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Abstract

Let X,Y be two continuous random variables. Investigating the regres-
sion dependence &f on X, respectively, oK onY, we show that the two of
them can have almost opposite behavior. Indeed, givereany®, we con-
struct a bivariate random vectgX,Y) such that the respective regression
dependence measungg (X,Y),ry2(X,Y) € [0,1] introduced in Dette et al.
(2013) satisfyry1(X,Y) = 1 as well agy5(X,Y) < €.

1 Introduction and results

Recently, Dette et al. (2013) introduced an approach to the problerderf-or
ing and measuring regression dependence in the bivariate cag, ¥ete



a bivariate random vector. Since regression dependence is a digdcttan
tionship, it is first necessary to specify the direction of interest. Withost los
of generality, consider the dependenceYobn X. The fundamental idea
behind regression is predictability—the more predictablie from X, the
more regression dependent they are. It is straightforward to singlteut
two extreme cases: independence and almost sure functional dependen
when there exists a Borel measurable functipsuch thaty = g(X) with
probability one (Lancaster, 1963). In the former casgrovides no infor-
mation abouy, whereas in the latter case there is perfect predictability of
from X.

Apart from the two extreme cases, however, there exists a variety of in-
termediate ones with a certain degree of regression dependence. fie be a
to measure the strength of dependenc¥ oh X, Dette et al. (2013) intro-
duced the concept of an order of regression dependence. Ohlasurder
allows one to deal with questions like whether one random variéldan
be better regressed on¥othan another random variab¥¢ (namely when
(X,Y) is more regression dependent thatY’)). Note that the concept
of regression dependence is quite different from the well known eqotnaf
dependence, as measured by a variety of measures of dependassear
ation. Indeed, the general notion of dependence is not a directionedpt
i.e., it cannot describe how strongtydepends oiX.

In addition to an order of regression dependence, Dette et al. (2013)
constructed a nonparametric measure of regression dependgf(¢e,Y) €
[0,1], which is monotone in this order. Moreover, the measure takes on its
extreme values precisely at independence and almost sure functipeal-de
dence, respectively, i.e., we have

(i) ry1(X,Y)=1ifand only ifY is a.s. a Borel function oX.
(ii) ry2(X,Y)=0ifand only if X andY are independent.

We point out that it is important to have equivalences in both of the prop-
erties (i) and (i), because only then the valge(X,Y) can serve as a gen-
uine measure of how much is dependent oiX. Indeed, if we only had
r21(X,Y) = 0if (but not only if) X andY are independent, then an assertion
like rp1(X,Y) < & would not imply thaty is ‘almost independent’ fronx.
Analogously, of course, one can exchange the rolesafY and define
a measure;p(X,Y) = ry1(Y,X) measuring the degree of dependenc of
onyY.
The following is the main result of the present paper.

Theorem 1. For any given € > 0, thereis a random vector (X,Y) such that
the following assertions hold:

1. ryy(X,Y) =1,i.e,Y isas. aBorel function of X.

2. r1|2(X,Y) <E&.



The paper is organized as follows. In Section 2 we give a quick review
of the construction in Dette et al. (2013) of the nonparametric meagyre
of regression dependence. Section 3 then contains the proof oférheor
Section 4 relates this result to other problems in the literature.
Acknowledgements: Research on this paper started when PAS was sup-
ported by the DFG Sonderforschungsbereich 823 ™ Statistical modelfing o

nonlinear dynamic processes™.

2 Prédiminaries

In this section we recall the basic notion of copula and the definition of the
nonparametric measure of regression dependence introduced in Dedtte et
(2013). A (two-dimensional) copula is a functi@n 12 — | with | := [0, 1],
satisfying the following conditions:

1. C(x,0) =C(0,y) =0forallx,y €|
2. C(x,1) =xandC(1,y) =yforallx,y el

3. Cis 2-increasing, i.eC(X2,¥2) — C(X2,y1) —C(X1,¥2) +C(X1,y1) > 0
for all rectanglegxy, xo] x [y1,Y2] C I2.

These conditions imply further key properties. A copula is Lipschitz contin-
uous and increasing in each argument; therefore, its partial derivatist
a.e. onl?. We refer the reader to Nelsen (2006) for more information about
copulas.

Given two continuous random variabl@sandY with corresponding
copulaC, the measure of regression dependengéX,Y) introduced in
Dette et al. (2013) is defined by

2a(X.Y) = 6l0CIE—2=6 [ lCHxy) Py 2 ()

whereg; denotes the partial derivative with respect to the first variablé|and

|2 is theL?-norm onl 2. The quantityr,; measures the degree of dependence

of Y on X. It is a measure of regression dependence with respect to two

natural regression dependence orders, also introduced in Dett¢218).
Analogously, one can define a measure

rp(X,Y) = 6/|0.Cl5—2= r21(Y,X)

such that this quantity measures the degree of dependedxceroY .



3 Proof of Theorem 1

In this section, we will construct a sequené,, Y,) of bivariate random
vectors such that

r21(Xn,Yn) = 1 for alln, (2)
rllmorl‘z(xn,Yn) =0. (3)

This proves Theorem 1. In fact, we will construct a sequence oflaspu
C, rather than the random variables themselves. This is sufficient because
the measures,; andry, depend only on the corresponding copula. For
the construction of these copulas, we use the so-called gluing method devel-
oped in Siburg and Stoimenov (2008); alternatively, one could also use the
orthogonal grid construction described in De Baets and De Meyer 2007
For the convenience of the reader, we quickly recall the details of theggluin
method.

Given two copula€;,C;, and a parameté? € (0,1), we define the func-
tion

6C1(3.Y) ifo<x<@6

4
(1-0)Co(=5.y)+0y if@<x<1 )

(Cr@x—0C2)(Xy) = {
Thus,C; ®«—g Cy corresponds to gluing the two copulasandC;: it equals
Cy, rescaled and fit into the rectang@® 6] x |, and equal€, + 0y, rescaled
and fit into[6,1] x I. Itis shown in Siburg and Stoimenov (2008) that the
gluing process yields a copula again, i€;,®x—g C, is a copula for any
parameteif. For later purposes, we need also the gradient of the resulting
copula which is given by

0(C1®x=0C2) (X, Y)

(dlcl(%7y)7edzcl(gay)> if 0 SXS 0
= 5)
(C(55.y). (1~ )3 (5.y) +0) if o <x<1

provided the partial derivatives on the right exist.

Let us first illustrate the glueing construction with a fundamental ex-
ample. Recall that a copul@ is called singular if its densitg?C/dxdy
vanishes almost everywhere i Moreover, the support of a copulaiis
defined as the complement of the union of all (relatively) open subséts of
whose measure, induced By is zero. We refer to Nelsen (2006) for more
details.

Example 1. Let 8 € (0,1), and suppose that the probabililyis uniformly
distributed along the line segment joinin@ 0) and(6,1), and the proba-
bility 1 — 0 is uniformly distributed along the segment betwéénl) and
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Figure 1:The support of the singular copuly in Example 1

(1,0). Consider the resulting singular copula whose support consists
of these two line segments; see Figure 1. It follows (see (Nelsen, 2006,
Ex. 3.3)) that

X if x< 6y
Co(x,y) =< 6y if By<x<1—(1-0)y
Xx+y—1 if1—(1-08)y<x

Note thatCy can be written as the gluing
Co=C"®yx9C~

whereC*(x,y) = min(x,y) andC~(x,y) = maxx+y— 1,0) are the upper
and lower Fechet-Hoeffding bound, respectively.

Since the support aZg is a graph over thg-axis, this copula links ran-
dom variablesX andY whereY is completely dependent ot This follows
from Dette et al. (2013, Prop. 1) and the fact that a function is Borel mea
surable if and only if its graph is Borel measurable and has probability one
(Buckley, 1974). On the other hanH, is not completely dependent oh
because the support G is not a graph over thg-axis.

This example will serve as a fundamental building block for our final
construction of copulag, satisfying (2) and (3). To do so, we start with the
copulaC* ®y_gC~ from Example 1 where, in order to simplify calculations,
we setf = 1/2. Then we defin€, inductively by

C= Cc* ®x:1/2 (o
Cnt1=Cn®x=1/2Cn
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Figure 2:The gradient of the copulds in the proof of Theorem 1

forn> 1. We claim that

[ 1oCaxy)Pixy) = 5 ©

foralln>1, as well as

[ 1oCaixy)Pdicy) — 5 @

asn — oo, These relations imply that

r22(X.Y) =6 [ 10:Cnlx.y) Pd(xy) ~2 =1
for all n, as well as

ria(X.Y) =6 [ |9:Ca(xy)d(x.y) ~2 0

asn — oo, which are precisely the assertions (2) and (3) that we wanted to
prove.
For the proof of (6) and (7), we have to calculate the gradi&t Us-
ing (5) and the fact that+ 6 = 6 = 1/2, we see thaPC,/dx =1 in the
upper anddC,/dx = 0 in the lower triangles formed by the line segments
of the support ofC,, and the second componed€,/dy takes the values
0,1/2".2/2", ..., (2"—1)/2",1 respectively; see Figure 2 for the case 3.
Since the gradient o, is constant on each triangle, the integration re-
duces to multiplying the square of the respective constant with the area of
the corresponding triangle. Thus, considering the first component of the
gradient, we obtain

[ 1oGuxyPdixy) = 5
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for eachn > 1, proving (6).

Now we deal with the second component of the gradient. Each of the
triangles in Figure 2, except for the two triangles on the left and the right,
has area 12", and the value of the second component of the gradient is
i/2" wherei ranges from 1 to 2— 1. Therefore, the integral for the second
component amounts to

oo [ (25 2]

where the last term stems from the triangle containing the véttéy which
is just half as big as the other ones. Using the formula

k-1

.Zliz =k3/3+ 0 (K?)

we conclude that

[ 102Cay) Pixy) = s+ (21,1)3~2:;1i2 =5+0(z)

asn — oo, proving also our claim (7).

4 Further remarks

Given an abstract measure of regression dependencpzgagne could try

to construct a measure of dependence by sefiirg(po1 + P12)/2. Note
that, a priori, it is not clear at all why this definition should yield a decent
measure of dependence. However, if we consider the measyraadry),,
then this idea does give a meaningful result. Indeed, the function

W(X,Y)? = (rn(X,Y) +r12(X,Y)) /2
=3 [ |0Cxy) 2+ 10:Clxy) Px.y) 2

is (the square of) the measure of mutual dependenicgroduced and stud-
ied in Siburg and Stoimenov (2010).
It was shown in (Siburg and Stoimenov, 2010, Thm. 13(vi)) that

V2

> <w(X)Y)<1

whenevelY is a.s. a Borel function ok. However, it was not clear whether
the lower bound was sharp. Our above example now shows that this is in-
deed the case. Namely, for the sequence of random variéXley,), re-
spectively, their corresponding copufasas in Section 3 we have

Amrzu(xn)Yn) + r1|2(XnaYn) = 17 (8)
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which implies that

N

lim w(Xn,Yn) =

n—co 7
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