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A FAMILY OF NON-RESTRICTED D = 11 GEOMETRIC
SUPERSYMMETRIES

FRANK KLINKER

Abstract. We construct a two parameter family of irreducible, eleven-dimen-
sional, indecomposable, non-flat Cahen-Wallach spaces with non-restricted geo-
metric supersymmetry of fraction ν = 3/4. Its compactified moduli space can
be parametrized by a compact interval with two points corresponding to two
non-isometric, decomposable spaces. These singular spaces are associated to a
restricted N = 4 geometric supersymmetry with ν = 1/2 in dimension six and a
non-restricted N = 2 geometric supersymmetry with ν = 3/4 in dimension nine.
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1. Introduction

We will describe here in detail geometric supersymmetry of a family of eleven di-
mensional manifolds. Geometric supersymmetry is by definition an extension of the
Lie algebra of the Killing vector fields to a super Lie algebra by purely geometric
data. This roughly means that the odd part of the superalgebra is given by a linear
subspace of the sections in a bundle over the manifold at hand compatible with the
Killing vector fields – we will be more specific at the beginning of Section 5. Although
the manifolds we will consider in this text are homogeneous spaces and, therefore, it
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2 FRANK KLINKER

would be sufficient to discuss the structure at one point, we will give all results in
terms of local coordinates, too. On the one hand, we do this to emphasize the geo-
metric nature and, on the other hand, because the local description may give an idea
for similar constructions in the non homogeneous situation. However, the calculations
are similar in both concepts.
First we will provide the general setup of the manifolds we will consider, the Cahen-
Wallach spaces. We describe in detail the local structure of the metric and determine
the Killing vector fields that yield the even part of our structure, see Sections 2 and 3.
Then we turn to the odd part that will be spanned by sections in a spinor bundle that
are parallel with respect to a given connection. Again we will give the local description
and show how this depends on the elements at one point, see Section 4. These
preparations lead to Section 5 where we first give a short introduction to geometric
superalgebras and geometric supersymmetries. Then we describe in detail how the
ingredients provided so far define a geometric superalgebra. In particular, we prove
several compatibility conditions. In Section 6 we discuss whether there are situations
in which the geometric superalgebra yields geometric supersymmetry. We formulate
the obstruction and provide a full list. In the final Section we discuss the moduli
space of geometric superalgebras and geometric supersymmetries. Furthermore, we
associate the singularities to extended geometric supersymmetries in dimensions six
and nine.
As a side note we emphasize that the spaces we discuss in this text are canonical
candidates for supergravity backgrounds. For more details on this topic from the
supergravity point of view we cordially refer the reader to the literature in the refer-
ences.

2. The general setup

The approach to classify solvable Lorentzian symmetric spaces by the construction
presented below goes back to [3]. Let (V, 〈·, ·〉) be an n-dimensional euclidean vector
space and B be a symmetric endomorphism of V . We denote the symmetric bilinear
form that is defined by B and 〈·, ·〉 by the same symbol B and we write ∗ : V → V ∗,
v 7→ v∗ with v∗(w) = 〈v, w〉 for the canonical identification of V and its dual. We
define W := R1,1 ⊕ V and denote by g̊ the the extension of 〈·, ·〉 to a block diagonal
Lorentzian metric on W . Let {e+, e−} be a null basis of R1,1 with respect to g̊|R1,1 .
Then consider the following skew symmetric multiplication on g := V ∗ ⊕ W that
yields a Lie algebra structure on g:

[e−, w] = w∗ , (1)
[v∗, e−] = Bv , (2)
[v∗, w] = −v∗(Bw) · e+ = −〈Bv,w〉 · e+ , (3)

for all w ∈ V and v∗ ∈ V ∗. The bilinear form g̊ is extended to a bi-invariant metric
on g be g̊(v∗, w∗) := 〈Bv,w〉.
Within g the factor V ∗ acts on W , the bracket of W with itself obeys [W,W ] = V ∗

and 〈·, ·〉 is V ∗-invariant. From (1)-(3) we see, that the embedding

V ∗ −→ R+ ⊗ V ↪→ so(W ) = so(V ) ⊕ (R+ ⊗ V ) ⊕ (R− ⊗ V ) ⊕ (R+ ⊗R−) (4)

is given by v∗ 7→ Bv ∧ e+ where x ∧ y(z) := 〈y, z〉x− 〈x, z〉y.
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These data yield a (D = n+2)-dimensional symmetric space MB with Lorentz metric
determined by 〈·, ·〉 and B. The resulting Lorentzian space MB is indecomposable if
and only if the symmetric map B is non-degenerate. This can best be seen from
(1)-(3) if we recall that MB is decomposable if there exists a V ∗-invariant subspace
W̃ ⊂W such that g̊|W̃×W̃ is non-degenerate, see [1,18]. If B admits zero eigenvalues
the space decomposes into a product of a Cahen-Wallach space and an euclidean
space. This can also be deduces from the coordinate form of the metric, see (11).

3. The metric and the Killing vector fields

3.1. The metric. For the local description of MB we may use the exponential map
and write for x = x+e+ + x−e− + ~x ∈W with ~x =

∑
i x

iei

µ(x) := exp
(
x+e+

)
exp

(
x−e−

)
exp

(
~x
)
.

This obeys
∂+µ = exp(x+e+)e+ exp(x−e−) exp(~x) = µ(x)e+ (5)
∂iµ = exp(x+e+) exp(x−e−) exp(~x)ei = µ(x)ei (6)
∂−µ = exp(x+e+) exp(x−e−)e− exp(~x) = µ(x) exp(−~x)e− exp(~x)

= µ(x)
(
e− +

∑
i x

ie∗i − 1
2
∑
ij Bijx

ixje+
)

(7)

where we use exp(~x) =
∏
i exp(xiei) and

e∗j exp(xiei) = exp(xiei)
(
e∗j −Bijxie+

)
e− exp(xiei) = exp(xiei)

(
e− + xie∗i − 1

2Bii(x
i)2e+

) (8)

with the matrix (Bij) defined by B(ei) =
∑
j Bijej .

From this we read the two components of the Maurer-Cartan form µ−1dµ = ω + θ ∈
Ω1(MB)⊗ g with ω ∈ Ω1(MB)⊗ V ∗ and θ ∈ Ω1(MB) ⊗ W :

ω =
∑
i

xidx− ⊗ e∗i , (9)

θ = dx− ⊗ e− +
∑
i

dxi ⊗ ei +
(
dx+ − 1

2

∑
ij

Bijx
ixjdx−

)
⊗ e+ . (10)

With gB = g̊(θ, θ) we get the following local form of the metric on MB :

gB = 2dx+dx− −
∑

Bijx
ixj(dx−)2 +

∑
i

(dxi)2 . (11)

In particular, the Levi-Civita connection of gB is determined by the Christoffel sym-
bols Γi−;− = −Γ−−;i = −

∑
j Bijx

j . If we move from the coordinates to the adapted
ON frame {∂+, ∂− + 1

2
∑
ij Bijx

ixj∂+, ∂i} there is only one surviving component of
the connection form, namely

ωi− = −ω−i = −
∑
j

Bijx
jdx− . (12)

The bi-invariant metric g̊ on g makes the decomposition g = V ∗ ⊕W an orthogonal
splitting and the isometry algebra of MB is given by

isom(MB) = soB(V )⊕ V ∗ ⊕W (13)
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with
soB(V ) =

{
A ∈ so(V ) | [A,B] = 0

}
=
{
A ∈ so(V ) | [A, v∗] = (Av)∗ for all v∗ ∈ V ∗

}
.

(14)

Remark 3.1. To fix some notation, we like to mention that two Lorentzian spaces
defined by symmetric maps B1 and B2 are isometric if and only if B1 and B2 are
conformally equivalent, i.e. there exists a real scalar c > 0 and an orthogonal trans-
formation X such that B2 = cXtB1X.
Therefore, we may and will restrict to diagonal maps B such that the space MB is
defined by a sequence of real numbers λ2

1, . . . , λ
2
n. We may also sort this sequence in

the way λ2
1 ≤ . . . ≤ λ2

n and all non-vanishing if MB is indecomposable.

Example 3.2. Consider D = 11, i.e. n = 9, and B = −4β2
(

413
16

)
. Then MB

is indecomposable and the metric is given by

gB = 2dx+dx− + 4β2
(

4
3∑
i=1

(xi)2 +
9∑
i=4

(xi)2
)

(dx−)2 +
9∑
i=1

(dxi)2 .

3.2. The Killing vector fields. A local basis of the isometry algebra of MB is pro-
vided by the Killing vector fields, i.e. by those vector fields X that obey LXgB =
0. We will denote the Killing vector fields associated to the ON frame of g by
K(+),K(−),K(i),K(i∗) and those associated to the standard basis of soB(V ) by K(ij).
In the following we consider B = diag(λ2

1, . . . , λ
2
n).

Because the metric coefficients only depend on the xi, we immediately see that ∂+
and ∂− are Killing vector fields and we write K(+) = −∂+ and K(−) = −∂−. The
ansatz

K(i) = αi(x−)∂i + βi(x−)xi∂+

K(i∗) = α∗i (x−)∂i + β∗i (x−)xi∂+
(15)

inserted into LKgB = 0 yields

∂β
(∗)
i

∂x−
= λ2

iα
(∗)
i ,

∂α
(∗)
i

∂x−
= −β(∗)

i ,

or
∂2β

(∗)
i

∂(x−)2 = −λ2
iβ

(∗)
i ,

∂2α
(∗)
i

∂(x−)2 = −λ2
iα

(∗)
i .

This motivates the further specialization to
αi = ai cos(λix−) , βi = bi sin(λix−) , α∗i = a∗i sin(λix−) , β∗i = b∗i cos(λix−) ,

and the coefficients are related by λiai = bi, −λia∗i = b∗i . By claiming the com-
mutation relations (1)-(3) we fix the remaining free parameters:1 (1) and (2) yield
a∗i = −λiai and (3) yields a2

i = 1. The resulting Killing fields that are adapted to
e+, e− and the orthonormal eigenbasis {ei} of B are K(+) = −∂+, K(−) = −∂−, and

K(i) = cos(λix−)∂i + λi sin(λix−)xi∂+ , (16)
K(i∗) = −λi sin(λix−)∂i + λ2

i cos(λix−)xi∂+ . (17)

1We have to take into account that the vector fields obey the commutation relations only up to
sign. This is due to the difference between right and left invariance when we turn from the group
structure to the structure on the coset space, see [14] for more details on this fact.
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The additional Killing vector fields that come from soB(V ) are given by the usual
so(V ) generators subject to condition (14), i.e.

K(ij) = xj∂i − xi∂j (18)

with i, j ∈ Iα for some α where {1, . . . , n} =
⋃n̂
α=1 Iα with Iα = {rα−1 + 1, . . . , rα} is

the disjoint decomposition coming from λ2
1 = . . . = λ2

r1
< λ2

r1+1 = . . . = λ2
r2
< . . . <

λ2
rn̂−1+1 = . . . = λ2

n and r0 = 0, rn̂ = n.

4. Connections and parallel spinors

We will consider special connections on a the spinor bundle S(MB) of MB in the
following, namely connections that are compatible with the homogeneous structure of
MB . If S(MB) is associated to the irreducible Clifford module such connections are
described by V ∗-equivariant linear maps g = V ∗⊕W → C`(W ) with the property that
ρ : so(W ) ⊃ V ∗ → C`(W ) coincides with the spin representation, i.e. ρ(v∗) = Γ(v∗).
Here C`(W ) denotes the Clifford algebra of W . In [13] such connections are discussed
in detail, and we will state the result in Propositions 4.1 and 4.3.

4.1. Preliminaries. Mainly to fix our notation, we recall some facts on the Clifford
algebra in this special situation. We consider C`(R1,1) = gl2C with generators γ+ =

γ(e+) = 1√
2 (iσ2 + σ1) =

√
2
(

0 1
0 0

)
, γ− = γ(e−) = 1√

2 (iσ2 − σ1) =
√

2
(

0 0
−1 0

)
and

we denote the two-dimensional volume element by σ := 1
2 [γ+, γ−] = −σ3 =

(
−1 0
0 1

)
.

If we denote the generators of C`(V ) by {γi}1≤i≤n, those of C`(W ) = gl2C ⊗̂C`(V )
are given by {Γµ}µ∈{+,−,i} = {γ+ ⊗ 1, γ− ⊗ 1, σ ⊗ γi}. In particular,

gl2C 3 r 7→ r ⊗̂1 = r ⊗ 1 ∈ C`(W ) (19)
C`(V ) 3 a 7→ 1 ⊗̂ a = 1⊗ a0 + σ ⊗ a1 ∈ C`(W ) (20)

where a = a0 + a1 ∈ C`(V ) is the decomposition into its even and odd part. In this
regard, we consider the map ¯ : C`(V ) → C`(V ) with a0 + a1 = a0 − a1. Consider
the irreducible Clifford modules S2 and S(V ) of C`(R1,1) and C`(V ). The first one
decomposes into a sum of two one dimensional half spinor spaces S±2 = ker(Γ∓) given
by the ±1-eigenspaces of σ. If we denote the two projections on the two eigenspaces
by σ± = 1

2 (1 ± σ) = − 1
2γ∓γ± then (20) is rewritten as 1 ⊗̂ a = σ− ⊗̂ a + σ+⊗̂ a =

σ−⊗ā+σ+⊗a. In our choice of γ-matrices the eigendirections are given by ~e1 = (1, 0)t
and ~e2 = (0, 1)t such that a spinor in S(W ) = S2 ⊗̂S(V ) = S−2 ⊗S(V )⊕S+

2 ⊗S(V ) =:

S−(W ) ⊕ S+(W ) can be written as ~η =
(
η1

η2

)
= ~e1 ⊗ η1 + ~e2 ⊗ η2. The action of

C`(W ) on S(W ) is now given by

(r ⊗̂ a)
(
η1
η2

)
=
(
r11ā r12a
r21ā r22a

)(
η1
η2

)
= r

(
āη1
aη2

)
(21)
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for r ∈ gl2C and a ∈ C`(V ). In particular, the image of v∗ ∈ V ∗ considered as an
element of so(W ) ⊂ C`(W ) under the spin representation, is given by

v∗ = Bv ∧ e+ 7→
1
4
(
(γ+ ⊗ 1)(σ ⊗Bv)− (σ ⊗Bv)(γ+ ⊗ 1)

)
= 1

4(γ+σ − σγ+)⊗Bv = 1
2γ+ ⊗Bv = 1√

2

(
0 Bv
0 0

)
.

(22)

4.2. The algebraic description. In terms of the notation introduced above, the
relevant spinor connections of MB are singled out as follows.

Proposition 4.1. The V ∗ equivariant linear maps that define homogeneous connec-
tions on the spinor bundle are

ρ(v∗) = 1
2γ+⊗̂Bv = 1√

2

(
0 Bv
0 0

)
,

ρ(e+) = 1
2γ+⊗̂a =

(
0
√

2 a
0 0

)
,

ρ(e−) = σ−⊗̂c+ σ+⊗̂d+ γ−⊗̂b+ γ+⊗̂ε =
(

c̄
√

2 ε√
2 b d

)
,

ρ(w) = −σ−⊗̂wb− σ+⊗̂bw −
1
2γ+⊗̂sc̄,d(w) =

(
wb − 1√

2sc̄,d(w)
0 −bw

)
.

with a, b, c, d, ε ∈ C`(V ) and
sc̄,d : C`(V )→ C`(V ), sc̄,d(x) = c̄x− xd .

The two parameters a, b are fixed to be pseudo-scalars a = α+βγ∗ and b = −α+βγ∗

if dim(V ) is even, and scalars a = −b = α if dim(V ) is odd.

Remark 4.2. We consider soB(V ) acting in the usual way on W . Then it is compat-
ible with the equivariant map ρ if it is extended by ρ(A) := Γ(A) for all A ∈ soB(V )
where Γ is the spin representation.

The curvature of a connection given by the equivariant map ρ is determined by its
values in W and given by

Rρ(X,Y ) = [ρ(X), ρ(Y )]− ρ([X,Y ]W )− Γ([X,Y ]V ∗) .
Therefore, an equivariant map ρ from Proposition 4.1 yields a flat connection if and
only if ρ is a representation.
For example, if we assume scalar parameters a = b = α the surviving components of
the curvature are

Rρ(e−, e+) =
(
−α2 α√

2 (c̄− d)
0 α2

)
(23)

Rρ(ei, ej) =
(

2α2γij −
√

2α{sc̄,d(e[i), γj]}
0 2α2γij

)
(24)

Rρ(e−, ei) = − 1√
2

(
0 qc̄,d(ei) +B(ei)
0 0

)
(25)

with
qc̄,d : C`(V )→ C`(V ), qc̄,d(x) = s2

c̄,d(x) =¯̄c2x+ xd2 − 2c̄xd .
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The flat connections from Proposition 4.1 are singled out by the following Proposition
4.3 together with Remark 4.6.

Proposition 4.3. An equivariant map ρ with ρ(e+) = 0 defines a flat connection if
and only if

ρ(v∗) = 1√
2

(
0 Bv
0 0

)
, ρ(w) = − 1√

2

(
0 sc̄,d(w)
0 0

)
,

ρ(e−) =
(
c̄
√

2 ε
0 d

)
.

(26)

with (c̄, d) subject to
qc̄,d(v) = −B(v) (27)

for all v ∈ V . In particular, ε ∈ C`(V ) remains a free parameter of the flat connection.

Example 4.4 (Example 3.2 continued). For the metric associated to the symmetric

map B = −4β2
(

413
16

)
in eleven dimensions, the pair (c̄, d) with

c̄ = −3βγ123 , d = βγ123

obeys (27). This means, the spinor connection that is defined by these data is flat. In
fact this pair together with ε = 0 has been considered in [4] and [10] as a connection
that provides a maximal amount of parallel spinors.

Remark 4.5. If the spinor bundle is not associated to the irreducible module but to
an extension of type S ⊗CN we call this an N -extension. In particular, Proposition
4.3, remains almost the same with (c̄, d) taking its values in C`(W )⊗ glNC.

In [13] we discuss in detail a large class of pairs (c̄, d) that solve condition (27), the
so called quadratic Clifford pairs. Furthermore we give an additional condition that
makes the list of solutions we present complete. This condition arises naturally in the
discussion of supersymmetry.
Although we will not need it later but for the sake of completeness, we will state the
result analog to Proposition 4.3 for ρ(e+) 6= 0.

Remark 4.6. For an equivariant map ρ with ρ(e+) = 0 to define a flat connection
we need n even and B = −2λ21. Moreover, a = Π± is mandatory. We consider the
upper sign for which the map ρ is given by

ρ(v∗) = −
√

2λ2
(

0 v
0 0

)
, ρ(e+) =

√
2α
(

0 Π+

0 0

)
,

ρ(e−) =
√

2
(
ρ0 −

√
αβ + λ2 − c̄+− βΠ− + (ε+− + ε−+ + ε++)
−αΠ− ρ0 +

√
αβ + λ2 + d−+

)
,

ρ(v) =
(
−αΠ+v

√
αβ + λ2v + sc̄+

−,d
−
+

(v)
0 αΠ−v

)
.

(28)

The free parameters are the scalars α, β, ρ0 and the Clifford element ε++. The further
contributions are related by

√
αβ + λ2 sc̄+

−,d
−
+

(v) = α sε+
−,−ε

−
+

(v) for all v ∈ V .
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4.3. The local description. The discussion so far took place in one particular point
of the manifold and, therefore, was a discussion on Lie algebras and representations.
In the following, we will translate the discussion to the manifold MB .
The choice of coordinates on MB yields a splitting of the spinor bundle S := S(MB) of
MB as S−⊕S+ with the first (resp. second) summand being the −1-eigenspaces (resp.
+1-eigenspace) of σ := 1

2 [Γ+,Γ−], i.e. the kernel of Γ+ (resp. Γ−). The projections
on the two subbundles are given by σ± = − 1

2Γ∓Γ±. We will use here the notation
~ξ = ξ1 + ξ2 for the sections in S, too. In particular, the action of Γ± interchanges
the two subbundles whereas they are preserved by the action of Γi. This is due to
σ±Γ± = 0, σ±Γ∓ = Γ∓, and σ±Γi = Γiσ±.
The Levi-Civita connection on MB induces a connection on the spinor bundle S

via the Spin-representation. It is given by ∇~ξ = d~ξ − 1
4
∑
µν ω

µνΓµν~ξ which in our
situation is

∇+~ξ = ∂+~ξ ,

∇−~ξ = ∂−~ξ −
1
2ω

+i
− Γ+i~ξ = ∂−~ξ −

1
2
∑
i

xiΓ+B(ei)ξ2 ,

∇i~ξ = ∂i~ξ .

(29)

In the following we will consider a general connection on S(MB) defined by the equi-
variant map ρ as given in Proposition 4.1. For the discussion of spinor connections
we restrict to the situation of Proposition 4.1 with scalars a = −b = α, because we
will later on discuss odd dimensional manifolds, only. We know about the dimension
of the space of parallel sections, K1 ⊂ �S: It coincides with the dimension of the kernel
of the curvature Rρ. In fact, for a connection according to Proposition 4.3 we get
dimK1 = dimS(W ) = rankS. More general, we see from (24) and (25) that α = 0
is mandatory if we assume the kernel of Rρ to be non-trivial. Moreover, in this case
the kernel is given by ker(Γ+) = S−, generically.
We will now consider this situation with ε = 0 such that the connection is entirely
determined by the pair (c̄, d). In our local coordinates the connection is given by
Dµ = ∇µ + ρ(eµ) for µ ∈ {+,−, i} and the parallel spinors satisfy D~ξ = 0. After
applying the projecton operators − 1

2Γ±Γ∓ this is

0 = ∂+ξα , (30)

0 = ∂iξ1 −
1
2Γ+sc̄,d(ei)ξ2 , (31)

0 = ∂iξ2 , (32)

0 = ∂−ξ1 −
1
2Γ+

∑
j

xjB(ej)ξ2 + c̄ξ1 , (33)

0 = ∂−ξ2 + dξ2 . (34)

From (30) we see that ~ξ is independent of x+ and from (32) and ξ2 is independent
form xi, such that (34) yields

ξ2 = ξ2(x−) = exp(−x−d)ξ0
2 (35)
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for a constant spinor ξ0
2 . Moreover, (31) yields ∂i∂jξ1 = 0 such that

ξ1 = ξ1(x−, xj) = ξ′1(x−)− 1
2
∑
i

xiΓ+sc̄,d(ei)ξ2(x−) (36)

for a spinor ξ′1 depending only on x−.
Inserting both in (33) yields

0 = ∂−ξ
′
1 + c̄ξ′1 + 1

2Γ+

(∑
i

xisc̄,d(ei)dξ2 −
∑
i

xic̄sc̄,d(ei)ξ2 −
∑
i

xiB(ei)ξ2
)

=
(
∂−ξ

′
1 + c̄ξ′1

)
− 1

2Γ+
∑
i

xi
(
qc̄,d(ei) +B(ei)

)
ξ2

The vanishing of this term means that both summands have to vanish separately such
that we end up with (

qc̄,d(v) +B(v)
)
ξ2 = 0 , (37)

ξ′1(x−) = exp(x−c̄)ξ0
1 , (38)

with ξ2 = exp(−x−d)ξ0
2 . We recall that ξ0

1 , ξ
0
2 are constant spinors that obey Γ+ξ

0
1 =

Γ−ξ0
2 = 0.

Remark 4.7. In terms of the local coordinates we again see, that the space of parallel
spinors is of dimension 1

2 dimS(W ) and parametrized by ξ0
1 , generically. In case of

maximal K1 we need the full freedom in the choice of ξ0
α in (37) and (38). In this

case the vanishing of the bracket in (37) is needed. This, of course, is the same as the
vanishing of the sole remaining curvature term in (25), i.e. (27).

4.4. A family of eleven dimensional spaces. From now on we are interested in
non-flat connections and turn to dimension eleven. More precisely, we consider a
connection that is given according to the discussion above by

c̄ := (αΓI + βΓJ)ΓK , d := (α′ΓI + β′ΓJ)ΓK (39)

with I, J,K ⊂ {1, . . . , 9} and I ∩ J ∩K = ∅. We use projections

X±IJ := 1
2 (1± ıIJΓIJ)

with ıIJ ∈ {1, i} such that (ıIJΓIJ)2 = 1. In terms of X±IJ we write

qc̄,d(ei) = α+
i ΓiX+

IJ + α−i ΓiX−IJ (40)

for some linear combinations α±i ∈ {±α±α′±β±β′} where the specific arrangement
of signs depend on whether i ∈ I, J,K, or (I ∪ J ∪K){.
We will further specify our connection and consider |I| = |J | = |K| + 1 = 2 or –
without loss of generality – I = (12), J = (34), and K = (5), i.e.

c̄ = (α+X
+
1234 + α−X

−
1234)Γ125 , d = (α′+X+

1234 + α′−X
−
1234)Γ125 , (41)

with
α± = α∓ β, α′± = α′ ∓ β′ .
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For qc̄,d we get in this case

qc̄,d(ei) =


(α− − α′+)2ΓiX+

1234 + (α+ − α′−)2ΓiX−1234 for i ∈ {1, 2}
(α− + α′+)2ΓiX+

1234 + (α+ + α′−)2ΓiX−1234 for i ∈ {3, 4}
(α+ − α′+)2ΓiX+

1234 + (α− − α′−)2ΓiX−1234 for i ∈ {5}
(α+ + α′+)2ΓiX+

1234 + (α− + α′−)2ΓiX−1234 for i ∈ {6, 7, 8, 9}

(42)

Remark 4.8. In (37) we have X−1234ξ2 = exp(−x−d)X−1234ξ
0
2 such that X−1234ξ2 =

0 ⇐⇒ X−1234ξ
0
2 = 0. Therefore, condition (38) can be read as(

qc̄,d(v) +B(v)
)
ξ0
2 = 0 .

Collecting the discussion yields the following proposition.

Proposition 4.9. For the four parameter family of connections (39) the space of
parallel spinors is of dimension 3

4 dimS(W ) determined by S(V )⊕X+
IJS(V ) ⊂ S(W )

for a metric with at most four different eigenvalues determined by α+
i from (40).

In the particular situation of (41) this is true for the metric defined by2

B = −diag
(
(α− − α′+)2

12, (α− + α′+)2
12, (α+ − α′+)2

11, (α+ + α′+)2
14
)
. (43)

Remark 4.10. The Clifford elements c, d that define the connection are invariant
with respect to soB(V ), i.e. [c, A] = [d,A] = 0 for all A ∈ soB(V ) ⊂ C`(W ).

From the calculations in Section 3.2 the space of Killing vector fields K0 of the metric
(43) is spanned by

K(+) = −∂+ , K(−) = −∂− ,
K(i) = cos(λix−)∂i + λi sin(λ1x

−)xi∂+

K(i∗) = −λi sin(λix−)∂i + λ2
i cos(λix−)xi∂+

K(ij) = xj∂i − xi∂j .

(44)

for 1 ≤ i ≤ 9 and (ij) ∈ {1, 2}2 ∪ {3, 4}2 ∪ {6, 7, 8, 9}2.
Analogously, for the space of spinors that are parallel with respect to the connection
defined by the pair (c̄, d) according to (41) the results of Section 4.3, namely (35)-
(38), yield

K1 =

~ξ ∈ �S

∣∣∣∣∣∣∣∣
~ξ = ~ξ(ξ0

1 , ξ
0
2) = exp(−x−c̄)ξ0

1

+
(

1− 1
2

∑
i

Γ+x
isc̄,d(ei)

)
exp(−x−d)ξ0

2 ,

ξ0
1 , ξ

0
2 constant ,Γ−ξ0

2 = Γ+ξ
0
1 = 0 , X−1234ξ

0
2 = 0

 (45)

5. Geometric superalgebras

5.1. Introduction. In this section we will not give the definition of geometric super-
algebras and geometric supersymmetry in general, but consider the special situation
from Proposition 4.9. Nevertheless, we will shortly recall the idea.

2From here on we use λ1 = λ2 = −i(α− − α′+), λ3 = λ4 = −i(α− + α′+), λ5 = −i(α+ − α′+),
and λ6 = . . . = λ9 = −i(α+ + α′+).
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A manifold M is said to admit a geometric superalgebra if there exists an extension of
a Lie (sub)algebra of Killing vector fields K0(M) on M to a graded skew-symmetric
superalgebra where the even part acts on the odd part as derivatives. It is called to
admit geometric supersymmetry if this extension is a Lie superalgebra. The odd part
of this algebra is assumed to be purely geometric in the following sense: We consider
a vector bundle E over M together with a connection D such that K0(M) acts on a
subspace of the space of parallel sections

K1(M) ⊆ {s ∈�E |Ds = 0}. (46)

This action then defines the even/odd-bracket of the (Lie) superalgebra. That means,
there exits a map L with LXs ∈ K1 and [LX ,LY ] = L[X,Y ] for all X,Y ∈ K0(M),
s ∈ K1(M). If there exists an extension with equality in (46) the extension is called
non-restricted.
One non-trivial, important ingredient of such extension is the pairing K1(M) ×
K1(M)→ K0(M) that is compatible with L and defines the algebra structure.
The bundle E usually is a spinor bundle over the base manifold M and a geometric
superalgebra or geometric supersymmetry is called irreducible if the spinor bundle is
modeled on an irreducible Clifford module, say S0. If it is modeled on the reducible
Clifford module S0 ⊗CN then we call it N -extended, see also Remark 4.5.
In our special situation we consider the following data:

• The rank-32 bundle S = S(MB) of spinors over the eleven dimensional Cahen-
Wallach space MB that is defined by (43).
• The connection D on S defined by (c̄, d) according to (41).
• The Lie algebra of Killing vector fields K0 and the space K1 ⊂ �S of dimension

24 that is given by the spinors parallel with respect to D, see (44) and (45).
• The charge conjugation CW = CV ⊗σ2 on the spinor space S(W ) = S(V )⊗S2

of W = V ⊕ R1,1 is skew-symmetric and can be described in terms of the
symmetric charge conjugation CV on the spinor space S(V ) of V = R9 and
the skew-symmetric charge conjugation σ2 on R1,1. This yields a symmetric
map by (~ξ, ~η) 7→

(
CW (~ξ,Γµ~η)

)
µ∈{+,−,i}, or, in terms of the two factors of

CW ,

CW (~ξ,Γ−~η) = −
√

2iCV (ξ1, η1) , CW (~ξ,Γ+~η) =
√

2iCV (ξ2, η2) ,

CW (~ξ,Γi~η) = −iCV (ξ1, γiη2)− iCV (η1, γiξ2) .
(47)

The skew-symmetry of CW and the symmetry of the map S(W )⊗S(W )→W
implies that for a fixed Clifford element a ∈ C`(W ) of degree ` the symmetry
of (~ξ, ~η) 7→ CW (~ξ, a ~η) = ∆`CW (~η, a ~ξ) is given by

∆` = −(−1)
`(`+1)

2 . (48)

• The charge conjugation on the fibers yields a spin-invariant bilinear form on
on the bundle S that we will denote by C, too. If we use the splitting of the
bundle introduced at the beginning of Section 4.3, and consider ~ξ = ξ1 + ξ2
and the same for ~η we have

C(~ξ, ~η) = C(ξ1, η2)− C(η1, ξ2) .
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• The action of the Killing vector fields K0 on the spinors is defined by the
spinorial Lie derivative

L : K0 ×�S → �S , (K, ~ξ) 7→ LK~ξ := ∇K~ξ − Γ(∇K)~ξ , (49)
see [15]. We emphasize the fact that this definition works properly only for
Killing vector fields, because in this case ∇K is indeed skew symmetric.

Nevertheless, it has to be checked, whether parallel spinors from K1 stay
parallel after applying the Lie derivative, or, in other word, the connection is
invariant under isometries.

5.2. Even-Odd and Even-Even-Odd.

Proposition 5.1. Consider K0 and K1 as defined in (44) and (45). The Lie deriv-
ative when restricted to K0 acts on K1.

For the proof of Proposition 5.1, we need to know how the operators LK = ∇K −
Γ(∇K) for K ∈ K0 act on spinors from K1. We will do this for the basic elements
{K(±),K(i),K(i∗),K(ij)}.
We will make use of

∇µ(K(−))ν = ∂µ(K(−))ν +
∑
κ

Γµκ;ν(K(−))κ =


λ2
`x
` for (µν) = (−`) ,

−λ2
`x
` for (µν) = (`−) ,

0 else ,

∇µ(K(+))ν = ∂µ(K(+))ν +
∑
κ

Γµκ;ν(K(+))κ = 0 ,

∇µ(K(i))ν = ∂µ(K(i))ν + Γµ−;ν(K(i))− +
∑
j

Γµj;ν(K(i))j

= ∂µ(K(i))ν +
∑
j

Γµj;ν(K(i))j =


−δi`βi for (µν) = (−`) ,
δi`βi for (µν) = (`−) ,
0 else ,

∇µ(K(i∗))ν = ∂µ(K(i∗))ν =


−δi`β∗i for (µν) = (−`) ,
δi`β

∗
i for (µν) = (`−) ,

0 else ,

and

∇µ(K(ij))ν = ∂µ(K(ij))ν +
∑
`

Γµ`;ν(K(ij))` =
{
δkjδi` − δikδj` for (µν) = (k`) ,
0 else .

We will also use

sc̄,d(ei) =


(α− − α′+)Γ125ΓiX+

1234 + (α+ − α′−)Γ125ΓiX−1234 i = 1, 2
(α− + α′+)Γ125ΓiX+

1234 + (α+ + α′−)Γ125ΓiX−1234 i = 3, 4
(α+ − α′+)Γ125ΓiX+

1234 + (α− − α′−)Γ125ΓiX−1234 i = 5
(α+ + α′+)Γ125ΓiX+

1234 + (α− + α′−)Γ125ΓiX−1234 i = 6, . . . , 9

which for ~ξ(ξ0
1 , ξ

0
2) according to (45) becomes

sc̄,d(ei)~ξ = iλiΓ125ΓiX+
1234

~ξ .
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Furthermore we will need
exp(−x−d) =

(
cos(iα′+x−)− i sin(iα′+x−)Γ125

)
X+

1234

+
(

cos(iα′−x−)− i sin(iα′−x−)Γ125
)
X−1234 ,

exp(−x−c) =
(

cos(iα+x
−)− i sin(iα+x

−)Γ125
)
X+

1234

+
(

cos(iα−x−)− i sin(iα−x−)Γ125
)
X−1234 .

A careful examination yields

LK(+)
~ξ = ∇+~ξ = 0 ,

LK(−)
~ξ = ∇−~ξ + 1

2
∑
j

λ2
jx
jΓ+Γj~ξ

= −c̄ξ1 − dξ2 + 1
2
∑
j

λ2
jx
jΓ+~ξ

= − exp(−x−c̄)c̄ξ0
1 − exp(−x−d)dξ0

2 + 1
2Γ+

∑
j

xj
(
c̄sc̄,d(ej) + λ2

jΓj
)
ξ2

= − exp(−x−c̄)c̄ξ0
1 − exp(−x−d)dξ0

2 + 1
2Γ+

∑
j

xjsc̄,d(ej)dξ2

= −~ξ(c̄ξ0
1 , dξ

0
2) ,

as well as

LK(i)
~ξ = αi(x−)∇i~ξ + βi(x−)xi∇+~ξ + 1

2Γ+βiΓi~ξ

= 1
2Γ+

(
αi(x−)sc̄,d(ei) + βi(x−)Γi

)
ξ2

= iλi
2 Γ+

(
cos(λix−)Γ125Γi − i sin(λix−)Γi

)
ξ2 ,

On the one hand – by recalling X+
1234ξ2 = ξ2 – we ave

LK(i)
~ξ = iλi

2 Γ+
(

cos(λix−)Γ125Γi − i sin(λix−)Γi
)(

cos(iα′+x−)− i sin(iα′+x−)Γ125
)
ξ0
2

=


iλi
2 Γ+

(
cos((λi + iα′+)x−)Γ125Γi − i sin((λi + iα′+)x−)Γi

)
ξ0
2 for i = 1, 2, 5

iλi
2 Γ+

(
cos((λi − iα′+)x−)Γ125Γi − i sin((λi − iα′+)x−)Γi

)
ξ0
2 else

=


iλi
2 Γ+

(
cos(iα−x−)Γ125Γi + i sin(iα−x−)Γi

)
ξ0
2 for i = 1, . . . , 4

iλi
2 Γ+

(
cos(iα+x

−)Γ125Γi + i sin(iα+x
−)Γi

)
ξ0
2 for i = 5, . . . , 9

and, on the other hand we have
~ξ
(
sc̄,d(ei)ξ0

2 , 0
)

= exp(−cx−)sc̄,d(ei)ξ0
2

= iλi
(

cos(iα+x
−)− i sin(iα+x

−)Γ125
)
X+

1234ΓiΓ125ξ
0
2

+ iλi
(

cos(iα−x−)− i sin(iα−x−)Γ125
)
X−1234ΓiΓ125ξ

0
2

=

iλi
(

cos(iα−x−)− i sin(iα−x−)Γ125
)
Γ125Γiξ0

2 for i = 1, . . . , 4

iλi
(

cos(iα+x
−)− i sin(iα+x

−)Γ125
)
Γ125Γiξ0

2 for i = 5, . . . , 6
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such that

LK(i)
~ξ = 1

2
~ξ
(
Γ+sc̄,d(ei)ξ0

2 , 0
)
.

Doing analogous calculations for

LK(i∗)
~ξ = 1

2Γ+
(
α∗i (x−)sc̄,d(ei) + β∗i (x−)Γi

)
ξ2

= λ2
i

2 Γ+
(

cos(λix−)Γi − i sin(λix−)Γ125Γi
)
ξ2 .

we get

LK(i∗)
~ξ = −λ

2
i

2 Γ+~ξ
(
Γiξ0

2 , 0
)
.

In addition we obtain
LK(ij)

~ξ = 1
2
~ξ
(
Γijξ0

1 ,Γijξ0
2
)

where we have to take into account (ij) ∈ {1, 2}2 ∪ {3, 4}2 ∪ {6, . . . , 9}2. We collect
the result as follows.

Remark 5.2. The Lie derivatives according to Proposition 5.1 are explicitly given
by

LK(+)
~ξ
(
ξ0
1 , ξ

0
2
)

= 0 ,

LK(−)
~ξ
(
ξ0
1 , ξ

0
2
)

= −~ξ
(
c̄ξ0

1 , dξ
0
2
)
,

LK(i)
~ξ
(
ξ0
1 , ξ

0
2
)

= −~ξ
(
− 1

2Γ+sc̄,d(ei)ξ0
2 , 0
)
,

LK(i∗)
~ξ
(
ξ0
1 , ξ

0
2
)

= −~ξ
( 1

2Γ+B(ei)ξ0
2 , 0
)
,

LK(ij)
~ξ
(
ξ0
1 , ξ

0
2
)

= −~ξ
(
− 1

2Γijξ0
1 ,− 1

2Γijξ0
2
)
.

For µ ∈ {±, i, i∗, ij} we can rewrite this as

LK(µ)
~ξ
(
ξ0
1 , ξ

0
2
)

= −~ξ
(
ρ(eµ)(ξ0

1 , ξ
0
2)
)

(50)

with ρ according to Proposition 4.1 and Remark 4.2 as well as ei∗ := e∗i and soB(V ) =
span{eij} with ρ(eij) = − 1

2Γij .

5.3. Odd-Odd and Even-Odd-Odd.

Definition 5.3. We use the charge conjugation C on S to define a symmetric map

K1 ⊗K1 → K0 .

Motivated by (47), we consider the projection

K1 ⊗K1 → span{K(+),K(−),K(i)} ⊂ K0 .

given by

{~ξ, ~η}W = {~ξ, ~η}+K(+) + {~ξ, ~η}−K(−) +
∑
i

{~ξ, ~η}iK(i) (51)

with
{~ξ, ~η}− = C(ξ0

2 ,Γ+η
0
2) , {~ξ, ~η}+ = C(ξ0

1 ,Γ−η0
1) ,

{~ξ, ~η}i = C(ξ0
1 ,Γiη0

2) + C(η0
1 ,Γiξ0

2) .
(52)
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We complete this projection to {·, ·} by the two maps

K1 ⊗K1 → span{K(i∗)} ⊂ K0 , {~ξ, ~η}∗ =
∑
i

{~ξ, ~η}i
∗
K(i∗) , (53)

and

K1 ⊗K1 → span{K(ij)} ⊂ K0 , {~ξ, ~η}so = 1
2
∑
ij

{~ξ, ~η}ijK(ij) . (54)

The coefficients therein are defined by

{~ξ, ~η}i
∗

= C
(
ξ0
1 , sc̄,d(B−1(ei))η0

2
)
− C

(
sc̄,d(B−1(ei))ξ0

2 , η
0
1
)

= i

λi
C
(
ξ0
1 ,Γ125Γiη0

2
)

+ i

λi
C
(
η0

1 ,Γ125Γiξ0
2
) (55)

and

{~ξ, ~η}ij = − 1
2C
(
ξ0
2 ,Γ+

(
sd,c̄(ej)Γi + Γisc̄,d(ej)

)
η0

2
)

=


iλ1C

(
ξ0
2 ,Γ+Γ5ξ

0
2
)

for (ij) = (12)
iλ3C

(
ξ0
2 ,Γ+Γ12345ξ

0
2
)

for (ij) = (34)
iλ6C

(
ξ0
2 ,Γ+Γ125ijξ

0
2
)

for (ij) ∈ {6, . . . , 9}2

=: iεjλjC
(
ξ0
2 ,Γ+Γ125Γijξ0

2
)

for (ij) ∈ {1, 2}2 ∪ {3, 4}2 ∪ {6, . . . , 9}2

(56)

In (52),(55) and (56) the spinors ξ0
1 , ξ

0
2 and η0

1 , η
0
2 are the constant spinors that define

the parallel spinors ~ξ and ~η, see Remark 4.7 and the calculations before.

Remark 5.4. The construction in Definition 5.3 can be made more general such that
it provides a superalgebra for a wide class of connections according to Proposition
4.1. More precisely, it can be shown that this is the only possible algebra structure.
This is used in [12] to start a systematic classification of supersymmetric extensions of
Cahen-Wallach spaces that in particular covers the examples found in the literature,
see [4–11, 16], for example. A first attempt of such systematic treatment has been
started in [17] but with the restriction to {·, ·} = {·, ·}W , which turns out to be too
restrictive for allowing a superalgebra with non-trivial odd-odd bracket.

Proposition 5.5. For any K ∈ K0 and ξ ∈ K1[
K, {~ξ, ~ξ}

]
= 2{LK~ξ, ~ξ} .

The statement of Proposition 5.5 is clear for K = K(+) such that we may restrict
to K ∈ {K(−),K(i),K(i∗),K(ij)}. The remaining proof needs the symmetry of the
charge conjugation as stated in (48). For ~ξ = ~ξ(ξ0

1 , 0) we have

[K, {~ξ, ~ξ}] = C(ξ0
1 ,Γ−ξ0

1)[K,K(+)] = 0 and {LK~ξ, ~ξ} = 0 .

The last equation is only non obvious for K = K(−),K(ij) and is then due to

C(c̄ξ0
1 ,Γ−ξ0

1) = ∆0∆3C(ξ0
1 , c̄Γ−ξ0

1) = C(ξ0
1 , c̄Γ−ξ0

1)
= ∆4C(ξ0

1 , c̄Γ−ξ0
1) = −C(ξ0

1 , c̄Γ−ξ0
1) ,

C(Γijξ0
1 ,Γ−ξ0

1) = ∆0∆2C(ξ0
1 ,ΓijΓ−ξ0

1) = −C(ξ0
1 ,ΓijΓ−ξ0

1)
= −∆3C(ξ0

1 ,ΓijΓ−ξ0
1) = C(ξ0

1 ,ΓijΓ−ξ0
1) .
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If we consider ~ξ = ~ξ(0, ξ0
2) we get

[K(−), {~ξ, ~ξ}] = {~ξ, ~ξ}−[K(−),K(−)] + 1
2
∑
ij

{~ξ, ~ξ}ij [K(−),K(ij)] = 0 ,

{LK(−)
~ξ, ~ξ} = {~ξ(0, dξ0

2), ~ξ(0, ξ0
2)}

= C(ξ0
2 ,Γ+dξ

0
2)K(−) + iλ6

2

9∑
ij=6

C(ξ0
2 ,Γ+Γ125ijdξ

0
2)K(ij)

+ iλ1C(ξ0
2 ,Γ+Γ5dξ

0
2)K(12) + iλ3C(ξ0

2 ,Γ+Γ12345dξ
0
2)K(34)

= 0 ,

because for (ij) ∈ {3, 4}2 ∪ {6, . . . , 9}2 we have

C(ξ0
2 ,Γ+Γ125ijdξ

0
2) = ∆6C(dξ0

2 ,Γ+Γ125ijξ
0
2) = ∆6∆0∆3C(ξ0

2 , dΓ+Γ125ijξ
0
2)

= −∆6∆0∆3C(ξ0
2 ,Γ+Γ125ijdξ

0
2) = −C(ξ0

2 ,Γ+Γ125ijdξ
0
2) ,

C(ξ0
2 ,Γ+Γ5dξ

0
2) = ∆2C(dξ0

2 ,Γ+Γ5ξ
0
2) = ∆2∆0∆3C(ξ0

2 , dΓ+Γ5ξ
0
2)

= −∆2∆0∆3C(ξ0
2 ,Γ+Γ5dξ

0
2) = −C(ξ0

2 ,Γ+Γ5dξ
0
2) ,

C(ξ0
2 ,Γ+dξ

0
2) = ∆1C(dξ0

2 ,Γ+ξ
0
2) = ∆1∆0∆3C(ξ0

2 , dΓ+ξ
0
2)

= −∆1∆0∆3C(ξ0
2 ,Γ+dξ

0
2) = −C(ξ0

2 ,Γ+Γ5dξ
0
2) .

For K = K(k`) we get

[K(k`), {~ξ, ~ξ}] = {~ξ, ~ξ}−[K(k`),K(−)] + 1
2
∑
ij

{~ξ, ~ξ}ij [K(k`),K(ij)]

= − i
∑
ij

εjλjC(ξ0
2 ,Γ+Γ125Γijξ0

2)δi[kK(`]j)

=
{

0 for (k`) = (12), (34)
iλ6
∑9
ij=6 C(ξ0

2 ,Γ+Γ125Γj[kξ0
2)K(`]j) for (k`) ∈ {6, . . . , 9}2

2{LK(k`)
~ξ, ~ξ} = {~ξ(0,Γk`ξ0

2), ~ξ(0, ξ0
2)}

= C(ξ0
2 ,Γ+Γk`ξ0

2)︸ ︷︷ ︸
=0, ∆3=−1

K(−) + iλ6

2

9∑
ij=6

C(ξ0
2 ,Γ+Γ125ijΓk`ξ0

2)K(ij)

+ iλ1 C(ξ0
2 ,Γ+Γ5Γk`ξ0

2)︸ ︷︷ ︸
=0, ∆4=−1

K(12) + iλ3 C(ξ0
2 ,Γ+Γ12345Γk`ξ0

2)︸ ︷︷ ︸
=0, ∆4=∆8=−1

K(34)

= iλ6

2

9∑
ij=6

C(ξ0
2 ,Γ+Γ125ΓijΓk`ξ0

2)K(ij)

=
{

0 for (k`) = (12), (34)
iλ6
∑9
ij=6 C(ξ0

2 ,Γ+Γ125Γj[kξ0
2)K(`]j) for (k`) ∈ {6, . . . , 9}2

For K = K(k) we get

[K(k), {~ξ, ~ξ}] = {~ξ, ~ξ}−[K(k),K(−)] + 1
2
∑
ij

{~ξ, ~ξ}ij [K(k),K(ij)]
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= C(ξ0
2 ,Γ+ξ

+
2 )K(k∗) + 1

2
∑
ij

{~ξ, ~ξ}ij(δkjK(i) − δkiK(j))

= C(ξ0
2 ,Γ+ξ

+
2 )K(k∗) + {~ξ, ~ξ}12(δk2K(1) − δk1K(2))

+ {~ξ, ~ξ}34(δk4K(3) − δk3K(4)) +
9∑
j=6
{~ξ, ~ξ}jkK(j) ,

2{LK(k)
~ξ, ~ξ} = {~ξ(Γ+sc̄,d(ek)ξ0

2 , 0), ~ξ(0, ξ0
2)}

=
∑
j

i

λj
C(Γ+sc̄,d(ek)ξ0

2 ,Γ125Γjξ0
2)K(j∗)

+
∑
j

C(Γ+sc̄,d(ek)ξ0
2 ,Γjξ0

2)K(j)

= −
∑
j

λk
λj
C(ξ0

2 ,Γ+X
+
1234ΓkΓjX+

1234ξ
0
2)K(j∗)

+ iλk
∑
j

C(ξ0
2 ,Γ+X

+
1234ΓkΓ125Γjξ0

2)K(j)

= C(ξ0
2 ,Γ+ξ

0
2)K(j∗)

+ iλ1C(ξ0
2 ,Γ+Γ5ξ

0
2)(δk2K(1) − δk1K(2))

+ iλ3C(ξ0
2 ,Γ+Γ12345ξ

0
2)(δk4K(3) − δk3K(4))

+ iλ6

9∑
j=6

C(ξ0
2 ,Γ+Γ125jkξ

0
2)K(j) .

In the last step all other summands vanish because of skew-symmetry, e.g.

λ3C(ξ0
2 ,Γ+X

+
1234Γ4Γ125Γ5ξ

0
2)K(5) = −λ3C(ξ0

2 ,Γ+Γ124ξ
0
2)K(5)

∆4=−1= 0 ,

or because X−1234ξ
0
2 = 0, e.g.

λ1C(ξ0
2 ,Γ+X

+
1234Γ5Γ125Γ1ξ

0
2)K(1) = −λ1C(ξ0

2 ,Γ+Γ2X
−
1234ξ

0
2)K(1) = 0 .

By similar arguments, we get that for K = K(k∗) the following terms coincide:

[K(k∗), {~ξ, ~ξ}] = {~ξ, ~ξ}−[K(k∗),K(−)] + 1
2
∑
ij

{~ξ, ~ξ}ij [K(k∗),K(ij)]

2{LK(k∗)
~ξ, ~ξ} = − λ2

k{~ξ(Γ+Γkξ0
2 , 0), ~ξ(0, ξ0

2)} .

We collect the result of Section 5 in the following statement.

Theorem 5.6. The indecomposable Cahen-Wallach space MB and the connection D
on its spinor bundle according to Proposition 4.9 define a non-restricted geometric
superalgebra.

• The even and odd part, K0 and K1, of the underlying graded vector space are
given by (44) and (45), respectively.
• The product structure is given by the usual commutator on K0 and completed

by the even-odd bracket defined by the Lie derivative, see Remark 5.2, and the
odd-odd bracket according to (52), (55), and (56) from Definition 5.3.
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We end this section with a short comment on the question if the odd part of the
geometric superalgbra is minimal in a certain sense.

Remark 5.7. Because K(i∗) acts by LK(i∗)
~ξ(0, ξ0

2) = λi~ξ(Γ+Γiξ0
2 , 0) we have

LK(i∗)
~ξ(0, ξ0

2) ∈
{
X+

1234S for i = 5, . . . , 9 ,
X−1234S for i = 1, . . . , 4 .

Therefore, a reduction of K1 in Theorem 5.6 is only possible if some of the eigenvalues
of B vanish, i.e. if MB is decomposable.3

There are special configurations of parameters in the metric (43) that yield decompos-
able spaces, namely α+ = ±α′+ and α− = ±α′+. In fact a reduction is only possible
if α− = α′+ = 0 or α+ = α′+ = 0.

6. Geometric Supersymmetry

6.1. Odd-Odd-Odd. In this section we will show that for a special set of parameters
the geometric superalgebra from Theorem 5.6 in fact defines geometric supersymme-
try.
We recall the fact that a superalgebra is a Lie superalgebra if the graded Jacobi
identity is fulfilled, i.e. for all elements x, y, z we have

(−1)|x||z|[x, [y, z] + (−1)|y||z|[z, [x, y]] + (−1)|x||y|[y, [z, x]] = 0

where | · | denotes the Z2-degree.
If a Cahen-Wallach space MB – or, more precisely, K0 ⊕ K1 – defines a geometric
superalgebra, the only obstruction to geometric supersymmetry is the odd-odd-odd
bracket. Furthermore, due to polarization it is enough to ask for the vanishing of

L{~ξ,~ξ}~ξ = {~ξ, ~ξ}+LK(+)
~ξ + {~ξ, ~ξ}−LK(−)

~ξ +
∑
i

{~ξ, ~ξ}iLK(i)
~ξ

+
∑
i

{~ξ, ~ξ}i
∗
LK(i∗)

~ξ + 1
2
∑
ij

{~ξ, ~ξ}ijLK(ij)
~ξ

(57)

for all ~ξ ∈ K1.
In our situation we use the notations from Section 5, in particular (50), (52), (55),
and (56), such that the vanishing of L{~ξ,~ξ}~ξ for ~ξ = ~ξ(ξ0

1 , ξ
0
2) is

0 = − C
(
ξ0
2 ,Γ+ξ

0
2
)
~ξ
(
c̄ξ0

1 , dξ
0
2
)

+ iλ6

4

9∑
ij=6

C
(
ξ0
2 ,Γ+Γ125ijξ

0
2
)
~ξ
(
Γijξ0

1 ,Γijξ0
2
)

+ iλ1

2 C
(
ξ0
2 ,Γ+Γ5ξ

0
2
)
~ξ
(
Γ12ξ

0
1 ,Γ12ξ

0
2
)

+ iλ3

2 C
(
ξ0
2 ,Γ+Γ12345ξ

0
2
)
~ξ
(
Γ34ξ

0
1 ,Γ34ξ

0
2
)

+ i
∑
i

λiC
(
ξ0
1 ,Γiξ0

2
)
~ξ
(
Γ+Γ125Γiξ0

2 , 0
)
− i
∑
i

λiC
(
ξ0
1 ,Γ125Γiξ0

2
)
~ξ
(
Γ+Γiξ0

2 , 0
)
.

3As reduction we consider only those for which the resulting algebra is nontrivial, i.e. Γ+K1 6= 0.
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Together with ~ξ(ξ0
1 , ξ

0
2) = 0⇔ ξ0

1 = ξ0
2 = 0 this yields the following two equations for

the two constant spinors

0 = − α′+C
(
ξ0
2 ,Γ+ξ

0
2
)

Γ125ξ
0
2 +

α+ + α′+
4

9∑
ij=6

C
(
ξ0
2 ,Γ+Γ125ijξ

0
2
)
Γijξ0

2

+
α− − α′+

2 C
(
ξ0
2 ,Γ+Γ5ξ

0
2
)
Γ12ξ

0
2 +

α− + α′+
2 C

(
ξ0
2 ,Γ+Γ12345ξ

0
2
)
Γ34ξ

0
2

and

0 = − α+

2 C
(
ξ0
2 ,Γ+ξ

0
2
)
(Γ125 − Γ345)ξ0

1 −
α−
2 C

(
ξ0
2 ,Γ+ξ

0
2
)
(Γ125 + Γ345)ξ0

1

+
α− − α′+

2 C
(
ξ0
2 ,Γ+Γ5ξ

0
2
)
Γ12ξ

0
1 +

α− + α′+
2 C

(
ξ0
2 ,Γ+Γ12345ξ

0
2
)
Γ34ξ

0
1

+
α+ + α′+

4

9∑
ij=6

C
(
ξ0
2 ,Γ+Γ125ijξ

0
2
)
Γijξ0

1

+ (α− − α′+)
2∑
i=1

(
C
(
ξ0
1 ,Γiξ0

2
)

Γ125Γiξ0
2 − C

(
ξ0
1 ,Γ125Γiξ0

2
)
Γiξ0

2
)

+ (α− + α′+)
4∑
i=3

(
C
(
ξ0
1 ,Γiξ0

2
)

Γ125Γiξ0
2 − C

(
ξ0
1 ,Γ125Γiξ0

2
)
Γiξ0

2
)

− (α+ − α′+)
(
C
(
ξ0
1 ,Γ5ξ

0
2
)

Γ12ξ
0
2 − C

(
ξ0
1 ,Γ12ξ

0
2
)
Γ5ξ

0
2
)

+ (α+ + α′+)
9∑
i=6

(
C
(
ξ0
1 ,Γiξ0

2
)

Γ125Γiξ0
2 − C

(
ξ0
1 ,Γ125Γiξ0

2
)
Γiξ0

2
)
.

We may rewrite this in terms of V = R9 by considering ξ0
1 , ξ

0
2 ∈ S(V ) and using the

conventions from Section A

0 = − α′+CV
(
ξ0
2 , ξ

0
2
)
γ125ξ

0
2 +

α+ + α′+
4

9∑
ij=6

CV
(
ξ0
2 , γ125ijξ

0
2
)
γijξ

0
2

+
α− − α′+

2 CV
(
ξ0
2 , γ5ξ

0
2
)
γ12ξ

0
2 +

α− + α′+
2 CV

(
ξ0
2 , γ12345ξ

0
2
)
γ34ξ

0
2

(58)

and

0 = α+ + α−
2 CV

(
ξ0
2 , ξ

0
2
)
γ125ξ

0
1 −

α+ − α−
2 CV

(
ξ0
2 , ξ

0
2
)
γ345ξ

0
1

+
α− − α′+

2 CV
(
ξ0
2 , γ5ξ

0
2
)
γ12ξ

0
1 +

α− + α′+
2 CV

(
ξ0
2 , γ12345ξ

0
2
)
γ34ξ

0
1

+
α+ + α′+

4

9∑
ij=6

CV
(
ξ0
2 , γ125ijξ

0
2
)
γijξ

0
1

− 2(α− − α′+)
2∑
i=1

(
CV
(
ξ0
1 , γiξ

0
2
)
δi[1γ2]5ξ

0
2 − CV

(
ξ0
1 , δi[1γ2]5ξ

0
2
)
γiξ

0
2
)

(59)

+ (α− + α′+)
4∑
i=3

(
CV
(
ξ0
1 , γiξ

0
2
)
γ125iξ

0
2 − CV

(
ξ0
1 , γ125iξ

0
2
)
γiξ

0
2
)

− (α+ − α′+)
(
CV
(
ξ0
1 , γ5ξ

0
2
)
γ12ξ

0
2 − CV

(
ξ0
1 , γ12ξ

0
2
)
γ5ξ

0
2
)
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+ (α+ + α′+)
9∑
i=6

(
CV
(
ξ0
1 , γiξ

0
2
)
γ125iξ

0
2 − CV

(
ξ0
1 , γ125iξ

0
2
)
γiξ

0
2
)
. (60)

A direct computation shows that (59) and (58) are obtained only for α+ = −3α′+.

Theorem 6.1. The geometric superalgebra of the indecomposable Cahen-Wallach
space MB according to Theorem 5.6 yields non restricted geometric supersymmetry if
and only if

B = −diag
(
(α− − α′+)2

12, (α− + α′+)2
12, 16α′2+11, 4α′2+14

)
and (c̄, d) given by4

c̄ =
(
− 3α′+X+

1234 + α−X
−
1234

)
Γ125, d = α′+X

+
1234Γ125 .

7. The moduli space of geometric supersymmetry

7.1. The moduli space of geometric superalgebras and supersymmetries.
The moduli space of geometric superalgebras according to Theorem 5.6 is naturally
parameterized by

(α−, α′+, α+) ∈ R3 \
{

(±α′+, α′+, α+), (α−, α′+,±α′+) |α+, α−, α
′
+ ∈ R

}
.

If we omit the euclidean configuration and divide out the isometries defined by the
action of positive(!) scalars as well as the isometries defined by (α−, α′+, α+) ∼
(−α−, α′+, α+) we obtain a subset of the closed disc

(α′+, α+) ∈ C′ = D2 \
{

(α′+, α+) |α+ = ±α′+ or α2
+ + 2α′+2 = 1

}
, (61)

see Figure 1.

Proposition 7.1. The compactified moduli space of geometric superalgebras according
to Theorem 5.6 is Ĉ′ = D2 and (61). Its obtained by adding the decomposable, non-
euclidean configurations indicated by the diagonals and the ellipse in Figure 1.
If we divide out the remaining isometries defined by the antipodal map the resulting
space is Ĉ = D2, too, because S1 = RP 1. More precisely, the result is an S1-cone
over the base point P2 and the decomposable spaces are associated to conic sections:
Two different line segments as well as one ellipse.

4Strictly speaking, we may add an arbitrary summand β′X−1234Γ125 to d without changing the
result, because X−1234ξ

0
2 = 0.
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Figure 1. The moduli space Ĉ′ of geometric superalgebras
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66
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��

KK

α+ = −3α′+
geometric supersymmetry

1

The geometric supersymmetries according to Theorem 6.1 are parameterized by

(α−, α′+) ∈ R2 \ {(α−,±α−), (α−, 0) |α− ∈ R} .

If we divide out the isometries given by the conformal equivalence as mentioned
in Remark 3.1 as well as the isometries given by (α′+, α−) 7→ (α+, α−) we get the
following result.

Proposition 7.2. The moduli space of geometric supersymmetries according to The-
orem 6.1 is given by

C0 =
(
0, π4

)
∪
(
π
4 ,

π
2
]
.

The compactification of the moduli space is done by adding the decomposable, non-
euclidean spaces. The result is the compact interval

Ĉ0 =
[
0, π2

]
.

Remark 7.3. The moduli of geometric supersymmetries can be identified with the
line α+ = −3α′+ in Figure 1, at least after identifying via antipodal map. The
correspondence Ĉ0 → Ĉ ′ is

φ 7→ ±1√
1 + 9 sin2 φ

(sinφ,−3 sinφ) .

7.2. The singluar points as N-extended supersymmetries. As we saw above,
there are are two configurations of parameters in the compactified moduli Ĉ0 of geo-
metric supersymmetries that yield decomposable spaces. They are associated to the
points P1 = P ′1 and P2 in Figure 1, respectively
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i. P2 (α′+ = 0) with
B0 = −α2

−diag (14,O5) .

In this case we have c = α−Γ125X
−
1234 and d = 0. Therefore, the action on

σ−X
+S is trivial, and we may further reduce K1 to

X−1234S
+
11 ⊕X

+
1234S

−
11 ⊂ S

+
11 ⊕ S

−
11 = S11 .

ii. P1 (α′+ = ±α−) with

B± = −4α2
−diag (411,16,O2) .

In this case a further reduction is not possible.

We emphasize the fact, that in both cases i. and ii. conditions (58) and (59) don’t see
the Killing vector fields associated to the zero eigenvalues of B.
The geometric supersymmetries on the decomposable eleven dimensional spaces that
are associated to the singular points of the moduli space can be interpreted as N -
extended geometric supersymmetries in lower dimensions D = 11 − d, at least if we
restrict the even part K0 in a suitable way, i.e. to i, i∗ ∈ {1, . . . , D − 2}.

i. The singular point P2 can be associated to restricted ν = 1/2, 4-extended
geometric supersymmetry in six dimensions. The ingredients are as follows

• The D = 6 Cahen-Wallach space M6 associated to B = −β214.
• The spinor bundle S = S(M6)⊗C4,
• The bilinear form C = C6 ⊗ C5 with C5 being the charge conjugation on
S5 = C4.

• The non-flat connection according to Proposition 4.1 that is defined by

c̄ = βX−1234Γ(6)
12 ⊗ T, d = 0

with T being some vector in C`1(R5).
• The even part is defined by the Killing vector fields of M6.
• The odd part K1 is defined by

(X−1234S
−
6 ⊕X

+
1234S

+
6 )⊗C4 = Π+S6 ⊗C4 .

The space we just described is exactly the D = 6, N = 4 supergravity back-
ground discussed in [16].

Remark 7.4. We may take a closer look at Examples 3.2 and 4.4. A straight for-
ward generalization yields non-restricted ν = 1 geometric superalgebras on Cahen-
Wallach spaces of dimension eleven. The associated symmetric map is given by
B = −diag

(
(α− α′)213, (α+ α′)216

)
. The connection according to Proposition 4.3

is defined by the pair (c̄, d) =
(
αΓ(11)

125 , α
′Γ(11)

125

)
and is flat.

In particular, there is a unique pair (α, α′) = (−3β, β) for which geometric supersym-
metry is achieved, see [4, 10].
Nevertheless, if we restrict the odd part of the geometric superalgebra to X−1234S

−
11 ⊕

X+
1234S11 and consider α′ = 0 we see the following feature:

Although the analog to (58) and (59) is not obtained for the full summation 1, . . . , 9,
it is obtained for a summation 1, . . . , 4.
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Therefore, if we again restrict the even part in a suitable way, i.e. to 1, . . . , 4, we get
a super Lie algebra that can be interpreted as the same restricted ν = 1/2, 4-extended
geometric supersymmetry as before, but with (c̄, d) =

(
βΓ(6)

12 ⊗ T, 0
)

instead.

The main differences to the interpretation before is, that in this case the eleven
dimensional oxidation is flat, indecomposable, and defines a geometric superalgebra
only, instead of geometric supersymmetry.

ii. The singular point P1 can be associated to non-restricted, i.e. ν = 3/4, 2-
extended geometric supersymmetry in nine dimensions. Here the correspon-
dence is as follows.

• The D = 9 Cahen-Wallach space M9 associated to B = −4α2diag (411,16).
• The spinor bundle S = S(M9)⊗C2.
• The bilinear form C = C9 ⊗ σ1.
• The non-flat connection that is defined according to Proposition 4.1 and Re-

mark 4.5 by

c = −αΓ(9)
1 ⊗ 12 + 2αΓ(9)

123 ⊗ iσ3, d = α

2 Γ(9)
1 ⊗ 12 + α

2 Γ(9)
123 ⊗ iσ3 .

• The even part is defined by the Killing vector fields of M9.
• The odd part K1 is then defined by(

S7 ⊕X−23S7)⊕
(
S7 ⊕X+

23S7
)
⊂ (S2 ⊗ S7)⊕ (S2 ⊗ S7) = S9 ⊗C2 .

Although we have been very brief in the description of the two singular points, we hope
that the reader is well prepared to handle these example by using the preliminaries
provided in this text.

Appendix A. Clifford matrices

We use the following explicit Clifford representations in dimension nine and eleven
for the calculations in Section 6.
Consider matrices La for 1 ≤ a ≤ 7 that are defined as matrix representation of left
multiplication by imaginary octonions:

L1 =


–11 –11 –11 1–1

 , L2 =


–1 11–1 –1–11 1

 , L3 =


–1–111 –11–11

 ,

L4 =


–1 1 1 11–1–1–1

 , L5 =


–1–1 1–111 1–1

 , L6 =


–1–1–1 11–11 1

 ,

L7 =


–11–1–111–11

 .

Starting from this we define γ-matrices {γi}i∈{1,...,9} for V = R9 by

γa := σ1 ⊗ La , γ8 = −iσ2 ⊗ 1 , γ9 := −iσ3 ⊗ 1 .
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The charge conjugation matrix for V obeys γtiCV = CV γi and is given by
CV = σ3 ⊗ 1 .

From this we get the γ-matrices {Γµ}µ∈{±,i} on W = R1,10 by the procedure described
in Section 4.1. In particular, the charge conjugation obeys ΓtµCW = CWΓµ and is
given by

CW = σ2 ⊗ CV .

Here as well as in the main text the matrices σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and

σ1 =
(

1 0
0 −1

)
that obey σiσj = i

∑3
k=1 εijkσk denote the Pauli-matrices.
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