.2026 1.3773 5.0912 2.0079 2.0186 8.3626
PM103 1.2900 1.4314 1.1878 1.3659 5.1907 2.0002 2.0210 8.3101
PM106 1.3163 1.4617 1.2025 1.3773 5.0916 2.0079 2.0186 8.3623
PM109 1.3164 1.4620 1.2026 1.3773 5.0912 2.0079 2.0186 8.3627

Table 5.10: Results of FBM and PM on BENCH1_FBM Level 5

we have to specify that is actually limited by the mesh size parameter h. As other
studies show [2], the numerical error estimates due to the penalty term are of order
‖u − uε‖ = O(ε). Angnot et. all proved that the theoretical error estimates should
be O(ε3/4) inside the object and O(ε1/4) in the fluid. The numerical results show
anyway a even better estimate of O(ε). However, the error due to the discretization
‖u − uh‖ will cover the error due to the penalty term if the penalty parameter is
very small (ε << h) and therefore, usually there is not need to set the ε-penalty
term to small. From this reason, we set mostly our penalty parameter values in the
range ε ∈ [10−3, 10−6], but also smaller values are possible. That is an advantage,
since a combination of finer level and small penalty parameter lead to numerical
problems, bad efficiency of the solver and sometimes, without smoothing techniques,
no convergence can be reached.
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5.3.3 Volume approximation with Penalty Method

It is a fact that also in the case of PM the capture of the boundary-walls of the solid
object is usually not accurate enough. Actually, for coarser levels of refinement of
the grid, the capture of the interface is leading to approximation errors which find
themselves also in the final solution. As the level increases, the capturing becomes
more accurate. If numerical quantities like drag and lift forces are necessary, they are
usually calculated by using a line integration along the boundary of the object for
which the calculation is done. Obviously, PM is not expected to be able to provide
good and accurate results for these forces if a line integration is applied. Hence, the
new direction that has to be taken is a volume integration. In this sub-chapter we
focus to show that the volume approximation of the solid object by PM is very well
done. This is done with the help of the penalty matrix itself, since it is a mass matrix
which keeps in only the corresponding entries for the inside DOF s. All other will are
equal to zero. In the test case, the static object is a circle with radius r = 0.05 in
a 2D case. Therefore, the volume is nothing else but the area of a circle with this
radius and given by:

Aob = π · r2 ' 7.85398× 103. (5.14)

We performed calculations for both meshes: cartesian and body-fitted and observed
that in the case of a body-fitted kind of mesh the approximation of the volume is better
for any level (0.0004% for level 6) in comparison to the cartezian one (0.0122% for
level 9). This is due to much finer meshes around the solid object. As the refinement
level increases, the approximation of the volume becomes better also in the case of
the cartezian mesh (0.0045% on level 12), but it will not reach the same accuracy like
the body-fitted mesh (0.0008% on level 9). So even if the time-computation is longer
and the efficiency of the solver might decrease, it is motivating to use a mesh which is
already containing many geometrical informations in the vicinity of the solid object
since the mass matrix is better approximated. We claim that the final solution of any
problem numerically solved by PM will be improved in the case of a body-fitted mesh.
In the table (5.11) we present results only for the main full-lambda implementation for
both kind of meshes and for ε = 103. The calculations presented in here, also prove
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that the penalty matrix is correct and accurate enough, assembled and implemented
into the total matrix A.

Value 7.85398× 10−3

bench2m55 bench1_fbm

Level Value Level Value

7 7.89579 ×10−3 4 7.85016 ×10−3

8 7.84370 ×10−3 5 7.85110 ×10−3

9 7.85520 ×10−3 6 7.85402 ×10−3

10 7.85555 ×10−3 7 7.85402 ×10−3

11 7.85303 ×10−3 8 7.85401 ×10−3

12 7.85353 ×10−3 9 7.85399 ×10−3

Table 5.11: Volume approximation by PM

5.3.4 Penalty Method values

As already mentioned, we have opted for several implementations of the Penalty
Method. At the base of the classification are the Penalty matrix assembling process,
the penalty parameter settings and the quadrature formulas used for the calculation
of the integrals. Since it is a modified mass matrix and basically for all entries the
relation (4.3) is involved, one has to take care that the chosen quadrature formula
for the approximation of the integrals is at least of order 2. Therefore, we couple
in general the penalty matrix assemble process with the use of the Gauss 3-by-3
quadrature formula, denoted in our study as G3x3, which uses 9 cubature points
inside each finite element of the grid and has the order 6. Another option is the
possibility of using an adaptive quadrature formula. Regarding this second option,
we will come into it with more details at a later point. For the moment we specify
the importance of selecting the elements which only intersect the boundary of the
solid object. For them we apply a preferential handling of the mass matrix assembly.
Locally we consider a grid refinement together with the use of a simple quadrature
formula, like the trapezoidal rule TRZn, for all elements of the new element sub-grid.
In here, n stands for the local refinement level, but we specify that the mesh itself
does not suffer any physical modifications and the entire process of local refinement
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is virtual and contained in the calculations of the entries. The trapezoidal rule is of
second order, therefore it is enough to approximate the mass matrix. Both quadrature
formulas are given for the 1D case by the equations (5.15) and (5.17). In there, ω(·) is
the weight function, φ(·) is a function which can be approximated by a polynomial in
the selected points xk such that f(x) = ω(x)φ(x). αk are the weights and defined by
(5.16). Being a Gauss quadrature formula, the two dimensional G3x3 is of order 6.
The trapezoidal quadrature formula has always the order 2 and for a non-uniform grid
the h value is given by the difference between neighboring points: h = (xk+1 − xk).
The explicit use of the adaptive formula will be described later.

b∫
a

f(x)dx =

b∫
a

φ(x)ω(x)dx '
N∑
k=1

φ(xk)αk (5.15)

αk =

b∫
a

ω(x)
N∏

j=1,j 6=k

x− xj
xk − xj

dx (5.16)

b∫
a

f(x)dx = (b− a)
f(a)− f(b)

2
' h

2

N∑
k=1

(f(xk+1)− f(xk)) (5.17)

We consider the reference element [−1, 1] × [−1, 1] and want to apply in the bi-
dimensional case the integration by using the G3x3 quadrature formula. It follows
the rule:

I =

1∫
−1

1∫
−1

f(s, t)dsdt ≈
N∑
i=1

M∑
j=1

αiαjf(si, tj) =
N∑
i=1

M∑
j=1

Wijf(si, tj). (5.18)

The reference coordinate system has the origin in the central cubature point and has
the coordinates (0, 0). The rest of the points are located as it follows: (a, a), (−a, a),
(−a,−a), (a,−a), (0, a), (−a, 0), (0,−a), (a, 0), where a =

√
3
5
. The corresponding

weights in 2D with some change of notations are: W1 = 64
81
,W2 = W3 = W4 = W5 = 25

81

and W6 = W7 = W8 = W9 = 40
81
. The calculations with the trapezoidal rule are

simpler since the cubature points are situated into the vertices of the reference square
element. Then the 2D integration reads:
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G3x3 TRZ0

Figure 5.4: Quadrature points

I =

1∫
−1

1∫
−1

f(s, t)dsdt ≈ 1

4
h2

N∑
i=1

M∑
j=1

f(si, tj). (5.19)

To sustain the several implementations of the PM, we want to clarify why we took
them into consideration. Starting with the main implementation full-lambda cou-
pled with G3x3, some questions had to be answered. Is the matrix provided with
this method accurate enough? Is the interface pleasantly approximated? To get the
answers, we applied two other approaches. With the fractional-lambda method the
discontinuity in the elements which are not completely inside or outside the solid
object vanishes, while with the adaptive cubature technique we aimed a better ap-
proximation of the interface and in the same time a reduction of the discontinuity.
The issues were generated by the elements which only had a common contact part
with the solid region. For such elements it might happen that not all quadrature
points are inside, hence the characteristic function could be equal 1 (in) and 0 (out)
within the same element. We use the following simple idea to overcome the disconti-
nuity as it follows. Firstly, we get the intersection points between the solid and the
finite elements which are not completely in- or outside. Secondly we calculate the area
of this common part and divide it by the area of the element such that a fractional
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part f is obtained. The last step is to multiply the value of the penalty parameter λ
with f and set the penalty parameter element-wise constant. This implies a constant
value for the characteristic function χ(·) equal to 1 for all elements which intersect the
solid object and 0 for the others. If the shape of the particle is a simple one, then the
desired area is easy to compute. However, we usually deal with objects of different
forms, and their area can not be analytically calculated. So we took the convention
to calculate only the area of the polygon determined by the identified intersection
points. In figure 5.5 this is the triangle ∆P1P2P3. Depending on the number of the
intersection points, we can use the general formula for a polygon with n nodes:

Figure 5.5: Intersection between an element and solid object

Ap =
1

2
·

n∑
i=1

(xiyi+1 − yixi+1). (5.20)

By choosing this approach we took the risk of an inaccurate solid interface capture
and therefore the simulations should be performed for higher levels of refinement of
the mesh, such that this inconvenience is significantly reduced. Another idea was
to calculate the integrals by using the adaptive quadrature formula, which lowers
the impact of the discontinuity. Firstly we determine which elements of the grid
are completely included into the penalty region and assemble the local mass matrix
by using G3x3. Then, for the elements without any common region with the solid
object we can use any quadrature formula since any DOF s inside them will not be
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activated by the characteristic function and therefore the corresponding entries of the
matrix will be zero. The only elements remained are the one which have contact part
with the solid. For them we apply the adaptive cubature formula as it follows: we
establish a local refinement level n and for all local created elements we calculate
local mass matrix entries by using the TRZn. Then we sum them up to obtain the
corresponding mass matrix entries for the entire element. The refinement only appears
in the calculation and is not hardly imposed into the mesh, meaning that the mesh
suffers no modifications. The level of refinement is 22n and is shown in the figure (5.6)
together with the cubature points for TRZn. The remaining elements, completely
included into the solid object, will be treated as in the full-lambda approach, by
using the G3x3 quadrature formula.

Lvl 0 (1 El) Lvl 1 (4 El) Lvl 2 (16 El)

Figure 5.6: Refinement for adaptive quadrature formula

With this approach the boundary of the solid object is better captured even for
coarser meshes. In conclusion we have the full- and fractional-lambda PM s which
can be both coupled with the G3x3 or TRZn quadrature formulas. However, we
preferred to apply the adaptive technique only in the case of full-lambda and denote
it as adaptive-lambda PM. Moreover, we can also use the HRZ lumping method in
combination with any of the proposed PM s. The use of this lumping technique is
justified by the fact that in a Q̃1 discretization, negatives entries on the off-diagonal
position can be generated into the matrix. With the HRZ lumping, these negative
entries are eliminated together with a scaling process of all other entries to preserve
the total mass. The following tables represent point values for velocity and pressure in
the selected points Pi, i = 1, 6, for both meshes on the levels 6,7 for BENCH1_FBM,
respectively levels 9,10 for BENCH2M55. We present the results for ε-penalty param-
eter values of ε ∈ {10−3, 10−6}, with λ = 1

ε
, in comparison with the referential values
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written in red. Higher values a also possible to use, but reasons like computer power,
CPU-times and so on limit the free-choice of the ε-parameter. Moreover, for such
values, due to a bad conditioned matrix, the convergence was not obtained without
imposing strong stabilization techniques and/or pre/post-smoothing step methods.
This is due to the size of the penalty parameter λ and the mesh size h which are
involved in the calculation of the integrals, leading to very high values in specific
cases. That is a typical problem for penalty methods in general. However, for this
test case, even values of order 103 are sufficient as we shall see in the tables of values.

P1 P2 P3 P4 P5ux P5uy P6ux P6uy

×10−1 ×10−2 ×10−1 ×10−2 ×10−2 ×10−3 ×10−1 ×10−4

ref. 1.32220 1.47560 1.21158 1.38843 5.05319 2.01330 2.01724 8.42345

BENCH2M55 Level 9

103 1.27399 1.43533 1.17931 1.38165 5.14418 2.01628 2.01752 8.45256
106 1.29799 1.49283 1.21804 1.40866 4.89248 1.95608 2.01078 8.50309

BENCH2M55 Level 10

103 1.28832 1.44034 1.18565 1.37979 5.19552 2.00359 2.02069 8.34252
106 1.31871 1.46644 1.21289 1.39318 4.98575 2.01194 2.01452 8.44657

BENCH1_FBM Level 6

103 1.29219 1.44016 1.19133 1.37563 5.20891 2.00301 2.02178 8.32103
106 1.32022 1.45324 1.21362 1.38512 5.01783 2.01462 2.01585 8.44264

BENCH1_FBM Level 7

103 1.29489 1.44557 1.19210 1.37831 5.21330 1.99886 2.02195 8.31689
106 1.32034 1.46588 1.21183 1.38761 5.04924 2.01060 2.01707 8.42011

Table 5.12: Point values for full-lambda PM

It is obvious from the table of values that the full-lambda G3x3 provides accurate
results for the body-fitted mesh and for higher penalty parameters. The results
obtained with a λ-penalty parameter of 103 are also pleasant, but the penalty object,
namely the solid object, behaves in this case like it has penetrable boundaries and
the inside velocities can be bigger then zero, transforming it into a porous media.
This loss could be reason of errors in the point values near the object and in the rear
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part of it, because of incorrect velocity and pressure distribution. So, it is necessary
to set the penalty parameter as high as possible, to ensure that the object is strongly
penalized and behaves like a solid, meaning that the fluid velocity is tending to zero
inside it.

P1 P2 P3 P4 P5ux P5uy P6ux P6uy

BENCH2M55 Level 9

103 3.65 2.73 2.66 0.49 1.80 0.15 0.01 0.35
106 1.83 1.17 0.53 1.46 3.22 2.84 0.32 0.95

BENCH2M55 Level 10

103 2.56 2.39 2.14 0.62 2.82 0.48 0.17 0.96
106 0.26 0.62 0.11 0.34 1.33 0.07 0.13 0.27

BENCH1_FBM Level 6

103 2.27 2.40 1.67 0.92 3.08 0.51 0.23 1.22
106 0.15 1.52 0.17 0.24 0.70 0.07 0.07 0.23

BENCH1_FBM Level 7

103 2.07 2.04 1.61 0.73 3.17 0.72 0.23 1.27
106 0.14 0.66 0.02 0.06 0.08 0.13 0.01 0.04

Table 5.13: Relative errors of full-lambda PM w.r.t. reference values

As we specified before, we can also perform simulations for even higher values, i.e 109,
but such values determine ill-conditioned matrix and numerical problems arise for the
linear solver. However, there are techniques to use against this inconvenient fact. One
solution against it is to diagonalize the penalty matrix and scale it with respect to
the highest diagonal entry. This procedure will permit the free-choice of the penalty
parameter, so it can be arbitrarily selected, as high as we want, with the property
that the problem still converges to accurate solutions. Using high penalty parameters
could lead to diverging problems which can be avoided by pre- and post-smoothing
techniques. This will have also direct impact onto the computational time and the
efficiency of the solvers in general. The nonlinear solver is not at all influenced by
the penalty matrix, since it does not interfere with the nonlinear term.
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In the main method, full-lambda PM coupled with a G3x3 quadrature formula, be-
cause of using a finite element approach, it happens often that the cubature points
belonging to one element will be treated different. If we analyze a possible situation
like in the example from the figure 5.7, one can see that only 5 cubature points inside
the solid area have an activated penalty parameter in the calculation of the matrix
entries, while the other 4 will have a corresponding value of 0. Thus, inside one ele-
ment can occur a discontinuity. With the fractional-lambda method we activate every
cubature point of one element which is in contact with the rigid object and endow
them with the same penalty parameter value λ. We proceed by an L2 projection over
the elements and quadrature points, calculate the corresponding fractional parame-
ter as a fraction between the area of the element and the area of the common region
shared but the element and the solid object. This fraction is always sub-unitary and
multiplies the default value of the penalty parameter. We do not care about the
shape of the object and we focus to obtain the intersection points. In general they
are solution of a simple system of two equations: one is the edge of the element, the
second is the boundary of the solid. In this particular case, we have a circle, easy
to take into consideration, but for arbitrary cases of non elementary shapes, we have
to make use of approximation techniques to get the intersection points. We remain
to the simple case, but we claim that this technique can be successfully applied also
for more general cases. In this particular configuration, we rapidly obtain the co-
ordinates of the intersection and we prefer to calculate the area determined by the
polygon whose nodes are the points of intersection and the vertices of the element.
Often it comes to a triangle, but also other polygons with more nodes can result, up
to an octagon. Thus, to keep the calculation to a minimum of simplicity, we prefer to
calculate the area of the polygon without taking into account possible round parts,
because they are very small quantities and can be neglected. For example, in figure
5.5, we will calculate the area of the triangle determined by the points ∆P1P2P3,
without calculating the area of the arch P̂1P3. The penalty parameter is set for the
whole element as:

λfr =
1

ε
· Apol
Ael

(5.21)

where Ael is the area of the element and Apol is the area of the polygon. It will be
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always a value in the interval [0, 1], with 0 meaning that the element has no contact
with the solid and 1 meaning that the element is completely included in the solid.

full − lambda fractional − lambda

Figure 5.7: Handling of the cubature points of one element with PM

In the tables 5.14 and 5.15 are presented the point values for the fractional-lambda
method coupled with G3x3. The results are not only not improved, but they are even
not coherent, in fact being a little oscillating. The conclusion is that the full-lambda
approach does not affect by its discontinuity the final result, moreover it gives better
results regarding the point values. However, for higher λ-penalty parameters and finer
meshes, the fractional technique provides acceptable values, hence it can be used for
fast results and with the reason of no discontinuity implied.
With the adaptive-lambda PM we took care of a better capturing of the interfaces
of the penalized region. We have realized that the discontinuity issue in the integral
calculations does not affect the final accuracy of the solution, but is still a subject
to be taken into consideration. With this new approach two purposes were aimed:
firstly the discontinuity was reduced to much smaller local virtual elements inside
the same level of refinement of the mesh and secondly, the boundaries were better
approximated. There are basically two aspects: the method is for most of the finite
elements identical with the full-lambda method coupled with G3x3, while for elements
like in figure 5.8 the adaptive quadrature formula is imposed. In such elements, we
perform locally a refinement of the element of order 22n, where n is the level of
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P1 P2 P3 P4 P5ux P5uy P6ux P6uy

×10−1 ×10−2 ×10−1 ×10−2 ×10−2 ×10−3 ×10−1 ×10−4

ref. 1.32220 1.47560 1.21158 1.38843 5.05319 2.01330 2.01724 8.42345

BENCH2M55 Level 9

103 1.26427 1.45765 1.18417 1.41228 5.31752 1.98118 2.02398 8.34013
106 1.32031 1.54745 1.21729 1.44467 5.21607 1.96257 2.02297 8.37805

BENCH2M55 Level 10

103 1.27869 1.45077 1.18662 1.39452 5.29471 2.01667 2.02433 8.35107
106 1.32527 1.52775 1.21377 1.41975 5.16990 2.01567 2.02139 8.45548

BENCH1_FBM Level 6

103 1.28975 1.43930 1.19245 1.37449 5.18905 2.00175 2.02104 8.33256
106 1.31772 1.45115 1.21704 1.38306 4.96418 2.02721 2.01392 8.50174

BENCH1_FBM Level 7

103 1.29351 1.44542 1.19237 1.37805 5.20901 1.99900 2.02179 8.32005
106 1.31945 1.46401 1.21401 1.38622 5.01580 2.01519 2.01585 8.45053

Table 5.14: Point values for fractional-lambda PM

refinement, and construct local penalty matrices for the new elements by using a
trapezoidal rule TRZ and at the end they are summed up into the local mass matrix
of the entire element. In the figure 5.8 it is represented how the adaptive-lambda PM
works for one element which has a common intersection with the solid. The example
is given for level 3 of local refinement, with 16 new virtual elements. The cubature
points are located into the vertices of the new created elements. The same three
possibilities regarding the position of the elements with respect to the solid object
are to be treated: completely inside, completely outside and with common intersection
part. The discontinuity does not vanish completely, but since the new elements are
much smaller in volume than the parent element, the influence is also reduced. On
the other hand, in the region of the solid object more quadrature points are chosen,
hence a probable better mass matrix approximation is obtained. The reason of using
a quadrature rule with lower order is to keep the calculations as simple as possible and
because of the local refinement, the selected formula acts as a summarized trapezoidal
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P1 P2 P3 P4 P5ux P5uy P6ux P6uy

BENCH2M55 Level 9

103 2.45 2.46 1.58 1.00 2.69 0.57 0.19 1.08
106 0.34 1.66 0.45 0.39 1.76 0.69 0.16 0.93

BENCH2M55 Level 10

103 2.17 1.05 1.59 0.75 3.08 0.71 0.23 1.23
106 0.21 0.79 0.20 0.16 0.74 0.09 0.07 0.32

BENCH1_FBM Level 6

103 4.38 1.22 2.26 1.72 5.23 1.60 0.33 0.99
106 0.14 4.87 0.47 4.05 3.22 2.52 0.28 0.54

BENCH1_FBM Level 7

103 3.29 1.68 2.06 0.44 4.78 0.17 0.35 0.86
106 0.23 3.53 0.18 2.26 2.31 0.12 0.21 0.38

Table 5.15: Relative errors of fractional-lambda PM

rule and meets the necessary order for mass matrix assembling.

adaptive-lambda

Figure 5.8: Handling of the cubature points of one element with adaptive PM

Regarding the solution provided with the adaptive-lambda PM we present the cor-
responding point values for TRZ5 on the same meshes and same levels like for the
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other two methods.

P1 P2 P3 P4 P5ux P5uy P6ux P6uy

×10−1 ×10−2 ×10−1 ×10−2 ×10−2 ×10−3 ×10−1 ×10−4

ref. 1.32220 1.47560 1.21158 1.38843 5.05319 2.01330 2.01724 8.42345

BENCH2M55 Level 9

103 1.28415 1.43272 1.17081 1.37756 5.22567 1.94053 2.02102 8.38175
106 1.36604 1.51860 1.22998 1.42977 4.96592 2.06779 2.01362 8.78079

BENCH2M55 Level 10

103 1.29281 1.44299 1.18255 1.37950 5.22725 1.99797 2.02189 8.42381
106 1.32511 1.47060 1.21630 1.40329 5.02312 2.01512 2.01591 8.63307

BENCH1_FBM Level 6

103 1.29219 1.44016 1.19133 1.37563 5.20891 2.00301 2.02178 8.32103
106 1.32022 1.45324 1.21362 1.38512 5.01783 2.01462 2.01585 8.44264

BENCH1_FBM Level 7

103 1.29489 1.44557 1.19210 1.37831 5.21330 1.99886 2.02195 8.31689
106 1.32034 1.46588 1.21183 1.38761 5.04924 2.01060 2.01707 8.42011

Table 5.16: Point values for adaptive-lambda PM

We observe a slightly improvement of the point values, especially in the case of the
cartezian mesh, comparing with the standard full-lambda method. For the body-
fitted mesh, the results are very similar and the gain is almost not important.

In conclusion, we proposed 3 main implementations of PM : full-, fractional- and
adaptive-lambda. Each methods has its own advantages and disadvantages, treating
the calculation of the mass matrix integrals and the capture of the solid interface.
From the point of view of solution accuracy, the adaptive-lambda method provides
better results due to the reduced influence of the characteristic function discontinuity
and a closer approximation of the boundary of the solid object. However, the CPU-
times increased as we shall see. The full-lambda method provides very close results to
the adaptive-lambda and being easier to implement and not requiring extra handling
of special finite elements, we consider it to be the main technique and we will refer
always to it. The fractional-lambda intends to exclude the discontinuity introduced
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P1 P2 P3 P4 P5ux P5uy P6ux P6uy

BENCH2M55 Level 9

103 2.88 2.91 3.37 0.78 3.41 3.61 0.19 0.50
106 3.32 2.91 1.52 2.98 1.73 2.71 0.18 4.24

BENCH2M55 Level 10

103 2.22 2.21 2.40 0.64 3.44 0.76 0.23 0.00
106 0.22 0.34 0.39 1.07 0.60 0.09 0.07 2.49

BENCH1_FBM Level 6

103 2.27 2.40 1.67 0.92 3.08 0.51 0.23 1.22
106 0.15 1.52 0.17 0.24 0.70 0.07 0.07 0.23

BENCH1_FBM Level 7

103 2.07 2.04 1.61 0.73 3.17 0.72 0.23 1.27
106 0.14 0.66 0.22 0.06 0.08 0.13 0.01 0.04

Table 5.17: Relative errors of adaptive-lambda PM

by the penalty characteristic function, considering that it may produce oscillations
of velocity. However, the results did not improve, but were still acceptable in com-
parison with the other results provided by the main technique. The disadvantages of
the methods are in the necessity of finding intersection points and approximate the
common area between the solid object and the finite element.

5.3.5 Efficiency, robustness, solver aspects and solution

Two important properties of numerical solvers are the efficiency and robustness. In
this sub-chapter, we present statistical data about the solvers to analyze the efficiency,
robustness and to visualize the solutions of the implemented PM methods. We have
performed all simulations on the same computer with the following characteristics: 8
processors with 4 CPU cores, 3.33GHz and 63 GiB of memory. As nonlinear solver
we use a preconditioning by defect correction loop, using Multigrid solver to solve
the linearized system of equations, together with BiCGStab with full VANKA for the
smoothing process. The stopping criteria for the linear solvers were set as: 10−2 for
the relative and 10−5 for the absolute error of the residuals on both fine and coarse
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grids, while for the nonlinear solver the stopping critterions were set as: 10−5 for U-
defect, divergence, U (velocity) and P (pressure) changes. We used for the nonlinear
term a Streamline Diffusion stabilization as default one. Also, in the normal cases
the smoother performs only few pre- or post smoothing steps with the relaxation
parameter equal to 1. For some settings, depending on the penalty parameter, more
steps were required in order to obtain a convergent solution. The behavior of the
solvers in using the different implementation of the PM is indicated in the following
tables.

λ NIT (it) LIT (it) NT (s) LT (s) Mem (GB)

BENCH2M55 Level 9

10−3 12 26 118 108 0.467
10−6 12 24 2439 2429 0.467

BENCH2M55 Level 10

10−3 12 25 476 438 1.82
10−6 12 24 11705 11664 1.82

BENCH1_FBM Level 6

10−3 12 25 130 120 0.506
10−6 12 30 147 137 0.506

BENCH1_FBM Level 7

10−3 12 25 598 553 1.98
10−6 12 29 591 551 1.98

Table 5.18: Efficiency for full-lambda PM

Comparing the results of full-lambda on different meshes, the linear solver converges
to a solution without any extra smoothing steps for the body-fitted mesh, but per-
forms more iterations to reach the imposed stopping critterions. On the other hand,
for higher values of the penalty parameter and for the cartesian mesh, the linear
solver encountered divergence situations and only by increasing the smoothing steps
and changing the relaxation parameter the problem converged. For example, for
λ = 106 we had to set higher numbers of smoothing steps with a modified value of
the relaxation parameter. The result was a minimum number of linear iterations, but
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a much higher computational time because of to the smoothing process.

λ NIT (it) LIT (it) NT (s) LT (s) Mem (GB)

BENCH2M55 Level 9

10−3 12 29 138 128 0.467
10−6 12 32 1675 1665 0.467

BENCH2M55 Level 10

10−3 12 26 558 516 1.82
10−6 12 25 6001 5960 1.82

BENCH1_FBM Level 6

10−3 12 25 126 116 0.506
10−6 12 24 2979 2968 0.506

BENCH1_FBM Level 7

10−3 12 25 518 478 1.98
10−6 12 24 10852 10314 1.98

Table 5.19: Efficiency for fractional-lambda PM

The fractional-lambda method gives shorter computational time in comparison with
the full-lambda if the same settings for the smoother are used. In the case of λ = 103

the times are shorter for the same number of linear iterations for the body-fitted mesh
and a little more for the cartezian mesh. It was again necessary to make use of more
smoothing steps for higher penalty parameter, but the solvers were converging faster
to the solution.
The adaptive-lambda PM converges to a solution for any penalty parameter 103, 106

without changing the smoother settings. However, for higher values of λ the linear
solvers will need more iterations to reach the required stopping critterions.
We show in the next part some snapshots with contour lines of the solution in terms
of pressure and velocity for all investigated methods. The reference ones are those
obtained by the cc2d code. Analyzing the solutions provided by all PM approaches,
we conclude that they are similar to the reference one. However, a closer analysis is
required before we can claim other characteristics.
Following the idea of a closer analysis of the PM, we have realized cutlines of pressure
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λ NIT (it) LIT (it) NT (s) LT (s) Mem (GB)

BENCH2M55 Level 9

10−3 12 27 124 115 0.467
10−6 12 120 525 515 0.467

BENCH2M55 Level 10

10−3 12 27 522 483 1.82
10−6 12 84 1538 1500 1.82

BENCH1_FBM Level 6

10−3 12 25 126 116 0.506
10−6 12 30 154 144 0.506

BENCH1_FBM Level 7

10−3 12 25 523 482 1.98
10−6 12 29 677 633 1.98

Table 5.20: Efficient for adaptive-lambda PM

cc2d - Pressure

cc2d - Velocity
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full-lambda - Pressure

full-lambda - Velocity

fractional-lambda - Pressure

fractional-lambda - Velocity
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adaptive-lambda - Pressure

adaptive-lambda - Velocity

and velocity out of the presented snapshots and plot them. We present the plots
into the following figures, but before some details are necessary. The cutlines were
special selected for the horizontal line y = 0.2 and for the vertical line x = 0.2

since they pass the solid area along its diameter. Also, we only present here plotting
figures for the main implementation of PM, full-lambda technique. Since we have
realized that the use of a body-fitted mesh leads to better solutions with respect
to the reference one, we restrict in here to present the analyze of several levels of
refinement of BENCH_FBM and for different penalty parameters.
Firstly we debate the comparison of different penalty parameter values and same level
of refinement for the grid. Clear differences between full-lambda PM with different
values of ε-penalty parameter can be observed only along x-cutline. For y-cutline,
the values are very similar and different only after 5-6 digits. From the x-cutline we
observed that for smaller penalty parameter, the maximums for pressure and velocity
are higher, while by increasing the penalty parameter these values decrease. They
will tend to be the same no matter how much bigger the penalty constant will be
set. This fact lead us to the idea of searching an optimal penalty parameter, since
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the size of it will determine ill-conditioned system matrix and will not improve the
solution. Moreover, it will arise numerical problems for the linear solver which will
lead to divergence if no smoothing or stabilization techniques are applied. In the
interior part of the rigid object, the velocity of the fluid should tend to be zero, but
if λ is not sufficient small, then the penalized area acts as an porous media and small
velocities can be detected around the inner part of the boundary. If the penalization
is stronger, then the velocity tends to 0 in the entire region of solid. The y-cutlines
for the same grid level do not show discrepancies between the different parameters.
The behavior of the PM for different levels of refinements is also presented for these
two cutlines. However, we just plot them for λ = 103. We observe again the gain
of a better interface approximation if the grid is finer. This is outputted trough the
fact that around the object the velocity vector tends to 0. This can be seen for both
types of cutlines. Regarding the pressure, in the case of the x-cutline, the maximum
inside the solid area grows around the middle of the object, but suffers a decay on
the y-cutline.
For the purpose of drag and lift coefficient calculations, we present also plots around
the boundary of the solid object, in terms of arc length. Also in this case, the velocity
field should tend to 0. In the case of ε = 103 it does not really happen, but already
ε = 106 will force the velocity to be smaller and almost zero. However, we notice the
small oscillations of the velocity around the upper (N) and lower (S) positions with
respect to the interface of the solid. These oscillations are propagated also for the
pressure, which will strongly oscillate as the λ-penalty parameter increases. As we
shall see, the drag and lift coefficients are better in the case of smaller ε-parameters,
although the solution is not accurate. This is because of the pressure which has the
most percentage in the calculation of these two quantities. Hence, post-processing
smoothing techniques for the pressure should be considered in order to improve the
drag and lift for higher values of the penalty parameter.

5.3.6 Drag and lift coefficients

For the purpose of possible applications of FBM and PM methods, like particulate
flows for example, we have computed the values of the well know Drag and Lift
coefficients, calculated around the surface of the solid object [45]:
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Figure 5.9: Cutline of pressure and velocity at x = 0.2

Cd/l =
2fd/l

ρU
2
D
Fd/l (5.22)

U and L are the characteristic velocity and length. The coefficients fd/l are set to 1
and Fd/l are the drag and lift forces acting on the object. There are two approaches
to calculate these forces. Since they are defined as surface integrals (5.23), one may
use a line or a volume integration. More about this subject can be read in [24]. The
line integration is not recommended to use in the case of PM. Instead, the volume
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Figure 5.10: Cutline of pressure and velocity at y = 0.2
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Figure 5.11: Cutline of pressure and velocity at x = 0.2
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Figure 5.12: Cutline of pressure and velocity at y = 0.2
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Figure 5.13: Cutline of pressure and velocity around the interface



CHAPTER 5. FICTITIOUS BOUNDARY AND PENALTY METHODS 92

integration is an option to be considered. However, line integration is also possible
with the specification that the connection points obtained as intersections between
the finite elements and boundary of the object are necessary and will construct the
corresponding line. We give further a short description of the volume integration
of drag Cd and lift Cl coefficients acting on the solid object. Let S be the surface
of the object, nS the unit normal vector oriented inward with respect to Ω and the
tangential vector with the components τ = (nu,−nx). Drag and lift forces are defined
by the following surface integrals: Fd =

∫
S

(
µ ∂uτ
∂nS

ny − p nx
)
ds,

Fl = −
∫
S

(
µ ∂uτ
∂nS

nx + p ny

)
ds.

(5.23)

The corresponding drag and lift coefficients are then obtained by using (5.22). For
the calculation of the integrals we do not reconstruct the shapes of the boundary and
we define a parameter α as:

α(x) =

{
1,x ∈ Ωc,

0,x ∈ Ω \ Ωc.
(5.24)

which selects the midpoints of the edge of cells which are inside the volume occupied
by the solid object Ωc. Ω \ Ω represents the fluid domain. The new parameter has
the property that the gradient is 0 everywhere except at the wall surface of the solid
and given as described in [9] by the relation:

n = −∇α (5.25)

Hence the drag and lift forces acting on the solid can be calculated by using the total
stress tensor σ as follows:

F =

∫
Γ

σndΩ = −
∫

ΩT

σ∇αdΩ (5.26)

where ΩT is the entire computational domain. Straightforward are the relations: Fd = −
∫

ΩT

(
µ∂u
∂x

∂α
∂x

+ ∂u
∂y

∂α
∂y
− p∂α

∂x

)
dΩ,

Fl = −
∫

ΩT

(
µ ∂v
∂x

∂α
∂x

+ ∂v
∂y

∂α
∂y
− p∂α

∂y

)
dΩ.

(5.27)
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Therefore, a volume integral over the whole domain can be applied to calculate the
drag and lift forces, a more convenient way for the FBM and PM. The table below
presents results for drag and lift coefficients obtained from simulating flow around
cylinder by using the grid BENCH1_FBM and for Re = 20. The reference values
are according to [9] Cd = 0.55795 and Cl = 0.010618.

Cd Cl

Level FBM full-λ FBM full-λ

6 5.5808 5.4191 0.0947 0.0702
7 5.5799 5.4352 0.1019 0.0826
8 5.5799 5.4506 0.1032 0.0830

Table 5.21: Drag and Lift coefficients for FBM and full-lambda PM 10−3

Cd Cl

Level FBM frac-λ FBM frac-λ

6 5.5808 5.2753 0.0947 0.0727
7 5.5799 5.3653 0.1019 0.0803
8 5.5799 5.4187 0.1032 0.0824

Table 5.22: Drag and Lift coefficients for FBM and fractional-lambda PM 10−3

Cd Cl

Level FBM adapt-λ FBM adapt-λ

6 5.5808 5.4352 0.0947 0.0826
7 5.5799 5.4506 0.1019 0.0830
8 5.5799 5.4801 0.1032 0.0905

Table 5.23: Drag and Lift coefficients for FBM and adaptive-lambda PM 10−3

All the values from table (5.21, 5.22, 5.23) are multiplied by a factor of 10−1. We
have tabulated results for only ε = 10−3. For higher values of ε, the drag and lift
coefficients calculated by the proposed volume integration technique are becoming
worse due to the fact that the pressure, the main constitutive part of the coefficients,
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is strongly oscillating (5.13) if the penalty parameter becomes stronger. To emphasis
this situation, we show in the the following table (5.24) the results of drag and lift
coefficients for the main method full-lambda PM with the penalty parameter 10−6,
specifying that the same phenomenon happens also for the other two PM methods.

Cd Cl

Level FBM adapt-λ FBM adapt-λ

6 5.5808 4.2365 0.0947 0.0688
7 5.5799 4.4931 0.1019 0.0733
8 5.5799 4.8587 0.1032 0.0871

Table 5.24: Drag and Lift coefficients for FBM and adaptive-lambda PM10−3

All the above results were obtained with the volume integration method and using the
BENCH1_FBM body-alligned mesh. We notice that the best results are obtained for
the adaptive-lambda PM, but still not satisfactory since the relative error is bigger
about 1%, while all other cases the relative error is bigger. The increasing of the
level of the mesh improves the values for drag and lift coefficients such that, a more
accurate alligned mesh around the interface of the solid object will provide even closer
results to the reference one. We also claim that there is an optimal value for the ε-
penalty parameter for which the calculation are the most good, but we can not figure
a logical relation to determine this value. However, with smoothing techniques for the
velocity and pressure solution around the solid object, it is espected that the results
are getting closer to the reference. The calculations of drag and lift coefficients in a
more proper way for the penalty methods and more accurate has to be a future task
for the plans of applying penalty method in more complex configurations, of fluids
with moving objects, where the movement is governed by the physical laws.
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Applications

6.1 Oscillating cylinder benchmark

To demonstrate the ability of the presented PM to handle flows with complex moving
boundaries, we have simulated one oscillating cylinder in a channel problem. The
movement of the solid object is prescribed by a periodical function, depending on an
amplitude, a frequency and time. The computational domain is the channel 2.2×0.41,
triangulated by the mesh from figure 6.1 and with the statistical data from table 6.1.

Figure 6.1: Mesh channel LEVEL = 1

LEVEL NVT NMT NEL NEQ

2 45 76 32 184
3 153 280 128 688
4 561 1072 512 2656
5 2145 4192 2048 10432
6 8385 16576 8192 41344

Table 6.1: Statistical data for the cartezian grid channel mesh

95
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The movement of the solid particle is described by the x-translational movement of
the center point: {

xc = x0 + Asin(2πft),

yc = y0,
(6.1)

with the initial position x0, y0 = 1.1, 0.2 in the center of the channel. Here, A = 0.25

is the amplitude, f = 0.25 is the frequency and t is the time parameter. The density
of the solid particle is set to ρ = 1 and the kinematic viscosity of the fluid to ν =
µ
ρ

= 10−3. The cylinder has the diameter D = 0.1 and the fluid is initially at rest.
No-slip boundary conditions are set for the entire computational domain. A non-
stationary model of the incompressible Navier-Stokes problem implemented with the
full-lambda PM is solved. We have only chosen the full-lambda candidate since from
the validation point of view it provides good accuracy and efficiency with minimum
implementation effort. However, both fractional- and adaptive-lambda PM s can be
used to simulate and solve this problem. For the time discretization we only applied
a BE method, but any fractional-θ scheme presented in the previous chapters can be
used.
The flow is initially at rest while the solid particle has already its own velocity. It
perturbs the flow by starting to translate, such that the flow becomes very complex
when the solid object is in the positions at t = t0 + 2n

4
T , n ∈ {0, 1, 2, . . . }. The figures

below show some vorticity contour plots in different time point of the periodical move:
t = t0, t = t0 + 1

4
, t = t0 + 2

4
, t = t0 + 3

4
. As said before, the critical points are the

moment of changing the direction of the movement of the solid object, when it has
zero velocity and starts afterwards to translate in opposite direction. These snapshots
show that the fluid is perturbed by the oscillating cylinder and vortex is generated
periodically in the wake of the cylinder. The last snapshots show also the velocity
vector field at three essential moments of the movement.
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Figure 6.2: t = t0

Figure 6.3: t = t0 + 1
4
T

Figure 6.4: t = t0 + 2
4
T
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Figure 6.5: t = t0 + 3
4
T

Figure 6.6: t = t0 + 2
4
T
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Figure 6.7: t = t0 + 3
4
T

Figure 6.8: t = t0 + T

6.2 Rigid object with complex shape geometry

This subsection intend to show that the proposed PM can deal successfully complex
geometries of the rigid body, not only the standard cases of circles/particles, ellipses,
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squares/rectangles, for which the distant function is easy to compute. For this pur-
pose, we simulate flow around a stationary complex object to prove the ability of the
method of capturing any kind of boundary shape. We have choose a stationary trivial
2D fusiform representation, which can be interpreted as a simplified fish-contour. The
length of the shape is chosen to be L ∈ {0.5, 0.75, 1.0}, the head is fixed in the point
(x0, y0) = (0.2, 0.2) and the maximum thickness is at point x = 0.25 and set to 0.1.
For simplicity, we imposed that mid-line of the shape is parallel to the velocity profile
set at the inflow. The described shape was obtained by using cubic spline interpola-
tion for the points (xi, yi) ∈ {(0.2, 0.2), (0.25, 0.25), (0.2 + L, 0.2)}, i = 1, 3. Solving
the system of equations obtained by imposing the conditions of the cubic spline in-
terpolation, we can define four functions which together describe a continuous and C2

closed curve. For the case of L = 0.5 the fish-contour reads:

l1(x) = 2y0 −
(

1

4
− 20

81
(x− x1)2 +

3200

81
(x− x1)3

)
, x ∈ [x0, x1]

l2(x) = 2y0 −
(

1

4
− 20

81
(x− x1)2

)
, x ∈ [x1, x0 + L]

s2(x) =
1

4
− 20

81
(x− x1)2, x ∈ [x1, x0 + L]

s1(x) =
1

4
− 20

81
(x− x1)2 +

3200

81
(x− x1)3, x ∈ [x0, x1]

(6.2)

For different length of the mid-line of the shape, corresponding coefficients will be
obtained. For the moment we do not care that the head and tail part are not smooth,
since the purpose is to simulate fluid around solid object with complex shape. More
over, this are third order singularities and are parallel to the flow field, hence it does
not perturb the flow. Further on, the technique of capturing the boundary of such
a shape by using PM or FBM is still based on in/out check, but in the reference
coordinate system by projection methods. We provide in the following part snapshots
of the solution for 3 different length (0.5, 0.75 and 1.0) presenting the streamline
contours and the fluid velocity vector field.
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Figure 6.9: Streamline countours - flow around a fusiform shape L = 0.50

Figure 6.10: Velocity vector field - flow around a fusiform shape L = 0.50
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Figure 6.11: Streamline countours - flow around a fusiform shape L = 0.75

Figure 6.12: Velocity vector field - flow around a fusiform shape L = 0.75



CHAPTER 6. APPLICATIONS 103

Figure 6.13: Streamline countours - flow around a fusiform shape L = 1.0

Figure 6.14: Velocity vector field - flow around a fusiform shape L = 1.0

For all these simulations the full-lambda PM method with the penalty parameter ε =

10−3 was applied, using the cartezian mesh BENCH2M55 with level 8 of refinement.
The figures above prove the capability of the presented penalty method to capture
also different complex shape interfaces. We have calculated also the drag and lift
coefficients that act on such an object and the values are presented in the table
below:
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Length Cd Cl

0.50 9.82189 1.16842
0.75 11.0277 1.67524
1.00 12.1265 1.74881

Table 6.2: Drag and Lift - flow around a fusiform shape full-lambda PM10−3

The values from the table (6.2) show that only by means of penalty technique, the
drag and lift coefficients modify. For this experiment we do not have any reference
value, but the aim was to underline the aspect of the possibility of using arbitrary
complex geometries of the solid object. In this sense, we considered just the stationary
case. This opportunity opens the way of simulating moving complex shaped objects,
like for instance a moving fish in a channel or even moving fishes in channel in opposite
direction and meeting. This is a theme for further study: what happens with the flow
when the fish perturbs it by its motion? what happens when the fishes are meeting:
will they collide or swim past each other?
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Conclusion

This study focused on the investigation of a velocity penalization method of type
Brinkman introduced for the first time by Angot, Bruneau and Fabrie [2]. The pro-
posed PM methods benefits of the framework of FEM discretization techniques and a
MG linear solver. The aim of the study was to develop a generalization method for the
already validated FBM of Turek and Wan [50], with a proper mathematical support
in effectively imposing a no-slip boundary condition on the velocity for solid/rigid
objects inside a fluid domain. The method was applied to the Navier-Stokes model
problem for incompressible flows, for laminar and transient flows (low and medium
Re number), with solid objects and consists in adding a new term in the momentum
equation which depends on a mask function χ(x) and a penalty parameter λ which
tends to infinity (ε-penalty parameter tends to zero). Angot et al. [2] have analyti-
cally showed that the solution of the penalized Navier-Stokes equations converges to
the actual Navier-Stokes solution if the penalization parameter λ is sufficiently large.
Also, inside the solid object, the velocity component tends to 0, proving the capability
of the method into imposing no-slip boundary condition. The immediate advantage is
the possibility of introducing, in an easy way, solid boundaries without any condition
over the penalty parameter or selected grid and without the need of changing the
system matrix structures and entries. Moreover, the free choice of λ allows the error
to be controlled precisely. The numerical realization of the methods is performed by
using finite element schemes. The nonconforming Q̃1/Q0 element was chosen for the
space-discretization as part of the problem, Q̃1 for velocity component u and Q0 for

105
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the pressure component p. The selected element satisfies unconditionally the inf-sup
condition LBB without any additional stabilization, providing comparable accuracy
like the first oder in the energy norm elements. Hence, the computations could run
on a fixed grid, without need of re-meshing, which is in general cheaper. Cartesian
meshes could be used, but for accuracy reasons, body-aligned meshes around the solid
object are better candidates, without generating higher computational times or have
negative effect on the efficiency of the linear and non-linear solvers. The non-linearity
part of the Navier-Stokes model is treated by a fixed point defect correction iterative
method, resulting linear subproblems in each non-linear step, which are finally solved
by a Galerkin type direct coupled or splitting approach. The MG solver based on
smoothers or preconditioners of type VANKA solves the linear subproblems by recur-
sively calculating the solution from one level of the grid to the next one, applying a
restriction operator. After a V -, W - or F - cycle the obtained solution is prolongated
to the final grid. For the case of non-stationary problems, a fractional-θ-scheme is
used for the time discretization, obtaining in each time-step stationary problems. We
have fully investigated and validated the proposed methods on the benchmark simu-
lation flow around cylinder [45], presenting different implementation techniques of the
PM with all details regarding implementation and presenting it as a generalization
of the fictitious domain methods. We have also prove that the FBM is a special case
of the proposed PM providing the best results. In this sense, for special configura-
tions PM reproduces very accurately the results of the FBM, justifying the avatar
of special case of the FBM for PM. The novelty in the proposed PM is the process
of assembling the penalty matrix from the point of view of the quadrature formula
and lumping process. Based on this aspects, we have implemented three variations of
the PM, namely full-lambda, fractional-lambda and adaptive-lambda PM. The full-
lambda method requires less resources to be implemented and uses a Dirac type of
mask function. From our numerical investigations, it proves to be the best candi-
date regarding accuracy, efficiency and robustness. To eliminate the discontinuity of
the mask function χ, we proposed the fractional-lambda PM. It treats all cubature
points of one finite element in the same manner, setting the same penalty parame-
ter value for all of them and taking care that the mass of the element is preserved.
This supposes additional calculations to set the proper penalty parameter and the
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advantage of having no discontinuity is overcome by the disadvantage of a less accu-
rate interface capturing. The fractional-lambda does not provide better results then
full-lambda, but they are still satisfactory. The adaptive-lambda PM deals with both
aspects of interface capturing and mask function discontinuity, tending to improve
both of them in the same time. From the validation process we can claim that the
adaptive-lambda method is the best, but requires more implementation techniques
and computational-time, while the gain in accuracy w.r.t to full-lambda method is
not important. However, the discontinuity issue is reduced to very small local vir-
tual elements and the interface of the rigid object is better approximated. Based on
accuracy, efficiency, implementation and pre/postsmoothing processes, we consider
full-lambda PM as the main implementation, because it does not require extra tech-
niques to implement the penalty term, it is easy to incorporate into CFD codes and
provides good results in comparison with FBM and other methods. We have used
a HRZ -lumping technique, which can be applied for each PM methods, in order to
improve the linear solver behavior. The reason of considering this lumping technique
is due to the discretization element Q̃1/Q0 which may generate non-positives entries
for the off-diagonal entries of the penalty mass matrix. The HRZ method eliminates
these kind of entries and preserves in the same time also the mass. The gain of using
a penalty matrix HRZ lumped consists in a better efficiency of the linear solver. To
settle a good base for the applications of PM to particulate flows, drag and lift hy-
drodynamical forces acting on the surface of the solid object were calculated by using
a volume integration technique. However, the results for the drag and lift were not
satisfactory due to the oscillation of the velocity and pressure solution around the
interface of the rigid body. To improve the results, smoothing techniques especially
for the pressure should be applied. Further on, to show the possibilities of the pro-
posed method, also non-stationary flows with complex moving boundaries and flows
with stationary complex shaped rigid objects were presented. The derived methods
in this thesis can be successfully applied in simulating efficient and accurate flows
with moving/steady complex geometries.
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