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Abstract

Let X ,Y be two continuous random variables. Investigating the regres-
sion dependence ofY onX , respectively, ofX onY , we show that the two of
them can have almost opposite behavior. Indeed, given anyε > 0, we con-
struct a bivariate random vector(X ,Y ) such that the respective regression
dependence measuresr2|1(X ,Y ),r1|2(X ,Y ) ∈ [0,1] introduced in Dette et al.
(2013) satisfyr2|1(X ,Y ) = 1 as well asr1|2(X ,Y )< ε.

1 Introduction and results

Recently, Dette et al. (2013) introduced an approach to the problem of order-
ing and measuring regression dependence in the bivariate case. Let(X ,Y ) be
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a bivariate random vector. Since regression dependence is a directional rela-
tionship, it is first necessary to specify the direction of interest. Without loss
of generality, consider the dependence ofY on X . The fundamental idea
behind regression is predictability—the more predictableY is from X , the
more regression dependent they are. It is straightforward to single outthe
two extreme cases: independence and almost sure functional dependence,
when there exists a Borel measurable functiong such thatY = g(X) with
probability one (Lancaster, 1963). In the former case,X provides no infor-
mation aboutY , whereas in the latter case there is perfect predictability ofY
from X .

Apart from the two extreme cases, however, there exists a variety of in-
termediate ones with a certain degree of regression dependence. To be able
to measure the strength of dependence ofY on X , Dette et al. (2013) intro-
duced the concept of an order of regression dependence. Only such an order
allows one to deal with questions like whether one random variableY can
be better regressed ontoX than another random variableY ′ (namely when
(X ,Y ) is more regression dependent than(X ,Y ′)). Note that the concept
of regression dependence is quite different from the well known concept of
dependence, as measured by a variety of measures of dependence orassoci-
ation. Indeed, the general notion of dependence is not a directional concept,
i.e., it cannot describe how stronglyY depends onX .

In addition to an order of regression dependence, Dette et al. (2013)
constructed a nonparametric measure of regression dependence,r2|1(X ,Y )∈
[0,1], which is monotone in this order. Moreover, the measure takes on its
extreme values precisely at independence and almost sure functional depen-
dence, respectively, i.e., we have

(i) r2|1(X ,Y ) = 1 if and only ifY is a.s. a Borel function ofX .

(ii) r2|1(X ,Y ) = 0 if and only if X andY are independent.

We point out that it is important to have equivalences in both of the prop-
erties (i) and (ii), because only then the valuer2|1(X ,Y ) can serve as a gen-
uine measure of how muchY is dependent onX . Indeed, if we only had
r2|1(X ,Y ) = 0 if (but not only if)X andY are independent, then an assertion
like r2|1(X ,Y )< ε would not imply thatY is ‘almost independent’ fromX .

Analogously, of course, one can exchange the roles ofX onY and define
a measurer1|2(X ,Y ) = r2|1(Y,X) measuring the degree of dependence ofX
onY .

The following is the main result of the present paper.

Theorem 1. For any given ε > 0, there is a random vector (X ,Y ) such that
the following assertions hold:

1. r2|1(X ,Y ) = 1, i.e., Y is a.s. a Borel function of X.

2. r1|2(X ,Y )< ε .
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The paper is organized as follows. In Section 2 we give a quick review
of the construction in Dette et al. (2013) of the nonparametric measurer2|1
of regression dependence. Section 3 then contains the proof of Theorem 1.
Section 4 relates this result to other problems in the literature.

Acknowledgements: Research on this paper started when PAS was sup-
ported by the DFG Sonderforschungsbereich 823 ”‘Statistical modelling of
nonlinear dynamic processes”’.

2 Preliminaries

In this section we recall the basic notion of copula and the definition of the
nonparametric measure of regression dependence introduced in Dette etal.
(2013). A (two-dimensional) copula is a functionC : I2 → I with I := [0,1],
satisfying the following conditions:

1. C(x,0) =C(0,y) = 0 for all x,y ∈ I

2. C(x,1) = x andC(1,y) = y for all x,y ∈ I

3. C is 2-increasing, i.e.,C(x2,y2)−C(x2,y1)−C(x1,y2)+C(x1,y1)≥ 0
for all rectangles[x1,x2]× [y1,y2]⊂ I2.

These conditions imply further key properties. A copula is Lipschitz contin-
uous and increasing in each argument; therefore, its partial derivatives exist
a.e. onI2. We refer the reader to Nelsen (2006) for more information about
copulas.

Given two continuous random variablesX andY with corresponding
copulaC, the measure of regression dependencer2|1(X ,Y ) introduced in
Dette et al. (2013) is defined by

r2|1(X ,Y ) = 6‖∂1C‖2
2−2= 6

∫

I2
|∂1C(x,y)|2d(x,y)−2 (1)

where∂1 denotes the partial derivative with respect to the first variable and‖·
‖2 is theL2-norm onI2. The quantityr2|1 measures the degree of dependence
of Y on X . It is a measure of regression dependence with respect to two
natural regression dependence orders, also introduced in Dette et al.(2013).

Analogously, one can define a measure

r1|2(X ,Y ) = 6‖∂2C‖2
2−2= r2|1(Y,X)

such that this quantity measures the degree of dependence ofX onY .
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3 Proof of Theorem 1

In this section, we will construct a sequence(Xn,Yn) of bivariate random
vectors such that

r2|1(Xn,Yn) = 1 for all n, (2)

lim
n→∞

r1|2(Xn,Yn) = 0. (3)

This proves Theorem 1. In fact, we will construct a sequence of copulas
Cn rather than the random variables themselves. This is sufficient because
the measuresr2|1 and r1|2 depend only on the corresponding copula. For
the construction of these copulas, we use the so-called gluing method devel-
oped in Siburg and Stoimenov (2008); alternatively, one could also use the
orthogonal grid construction described in De Baets and De Meyer (2007).
For the convenience of the reader, we quickly recall the details of the gluing
method.

Given two copulasC1,C2 and a parameterθ ∈ (0,1), we define the func-
tion

(C1⊛x=θ C2)(x,y) =

{

θC1
(

x
θ ,y

)

if 0 ≤ x ≤ θ
(1−θ)C2

(

x−θ
1−θ ,y

)

+θy if θ ≤ x ≤ 1
(4)

Thus,C1⊛x=θ C2 corresponds to gluing the two copulasC1 andC2: it equals
C1, rescaled and fit into the rectangle[0,θ ]× I, and equalsC2+θy, rescaled
and fit into [θ ,1]× I. It is shown in Siburg and Stoimenov (2008) that the
gluing process yields a copula again, i.e.,C1 ⊛x=θ C2 is a copula for any
parameterθ . For later purposes, we need also the gradient of the resulting
copula which is given by

∇(C1⊛x=θ C2)(x,y)

=











(

∂1C1
(

x
θ ,y

)

,θ∂2C1
(

x
θ ,y

)

)

if 0 ≤ x ≤ θ
(

∂1C2
(

x−θ
1−θ ,y

)

,(1−θ)∂2C2
(

x−θ
1−θ ,y

)

+θ
)

if θ ≤ x ≤ 1
(5)

provided the partial derivatives on the right exist.
Let us first illustrate the glueing construction with a fundamental ex-

ample. Recall that a copulaC is called singular if its density∂ 2C/∂x∂y
vanishes almost everywhere inI2. Moreover, the support of a copulaC is
defined as the complement of the union of all (relatively) open subsets ofI2

whose measure, induced byC, is zero. We refer to Nelsen (2006) for more
details.

Example 1. Let θ ∈ (0,1), and suppose that the probabilityθ is uniformly
distributed along the line segment joining(0,0) and(θ ,1), and the proba-
bility 1 − θ is uniformly distributed along the segment between(θ ,1) and

4



0 1

1

x

y

q

Figure 1:The support of the singular copulaCθ in Example 1

(1,0). Consider the resulting singular copulaCθ whose support consists
of these two line segments; see Figure 1. It follows (see (Nelsen, 2006,
Ex. 3.3)) that

Cθ (x,y) =











x if x ≤ θy

θy if θy < x < 1− (1−θ)y
x+ y−1 if 1− (1−θ)y ≤ x.

Note thatCθ can be written as the gluing

Cθ =C+
⊛x=θ C−

whereC+(x,y) = min(x,y) andC−(x,y) = max(x+ y−1,0) are the upper
and lower Fŕechet-Hoeffding bound, respectively.

Since the support ofCθ is a graph over thex-axis, this copula links ran-
dom variablesX andY whereY is completely dependent onX . This follows
from Dette et al. (2013, Prop. 1) and the fact that a function is Borel mea-
surable if and only if its graph is Borel measurable and has probability one
(Buckley, 1974). On the other hand,X is not completely dependent onY
because the support ofCθ is not a graph over they-axis.

This example will serve as a fundamental building block for our final
construction of copulasCn satisfying (2) and (3). To do so, we start with the
copulaC+

⊛x=θ C− from Example 1 where, in order to simplify calculations,
we setθ = 1/2. Then we defineCn inductively by

C1 =C+
⊛x=1/2C−

Cn+1 =Cn ⊛x=1/2Cn
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Figure 2:The gradient of the copulaC3 in the proof of Theorem 1

for n ≥ 1. We claim that
∫

I2
|∂1Cn(x,y)|2d(x,y) =

1
2

(6)

for all n ≥ 1, as well as
∫

I2
|∂2Cn(x,y)|2d(x,y)→ 1

3
(7)

asn → ∞. These relations imply that

r2|1(X ,Y ) = 6
∫

I2
|∂1Cn(x,y)|2d(x,y)−2= 1

for all n, as well as

r1|2(X ,Y ) = 6
∫

I2
|∂2Cn(x,y)|2d(x,y)−2→ 0

asn → ∞, which are precisely the assertions (2) and (3) that we wanted to
prove.

For the proof of (6) and (7), we have to calculate the gradient∇Cn. Us-
ing (5) and the fact that 1− θ = θ = 1/2, we see that∂Cn/∂x = 1 in the
upper and∂Cn/∂x = 0 in the lower triangles formed by the line segments
of the support ofCn, and the second component∂Cn/∂y takes the values
0,1/2n,2/2n, . . . ,(2n−1)/2n,1 respectively; see Figure 2 for the casen = 3.

Since the gradient ofCn is constant on each triangle, the integration re-
duces to multiplying the square of the respective constant with the area of
the corresponding triangle. Thus, considering the first component of the
gradient, we obtain

∫

I2
|∂1Cn(x,y)|2d(x,y) =

1
2
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for eachn ≥ 1, proving (6).
Now we deal with the second component of the gradient. Each of the

triangles in Figure 2, except for the two triangles on the left and the right,
has area 1/2n, and the value of the second component of the gradient is
i/2n wherei ranges from 1 to 2n −1. Therefore, the integral for the second
component amounts to

∫

I2
|∂2Cn(x,y)|2d(x,y) =

[2n−1

∑
i=1

( i
2n

)2
· 1
2n

]

+12 · 1
2n+1

where the last term stems from the triangle containing the vertex(1,1)which
is just half as big as the other ones. Using the formula

k−1

∑
i=1

i2 = k3/3+O(k2)

we conclude that
∫

I2
|∂2Cn(x,y)|2d(x,y) =

1
2n+1 +

( 1
2n

)3
·

2n−1

∑
i=1

i2 =
1
3
+O

( 1
2n

)

asn → ∞, proving also our claim (7).

4 Further remarks

Given an abstract measure of regression dependence, sayρ2|1, one could try
to construct a measure of dependence by settingρ = (ρ2|1+ρ1|2)/2. Note
that, a priori, it is not clear at all why this definition should yield a decent
measure of dependence. However, if we consider the measuresr2|1 andr1|2,
then this idea does give a meaningful result. Indeed, the function

ω(X ,Y )2 = (r2|1(X ,Y )+ r1|2(X ,Y ))/2

= 3
∫

I2
|∂1C(x,y)|2+ |∂2C(x,y)|2d(x,y)−2

is (the square of) the measure of mutual dependenceω introduced and stud-
ied in Siburg and Stoimenov (2010).

It was shown in (Siburg and Stoimenov, 2010, Thm. 13(vi)) that
√

2
2

≤ ω(X ,Y )≤ 1

wheneverY is a.s. a Borel function ofX . However, it was not clear whether
the lower bound was sharp. Our above example now shows that this is in-
deed the case. Namely, for the sequence of random variables(Xn,Yn), re-
spectively, their corresponding copulasCn as in Section 3 we have

lim
n→∞

r2|1(Xn,Yn)+ r1|2(Xn,Yn) = 1, (8)
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which implies that

lim
n→∞

ω(Xn,Yn) =

√
2

2
.
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