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1. Introduction

Physics would be dull and life most unfulfilling if all physical

phenomena around us were linear. Fortunately, we are

living in a nonlinear world. While linearization beautifies

physics, nonlinearity provides excitement in physics.

Y. R. Shen in The Principles of Nonlinear Optics

The proof of second harmonic generation (SHG) in quartz with a pulsed ruby optical maser

by Franken in 1961 [1] is usually considered to be the first observation of nonlinear optics.

In nonlinear optics the response of a material on the light intensity is nonlinear, because

the incident light changes the optical properties of the material [2, 3]. This leads to a

variety of effects, for example, the saturation of light absorption from materials for high

intensities [4]. The most prominent nonlinear optical effects are those which change the

wavelength of laser light. It is possible to manipulate the wavelength and pulse duration

of laser light with these effects by passing it through a suitable optical nonlinear medium.

The wavelength can be shifted by Raman scattering [5] or multiplied by second and third

harmonic generation (THG) [6]. The presence of multiple simultaneous wavelengths in

a material leads to an even broader range of effects, such as sum frequency generation

(SFG) and difference frequency generation (DFG) [7, 8]. The main focus of this thesis

lies on SHG and THG in semiconductors. In SHG two photons from a fundamental light

beam are annihilated and a single photon with twice the energy is created. In THG three

photons are converted into a single photon with thrice the energy.

The first nonlinear optical experiments focused on the verification of proposed wave-

length conversion effects. The possibility of changing the wavelength of laser light led to

many applications, which are used in part in the experiments presented here. For funda-

mental research the inference from observed optical nonlinearities on material properties

was very successful and finally led to its own field of research [1, 9, 10]. Spectroscopy with

SHG proved to be a powerful tool for different material systems [11–15], including organic

matter in biology [16–18]. SHG is one of the simplest optical nonlinearities and can be

induced in every material with a laser. It offers certain advantages over the established

linear optical investigations. Intense laser light can be tuned to the transparency region

of a material, which is especially interesting for organic matter like cells, most of which

would be influenced or even damaged by other techniques. The high number of photons

interacting in this process offer more degrees of freedom, since their relative polarization,

wave vector and frequency can be tuned [9]. The multi-photon transitions in nonlinear

1



1. Introduction 2

optics obey other selection rules than the one-photon transitions in linear optics [19] and

yield complementary information about energy levels in a system [20].

Besides the success in fundamental research, many of the nonlinear optical processes are

exploited for technological applications. A well-known example is the green laser pointer.

Its pump laser emits infrared light, which is converted into green light by a potassium ti-

tanyl phosphate (KTP) crystal through nonlinear optics. These diode pumped solid state

frequency-doubled (DPSSFD) lasers gave the initial access to green and blue laser diodes,

for which, only recently, direct solutions were realized by Osram [21]. Many more sophisti-

cated laser systems exploit the strong optical nonlinearities over a broad spectral range of

β barium borate (BBO) and monopotassium phosphate (KPD) to enhance the available

spectral range. Optical parametric amplifiers (OPA) and optical parametric oscillators

(OPO) [22, 23] control the nonlinearities of the crystals by temperature or angle tuning

and allow a continuous wavelength tuning over a broad spectral range. Additional SHG

and THG stages are also common tools to widen spectral ranges of various laser systems.

Periodically poled materials are used to integrate such effects directly into fibers or opti-

cal chips [24, 25] and allow the integration of these techniques into optical communication

technologies [26]. The application of such techniques in semiconductor spectroscopy is

presented in the Experimental methods chapter.

Most of the reported SHG experiments on semiconductors were performed with optical

harmonics in the transparency region of the material. The measurements are mostly done

on a limited spectral range [27, 28], which can be provided by typical laser systems. The-

oretical studies of SHG in semiconductors, on the contrary, often focus on first-principles

calculations over the whole band structure for several eV [29, 30]. The role of excitons

in the vicinity of the band gap in second harmonic generation is rather unexplored [31].

These bound electron-hole states play an important role in the interaction of light with

semiconductors near the band gap. Their energy lies below the band gap and they are

the main source of photoluminescence (PL) at low temperatures. Excitons lead to sharp

resonances in SHG spectra, which are systematically influenced by magnetic fields, elec-

tric fields, strain, and temperature [32, 33]. The identified resonances have to be assigned

to the specific crystal state while the microscopic reason for the nonlinearities has to be

understood. In this thesis, several semiconductors are investigated in the vicinity of the

band gap over a broad spectral range. Found resonances are assigned to crystal states and

microscopic descriptions are derived. Appropriate nonlinear measurements such as SHG,

THG, and multi-photon absorption combined with external perturbations are compared

and the optimal technique for each case is identified. The investigated semiconductors

GaAs, GaN, Cu2O, and Si have important technological applications and are of interest

for fundamental research. The important properties of these materials are summarized in

Table 1.1.

In Chap. 4 measurements of the semiconductor gallium arsenide (GaAs) are presented.

The material has a cubic crystal lattice and a band gap of Eg = 1. 420 eV [34]. The zinc-

blende lattice is not centrosymmetric and SHG in the electric dipole (ED) approximation

is allowed.
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Table 1.1. – List of investigated semiconductors. Additionally to the lattice
type it is noted if the structure is centrosymmetric (CS) or not (not CS).

Material Eg(T = 1. 6 K) Eg(T = 300 K) lattice type Exciton binding energy

GaAs 1.519 eV 1.424 eV cubic (not CS) 4.2 meV

GaN 3.50 eV 3.39 eV wurtzite (not CS) 28 meV

Cu2O 2.172 eV 2.137 eV cubic (CS) 98 meV

Si 1.17 eV 1.12 eV cubic (CS) 15 meV

SiC (6H) 3. 00 eV 3. 02 eV hexagonal (not CS)

There are existing reports about SHG in the vicinity of the GaAs band gap [32, 35].

Non-resonant SHG was found over an energy range of more than 1 eV. The spectrum

showed no exciton features. The application of a magnetic field gave rise to resonances

in the spectrum, which stem from magneto-excitons. The responsible susceptibilities were

identified and a qualitative description of the magneto-exciton series was given.

In this thesis the influence of an electric field on SHG in GaAs in the spectral range

of excitons is reported and compared to the magnetic-field-induced SHG. The excitons

interact differently with an electric field than with a magnetic field and the influence of an

electric field on exciton SHG has not been reported before. An electric field gives rise to

exciton SHG, due to the mixing of different states by the Stark effect. Calculations of the

exciton mixing allow a modeling of the resonance intensity and energy dependence on the

external electric field. The polarization dependence is presented and modeled by a third

order susceptibility.

In the next step the influence of crossed magnetic and electric fields on SHG in the

exciton energy region is reported. The spectrum is dominated by the magneto-exciton

resonances. The electric field acts differently on every other magneto-exciton resonance,

which is shown by polarization dependent studies. This was not expected from the existing

model of magneto-excitons, which predicts every resonance to act alike in an additional

electric field.

THG spectra of GaAs are presented in the second part of the chapter. Most lasers for

optical harmonics generation studies do not provide the necessary wavelength and these

measurements are presented for the first time. Excitons lead to enhanced THG even

without an external field. This way, the nonlinear interaction of excitons with a light field

is observed, undisturbed by an external field.

Again, external fields are applied and their influence on the THG spectrum is inves-

tigated. This is compared to the proposed microscopic mechanisms for SHG in external

fields. The influence of an external electric field is in accordance to the model from the

SHG section. The application of a magnetic field is expected to give rise to a complex

magneto-exciton series as in SHG, but only a single resonance from the 1s exciton is found.

Its intensity increases by a factor of 175 in a magnetic field of B0 = 10 T, which is an

unusually strong influence of a magnetic field on THG.
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In Chap. 5 SHG and THG spectra of gallium nitride (GaN) are presented and discussed.

Although GaN is also a III-V semiconductor, it has different properties compared to GaAs.

The most common crystal lattice of GaN is wurtzite, making it an uniaxial system. The

band gap of Eg = 3. 50 eV is much larger than in GaAs, and the exciton structure is more

complicated. Three excitons series from different valence bands are within 30 meV below

the band gap. The growth of this material is still problematic and important features,

such as the band gap energy, vary between different samples, due to strain from lattice

mismatch of GaN and the substrate material. In the past, THG and SHG from excitons

in GaN were used to determine the energy of the 1s and 2p excitons from the A, B, and C

exciton series [36]. A shift of the exciton resonances from strain within the material was

found. In this thesis broad range THG spectra from 2. 1 eV up to 3. 55 eV are presented.

The 1s excitons from all three valence bands are found. By comparison to existing studies,

strain is verified in the material. Further resonances are found in the energy range below

the excitons. They were not reported before, since the studies were confined to the region

of excitons. For each resonance a responsible growth defect of GaN is proposed.

The SHG spectrum in GaN is similar to GaAs and is dominated by a broad range

non-resonant SHG without exciton resonances. Measurements in a magnetic field are

presented, but they do not reveal any contribution from excitons. This is attributed to

the growth defects, because it was found that the quality of the sample has a strong

influence on the intensity of exciton resonances in the SHG spectrum in GaAs.

In Chap. 6 SHG measurements in cuprous oxide (Cu2O) are shown and discussed.

Cu2O is a very well investigated semiconductor and many effects on excitons were found

in it for the first time [37]. It has a cubic crystal structure, but is centrosymmetric in

contrast to GaAs. In centrosymmetric systems the electric-dipole SHG is forbidden and

such systems are usually investigated by other methods [38]. Nevertheless, SHG of the

1s ortho exciton was reported and explained by electric-quadrupole (EQ) transitions [39].

Further measurements in other crystal directions and a magnetic field revealed SHG, which

still lacks a microscopic description [33]. In chapter 6 extensive SHG measurements for

three different crystal orientations with magnetic fields in Voigt and Faraday geometry are

presented. Again SHG is found, which cannot be explained by EQ transitions. Polarization

dependencies are compared to models of proposed mechanisms for the observed SHG. For

further exciton states (n > 1 excitons, para excitons) an increase of SHG by a magnetic

field is found. This is attributed to the mixing of exciton states by the external field.

In chapter A THG and SHG spectra of indirect band gap semiconductors, namely silicon

(Si) and silicon carbide (SiC), are presented. The studies focus on the possibility of SHG

and THG spectroscopy of indirect band gap semiconductors. Due to the indirect band

gap, these materials are not very well suited for the interaction with light. Existing studies

focus on SHG from interfaces or SHG in the reflection geometry. In this thesis SHG and

THG from the bulk contribution in transmission geometry are investigated. In Si direct

optical transitions from bands at the Γ point, which have a higher energy than the band

gap, are investigated. In SiC on the other hand, SHG near the indirect band gap is

investigated.



2. Theoretical background

At the beginning of this thesis a theoretical background for the measurements is given.

The derivation of the nonlinear effects follows the books by Shen and Boyd [7, 8]. First,

the fundamental equations for nonlinear optics based on the Maxwell equations will be

presented. Especially the properties of SHG and THG will be discussed. A brief discussion

of group theory allows to simplify the description of the processes and gives a useful tool

for the prediction of polarization selection rules. Additionally, this theory is necessary to

understand the frequency conversion of the laser system used in the experimental setup.

The second part introduces the main properties of semiconductors. Especially features

of the electronic system, such as the band gap or excitons, are introduced. The interaction

with light is the basis for the understanding of nonlinear optical phenomena within these

systems. The most important symmetry features will be discussed. In the last part both

will be combined for the understanding of theoretical aspects of the measurements.

2.1. Nonlinear optics

Nonlinear optics covers phenomena, which exceed the approximations of linear optics.

Especially the manifold ways to convert the wavelength of light are in the focus of research.

From everyday experience it is known that the approximations of linear optics are in good

agreement with the observed effects. A high power density of light is necessary in order

to give rise to nonlinear optics. This can only be achieved by intense laser light. The

first observation of second harmonic generation was made soon after the invention of the

laser [1]. The charges within a crystal do not react like a harmonic oscillator in strong

light fields, but show a more complex behavior. Modern laser systems are strong enough

to induce manifold high order nonlinear optical effects [40]. At first, the fundamental

differences between linear and nonlinear optical effects and their origin are discussed.

2.1.1. Fundamentals of nonlinear optics

The Maxwell equations are a fundamental starting point for linear and nonlinear optics.

They describe the relationship between the electromagnetic field and electric charges.

A few manipulations of the equations lead to a macroscopic equation of light waves in a

5
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𝜔 

𝜔 

3𝜔 

2𝜔 

𝛘(1) 

𝛘(2) 

𝛘(3) 

Figure 2.1. – The crystal can be considered to be a blackbox. The interaction
with light is given by the susceptibilities. Each order of χ describes (among other
effects) a specific harmonic generation.

solid-state material. A common representation of the Maxwell equations is [41]:

∇ · E =
ρ

ε0
(2.1a)

∇ · B = 0 (2.1b)

∇×E = −∂B
∂t

(2.1c)

∇×B = µ0

(
j + ε0

∂E

∂t

)
(2.1d)

The electric field E and the magnetic field B are connected with the charge density ρ and

the current density j by the electric constant ε0 and the permeability µ0. Since the fields

depend on the derivative of each other, light waves are a possible solution. In order to

get a wave equation for an electric field, the Grassmann identity is applied to Eq. (2.1c),

then the other equations are plugged in. The current density j is expanded in a multipole

expansion to identify different kinds of light matter interaction processes. This forms a

wave equation for the electric field and the influences of the surrounding medium, which

acts like an external driving force on the oscillating wave.

∆E− 1

c2

∂2E

∂t2
= µ0

∂2P

∂t2
+ µ0

∂

∂t
∇×M− µ0

∂2

∂t2
∇ ·Q (2.2)

The multipole elements P, M, and Q interact with the electric field of the light wave in this

inhomogeneous wave equation. An external light field in a medium induces these multipole

moments of charge distribution in the crystal. These react back on the light wave itself.

Through this interaction an incident electric field creates high order frequencies within

a material. These frequencies are emitted as light. A time dependent oscillating polar-

ization P is an accelerated charge and radiates photons with the according frequency.

Macroscopic calculations of a light field incident on oscillators allow for a basic under-

standing of this process and describe linear optical phenomena. Adding perturbations to

harmonic oscillators reveals the influence of different symmetry situations and nonlinear

optical processes.

The interaction of laser light with a crystal can best be understood by the introduction
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of susceptibilities. The introduction of harmonic frequencies in the polarization by the

electric field of the light wave is the strongest interaction and is presented first. The focus

lies on the strong ED polarization, since it is the most important source of harmonic

generation. Other multipole moments will be introduced when they are necessary and the

effects from these can be considered in the same way as ED processes. The macroscopic

equation

Peff,i = ε0χ
(1)
ij Ej + ε0χ

(2)
ijkEjEk + ε0χ

(3)
ijklEjEkEl + . . . (2.3)

describes the polarization Peff induced by incident electric fields E. The first order sus-

ceptibility χ(1) can be translated into the complex index of refraction n′ = n+ iκ, which

describes the effects of linear optics. Higher order susceptibilities lead to nonlinear optical

effects. These susceptibilities are usually much smaller than χ(1). The electric field has to

be strong enough to drive the oscillator away from the harmonic approximation. This can

lead to harmonic conversion and other nonlinear optical effects.

In Fig. 2.1 the influence of the susceptibilities on the frequency conversion is shown

schematically. Each susceptibility leads to a specific frequency conversion. From the sus-

ceptibilities one can derive the optical selection rules, which can be exploited to identify

the contributions, or to selectively enhance or suppress them. The symmetry of a crystal

gives much information about its susceptibilities. It reveals which components have to be

zero and which components are independent from each other, but not oscillator strength

or transition probabilities. For SHG it is necessary to know the second order suscepti-

bility (which is a third rank tensor) of a certain system. For THG it is a fourth rank

tensor. Many of the off diagonal terms of a susceptibility are zero for highly symmetrical

systems. Crystals with the same symmetry therefore share many nonlinear optical proper-

ties, although a different band structure changes the details of the light matter interaction.

Typical values for χ(2) ≈ 10−11 cm
V and χ(3) ≈ 10−17 cm2

V2 are very small and therefore these

effects are only observed under intense laser light.

The main focus of this thesis lies on second harmonic generation. A short calculation

reveals the creation of harmonics due to the second order susceptibility. To calculate

the expected results, the problem is reduced to one dimension and the incident wave is

described as a plane wave:

Eωx (t) = E0e(iωt) + E0e(−iωt) (2.4a)

P 2ω
eff,x(t) = ε0χ

cryst
xxx (Eωx (t))2 (2.4b)

P 2ω
eff,x(t) = 2ε0χ

cryst
xxx E

ω
x (Eωx )∗ + ε0

[
χcryst
xxx (Eωx )2e(2iωt) + χcryst

xxx (Eωx )2e(−2iωt)
]

(2.4c)

Equation (2.4a) describes the incident electric field of the light wave, which consists of

an electric field amplitude E0 and a complex e-function describing the oscillation. In Eq.

(2.4b) an exemplary susceptibility connects the electric field to the effective second order

polarization P 2ω
x (t) in the material. In Eq. (2.4c) the electric field is plugged into Eq.

(2.4b) and the solution is sorted for different frequency components. The frequency inde-

pendent part of the solution describes optical rectification. A strong light field can induce

a constant electric field inside a crystal, which is exploited for certain applications [42].
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The other part has the frequency 2ω. This time dependent polarization of second order

emits a light wave with the frequency 2ω as it was discussed for Eq. (2.2). Other frequency

conversions can be described with similar calculations. Besides sum effects, difference fre-

quency processes are also possible. This leads to optical parametric oscillation, which

is used in the experimental setup. This process splits a high frequency into two lower

frequencies ω0 = ω1 + ω2.

The calculations (2.4) are specific for ED processes in which only the electric field of

the light and the polarization in the material play a role. These calculations can be

enhanced by also taking the magnetic field of light, its wave vector, and more multipole

moments from (2.2) into account. This can be calculated like (2.4) and is necessary if

the strongest ED contribution is forbidden. A complete set of possible transitions up to

electric quadrupole is:P2ω

M2ω

Q2ω

 ∝
χ(P2ω,Eω,Eω) χ(P2ω,Eω,Hω) χ(P2ω,Hω,Hω)

χ(M2ω,Eω,Eω) χ(M2ω,Eω,Hω) χ(M2ω,Hω,Hω)

χ(Q2ω,Eω,Eω) χ(Q2ω,Eω,Hω) χ(Q2ω,Hω,Hω)


EωEω

EωHω

HωHω

 . (2.5)

In principle, it is possible to induce any multipole moment from Eq. (2.2) by any combina-

tion of the electric or magnetic field of the light wave. But each contribution, which is not

of ED type (Eω of the light and the multipole moment P2ω), substantially decreases the

conversion efficiency. Susceptibilities which only connect polar vectors or an even number

of axial vectors, are also called polar. The susceptibility is axial in case an odd number

of axial vectors is involved. Typical polar vectors are the electric field of the fundamental

light Eω or an externally electric field E0 applied to the sample. Typical axial vectors are

the magnetic field of the light Hω or an external applied magnetic field B0.

There are two more effects which influence the conversion strength and do not play a

big role in SHG spectroscopy. The first one is pump depletion. The loss of intensity in the

incident light ω is not taken into account in the presented calculations, as the conversion

strength in semiconductors is small enough to neglect this effect. In case SHG is used as

a tool to convert the wavelength of a laser, high conversion efficiency is desired. In this

case the depletion of the pump light intensity has to be taken into account.

The second effect stems from the phase difference between all the involved light waves.

The electric field from the incident light does not have a fixed phase compared to the light

field of SHG, because of the normal dispersion. This phase mismatch can decrease the

efficiency of the conversion process, which was investigated by Maker et al. [43] shortly

after the observation of SHG. It is possible to achieve phase matching between the funda-

mental light and the harmonics under certain conditions. By changing the temperature

of the crystal or tuning the incident angle of the light, the phase matching conditions can

be fine-tuned to enhance specific transitions. The optical parametric oscillator (OPO) in

the experimental setup, which is described later, makes use of these techniques. For SHG

spectroscopy the semiconductor sample is usually not optimized for phase matching. The

incident angle of the light is chosen to match the symmetry conditions of electronic levels

and the temperature is minimized to reduce phonon interactions. Therefore the measure-
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Figure 2.2 – (a) Transition
scheme for SHG with a ground
state |g 〉 , an excited state | f 〉 ,
and intermediate state | i 〉 . (b)
QM transition scheme for THG
with a second intermediate state
| j 〉 .

ments are not enhanced by phase matching. In case an external magnetic field is applied

to the sample, which influences the refractive index of the material, it is possible that the

phase matching conditions are changed.

For SHG spectroscopy a more detailed connection between the eigenstates of the inves-

tigated semiconductors and the SHG has to be made, therefore requiring a microscopic

description of light matter interaction leading to SHG.

2.1.2. Microscopic description of optical harmonic generation

The macroscopic description of harmonic generation made in Sec. 2.1.1 allows a basic

understanding of the effects. However, the wavelength dependence of the susceptibility

was not considered. The magnitude of a susceptibility is influenced by quasi-particles

within a crystal. This can be exploited for the spectroscopy of these states. In order to

calculate the wavelength dependent strength of harmonic generation, the transition has to

be understood quantum mechanically (QM). In the QM description SHG is pictured as the

conversion of two photons into a high energy one. In Fig. 2.2(a) the QM representation

for this process is shown. The first photon makes a virtual transition between the ground

state |g 〉 and an intermediate state | i 〉 . The second photon completes the transition to

the excited state | f 〉 . From the excited state the ground state is reached by emitting a

photon with the frequency 2ω. In Fig. 2.2(b) the transitions for THG are presented. For

THG three photons are converted into a high energy one of frequency 3ω. In this case

another intermediate state | j 〉 has to be taken into account. It is important to underline

once more that the | f 〉 state is not really existent, in the sense that is has a lifetime. It

is possible to excite a quasi particle within a crystal with a two-photon process, but this

is fundamentally different from SHG and will be considered later.

In the same way the Maxwell equations are the starting point for a classical description

of optical effects, the Hamiltonian of a problem is the natural starting point for a QM
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description. The Hamiltonian of the light, the electrons, and the interaction is:

H =
∑
e−

[(
p2

2mfree,e
− e0V

)
+

(
e2

0

2mfree,ec2
A2 +

e0

mfree,ec
pA

)]
+

1

8π

∫ (
E2 + B2

)
d3r (2.6a)

H = He + Hint + Hlight (2.6b)

For the interaction between the light field and the charges the minimal coupling was

chosen, which only includes the interaction of the charge distribution. Higher order con-

tributions will be covered by introducing further mechanisms, like the interaction of light

with the spin of the particle. The electron is characterized by its rest mass mfree,e, charge

e0, and momentum p. The crystal structure is included through the periodic potential V .

Especially the linear term in A is of interest for the interaction, as it describes the transi-

tion between different states. In order to identify different contributions to the interaction

the vector potential of the light is expanded into a multipole series up to second order

A = A0e0e(±ik(ω)r) ' A0e0(1± ik(ω)r) (2.7)

With this expansion, the linear part of the interaction Hamiltonian can be divided in

different transition elements, similar to the expanded current density in Eq. (2.2). The k

independent part describes the so called electric dipole (ED) transition. The contributions

linear in k are called magnetic dipole (MD) and electric quadrupole (EQ).

〈 f | p | g 〉 : HED = qEr (2.8a)

〈 f | pkr | g 〉 : HEQ = qkEr2 (2.8b)

〈 f | pkr | g 〉 : HMD = (L + S)B (2.8c)

The ED transition is the strongest one and the other two only play a role if the ED is

forbidden by the selection rules. For SHG to occur a two-photon transition and a one-

photon transition to a specific resonance have to be allowed as shown in Fig. 2.2. The

light intensity decreases rapidly for higher order processes and most of the three-photon

transitions have to be of ED type to make SHG strong enough to be detected. The

strongest SHG process only has ED contributions. This is usually the case for situations in

which states are mixed by an external perturbation. In the unperturbed case a state is only

allowed for one- or two-photon ED transitions, but not for both. In such a case it is possible

to observe SHG by a two-photon ED and a one-photon EQ or MD transition. Processes

with more than one transition of higher order than ED are very weak and seldom observed.

For SHG spectroscopy of semiconductors this QM three-photon transition picture has to be

combined with the susceptibility, which was introduced through wave equations. Through

this combination it is possible to learn about the influence of eigenstates | f 〉 on χ(2).

Up to now the wavelength dependence of χ(2) was neglected. The susceptibility magni-

tude for each wavelength has to be derived from optical transition probabilities. In report
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[31] the connection between the optical transition probabilities and the susceptibility is

explained in detail with close relation to the measurement techniques used for this thesis.

The equation

χlmn(Ef ,kf ,B
0,E0) ∝

∑
i

〈 g | V̂ 2ω
l | f 〉 〈 f | V̂ ω

m | i 〉 〈 i | V̂ ω
n | g 〉

(Ef − 2~ω − iΓf)(Ei − ~ω)
(2.9)

connects the susceptibility to the optical transitions by the eigenstates inside a medium.

For the general description three arbitrary states have to be taken into account. For

SHG spectroscopy of semiconductors each state has a specific role and will already be

named according to that role. The states are the ground state |g 〉 , the final state | f 〉 ,
and the intermediate state | i 〉 . These will get a more specific meaning in Sec. 2.2. The

susceptibility in terms of energy, wave vector, and external perturbations is proportional

to the transition strength for each of the three-photon processes and normalized by the

energy difference between the photons and the eigenstates. The last two elements in the

numerator describe a two-photon transition and the first element describes the creation

of one photon of higher energy. The perturbations V̂ represent the possible transitions

described in (2.8). All possible intermediate states have to be taken into account within

the sum. This is of course difficult for most real world applications. Therefore the sum

has to be limited to the intermediate states which have the strongest contribution. The

denominator takes the energy difference between the crystal states and the photons into

account, including a damping factor Γf . Only states which are close to the photon energies

have a noteworthy influence as the denominator grows with the energy mismatch. The

responsible states within a semiconductor will be explained in the next chapter. The

equation can be derived by perturbation theory. This is described in the appendix B,

where the transition from the wavelength centered description to the focus on the crystal

eigenstates is explained. The susceptibilities, which describe SHG and THG in a crystal

without an external perturbation, are noted χcryst.

The exact calculation of the denominator of Eq. (2.9) is difficult, because the necessary

eigenstates are hard to compute from first principles. It is often enough to understand

what kind of perturbation leads to a non-zero denominator. This can be achieved by group

theoretical calculations. The integral 〈 f | V̂ | g 〉 is only non-zero if Γf ⊂ ΓV ⊗ Γg. The

Γx represents the symmetry group of a crystal eigenstate or a perturbation. This will be

covered in the next chapter, in which semiconductor crystals and the symmetry groups

are explained.

2.2. Semiconductors

Semiconductors are a well known class of materials with manifold applications. Computer

chips made from silicon are the most well-known application and have an unfathomable

impact on technology in general. The name “semiconductor” already hints at the main

property. The electronic structure lies between the isolators and the metals. Semiconduc-

tors do have a band gap in contrast to metals, but the magnitude is smaller compared to
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isolators. The materials investigated in this thesis are well known semiconductors, which

have technological applications and are of fundamental interest for research. The energy

of the band gap is in the same range as that of photons in the visible or near infrared

spectrum. This makes optical spectroscopy one of the main tools for the investigation of

these materials.

2.2.1. Electronic band structure

The discrete energy levels of electrons in a shell of an atom change when they are located

within the periodic structure of a crystal. An overlapping of the electronic orbitals leads to

energy bands, the sum of which is called the band structure. It is impossible to calculate

the solution of the full Hamiltonian of a crystal because of the huge amount of degrees of

freedom such systems have.

The most interesting region for optical investigations is the band gap. Below the band

gap all states are occupied and charge transport is impossible at low temperatures. Above

the band gap, on the other hand, all states are empty. Electrons from the filled valence

band can be excited into the empty conduction band. In order to understand the impor-

tant properties for the interaction with light in this spectral range, simplifications of the

complex many-body interactions are necessary.

First of all, the band structure is calculated for a single electron moving within an ef-

fective crystal potential. This potential accounts for all other ion cores and electrons, and

has the same periodicity as the ion lattice. Interaction between the electrons will be taken

into account as perturbations. These calculations reveal a band structure with energy

bands labeled by the band index n and wave vector k, which already allows for an under-

standing of the most important effects. Many properties of a crystal can be understood

by calculating a single unit cell with periodic boundary conditions. The smallest unit cell

in the k space is called Brillouin zone.

In order to calculate the band structure, theoretical tools like Bloch equations, the tight

binding model and density functional theory are available [38, 44]. These calculations are

complicated, because of the complexity of the situation. In order to understand important

optical properties near the band gap, group theoretical analysis brings good insight into

the situation.

The starting point for the group theoretical analysis are electron states in a free atom.

The main quantum number has no direct influence on the symmetry conditions as it

mainly influences the Bohr radius. The orbital angular momentum quantum number has

the biggest influence and defines the transformations under which the system is invariant.

Comparing the spherical s states to the bar-bell shaped p states makes the differences in

symmetry obvious. The p states have a main symmetry axis whereas the s states have

no preferred direction. All the eigenvalues of operations under which a state is invariant

are collected in groups which are labeled from D±0 to D±13
2

. Among these operations are

rotations by a certain angle Ci, reflections at a plane σi and the identity E, for example.

The next step is to identify how the eigenvalues change if the state is within a crystal,

which has a reduced symmetry compared to the full rotation group. Most semiconductors
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have similar valence and conduction bands in this sense. The fully occupied p orbitals of

the negatively charged kation form the valence bands. The empty s orbitals of the anion

form the conduction band. However, there are important deviations from this scheme as

will be discussed for Cu2O.

A p type valence band has three bands, which are each two-fold spin degenerated. The

four Jh = 3/2 states are split from the Jh = 1/2 by spin-orbit coupling. The sign of the

spin-orbit energy ∆SO determines, which of the states is the top valence band. The four

Jh = 3/2 states are either degenerated at the center of the Brillouin zone or split in the

crystal field, depending on the structure of the semiconductor. Away from the center

of the Brillouin zone, the Jh = 3/2 are separated into two bands with different effective

mass due to their different angular momentum projection Jz = 1/2 and Jz = 3/2. The

dispersion of states near the center of the Brillouin zone is approximated by a parabola.

The curvature of the parabola is described by an effective mass(
1

me,h

)
ij

=
1

~2

∂2Ee,h(k)

∂ki∂kj
, (2.10)

which depends on the second derivative of the energy of an electron in the conduction

band Ee(k) or a hole in the valence band Eh(k) near the center of the Brillouin zone. The

effective mass me,h replaces the free electron mass me,free in the dispersion Ee,free(k) =
~2k2

2me,free
→ Ee,h(k) = ~2k2

2me,h
. The effective mass is important for the interaction with

external electric or magnetic fields.

Optical transitions from the valence band to the conduction band can be calculated

according to Eq. (2.9). The selection rules can be derived with group theory alone.

The correct symmetries have to be plugged into the transition probability 〈 f | V̂ | g 〉.
The ground state is the valence band and the final state is the conduction band. The

perturbation is replaced by the appropriate symmetry of an ED, EQ or MD perturbation.

Transitions induced by photons are practically vertical in the band structure, since they

only have a small momentum. The details of this for SHG are explained in Sec. 2.3.

An electron excited into the conduction band can enter a bound state, called exciton,

with a hole in the valence band. Excitons have many interesting properties, which are

an active topic in optical investigations of semiconductors and are the main focus of this

thesis. In the next section these particles are described in detail.

2.2.2. Excitons and polaritons

Excitons play a major role in the interaction between light and semiconductors, especially

in the vicinity of the band gap. It turns out that photons with a smaller energy than

the band gap can still excite electrons. Electrons which stay close to the created residual

hole have a lowered energy due to the attractive Coulomb interaction between them. The

binding energy can be as big as several hundred meV. The electron hole pair can be

treated as a quasi-particle with its own wave function. There are two different kinds of

excitons and they are classified by the Bohr radius of the two particle system. Frenkel
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[45] excitons are very small and mainly confined to a single lattice site. Wannier excitons

[46] extend over multiple lattice constants, and are the main type of excitons in the

materials considered in this thesis. In semiconductors with several relevant valence bands

or conduction bands, different excitons can be formed depending on the bands involved.

The excitons are grouped in series which might be labeled A, B and C (in GaN) or yellow,

green, and blue (in Cu2O) for example. The energy of exciton series is described in analogy

to the Rydberg series of an atom.

Enexc(kexc) = Eg −
Rexc

n2
+

~2k2
exc

2mexc
(2.11)

Eg is the energy of the band gap. The exciton energy lies below the band gap, due to the

Coulomb attraction between the electron and the hole. This is expressed by the Rydberg

energy of the exciton Rexc = ~2/2µexcaB. An exciton also has excited states with reduced

binding energy, which are labeled by the main quantum number n in En. Like the hydrogen

series the exciton binding energy decreases with 1/n2 for the main quantum number[47].

The exciton Bohr radius is aB = 4πε~2/µexce20. The influence of screening effects can be

described by the dielectric constant ε, since the Bohr radius of the investigated excitons

is big enough for this averaging technique. The Rydberg energy and Bohr radius of the

exciton depend on its reduced mass µexc = memh
me+mh

, whereas the slope of the dispersion

depends on the exciton mass mexc = me + mh. The effective electron me and hole mass

mh was defined in Sec. 2.2.1. The unit charge is e0 = 1. 6 · 10−19 C.

The wave function of an exciton does not solely depend on the valence and conduction

band, but an additional envelope of the two particle wave function has to be considered.

Since the electron hole pair can be treated in analogy to the hydrogen atomic model the

envelopes are called 1s, 2s, 2p, 3s, 3p, 3d etc. The calculation of these wave functions

strongly depends on the knowledge of the wave functions of the energy bands in the crystal.

The different angular momentum states are typically not degenerated and the influence of

the angular momentum on the binding energy has to be considered in each individual case.

For the presented measurements a group theoretical approach will be made. The sym-

metry of such an exciton state is calculated by multiplying the valence band symmetry

Γvb with the conduction band symmetry Γcb and an envelope Γenv. The according ground

state in selection rule calculations is the crystal in its undisturbed state and therefore

always of Γ1 symmetry.

Γexc = Γcb ⊗ Γvb ⊗ Γenv (2.12)

The conduction and valence band symmetry product usually leads to several excitons with

different spin structures. Some of the excitons can be spin forbidden for optical transitions

and are called dark excitons. For the bright excitons the envelope determines if the optical

transition is allowed for one- or two-photon transitions. Usually only one or the other is

allowed for the strong ED transition due to parity constraints. The remaining ones usually

need at least an electric quadrupole transition and are much weaker.

Excitons, which couple to the electric field via the electric dipole operator, strongly

interact with the light field. This interaction can be described by a quasi particle called
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Figure 2.3 – Plotted solution to the
polariton Hamiltonian. Black lines are
the unperturbed photon and exciton.
The red and blue line represent the up-
per and lower polariton branch respec-
tively.

exciton-polariton [48, 49]. In fact, the light can couple strongly to different kinds of

quasiparticles. All the coupled states are called polariton. Only exciton-polaritons play a

role in this thesis and are addressed as polaritons.

In a simplified picture a polariton can be understood as the subsequent absorption of a

photon to create an exciton and the emission of a photon by annihilation of an exciton over

and over again. Stronger coupling of the exciton to the light field and a shorter lifetime

of the exciton lead to more pronounced polariton effects. The biggest flaw of this picture

is the time separation of the two particles, as they are in fact coexistent. Understanding

polaritons as coupled oscillators is still a simple picture, but qualitatively reveals all its

important properties. Therefore a Hamiltonian of coupled oscillators for a photon and an

exciton is investigated. [49, 50]

Hexc−p =

Ep(k) 1
2~ΩR

1
2~ΩR Eexc(kexc)

 (2.13)

The energies Ep(k) and Eexc(kexc) are the k dependent energies of the photon and exci-

ton, respectively. The off-diagonal entries are Rabi energies, which describe the coupling

strength between the two particles in a crystal [51]. Diagonalization of the Hamiltonian

(2.13) reveals the eigenvalues and eigenenergies of new quasiparticles.

EPol =
Ep(k) + Eexc(kexc)

2
±

√(
Ep(k) + Eexc(kexc)

2

)2

+

(
~ΩR

2

)
(2.14)

Plotting Eq. (2.14) around the crossing energy Ep(k) = Eexc(kexc) reveals an anticrossing

between the two states as presented in Fig. 2.3. The new quasi particles are the upper

and lower polariton. In a semiconductor usually several different excitons contribute to

polaritons. If this is the case then all the other exciton states in the vicinity have to be

taken into account. In the Sellmeyer presentation the effect of multiple excitons can be

expressed by the equation [49]
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ε(ω) =

(
ck

ω

)2

= εB +
∑
i

Fi
T 2
i − (~ω)2

. (2.15)

In Eq. (2.15) the effect of the polaritons on the dielectric constant ε = εrε0 of the semicon-

ductor is expressed, which can also be separated into the fundamental electric constant

ε0 and the material dependent relative permittivity εr. If only a specific energy range

~∆ω is of interest then only exciton states in the vicinity of this energy range need to be

taken into account. The influence of the other exciton states is summarized in a back-

ground dielectric constant εB. Solving the equation for ω(k) reveals all allowed polariton

states. The oscillator strength of the excitons Fi and the energy of transverse excitons Ti
determine the strength of the interaction. The polariton picture is especially important

for ED allowed transitions, because of the influence of the oscillator strength. The effects

are much smaller for EQ transitions. States which are neglected in the summation are

included in the background constant εB. The more convenient Kurosawa representation

[52] is chosen for the actual calculations:

ε(ω) =

(
ck

ω

)2

= εB
∏
i

L2
i − (~ω)2

T 2
i − (~ω)2

(2.16)

This representation is equivalent to the Sellmeyer representation, but expresses ε in terms

of the longitudinal and transverse exciton energies, which are well-known through spectro-

scopic studies in many cases. In contrast to the vacuum light wave there are excitons with

longitudinal oscillations for the dispersion ε(ω) = 0, which are called longitudinal excitons.

For uniaxial crystals the two different dielectric constants ε‖ and ε⊥ have to be considered

separately. In case of light with polarization components for both the ordinary and the

extraordinary axis, so called mixed-mode polaritons have to be taken into account. They

are angle dependent on the k vector.

2.2.3. Band structure and exciton series of the investigated materials

In Secs. 2.2.1 and 2.2.2 general properties of semiconductors were introduced. In this

section the materials investigated in this thesis are discussed in more detail and band

structures for the investigated materials are presented. The important symmetries ΓX

and energies are noted. Every valence band has a maximum at the center of the Brillouin

zone. The minimum of the conduction band depends on the specific material. Si and SiC

are indirect semiconductors, as the global minimum of their conduction band is not at the

Γ point. Other materials studied in this thesis are direct band gap semiconductors.

GaAs

In Fig. 2.4 the band structure of GaAs is presented. GaAs has a direct band gap with an

energy of Eg(T = 1 K) ≈ 1. 52 eV [34] at cryogenic temperatures. The band gap energy of
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Figure 2.4 – Band structure of
GaAs in the center of the Bril-
louin zone. The band gap Eg

is at the Γ point, which makes
it a direct semiconductor. The
two valence bands, with angu-
lar momentum 3/2, are degener-
ate at the Γ point and are called
heavy-hole band and light-hole
band according to their curva-
ture. The valence band with an-
gular momentum 1/2 is separated
by the energy ∆SO. Each of the
presented bands is two-fold spin
degenerated.

GaAs decreases for higher temperatures and can be calculated by [34]

Eg(T ) = 1. 519 [eV]− 0. 0005405T 2

204 [K] + T

[
eV

K

]
(2.17)

The p type valence band is two-fold degenerated for the angular momentum Jh = 1/2 states

and four-fold degenerated for the Jh = 3/2 states at the Γ point. The angular momentum

Jh = 1/2 states have a reduced energy ∆SO = 340 meV due to spin-orbit interaction and

are called split-off band. The four angular momentum Jh = 3/2 states are degenerated at

the Γ point and are called heavy hole mhh = 0. 51 me,free and light hole mlh = 0. 044 me,free

[53] band according to their effective mass. The heavy holes are important for the observed

excitons because the flat dispersion leads to a higher density of states. At the center of

the Brillouin zone the upper valence bands have the symmetry Γ8. The s type conduction

band with me = 0. 067 me,free is two-fold spin degenerated and has the symmetry Γ6.

Excitons with a binding energy of Rexc = 4. 2 meV are located below the band gap. The

s excitons have the symmetry Γ1s = Γ6⊗Γ8⊗Γ1 = Γ3⊕Γ4⊕Γ5. Only the Γ5 states with

spin S = 1 are allowed for one-photon transitions, which also have Γ5 symmetry. The

other exciton states with spin S = 0 are called dark excitons. The p excitons have a Γ5

envelope and are only allowed for two-photon transitions. The important energies for the

measurements are E1s = 1. 5152 eV, E2s = 1. 5183 eV, and E2p = 1. 5189 eV [54, 55].

Excitons from the split-off band are neglected. Due to the strong spin-orbit coupling

they are about 340 meV above the band gap and do not interact with the excitons from

the Γ8 band.

It is not expected to observe SHG from the excitons in GaAs. No exciton state is

allowed for one- and two-photon transitions at the same time. Only mixed states created

by external fields lead to resonant enhanced SHG. For THG it is expected to observe the

s excitons. They are allowed for one- and three-photon transitions, which have similar

selection rules. The important symmetries are summarized in Table 2.1. Although GaAs
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Table 2.1. – Symmetry considerations for GaAs

state symmetry parity

valence band Γ8 ⊕ Γ8 ⊕ Γ7 –
conduction band Γ6 +
one photon Γ5 –
two photons Γ1 ⊕ Γ3 ⊕ Γ4 ⊕ Γ5 +
three photons Γ1 ⊕ Γ2 ⊕ Γ3 ⊕ Γ4 ⊕ Γ5 –
1s exciton Γ3 ⊕ Γ4 ⊕ Γ5 –
2p exciton Γ1 ⊕ Γ3 ⊕ Γ4 ⊕ Γ5 +

Figure 2.5 – Band structure of
GaN in the center of the Bril-
louin zone. The band gap Eg

is at the Γ point, which makes
it a direct semiconductor. The
two valence bands, with angular
momentum 3/2 are called A and
B band. The valence band with
angular momentum 1/2 is sepa-
rated by the energy ∆SO and is
called C band. Each of the pre-
sented bands is two-fold spin de-
generated.

Wavevector

Energy

Γ7

Γ6

 Γ9
A

B

C

Conduction band

L-valleyA-valley

Δso

Eg

Γ7

is not centrosymmetric, parity conservation is a good approximation at the center of the

Brillouin zone and the parity approximations are also given in Table 2.1.

GaN

GaN has two different stable crystal lattices. The growth parameters determine if the

more common wurtzite structure or a cubic structure emerges. In this thesis only the

wurtzite structure is investigated and its band structure is discussed in detail.

In Fig. 2.5 the band structure of GaN is presented. It has a direct band gap like GaAs,

but a much higher band gap energy of Eg(T = 1 K) ≈ 3. 50 eV. The exact band gap

value depends on the thickness of the GaN sample and the substrate it is grown on. The

temperature dependence of the band gap is [56]

Eg(T) = 3. 47 [eV]− 7. 7 · 10−4 T 2

600 [K]− T

[
eV

K

]
. (2.18)

The conduction band is formed by the Ga 3d states and has Γ6 symmetry. The valence

band is formed by the N 2p states. The C band stems from the Jh = 1/2 states with Γ7

symmetry and has a reduced energy of about ∆SO ≈ 24 meV [57]. In contrast to GaAs
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Table 2.2. – Symmetry considerations for GaN. For the excitons the symme-
try component governing the interactions with photons are noted and secondary
components are in brackets.

state symmetry

valence band Γ9 ⊕ Γ7 ⊕ Γ7

conduction band Γ6

photon ‖ c axis Γ1

photon ⊥ c axis Γ5

A1s/B1s exciton Γ5(⊕Γ1 )
C1s exciton Γ1(⊕Γ5 ⊕ Γ2 )

the Jh = 3/2 are not degenerated at the Γ point because the hexagonal crystal field lifts

the degeneracy of pz and px,y orbitals. The highest band has Γ9 symmetry and the lower

one has Γ7 symmetry.

There are more exciton series to differentiate compared to GaAs. First of all, the

splitting between the three valence bands is of the same order as the exciton binding

energy. The excitons from the lower valence bands have to be taken into account. The

three exciton series are called A, B, and C according to the involved hole. Additionally, the

uni-axial structure leads to a splitting of exciton states polarized parallel or perpendicular

to the c axis. All the different exciton states can be derived from the band symmetries, but

only a few states have the necessary oscillator strength to be observed. Polarization (of

excitons and photons) along the c axis has Γ1 symmetry and polarization perpendicular to

the c axis has Γ5 symmetry. This is also used to identify the most important component

of an exciton state for its interaction with light. In a tilted geometry, light has both

symmetry components and multi-photon transitions are possible to many different states.

An overview of the important symmetries is given in Table 2.2.

The resulting A1s excitons Γ9 ⊗ Γ7 ⊗ Γ1 = Γ5 ⊕ Γ6 and B1s excitons Γ7 ⊗ Γ7 ⊗ Γ1 =

Γ5 ⊕ Γ1 ⊕ Γ2 have the same main symmetry component Γ5, because the valence band

functions are mainly polarized perpendicular to the c axis, although their overall symmetry

is different. The C1s excitons Γ7 ⊗ Γ7 ⊗ Γ1 = Γ1 ⊕ Γ5 ⊕ Γ2 are mainly of Γ1 symmetry

as they are polarized mainly along the c axis. The Γ6 and Γ2 states are optical forbidden

paraexcitons.

The p excitons aligned along the c axis have an additional Γ1 envelope contribution. Per-

pendicular to the c axis the p excitons have a Γ5 envelope. The additional Γ5 contribution

from the p envelope enhances the Γ5 component of the C2p exciton.

Cu2O

In Fig. 2.6 the band structure of Cu2O is presented. Cu2O is a centrosymmetric material.

Parity is a good quantum number and parity conservation is a strict selection rule. The

highest valence band from the Cu 3d electrons is split into three states by the crystal field

and spin-orbit interaction. The d type valence band leads to different optical selection rules

of the excitons, compared to the more common p type valence band, which is found in
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Figure 2.6 – Band structure of
Cu2O in the center of the Bril-
louin zone. The band gap Eg is
at the Γ point, which makes it
a direct semiconductor. Each of
the presented bands is two-fold
spin degenerated.
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GaAs and GaN. Additionally, the spin-orbit splitting of the valence band ∆SO = −0. 13eV

[58] has a negative energy in Cu2O. Therefore the the angular momentum Jh = 1/2 band

is the highest one and has symmetry Γ+
7 . The four-fold degenerate Jh = 3/2 band is the

lower lying one and is of Γ+
8 symmetry. The lowest lying conduction band from the Cu 4s

states has Γ+
6 symmetry. A Γ−8 band about ∆E ≈ 0. 5 eV above the conduction band from

the Cu 4p is not investigated in this thesis. The band gap of Cu2O is Eg = 2. 172 eV [59].

Between all different valence and conduction bands exciton series are formed. The

series of lowest energy is between the Γ+
7 valence band and the Γ+

6 conduction band. It

is called yellow series, due to its emission wavelength. The green series is formed between

the lower lying Γ+
8 valence band and the same Γ+

6 conduction band. Both series have

similar selection rules, because they stem from bands with the same positive parity. The

two valence bands form the blue and violet series together with the Γ−8 conduction band.

The blue Eg,blue = 2. 624 eV and violet Eg,indigo = 2. 755 eV band-band transitions [60]

have an energy which lies well above the band gap. They are not investigated in this

thesis and the interaction of the blue and indigo exciton series with the other two exciton

series can be neglected. The yellow and green series have a smaller energy than the band

gap and are discussed in more detail. They belong to the band-band transitions with

Eg,yellow = Eg = 2. 172 eV and Eg,green = 2. 304 eV [61].

The yellow exciton series has been investigated up to n = 12. The symmetry of the

s type excitons is Γ+
7 ⊗ Γ+

6 ⊗ Γ+
1 = Γ+

5 ⊕ Γ+
2 . The Γ+

2 exciton is the optically forbidden

paraexciton, which has an angular momentum of Jexc = 0. The Γ+
5 s excitons have

Jexc = 1 and are allowed for one-photon EQ transitions and two-photon ED transitions.

The p excitons of this series are allowed for one-photon ED transitions. The yellow exciton

series is described with the binding energy Rexc = 98 meV. The yellow 1s exciton has
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Table 2.3. – Symmetry considerations for Cu2O. The Γ+
5 states of the 1s exciton

are orthoexcitons and the Γ+
2 states are the optically forbidden paraexcitons.

state symmetry

valence band Γ+
7 ⊕ Γ+

7 ⊕ Γ+
8

conduction band Γ+
6 ⊕ Γ−8

1s yellow exciton Γ+
5 ⊕ Γ+

2

photon Γ−4

an exceptionally small Bohr radius aB = 0. 8 nm [62] compared to the lattice constant

a = 0. 42 meV of Cu2O. This leads to an enhanced binding energy of R1s,exc = 150 meV,

due to central cell corrections, specifically for the 1s exciton. For n > 2 these corrections

only play a minor role, because the Bohr radius increases quadratically with n. The

1s orthoexciton has an increased energy compared to the paraexciton ε = 12. 1 meV,

because of isotropic short range interactions of the electron and hole, which only affects

the orthoexciton states [63]. The symmetry and parity values are given in Table 2.3. The

important energies for the measurements are summarized in Table 2.4.

Table 2.4. – Energies of the yellow exciton series taken from [59, 64]

yellow excitons 1s (ortho) 1s (para) 2s 2p 3s 3p 3d
Energy (eV) 2.0330 2.0212 2.1544 2.1473 2.1603 2.1609 2.1630

The green exciton series is not directly observed in the measurements presented in Sec. 6,

but the green 1s exciton Egreen,1s = 2. 1378 eV [64] lies in between the 1s and 2s states

from the yellow series. It is admixed to the yellow 1s and 2s states, but this does not

change the selection rules, because it stems from bands with the same symmetry as the

yellow excitons. Due to the admixture, the oscillator strength of the 1s green exciton is

very small [64] and is not expected to be observed in the SHG spectra.

Si and SiC

The semiconductors Si and SiC are both indirect semiconductors in contrast to the other

semiconductors investigated in this thesis. The minimum of the conduction band of Si

and SiC is not at the center of the Brillouin zone, but at another point in the k-space.

The valence band, on the other hand, is similar to the other semiconductors. In Fig. 2.7

the band structure of Si is presented. The valence band splitting is similar to GaAs, but

the minimum of the conduction band is near the X point. The temperature dependency
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Figure 2.7 – Band structure of
Si and SiC. The conduction band
minimum is at the X-valley for Si
and cubic SiC. Other SiC struc-
tures have the conduction band
minimum at other points (e.g.
M-valley), but never at the Γ
point. The exemplary valence
band structure fits to Si and cu-
bic SiC. Other SiC structures
have the typical three-fold split-
ting of hexagonal structure (e.g.
like GaN presented in Fig. 2.5).
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of the band gap [65] is

Eg(T ) = 1. 1700 [eV] + T · 1. 059 · 10−5

[
eV

K

]
− T 2 · 6. 05 · 10−7

[
eV

K2

]
for 0 K < T < 190 K, (2.19a)

Eg(T ) = 1. 1785 [eV]− T · 9. 025 · 10−5

[
eV

K

]
− T 2 · 3. 05 · 10−7

[
eV

K2

]
for 150 K < T < 300 K, (2.19b)

which results in Eg(T = 0 K) = 1. 170 eV. The direct transition at the Γ-point has the

energy EΓ(T = 300 K) = 3. 4 eV. The temperature dependence of EΓ is not reported, but

the shift of the direct transition at T = 0 K should be of the same order as the shift of Eg.

SiC is also an indirect band gap semiconductor. There are many stable lattice phases

for SiC. In this thesis the hexagonal 6H and 4H are investigated, which are the most

common stable phases along with the cubic 3C phase. Hexagonal SiC has a minimum

of the conduction band in the M-valley with Eg,4H(T = 300 K) = 3. 23 eV, Eg,6H(T =

300 K) = 3. 0 eV and Eg,4H(T = 0 K) = 3. 26 eV, Eg,6H(T = 0 K) = 3. 02 eV [66–68]. The

band structure in Fig. 2.7 matches the cubic phase of SiC. The hexagonal phase has three

nondegenerated valence bands like hexagonal GaN, which is presented in Fig. 2.5. The

direct band-band transition for any type of SiC is bigger than EΓ ≥ 5 eV at the Γ point

and is not accessible by the experimental setup.

2.2.4. Influence of electric and magnetic fields on excitons

An important part of the investigations in this thesis are external fields applied to semi-

conductors. Therefore the main interactions of excitons with external magnetic or electric

fields are described. An external field has two influences on the SHG and THG spectra.

On the one hand, the exciton energy is influenced, which leads to a shift of exciton res-
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onances in the spectrum. On the other hand, the intensity of SHG and THG is changed

by the influence of an external field on the wave function of excitons. This can lead to an

intensity enhancement of a resonance (even from a forbidden resonance in zero field) or

to a decrease of intensity in an external field.

Small external fields are treated as a perturbation of the excitons. In this context, an

electric field is termed as ”small” when it does not ionize the exciton into a free electron

and hole. This would lead to an electrical current, since the electrons and holes move

in opposite directions due to the electric field. The applied voltage breaks down and a

current flows, since the resistance of the semiconductor is reduced. The limit is reached

when E0

ε e0aB ≥ Rexc, which is about E0 ≈ 4 kV
cm for the excitons in GaAs. A small electric

field is treated as an odd parity perturbation of the excitons, the Stark effect, which is

known from the influence of an electric field on the lines in an optical spectrum of atoms.

A magnetic field is termed ”small” when its influence lies mostly on the exciton itself

and the effect on the band structure can be neglected. When the exciton binding energy

Rexc is bigger than the cyclotron energy ~ωc = ~ e0B0

µexc
, the magnetic field can be treated

as a perturbation of the undisturbed exciton system. In this case the exciton energy

changes because of the diamagnetic shift and the degeneracy of orbital and spin angular

momentum is lifted. The Landau quantization of the electron bands is the dominant effect

in high magnetic fields.

Stark effect

Measurements for GaAs are made in an electric field. The application of an electric

field to a semiconductor leads to the mixing of exciton states with opposite parity. The

electric field also influences the whole electron band structure, but the influence is small

considering the field strength used in the experiments. The shift of the GaAs band gap

is well below the 200µeV resolution of the experimental setup for the maximum applied

field of 2. 8 kV
cm [69].

The influence of the electric field on the exciton ground state E1s and the first two

excited states E2s and E2p is described by the Hamiltonian

H(E0) =


E1s 0 ξE

0

ε e0aB

0 E2s
E0

ε e0aB

ξE
0

ε e0aB
E0

ε e0aB E2p

 . (2.20)

On the main diagonal are the energies of the undisturbed 1s exciton E1s = 1. 5152 eV,

2s exciton E2s = 1. 5183 eV, and the 2p exciton E2p = 1. 5189 eV at T = 5 K [55]. The

off-diagonal elements describe the mixing of these states through the electric field. The

Stark effect depends on the external field strength E0, the exciton Bohr radius aB = 15 nm

[70] and the elementary charge e0 = 1. 6 ·10−19 C. The external field is reduced by the DC

dielectric constant of GaAs ε = 12. 9 [71]. The higher oscillator strength between 2s and

2p states over the 1s and 2p states is accounted for by ξ. The interaction of the 1s and
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2p is reduced by ξ = 1√
2
(2

3)8 ≈ 0. 28. It is the relative magnitude of the orbital overlap

solutions ξ =
S1s/2p

S2s/2p
.
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Figure 2.8. – (a) Eigenenergy solutions of the Stark effect Hamiltonian for
excitons in GaAs. The shift of the 1s exciton is small ∆1s << 10µeV. The
2s and 2p excitons shift each ∆Sta ≈ 0. 5 meV away from each other. (b) The
expected increase of SHG for k ‖ [001] at the 1s, 2s, and 2p exciton resonance.
The EFISH at the 1s grows quadratic, whereas the other two states show a
saturation for high field strength. The growth of the 1s is magnified by 1000.

The Stark effect Hamiltonian is diagonalized to calculate the modified eigenstates and

eigenenergies. In Fig. 2.8(a) the modified eigenenergies, which depend on the external

field strength, are plotted. The 1s state has a negligible small shift even for maximal field

strength. The 2s and 2p states undergo a repulsion and shift about ∆Sta ≈ 0. 5 meV down

(2s) or up (2p).

The eigenvectors of the Hamiltonian describe the admixture of the undisturbed states

to the wave function of the modified states in an electric field. Both the s excitons and

the p excitons are forbidden for SHG, but the new wave function of the mixed states are

allowed for SHG. There is a detailed explanation in Sec. 2.3.1. The new wave functions

Ψ′ are given by

Ψ′1s,mix = C1s
1s (E0)Ψ1s + C1s

2s (E0)Ψ2s + C1s
2p(E0)Ψ2p (2.21a)

Ψ′2s,mix = C2s
1s (E0)Ψ1s + C2s

2s (E0)Ψ2s + C2s
2p(E0)Ψ2p (2.21b)

Ψ′2p,mix = C2p
1s (E0)Ψ1s + C2p

2s (E0)Ψ2s + C2p
2p (E0)Ψ2p (2.21c)

The coefficients CAB(E0) describe the fraction of the undisturbed wave function ΨB to

the new mixed state Ψ′A,mix depending on the electric field strength E0. In Sec. 2.3.1 it is

explained how the SHG intensity is calculated from the coefficients CAB(E0). The solution

of these calculations reveals the intensity

I2ω
X ∝

(
χ(3)

)2
∝ CX2p(CX1s +

1√
8
CX2s) (2.22)
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for each of the exciton resonances X=̂1s, 2s, or 2p. The 1√
8

factor accounts for the reduced

oscillator strength of the undisturbed 2s compared to the 1s exciton. The solutions are

plotted in Fig. 2.8. For the 1s exciton a quadratic increase of intensity is expected. For

the 2s and 2p an increase up to a saturation is expected. The increase of intensity at the

1s resonance is smaller by a factor of 1000, because it has a bigger energy distance to the

other states and a smaller wave function overlap with them.

It is important to remember, that the threshold of E0 ≈ 4 kV
cm for ionization was calcu-

lated for the binding energy of the 1s state. The other two states might not turn up in

the spectra, because of their reduced binding energy of Rexc
n2 ≈ 1 meV. These states are

ionized even below E0 ≈ 1 kV
cm .

Diamagnetic shift

Every exciton experiences the diamagnetic shift in an external magnetic field. It is the

compression of the Bohr radius aB of the excitons through the Lorentz force, which the

particles experience in the magnetic field. It leads to a quadratic shift of the exciton

energy

∆Edia(B0) =
[
B0
]2
αdia. (2.23)

The constant αdia has to be measured or calculated for each exciton state. Excitons with

a higher Bohr radius experience a stronger diamagnetic shift αdia ∝ a2
B. For the yellow 1s

orthoexciton in Cu2O, for example, the diamagnetic shift can be neglected, because it has

a very small Bohr radius of aB = 0. 8 nm. It is the main mechanism for the blue shift in a

magnetic field for the 1s exciton in GaAs.

The diamagnetic shift is smaller than the other magnetic field influences on the excitons,

which will be presented next, but it is always present and has to be taken into account.

The diamagnetic shift leads to a shift of exciton resonances in SHG and THG spectra. It

appears, for example, in measurements on the 1s exciton of GaAs in Sec. 4.3.3.

Zeeman effect

The Zeeman effect describes the interaction of the exciton angular momentum with an

external magnetic field. This angular momentum stems from the spin of an exciton or its

envelope function.

The spin Zeeman effect splits the degenerated spin states of an exciton

∆ESpinZee = ±1

2
gxµBB

0 (2.24)

The energy shift is proportional to the magnetic field B0 and the gx factor of the exciton.

The gx factor of an exciton stems from the hole and the electron contribution g = gh + ge.

The gx factor has to be determined for the exciton. The factor µB = e0
2me

~ is the Bohr

magneton. The Zeeman effect can be observed in the splitting of the 1s exciton in Cu2O

presented in Sec. 6.2.2.
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The splitting of degenerated states in a magnetic field due to their orbital angular

momentum is described by

∆EOrbZee = ±gorbµBB
0 (2.25)

In this case, the energy shift is also linear in B0 and depends on the g factor of the

envelope.

A magnetic field also leads to a mixing of exciton states through these effects. In contrast

to an electric field, a magnetic field can only mix states with the same parity, since the

magnetic field is of even parity. The Zeeman effect is very important for the influence of

a magnetic field on the 1s orthoexciton and paraexciton states when investigating Cu2O

in Sec. 6.
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Figure 2.9. – Eigenenergy solutions of the Zeeman Hamiltonian for 1s orthoex-
citons in Cu2O. The three degenerated ortho exciton states are splitted into three
new eigenstates m = ±1,0. The m = 0 and paraexciton exhibit repulsion leading
to a small shift of ∆ < 0. 1 meV for both states.

In Sec. 2.2.3 the band structure of Cu2O was introduced. There are four states of the

yellow 1s exciton. There are three almost degenerated orthoexciton states Γ+
5x, Γ+

5y, Γ+
5z,

and one paraexciton state Γ+
2 , which has a reduced energy ε = 12. 12 meV. The Zeeman

Hamilton for the four exciton states is
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H(B0) =



−ε iαopB
0
x iαopB

0
y iαopB

0
z

−iαopB
0
x 0 −iαooB

0
z −iαooB

0
y

−iαopB
0
y iαooB

0
z 0 −iαooB

0
x

−iαopB
0
z iαooB

0
y iαooB

0
x 0


. (2.26)

The interaction between orthoexciton and paraexciton states is described by the Zeeman

parameter αop = 92. 5 µeV
T and the interaction between two orthoexciton states is described

by the Zeeman parameter αoo = 47. 7 µeV
T [72]. A diagonalization of the Hamilton reveals

three new eigenstates of the orthoexciton in a magnetic field, which are shown in Fig.

2.9. They are labeled by m = ±1,0. The m = ±1 states exhibit the typical Zeeman

splitting. The m = 0 state is shifted to higher energies in a magnetic field, due to a

repulsion with the paraexciton, which is shifted to smaller energies due to the repulsion.

The paraexciton shift and m = 0 orthoexciton shift both lie below the resolution of the

experimental setup. The admixture of the m = 0 state and the paraexciton also leads to

a transfer of oscillator strength from the orthoexciton to the paraexciton, which can be

expressed by the admixture coefficient [73, 74]

u =
αopB

0√
(αopB0)2 + ε2

≈ αopB
0

ε
. (2.27)

At B0 = 10 T only 0.6 % of the 1s orthoexciton oscillator strength is transferred to the

paraexciton.

Landau Levels

In high magnetic fields the electron bands itself are influenced by the magnetic field and

a complicated series of magneto-excitons has to be considered. This is important for

measurements in GaAs in which the high field regime starts at ~ωC(2. 7 T) ≈ Rexc =

4. 2 meV, because of the small binding energy of the excitons. The maximum magnetic

field of B0 = ±10 T used in the experiments is still in the regime of small perturbation for

the other investigated materials. A basic model to describe the magneto-exciton series in

GaAs is proposed in [75]. First, the Landau quantization of the conduction and valence

band is calculated. The energy distance between any valence and conduction band level

is

ENe−Nh
= Eg +

e~
c

[
1/2 +Ne

me
+

1/2 +Nh

mh

]
B0. (2.28)

The different Landau levels are addressed by Ne = 0, 1, 2, . . . for the conduction band and

Nh = 0, 1, 2, . . . for the valence band. The distance between the Landau levels increases

linearly with B0 depending on the effective mass of the conduction band me and valence

band mh. The effective mass of the conduction band in GaAs is smaller me/mh ≈ 0. 13

than the heavy holes and dominates the shift of energy. Details of the effective masses
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and the valence band are given in Sec. 2.2.3.

For each combination of Landau levels Ne − Nh an exciton series is assumed. Each

exciton series has 1s, 2s, 2p, etc. states, which are observed in the magnetic-field-induced

SHG (MFISH) spectrum.

Magneto-Stark effect

The Magneto-Stark effect influences excitons with a finite momentum ~kexc. In the clas-

sical picture the movement of the exciton through a magnetic field leads to the Lorentz

force, acting on the negatively charged electrons and positively charged holes in the op-

posite direction and forcing them apart. In the center of mass system of the exciton this

force is the same as an effective electric field. The effective field

E0
eff =

~
mexc

(
kexc ×B0

)
(2.29)

is calculated by the cross product of the wave vector kexc of the exciton and the magnetic

field B0. The effective field E0
eff then leads to the Stark effect. The Magneto-Stark effect

is usually much smaller than other effects from a magnetic field in terms of an energy

shift of the resonance, but it is the only way a magnetic field can lead to an admixture

of excitons with a different parity. The Magneto-Stark effect was shown to increase SHG

from excitons in ZnO [31], since SHG is very sensitive to the admixture of different parity

excitons.

2.3. Nonlinear optical properties of semiconductors

2.3.1. Nonlinear optical spectroscopy of semiconductors

The optical phenomena presented in Sec. 2.1 are a powerful spectroscopy tool for the

investigation of semiconductors. Since their discovery in the 1960s, the investigations

keep revealing interesting insights about nonlinear interactions up to today. One of the

applications is the investigation of energy levels which are forbidden in linear optics. Some

effects only manifest in linear optics as a small change on a strong background signal. In

nonlinear optics it is often possible to create a situation in which the effect gives rise to a

signal from a zero measurement. This is usually more sensitive and reliable in comparison

to small changes in the absorption coefficient, for example. In many cases linear and

nonlinear optical spectroscopy are complementary in the investigation of semiconductors

and their interaction with light.

A typical SHG spectrum reveals non-resonant broad band SHG. It can be calculated

by taking all the electronic bands into account [28]. It stretches over several eV and has

a smooth wavelength dependence, without any resonances. In case ED SHG is allowed it

is often found in the transparency region of semiconductors. The SHG intensity is often

much smaller above the band gap, although the calculated second order susceptibility can

be bigger than in the transparency region. This is attributed to a reabsorption of the SHG
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light by an excitation of electron band-band transitions and a reduced coherence length

for the SHG process [8, 76].

Although the intensity of SHG is reduced by reabsorption for energies above the band

gap, it is still possible to use SHG spectroscopy in this energy region. As long as the

fundamental light is in the transparency region, it passes the whole sample and SHG

occurs along the whole path throughout the crystal. The SHG at the entrance region of

the fundamental light will be reabsorbed on its way to the end of the sample. The SHG at

the end of the sample only has a short way to couple out of the material. In this case SHG

light couples out of the crystal without being reabsorbed. This is especially important

for samples which are grown on a substrate. In this case, the sample is aligned so that

the fundamental light passes the substrate first and the material of interest last. The

SHG created in the material is coupled out and is not influenced by the substrate. This

is less important for materials grown on a substrate with a much higher band gap, since

SHG is well within the transparency region of the substrate. This is the case, for GaN

(Eg ≈ 3. 5 eV) grown on sapphire (Eg ≈ 8. 8 eV), for example.

In certain cases an oscillation of the SHG intensity for different wavelengths in the

transparency region is detected. A feature such as this is attributed to reflections of the

fundamental light, which lead to interference. This is especially the case for semiconductors

with a high index of refraction like GaAs (n > 3), because it leads to reflections at the

sample-air interface. The wavelength distance of two maximums of intensity is estimated

by assuming a Fabry-Perot interference.

∆λ ≈ λ2
c

2nl cos θFP
(2.30)

Since such a feature is observed in the GaAs measurements presented in Sec. 4.2.1, the ex-

pected wavelength splitting is calculated for these measurements. The central wavelength

is λc = 1936 nm, which is the laser wavelength. The refractive index is n(2000 nm) = 3. 36

in the transparency region [77]. For the thickness l ≈ 400µm the epitaxy layer and the

GaAs substrate are taken into account, since the reflection between the GaAs layers should

be minimal and the GaAs-Air interface dominates the process. The angle ≈ 13. 6◦ is de-

fined by the experimental geometry. The calculated splitting between intensity maxima

is ∆λ ≈ 1. 4 nm. This approximation could be improved by also taking the reflection

of the SHG light and a wavelength dependent refractive index into account. The oscil-

lations should be suppressed above the band gap, because the absorption of light does

not allow for many round trips of the light, which is like a small quality factor of the

Fabry-Perot-Interferometer.

The fundamental idea of SHG and THG spectroscopy is the enhancement of the conver-

sion efficiency when the light is in resonance with crystallographic eigenstates. For SHG

and THG spectroscopy it is therefore necessary to understand the influence of certain

eigenstates on the susceptibilities. It is possible to learn about the states by measuring

the wavelength and rotational anisotropy of the susceptibility. For this understanding it is

necessary to bring the findings of Sec. 2.2 and 2.1 together. In Sec. 2.2 the symmetry of
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the states was discussed. The interaction between light and crystal states depends on the

symmetry of the wave vector and the electric light field. In the case of a uniaxial material

the parallel and perpendicular component to the extraordinary axis have to be differenti-

ated. For the ED case the calculation is straight forward. If the transition 〈 f | V̂ED | g 〉
is non-zero, the symmetry of the final | f 〉 state has to be a part of the symmetry of the

operator V̂ED acting on the ground state |g 〉

〈 Γf | ΓED |Γi 〉 6= 0⇔ Γf ⊆ ΓED ⊗ Γg (2.31)

For band-band transitions the initial state is one of the valence bands and the final state

is the conduction band. In the case of excitons the initial state is the unperturbed crystal

which is noted as Γ1 in any symmetry group. The final state possesses the symmetry of

the whole exciton wave function. To the very same state, a two-photon transition has to

be allowed. The projection of two photons Γp onto the final state has to be calculated for

a two-photon process. With a two-photon transition only specific states of an exciton level

are accessed, in contrast to the one-photon ED transition in which every component is

excited. This can be important for EQ transitions which also couple to specific components

of a state. In the case of Cu2O this fact is important and specific calculations are made.

The EQ transition is treated in a similar way to the two-photon transition, because the

projection of the wave vector symmetry and the electric field symmetry on the state are

taken into account.

For SHG it is often the case that no exciton state is allowed for one- and two-photon

transitions at the same time in the ED approximation. For many semiconductor structures

parity conservation is a good approximation at the center of the Brillouin zone, where the

optical transitions in the measurements take place. For example one-photon transitions

are only allowed for s excitons and two-photon transitions are only allowed for p excitons

(or the other way around). None of the excitons are allowed for both. If they lead to

SHG, it has to stem from higher order transitions like EQ, as it is the case for Cu2O.

Usually these transitions are too weak to be detected in the experiments. This situation

is presented in Fig. 2.10(a,c). Neither the 1s or the 2p exciton is allowed for the complete

SHG transition.

In Sec. 2.2.2 the mixing of exciton states by external fields is described. Such a mixing

can create a state with mixed parity, which would be allowed for a one- and two-photon

transition in the ED regime at the same time. This is presented in Fig. 2.10 (b). The

mixed 1s/2p state is allowed for both transitions and leads to resonant enhanced SHG. The

SHG intensity depends on the mixing of the states and each individual oscillator strength.

If the microscopic mechanism of the mixing is understood, then it is possible to calculate

the increase of the SHG intensity from the admixture coefficients. In this example the

new wave function Ψ′1s/2p = C1sΨ1s ·C2pΨ2p in an external electric or magnetic field leads

to SHG intensity I2ω ∝ (χ)2 ∝ C1s · C1p. The expected increase in SHG intensity can be

compared to the measured data to verify the proposed mixing mechanism.

It is possible that the resonance from an energy level interferes with crystallographic

broad band SHG. This interference leads to a Fano resonance [78]. The phase of crystallo-
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Figure 2.10. – Exemplary exciton states and optical transitions from the ground
state to excitons. Black lines represent allowed transitions and red dotted lines
forbidden transitions in the ED approximation. (a) 1s exciton, which is allowed
for one-photon transitions and forbidden for two-photon transitions. (c) 2p ex-
citon, which is allowed for two-photon transitions and forbidden for one-photon
transitions. (b) Mixed 1s/2p exciton state through the interaction with an exter-
nal electric or magnetic field. The two-photon transition is allowed from the 2p
fraction and the one-photon transitions is allowed for the 1s fraction. Only this
mixed state leads to resonant enhanced SHG.

graphic SHG only shows small changes over a wavelength region lying a few meV around

the resonance. The phase of resonant SHG, on the other hand, changes by 2π over the

width of the resonance. This leads to a constructive and destructive interference between

these two SHG light waves for different points on the resonance. The line shape of a

resonance is distorted by this process. Typical for a Fano resonance is a local minimum

on one side of the resonance where the interference is destructive. On the other side of

the resonance the interference is constructive, which leads to a tail of the resonance. In

case the crystallographic SHG is as intense as the resonance, it is necessary to correct the

energy of the resonance since the peak energy is shifted by the interference. This is not

the case in any of the presented measurements.

Still, it is important to recognize Fano resonances. If SHG is induced by an external

field, the growth of intensity with increasing field strength is also influenced by the in-

terference with crystallographic SHG. The phase of induced SHG differs depending on

the external field direction, even when the intensity growth is the same. This leads to

an asymmetry between positive and negative field strength through the interference with

crystallographic SHG. The field direction, which leads to induced SHG with a phase close
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Figure 2.11 – (a) Schematics of
a three photon SHG process be-
tween the ground state |g 〉 and
the final state |f2 〉 . (b) Schemat-
ics of a two photon absorption ex-
citing state |f2 〉 . Through inter-
actions it relaxes to the lower state
|f1 〉 and emits a photon of wave-
length ω2.
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to the crystallographic one, results in a higher induced intensity compared to the field

direction, which leads to destructive interference. Such an effect has to be recognized so

as to avoid a wrong interpretation of the observed asymmetry of induced intensity.

The main influence of the sample temperature in the SHG and THG measurements is

a shift of the band gap. The expansion of the crystal volume leads to a higher lattice

constant. Due to the smaller wave function overlap of the electrons, the band gap is

decreased at high temperatures. Observed exciton resonances shift together with the band

gap. Another effect is the increase of the exciton resonance linewidth and the decrease of

the exciton resonance intensity. This is treated differently than in linear optics, since no

photon is involved in the coherent SHG or THG process. The influence of the phonons

stems from the thermal movement of the atoms on the crystal lattice, which can be treated

similarly to the Debye-Waller factor in x-ray imaging.

2.3.2. Harmonics generation versus multi-photon absorption

Intense light, at twice the wavelength of a resonance, also leads to another process. Instead

of a parametric upconversion of the light by SHG, two photons can be absorbed and a

crystal state is excited. This was predicted in 1931 by Göppert-Mayer [79] and experimen-

tally verified by Hopfield [80] and is called two-photon absorption (TPA). The selection

rules for this optical transition are similar to the two photon part of SHG [81]. After such

a state (e.g. exciton) is excited, it has a lifetime after which it relaxes to the ground state.

This can lead to confusion with SHG depending on the specific decay channel. In Fig.

2.11 this process is compared to SHG. In Fig. 2.11(a) the SHG process is shown, in which

the state |f2 〉 leads to SHG at 2ω1. In Fig. 2.11(b) the same incident light ω1 leads to

the excitations of the state |f2 〉 . There are several different possibilities for this state

|f2 〉 to reach the ground state. Usually the first step is to reach the lowest lying excited

state |f1 〉 by emitting photons or phonons. For most semiconductors the splittings of the

excited states are so small that the photons are far away from the visible regime and play

no role in the studies presented. The ground state is reached by sending out a photon

from the lowest excited state. So two-photon-absorption photoluminescence (TPA-PL)

is the subsequent absorption of two photons and the creation of another photon. This
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can interfere with SHG under certain circumstances. From a standpoint of energy and

momentum conservation these processes are similar, since the same number of photons

take part in them. For SHG spectroscopy a state has to be two- and one-photon allowed,

which makes TPA-PL also possible. This tends to be no problem for excitons with n ≥ 2

as the main mechanism for excited states is to relax to the 1s state without sending out a

photon with twice the energy of the incident light, like SHG. Only light which cannot be

distinguished by the energy resolution of the experimental setup could be confused with

SHG. After relaxation the photons have a different energy and can be suppressed by the

spectrometer. This can cause problems for the 1s exciton only, as shown in the Cu2O

chapter. The process also limits the maximum intensity of the fundamental light, since

energy is deposited in the crystal, which can heat the sample up or even damage it.

The TPA can be described by perturbation theory. The resulting selection rules are

different from SHG, because the created photon is not an inherent part of the process,

which changes the situation. Most notably it can occur in centrosymmetric systems in

which SHG is forbidden. It has the same square dependence on incident intensity. The

photons from the relaxation process are not directed like SHG, because all information

about the wave vector is lost in the interactions with the crystal. In most cases they relax

through an ED process, which is allowed for all wave vector directions and the intensity

in the same direction as SHG is small.

In a similar process three photons can be absorbed to create an excited state. This

is called a three-photon-absorption (3PA). After the excited state is created it behaves

the same way as described for TPA. The selection rules of 3PA are similar to one-photon

absorption.

2.3.3. Modeling of the SHG/THG rotational anisotropy

In Sec. 2.1.1 the important role of the susceptibility for the description of SHG was

presented. In this section the influence of the crystal structure on the susceptibility is

introduced and the modeling of rotational anisotropies is described.

The rotational anisotropies are described by an expression like

P
(2ω)
i = χ

(2)
ijkE

ω
j E

ω
k , (2.32)

which can be compared to the measurements. Therefore the experimental geometry has

to be taken into account by defining the k vector and the possible electric fields of the

laser light. A detailed description of the experimental geometry is given in Sec. 3.2.1. In

order to model the rotation of laser light polarization for 2π about the k vector during

the measurements, a rotation matrix for rotations about the k axis is applied to the

electric field Eω. The general rotation matrix about an arbitrary vector k = (k1, k2, k3)ᵀ

(transposed) is

Eω(ϕ) = Rk(ϕ) ·Eω(0 ◦) = k(k ·Eω) + cos(ϕ)(k×Eω)× k + sin(ϕ)(k×Eω). (2.33)

Applying the rotation to the electric field vector of the light wave Eω introduces ϕ as the
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angle between the electric field vector and the laboratory y axis. This can be plugged in

the equation for the polarization

P2ω
eff (Eω) =


∑
j,k

χxjkE
ω
j E

ω
k∑

j,k

χyjkE
ω
j E

ω
k∑

j,k

χzjkE
ω
j E

ω
k

 (2.34)

which gives the effective polarization P2ω
eff induced by the incident light field Eω. The effec-

tive polarization leads to the radiation of a light field with the same k vector as the incident

light and a polarization E2ω ‖ P2ω
eff . The optical harmonic light passes a polarization filter

before it is detected. For this polarization filter only two configurations are chosen. It

transmits the optical harmonic light with a polarization which is either parallel or per-

pendicular to the incident polarization Eω. To model the polarization filter the effective

polarization P2ω
eff is projected on a vector F parallel to the transmitted polarization of the

filter. For the parallel configuration F is parallel to the incident polarization F(ϕ) = Eω(ϕ)
|Eω |

resulting in an effective polarization P2ω
‖,eff(ϕ) = P2ω

eff (ϕ) ·F(ϕ). For the crossed configura-

tion the filter is 90 ◦ ahead of the incident polarization P2ω
⊥,eff(ϕ) = P2ω

eff (ϕ) · F(ϕ + 90 ◦).

The intensity of the optical harmonic light is detected in the experiments. The intensity

depends quadratically on the electric light field

I(2ω) =
cnε0

2
|E2ω|2, (2.35)

and linearly on the refractive index n. The speed of light c and the electric constant ε0
also have to be taken into account. The electric field of the light wave E2ω is proportional

to the polarization P2ω
eff , as shown in Sec. 2.1.1. For the two main configurations the

resulting intensity is calculated by

I2ω
‖ ∝

(
P2ω
‖,eff(ϕ)

)2
(2.36a)

I2ω
⊥ ∝

(
P2ω
⊥,eff(ϕ)

)2
(2.36b)

The factors c, n, and ε0 are not taken into account, since no absolute values are measured

or calculated. The right susceptibility for the observed transition has to be used for an

actual modeling of the anisotropies. In order to find the susceptibility for a certain process

it is necessary to know the microscopical mechanism responsible for the transition. The

susceptibilities for ED, MD or EQ transitions differ from each other and the correct one

has to be chosen. In case this information is not available, it is possible to check all possible

transition types and compare which one best fits the measured anisotropy.

The known tensor components for the crystal symmetry and transition type are taken

from the tables of Birss or Popov [82, 83]. Some components have to be zero for a

certain symmetry group. The symmetry groups of the semiconductors investigated in this

thesis usually have only a few non-zero components, which reduces the complexity of the



35 2.3. Nonlinear optical properties of semiconductors

problem. Another reduction of the parameters stems from the linear dependencies of the

tensor components. The calculations can be explained with a simple example. At the

end of this section the expected anisotropies for the main measurements of this thesis

are given. All non-zero components are grouped into several dependent components for

a given point group. The second order electric dipole susceptibility χ(2) of GaAs, for

example, is expressed as

χxyz = χzxy = χyzx. (2.37)

The underlined component is arbitrarily chosen to represent the value of the dependent

components. In this case the 27 independent components of the generalized susceptibility

are reduced to one independent component, which appears in three different positions

within the susceptibility. Such a susceptibility is plugged into Eq. (2.34) and the resulting

intensities are calculated by Eq. (2.36).

The anisotropies I2ω
‖ and I2ω

⊥ , calculated in this way, are then fitted to the observed

data from the measurements. This reveals the relative magnitude of the independent

tensor components. In some cases it is necessary to include sample tilting angles in the

calculations. The angles are introduced in detail in Sec. 3.2.1. This allows one to fit the

direction of the light polarization within the sample to the measurements. It is necessary

to choose starting angles which are close to the experimental alignment to avoid wrong

results of the fit.

2.3.4. Expected rotational anisotropies for the investigated materials

GaAs

The semiconductor GaAs belongs to the symmetry group Td. This is a cubic structure

which is not centrosymmetric. The independent tensor components of the second order

ED susceptibility χ(cryst) are

χxyz = χzxy = χyzx. (2.38)

It is clear that for k ‖ [001] no ED SHG is allowed, since no polarization is possible along

the z axis ([001]). The resulting intensities from the calculations are

I2ω
‖ (ϕ) = 9χ2

xyz cos(β)2 cos(γ − ϕ) [cos(γ − ϕ) sin(θ) sin(β)− cos(θ) sin(γ − ϕ)]2

[cos(θ) cos(γ − ϕ) sin(β) + sin(θ) sin(γ − ϕ))]2 (2.39)

I2ω
⊥ (ϕ) =

1

1024
χ2
xyz sin(2β)2 [4 cos(2θ) {cos(γ − ϕ) + 3 cos(3(γ − ϕ))}+

sin(2θ)
{
−1
(
cos(β) + 12 cos(3β) cos(γ − ϕ)2

)
sin(γ − ϕ) +

15 cos(β) sin(3(γ − ϕ))}]2 (2.40)

In this case all three possible tilting angles θ (around the y axis), β (around the x axis),

and γ (around the z axis) are taken into account. These tilting angles are explained in

detail in Sec. 3.2.1. For k ‖ [001] all angles are zero, which results in the expected zero

intensity. In Fig. 2.12(a) the expected anisotropy for k ‖ [111] is plotted. It has a typical
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Figure 2.12. – Model calculations for expected rotational anisotropies of SHG
and THG signals in GaAs. (a,b) Parallel I2ω

‖ (black) and crossed I2ω
⊥ (red)

anisotropy of crystallographic SHG in GaAs for different k directions. (c,d)
Model anisotropies of crystallographic THG in the k ‖ [001] configuration for
different ratios χxxxx

χxyyx
. (e) Expected anisotropy for EFISH in the k ‖ [001] and

E0 ‖ [010] configuration.

six-fold shape for the parallel I2ω
‖ and crossed I2ω

⊥ anisotropy, which reflects the symmetry

of the crystal lattice along this direction. For the model calculation the [110] direction is

at ϕ = 0 ◦, other alignments would just rotate the presented anisotropy. Other directions

for k lead to a reduction of some of the maxima. For θ = 10 ◦ the expected anisotropy

is plotted in Fig. 2.12(b). Compared to (a), the maxima of the parallel anisotropy at

ϕ = 30 ◦ and ϕ = 150 ◦ are reduced. The maximum at ϕ = 90 ◦ is reduced to zero for the

crossed anisotropy. For θ = 0 ◦ and β = 10 ◦ (tilting about the x axis) the same shape

rotated by 90 ◦ is expected.

Since there is only one independent tensor component for χcryst, the anisotropy is solely

determined by the direction of k in the crystal. The shape of the anisotropy in a certain

experimental geometry does not change with wavelength or temperature, although the

overall intensity might be different.

The application of an electric field leads to the mixing of exciton states and a resonant

enhancement of SHG. Independent from the microscopical mechanisms, the anisotropy of
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such a resonance is described by

P 2ω
eff,i = ε0χ

(3)
ijmnE

ω
j E

ω
mE

0
n, (2.41)

as long as it is in the ED approximation. The independent tensor components of the third

order polar susceptibility in Td are

χxxxx = χyyyy = χzzzz

χxyyx = χyxxy = χxzzx = χzxxz = χyzzy = χzyyz =

χxxyy = χxxzz = χyyzz = χzxzx = χzyzy = χyxyx (2.42)

In the experiments the electric field is applied along the y axis E0 = (0, E0, 0)ᵀ and only

components with y as the fourth index are taken into account. The increased amount of

independent tensor components leads to several different shapes, depending on the relative

magnitude of the components. Typically the χyyyy is strongest for an electric field along

the y axis, but fitting model calculations to actual measurements allows to determine the

relative magnitude of the tensor components. The resulting anisotropy for χxxxx >> χxyyx

is plotted in Fig. 2.12(e). For the parallel configuration the EFISH is only expected to

be parallel to the external field along the y axis. The crossed anisotropy for EFISH has a

four-fold shape.

The MFISH anisotropy is discussed in detail in [75]. In the ED approximation the

expected anisotropy is similar to the EFISH one. For a Voigt magnetic field the maximum

intensity is typically found perpendicular to the field direction, which is also ϕ = 0 ◦ as in

the parallel EFISH anisotropy. The actual measurements of MFISH anisotropy in [75] can

only be explained when taking magneto-spatial dispersion (k dependence) into account.

For this effect a fifth rank axial tensor

P 2ω
eff,i = ε0χ

(4)
ijmnoE

ω
j E

ω
mknB

0
o (2.43)

is responsible, which has four independent tensor components and overall 60 non-zero

components. Many rotational anisotropy shapes emerge from different ratios of the tensor

components, which are wavelength dependent.

For THG the same susceptibility as for EFISH is used

P 3ω
eff,i = ε0χ

(3)
ijmnE

ω
j E

ω
mE

ω
n . (2.44)

only in this case three incident light fields Eω are taken into account. The resulting

intensities for k ‖ [001] are

I3ω
‖ =

1

16
[3χxxxx + χxyyx + (χxxxx − 3χxyyx) cos(4ϕ)]2 (2.45)

I3ω
⊥ =

1

16
(−χxxxx + 3χxyyx)2 sin2(4ϕ). (2.46)

The shape of the anisotropy depends on the relation χxxxx

χxyyx
. In contrast to EFISH there is
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no expected relation between the independent tensor components, and the relation could

change with the wavelength or other parameters. In the case of χxxxx

χxyyx
= 3 the crossed

anisotropy is zero and the parallel one is constant, which is presented in Fig. 2.12(c). For

other values both anisotropies have an angular dependence. In Fig. 2.12(d) the anisotropy

for χxxxx

χxyyx
= 6 is plotted, in which case the crossed anisotropy is four-fold and the parallel

is not ϕ independent anymore.

For magnetic-field-induced THG in the ED approximation the susceptibility

P 2ω
eff,i = ε0χ

(5)
ijmnoE

ω
j E

ω
mE

ω
nB

0
o (2.47)

only has non-zero tensor elements, which have at least one z component. Again, there

are many possible shapes from the 60 non-zero components. In case an anisotropy for

k ‖ [001] and a Voigt magnetic field is found, a higher order susceptibility is necessary. It

is plausible that for THG magneto-spatial dispersion also has to be included. In this case

at least the fifth order axial susceptibility χ(6) is needed, which has a large number of non-

zero components. It is no longer listed in the common susceptibility tables. Experience

shows that the main intensity is found at ϕ = 0 ◦ in the parallel configuration, because

this is often the case for magnetic field induced harmonics in semiconductors.

GaN

The independent tensor components of the ED susceptibility χ(2) in C6v are

χzzz

χxxz = χxzx = χzxx = χyyz = χyzy = χzyy (2.48)

The uniaxial structure is reflected by the important role of the z axis in the susceptibility.

The expected intensity is calculated with a tilting angle θ around the x axis as a parameter.

The resulting intensities

I2ω
‖ (ϕ) = sin2(θ) sin2(ϕ)·(

3χxxz cos2(ϕ) +
(
3χxxz cos2(θ) + χzzz sin2(θ)

)
sin2(ϕ)

)2
(2.49)

I2ω
⊥ (ϕ) = sin2(θ) cos2(ϕ)·

(χxxz cos2(ϕ) + (−2χxxz + 3χxxz cos2(θ) + χzzz sin2(θ)) sin2(ϕ))2 (2.50)

depend on the fundamental light polarization ϕ and the tilting angle θ. Without tilting

SHG is forbidden, since the sin2(θ) terms in both configurations are zero. Therefore

crystallographic SHG should only be detected for the tilted sample configuration, which

is shown in Fig. 2.13(a). For a tilting about the y axis (θ 6= 0) the parallel intensity has a

maximum at ϕ = 90 ◦. For this angle the electric field of light has the strongest component

along the z axis. The shape is the same for most relations of the tensor components,

only the crossed intensity changes, which is always very small. In the experiments only

I2ω
both = I2ω

‖ + I2ω
⊥ is detected. It mainly looks like I2ω

‖ , because I2ω
⊥ is rather small.
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Figure 2.13. – Model calculations for expected I‖ parallel and I⊥ crossed rota-
tional anisotropies of SHG and THG signals in GaN. For the tilted configuration
always a tilting about the y axis (θ 6= 0) is assumed. (a) There is no ED SHG
allowed for k ‖ [0001]. For k][0001] 6= 0 mainly in the parallel configuration
at ϕ = 90 ◦ the SHG intensity has a maximum. (b) For k ‖ [0001] THG in the
parallel configuration is constant and the crossed configuration is forbidden. For
k][0001] 6= 0 various shapes of the THG anisotropy can emerge and an exemplary
one is plotted.

The anisotropies for crystallographic THG are modeled with the third order suscepti-

bility χ(3) of C6v, which has the independent tensor components

χxxxx = χyyyy = 3χxxyy

χzzzz

χxxyy = χxyxy = χxyyx = χyyxx = χyxyx = χyxxy

χxxzz = χxzxz = χxzzx = χzzxx = χzxzx = χzxxz

χzzxx = χzxzx = χzxxz = χxxzz = χxzxz = χxzzx. (2.51)

The biggest difference to SHG is the occurrence of tensor components which have no z
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component. Therefore it is possible to measure them in the k ‖ [0001] configuration. The

only independent tensor component which remains in this configuration is χxxyy, as all

other tensor components have a z component. The calculated intensities for k ‖ [0001] are

I
(3ω)
‖ = 9 ∗ χ2

xxyy (2.52)

I
(3ω)
⊥ = 0. (2.53)

All the rotational anisotropies for ED transitions of different resonances have to be con-

stant for the parallel configuration and zero for the crossed configuration, since only one

independent tensor component influences the anisotropy. The anisotropy is shown in Fig.

2.13(b). The more general results for tilted incidence θ 6= 0 are

I
(3ω)
‖ =

(
3χxxyy cos(ϕ)4 + 3 cos(ϕ)2

(
2χxxyy cos(θ)2+

sin(ϕ)2(χxxzz + χzzxx) sin(θ)2
)

+ sin(ϕ)4
(
3χxxyy cos(θ)4+

3(χxxzz + χzzxx) cos(θ)2 sin(θ)2 + χzzzz sin(θ)4
))2

(2.54)

I
(3ω)
⊥ =

1

4
sin(θ)4

(
6(χxxyy − χzzxx) cos(ϕ)3 sin(ϕ)+

cos(ϕ) sin(ϕ)3 (3(χxxyy + χxxzz − χzzxx)− χzzzz+
cos(2θ)(3χxxyy − 3(χxxzz + χzzxx) + χzzzz)))

2 . (2.55)

In this case various two-fold or four-fold shapes can emerge, depending on the relation

of the tensor components. In Fig. 2.13(b) an exemplary shape for χzzzz = 5; χxxyy =

−2; χxxzz = 5; χzzxx = −2; θ = 45 ◦ is plotted. In contrast to SHG, the main intensity

is not necessarily pointed in the direction of the z axis. The crossed intensity is smaller

than the parallel one for most tensor component relations.

The measurements on GaN showed no influence of a magnetic field and the anisotropies

did not change in an external magnetic field. Therefore the calculations of magnetic field

induced SHG and THG are omitted. All Voigt magnetic field induced SHG in GaN is

anisotropic and is non-zero for the crossed configuration. It can easily be recognized for

k ‖ [0001], because of the strong difference to the crystallographic SHG and THG.

Cu2O

Since Cu2O is a centrosymmetric material, ED SHG is forbidden in it. The polar suscep-

tibility χ(2) is zero for all components. Still it was shown by Shen that it is possible to

observe SHG from the yellow 1s exciton [39]. The optical selection rules for ED transitions

allow two-photon transitions to the 1s exciton from the ground state, but a one-photon

transition is forbidden. The one-photon part of the SHG transitions is an EQ transition.

The excitation of an EQ moment by a two-photon excitation in the crystal is described

by the third order susceptibility

Q2ω
ij = χ

(3)
ijnmE

ω
nE

ω
m. (2.56)
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Figure 2.14. – Model calculations for various expected anisotropies in Cu2O.
(a) Parallel I2ω

‖ and crossed I2ω
⊥ anisotropy of EQ SHG in the k ‖ [111] direction.

It has the typical six-fold shape of an anisotropy of SHG in this direction in
cubic structures. (b) Expected anisotropy for k ‖ [112] direction. The parallel
anisotropy is four-fold and the crossed six-fold. (c,d) Exemplary anisotropies for
EQ SHG in a Voigt magnetic field and k ‖ [111]. There are numerous possible
shapes from different magnitudes of tensor components. Most notably the same
six-fold shape as in (a) can emerge.

The resulting quadrupole moment leads to light emission with an intensity depending on

the wave vector:

I2ω ∝ | − ikQ2ω|2 (2.57)

The anisotropies can be modeled in the same way as in ED SHG. In the direction k ‖ [111]

the described quadrupole process is allowed. The independent tensor components for χ(3)



2. Theoretical background 42

in the Oh group are

χxxxx = χyyyy = χzzzz

χxyyx = χxzzx = χyxxy = χyzzy = χzxxz = χzyyz =

χxxyy = χxxzz = χyyxx = χyyzz = χzzxx = χzzyy =

χxyxy = χxzxz = χyxyx = χyzyz = χzxzx = χzyzy. (2.58)

Calculating the expected anisotropy for k ‖ [001] and k ‖ [110] reveals zero intensity for

the parallel and crossed configuration. EQ SHG is allowed in other directions. In Fig.

2.14(a) the expected anisotropy for k ‖ [111] is plotted. Both configurations have a six-fold

shape with the same intensity. The calculated intensities are

I2ω
‖ (ϕ) = (χxxxx − 3χxxyy)

2 cos2(3ϕ) (2.59)

I2ω
⊥ (ϕ) = (χxxxx − 3χxxyy)

2 sin2(3ϕ) (2.60)

This is the same expected anisotropy as ED SHG in GaAs for k ‖ [111]. Although the

susceptibility has two independent tensor components, only the difference between them

turns up and every resonance has the same shape. It reflects the structure of cubic

materials in this direction, which is similar to a hexagonal structure. The k ‖ [112]

direction is shown in Fig. 2.14(b). The equations for this direction are

I2ω
‖ (ϕ) = (χxxxx − 3χxxyy)

2 cos4(ϕ) sin2(ϕ) (2.61)

I2ω
⊥ (ϕ) =

1

144
(χxxxx − 3χxxyy)

2(cos(ϕ) + 3 cos(3ϕ)) (2.62)

Again, only one shape for every resonance is expected. The intensity for the parallel

configuration is much higher and shows a four-fold symmetry. In the next step, the EQ

SHG in a magnetic field is calculated.

The expected EQ SHG in a magnetic field is calculated from the axial susceptibility

χ(4) with the tensor components

χzyxxx = χxzyyy = χyxzzz = −χyzxxx = −χzxyyy = −χxyzzz
χzyxyy = χxzyzz = χyxxzx = −χzxxyx = −χyzxzz = −χxyyzy
χzyxzz = χxzxyx = χyxyzy = −χzxyzz = −χyzxyy = −χxyxzx
χzyyyx = χxzzzy = χyxxxz = −χzxxxy = −χyzzzx = −χxyyyz
χzyzzx = χxzxxy = χyxyyz = −χzxzzy = −χyzyyx = −χxyxxz
χzzyzx = χxxxzy = χyyxyz = −χzzxzy = −χyyyzx = −χxxxyz

(2.63)

The high number of independent tensor components allows for many different anisotropy

shapes, which can depend on the wavelength. For k ‖ [111] and B0 ⊥ k the resulting
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intensities are

I2ω
‖ (ϕ) = (3(χzyxxx + χzyxyy + χzyxzz − χzyyyx − χzzyzx) cos(ϕ)

+ 3(χzyxyy + χzyxzz − χzzyzx) cos(3ϕ)

+
√

3((χzyxxx + χzyxyy + χzyxzz − χzyyyx − χzzyzx) sin(ϕ)

+ (−2χzyxxx + χzyxyy + χzyxzz + 2χzyyyx − χzzyzx) sin(3ϕ)))2 (2.64)

I2ω
⊥ (ϕ) = (−

√
3(3χzyxxx + χzyxyy + 5χzyxzz + χzyyyx + 2χzyzzx + 3χzzyzx) cos(ϕ)

+
√

3(2χzyxxx − χzyxyy − χzyxzz − 2χzyyyx + χzzyzx) cos(3ϕ)

+ 3(3χzyxxx + χzyxyy + χzyxzz + χzyyyx + 2χzyzzx − χzzyzx) sin(ϕ)

+ 3(χzyxyy + χzyxzz − χzzyzx) sin(3ϕ))2 (2.65)

Among the various possible anisotropies there is also a six-fold shape like the zero field

anisotropy, which is shown in Fig. 2.14(c). Another possible shape is shown in Fig. 2.14(d).

In this case the crossed anisotropy is stronger and only two-fold. Without a more detailed

understanding of the independent tensor components the measurement of the anisotropy in

a magnetic field does not reveal much information about the process, since many possible

shapes can be fitted by Eq. (2.65).

In Sec. 6 it is shown that SHG is observed in the EQ forbidden directions k ‖ [001] and

k ‖ [110] in Cu2O. It is therefore interesting to investigate the responsible selection rules

for these directions in more detail. In the k ‖ [110] direction the calculated intensity from

a quadrupole is zero and cannot explain the observed resonance. Another possibility for

a higher order SHG process is an MD transition. This is described by the susceptibility

P 2ω
i = χ

(2)
ijnE

ω
j H

ω
n (2.66)

which calculates the resulting polarization from a transition in which the magnetic field

of the light is involved. It turns out that this polarization is also zero for [110].

In order to find out more about the selection rules for the EQ transition, the symmetries

of the transitions at the Γ point are investigated. This leads to more information than

the general susceptibility calculations. The crystal is cut in such a way that the directions

[110], [112] and [111] are fundamental faces and a good starting point for a basis of the

involved states. The set of basis vectors

E(111) =
1√
3

1

1

1

 E(112) =
1√
6

 1

1

−2

 k(110) =
1√
2

 1

−1

0

 (2.67)

is used for these calculations. The subscript defines the direction of the vector. The E

vectors are the polarizations of the light wave and the k vector is the wave vector. A two-

photon ED transition to the 1s exciton is described by the projection of two Γ−4 photons
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on the Γ+
5 exciton

A(E) =

eyezexez
eyex

 (2.68)

and depends on the direction of the light polarization E. The quadrupole transition is

described by the symmetric vector product of E and k.

Q =

eykz + ezky
exkz + ezkx
eykx + exky

 (2.69)

For SHG the two-photon ED and the one-photon EQ transition have to be allowed for the

same state of the three 1s exciton states. Therefore the transitions are calculated for both

polarizations of light with k ‖ [110], which are E ‖ [111] and E ‖ [112]. In the following

calculations the S vector describes the excited crystal state. They are normalized after

they are calculated from the polarization and wave vectors.

Q(k(110),E(111)) =
1√
6

−1 + 0

0 + 1

1− 1

 ↪→ S(110) (2.70a)

Q(k(110),E(112)) =
1

2
√

3

2 + 0

0− 2

1− 1

 ↪→ S(110) (2.70b)

A(E(111)) =
1

3

1

1

1

 ↪→ S(111) (2.70c)

A(E(112)) =
1

6

−2

−2

1

 ↪→ S(221) = −(S(111) + S(112)) (2.70d)

The EQ transition is only allowed for the S(110) state, which lies in the direction of the

wave vector. The two-photon ED transition, on the other hand, is only allowed for the

states perpendicular to S(110). No state is allowed for both, which is the reason for the

vanishing susceptibility for SHG in this direction.

The presented calculations reveal that the observed signal in k ‖ [110] direction could

be TPA-PL (and the same argument can be used for the forbidden k ‖ [001] direction as

shown by Kono [33]). SHG is only forbidden because the one- and two-photon transitions

are not allowed to the same state. Since all three 1s exciton states S(111), S(110), and

S(221) are degenerated (except for the tiny k2 splitting) a transition between the states is

possible. First, a two-photon absorption process creates the exciton. Depending on the

polarization it is either the S(111) or the S(112) state. During its lifetime it can convert

into another state through means of interaction with other quasiparticles [84]. Once it is
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in the S(110) state it can emit a photon in the [110] direction via an EQ process.

The calculations for the k ‖ [110] direction were done relative to the crystal faces of

the sample. The same calculations are done with the basis [110], [001], and [110] which

includes the fundamental E ‖ [001] direction. The resulting selection rules are

Q(k(110),E(001)) =
1√
2

−1 + 0

0 + 1

0

 ↪→ −S(110) (2.71a)

Q(k(110),E(110)) =

0

0

0

 ↪→ forbidden (2.71b)

A(E(001)) =

0

0

0

 ↪→ forbidden (2.71c)

A(E(110)) =

0

0

1

 ↪→ S(001) (2.71d)

The selection rules are simpler with this basis. The incident ED two-photon transition is

only allowed for the light polarization E ‖ [110] and the EQ transition is only allowed for

E ‖ [001]. This can be compared to measurements in which only the fundamental or the

SHG polarization are turned separately.

Si and SiC

For the measurements of Si and SiC it is sufficient to briefly summarize the important

features of the according susceptibility. It is only used to verify that a detected signal is

in fact SHG or THG and does not belong to another type of transition.

Si belongs to the symmetry group Oh like Cu2O. Most importantly, ED SHG is forbidden

in the centrosymmetric structure. The rotational anisotropy for THG is described by the

third order susceptibility χ(3) of Oh. The independent tensor components for χ(3) are

given in (2.58). For k ‖ [111] a constant intensity of the parallel configuration is expected,

as is a four-fold shape for the crossed intensity.

Hexagonal SiC belongs to the symmetry group C6v. A thorough analysis of the rota-

tional anisotropy in this group is given in [31]. For the rotational anisotropy of SHG in the

k ‖ [0001] configuration, a six-fold shape is expected, which reflects the crystal structure

in this direction. For a tilted configuration Θ 6= 0 ◦ a two-fold parallel anisotropy with a

maximum at ϕ = 90 ◦ is expected.



3. Experimental methods

In this chapter the experimental methods to investigate nonlinear light matter interactions

are introduced. A general optical setup consist of a light source, a sample mounting,

and light detection. The specific devices in the setup are optimized for SHG and THG

spectroscopy of semiconductors over a broad spectral range. In Sec. 3.1 “Components”

these devices are described. The setup allows for manifold measurement routines, which

lead to complementary information. The most important measurement routines for the

thesis are described in Sec. 3.2 “Measurement techniques”.

3.1. Components
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Figure 3.1. – Sketch of the experimental setup. For the presented measurements
only the idler beam of the OPO is used. The analyzer of linear polarized light is
either a Glan-Thompson prism or a polarization foil.

A sketch of the experimental setup is shown in Fig. 3.1 and a 3D image in Fig. 3.2. The

main parts are the laser system, the cryostat, a detection system and optical components.

46
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The whole setup is controlled by a custom LabView program running on a PC. It controls

the different components and also handles the timing of measurements. The samples are

mounted within a split-coil cryostat to control the temperature and external magnetic or

electric fields. The laser system allows a variation of the power and wavelength of the

incident light. The optical components can adjust and filter the light polarization and

wavelength. The optical axis is defined as the z axis, so that z is parallel to the wave

vector of the laser light. The x axis is parallel to the optical table and the y axis is

perpendicular to the table.

3.1.1. Laser system

Figure 3.2. – 3D image of the experimental setup.

A “SpitLight 600” laser by Innolas is used to pump a “VisIR2” OPO by GWU. The

SpitLight 600 is a seeded neodymium-doped yttrium aluminum garnet (Nd:YAG) laser

with optical pumping by flash lamps and an amplifier crystal, which is pumped by the

same flash lamps. The flash lamps work at a repetition rate of 10 Hz. A Pockels cell is used

as a Q-switch for maximum population inversion in the medium before the lasing is started.

Integrated SHG and THG stages convert the typical Nd:YAG wavelength (1024 nm) down

to 532 nm and 355 nm respectively. The fundamental light is separated from the 355 nm

by short-pass mirrors. The pulse duration is 7 ns with a pulse energy of about 180 mJ.

The light from the Nd:YAG laser is used to operate an optic parametric oscillator (OPO).

This allows a tuning of the laser wavelength by parametric down conversion. Angle tuning

of a BBO crystal allows one to convert the pump frequency wp into two new frequencies

ws and wi. The short wavelength is called “signal” and the long one “idler”. They have

the relationship ws + wi = wp, because of energy conservation. In each transition one

photon of each wavelength is created. This leads to an uneven distribution of energy in

the signal and idler beam. Angle tuning of the BBO crystals allows to create different
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Figure 3.3. – Typical conversion efficiency (black line) of the OPO taken from
the manual [85] and x axis converted to eV from nm. The gap around the point
of degeneracy can actually be avoided by correct adjustment of the OPO. Also
the energy range for the fundamental light of the measurements are marked (gray
areas).

Figure 3.4 – Typical linewidth of the
OPO taken from the manual [85]. The
linewidth of the premiScan/MB used in
the experiment is almost constant 5 cm−1

over the whole spectral range and only in-
creases to 6 cm−1 at the degeneracy point
λD = 709 nm.

phase matching conditions to favor one specific signal (and therefore also idler) frequency.

In order to get access to as much angles as possible two different BBO crystals are mounted

on top of each other, which have a different starting angle relative to the laser light. The

conversion process is started by ambient photons which accidentally match the frequency

of the signal or idler. To achieve a high conversion of up to 20 %, the crystals are mounted

within an optical resonator for the idler. The OPO gives access to the wavelength region

between 400 nm (3. 098 eV) and 2500 nm (0. 496 eV). In Fig. 3.3 the conversion efficiency

depending on the wavelength is shown. The wavelength regions covered in this thesis are

marked by gray bars. An energy of 2 mJ up to 6 mJ per pulse is reached after the OPO.

This is more than sufficient and has to be reduced by optical gray filters in most cases to

avoid a damaging of samples.

The laser linewidth is about 5 cm−1 as shown in Fig. 3.4. The linewidth increases
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only slightly near the degeneracy point at 710 nm to 6 cm−1, because the premiScan/MB

(MidBand) OPO is used. The premiScan/MB is a type-II OPO, which allows for a small

linewidth compared to type-I OPOs. The OPO linewidth is the main limiting factor for

the resolution of energy, as the detection offers a higher resolution.

The 10 pulses of 7 ns lead to 70 ns laser action time during a second. This is a duty

cycle of 1. 4 × 10−11. Most measurements were performed using an energy per pulse

between 0. 2 mJ and 3 mJ, depending on the damage threshold of the investigated crystal.

For 1 mJ per pulse the system has an average power of 10 mW. Taking only the time

during one pulse into account, a power of about 150 kW is reached. A typical spot size of

300× 300µm2 = 9 · 10−8 m2 can be achieved at the the sample. The irradiance of 15 TW
m2

for the focused beam is sufficient to induce nonlinearities in most materials.

The linear polarization of the laser light can be turned by a half-wave plate, called

“polarizer”. This allows the measurement of the polarization anisotropy of SHG and is

an important part of SHG spectroscopy. In Sec. 3.2.3 “SHG/THG rotational anisotropy”

the measurement routines involving polarization dependence are explained. The uniaxial

material for a wave plate has strong nonlinear optical properties and leads to SHG, al-

though the laser light passes it unfocussed. This SHG is filtered by a long pass optical

filter in front of the sample.

3.1.2. Cryostat and sample holder

Most of the experiments were performed with an Oxford Spectromag system. It is isolated

by a vacuum PV ≈ 10−6 mbar and a nitrogen shield. It includes a superconducting split-

coil magnet, which can reach magnetic fields up to 11 T in the Faraday and Voigt geometry,

which are explained in Sec. 3.2.1. By controlling helium flow with a pump, the temperature

of the sample can be regulated between T = 1. 5 K (superfluid helium) and 300 K (warm

helium gas). The superfluid helium phase is reached by reducing the pressure in the

cryostat down to 40 mbar with a pump. The sample can be investigated optically through

quartz windows on each side. The sample is mounted on a holder within the cryostat.

Three different sample holders are used for the measurements. The main sample holder

allows the attachment of up to four samples simultaneously and is equipped with a cernox

diode to measure the temperature precisely. This is presented in Fig. 3.5(Top). A second

sample holder allows a rotation of the crystal around the optical axis. In this way the

external magnetic field can be applied along different crystal axis.

A custom-made sample holder was designed, as shown in Fig.3.5(Bottom), for the ap-

plication of an electric field. The main structure is made from nylon, which has a low

coefficient of thermal expansion α ≈ 80 · 10−6 K−1 and is an insulator. Within this struc-

ture there are two brass blocks, which are used as a capacitor. These blocks have rounded

off edges so as to avoid voltage spikes. The sample rests on the lower brass block while

the upper one presses against the sample. The pressure is adjusted by three springs to a

value, which secures the sample, but also avoids strain or even damage. A comparison be-

tween measurements with this sample holder and measurements with other sample holders

reveals, that the strain is negligible and does not change the obtained SHG spectrum.
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Figure 3.5. – (Top) The main sample holder allows to attach several samples
at once. A cernox diode makes temperature measurements close to the samples
possible. (Bottom) The custom designed electric field sample holder. The main
structure is made from nylon for good electric isolation. Two rounded brass plates
are connected to a power source. In between the brass plates the sample is fixed
by pressure from springs.

A drawback of this sample holder is, that the sample orientation cannot be adjusted

as well as in the other holders. The sample position can change due to vibrations during

the insertion or adjusting process. This leads to a small tilting of the adjusted position of

about Θ < 3 ◦. This is taken into account for model calculations.

The brass capacitor is connected to a power supply with two cables. The voltage and

current limitations are set separately. With the measurements the influence of an electric

field of up to 2 kV on SHG is investigated. Even small currents lead to an undesired

heating of the sample and have to be avoided. The current limitation is set to about

2 mA. Then the maximum possible voltage is checked with the laser wavelength tuned to

a resonance of the sample. Absorption of the laser light induces photo currents, which

lead to smaller possible voltages before the current limit is reached. The highest possible

voltage decreases over time. Especially after a few current spikes the maximum voltage

has to be reduced. Taking the sample out of the cryostat and cleaning the surface makes

higher voltages possible again. The currents are probably conducted via the surface, which

seems to collect impurities.

It is not possible to reach T = 1. 5 K when voltages over 500 V are applied with this

sample holder. The connector between the cables in the cryostat to the brass capacitor
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Figure 3.6 – Quantum effi-
ciency of the CCD [86]. In the
experimental setup the model
Pixis 256E from Princeton In-
struments is used.

and the external power supply is in the low pressure He gas at the top of the cryostat

when the He pump is used. He gas at low pressure has a smaller breakthrough voltage

threshold than He at normal pressure according to Paschen’s law and spark-overs happen

for voltages above 500 V. All measurements with this sample holder are performed at

T = 5 K, which is sufficient to avoid a broadening of resonances from phonon interactions.

For the presentation of the experimental data the actual applied voltage is always given.

For theory calculations the electric field strength is the important quantity. The voltage V

is converted into electric field strength. For the GaAs 239 sample with a height of 0. 7 cm

parallel to the electric field it is calculated by E0 ≈ V
0.7 cm . The actual field strength could

be smaller due to losses at the sample capacitor interface.

3.1.3. Detection

For SHG spectroscopy light is probed for its properties after it passes through the sample.

The polarization, wavelength, intensity and, in specific cases, duration of the pulse can

be measured. The SHG light coincides in time and space with the laser light and the

two have to be separated. A short-pass filter absorbs the laser light and transmits the

SHG light behind the sample. Different filters are available to cover all wavelengths. With

a Glan-Thompson filter, called “analyzer”, specific linear polarizations of the SHG light

are selected for detection. The relative position of the polarizer and the analyzer is an

important tool for SHG spectroscopy and the measurements based on these components

are explained in Sec. 3.2.3.

A spectrometer is used to center a specific wavelength on a charged-coupled device

(CCD) camera. The spectrometer is a Jobin Yvon HR460 with two switchable gratings.

The relative efficiency of the gratings is presented in Fig. 3.7. To avoid the different

efficiency for transverse electric (TE) and transverse magnetic (TM) light, the SHG passes

a depolarizer before it is focused on the spectrometer slit. Therefore only the unpolarized

efficiency (blue line) is of importance. Grating 53028 is blazed with 1200 lines/mm and

Grating 53018 is blazed with 1800 lines/mm. Both have an edge length of lMo = 10 cm. The

gratings are chosen according to better efficiency for the SHG wavelength.
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Figure 3.7 – Relative efficiency
of the two gratings used in the
spectrometer [87]. The efficiency
for unpolarized light (blue line)
is important for the measure-
ments, because any light is de-
polarized before it is focused into
the spectrometer.

The CCD chip has 256 × 1024 pixels. The columns are binned to increase the signal

because no spatial resolution is necessary. Each column corresponds to a wavelength and

the center column 512 is the selected wavelength of the spectrometer. The whole spectral

range over the CCD is evaluated for PL measurements. For resonant SHG measurements

only a few columns around the central wavelength are summed up and stored as the

relative intensity.

3.2. Measurement techniques

3.2.1. Experimental geometry

The angles between the sample, the incident light, the detected light, and possible external

perturbations have to be taken into account in the experimental studies. The sensitivity

of SHG on the symmetry conditions makes the understanding of the geometry especially

important. Therefore the angles describing the experiment are introduced.
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Figure 3.8. – Configurations used in the experiments. (a) Voigt configuration
for normal incidence and electric field perpendicular to the magnetic field. (b)
Faraday configuration for normal incidence. (c,d) tilted samples described by Θ
and β. (e,f) Polarization geometries.

The measurement geometries are presented in Fig. 3.8. The optical axis of the laser is

always the z axis of the laboratory system. The x axis is parallel to the optical table and
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the y axis is perpendicular to it. In Fig. 3.8(a) the most frequently used measurement

geometry is presented. The sample surface is perpendicular to the incident laser and this

sample configuration is called “normal incidence”. The magnetic field lies along the x

axis, which is called “Voigt geometry”. An electric field is applied along the y axis. This

configuration is always chosen for crossed magnetic and electric fields. The geometry in

Fig. 3.8(b) is still “normal incidence”, but in contrast to (a) the magnetic field is in

Faraday configuration, in which case the magnetic field is parallel to the laser light. In

Fig. 3.8(c) the laser light and external fields face in the same direction as in (a), but the

sample surface is tilted around the y axis. The tilting is described by the angle Θ, between

the surface normal of the sample and the laser light. This tilting is used for k dependent

studies and is controlled by the rotation of the sample holder. In Fig. 3.8(d) a sample

tilting around the x axis is presented. The angle β is defined between the surface normal of

the sample and the laser light. Such a tilting can happen in the electric field sample holder

as explained in Sec. 3.1. The geometry presented in Fig. 3.8(e) is the same as in (a), but

viewed along the z axis. The angle ϕ is defined between the y axis and the polarization for

the laser light. It is used for polarization dependent modeling of the harmonics generation.

Both the polarization after the polarizer and the polarization selection by the analyzer

are described by this angle. In the crossed configuration E2ω ⊥ Eω the analyzer is set

to ϕ + 90 ◦. In Fig. 3.8(f) the angle γ, which describes a rotation of the sample around

the z axis, is presented. It is defined between an internal crystal axis and the y axis. For

k ‖ [001] it is the angle between the y axis and the [010] crystal direction. For γ = 45 ◦

(similar to Fig. 3.8(f)) the [110] is parallel to the y axis. This is important for the

comparison of model calculations and measured anisotropies. It can be understood as a

correction of the ϕ = 0 ◦ polarization direction.

3.2.2. SHG and THG spectroscopy

SHG spectroscopy is the standard technique used for the measurements. For this mea-

surement the OPO is tuned over a wavelength region of interest. This is a region in which

the photons have half the energy compared to the energy levels of interest. This way the

states can lead to resonantly enhanced SHG. The spectrometer acts as a last filter for

the light and centers the SHG on the CCD camera. Therefore it is set to exactly half

the wavelength of the OPO, so a wavelength region is scanned, step by step, for SHG. In

such a measurement the linewidth of the observed peaks is the convolution of the laser

linewidth and the broadening of the state itself.

3.2.3. SHG/THG rotational anisotropy

For a polarization dependence (rotational anisotropy) the OPO and spectrometer wave-

length are fixed and the polarization optics, which lie before and behind the sample, are

changed. Thereby the light intensity for every combination of incident and emitted polar-

ization can be obtained. Typical measurements are a parallel turning of the incident and

the detected polarization about 360 ◦, which is called I2ω
‖ , or the detected polarization is
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turned ahead by 90 ◦, which is called I2ω
⊥ . These two measurements are compared to the

expected anisotropy of the nonlinear optical susceptibility.

In some cases a specific crystal direction, e.g. a direction along an external field or along

a specific crystal axis, is important. In this case either the polarizer or analyzer are held

fixed at a specific polarization, whereas the other one is turned about 360 ◦ starting from

ϕ = 0 ◦. In case the polarizer is held fixed the resulting intensity is IOut, since the emitted

polarization is measured for a fixed fundamental polarization. In case the analyzer is held

fixed the intensity is IIn.

If the intensity of the optical harmonic light is low, it is necessary to remove the analyzer

from the setup to detect the intensity I2ω
both of both light polarization configurations E2ω ‖

Eω +E2ω ‖ Eω at the same time. Such a measurement does not reveal as much about the

tensor components as I2ω
‖ and I2ω

⊥ , but it is still enough to distinguish SHG from other

processes, which show no rotational anisotropy at all.

3.2.4. Multi-photon absorption photoluminescence spectroscopy

In Sec. 2.3.2 TPA-PL and 3PA-PL were introduced. These are used to investigate the

multi-photon absorption of excitons. Directly measuring the loss of laser intensity by

the absorption process in the sample is not possible with the presented experimental

components. The relative change in intensity is usually much smaller than the 5% intensity

fluctuation of the laser system. Therefore a PL of the electrons excited by TPA is detected.

First, it is necessary to find the strongest source of PL in a sample for these measure-

ments. This is done by using a laser with ~ω1 > Eg, which leads to hot electron-hole

pairs from band-band transitions. For example a HeNe laser is used for GaAs, since

~ωHeNe ≈ 1. 96 eV > Eg,GaAs(5 K) ≈ 1. 5 eV. The energy region below the band gap is

scanned for the strongest source of PL with the spectrometer and CCD camera. For the

actual measurements the spectrometer and CCD camera are kept at this wavelength. Sim-

ilar to the SHG measurements only a small part of the CCD pixels are evaluated so as to

integrate only the PL light.

Then the TPA-PL measurements are performed by tuning the laser light with the OPO

over the wavelength region of half the exciton energy. For each wavelength step in the

laser light the PL intensity is detected. In case no resonance leads to enhanced TPA, no

PL intensity is detected. A strong PL intensity indicates that there is a resonance for

TPA at the laser wavelength. The detected intensity at the fixed wavelength is plotted

for each wavelength step of the OPO.

These measurements are performed in a reflection geometry, which is presented in

Fig. 3.9. The laser light enters the cryostat from the side windows, perpendicular to

the detection direction. The sample is aligned, so that the specular reflection of the laser

light is dumped within the cryostat. PL has no specific wave vector direction in contrast

to SHG and all the light leaving the cryostat through the windows is captured by a lens

and focused on the spectrometer. In order to suppress the small amount of diffuse re-

flected laser light a Glan-Thompson prism is used, which only transmits light polarized

perpendicular to the laser light. The PL is not polarized and 50% are transmitted through
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Figure 3.9 – Geometry for TPA-PL and
3PA-PL measurements. The laser is di-
rected along the x axis and illuminates
the sample under an angle. The specular
reflection is dumped within the cryostat.
The PL from the sample is undirected.
The PL light, which leaves the cryostat
along the z axis is collected with a lens.
The magnetic field is along the x axis and
is also tilted compared to the sample axis.
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the Glan-Thompson prism in any case.

Another way of measuring TPA-PL is keeping the spectrometer and OPO wavelength

fixed. Then the whole CCD is evaluated and the pixel number is converted into a certain

wavelength, according to the spectrometer specifications. Again it is possible to observe

SHG (or resonant TPA-PL) at the CCD pixel which are illuminated by the wavelength

2ω. In addition to this wavelength 2ω further wavelengths at other positions of the CCD

can be evaluated. This enables an investigation of the relaxation process leading to PL,

in addition to the SHG measurements. In this way several decay channels of an excited

state can be observed at once.

It is possible to perform measurements similar to TPA-PL and 3PA-PL with the laser

directly resonant to the excitons, so as to measure the one-photon absorption. This tech-

nique is called photoluminescence spectroscopy (PLE). This was, for example, performed

on GaAs, but it turns out that impurities in the substrate overpower the signal of the exci-

tons from the high quality epitaxy-layer. For TPA-PL and 3PA-PL this is not big problem,

because the nonlinear interaction of the impurities is small. A different technique is used

to investigate the one-photon absorption.

In order to investigate the one-photon transition to crystal states, white light reflection

measurements can be made. The used light source is a common lamp. The light is

collimated and focused on the sample through the same cryostat window, which is also used

for the detection. It is possible to make measurements in the normal incidence geometry

via a polarizing beam splitter and waveplates, which is described in detail in [88]. The

reflected light is focused on the spectrometer and detected with the CCD camera. In this

way the intensity of the reflected light for a certain wavelength region can be investigated.

An advantage of this method is, that only a shallow depth of the sample is probed, which

can be used to investigate only the high quality side of a sample and avoid contributions

from a substrate. With this method it is possible to observe excitons, because they lead to

a minimum in the reflection spectra in case they are one-photon allowed and absorb some
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of the light. Since most optical measurements are done in the linear regime the white light

reflection method is helpful when comparing an investigated sample to known results.

3.3. Samples

Table 3.1. – List of samples used in the experiments.

Material Name Growth method Thickness Crystal face

GaAs 239 gas-phase-epitaxy 10µm (001)

GaAs PDI-M4 2601 molecular-beam-epitaxy 3µm (111)

GaAs S01 Bridgman 245µm (001)

GaN BS2887 MOVPE Layer 4. 5µm (0001)

Cu2O H28 natural growth 5 mm (111)/(110)

Si Si01 Czochralski 500µm (001)

SiC SiC4H Lely 500µm (0001)

SiC SiC6H Lely 500µm (0001)

GaAs samples

In Ch. 4 measurements on GaAs are presented in which several samples are investigated.

Most of these measurements are performed with the sample GaAs 239. It was used before

for MFISH measurements on GaAs by Sänger et al. [75], in which different GaAs samples

were compared. In each sample the resonance energies were the same, but it was found that

the quality of the sample has a strong influence on SHG intensity, resonance linewidth, and

rotational anisotropy. The sample 239 has the smallest linewidth for exciton resonances

and is also used for the measurements in Ch. 4.

Sample 239 is a 10µm thick layer of gas-phase-epitaxy grown GaAs on a semi-insulating

GaAs substrate. The main face of the sample is (001) and, for normal incidence, the [001]

direction lies on the optical axis. The sample has a low defect density of 1014 cm−3, which

leads to a good optical quality and a high resistance. The sample has a resistivity of

R(300 K) = 20 MΩ at room temperature along the [010] direction, which increases beyond

R(5 K) = 30 MΩ at T = 5 K. Voltages up to V = 2 kV can be applied at T = 5 K. This

sample is also used for the magnetic field induced SHG and THG measurements. Measure-

ments in crossed magnetic and electric fields show the same spectrum as measurements

in a magnetic field. The maximum voltage is probably not high enough to influence the

MFISH spectrum. Therefore sample S01 is used for the measurements in crossed fields.

Sample PDI-M4 2601 is a 3µm layer of GaAs on a GaAs substrate. It is used for the

investigation of non-resonant SHG in the k ‖ [111] direction. The other two faces of the

crystal are (011) and (211).

The GaAs substrate S01 sample is used for measurements in crossed electric and mag-

netic fields. A comparison of MFISH spectra to sample 239 revealed a low SHG intensity
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and a higher linewidth of the resonances in the substrate, as is expected due to the lower

optical quality of a substrate. Nevertheless, it is better suited for the measurements in

crossed fields. The maximum possible voltage is only 800 V, but it leads to much stronger

EFISH effects. The external voltage is better coupled to the electronic system of this

GaAs sample. Because of the thickness of this sample, it has a higher surface area for the

connection to the brass contacts. This could lead to a better connection and lower losses

of field strength at the sample-brass connection.

Every GaAs epitaxy-layer is grown on a GaAs substrate. For every measurement the

laser first passes the substrate and then the epitaxy-layer. This way the SHG is coupled

out of the epitaxy-layer and does not interact with the substrate.

GaN samples

The GaN sample is a 4. 5µm thick layer of hetero-epitaxial (MOVPE) grown GaN on

a sapphire substrate, which is investigated by SHG and THG spectroscopy and labeled

“GaN BS2887”.

The growth of GaN is not as well controlled as GaAs and reaching a high optical quality

of samples is necessary for the observation of excitons. Several samples were available, but

only BS2887 allowed the observation of excitons by THG spectroscopy. GaN BS2887 is

grown on a sapphire substrate. Sapphire has a band gap of over Eg > 8 eV [89], which is

much higher than the band gap of GaN. The influence of the sapphire on optical harmonics

generation should be minimal, because the wavelengths of the fundamental light and the

harmonic light are both well within the transparency region of sapphire. However, sapphire

has a direct influence on the band gap energy of GaN.

Growing GaN on sapphire usually results in a bigger band gap. The difference in the

thermal expansion coefficient between GaN and sapphire leads to a compressed GaN lattice

at the interface after the sample is cooled down to room temperature from the hot growth

environment. This effect might be enhanced when the sample is further cooled down to

cryogenic temperatures. The lattice structure relaxes to a strain free state away from the

interface. Depending on the thickness of the GaN layer the properties are governed by

the compressed interface region, or by the relaxed bulk contribution. The compression

of the unit cell enhances the band gap in a semiconductor, as the electron shells of the

ions are closer and experience a stronger repulsion. This was compared to samples, which

exhibit tensile strain lowering the band gap [90], since they are grown on SiC, which leads

to the opposite effect of a sapphire substrate. The binding energy of the excitons is not

influenced by the compression, and therefore they shift along with the band gap. For

comparison of the results from this thesis to other reports, it is necessary to consider the

substrate and sample thickness.

Measurements revealed a very low damage threshold of the available GaN samples, in-

cluding GaN BS2887. Typically any sample investigated is tested for its damage threshold

by carefully increasing the fundamental light intensity until sample damage is suspected.

This value is used as a threshold. For GaN BS2887 the maximum energy per pulse for

THG has to be below Epulse < 200µJ. For SHG it is even lower than THG and can hardly
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be picked up by the energy meter. Other investigated structures like Cu2O Epulse ≈ 1 mJ

and GaAs Epulse ≥ 1 mJ are much less sensitive to the light intensity. The low damage

threshold of the GaN is probably due to the absorption of fundamental light from energy

levels deep within the band gap. Since the fundamental wavelength for THG is higher

than for SHG, it is absorbed by fewer energy levels.

Cu2O

In Sec. 6 measurements on Cu2O are presented. The investigated sample H28 was cut

from a high quality natural crystal, which was found in the Tsumeb mine in Namibia.

Several cube shaped samples were cut from the big crystal. The sample H28 showed the

strongest SHG intensity and smallest linewidth. It is cut along the faces (111), (110), and

(112) with a thickness of 5 mm in each direction. Due to the high optical quality of the

crystal it is possible to use laser pulses with an energy of about 1 mJ.

Si and SiC

In Sec. A measurements on Si and SiC are presented. The investigated Si sample is cut

from a 500µm thick waver. The main crystal face is (111).

Two samples are investigated for SiC. Both are bulk samples with 500µm thickness.

The sample SiC4H is grown in the 4H phase of SiC and the SiC6H sample is grown in the

6H phase. In both samples the c axis is perpendicular to the surface.
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4.1. Introduction

GaAs is a direct band gap III-V semiconductor. It crystallizes in the cubic point group Td

(43m), which is zincblende structure [53]. The Gallium Ga+3 and Arsenide As−3 atoms

are each located on a face-centered cubic (FCC) lattice. These lattices are shifted along

the [111] axis, which is not a centrosymmetric structure and therefore ED SHG is allowed.

Furthermore, basic parameters of GaAs are given in Table 4.1.

Table 4.1. – Basic parameters of GaAs and a sketch of the crystal lattice.

GaAs

Symmetry Td (43m)

Crystal lattice FCC

Centrosymmetric No

Band gap (T = 0 K) 1. 519 eV

Band gap (T = 300 K) 1. 424 eV

Exciton binding energy 4. 2 meV

Dielectric constant ε (ω = 0) 12.9

Refractive index (T = 5 K) n(1. 5 eV) ≈ 3. 66, n(0. 7 eV) ≈ 3. 38

Samples Homo-epitaxy layer (001) and (111)

Measurements SHG, THG, TPA-PL, 3PA-PL, Reflection

GaAs is of high interest for fundamental physics and has important technological appli-

cations. A high electron mobility [91] makes it favorable in specialized high speed compu-

tation applications. An advantage for optical applications is the direct band gap. Typical

applications in optical technology are LEDs, laser diodes, and photovoltaic technology.

The second order susceptibility χ(2) of Td has only one independent component and it

is possible to choose experimental geometries in which SHG is either forbidden or allowed,

which is an advantage for SHG spectroscopy. Although the system is spin compensated

60
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Figure 4.1. – SHG spectrum of GaAs for k ‖ [101] taken from [32]. The
spectrum shows non-resonant SHG below and above the band gap. The inset
shows the anisotropy, which is fitted by the ED susceptibility (shaded area).

and has diamagnetic properties, the application of an external magnetic field reveals a

rich spectrum of magneto-excitons in SHG [32]. For GaAs there are reports about crys-

tallographic SHG and MFISH [75], which are related to the presented measurements, and

these are briefly summarized first.

In Fig. 4.1 SHG spectra at T = 6 K from Sänger et al. [32] are presented. Non-

resonant SHG was found over a broad range in a tilted geometry (black line). The SHG

is most intense in the transparency region and is weaker above the band gap. This was

attributed to the reabsorption of the SHG and a reduction of the coherence length, because

the refractive index increases at the band gap. The anisotropy is modeled by the ED

susceptibility χ
(2)
ED. For this susceptibility SHG is forbidden in the k ‖ [001] direction and

it was used for MFISH spectroscopy, since non-resonant SHG is suppressed and does not

interfere with the resonances.

In Fig. 4.2 the main result of the MFISH spectroscopy from [32] is presented. In the

k ‖ [001] configuration the application of a magnetic field in Voigt direction revealed a

complex spectrum with magneto-exciton resonances. In Fig. 4.2(a) the spectra up to

B0 = 11 T are presented. Resonant SHG appears in a magnetic field close to the 1s

exciton at E1s = 1. 5152 eV. For increasing field strength the intensity increases and

the line is blue shifted. In addition to this resonance, further peaks appear in a regular

distance. The anisotropies and increase of SHG intensity are described by χ(4)EωEωkB0,

which takes magneto-spatial dispersion into account. The microscopic mechanism for the

increase of SHG intensity is unclear. In Fig. 4.2(b) the peak energies are plotted together

with calculated Landau levels of the electronic bands. The blue shift of the resonances is

in accordance with the calculated Landau bands. A group of resonances can be assigned
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Figure 4.2. – (a) MFISH spectra for k ‖ (001) taken from [32]. In a mag-
netic field the 1s exciton (marked by X) and a series of magneto-exciton lead to
enhanced SHG. (b) Calculated Landau level fan chart (black lines) and found
resonances (dots: radius scaled to intensity).
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to each Landau level. This is explained by an exciton series below each Landau level.

Further measurements are presented in the next sections based on these findings. The

wavelength range of the laser system allows the measurement of SHG and THG on GaAs.

First, SHG spectra without a perturbation are presented and compared to the exciting

results. Then the influence of an electric field on SHG from exciton resonances is inves-

tigated. The application of an electric field is expected to give rise to exciton resonances

in the SHG spectrum, because of the mixing of exciton states with opposite parity by the

Stark effect. This is also applied to the magneto-exciton series, which are measured in

crossed electric and magnetic fields.

For THG a wavelength of up to λ ≈ 2. 5µm is needed and such measurements have

not been reported before. Without an external field the s excitons are expected to lead

to resonant enhanced THG. This should not be increased by an external electric field,

because the admixture of p excitons, which are forbidden for THG, is not beneficial for

THG. Measurements in a magnetic field are also presented. For an external magnetic

field it is unclear what to expect besides a shift of the resonance, since the microscopic

mechanism for the enhanced SHG is unknown.

4.2. SHG: Enhanced resonant SHG by external fields

4.2.1. Crystallographic non-resonant SHG

At first, the spectral dependence of SHG efficiency in transmission geometry is investigated

at low temperatures. Sample GaAs 239 was used for these measurements. Measurements

of non-resonant SHG in GaAs at low temperatures are presented in Fig. 4.3. All mea-

surements on GaAs were performed at T = 5 K. In Fig. 4.3(a) measurements for a tilted

sample θ = 45◦ about the y axis (black dots) and for k ‖ [001] are presented. Due to

the high index of refraction n = 3. 38 the internal angle is about k^ [001] ≈ 13. 6 ◦. The

polarization is set to a parallel configuration E2ω ‖ Eω ‖ [100], which is a maximum in

the anisotropy as presented later in Fig. 4.4. In the tilted configuration non-resonant

SHG over a broad spectral range is observed. The band gap Eg(5 K) = 1. 519 eV [92] is

marked by a red arrow. No pronounced exciton resonances are in the spectrum as shown

in Fig. 4.3(c). Below the band gap the intensity of the SHG is oscillating. This oscillation

is presented in Fig. 4.3(b). At the same tilting angle and polarization as 4.3(a) a spec-

trum with smaller wavelength steps is presented. The mean period of the oscillation is

λosci = 3. 36 nm. They are attributed to interference from reflections in the sample, which

is discussed in Sec. 4.2.4

Measurements for k ‖ [001] have the same polarization directions as the tilted geometry.

In this direction no SHG is observed as expected from the ED susceptibility. Next, the

anisotropy measurements are presented.

In Fig. 4.4 anisotropies for different parameters on different samples are shown. Each

measurement was performed in the parallel I2ω
‖ (black dots) and crossed I2ω

⊥ (red dots) con-

figuration. Model calculations of the anisotropies with the second order ED susceptibility

χ
(2)
ED of Td are fitted to the data and are represented by shaded areas.
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Figure 4.3. – (a) SHG spectrum of GaAs 239 for Θ ≈ 45 ◦ (black dots) over a
broad spectral range from 1. 3 eV up to 1. 8 eV including the band gap Eg(5 K) =
1. 519 eV. The SHG intensity is maximal at small energies and decreases near the
band gap. No SHG is detected in the k ‖ [001] geometry (red dots) as is expected
from ED model calculations. (b) Spectrum in the transparency region for the
same geometry as (a). The oscillation period is marked by λosci. (c) Magnified
spectrum in the vicinity of the band gap. No resonant SHG is observed at the
energy of the 1s exciton.

In Fig. 4.4 (a) measurements on sample PDI-M4 2601 are presented. On this sample

the geometry k ‖ [111] is normal incidence of the laser light on the surface. The anisotropy

was measured at 2~ω = 1. 53 eV at T = 5 K, which is just above the band gap. The parallel

anisotropy (black dots) has a six-fold shape with the first resonance at 0 ◦. The crossed

anisotropy (red dots) has the same shape, but is shifted by 30 ◦. The six-fold shape and

a shift between parallel and crossed configuration is predicted by the ED susceptibility

model calculations. The model fit to the data results in calculated tilting angles of Θ ≈
θ ≈ γ < 1 ◦ between the optical axis and the [111] direction of the crystal, which is in

good agreement with the experimental geometry. The crystal direction parallel to the

laboratory y axis is [110] according to the fit, which is in agreement with the internal

crystal axis.

In Fig. 4.4 (b) measurements on sample GaAs 239 at T = 5 K and 2~ω = 1. 516 eV are

presented. The energy position is chosen, because the measurements in an electric field

presented in Sec. 4.2.3 show an exciton resonance at this energy. The shape of the parallel

configuration I2ω
‖ is mainly two-fold with a maximum at 95 ◦. The crossed configuration is

four-fold with 60 ◦ and 120 ◦ between the maximum intensities. The data is fitted by ED

susceptibility model calculations. The resulting fitting angles are Θ ' −3. 2 ◦, β ' 2. 2 ◦

and γ ' 50. 0 ◦. This is in good agreement with the experimental geometry, which was
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Figure 4.4. – Measured rotational anisotropies for different geometries and
parameters. Shaded areas are fitted model calculations based on the ED sus-
ceptibility. (a) Measured on the (111) face of sample GaAs PDI-M4 2601 with
k ‖ [111]. (b) Measured on the (001) face of sample GaAs 239 with a small tilting
of k relative to the principle crystal axis. (c) Room temperature measurement of
sample GaAs 239 for energies higher than the band gap.

adjusted close to k ‖ [001] direction.

In Fig. 4.4 (c) measurements on sample 239 at room temperature with an energy of

2~ω = 1. 520 eV are presented. At room temperature the band gap of GaAs is E(300 K) =

1. 42 eV and the anisotropy is measured far above the band gap. In this case the parallel

intensity has a four-fold shape. The crossed measurement shows a six-fold shape, with a

global maximum at about 60 ◦ and two local maximum intensities at 0 ◦ and 120 ◦. Fitting

the ED susceptibility model to the data results in the angles Θ ' 11. 2 ◦, β ' 0. 5 ◦, and

γ ' 34 ◦.

All the anisotropies are in good agreement with the ED susceptibility model and in-

dependent from parameters as temperature or wavelength. For k ‖ [001] no signal was

detected as it is expected from the model.

4.2.2. Electric-field-induced SHG

In this section the influence of an electric field on SHG in the spectral vicinity of exciton

states is investigated. The application of an external electric field influences the electrons

within the sample. Excitons are influenced more strongly than the band-band transitions,

because of their low binding energy and dipole character. Therefore measurements in an

external electric field were suspected to reveal resonant SHG from perturbation of excitons.

This electric-field-induced SHG (EFISH) is a powerful tool to investigate excitons and

their interaction in an electric field. The results from the last section are used to suppress

non-resonant SHG by choosing the geometry k ‖ [001].

In Fig. 4.5(a,b) the results for EFISH spectroscopy in the k ‖ [001] configuration are

presented. In the measurements with zero voltage (black dots) only a small background of
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Figure 4.5. – (a,b) SHG spectra of sample GaAs 239 for voltages up to E0 =
±2 kV in E2ω ‖ Eω ‖ E0 ‖ [010] and k ‖ [001] geometry for the exciton region.
With increasing voltage a resonance in the spectrum appears and the maximum
intensity of it increases. The energy of the 1s exciton E1s and 2s exciton E2s

near the resonance are marked by arrows. (c) Integrated intensity of the spectra
versus the applied voltage, fitted by a polynomial function of fourth order (red
line)

SHG is present, which has about 1% intensity compared to the maximum induced SHG,

as it is expected for this geometry from the results of the last Sec. 4.2.1. The polarization

E2ω ‖ Eω ‖ E0 ‖ [010] is expected to have the strongest EFISH intensity from calculations

with χ(3) in Sec. 2.3.3. Spectra with an external voltage have a resonance at E = 1. 516 eV

with a FWHM of ∆FWHM ≈ 1 meV, which is close to the marked energy of the 1s exciton

E = 1. 5152 eV. The integrated intensity for each spectrum is presented in Fig. 4.5(c)

(black dots). For both field directions the intensity increases and it fitted by a fourth-

order polynomial I(V ) = A0 + A1V + A2V
2 + A3V

3 + A4V
4. The resulting coefficients

are: A0 = 160, A1 = 1050 V−1, A2 = 1 V−2, A3 = 7 · 10−5 V−3, and A4 = 7 · 10−8 V−4.

In fact, the coefficients A3 and A4 are so small, that a quadratic function alone is a good

fit. The sum of least squares is only 6% higher for a polynomial of second order compared

to the polynomial of fourth order. The 30% difference between the integrated intensities

at V = ±2 kV and the offset of the minimum point of the fit function is not expected.

The difference in maximum intensity (not integrated) between the V = ±2 kV spectra

is only 12%. The point group of GaAs is symmetric for [100] and [100]. Electric fields

parallel to these directions should lead to the same action, except for a different phase of

SHG light. The interference of the resonantly enhanced SHG with the underground is a



67 4.2. SHG: Enhanced resonant SHG by external fields

possible explanation for the asymmetry and is investigated in further measurements.
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Figure 4.6. – (a,b) SHG spectra of sample GaAs 239 for voltages of up to
E0 = ±2 kV in E2ω ‖ Eω ‖ E0 ‖ [010] and k][001] ≈ 45 ◦ geometry for the
exciton region. With increasing voltage a resonance in the spectrum appears
and its maximum intensity increases. The energy of the 1s exciton E1s and 2s
exciton E2s near the resonance are marked by arrows. (c) Integrated intensity of
the spectra versus the applied Voltage, fitted by a polynomial function of fourth
order (red line).

In Fig. 4.6(a,b) the results for EFISH spectroscopy in a tilted sample geometry are

presented. Every parameter is the same as in Fig. 4.5 except for the wave vector direction

in the sample k][001] ≈ 45 ◦. For zero voltage a much more intense SHG is found in

contrast to Fig. 4.5. This is expected, because crystallographic SHG from χcryst is allowed

in the tilted geometry. SHG spectra with an applied voltage show a resonance at E =

1. 516 eV. The interference of the SHG background with the EFISH signal leads to a Fano

shape of the resonance. For negative voltages presented in Fig. 4.6(b) the intensity on the

low energy side of the resonance is higher than on the high energy side. It is the other

way around for positive voltages as shown in Fig. 4.6(a). The integrated intensity of each

spectrum is shown in inset (c). The fitting parameters for the fourth order polynomial

(red line) are A0 = 3163, A1 = −777 V−1, A2 = 1 V−2, A3 = −18 · 10−5 V−3, and

A4 = −2 · 10−8 V−4. The difference in maximum intensity between ±2 kV is 70%, which

is more than for the k ‖ [001] measurements.

In Fig. 4.7 the results from rotational anisotropy measurements of the observed reso-

nance in the EFISH spectrum are presented. In Fig. 4.7(b) measurements of the parallel
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Figure 4.7. – SHG rotational anisotropies of sample GaAs 239 for k ‖ [001] at
2~ω = 1. 516 eV and T = 5 K. (b) Zero field measurements. For this geometry the
ED susceptibility predicts no intensity. Only by taking an angle between k and
[001] from misalignment into account, the anisotropy observed can be modeled by
χcryst. (a) Anisotropies for V = −2 kV in the E0 ‖ [100] direction. In the parallel
configuration (black dots) a strong increase of SHG at ϕ ≈ 0 ◦ is found. The
crossed anisotropy has a four-fold shape, with a maximum intensity at ϕ = 45 ◦

(c) V = +2 kV in the E0 ‖ [100] direction. The parallel anisotropy is similar
to (a). The crossed anisotropy is also four-fold, but has maximum intensity at
ϕ = 135 ◦. The shaded areas represent the ED χ(3) model fitted to the data.

I
(2ω)
‖ (black dots) and crossed I

(2ω)
‖ (red dots) anisotropy are presented. The observed

SHG is not expected for the geometry k ‖ [001], because SHG from χcryst is forbidden.

Either it stems from strain, due to the sample holder, or misalignment gives rise to SHG

from χcryst. In Fig. 4.7 (a) anisotropies at the energy of the resonance with an applied

voltage of +2 kV are presented. The shaded areas are model calculations of χ
(3)
ED with

E0 ‖ [010]. An increase of intensity for E2ω ‖ Eω ‖ [010] (ϕ = 0 ◦ in I
(2ω)
‖ ) is predicted

by the model and observed in the measurements. The intensity in the [100] direction

(ϕ = 90 ◦ in I
(2ω)
‖ ) is not predicted by the EFISH model. It has the same magnitude as

the parallel anisotropy for zero voltage (b) in this direction and is not field induced. The

crossed anisotropy (a) has a four-fold shape, which is predicted by the ED model. Accord-

ing to the model calculations all peaks have the same intensity. The measurements show

an enhanced intensity at ϕ = 45 ◦ compared to ϕ = 135 ◦. This could stem from an inter-

ference with the zero field crossed contributions shown in (b). Again, the intensity in (c) is

not predicted for ϕ = 90 ◦ and might stem from misalignment. The crossed anisotropy for
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voltage applied in the positive direction (c) has a higher intensity at ϕ = 135 ◦ compared

to ϕ = 45 ◦, which is the other way around for negative voltages. This is a typical sign for

an interference with crystallographic SHG.

4.2.3. SHG in crossed electric and magnetic fields
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Figure 4.8. – (a) MFISH spectra of sample GaAs 239 in k ‖ [001] geometry
normalized on maximum peak intensity. Additional maxima are marked by a
black arrow. (b) The energy of the first two intense resonances (black dots) for
different magnetic fields compared to the first two energy gaps of the Landau
bands 0-0 and 1-1 (black lines).

In this section the influence of crossed electric and magnetic fields on SHG is investigated

in a broad spectral range. The results for MFISH in GaAs are known, as it was shown in

the introduction. The aim of the measurements in crossed fields is the investigation of the

influence of an electric field on the complex magneto-exciton structure in MFISH spectra.

In Fig. 4.8(a) MFISH spectra in Voigt geometry for sample GaAs 239 are presented.

The spectrum is in good agreement with the reported results. The main difference to

the reported spectra is that the first resonance is more intense compared to the smaller

resonances. Since no absolute susceptibilities are calculated, it remains unclear if the first

resonance is more intense or the other resonances are less intense than in the reported

studies. In Fig. 4.8(b) the energy position of the peaks is compared to the Landau

levels of the electron bands. Below each Landau level a strong resonance is present in the

spectrum (black dots). The resonances have a distance of about ∆E ≈ 4 meV to the direct

transition between the Landau levels (black lines), which is close to the binding energy

of the excitons Rexc = 4. 2 meV. The value close to zero magnetic field is taken from a

spectrum at B0 = 0. 2 T. The energy of this resonance E(0. 2 T) = 1. 516 eV is the same

as the energy of the EFISH resonance. Besides the strong resonances, further features
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are found in the spectrum when it is magnified. A resonance shape can be recognized for

some features, but they are too small for clear assignments. In the previous studies these

are assigned to excited states n ≥ 2 of the excitons of each Landau level.

For sample GaAs 239 the additional application of an electric field did not influence the

spectrum. Only on the GaAs substrate S01 were the measurements successful in crossed

fields as discussed in Sec. 3.3.
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Figure 4.9. – (a) EFISH spectra of GaAs S01 for different values of externally ap-
plied voltage in the E0 ‖ (100) direction. The 1s exciton energy E1s = 1. 5152 eV
is marked by a black arrow. (b) Temperature dependence of SHG spectra for
crossed electric and magnetic fields in the B0 ⊥ E0 configuration.

First, the EFISH spectra are shown, because they are different than in the high quality

GaAs 239 epitaxy layer. In Fig. 4.9(a) EFISH spectra for the GaAs substrate sample S01

are presented. A resonance close to the 1s exciton is in the spectrum for V = 1. 5 kV. In

contrast to the epitaxy layer samples, the resonance is accompanied by a broad tail on

the low energy side, which stretches down to E = 1. 48 eV below the energy of the bound

exciton states at E = 1. 489 eV. There is no shift of the resonance in an electric field, which

is the same as the EFISH measurements on the epitaxy layer samples. For small voltages

the resonance is less intense. At V = 0. 5 kV mostly a broad feature around E = 1. 5 eV

is left and the resonance is much less intense . In Fig. 4.9(b) spectra for crossed fields are

presented. At T = 5 K, B0 = 0. 5 T, and V = 0. 5 kV (black line) both the broad electric

field feature and an additional magnetic field induced resonance is observed. The MFISH

resonance has a FWHM of ∆FWHM ≈ 3 meV. Both resonances can be observed up to

T = 80 K. Above the 1s resonance further resonances from the Landau levels are found.

The influence of an electric field on these resonances is presented next.
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Figure 4.10. – Spectra of GaAs S01 in a magnetic field of B0 = 4 T with differ-
ent additional electric fields E0 ⊥ B0. The polarization of E2ω ‖ Eω](100) = 40 ◦

is chosen, because in this configuration maximum intensity is found in the
anisotropies presented later. The application of an electric field leads to a strong
increase of additional resonances in between those which are present without the
additional electric field.

In Fig. 4.10 measurements in crossed external fields are presented. The presented spec-

tra start at 2~ω = 1. 52 eV, so that the resonances beyond the 1s exciton are visible. The

measurement with only a Voigt magnetic field of B0 = 4 T (black line) has magneto-exciton

resonances at 1. 533 eV, 1. 546 eV, and 1. 559 eV. The distance between the resonances

∆2~ω = 13 meV is about twice the distance of ∆L ≈ 7 meV in between the Landau levels

at B0 = 4 T. With an additional electric field in the E0 ⊥ B0 ∧ E0 ⊥ k0 configuration

additional resonances at 1. 527 eV, 1. 540 eV, and 1. 554 eV occure in the spectrum (blue

line). In this case a resonance for each expected Landau level is in the spectrum.

In Fig. 4.11 anisotropies for the resonances at 2~ω = 1. 533 eV and 2~ω = 1. 540 eV

are compared with (blue dots) and without (I2ω
‖ :black dots, I2ω

⊥ :red dots) the additional

electric field. Both resonances are present in the spectra in Fig. 4.10, which was measured

with parallel light polarization at ϕ = 40 ◦ where both MFISH anisotropies have maximum

intensity. The parallel anisotropies I2ω
‖ without the electric field have a four-fold shape with

maximums at ϕ = 40 ◦ and ϕ = 140 ◦. Besides the intensity there is also a difference in the

shape between the two resonances. The resonance (b) has a minimum at ϕ = 90 ◦, whereas

the resonance (a) has a shoulder (or small maximum) at this angle. The additional electric

field increases the two maxima of (b), whereas the intensity of the parallel anisotropy (a)

is only enhanced at ϕ = 90 ◦. This is why it does not increase in the spectra in Fig. 4.10,



4. Gallium Arsenide (GaAs) 72

0

9 0

1 8 0

2 7 0

0

9 0

1 8 0

2 7 0

0

9 0

1 8 0

2 7 0

0

9 0

1 8 0

2 7 0
x 2

 I 2 ω
| |  ( 0  V )

( a )

x 2

 I 2 ω
⊥  ( 0  V )

  I 2 ω ( 6 0 0  V )2 � ω  =  1 . 5 3 4  e V 2 � ω =  1 . 5 4 0  e V

( b )

I 2 ω
⊥

I 2 ω
| |

I 2 ω
⊥

I 2 ω
| |

Figure 4.11. – Parallel I2ω
‖ (black dots) and crossed I2ω

⊥ (red dots) anisotropies

of GaAs S01 in a Voigt magnetic field and also each anisotropy in crossed E0 ⊥
B0 ⊥ k fields (blue dots). (a) The parallel anisotropy at 2~ω = 1. 533 eV has
mainly a four-fold shape with a small shoulder at ϕ = 90 ◦. An additional voltage
V = 600 V leads to an enhancement of SHG at ϕ = 90 ◦. (b) The parallel
anisotropy at 2~ω = 1. 546 eV has a similar four-fold shape, but has no shoulder
at ϕ = 90 ◦. An additional voltage leads to increased intensity at ϕ = 40 ◦ and
ϕ = 140 ◦. Both crossed anisotropies have a two-fold shape, which is enhanced
by the additional voltage.

because they were measured at ϕ = 40 ◦. Both crossed anisotropies are two-fold and an

additional electric field only enhances the intensity. A small difference between the two is,

that the anisotropy (b) only increases at ϕ = 0 ◦, whereas (a) also grows at ϕ = 45 ◦ and

ϕ = 135 ◦.

The anisotropies have to be modeled with an axial susceptibility of at least fifth order

I2ω ∝
(
P 2ω
i

)2 ∝ (χ(5)
ijklmnE

ω
j E

ω
k klB

0
mE

0
n

)2
, (4.1)

because it was reported before that the MFISH resonances have to be described by a fourth

order susceptibility [32], which includes the k dependence from the magneto-spatial disper-

sion. The relative magnitude of the tensor components changes for different wavelength,

since the anisotropies in Fig. 4.11 are different. This is not surprising, as it was found
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before that the anisotropy of MFISH alone depends on the wavelength [75], which was

attributed to magneto-spatial dispersion. It is interesting that the electric field has an

influence in the [100] (ϕ = 90 ◦) direction, because this was not found in the EFISH mea-

surements in Sec. 4.2.2. The main influence of the electric field on the SHG intensity is

expected along its own direction [010]. The interaction of the magneto-excitons formed

from Landau levels has to be more complex than the mixing in the EFISH measurements.

There are too many non-zero tensor components of χ
(5)
ijklmn for a model fit without more

detailed information about the responsible microscopic mechanism as explained in Sec. 2.3.

4.2.4. Discussion

Crystallographic SHG

The measurements of crystallographic SHG are in good agreement with the previous results

from Sänger et al. [32], which are discussed in Sec. 4.2. The main features are verified by

the presented measurements in this thesis. The polarization selection rules are determined

by the ED χ(2) susceptibility. For a tilted GaAs sample there is strong non-resonant SHG

in the transparency region. The oscillations of intensity in Fig. 4.3 have not been observed

before. They are attributed to reflections within the sample in these measurements, which

lead to interference effects. The spectral width of the oscillations are λosci = 3. 36 nm,

which is close to the expected value of λtheory
osci ≈ 1. 4 nm. The expected value is calculated

by a Fabry-Perot model presented in Sec. 2.3.1. The parameters for the Fabry-Perot model

are ΘFP ≈ 13. 6◦ (including diffraction at the sample surface), l ≈ 400µm (sample and

substrate width), and n(2000 nm) = 3. 36 (at the fundamental wavelength for SHG). The

decrease in intensity at the band gap is similar to the existing results, and is attributed

to reabsorption of SHG and decrease of coherence length near the band gap [75], which

is explained in Sec. 2.3.1. No exciton resonance is found for normal and tilted incidence

in the SHG spectrum, which is expected from the selection rules, since the two-photon

transition part of SHG is forbidden for the s excitons and the one-photon transition part

is forbidden for p excitons.

EFISH

Spectra with an external voltage presented in Fig. 4.5 lead to a resonance in the spectrum,

which is attributed to the 1s exciton. The resonance appears within 1 meV of the energy

of the undisturbed 1s exciton and the intensity grows quadratically. As presented in Sec.

2.2.4 the 1s intensity should grow quadratically and the energy should not change. This

behavior is measured for the observed resonance. The offset of 1 meV to the 1s exciton

was also observed by Sänger et al. [75], by the extrapolation of MFISH data to the zero

field energy of the 1s state. It could stem from polariton effects, as the 1s state couples

to the light in the ED approximation.

The observed difference between positive and negative field strength probably stems

from the interference with crystallographic SHG. This is verified by measurements for

a tilted geometry presented in Fig. 4.6 in which the difference in intensity for positive
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and negative field directions is enhanced, because of the stronger crystallographic SHG.

The anisotropies for the EFISH measurements revealed crystallographic SHG even in the

normal incidence configuration. This could stem from a small misalignment or strain from

the electrodes of the electric field sample holder. The main intensity of the crystallographic

SHG is perpendicular to the direction of EFISH. The alignment of the sample geometry

was focused on the suppression of crystallographic SHG in the direction of EFISH for

the measurements. This could explain a misalignment in the direction perpendicular to it,

which would also lead to a small crystallographic SHG contribution in the EFISH direction.

The mixing of states by the Stark effect predicts SHG for all 1s,2s,2p, ... exciton states.

These are not observed in the measurements. The 2s and 2p excitons should show a

saturation of intensity near V ≈ 1. 5 kV and a shift of about ∆E ≈ 0. 5 eV. Both are not

observed for the EFISH resonance and these states are ruled out. As already mentioned in

Sec. 2.2.4, this is probably due to the small binding energy Rexc = 4. 2 meV of the excitons.

The states above the 1s exciton are within Rexc
22
≈ 1 meV band gap and are easily ionized

(complete separation of electron and hole) by the electric field, which explains the lack of

the according resonances in the spectrum. In fact, the 2s and higher exciton states are

very sensitive to sample quality and can only be observed in very high quality samples.

The next section about THG will show, that the 2s exciton is not observed, even without

external perturbation, although it is allowed by selection rules. In white light reflection

measurements presented in Sec. 4.4.2 also only the 1s state is observed.

MFISH

The results in Sec. 4.2.3 are in good agreement with reported results. The energy of the

first resonance in the MFISH spectrum presented in Fig. 4.8 extrapolated to zero external

field is 2~ω ≈ 1. 516 eV. This is the same energy as the EFISH resonance and therefore the

first resonance is assigned to the 1s exciton as it was done in the reported studies [75]. The

microscopic mechanism for the increase is still unclear and has not been discussed before.

There are two possible mechanisms, which not only explain the observed MFISH res-

onances, but are also in agreement with the THG, TPA-PL, and 3PA-PL measurements

presented in this thesis. The first one is an admixture of excitons in the magnetic field.

In order to fulfill the ED SHG selection rules the odd parity 1s exciton has to be mixed

with an even parity p exciton. The fulfillment of the SHG selection rules by the admixture

of two different exciton states, which are each forbidden in ED SHG, is discussed in Sec.

2.3.1. However, a magnetic field has even parity and should only mix states of the same

parity. The admixture of the 1s and 2p states could be due to the Magneto-Stark effect,

which is introduced in Sec. 2.2.4. The Magneto-Stark effect describes that the magnetic

field acts like an electric field on excitons in certain cases. This effective electric field

would then mix the 1s and 2p exciton, just as in the presented EFISH measurements. It

was shown, that it leads to enhanced SHG in ZnO [31]. However, this mechanism is ruled

out by THG measurements presented in the next section.

The influence of a magnetic field on the polariton dispersion is another possible mecha-

nism. Through the change of the polariton dispersion, the phase-matching conditions for
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SHG and THG can be improved. This would lead to the observed increase of intensity

and is in line with all the measurements. Measurements of the polariton dispersion are

necessary in order to further verify this mechanism.

Crossed electric and magnetic fields

The analysis of the spectra in crossed fields is limited by the fact that only the GaAs

substrate S01 with lower optical quality could be used. In the epitaxial layer sample

GaAs 239 the influence of an additional electric field, in addition to the magnetic field,

is too small to be detected by the experiment. In the bulk sample S01 the Landau level

resonances are less intense and broader than in the high quality samples.

Adding an electric field along the y axis perpendicular to a Voigt magnetic field leads

to a different influence on each resonance as presented in Fig. 4.10. Some resonances are

influenced more than others. This is surprising, since it was expected that the magneto-

excitons for each Landau level have similar properties.

In contrast to EFISH, the increase of SHG intensity is not for a parallel light polarization

to the external field Eω ‖ E0, but perpendicular to it Eω ⊥ E0. This is a clear sign that

in crossed fields not only both fields lead to their own separable effects, but interact in a

more complex way.

The analysis of the microscopic mechanism is limited by the understanding of the MFISH

resonances. Once a microscopic model of the MFISH mechanism is available it is possible

to understand the influence of an additional electric field on the resonances.

4.3. THG: Influence of external fields on resonant THG

In this section the spectral dependence of THG in transmission geometry is investigated.

All presented THG measurements are made with the sample GaAs 239. In contrast to

SHG, there is no existing data on THG spectroscopy of the excitons in GaAs. In Sec. 2.3.4

the third order susceptibility of Td is presented and the resulting rotational anisotropies

are shown in Fig. 2.12(c,d). Since a three-photon transition has the same parity as a

one-photon transition, it is expected to observe the 1s exciton even without an external

perturbation by an electric or magnetic field. The question is if broad non-resonant ED

THG can be observed (similar to SHG in tilted geometry), since ED THG χ
(3)
ED is allowed

even for k ‖ [001] in contrast to SHG. The influence of magnetic and electric fields on the

THG efficiency in the vicinity of excitons is also presented and compared to the results of

SHG spectroscopy.

For SHG it was found that the mixing of excitons with different envelopes by the Stark

effect leads to EFISH. The situation is different for THG. The mixing of the allowed 1s

exciton resonances with the forbidden 2p excitons should not lead to enhanced THG.

Measurements of the THG spectrum in an external magnetic field will be compared to the

complex magneto-exciton series found in the MFISH spectra.



4. Gallium Arsenide (GaAs) 76

4.3.1. Resonant THG on excitons
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Figure 4.12. – (a) THG spectrum of sample GaAs 239 near the band gap for
k ‖ [001]. A resonance is near the 1s exciton and the crystallographic THG is
less than 1% of the peak intensity. (b) Anisotropies at 3~ω = 1. 516 eV. They
are fitted by a χ(3) model.

In Fig. 4.12(a) the THG spectrum for k ‖ [001] and E3ω ‖ Eω is presented. There is a

peak in the spectrum at 3~ω = 1. 5162 eV with a FWHM of about ∆FWHM = 1 meV in the

vicinity of the band gap. Only about 1% of the peak intensity is non-resonant THG. The

parallel anisotropy shown in inset (a) has the expected round shape of χ(3) calculations.

The crossed anisotropy has a four-fold shape, but the intensity is very small. It cannot

be modeled by χ(3) alone, because an eight-fold shape is predicted. The four-fold shape

is found only for a tilting of at least Θ ≥ 20 ◦ or for taking a background intensity into

account, which is about 1% of the parallel intensity. It is improbable that the tilting

angle is solely responsible, because the sample was aligned for normal incidence. The

background intensity could stem from higher order processes, or a small admixture of

parallel intensity to the crossed one in the detection.

For the specific ratio χxxxx

χxyyx
= 3 of χ(3) tensor components the parallel anisotropy is

constant and the crossed anisotropy is zero as shown in Fig. 2.12. The model fit to the

parallel data results in a ratio of χxxxx

χxyyx
≈ 1. 4. In case a small misalignment is taken into

account the ratio changes by a small amount.

The resonance of the 1s exciton is expected from the selection rules. Both one- and three-

photon transitions have odd parity and are allowed for the 1s exciton state. Resonances

for n ≥ 2 are not observed in the spectrum, although every odd parity state is allowed by
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the selection rules.

The absence of non-resonant THG is an advantage for the observation of the exciton

resonances in contrast to SHG. There are no theoretical studies about non-resonant THG

in this energy region of GaAs, but THG has different selection rules than SHG, which can

explain the big difference between the two.

4.3.2. Suppression of THG from excitons in an electric field
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Figure 4.13. – (a,b) Electric field dependent THG spectra of sample GaAs 239
for E3ω ‖ Eω ‖ E0 and k ‖ [001]. The electric field is applied in the [010] direction.
No shift of the resonance is observed, but the maximum intensity decreases in
an external electric field. (c) Integrated intensity of the THG spectra versus the
applied voltage fitted by a fourth order polynomial.

In Fig. 4.13(a,b) THG spectra for different applied voltages are presented, including a

spectrum for zero voltage. The experimental geometry k ‖ [001] and E3ω ‖ Eω ‖ E0 ‖ [010]

is the same as for the EFISH measurements.

The external voltage leads to a suppression of the THG resonance. At V = −2. 2 kV

the integrated intensity of the THG spectrum is 22% of the spectrum for zero voltage.

The integrated intensity for each spectrum is presented in Fig. 4.13 (c). It is fitted by a

fourth order polynomial function with the resulting values: A0 = 9. 94, A1 = 1. 25 V−1,

A2 = −1 V−2, A3 = −0. 024 V−3, and A4 = −0. 06 V−4.

In Fig. 4.14 anisotropies of the THG resonance at 1. 5162 eV are presented for V =

±2 kV. The anisotropies with an external voltage applied to the sample have the same
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Figure 4.14. – THG Anisotropies of sample GaAs 239 for k ‖ [001] at the
resonance 3~ω = 1. 5162 eV. (a) anisotropies for V = −2 kV in the E0 ‖ [100]
direction. (b) V = +2 kV in the E0 ‖ [100] direction. All anisotropies have the
same shape with and without electric field. Shaded areas are fits with χ(3).

shape as the V = 0 kV anisotropies presented in Fig. 4.13, only the intensity for I
(3ω)
‖ and

I
(3ω)
⊥ is reduced. They are also modeled with the χ

(3)
ED susceptibility.

4.3.3. Magnetic-field-induced THG on excitons

In this section the influence of a magnetic field on THG in the exciton region is investigated.

In Fig. 4.15(a,b) THG spectra for magnetic fields applied in the Voigt configuration are

presented. The light polarization is chosen, because the main action of the magnetic field

on THG is in the polarization direction E3ω ‖ Eω ⊥ B0 ‖ [010] as will be shown by the

anisotropy in Fig. 4.18. The magnetic field shifts the observed resonance to a higher

energy of up to 3~ω = 1. 5232 eV for B0 = ±10 T and the integrated intensity grows up to

a factor of 175 for B0 = ±10 T, compared to the zero field integrated intensity. The energy

shift and increase of intensity are presented in Fig. 4.17. Also, the shape of the resonance

is changed in the magnetic field. The resonance without a magnetic field has a Gaussian
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Figure 4.15. – Magnetic field dependence of the THG spectrum of sample GaAs
239 near the band gap for k ‖ [001]. (a) Negative magnetic field strength up to
B0 = −10 T. (b) Positive magnetic field strength up to B0 = +10 T. In both
cases the line shifts to higher energies and the intensity increases.

shape as shown in Sec. 4.3.1. For B0 = ±10 T the shape of the resonance is not Gaussian

anymore. There are additional small features on the high and low energy side of the peak.

The MFISH spectrum has shown many resonances from magneto-excitons. In Fig. 4.16

a THG spectrum at B0 = 10 T in the range from 3~ω = 1. 5 eV up to 3~ω = 1. 6 eV is

presented. No resonances, besides the one at 3~ω = 1. 5235 eV, are observed. This is

surprising, since the Landau level model predicts an s magneto-exciton for each Landau

level. The measurement shows, that no state besides the lowest 1s exciton leads to a THG

resonance or other resonances are at least much weaker than the 1s exciton.

Two changes of the resonance become obvious for rising field strength. The resonance

is shifted and its intensity is increased. In Fig. 4.17 these changes are plotted and fitted.
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Figure 4.16 – THG spectrum in a
broad spectral range at B0 = −10 T
with high integration time. No
magneto-excitons from higher Lan-
dau levels are detected.
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Figure 4.17. – Intensity and energy shift of the THG resonance presented in
Fig. 4.15 with T = 5 K and a Voigt magnetic field. (a) Magnetic field dependent
shift of the THG resonance and a linear fit function (red line). (b) Magnetic field
dependent integrated intensity of the THG spectra (black dots) and a quadratic
fit function (red line).

In 4.17 (a) the shift of the peak energy is plotted against the applied magnetic field. The

slope of the shift is about 0. 7 meV
T . The slope is a bit smaller than the estimated Landau

shift, but much bigger than the expected diamagnetic shift of ∆Dia(10 T) ≈ 0. 34 meV.

It shows the same behavior as the SHG resonance at this energy, except that the THG

resonance can be observed in zero field. In Fig. 4.17 (b) the integrated intensity is plotted

against the magnetic field. It is fitted with a polynomial of fourth order I
(3ω)
Integr(B) =

A0+A1B+A2B
2+A3B

3+A4B
4. The resulting coefficients are A0 = 0. 0, A1 = −81. 9 T−1,

A2 = 249. 9 T−2, A3 = 0. 3 T−3, and A4 = 0. 5 T−4.

In Fig. 4.18 anisotropy measurements of the exciton resonance are presented. With

increasing magnetic field strength the constant intensity of the anisotropy without a mag-

netic field changes into a two fold-shape. In Fig. 4.18(a) measurements at B0 = 4 T are

presented. At this field strength the anisotropy is just in between being dominated by

the (nearly) constant zero-field contribution and magnetic field induced THG. The par-

allel anisotropy already has a two-fold shape from magnetic field induced THG, but the

remaining constant term can still be observed. In the crossed configuration a four-fold

shape is observed. Both the zero-field contribution and the field induced contribution

have the same four-fold shape. The increased intensity at 140 ◦ compared to 50 ◦ could

stem from an interference between the two contributions, as each of their maximums are

expected to have the same intensity.

In Fig. 4.18(b) the anisotropies for B0 = 10 T on the resonance at 3~ω = 1. 523 eV

are presented. For this field strength the anisotropy is dominated by the magnetic field

induced THG. The anisotropy can only be modeled with χ(4)EωEωEωB0 by taking a small

misalignment into account. The non-zero tensor elements of χ(4) all have at least one z

component. A small tilting could explain the observed anisotropy shape, but it is unlikely
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Figure 4.18. – THG anisotropies on the resonance in the spectra presented in
Fig. 4.15. (a) parallel and crossed anisotropy at 3~ω = 1. 519 eV in a Voigt field
of B0 = 4 T. The shape is a mixture of the (nearly) constant χ(3) contribution
and a two-fold magnetic field induced anisotropy. The intensity parallel to the
magnetic field at 90 ◦ is the intensity of the remaining χ(3) contribution. (b)
parallel and crossed anisotropy at 3~ω = 1. 523 eV in a Voigt field of B0 = 10 T.
The parallel anisotropy is dominated by the two-fold shape of the magnetic field
induced THG. The expected crossed magnetic field induced anisotropy is eight-
fold and cannot be explained by χ(4) alone.

that such a strong increase of THG is observed in this case, because a small tilting only

leads to a small z component of the polarization. Since it is necessary to include magneto-

spatial dispersion effects for the modeling of SHG anisotropies, it is probable that this

is also necessary for THG. In this case the anisotropy is described by χ(5)EωEωEωkB0,

which also leads to the presented shape even without tilting.

4.3.4. Discussion

Crystallographic THG

The THG spectrum without a magnetic field presented in Fig. 4.12 is as expected. The

1s exciton is allowed for ED THG and the resonance at E = 1. 5162 eV is assigned to

this state. Both one- and three-photon transitions have odd parity and couple to the

odd parity 1s exciton. Again a small redshift of the resonance to the reported value of

E1s = 1. 5152 eV is found, which is similar to the SHG measurements. In contrast to
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SHG, the resonance is observed without an external perturbation, which was not possible

in the SHG studies. Even without an external electric field, which could ionize excited

states, resonances for n ≥ 2 excitons are not observed, although all odd parity states are

allowed for THG. Most probably these states are not observed because they are distorted

by defects in the sample.

THG in an electric field

An external electric field decreases the intensity of the resonance. This is in accordance

to the explanation of enhanced SHG by an electric field in Sec. 4.2.4. The admixture

of the even parity 2p exciton to the 1s exciton leads to a decreased oscillator strength

for the new mixed state. In contrast to the odd parity 1s exciton, the even parity 2p

exciton is forbidden for one- and three-photon transitions. The quadratic decrease of

intensity for increased electric field strength is in accordance with the increased admixture

of the 2p wave function to the 1s exciton, which was found to be in a linear regime up to

E0 ≈ 2. 5 kV in Sec. 2.2.4.

The macroscopic description cannot have the typical form

I3ω ∝
[
χ(4)EωEωEωE0

]2
, (4.2)

because this only describes an increase of intensity with increasing E0. The influence of

the electric field on the third order susceptibility is not linear and cannot be factored out

of the susceptibility as it is done in (4.2). It is described by

I3ω ∝
[
χ(3)(E0) EωEωEω

]2
, (4.3)

and the influence of E0 on the susceptibility has to be derived microscopically. The value

for χ(3), which is responsible for the zero field THG resonance, decreases in an electric

field.

Magnetic field influence on THG

A Voigt magnetic field increases the THG intensity for about a factor of 175. It is surprising

that the magnetic field leads to enhanced SHG and THG at the same time. In Sec. 4.2.4

the magneto-Stark effect was proposed as one of the possible explanations for an increase

of SHG in a magnetic field. The admixture of p states to the 1s exciton due to the

magneto-Stark effect would lead to a suppression of THG, and not an increase, as it can

be seen in the THG measurements with an electric field. Another possibility for SHG and

THG to increase in a magnetic field is an increase of oscillator strength for one of the

involved optical transitions. However, in Sec. 4.4 it is shown that neither the one-, two-,

or three-photon oscillator strengths grow in a magnetic field. This leaves mainly polariton

effects as an explanation for increased SHG and THG. These are discussed in Sec. 4.2.4.
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4.4. Comparison of multi-photon absorption and harmonics

The measurement technique for TPA-PL and 3PA-PL is described in Sec. 3.2.4. At first

it is necessary to find the brightest source of PL in the investigated sample. The sample

was illuminated by a HeNe laser to generate hot electron hole pairs. The hot electrons

relax down to the exciton states and lead to PL from these states. The strongest source

of PL is ~ω = 1. 489 eV in the sample GaAs 239. This is well below the exciton energy

E1s = 1. 5152 eV. It stems from bound exciton states at impurities, which are well known

in GaAs [55]. The PL from these states is used as a measure of absorption from resonances

at the free exciton energy for TPA-PL and 3PA-PL as explained in Sec. 2.3.2.

4.4.1. Measurements of TPA-PL and 3PA-PL
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Figure 4.19. – TPA-PL measurements in a magnetic field up to B0 = 10 T of
sample GaAs 239. The electrons are excited by two-photon absorption on the
epitaxial layer and the PL was detected on the same side with an angle of about
90 ◦ between the excitation and detection. The detailed geometry is described in
Sec. 3.2.1. The PL stems from bound excitons at impurities with photon energies
of ~ω = 1. 489 eV.

In Fig. 4.19 TPA-PL measurements on GaAs are presented. The geometrical configu-

ration of the setup is explained in Sec. 3.2.1. For B0 = 0 T (black dots) the spectrum has

one resonance R1 at 2~ω = 1. 516 eV. This is close to the 1s exciton, which is forbidden

for ED TPA. The unexpected observation of this resonance can be explained by a reab-

sorption of SHG, which is described in the discussion. The absorption increases at the
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band gap with a square root dependence on the wavelength. The TPA for the band-band

transition at the band gap is also forbidden by the ED selection rules, but higher order

transitions can lead to absorption. The square root dependence is in accordance with the

density of states of the conduction band.

In a magnetic field two more resonances R2 at 2~ω = 1. 530 eV and R3 at 2~ω = 1. 539 eV

appear in the spectrum. Both are close to the second and third Landau level resonance

in the MFISH spectrum. Besides these resonances, further small features can be found in

the spectrum, which are too broad to be assigned to a specific energy. Those states could

be related to the many small features in the MFISH spectrum.
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Figure 4.20. – 3PA-PL in reflection geometry on the epitaxy layer side of sample
GaAs 239. The PL intensity of the bound excitons is detected at ~ω = 1. 489 eV.
The detailed experimental geometry is described in Sec. 3.2.1. The 3PA energy
is varied in the region of magneto-excitons in GaAs.

In Fig. 4.20 3PA-PL measurements are presented. For B0 = 0 T there is a single

resonance at 3~ω(0 T) = 1. 517 eV in the spectrum. On the high energy side the resonance

has a tail of up to 3~ω = 1. 528 eV. Since 3PA has the same parity conditions as one-photon

absorption, it is expected to observe the same resonance as in the THG measurements.

The blue-shift of ∆E = 1. 8 meV could be due to the unclear assignment of the resonance

energy, since the line-shape is distorted and not Gaussian.

The resonance in the spectrum shifts to higher energies in a magnetic field. At B0 = 10 T

the resonance is at 3~ω(10 T) = 1. 523 eV. In a magnetic field the line-shape of the
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resonance is more symmetric than for zero field and the energies can be assigned more

precisely. The energy of the 3PA-PL resonance in a magnetic field is close to the resonance

energy for THG spectra in a magnetic field.

4.4.2. White light reflection

In the measurements presented in this chapter the exciton resonance was investigated by

various nonlinear optical methods and an unexpected difference between the 1s exciton

energy and the resonances in the spectra was found. In order to find out if the energy

difference is a sample property or connected to the nonlinear transitions, additional linear

optical measurements are presented.
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Figure 4.21. – White light reflection measurements of sample GaAs 239 in nor-
mal incidence configuration k ‖ [001] and with a magnetic field in Voigt direction.
(a) Reflection spectra in the vicinity of the 1s exciton energy (black arrow) for
different magnetic fields. At the energy of the 1s exciton is an intensity minimum,
which is shifted and splitted in a magnetic field. (b) Plot of the magnetic field
dependent resonance energy in the spectra.

In Fig. 4.21 white light reflection measurements are presented. The experimental setup

is described in Sec. 3.2.4. The light was focused on the epitaxy-layer side of sample

GaAs 239 in the normal incidence configuration. There is a minimum of intensity at the

known 1s exciton energy E1s = 1. 5152 eV in the reflection spectrum. At the minimum

there is about 14% less light intensity compared to the region before the resonance. It is

not shifted to high energies in contrast to the nonlinear optical measurements. In a Voigt

magnetic field of up to B0 = 10 T the resonance is shifted to high energies and splits into
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two separate resonances. Each of the minima in the B0 = 10 T spectrum has a reduced

intensity of about 6%. The one-photon oscillator strength of the exciton seems not to be

enhanced by the magnetic field. The energy of the minimum in the reflection spectrum,

depending on the magnetic field, is shown in Fig. 4.21(b).

4.4.3. Discussion

The results of the multi-photon absorption spectroscopy are surprising. Reported TPA

studies of GaAs revealed resonances for the p excitons and a small increase of absorption at

the band gap from higher order processes, which is in agreement with the two-photon ED

selection rules [93]. There are no studies for the comparison of the 3PA spectra, but from

parity selection rules they should be similar to reported one-photon absorption studies,

which showed resonances of the s excitons and band-band transitions at the band gap [94].

Neither of the expected results is found in the measurements presented in this section.

The TPA-PL measurements presented in this section have a resonance close to the 1s

exciton, although s excitons are forbidden in the ED approximation for TPA. For energies

above the band gap the absorption from band-band transitions increases beyond the ab-

sorption of the resonances. In previous reported studies the resonances are more intense

than band-band transitions, since two-photon ED band-band transitions are forbidden. It

is possible that the observed 1s resonance stems from a reabsorption of SHG [54]. Strong

non-resonant SHG is expected in the tilted experimental geometry, which could be reab-

sorbed by a one-photon transition. The lack of 2p exciton resonances could be due to

defects in the sample. The 2p excitons have a very small binding energy of 0. 1 meV and

it is known that they can only be observed in samples of very high quality.

The 3PA-PL spectra presented in this section have a single resonance close to the 1s

state. No further resonances from the expected s type magneto-excitons are found. This

is in line with the single exciton resonance observed in THG, which is presented in Fig.

4.16. There is no specific data on 3PA in the exciton region, as it was mainly investigated

on a much broader wavelength scale in relation to THz lasing [95].

In addition to TPA-PL and 3PA-PL measurements photoluminescence-excitation (PLE)

spectroscopy was also performed to investigate the behavior of one-photon absorption of

the 1s exciton in a magnetic field. A PLE measurement is similar to TPA-PL, the only

difference is that the laser light energy is directly resonant to the investigated states. Again

the PL from bound states at ~ω = 1. 489 eV are used to measure the absorption. No exciton

feature was observed in the measurements. For any laser energy above ~ω > 1. 489 eV

an intense PL from the bound states was found, which did not change at characteristic

energies like the 1s exciton or the band gap. It is possible that one-photon absorption

from impurities in the substrate of the sample overpowers the exciton signal from the

epitaxy layer. Another experiment was performed in order to investigate the one-photon

absorption of the 1s exciton.

The white light reflection measurements in Fig. 4.21 have a resonance at the known

1s exciton energy of E1s = 1. 5152 eV. This rules out a shift of the exciton energy in the

sample and verifies that the found energy shift in the nonlinear measurements stems from
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the interaction of the exciton with the light. On the other hand, the shift of the exciton

resonance in the reflection measurements is very similar to the other measurements, which

shows that in all the measurements the 1s exciton is in fact observed. The 14% drop

of intensity at the exciton in the reflection measurements proves a high quality of the

epitaxial-layer. In a magnetic field the resonance splits into two separate minima and

is shifted, but the drop of intensity is not increased. This rules out an increase of one-

photon oscillator strength of the 1s exciton in a magnetic field. Additional white light

absorption measurements in transmission geometry show a strong absorption of light above

~ω > 1. 50 eV, which makes the observation of excitons impossible. It is not surprising that

impurities in the substrate lead to an absorption of light below the band gap. This could

be the reason that it was not possible to observe the excitons in the PLE measurements,

because the substrate can lead to a strong one-photon absorption even below the exciton

energy.
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Figure 4.22. – Comparison of the multi-photon absorption measurements (TPA-
PL: blue dots, 3PA-PL: open brown dots), reflectivity measurements (orange
dots), and the harmonic generation spectra in the last sections (SHG: black
dashed line, THG: red dashed line). For each measurement the energy of the
exciton resonance in a magnetic field is presented.

In Fig. 4.22 the results of this section are compared to the harmonic generation spectra

from the last sections. The average energy of the two resonances in a magnetic field is

shown for the reflectivity measurements. The first three resonances of the TPA-PL spectra

are close to the first three resonances in the MFISH spectra.

The 1s resonances from both absorption measurements deviate to lower energies at

B0 = 10 T by ∆E = 2 meV compared to the harmonic generation measurements. There

are two possible explanations for this. First, the transition to the observed states is the
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same for harmonic generation and absorption, but the detected transitions are different.

For harmonic generation the detected light is coherently generated from the incident light

and one-photon ED allowed states. This leads to polariton effects, which shift the energy of

the resonance as explained in Sec. 2.2.2. In the absorption measurements the light stems

from bound excitons after several phonon interactions and no polaritons are involved.

Second, the relaxation of excitons to the lowest states needs different energies of phonons

in a magnetic field, since the exciton energy is shifted in relation to the bound states. It

is possible, that the low energy side of the absorption line has a better coupling to the PL

of the bound states at ~ω = 1. 489 eV.

A significant increase of absorption in a magnetic field is found in none of the absorption

measurements. This rules out the increase of one-, two- and three photon transition

probability in a magnetic field as the explanation for increasing SHG and THG. It only

leaves polariton effects as the source of strong intensity increase in the SHG and THG

measurements.

4.5. Summary

As shown in the introduction for GaAs there are already extensive studies about crys-

tallographic and magnetic-field-induced SHG. The MFISH spectra show many resonances

from the complicated magneto-exciton series. The energy of the resonances could be ex-

plained by a Landau level model. It remained unclear how a magnetic field actually leads

to enhanced SHG, because it should not mix s and p excitons, which is needed for the

complicated SHG selection rules. The magnetic-field-induced THG measurements in Sec.

4.3.3 help to exclude a mixing of s and p excitons as the responsible mechanism. The

measurements in Sec. 4.4 rule out the increase of one-, two-, and three-photon oscillator

strength. This leaves only polariton effects as the reason for an increase. The change of

polariton dispersion in a magnetic field could simultaneously improve the resonance or

phase-matching condition for SHG and THG. It is necessary to investigate the polariton

dispersion in a magnetic field in more detail to verify such a mechanism.

An electric field is expected to mix the 1s and 2p exciton in contrast to a magnetic field.

It is shown that this leads to the expected influence on SHG and THG. The admixture of

states with different parity enhances SHG and suppresses THG. Both SHG and THG are

explained by the Stark effect model calculations presented in Sec. 2.2.4.
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5.1. Introduction

Table 5.1. – Basic parameters of GaN and a sketch of the crystal lattice.

GaN

Symmetry C6v(6mm)

Crystal lattice wurtzite

Centrosymmetric No

Band gap (T = 0 K) 3.50 eV

Band gap (T = 300 K) 3.40 eV

Exciton binding energy 28 meV

Refractive index (T = 330 K) no(1. 17 eV) ≈ 2. 33, ne(1. 17 eV) ≈ 2. 30

Samples 4. 5µm MOVPE epitaxy-layer

Measurements SHG and THG

GaN is a direct wide band gap III-V semiconductor with a wurtzite structure and the

symmetry group C6v [53]. The wurtzite structure is the most stable and common phase of

GaN. The ions are ordered in a hexagonal structure with the lattice constants a = 3. 19 Å

and c = 5. 19 Å. In this uni-axial structure the lattice directions are noted with four

parameters (a1,a2,a3,c). The third parameter a3 is expressed in terms of the first two

a3 = −(a1 + a2).

The interest in GaN for broad range harmonics spectroscopy arose due to similarities

of the exciton series to the one in ZnO. Several different exciton series are close to each

other and the pz and px,y are not degenerated. Such a rich exciton series enables the

investigation of many different interactions. The exciton binding energy is also higher

than in GaAs, which allows the identification of exciton states by their energy alone,

because the resolution of the experimental setup is high enough to resolve the states. In

ZnO SHG measurements proved to be a powerful tool for the investigation of excitons.

89
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Especially different mixing mechanisms in an external magnetic field were observed and

an extensive study revealed interesting effects, for example, the magneto-Stark effect [31].

In contrast to ZnO, the valence band order of GaN is typical for a hexagonal structure,

which makes it an interesting model structure for other semiconductors [57, 96]. Theoret-

ical calculations for SHG are available, but concentrate on the crystallographic response

from 0 to 8 eV [97] and do not take sharp exciton resonances into account.

5.2. SHG spectroscopy

5.2.1. Crystallographic SHG

As explained in Sec. 3.3 the growth of GaN is still problematic and the samples are easily

damaged by the fundamental light due to absorption. To enhance the signal in spite of

the small energy per pulse of Epulse � 200µJ, the Glan-Thompson prism is removed from

the setup for some measurements. This way the parallel and crossed SHG is picked up at

the same time E2ω ‖ Eω + E2ω ⊥ Eω enhancing the signal intensity.

First, crystallographic SHG in GaN is investigated near the band gap. In Fig. 5.1(a)

the SHG spectrum is presented. A tilted geometry k][0001] ≈ 20 ◦ is used, so that the

light polarization has components in all three crystal directions and reveals most about

crystallographic SHG. Measurements are made with the light passing the substrate first

(black line) or passing the GaN layer first (red line). There is only a small difference

between the two spectra around 2~ω = 3. 4 eV. Measurements in which the laser enters

the sample on the GaN side show a slight decrease of intensity in this energy region. Both

spectra display a strong decrease of intensity around 2~ω = 3. 42 eV, which is close to the

band gap Eg ≈ 3. 50 eV. At higher energies the intensity decreases gradually.

In Fig. 5.1(b) the anisotropy for I2ω
both is presented. For I2ω

both only the incident polar-

ization Eω is rotated and every emitted polarization 2ω is detected without the analyzer

as introduced in Sec. 3.2.3. The anisotropy has a two-fold shape with a maximum at

ϕ ≈ 90 ◦. The light intensity was too small to detect I2ω
‖ and I2ω

⊥ separately, but I2ω
both is

enough to distinguish SHG from TPA-PL, which is expected to be anisotropic. The max-

imum SHG intensity is found at ϕ ≈ 90 ◦ as is expected from the model calculations in

Sec. 2.3.4. When pointed in this direction, the light polarization is in between the c axis

and one of the other axis, which leads to the largest number of allowed susceptibility

components.

5.2.2. Discussion

The observed spectra presented in Fig. 5.1 are similar to crystallographic SHG in GaAs.

There is crystallographic SHG, which is reabsorbed at the band gap, leading to reduced

SHG intensity for energies above the band gap. The exact position of the band gap is

unclear, because it is shifted due to strain, but it is close to Eg ≈ 3. 50 eV as will be

shown in the THG measurements. In this sample there are no oscillations of non resonant

SHG for different wavelengths as in GaAs. The properties of the sample do not favor
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Figure 5.1. – (a) SHG spectra of GaN for tilted incidence. Comparison between
light passing through the substrate first (black line) and passing through the
sample first reveals no big difference, especially in the region of excitons, which
is expected from the sample GaN BS2887, because of the sapphire substrate.
(b) Anisotropy I2ω

both at 2~ω = 3. 30 eV. The two-fold shape verifies SHG as the
source of detected light and maximum intensity at ϕ ≈ 90 ◦ in which direction
the light has the highest projection on the c axis.

the responsible reflections. The refractive index of sapphire is nSa = 1. 75, which is much

less than in GaAs. The reflections are smaller on the sapphire side and do not lead to

interference.

The selection rules only allow the 2p excitons to be observed in SHG. They are very

close to the band gap and have a small oscillator strength [36], which makes them difficult

to observe. The application of an external magnetic field in the normal incidence config-

uration revealed no difference to measurements without a magnetic field so they are not

presented. In contrast to GaAs, no resonances from mixed exciton states are found.

At the energy 2~ω = 3. 41 eV the intensity increases slightly. It is the only region of the

spectrum in which the “correct” experimental configuration, where the laser passes the

substrate first, leads to stronger SHG. It is therefore possible that the sapphire substrate

has an influence in this energy region. Although it has a much higher band gap there
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could be surface or interface effects, which reduce the energy in this region and also lead

to the feature in the spectrum.

The number of SHG measurements on this sample was limited by the fact that the sam-

ple was damaged over time despite the low laser intensity of EPulse � 200µeV. Therefore

the two different geometries were tested for less damage, with the laser either on the sub-

strate or the sample, although it is expected to make no difference as explained in Sec.

3.3. Both directions were similarly prone to damage.

5.3. THG spectroscopy

In this section the results from the THG spectra in a broad wavelength range are presented.

It is possible to choose a higher energy per pulse than in the SHG measurements. The

laser wavelength is much higher for THG than for SHG and less energy levels absorb the

photons. This allows shorter integration times and more extensive measurements.

5.3.1. Resonant THG

In Fig. 5.2 THG spectra in two different geometries are presented. The black dots are

measured for k ‖ [0001]. In the region of excitons several resonances are visible in the

spectrum, labeled from X1 to X4. They are listed in Table 5.2. The energy of the reso-

nance is compared to known results in the Discussion, which allows an identification of

the excitons. Although the exciton energies depend on the specific sample, no exciton

resonance is expected below 3~ω < 3. 477 eV as explained in the discussion. Therefore

the observed resonances 3~ω ≈ 3. 459 eV (R1), 3~ω ≈ 3. 435 eV (R2), and 3~ω ≈ 3. 400 eV

(R3) are not expected and the lower energy region is investigated in more detail in Fig. 5.3.

The measurements in a tilted geometry k][0001] = 45 ◦ (red dots) lead to similar

spectra as the normal incidence measurements. In contrast to SHG, no crystallographic

background arises in the tilted geometry, which is similar to THG in GaAs. The exciton

resonances are the main contribution to the spectrum. The intensity of the resonances

between the two measurements cannot be compared like this, because a turning of the

sample leads to the laser hitting another spot on the sample. Different regions of the

sample showed different intensities, but the same spectral dependence.

Table 5.2. – Energies of the GaN THG resonances in the vicinity of the band
gap.

THG Resonance X1 X2 X3 X4

Energy (eV) 3.4884 3.4965 3.5010 3.5190

Because of the unexpected resonances Rn the lower energy region of GaN is investigated

in more detail. In Fig. 5.3 broad range THG spectra from 3~ω = 2. 1 eV up to 3. 33 eV are

presented. It turns out that there are resonances as low as 3~ω = 2. 4 eV. In the k ‖ [0001]

configuration the resonances are most intense and feature rich. Again, different sample

positions are probed for different k directions, because turning the sample also shifts its
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Figure 5.2. – THG spectra for different geometries in the vicinity of the band
gap. The parallel polarization was set to ϕ = 0 ◦ where the anisotropy has
maximum intensity for both configurations as presented in Fig. 5.4. Several
sharp resonances are present at exciton energies, which are marked by Xn. Below
3~ω < 3. 46 eV further broad resonances are in the spectrum, which cannot stem
from excitons because their energy is too small and they are marked by Rn. They
are more intense for k ‖ [0001].

position. For each measurement the position which lead to the strongest signal was chosen.

The resonances R4 to R6 are very broad with a FWHM of up to ∆FWHM ≈ 100 meV. In

the discussion different impurities and defects of GaN are proposed as a source of the

resonances Rn. The resonances change their shape for a tilted sample geometry. The

decrease in intensity might be due to enhanced reflection of the laser light for tilted

incidence or due to k dependent selection rules. The energy of all the resonances Rn

are listed in Table 5.3.

Table 5.3. – Energies of the GaN THG resonances, which cannot be attributed
to excitons, because their energy is too small.

THG Resonance R1 R2 R3 R4 R5 R6

Energy (eV) 3.455 3.435 3.400 3.200 3.000 2.610

In Fig. 5.4 rotational anisotropies of THG in GaN are presented. For the geometry

k ‖ [0001] the same anisotropy can be found for every resonance. This is expected, since
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Figure 5.3. – Wide range THG spectra of GaN for different geometries with
the parallel polarization at ϕ = 0 ◦. For k ‖ [0001] the resonances R4 to R6 are
most intense and feature rich.
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Figure 5.4. – Anisotropy of THG in GaN for two different k directions. The
anisotropies have the same shape on every observed resonance and the presented
ones are exemplary anisotropies at the exciton resonance 3~ω = 3. 495 eV. For
k ‖ [0001] the parallel anisotropy I3ω

‖ is constant and the crossed I3ω
⊥ is zero. In

the tilted geometry k][0001] = 45 ◦ both anisotropies have a four-fold shape.

there is only one independent tensor component χxxyy for χcryst without a z component as

shown in Sec. 2.3.4. The one tensor component allows only one shape for every resonance.



95 5.3. THG spectroscopy

In Fig. 5.4(b) the anisotropy for the tilted geometry k][0001] = 45 ◦ is presented. In

the tilted geometry more independent tensor components of χcryst contribute to the THG

and a four-fold shape for both I3ω
‖ and I3ω

⊥ is the result. Again the anisotropy for every

resonance is measured, but the intensity is only high enough to detect the anisotropy

shape clearly at the exciton resonance in the tilted configuration. The Rn resonances are

very weak in the tilted configuration as shown before in the spectra.

There is no k direction in which crystallographic THG is suppressed, which would be

ideal for the investigation of magnetic field induced components. Therefore the k ‖ [0001]

configuration is chosen, because magnetic field induced components should show a different

rotational anisotropy than crystallographic contributions and the change of the constant

parallel and zero crossed crystallographic anisotropy should be obvious.
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Figure 5.5. – THG spectra in the exciton energy range of GaN for zero field
(black dots) and ±10 T (blue/red dots) in the Voigt geometry. There is no differ-
ence between the spectra which can be attributed to the influence of the magnetic
field. There is no difference between positive and negative field direction.

In Fig. 5.5 THG spectra for B0 = ±10 T are presented. The light polarization for the

measurement is E2ω ‖ Eω at ϕ = 90 ◦. As shown in Fig. 5.6 the measurements are the

same for every light polarization ϕ in the parallel configuration. There is no difference

between the B0 = 0 T and the B0 = ±10 T spectra, which can be attributed to the

influence of the external magnetic field. The influence of a magnetic field should be the

same for positive and negative field direction. Taking this into account there is no feature

which is different with or without a magnetic field, but present for both direction at the

same time. Since there is no shift of resonances or increase of intensities from the external
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magnetic field, the influence of the external field is investigated by anisotropies, which are

another tool for such an investigation.
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Figure 5.6. – Comparison of the parallel anisotropy of THG in GaN for k ‖
[0001] with and without a Voigt magnetic field B0 = 10 T. There is no difference
between the spectra. Again all labeled resonances are checked and an exemplary
exciton resonance (b) and one of lower energy resonances (a) is presented.

In Fig. 5.6 anisotropies with and without a Voigt magnetic field of B0 = 10 T are

presented. In fact every exciton resonance and every lower resonance was measured. The

resonance with the smallest energy 3~ω = 2. 610 eV is presented in (a) and the strongest

exciton resonance is shown representationally in (b). There is no difference between the

rotational anisotropy with or without a magnetic field, which shows that the influence of

the magnetic field on the observed states is negligible. The crossed anisotropy I3ω
⊥ , which

is zero for χcryst, should even reveal small contributions from induced THG, but no signal

was found in a magnetic field for any resonance.

At last the temperature dependence of the exciton resonances are presented in Fig.

5.7. They are measured in the k ‖ [0001] configuration. For T = 6. 5 K the spectrum is

unchanged from the T = 5 K spectrum presented before in Fig. 5.2. In Sec. 2.2.3 the
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Figure 5.7. – Temperature dependence of the exciton resonances in the THG
spectrum in the k ‖ [0001] configuration. For increased temperature the intensity
of the resonances decreases. No shift of the resonance energy is observed up to
T = 40 K, which is expected from the temperature dependence of the band gap
energy. For temperatures T > 40 K the intensity is too small to recognize the
exciton resonances.

dependence of the GaN band gap on the temperature is shown. For increasing tempera-

tures the intensity of the exciton resonances decreases. At T = 60 K the resonances have

almost zero intensity. No shift of the resonance could be found for higher temperatures.

At T = 40 K the shift of the GaN band gap ∆E < 0. 9 meV is just below the resolution

of about 1 meV for THG in this wavelength region. It is possible that the shift is not

observed, because the resonance intensity becomes too small, before the energy shift is

higher than the resolution of the experimental setup.

5.3.2. Discussion

Compared to GaAs, the spectral position of the excitons are not so well-known. The

three exciton series from the different valence bands, together with overall shifting of the

resonances due to low sample quality, are difficult to assign and are prone to confusion.

In Table 5.4 the assigned exciton resonances from various sources are listed.

In the first two sources (#1 and #2) thin layers of GaN on sapphire are used. They

should have a similar strain-induced band gap shift as the sample GaN BS2887. The other
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Table 5.4. – Energies of the THG resonances in the vicinity of the band gap
from different sources, measured on GaN grown by various techniques.

Source sample A1s(eV) B1s(eV) C1s(eV) Eg(eV) A2p(eV)

#1 [90] 4. 2µm 3.485 3.493 3.518 — —

#2 [98] 10µm 3.496 3.506 — 3.525 3.518

#3 [57] > 100µm 3.475 3.482 3.503 3.493 —

#4 [36] > 100µm 3.477 3.484 3.503 3.505 3.498

two sources #3 and #4 are thick layers [57] and bulk [36] crystals and the values should

be closer to those of an undisturbed bulk GaN.

Comparing the Xn resonances from Fig. 5.2 to values presented in the other sources,

especially the first two, allows an assignment of resonances in the THG spectrum. The

resonance X1 = 3. 4884 eV is the A1s exciton. It is close to the reported value for this

exciton, especially from source #1. The A exciton series has the lowest energy as it

includes holes from the upper most valence band. The next lower energy resonance is

R1 = 3. 455 eV, which is too small to stem from excitons. Not even in the strain free

samples #3 and #4 was such a small value found for an exciton resonance. The reason

for this resonance and all the smaller ones is addressed later. The next two resonances

X2 = 3. 4965 eV and X3 = 3. 5010 eV are close to each other and are in the region of theB1s

exciton. The three photon transition for the incident light interacts with polaritons having

the wave vector kω + kω + kω = 3kω or the reduced wave vector kω + kω − kω = kω. For

the B exciton series the polariton dispersion is strong in this region and the two polariton

resonances are noticeably shifted relatively to the exciton. This is not observed in the

presented sources, because only linear optical techniques for the 1s excitons are used (PL,

PLE, reflection) where this effect cannot be observed. In the PhD thesis of Schweitzer [99]

THG measurements are used to investigate the polaritons in GaN and the same double

peak structure with similar splitting of about ∆E ≈ 5 meV was found and explained by

the mentioned additive and subtractive k vector summation. The splitting is below the

resolution of the setup for the other bands. The last resonance X4 is close to the C1s

exciton. The C1s is formed from the lowest valence band and is close to the band gap (a

few meV depending on the source). All the resonances in the exciton region are assigned.

The resonances at lower energies are not explained by the excitons and are investigated

further. The 2p excitons are forbidden for one- and three-photon transitions and have to

be measured with other optical techniques.

It turns out that the THG measurements revealed much more insight into the nonlinear

optical response from excitons than the SHG measurements. Higher energy per pulse and

different optical selection rules allowed the observation of the ground state of each exciton

series. The observed energy values are in good agreement with other hetero-epitaxial

samples on sapphire. The strain shifts the band gap to higher energy.

The resonances at lower energy presented in Fig. 5.3 were not reported before. They

show no difference in the rotational anisotropy to the exciton resonances, which only allows
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assignments based on the energy of the resonance. These are compared to known states

within the band gap of GaN. The energy of the resonances are listed in Table 5.3.

There is a famous yellow photoluminescence in GaN at about ~ω ≈ 2. 2 eV up to 2. 6 eV.

It was of high interest as it could only be explained by an unwanted doping, which in turn

would explain unexpected electric conduction from allegedly pure GaN [100]. It was shown,

that the reason for this PL in the transparency region was indeed unwanted doping with

donors and acceptors. The resonance R6, which stretches from 3~ω = 2. 4 eV up to 2. 8 eV

with many small features, could be connected to the same defects as the yellow PL. In

the course of the investigations of the unwanted doping further defects, including point

defects, were also found to be a source of photoluminescence in the transparency region.

Even small unintentional doping (memory-doping effect) led to a strong resonance around

~ω ≈ 3 eV[101]. The resonances R5 and R4 could also be connected to unwanted doping.

Finally, it was shown that these transitions exhibit strong nonlinear optical interactions

[102], which explains their occurrence in the THG spectra.

For the additional resonances above 3~ω ≥ 3 eV another growth defect may be the

source. Perpendicular to the c axis, layers of the second stable GaN structure (cubic)

can emerge in the growth process. Such layers can form especially in the strained region

close to the substrate. Cubic GaN has a band gap, which lies at about Eg,cubic ≈ 3. 28 eV.

This is smaller than in the wurtzite structure and states within the cubic structure could

explain some of the resonances. Such a structure is known and even used as a quantum

well within the wurtzite GaN. By only using SHG from a small area with many cubic

domains in reflection geometry, a mixed wurtzite and cubic anisotropy was observed in

SHG spectra [103]. The cubic GaN could also be the reason for the resonances R5 and R4.

For the energy region of the resonances R1 up to R3 there are no reports about known

growth defects or other states with such an energy. In order to verify the proposed defects

and investigate the resonances R1 up to R3 in more detail, further measurements on

samples with intentionally enhanced defects of a certain kind are necessary. Comparing

the intensity with the bulk effects of the excitons in the presented measurements, it is

surprising, that point defects are only weaker by a factor of three. On the other hand, the

intensity of the excitons itself is weaker than in the other semiconductors presented here

and they might not be a good point of reference for such an estimation.

5.4. Summary

An epitaxial GaN sample is investigated by SHG and THG broad range spectroscopy. The

SHG spectrum exhibits a strong crystallographic background without exciton resonances.

The application of a magnetic field does not lead to enhanced SHG in the exciton region.

The crystallographic background SHG and lack of MFISH limit the possibilities of SHG

spectroscopy on this sample. It should be possible to observe the p excitons in SHG, but

they are masked by the intense background.

For THG no crystallographic background is found. This is the same situation as in

GaAs, where THG also shows no crystallographic background. Instead, excitons for each
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of the three valence bands lead to enhanced THG, which is a sign of good sample quality,

as the exciton states would otherwise be disturbed. The energies correspond to reported

values in GaN on sapphire with a blue shifted band gap from strain.

Many more regions of enhanced THG are unexpectedly found below the exciton energy.

Rotational anisotropies are measured for each resonance. For these resonances possible

growth defect states within GaN are proposed. In the future comparisons with intention-

ally enhanced growth defects could reveal the origin for each resonance. In addition to the

magnetic field, which showed little influence on the observed states, electric field enhanced

SHG and THG could be used, as it was shown to increase oscillator strength in GaN, but

only for a single wavelength [104].



6. Cuprous Oxide (Cu2O)

6.1. Introduction

Cuprous oxide is the fundamental oxide of copper and therefore also called copper(I)

oxide. Copper(II) oxide (CuO), called cupric oxide, has different properties. Cuprous

oxide crystallizes in cubic form with the symmetry group Oh (m3m). The copper ions are

on a FCC lattice and the oxygen atoms are on a BCC lattice, which are shifted along the

body diagonal. It has a lattice constant of a = 4. 27Å [53]. This structure typically cleaves

along the (111) face, but (001) faces, like in other semiconductors, are also possible. The

binding of the atoms has a strong ionic character.

Table 6.1. – Basic parameters of Cu2O and the crystal lattice.

Cu2O

Symmetry Oh

Lattice FCC/BCC

Centrosymmetric Yes

Band gap (T = 0 K) 2.172 eV

Band gap (T = 300 K) 2.137 eV

Exciton binding energy 98 meV

Samples natural bulk crystal

Refractive index (T = 5 K) n(1. 016 eV) ≈ 2. 57 n(2. 033 eV) ≈ 3. 02

Measurements SHG and PLE

The Oh group is centrosymmetric and parity is not only a good approximation at the

Γ point like in GaAs, but is a good quantum number, which has to be conserved. Therefore

the second order susceptibility χ
(2)
ED = 0 is zero for all components. No ED SHG is possible

for any resonance. Only higher order processes can lead to SHG. Even in linear optics

Cu2O has unusual properties. The even parity valence band leads to different selection

rules compared to other semiconductors. A one-photon ED band-band transition to the

lowest conduction band is forbidden. All excitons with an even parity envelope are also

101
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ED forbidden. Only states with an additional odd parity contribution are ED allowed.

These are typically p type excitons or transitions involving an odd parity phonon.

The first observation of SHG from the yellow 1s exciton, despite the centrosymmetric

structure of Cu2O, was reported by Shen [39]. It is explained by a two-photon ED transi-

tion to the exciton and an EQ transition from the exciton. The EQ has specific selection

rules and SHG is only possible for certain k directions. In another report by Kono et al.

[33] SHG was found for the k ‖ [001] direction. In this direction SHG is not possible by the

EQ transition. The two-photon ED transition can only excite Γ+
5z states, whereas an EQ

transition only couples to Γ+
5x and Γ+

5y. A cross relaxation between the three degenerated

states could lead to TPA-PL which, in this case, is similar to SHG. This was ruled out

by applying a magnetic field, which lifts the degeneracy between the three states. Still

SHG from each state was observed. This rules TPA-PL out, because without degeneracy

TPA-PL cannot be confused with SHG as it has another wavelength. In Sec. 6.2.1 other

crystal directions with forbidden EQ SHG are investigated for SHG with and without a

magnetic field.

In Sec. 6.3 the influence of a magnetic field on exciton resonances with n ≥ 2 are

investigated. In this region the s and p excitons are close to each other. This is an ideal

system to investigate the magneto-Stark effect, because in a centrosymmetric structure

a magnetic field should only enhance SHG through this mechanism and other mixing

mechanisms are forbidden due to parity. It was found to be the source for MFISH in ZnO

[31], which is not centrosymmetric, but it was still possible to identify the magneto-Stark

effect among other mixing mechanism. In Cu2O the magneto-Stark effect promises to be

the only source of MFISH from n > 1 yellow excitons where the exciton states have only

a small splitting ∆3s/3p = 0. 6 meV and the oscillator strength between the states is high.

6.2. SHG from the 1s yellow orthoexciton

6.2.1. SHG in forbidden configurations

In Fig. 6.1 SHG spectra in the vicinity of the 1s orthoexciton are presented. Each

measurement was done in a normal incidence geometry on one of the crystal faces of

sample H28. The k vector lies in a different crystal direction for each measurement. All

the spectra show no crystallographic background, but a resonance at 2~ω = 2. 033 eV with

a FWHM of about ∆FWHM ≈ 1 meV. This is at the energy of the yellow 1s orthoexciton

E1s = 2. 033 eV.

The lack of crystallographic SHG is expected in a centrosymmetric crystal, since ED

SHG is forbidden and higher order transitions are typically weak for non-resonant SHG.

The resonances for k ‖ [111] and k ‖ [112] are expected from EQ SHG. In the direction

k ‖ [110] even the EQ SHG is forbidden as shown in Sec. 2.3.4. It has a higher intensity in

the presented measurements compared to the other directions. The intensity is at least of

the same order, even after taking a possible difference from better alignment into account

(after turning the crystal). This rules out higher order transitions as the source for SHG,

since they are orders of magnitude weaker. To investigate this resonance in more detail
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Figure 6.1. – SHG spectra in the region of the yellow 1s exciton for different
wave vector directions. For none of the directions non-resonant SHG is observed,
but in each direction there is a sharp resonance at the energy E1s = 2. 033 eV of
the 1s exciton with a FWHM of about ∆FWHM ≈ 1 meV.

its rotational anisotropy is presented next.

In Fig. 6.2 the rotational anisotropy of the incident two-photon transition I2ω
In and

the following one-photon transition I2ω
Out for k ‖ [110] are presented. In Fig. 6.2(a) the

same k ‖ [110] direction as in the spectra is presented. In Fig. 6.2(b) the wave vector is

antiparallel in comparison to (a), which helps to identify the crystal axis. The fundamental

crystal direction in which the light polarization lies is noted on the scale. The incident

two-photon transition (black dots) has a maximum for Eω ‖ [110] and a minimum for

Eω ‖ [001] as is expected from the two-photon ED transition, which is calculated in Sec.

2.3.4. The one-photon transition I2ω
Out has a minimum for E ‖ [110] and a local minimum

for E ‖ [001]. The vanishing intensity for E ‖ [110] is expected from the calculations.

The directions E ‖ [111], E ‖ [112], and E ‖ [001] are all allowed for the 1s orthoexciton

states lying parallel to the k vector. The detailed rotational anisotropy is not given by

the calculations, but a signal, which is only zero for E ‖ [110] and allowed for other

polarizations, fits the model from Sec. 2.3.4 well.

In Fig. 6.3 the anisotropies for normal incidence on all three crystal directions is pre-

sented. The anisotropy for the k ‖ [110] direction is a combination of the absorption and

emission polarization dependencies 6.2 in this direction. The shaded area is not an EQ

SHG model, which predicts zero intensity for this direction, but just the expected intensity
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Figure 6.2. – Rotational anisotropy of the 1s orthoexciton in k ‖ [110] direction.
Black dots represent I2ω

In measurements and red dots I2ω
Out. Additionally to the ϕ

angles the most important crystal directions in which the light polarization lies
are noted. (a) Measurements in the same direction as the spectra for k ‖ [110].
(b) Measurements with k antiparallel compared to (a).

I2ω
‖ and I2ω

‖ , which can be calculated from I2ω
In and I2ω

Out, as presented in Fig. 6.2. EQ

SHG is allowed for the other directions and can be modeled by the equation from Sec.

2.3.4. In these directions the shaded areas are the model calculations, which do not have

to be fitted, since only a single anisotropy shape is expected for these directions and these

shapes are scaled to the measurements.

For k ‖ [111] the expected six-fold anisotropy is found and fits the model well. That the

intensity does not reach zero in between the maxima could stem from additional TPA-PL

to the EQ SHG. The measured anisotropy for k ‖ [112] in Fig. 6.3(c) does not fit to

the model calculations. The observed anisotropy only has a small angular dependence in

contrast to the expected shapes (shaded area). The observed signal could be a mixture

of EQ SHG and TPA-PL. In order to suppress TPA-PL, a diaphragm was added to the

experimental setup after the sample. This was used to suppress any light which is not
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Figure 6.3. – Each polar graph represents an anisotropy for a specific k direction
for the parallel I2ω

‖ configuration (black dots) and the crossed I2ω
⊥ configuration.

(a) For k ‖ [111] both configurations have the from EQ SHG expected six-fold
shape. (b) For the k ‖ [110] direction both configurations are a combination of
the incident two-photon transition and emitted one-photon transition presented
in Fig. 6.2. The shaded areas are derived from combining the two transitions. (c)
For the k ‖ [112] direction the anisotropy has only a small angular dependence
and is not in good agreement with the expected shape.

overlapping with the laser light, but the directed nature of a quadrupole transitions could

reduce the efficiency of this technique. In Fig. 6.4 TPA-PL spectra for the k ‖ [110]

direction are presented. The excitation energy 2~ω = 2. 033 eV is resonant for TPA of

the 1s orthoexciton. The top line is measured in a polarization configuration in which the

signal has maximum intensity, which is ϕ = 135 ◦ for the laser light and ϕ = 95 ◦ for the PL

light as shown in Fig. 6.2. On the linear scale only the exciton and a very small transition

at ~ω = 2. 020 eV are observed. Choosing a PL polarization of E2ω]Eω = 125 ◦ (bottom

line) suppresses the strong 1s exciton line and reveals further features in the spectrum.

The strongest one is the Γ3 phonon line at ~ω = 2. 02 eV. This is a strong relaxation

channel for the 1s orthoexciton, in which the Γ3 phonon is emitted simultaneously to a

photon with reduced energy. It has a characteristic shape, with a tail on the high energy

side and a sharp drop of intensity at the low energy side. Several other phonon lines,

like the Γ5 phonon, can also be assigned [72]. The resonances below 2. 010 eV are bound

states, similar to the ones in GaAs.
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Figure 6.4. – TPA-PL spectra of the 1s orthoexciton. For polarization combi-
nations in which the intensity of the 1s exciton is maximal (E2ω]Eω = 40 ◦) the
exciton dominates the spectrum. In configurations in which the intensity of the 1s
exciton is minimal (E2ω]Eω = 125 ◦) further transitions can be observed. Near
~ω ≈ 2. 02 eV are the Γ3 and Γ5 phonon lines, with a characteristic asymmetric
shape. Below ~ω < 2. 01 eV are bound excitons from impurities.

6.2.2. The 1s exciton in a magnetic field

A Voigt magnetic field is applied to the sample in order to further investigate the observed

signal in the k ‖ [110] direction. The magnetic field lifts the degeneracy of the three 1s

exciton states. In this case the relaxation between the states can be distinguished from

SHG, since the PL is no longer resonant, but stems from a lower lying state. From TPA

measurements it is known that, depending on the field direction (Faraday/Voigt), the three

states can be distinguished [73]. In Fig. 6.5 the splitting of the 1s exciton in a magnetic

field is observed. In a magnetic field the exciton splits into the three m = 0,± 1 states as

explained in Sec. 2.2.4. The m = ±1 states are observed in the magnetic field direction

B ⊥ k. These observed energies are in good agreement with the calculation in Sec. 2.2.4.

In Fig. 6.6 the magnetic field induced SHG of the 1s orthoexciton for k ‖ [110] is

presented. The measurement in Voigt geometry was shown before in Fig. 6.5. Only a

single resonance is observed in the Faraday geometry, which lies in between the m = ±1

states of the exciton. It has to stem from the m = 0 state. The observed resonance does

not stem from ED, EQ, or MD transitions in the k ‖ [110] configuration and the selection

rules leading to SHG from the m = ±1,0 states are not known. The m = 0 resonance

has an increased linewidth of ∆FWHM ≈ 1 meV compared to the m = ±1 states with

∆FWHM ≈ 0. 5 meV.

For the explanation of SHG in the unexpected direction k ‖ [110] the relaxation between

the different states of the 1s orthoexciton plays an important role. Without a magnetic
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Figure 6.5. – SHG spectra for k ‖ [110] in a Voigt magnetic field. For increasing
field strength the m = ±1 components of the 1s orthoexciton are shifted by the
Zeeman effect. The intensity of the lines does not change in the magnetic field
and the integrated intensity grows about 20% in a magnetic field of B = 10 T.

field the states are nearly degenerated and cannot be resolved. In a magnetic field, however,

it is possible to distinguish the three states because of the Zeeman splitting. In Fig. 6.7

measurements in a Voigt magnetic field B0 = 10 T are presented, in which the light from

the crystal is spectrally resolved for different excitation wavelength. For the two-photon

excitation wavelength 2~ω = 2. 0332 eV both m = ±1 states lead to SHG at the same

time. The high and low energy tails of the laser line reach both states. The m = 0 state

is resonant to the two-photon excitation, but is not observed. For 2~ω = 2. 0328 eV the

lower exciton state is resonant to the two-photon transition and is the only source of SHG

in the spectrum. The flat top shape of the resonance stems from a saturation of the CCD.

Only the high energy exciton state is resonant for 2~ω = 2. 0334 eV excitation. Still it is

possible to observe the low energy resonance at ~ω = 2. 0328 eV. This could be caused

by relaxation from excited m = +1 states, or again from the low energy tail of the laser

linewidth.

In Fig. 6.8 SHG spectra for different magnetic field configurations in the k ‖ [111]

direction are presented. For Voigt and Faraday geometry only the m = ±1 states are

observed. The m = 0 state is not observed for any magnetic field direction in the k ‖ [111]

direction in contrast to the k ‖ [110] direction.

In every measurement of the m = ±1 states in a magnetic field the resonant SHG

from the m = +1 state has a smaller maximum intensity compared to the m = −1

resonance. In Fig. 6.8 both magnetic field directions B0 = ±10 T are compared for the
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Figure 6.6. – In this graph two SHG measurements in an external magnetic
field in the k ‖ [110] configuration are shown. In a Voigt magnetic field B0 ⊥ k
the splitting of the m = ±1 is found as it was shown before. In the Faraday
configuration B0 ‖ k the m = 0 component is observed, which lies in between
the m = ±1 states. It has an increased FWHM ∆FWHM = 1 meV compared to
∆FWHM = 0. 5 meV of the m = ±1 resonances.

Voigt configuration and in both cases the m = −1 resonance is stronger.

At the top of Fig. 6.8 anisotropies for B0 = −10 T in the Voigt configuration are

presented for both resonances. Both parallel anisotropies have a two-fold shape with an

intensity maximum perpendicular to the magnetic field and both crossed anisotropies have

a two-fold shape parallel to the magnetic field. The anisotropies for the m = −1 resonance

has a clear shape, whereas the m = +1 resonance has additional features. The intensity

maxima of the m = +1 resonance have shoulders or additional smaller maxima at about

ϕ ≈ 45 ◦ and ϕ ≈ 135 ◦. With the additional smaller maxima the m = +1 anisotropy

can also be interpreted as six-fold, which could be connected to the six-fold shape of the

1s orthoexciton resonance anisotropy without a magnetic field, which was presented in

Fig. 6.3.

6.2.3. Discussion

In this section the SHG from the 1s orthoexciton in Cu2O is presented. The first obser-

vation of SHG from this exciton resonance by Shen [39] was explained by EQ SHG. Only

a few limited polarization congurations were compared in the report. In Sec. 6.2.1 all the

rotational anisotropies for k ‖ [111] are presented. In fact they show the expected six-fold

shape, which was calculated from the EQ susceptibility in Sec. 2.3.4.
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Figure 6.7. – Emission spectra in the k ‖ [110] configuration for different
fixed two-photon excitation wavelengths in a Voigt magnetic field B0 = 10 T.
For excitation at 2~ω = 2. 0332 eV just in between the m = ±1 1s exciton
states both states lead to SHG. For excitation at 2~ω = 2. 0328 eV (red dots)
and 2~ω = 2. 0334 eV (blue dots) on one of the exciton states respectively only
the one state leads to SHG. For 2~ω = 2. 0334 eV (blue dots) also the lower
lying resonance is observed. The flat top profile of the resonances stems from
saturation of the CCD chip.

A possible explanation for the observed signal is resonant TPA-PL with an intermediate

relaxation between the different 1s orthoexciton states. This is supported by the TPA-PL

measurement in Fig. 6.4, which showed emission from the Γ5 phonon and bound exciton

states under a two-photon excitation of the 1s orthoexciton. The emission from the lower

lying states is only possible due to the generation of excitons in addition to the parametric

SHG process. To investigate this mechanism the rotational anisotropy of the incident

and the emitted transition are presented separately in Fig. 6.2. The incident two-photon

transition is in good agreement with a two-photon ED transition. The EQ one-photon

transition has a more complicated shape, but the main features are in good agreement with

the expected anisotropy of the EQ transition. Although these measurements support the

TPA-PL mechanism, further investigations in a magnetic field reveal a more complicated

situation.

The observation of SHG from the 1s orthoexciton in the k ‖ [001] direction by Kono et

al. [33] cannot be explained by the same EQ mechanism. The susceptibility calculations
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Figure 6.8. – (a) SHG spectra in the k ‖ [111] direction for different magnetic
field configurations. The B0 = 0 T spectra was shown and discussed before in
Fig. 6.1 and is presented for comparison. For Faraday and Voigt configuration
resonant SHG from the m = ±1 states of the 1s orthoexciton is observed. For
none of the configurations the m = 0 exciton state is observed in contrast to
the k ‖ [110] direction. Anisotropies for both resonances in the Voigt configura-
tion are presented. Both parallel anisotropies are two-fold perpendicular to the
magnetic field and both crossed anisotropies are parallel to the magnetic field.
The anisotropy for m = −1 has a clear two-fold shape, whereas the m = +1
anisotropy has a additional small features.

show that EQ SHG is forbidden in this direction as shown in Sec. 2.3.4. Calculating the

specific selection rules for the transition revealed that a two-photon ED process is only

allowed to the Γ5
x and Γ5

y states whereas the one-photon EQ transition only couples to

the Γ5
z states. This direction is not investigated in this thesis, because it would be prone

to error to align the k ‖ [001] direction for the crystal cut of sample H28. Instead the

k ‖ [110] direction is investigated. EQ SHG is also forbidden in this direction as shown

in Sec. 2.3.4. In this case the one-photon EQ transition couples only to the Γ5
[111] states
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and the two-photon transition couples only to the perpendicular states Γ5
[110]

and Γ5
[112]

.

Again, SHG is found in the forbidden direction.

In order to test the proposed resonant TPA-PL mechanism a magnetic field is applied

in Voigt configuration. The magnetic field splits the three 1s orthoexciton states into the

three not degenerated m = ±1,0 states. In this case TPA-PL is not resonant anymore,

because a relaxation between the states leads to a shift of the PL. Nevertheless resonant

SHG is found for all three states in the k ‖ [110] direction with a Voigt or Faraday magnetic

field. These resonances cannot be explained by TPA-PL, because the degeneracy is lifted.

The same was found by Kono et al. [33] for the k ‖ [001] direction. In Fig. 6.7 the cross

relaxation of the different states in a magnetic field is investigated. The excitation of the

m = +1 state revealed a small relaxation to the m = −1 resonance. There is no sign of

cross relaxation to the m = 0 state. These measurements do not support the TPA-PL

mechanism.

In [33] the admixture of the 1s exciton from the green series is proposed as a mechanism

for the observed SHG, but it has a distance of over ∆E > 100 meV to the yellow 1s exciton.

Both series also have similar selection rules as all the involved bands have the same parity

and it is not clear how the admixture would give rise to SHG. Most probably, still another

mechanism is involved in the observed signal. A common feature of every measurement

can be found in a magnetic field, which showed the m = ±1 states. In every case the

m = +1 state has a smaller intensity compared to the m = −1 resonance. This was

observed for all three crystal directions k ‖ [111], k ‖ [110], and k ‖ [112]. This could

either stem from an interaction of the m = ±1 with another state or the splitting in a

magnetic field leading to an uneven distribution of oscillator strength between the states.

6.3. Magnetic-field-induced SHG of the yellow exciton series

6.3.1. The 1s paraexciton

SHG from the 1s orthoexciton was presented in the last section despite the forbidden

one-photon ED transitions in the centrosymmetric Cu2O. Due to an observation of the

m = 0 states of the 1s orthoexciton in SHG spectra, it is expected that the admixture of

the ortho and paraexciton states in a magnetic field some of the EQ oscillator strength is

transferred to the otherwise forbidden paraexciton as explained in Sec. 2.2.4.

In Fig. 6.9 SHG measurements on the 1s paraexciton are presented. The laser is tuned

resonant to the two-photon transition to the paraexciton 2~ω = 2. 0206 eV. Without a

magnetic field (black dots) no resonance is observed. A minor feature at ~ω = 2. 020 eV

could stem from SHG of optical components in the setup, since a high integration time

tint = 20 s is used for the measurements. In a Voigt magnetic field of B0 = 10 T a SHG

resonance at the paraexciton energy is observed.

Additionally, measurements of the relaxation from the three 1s orthoexciton states to

the paraexciton were made. For these measurements the laser is tuned to the two-photon

resonance of the m = ±1,0 states of the 1s orthoexciton and the PL from the paraexciton

is detected. It turns out that the resolution of the experimental setup is not high enough
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Figure 6.9. – Resonant SHG from the 1s paraexciton in a magnetic field. In
the k ‖ [110] configuration the laser light is tuned resonant to the two-photon
transition to the 1s paraexciton 2~ω = 2. 0206 eV. Without a magnetic field
B0 = 0 T (black dots) no SHG is detected. For B0 = 10 T (red dots) SHG is
found at the paraexciton resonance.

for this measurement, due to the rich phonon assisted transitions from the orthoexciton.

Especially the Γ3 phonon assisted transition from the orthoexciton presented in Fig. 6.4

is very intense and close to the paraexciton energy, which makes an observation of the

paraexciton difficult.

6.3.2. MFISH of the yellow exciton series

In this section MFISH measurements in the energy range of the yellow n ≥ 2 excitons are

presented. Although the 2s and 3s states have the same selection rules as the 1s exciton, it

is not expected to observe them without a magnetic field. The oscillator strength for n ≥ 2

is much smaller than for the 1s exciton and even in noncentrosymmetric materials with

ED transitions it is difficult to observe n ≥ 2 excitons without an additional perturbation.

In Fig. 6.10(a) SHG spectra in a Voigt magnetic field are presented. No SHG in

this region is found without a magnetic field (black dots). At B0 = 6 T there are two

resonances in the spectra. The first resonance is at 2~ω = 2. 155 eV, which is the energy

of the 2s yellow exciton E2s = 2. 1544 eV. The second resonance at 2~ω = 2. 161 eV is at

the energy of the E3s = 2. 1603 eV or E3p = 2. 1609 eV yellow exciton. The two exciton

states are too close to each other to be resolved with certainty. At higher magnetic field

strength B0 > 8 T the resonance at 2~ω = 2. 155 eV vanishes and a third resonance at
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Figure 6.10. – MFISH spectra in the energy range of n = 2 and n = 3 yellow
excitons in the k ‖ [111] configuration. Without a magnetic field no SHG is
detected in this energy range (black dots). (a) In a Voigt magnetic field (blue
dots) exciton resonances arise in the spectrum. At B0 = 6 T resonant SHG is at
the energy of the 2s and 3s/3p exciton. At higher field strength these lines vanish
and a resonance near the 3d state is found. For B0 = 9 T the spectrum covers
the n = 4 energy range where the different angular momentum states cannot be
resolved. (b) In a Faraday magnetic field (blue dots) of B0 = 10 T resonant SHG
arises at the 2s and 3s/3p excitons. The maximum intensity in the spectrum at
B0 = 10 T is about the same for Faraday and Voigt geometry.

2~ω = 2. 163 eV turns up, which seems to exchange oscillator strength with the second

resonance at 2~ω = 2. 161 eV. The third resonance is close to the E3d = 2. 1630 eV exciton.

For B0 = 9 T the higher energy region is also included in the spectrum. There are further

resonances, but at this energy the exciton states are so close, that it is difficult to assign

them. They are in the vicinity of the n = 4 states.

For the found MFISH in Voigt geometry the magneto-Stark effect, which was introduced

in Sec. 2.2.4, is a possible mechanism. In order to test for the magneto-Stark effect,

measurements in a Faraday magnetic field are made, because the magneto-Stark effect

should not be present for B0 ‖ k. In Fig. 6.10(b) MFISH spectra in a Faraday magnetic

field are presented. Two resonances at 2~ω = 2. 155 eV and 2. 161 eV are in the spectrum.

These are the energies of the 2s and 3s yellow excitons. In contrast to the Voigt magnetic

field only two resonances are found up to B0 = 10 T. The intensity of the MFISH is about

the same for both field directions. The 2s resonance in the Faraday geometry has about

the same intensity as the 3p/3d resonance in Voigt geometry.
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6.3.3. Discussion

The application of a magnetic field gives rise to SHG from the 1s paraexciton. The admix-

ture of the m = 0 orthoexciton to the paraexciton leads to enhanced oscillator strength

for the paraexciton. It is surprising that the SHG is strong enough to be detected, because

the selection rules are not in favor of SHG of this exciton state. In fact, it is observed in

the k ‖ [110] configuration, in which not even SHG from the orthoexciton is expected. In

order to understand the microscopic mechanism for SHG of the 1s paraexciton, it is first

necessary to understand the mechanism of SHG of the orthoexciton in the forbidden direc-

tion. The oscillator strength of this mechanism is transferred to the paraexciton through

the admixture in a magnetic field as explained in Sec. 2.2.4.

No crystallographic SHG is found in the region of yellow excitons with n ≥ 2. This is not

surprising, since the oscillator strength for n ≥ 2 states is smaller than for the 1s, which

itself is weak due to the forbidden one-photon ED transition. The application of a Voigt

magnetic field up to B0 = 6 T gives rise to SHG at the energy of the 2s and 3s/3p exciton

as shown in Fig. 6.10. For a higher field strength the behavior is more complex and an

additional resonance near the 3d state is found. The increase of SHG at the excitons is

not expected, since the 1s exciton gains no oscillator strength in a magnetic field as shown

in Fig. 6.5. A difference of the 1s yellow exciton to the n ≥ 2 excitons is, that it has a

higher binding energy and is far away from other excitons. The 3s, 3p and 3d states are

close to each other, which could lead to admixture. Especially the one-photon ED allowed

3p exciton would lead to SHG when it is admixed with the two-photon ED allowed 3s

exciton. This is only possible through the magneto-Stark effect in a centrosymmetric

system. The magneto-Stark effect should only mix the excitons in a Voigt magnetic field,

but Fig. 6.10(b) shows that the resonances also appear in the Faraday configuration,

which rules out the magneto-Stark effect as the main mechanism. The 3d states on the

other hand have the same parity as the 3s states and they are admixed in a magnetic

field, but since they have the same parity it is not expected that this admixture gives rise

to SHG. The 3s/3d admixture could explain the complex change of intensity between the

two resonances for high magnetic field strength.

The situation for the yellow 2s exciton is similar to that of the 3s exciton. The 2s

yellow exciton is very close to the 1s green exciton, but the 1s green exciton has the same

parity as the 2s yellow exciton and an admixture should not lead to enhanced SHG. The

admixture of the 2p exciton via the magneto-Stark effect is possible, but can be ruled out

as a mechanism due to the measurements in Faraday geometry.

The responsible mechanism for the MFISH in Cu2O is not clear. A few possible mech-

anisms can be ruled out with the measurements in this section. Another possibility is the

enhancement of phase matching, due to the influence of a magnetic field on the polariton

dispersion, like it was proposed for the increase of THG in GaAs in Sec. 4.3.4. Since

sample Cu2O H28 is a thick bulk crystal, increased phase matching would have a strong

influence, because the laser light has a long path through the crystal. A possible mecha-

nism has to be in line with the complex change of intensity in a Voigt magnetic field and

the different changes in a Faraday magnetic field.
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6.4. Summary

Although the excitons Cu2O have been extensively studied over the last decades, the

found SHG in this chapter revealed several unexpected mechanisms leading to SHG. SHG

is found in the EQ forbidden k ‖ [110] direction even without a magnetic field. The

application of a magnetic field leads to a splitting of the three degenerated orthoexciton

states and each one is observed separately in SHG spectra. Comparing the SHG intensity

between the forbidden and allowed directions reveals, that the SHG is at least as intense in

the forbidden direction as in the allowed one. The found SHG cannot simply be attributed

to higher order transitions. Several proposed mechanisms for this SHG could be ruled out

by the measurements, but the right mechanism is still to be found.

The observation of SHG from the paraexciton in a magnetic field was demonstrated.

This was expected from the admixture of the m = 0 orthoexciton states. The intensity of

SHG from the paraexciton is very small, since it gains only a small amount of oscillator

strength from the already weak EQ transitions through the admixture.

The MFISH from n ≥ 2 excitons is demonstrated in Sec. 6.3.2. It was expected that the

magneto-Stark effect could lead to enhanced SHG for these excitons. The increased SHG

is in fact found, but the magneto-Stark effect is ruled out by measurements in a Faraday

magnetic field.

It is overall interesting that the intensively investigated yellow exciton series in Cu2O

showed several unexpected SHG resonances at the exciton energies. In order to investigate

the proposed influence of polaritons it is necessary to perform further measurements.



7. Summary and outlook

The measurements reported in this thesis provide insight into the role of excitons in SHG

and THG near the band gap of the well known semiconductors GaAs, GaN, and Cu2O.

The influence of the temperature, electric fields, magnetic fields, and wave vector direction

on the found nonlinearities are investigated. The strong electric dipole SHG of excitons

is forbidden by optical selection rules in most cases, due to parity conservation. Only the

application of an external electric or magnetic field leads to resonant electric dipole SHG

from the excitons, because different exciton states become admixed in the external field.

THG on the other hand is often allowed by the electric dipole selection rules where the

influence of an external field is more complex.

The influence of an electric field on SHG and THG from excitons in GaAs is investigated.

The spectral dependence and rotational anisotropy of resonant SHG and THG from the

1s exciton in an electric field is measured. The rotational anisotropies are modeled with

susceptibility calculations. A microscopic model based on the Stark effect for the SHG

and THG field dependence is presented.

A strong increase of resonant THG from excitons in GaAs in a magnetic field by 175

times at B0 = 10 T has been found. It was not expected and is not yet fully understood.

Additional white light reflection, TPA-PL, and 3PA-PL measurements in a magnetic field

helped to rule out several possible mechanisms. This can be explained phenomenologically

by improved phase-matching conditions, due to exciton-polariton effects, which details a

subject for further investigations. The microscopic mechanism, which is most probably

related to the complex MFISH spectrum of GaAs, needs further clarification.

Cu2O is a classic semiconductor for the exciton spectroscopy. It is known that electric

quadrupole SHG from the yellow 1s orthoexciton can be observed in specific geometries.

It is shown in this thesis that SHG can be observed even in the electric quadrupole SHG

forbidden k ‖ [110] direction. Through the application of a magnetic field all three de-

generated 1s orthoexciton states are observed separately. SHG measurements allow us

to observe the effect of the redistribution of the exciton oscillator strength from the 1s

orthoexciton to the 1s paraexciton, which is observed in SHG spectroscopy for the first

time. The application of a magnetic field also gives rise to exciton resonances for n ≥ 2

states. Only the magneto-Stark effect is expected to lead to the mixing of exciton states

in a centrosymmetric material such as Cu2O. The magneto-Stark effect could be ruled out

as the only mechanism responsible for the observed SHG of the n ≥ 2 states.

In GaN the 1s exciton from all three exciton series is found in crystallographic THG.

Additionally, the spectral feature of several defects and impurities of GaN were observed

in THG spectra.

Measurements on the indirect band gap semiconductor Si presented in Sec. A.2 show
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that it is possible to investigate the direct band-band transitions at the Γ point with

THG in transmission geometry, even in a system with an indirect band gap, since the

fundamental laser light energy can be tuned to the transparency region of the material.

The possibility of SHG from states near an indirect band gap is investigated in SiC,

because the band gap energy lies in the spectral range of the experimental setup in contrast

to Si. Existing reports showed that it is possible to have phonon assisted SHG, which is

necessary for the investigation of an indirect band gap, but specific phonons had to be

created optically [105]. Neither in SiC 4H nor 6H resonant enhanced SHG is found near

the band gap in the measurements presented in Sec. A.3. Only non-resonant SHG is

possible in the transparency region.

The presented electric and magnetic field induced measurements can also be applied to

other semiconductors to investigate SHG and THG from excitons. Finding and under-

standing optical frequency conversion processes in semiconductors will remain an impor-

tant field of research for the integration of optics into semiconductor technology.
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A. Indirect band gap semiconductors

A.1. Introduction

In this chapter SHG from the indirect band gap semiconductors Si and SiC are presented.

Si has a diamond cubic lattice structure with Oh (m3m) symmetry. The Si atoms are

ordered on two FCC lattices, which are shifted along the cubic space diagonal. It is the

most common semiconductor for technological applications and almost every computer

chip is made from Si. The indirect band gap leads to a poor performance of optics in Si.

A great effort is made to find solutions for the integration of Si with optical technology.

For non-linear optics the centrosymmetric structure additionally reduces the non-linear

interaction with light. All χ(2) effects (SHG, parametric down-conversion, sum-frequency

generation) are forbidden in the ED approximation.

For a long time SHG was only found in reflection geometry from strained interfaces

[106, 107] or tailored photonic crystals [108]. Recently, SHG from a strained Si waveguide

was found. THG on the other hand is allowed in Si and has been found in reflection from

interfaces [109] and micro-cavities [110].

Both hexagonal SiC structures belong to the C6V (6mm) group. It is a very hard ma-

terial, which is used for several abrasive and cutting tools. For technological applications

it is mainly known as a material for high power electrical switching devices. As shown

in Sec. 2.2.3 hexagonal SiC has an indirect band gap energy of about 3 eV, which is in

contrast to Si within the spectral range of the experimental setup. This is exploited to

investigate SHG near an indirect band gap.

A.2. Silicon (Si)

In Fig. A.1 THG spectra of Si in the k ‖ [111] configuration, which is normal incidence

on the sample, are presented. Two resonances are in the spectrum at 3~ω = 3. 48 eV and

3~ω = 3. 51 eV. One of these resonances is close to the direct band-band transition at

EΓ = 3. 46 eV. Between 3~ω = 3. 3 eV and 3. 4 eV the intensity of the fundamental light is

too small for THG, because of the OPO efficiency at this wavelength as explained in Sec.

3.1. The inset shows the rotational anisotropy at 3~ω = 3. 51 eV. The parallel anisotropy

I3ω
‖ is constant and the crossed anisotropy I3ω

⊥ is four-fold.

The energy region of the band gap Eg(T = 5 K) = 1. 170 eV is not accessible by the

experimental setup. Optical harmonic generation in the energy range of an indirect band

gap is investigated in SiC in the next section. Also SHG of Si near the band gap was

investigated, but as expected from the centrosymmetric structure no SHG was observed.
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Figure A.1. – THG spectrum of Si in the k ‖ [111] direction. There is a strong
resonance at 3~ω = 3. 51 eV near the direct band-band transition and a smaller
resonance at 3~ω = 2. 5 eV. In the spectral range between 3. 3 eV and 3. 4 eV
(black box) the SHG intensity is zero, because the fundamental light intensity
from the laser is too small for THG. The inset shows the rotational anisotropy
for 3~ω = 3. 51 eV. The parallel anisotropy I3ω

‖ is constant and the crossed

anisotropy I3ω
⊥ is four-fold.

A.3. Silicon Carbide (SiC)

In Fig. A.2 broad range SHG spectra of sample SiC6H are presented. As expected from

the second order susceptibility χ(2) in C6v introduced in Sec. 2.3.4, no ED SHG is allowed

for k ‖ [0001] (black dots). Only a small SHG intensity from higher order transitions is

found, which is presented (for SiC 4H) in Fig. A.3. In a tilted geometry k][0001] = 45 ◦

(blue dots) the spectrum is dominated by non-resonant crystallographic SHG. It has about

30 times more intensity than the SHG in the k ‖ [0001] configuration. The spectrum shows

similar features as the crystallographic SHG in GaAs presented in Fig. 4.3. The strong

oscillations of SHG intensity below the band gap stem from reflections in the sample.

The refractive index of SiC 6H is rather high n(ω) > 2. 5 in the wavelength region of the

fundamental and SHG light, which leads to reflections at the surface of the sample. Above

the band gap the SHG light is reabsorbed from band-band transitions to the indirect band

gap and the SHG intensity is reduced. The spectrum for SiC 4H shows the same feature
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and wave vector direction dependence, which is not surprising as it belongs to the same

symmetry group C6v.
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Figure A.2. – Broad range SHG spectra of SiC 6H in the vicinity of the band gap
(black arrow). For normal incidence k ‖ [0001] (black dots) the SHG intensity is
very small. For tilted incidence k][0001] = 45 ◦ (blue dots) there is non-resonant
crystallographic SHG in the spectrum, which is 30 times more intense than for
normal incidence. Below the band gap the intensity is high and oscillating. Above
the band gap the intensity decreases until it vanishes near 2~ω ≈ 3. 5 eV.

The normal incidence geometry k ‖ [0001] is ideal to investigate magnetic field induced

effects, because the crystallographic SHG is close to zero and does not overpower MFISH.

In Fig. A.3 (black dots) the spectrum of SiC 4H is presented. On this scale of intensity

small features are found in the spectrum, which are much smaller than the ED SHG in

the tilted geometry presented in Fig. A.2. The small features in the spectrum stem from

higher order transitions, since ED SHG is forbidden in this geometry. It is most probable

that the features are not connected to crystal states, but are connected to the already

mentioned reflections in the sample, which could lead to an enhancement of higher order

SHG. The application of a Voigt magnetic field B0 = 7 T does not lead to MFISH. Only

small changes in the spectrum can be made out, which are addressed in the Discussion

section.

In Fig. A.4 the rotational anisotropies for SiC 4H are presented. For k ‖ [0001] the

anisotropy has the typical six-fold shape for SHG in normal incidence on a hexagonal

lattice. Since ED SHG is forbidden in this geometry it has to stem from higher order

transitions. The six-fold shape verifies, that the detected SHG in k ‖ [0001] in Fig. A.3

does not stem from a small misalignment, but from higher order transitions. The six-fold

shape is found above and below the band gap for SHG. The rotational anisotropies for

a tilted sample about the x axis with Θ ≈ 45 ◦ presented in Fig. A.4 (b,c) clearly have

a different shape. The parallel intensity I2ω
‖ is two-fold with an intensity maximum at
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Figure A.3. – Broad range SHG spectra for SiC 4H in the vicinity of the band
gap. Without a magnetic field (black dots) several small features are in the
spectrum. The application of a magnetic field B0 = 7 T in Voigt geometry (blue
dots) reveals only small differences. No induced SHG is found.

ϕ = 90 ◦, which lies along the c axis. The crossed anisotropy is four-fold I2ω
⊥ and its exact

shape depends on the wavelength. At 2~ω = 3. 32 eV two of the intensity maxima are

stronger than the other two. At 2~ω = 3. 15 eV the maxima all have the same intensity.
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Figure A.4. – Rotational anisotropies of SiC 4H. (a) For k ‖ [0001] the
anisotropy has the typical six-fold shape for normal incidence on a hexagonal
structure. (b,c) For a tilting about the x axis with Θ ≈ 45 ◦ the parallel intensity
I2ω
‖ is two-fold along ϕ = 90 ◦. The crossed intensity I2ω

⊥ is four-fold. Depending

on the wavelength the intensity maxima are different. In (b) the maxima for the
crossed intensity at ϕ = 45 ◦ and ϕ = 125 ◦ are smaller than the other two.
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A.4. Discussion

The measurements in Si presented in Fig. A.1 show that it is possible to investigate states

near the direct band-band transition at the Γ point with EΓ = 3. 4 eV, despite the small

indirect band gap of 1. 17 eV. Typically, these states were only investigated in reflection

geometry, because the light from the direct transition is reabsorbed by states at the band

gap. THG makes it possible to choose a fundamental wavelength in the transparency

region, while investigating direct band-band transitions. A strong increase of THG is

found at 3~ω = 3. 5 eV, which is close to the direct band-band transition. A smaller

intensity maximum at 3~ω = 2. 5 eV is well below EΓ. It could stem from crystal defects

as unwanted doping or lattice defects, similar to the found resonances in GaN in Fig. 5.3.

In SiC it is possible to investigate SHG near the indirect band gap with the experimental

setup used for the investigations. The crystallographic SHG of SiC 4H and SiC 6H is

similar to GaAs. For specific geometries k ‖ [0001] no ED SHG is allowed and only a

small SHG intensity from higher order transitions is found. For a tilted geometry non-

resonant ED SHG is found, which is reabsorbed above the band gap.

In the k ‖ [0001] geometry a Voigt magnetic field does not lead to MFISH near the

band gap. This is somewhat expected, because states near the indirect band gap cannot

contribute to SHG, because the SHG transitions are nearly vertical in the band structure.

There is an existing report about phonon assisted SHG [105], but it was done with specific

phonons which were excited by an infrared laser. In the presented measurements on

SiC there is no sign of resonant SHG from states near the band gap, which can only

be reached with phonon assisted transitions. The small influence of a magnetic field on

the SHG spectrum presented in Fig. A.3 probably stems from changes of the refractive

index from the magnetic field. This changes the phase-matching conditions for SHG and

influences the spectrum.



B. From perturbation theory to susceptibility

In order to derive Eq. (2.9) perturbation theory is used to calculatee the influence of the

electric light field V on the atomic wave function H0 [7].

H = H0 + λV (B.1)

The parameter λ is necessary for perturbation theory and can range from 0 to 1 in order

to vary the strength of the perturbation. The value λ = 1 represents the actual situation.

The wave function, which solves Schroedinger’s equation, can be expanded into a power

series in terms of λ

Ψ = Ψ(0) + λΨ(1) + λ2Ψ(2) + . . . . (B.2)

Each of the wave functions can be expressed in terms of the probability a
(N)
m of being in a

particular eigenstate. The probability of being in a higher order state by the perturbation

V can be seen in analogy to the classical case of introducing harmonics due to a strong

light field of an incident wave.

Ψ(N) =
∑

l

a
(N)
l ule

iωit (B.3)

In this equation ul is the part of the wave function which is not time dependent. By using

Schroedinger’s equation, a general description for a
(N)
n can be derived:

a(N)
m (t) = (i~)−1

∑
l

t∫
−∞

dt′ 〈 um | V |ul 〉 a
(N−1)
l (t′)eiωmlt

′
(B.4)

The probability of order N is related to all probabilities of lower order in this equation.

In the lowest order the atom is known to be in the ground state a
(0)
n = δng . The highest

order used in this thesis is necessary for THG. These can be derived successively from

Eq. (B.4). Additionally, the general perturbation V will be specified to the ED transition

moment as it is the strongest contribution. Other transitions can be calculated in the

same manner.

µml =

∫
u∗mµuld

3r (B.5)
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Now the probabilities up to third order can be derived successively:

a
(1)
f (t) =

1

~
∑

p

µfg ·E(ωp)

ωmg − ωp
ei(ωfg−ωp)t (B.6a)

a
(2)
f (t) =

1

~2

∑
pq

∑
m

[µfm ·E(ωq)]
[
µmg ·E(ωp)

]
(ωfg − ωp − ωq) (ωmg − ωp)

ei(ωfg−ωp−ωq)t (B.6b)

a
(3)
f (t) =

1

~3

∑
pqr

∑
mn

[µfm ·E(ωr)] [µnm ·E(ωq)]
[
µmg ·E(ωp)

]
(ωfg − ωp − ωq − ωr) (ωng − ωp − ωq) (ωmg − ωp)

(B.6c)

With these probabilities the perturbation of the eigenstates of the system by an incident

light field can be calculated. For non linear optics the influence of the electric dipole

moment is most important. These dipole moments can radiate photons of higher frequency

when they are excited by the incident photons, as it was shown in the classical approach.

The first order polarization
〈
P(1)

〉
=
〈

Ψ(0)
∣∣ µ ∣∣Ψ(1)

〉
+
〈

Ψ(1)
∣∣ µ ∣∣Ψ(0)

〉
leads to the linear

susceptibility χ
(1)
ij (ωp) via the relation P

(1)
i (ωp) =

∑
j χ

(1)
ij Ej(ωp). This susceptibility can

finally be rewritten into the complex index of refraction, which covers many well-known

linear optical effects. For SHG the second order polarization is important.〈
P(2)

〉
=
〈

Ψ(0)
∣∣∣ µ ∣∣∣Ψ(2)

〉
+
〈

Ψ(1)
∣∣∣ µ ∣∣∣Ψ(1)

〉
+
〈

Ψ(2)
∣∣∣ µ ∣∣∣Ψ(0)

〉
(B.7)

Plugging in the perturbed wave functions and using the definition of the second order

susceptibility:

P
(2)
i =

∑
jk

∑
(pq)

χ
(2)
ijk (ωp + ωq,ωq,ωp)Ej(ωq)Ek(ωp) (B.8)

allows one to write down the second order susceptibility

χ
(2)
ijk (ωp + ωq,ωq,ωp) =

N

~2
P
∑
mn

(
µi

gf µ
j
fm µk

mg

(ωfg − ωp − ωq) (ωmg − ωp)
+

µj
gf µ

i
fm µk

mg(
ω∗fg + ωq

)
(ωmg − ωp)

+

µj
gf µ

k
fm µi

mg(
ω∗fg + ωq

) (
ω∗mg + ωp + ωq

) )
(B.9)

in terms of the dipole transition moments µ and light frequencies ω. The permutation

operator P includes all (both) permutations of ωp and ωq and N is the density of the

participating atoms. In principle, it is possible to calculate the exact value for χ
(2)
ijk at this

point. The precision of such a calculation depends on the description of the undisturbed

wave functions. The band structure has to be known in the case of a semiconductor. In

most cases the wave functions of the full band structure is not completely understood, as

computations are very complex. In many cases it is sufficient to understand the ground

state and states close to ωng. In the case of a semiconductor and near visible light this
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is the valence band and conduction band. This is done for EuTe and it yields a good

approximation of the nonlinear optical response of the material [38].

𝑝 

|g > 

|f > 

|m > 

𝑞 𝑝 

|g > 

|f > 

|m > 

𝑞 𝑝 

|g > 

|f > 

|m > 

𝑞 

Figure B.1. – Visualization of the transitions included in Eq. (B.9). The states
| f 〉 and |g 〉 are undisturbed crystal states in SHG spectroscopy and |m 〉 are
mixed light matter states which are reached by virtual transitions. (Similar to
Boyd Fig. 3.2.2 [7])

In order to get Eq. (2.9), which is used to describe the measurements, a few simplifica-

tions have to be made. The full description of the second order susceptibility B.9 is not

needed for SHG. In the SHG spectroscopy a singe wavelength ω is incident on the crystal

and only 2ω is detected. Therefore the denominator is reduced by ωp = ωq = ω and

ωng = 2ωp = 2ω. Instead of assuming every frequency to be complex, the frequencies are

real and an imaginary damping term iΓ takes the linewidth of the final state into account.

It is also rewritten in terms of energy, because the energy levels of a semiconductor are

the main focus. The first transition in Fig. B.1 describes the SHG from the measurement

section. The mechanism responsible for SHG in semiconductors is a virtual transition

from the ground state |g 〉 to the final state | f 〉 . The state of interest is the final state

and therefore its energy is introduced into the equation ~ωgf = Ef . This is valid, because

the ground state in semiconductors is usually the top of the valence band and is defined

as the zero energy position. The important susceptibility parameters are rather the states

and external fields than the frequencies χ
(2)
ijk (ωp + ωq,ωq,ωp)⇒ χ

(2)
ijk (Ef ,kf ,B

0,E0).
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[89] R. H. French, H. MÃ¼llejans, and D. J. Jones, “Optical Properties of Aluminum Ox-

ide: Determined from Vacuum Ultraviolet and Electron Energy-Loss Spectroscopies,”

J. Am. Ceram. Soc. 81, 2549–2557 (1998).

[90] W. Shan, R. J. Hauenstein, A. J. Fischer, J. J. Song, W. G. Perry, M. D. Bremser,

R. F. Davis, and B. Goldenberg, “Strain effects on excitonic transitions in GaN:

Deformation potentials,” Phys. Rev. B 54, 13460–13463 (1996).

[91] G. Stillman, C. Wolfe, and J. Dimmock, “Hall coefficient factor for polar mode

scattering in n-type GaAs,” J. Phys. Chem. Solids 31, 1199 – 1204 (1970).

[92] J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,”

J. Appl. Phys. 53, R123–R181 (1982).
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